xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*-
2  * Copyright (c) 2012 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 		        int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 /**
82  *	t4_set_reg_field - set a register field to a value
83  *	@adapter: the adapter to program
84  *	@addr: the register address
85  *	@mask: specifies the portion of the register to modify
86  *	@val: the new value for the register field
87  *
88  *	Sets a register field specified by the supplied mask to the
89  *	given value.
90  */
91 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
92 		      u32 val)
93 {
94 	u32 v = t4_read_reg(adapter, addr) & ~mask;
95 
96 	t4_write_reg(adapter, addr, v | val);
97 	(void) t4_read_reg(adapter, addr);      /* flush */
98 }
99 
100 /**
101  *	t4_read_indirect - read indirectly addressed registers
102  *	@adap: the adapter
103  *	@addr_reg: register holding the indirect address
104  *	@data_reg: register holding the value of the indirect register
105  *	@vals: where the read register values are stored
106  *	@nregs: how many indirect registers to read
107  *	@start_idx: index of first indirect register to read
108  *
109  *	Reads registers that are accessed indirectly through an address/data
110  *	register pair.
111  */
112 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
113 		      unsigned int data_reg, u32 *vals, unsigned int nregs,
114 		      unsigned int start_idx)
115 {
116 	while (nregs--) {
117 		t4_write_reg(adap, addr_reg, start_idx);
118 		*vals++ = t4_read_reg(adap, data_reg);
119 		start_idx++;
120 	}
121 }
122 
123 /**
124  *	t4_write_indirect - write indirectly addressed registers
125  *	@adap: the adapter
126  *	@addr_reg: register holding the indirect addresses
127  *	@data_reg: register holding the value for the indirect registers
128  *	@vals: values to write
129  *	@nregs: how many indirect registers to write
130  *	@start_idx: address of first indirect register to write
131  *
132  *	Writes a sequential block of registers that are accessed indirectly
133  *	through an address/data register pair.
134  */
135 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
136 		       unsigned int data_reg, const u32 *vals,
137 		       unsigned int nregs, unsigned int start_idx)
138 {
139 	while (nregs--) {
140 		t4_write_reg(adap, addr_reg, start_idx++);
141 		t4_write_reg(adap, data_reg, *vals++);
142 	}
143 }
144 
145 /*
146  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
147  * mechanism.  This guarantees that we get the real value even if we're
148  * operating within a Virtual Machine and the Hypervisor is trapping our
149  * Configuration Space accesses.
150  */
151 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
152 {
153 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ,
154 		     F_ENABLE | F_LOCALCFG | V_FUNCTION(adap->pf) |
155 		     V_REGISTER(reg));
156 	return t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
157 }
158 
159 /*
160  *	t4_report_fw_error - report firmware error
161  *	@adap: the adapter
162  *
163  *	The adapter firmware can indicate error conditions to the host.
164  *	This routine prints out the reason for the firmware error (as
165  *	reported by the firmware).
166  */
167 static void t4_report_fw_error(struct adapter *adap)
168 {
169 	static const char *reason[] = {
170 		"Crash",			/* PCIE_FW_EVAL_CRASH */
171 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
172 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
173 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
174 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
175 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
176 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
177 		"Reserved",			/* reserved */
178 	};
179 	u32 pcie_fw;
180 
181 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
182 	if (pcie_fw & F_PCIE_FW_ERR)
183 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
184 		       reason[G_PCIE_FW_EVAL(pcie_fw)]);
185 }
186 
187 /*
188  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
189  */
190 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
191 			 u32 mbox_addr)
192 {
193 	for ( ; nflit; nflit--, mbox_addr += 8)
194 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
195 }
196 
197 /*
198  * Handle a FW assertion reported in a mailbox.
199  */
200 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
201 {
202 	struct fw_debug_cmd asrt;
203 
204 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
205 	CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
206 		 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
207 		 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
208 }
209 
210 #define X_CIM_PF_NOACCESS 0xeeeeeeee
211 /**
212  *	t4_wr_mbox_meat - send a command to FW through the given mailbox
213  *	@adap: the adapter
214  *	@mbox: index of the mailbox to use
215  *	@cmd: the command to write
216  *	@size: command length in bytes
217  *	@rpl: where to optionally store the reply
218  *	@sleep_ok: if true we may sleep while awaiting command completion
219  *
220  *	Sends the given command to FW through the selected mailbox and waits
221  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
222  *	store the FW's reply to the command.  The command and its optional
223  *	reply are of the same length.  Some FW commands like RESET and
224  *	INITIALIZE can take a considerable amount of time to execute.
225  *	@sleep_ok determines whether we may sleep while awaiting the response.
226  *	If sleeping is allowed we use progressive backoff otherwise we spin.
227  *
228  *	The return value is 0 on success or a negative errno on failure.  A
229  *	failure can happen either because we are not able to execute the
230  *	command or FW executes it but signals an error.  In the latter case
231  *	the return value is the error code indicated by FW (negated).
232  */
233 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
234 		    void *rpl, bool sleep_ok)
235 {
236 	/*
237 	 * We delay in small increments at first in an effort to maintain
238 	 * responsiveness for simple, fast executing commands but then back
239 	 * off to larger delays to a maximum retry delay.
240 	 */
241 	static const int delay[] = {
242 		1, 1, 3, 5, 10, 10, 20, 50, 100
243 	};
244 
245 	u32 v;
246 	u64 res;
247 	int i, ms, delay_idx;
248 	const __be64 *p = cmd;
249 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
250 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
251 
252 	if ((size & 15) || size > MBOX_LEN)
253 		return -EINVAL;
254 
255 	v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
256 	for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
257 		v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
258 
259 	if (v != X_MBOWNER_PL)
260 		return v ? -EBUSY : -ETIMEDOUT;
261 
262 	for (i = 0; i < size; i += 8, p++)
263 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
264 
265 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
266 	t4_read_reg(adap, ctl_reg);          /* flush write */
267 
268 	delay_idx = 0;
269 	ms = delay[0];
270 
271 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
272 		if (sleep_ok) {
273 			ms = delay[delay_idx];  /* last element may repeat */
274 			if (delay_idx < ARRAY_SIZE(delay) - 1)
275 				delay_idx++;
276 			msleep(ms);
277 		} else
278 			mdelay(ms);
279 
280 		v = t4_read_reg(adap, ctl_reg);
281 		if (v == X_CIM_PF_NOACCESS)
282 			continue;
283 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
284 			if (!(v & F_MBMSGVALID)) {
285 				t4_write_reg(adap, ctl_reg,
286 					     V_MBOWNER(X_MBOWNER_NONE));
287 				continue;
288 			}
289 
290 			res = t4_read_reg64(adap, data_reg);
291 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
292 				fw_asrt(adap, data_reg);
293 				res = V_FW_CMD_RETVAL(EIO);
294 			} else if (rpl)
295 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
296 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
297 			return -G_FW_CMD_RETVAL((int)res);
298 		}
299 	}
300 
301 	/*
302 	 * We timed out waiting for a reply to our mailbox command.  Report
303 	 * the error and also check to see if the firmware reported any
304 	 * errors ...
305 	 */
306 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
307 	       *(const u8 *)cmd, mbox);
308 	if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
309 		t4_report_fw_error(adap);
310 	return -ETIMEDOUT;
311 }
312 
313 /**
314  *	t4_mc_read - read from MC through backdoor accesses
315  *	@adap: the adapter
316  *	@idx: which MC to access
317  *	@addr: address of first byte requested
318  *	@data: 64 bytes of data containing the requested address
319  *	@ecc: where to store the corresponding 64-bit ECC word
320  *
321  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
322  *	that covers the requested address @addr.  If @parity is not %NULL it
323  *	is assigned the 64-bit ECC word for the read data.
324  */
325 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
326 {
327 	int i;
328 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
329 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
330 
331 	if (is_t4(adap)) {
332 		mc_bist_cmd_reg = A_MC_BIST_CMD;
333 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
334 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
335 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
336 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
337 	} else {
338 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
339 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
340 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
341 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
342 						  idx);
343 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
344 						  idx);
345 	}
346 
347 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
348 		return -EBUSY;
349 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
350 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
351 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
352 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
353 		     F_START_BIST | V_BIST_CMD_GAP(1));
354 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
355 	if (i)
356 		return i;
357 
358 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
359 
360 	for (i = 15; i >= 0; i--)
361 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
362 	if (ecc)
363 		*ecc = t4_read_reg64(adap, MC_DATA(16));
364 #undef MC_DATA
365 	return 0;
366 }
367 
368 /**
369  *	t4_edc_read - read from EDC through backdoor accesses
370  *	@adap: the adapter
371  *	@idx: which EDC to access
372  *	@addr: address of first byte requested
373  *	@data: 64 bytes of data containing the requested address
374  *	@ecc: where to store the corresponding 64-bit ECC word
375  *
376  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
377  *	that covers the requested address @addr.  If @parity is not %NULL it
378  *	is assigned the 64-bit ECC word for the read data.
379  */
380 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
381 {
382 	int i;
383 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
384 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
385 
386 	if (is_t4(adap)) {
387 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
388 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
389 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
390 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
391 						    idx);
392 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
393 						    idx);
394 	} else {
395 /*
396  * These macro are missing in t4_regs.h file.
397  * Added temporarily for testing.
398  */
399 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
400 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
401 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
402 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
403 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
404 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
405 						    idx);
406 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
407 						    idx);
408 #undef EDC_REG_T5
409 #undef EDC_STRIDE_T5
410 	}
411 
412 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
413 		return -EBUSY;
414 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
415 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
416 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
417 	t4_write_reg(adap, edc_bist_cmd_reg,
418 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
419 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
420 	if (i)
421 		return i;
422 
423 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
424 
425 	for (i = 15; i >= 0; i--)
426 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
427 	if (ecc)
428 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
429 #undef EDC_DATA
430 	return 0;
431 }
432 
433 /**
434  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
435  *	@adap: the adapter
436  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
437  *	@addr: address within indicated memory type
438  *	@len: amount of memory to read
439  *	@buf: host memory buffer
440  *
441  *	Reads an [almost] arbitrary memory region in the firmware: the
442  *	firmware memory address, length and host buffer must be aligned on
443  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
444  *	the firmware's memory.  If this memory contains data structures which
445  *	contain multi-byte integers, it's the callers responsibility to
446  *	perform appropriate byte order conversions.
447  */
448 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
449 		__be32 *buf)
450 {
451 	u32 pos, start, end, offset;
452 	int ret;
453 
454 	/*
455 	 * Argument sanity checks ...
456 	 */
457 	if ((addr & 0x3) || (len & 0x3))
458 		return -EINVAL;
459 
460 	/*
461 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
462 	 * need to round down the start and round up the end.  We'll start
463 	 * copying out of the first line at (addr - start) a word at a time.
464 	 */
465 	start = addr & ~(64-1);
466 	end = (addr + len + 64-1) & ~(64-1);
467 	offset = (addr - start)/sizeof(__be32);
468 
469 	for (pos = start; pos < end; pos += 64, offset = 0) {
470 		__be32 data[16];
471 
472 		/*
473 		 * Read the chip's memory block and bail if there's an error.
474 		 */
475 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
476 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
477 		else
478 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
479 		if (ret)
480 			return ret;
481 
482 		/*
483 		 * Copy the data into the caller's memory buffer.
484 		 */
485 		while (offset < 16 && len > 0) {
486 			*buf++ = data[offset++];
487 			len -= sizeof(__be32);
488 		}
489 	}
490 
491 	return 0;
492 }
493 
494 /*
495  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
496  * VPD-R header.
497  */
498 struct t4_vpd_hdr {
499 	u8  id_tag;
500 	u8  id_len[2];
501 	u8  id_data[ID_LEN];
502 	u8  vpdr_tag;
503 	u8  vpdr_len[2];
504 };
505 
506 /*
507  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
508  */
509 #define EEPROM_MAX_RD_POLL 40
510 #define EEPROM_MAX_WR_POLL 6
511 #define EEPROM_STAT_ADDR   0x7bfc
512 #define VPD_BASE           0x400
513 #define VPD_BASE_OLD       0
514 #define VPD_LEN            1024
515 #define VPD_INFO_FLD_HDR_SIZE	3
516 #define CHELSIO_VPD_UNIQUE_ID 0x82
517 
518 /**
519  *	t4_seeprom_read - read a serial EEPROM location
520  *	@adapter: adapter to read
521  *	@addr: EEPROM virtual address
522  *	@data: where to store the read data
523  *
524  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
525  *	VPD capability.  Note that this function must be called with a virtual
526  *	address.
527  */
528 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
529 {
530 	u16 val;
531 	int attempts = EEPROM_MAX_RD_POLL;
532 	unsigned int base = adapter->params.pci.vpd_cap_addr;
533 
534 	if (addr >= EEPROMVSIZE || (addr & 3))
535 		return -EINVAL;
536 
537 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
538 	do {
539 		udelay(10);
540 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
541 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
542 
543 	if (!(val & PCI_VPD_ADDR_F)) {
544 		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
545 		return -EIO;
546 	}
547 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
548 	*data = le32_to_cpu(*data);
549 	return 0;
550 }
551 
552 /**
553  *	t4_seeprom_write - write a serial EEPROM location
554  *	@adapter: adapter to write
555  *	@addr: virtual EEPROM address
556  *	@data: value to write
557  *
558  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
559  *	VPD capability.  Note that this function must be called with a virtual
560  *	address.
561  */
562 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
563 {
564 	u16 val;
565 	int attempts = EEPROM_MAX_WR_POLL;
566 	unsigned int base = adapter->params.pci.vpd_cap_addr;
567 
568 	if (addr >= EEPROMVSIZE || (addr & 3))
569 		return -EINVAL;
570 
571 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
572 				 cpu_to_le32(data));
573 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
574 				 (u16)addr | PCI_VPD_ADDR_F);
575 	do {
576 		msleep(1);
577 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
578 	} while ((val & PCI_VPD_ADDR_F) && --attempts);
579 
580 	if (val & PCI_VPD_ADDR_F) {
581 		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
582 		return -EIO;
583 	}
584 	return 0;
585 }
586 
587 /**
588  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
589  *	@phys_addr: the physical EEPROM address
590  *	@fn: the PCI function number
591  *	@sz: size of function-specific area
592  *
593  *	Translate a physical EEPROM address to virtual.  The first 1K is
594  *	accessed through virtual addresses starting at 31K, the rest is
595  *	accessed through virtual addresses starting at 0.
596  *
597  *	The mapping is as follows:
598  *	[0..1K) -> [31K..32K)
599  *	[1K..1K+A) -> [ES-A..ES)
600  *	[1K+A..ES) -> [0..ES-A-1K)
601  *
602  *	where A = @fn * @sz, and ES = EEPROM size.
603  */
604 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
605 {
606 	fn *= sz;
607 	if (phys_addr < 1024)
608 		return phys_addr + (31 << 10);
609 	if (phys_addr < 1024 + fn)
610 		return EEPROMSIZE - fn + phys_addr - 1024;
611 	if (phys_addr < EEPROMSIZE)
612 		return phys_addr - 1024 - fn;
613 	return -EINVAL;
614 }
615 
616 /**
617  *	t4_seeprom_wp - enable/disable EEPROM write protection
618  *	@adapter: the adapter
619  *	@enable: whether to enable or disable write protection
620  *
621  *	Enables or disables write protection on the serial EEPROM.
622  */
623 int t4_seeprom_wp(struct adapter *adapter, int enable)
624 {
625 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
626 }
627 
628 /**
629  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
630  *	@v: Pointer to buffered vpd data structure
631  *	@kw: The keyword to search for
632  *
633  *	Returns the value of the information field keyword or
634  *	-ENOENT otherwise.
635  */
636 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
637 {
638          int i;
639 	 unsigned int offset , len;
640 	 const u8 *buf = &v->id_tag;
641 	 const u8 *vpdr_len = &v->vpdr_tag;
642 	 offset = sizeof(struct t4_vpd_hdr);
643 	 len =  (u16)vpdr_len[1] + ((u16)vpdr_len[2] << 8);
644 
645 	 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
646 		 return -ENOENT;
647 	 }
648 
649          for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
650 		 if(memcmp(buf + i , kw , 2) == 0){
651 			 i += VPD_INFO_FLD_HDR_SIZE;
652                          return i;
653 		  }
654 
655                  i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
656          }
657 
658          return -ENOENT;
659 }
660 
661 
662 /**
663  *	get_vpd_params - read VPD parameters from VPD EEPROM
664  *	@adapter: adapter to read
665  *	@p: where to store the parameters
666  *
667  *	Reads card parameters stored in VPD EEPROM.
668  */
669 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
670 {
671 	int i, ret, addr;
672 	int ec, sn, pn, na;
673 	u8 vpd[VPD_LEN], csum;
674 	const struct t4_vpd_hdr *v;
675 
676 	/*
677 	 * Card information normally starts at VPD_BASE but early cards had
678 	 * it at 0.
679 	 */
680 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
681 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
682 
683 	for (i = 0; i < sizeof(vpd); i += 4) {
684 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
685 		if (ret)
686 			return ret;
687 	}
688  	v = (const struct t4_vpd_hdr *)vpd;
689 
690 #define FIND_VPD_KW(var,name) do { \
691 	var = get_vpd_keyword_val(v , name); \
692 	if (var < 0) { \
693 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
694 		return -EINVAL; \
695 	} \
696 } while (0)
697 
698 	FIND_VPD_KW(i, "RV");
699 	for (csum = 0; i >= 0; i--)
700 		csum += vpd[i];
701 
702 	if (csum) {
703 		CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum);
704 		return -EINVAL;
705 	}
706 	FIND_VPD_KW(ec, "EC");
707 	FIND_VPD_KW(sn, "SN");
708 	FIND_VPD_KW(pn, "PN");
709 	FIND_VPD_KW(na, "NA");
710 #undef FIND_VPD_KW
711 
712 	memcpy(p->id, v->id_data, ID_LEN);
713 	strstrip(p->id);
714 	memcpy(p->ec, vpd + ec, EC_LEN);
715 	strstrip(p->ec);
716 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
717 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
718 	strstrip(p->sn);
719 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
720 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
721 	strstrip((char *)p->pn);
722 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
723 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
724 	strstrip((char *)p->na);
725 
726 	return 0;
727 }
728 
729 /* serial flash and firmware constants and flash config file constants */
730 enum {
731 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
732 
733 	/* flash command opcodes */
734 	SF_PROG_PAGE    = 2,          /* program page */
735 	SF_WR_DISABLE   = 4,          /* disable writes */
736 	SF_RD_STATUS    = 5,          /* read status register */
737 	SF_WR_ENABLE    = 6,          /* enable writes */
738 	SF_RD_DATA_FAST = 0xb,        /* read flash */
739 	SF_RD_ID        = 0x9f,       /* read ID */
740 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
741 };
742 
743 /**
744  *	sf1_read - read data from the serial flash
745  *	@adapter: the adapter
746  *	@byte_cnt: number of bytes to read
747  *	@cont: whether another operation will be chained
748  *	@lock: whether to lock SF for PL access only
749  *	@valp: where to store the read data
750  *
751  *	Reads up to 4 bytes of data from the serial flash.  The location of
752  *	the read needs to be specified prior to calling this by issuing the
753  *	appropriate commands to the serial flash.
754  */
755 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
756 		    int lock, u32 *valp)
757 {
758 	int ret;
759 
760 	if (!byte_cnt || byte_cnt > 4)
761 		return -EINVAL;
762 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
763 		return -EBUSY;
764 	t4_write_reg(adapter, A_SF_OP,
765 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
766 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
767 	if (!ret)
768 		*valp = t4_read_reg(adapter, A_SF_DATA);
769 	return ret;
770 }
771 
772 /**
773  *	sf1_write - write data to the serial flash
774  *	@adapter: the adapter
775  *	@byte_cnt: number of bytes to write
776  *	@cont: whether another operation will be chained
777  *	@lock: whether to lock SF for PL access only
778  *	@val: value to write
779  *
780  *	Writes up to 4 bytes of data to the serial flash.  The location of
781  *	the write needs to be specified prior to calling this by issuing the
782  *	appropriate commands to the serial flash.
783  */
784 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
785 		     int lock, u32 val)
786 {
787 	if (!byte_cnt || byte_cnt > 4)
788 		return -EINVAL;
789 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
790 		return -EBUSY;
791 	t4_write_reg(adapter, A_SF_DATA, val);
792 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
793 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
794 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
795 }
796 
797 /**
798  *	flash_wait_op - wait for a flash operation to complete
799  *	@adapter: the adapter
800  *	@attempts: max number of polls of the status register
801  *	@delay: delay between polls in ms
802  *
803  *	Wait for a flash operation to complete by polling the status register.
804  */
805 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
806 {
807 	int ret;
808 	u32 status;
809 
810 	while (1) {
811 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
812 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
813 			return ret;
814 		if (!(status & 1))
815 			return 0;
816 		if (--attempts == 0)
817 			return -EAGAIN;
818 		if (delay)
819 			msleep(delay);
820 	}
821 }
822 
823 /**
824  *	t4_read_flash - read words from serial flash
825  *	@adapter: the adapter
826  *	@addr: the start address for the read
827  *	@nwords: how many 32-bit words to read
828  *	@data: where to store the read data
829  *	@byte_oriented: whether to store data as bytes or as words
830  *
831  *	Read the specified number of 32-bit words from the serial flash.
832  *	If @byte_oriented is set the read data is stored as a byte array
833  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
834  *	natural endianess.
835  */
836 int t4_read_flash(struct adapter *adapter, unsigned int addr,
837 		  unsigned int nwords, u32 *data, int byte_oriented)
838 {
839 	int ret;
840 
841 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
842 		return -EINVAL;
843 
844 	addr = swab32(addr) | SF_RD_DATA_FAST;
845 
846 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
847 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
848 		return ret;
849 
850 	for ( ; nwords; nwords--, data++) {
851 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
852 		if (nwords == 1)
853 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
854 		if (ret)
855 			return ret;
856 		if (byte_oriented)
857 			*data = htonl(*data);
858 	}
859 	return 0;
860 }
861 
862 /**
863  *	t4_write_flash - write up to a page of data to the serial flash
864  *	@adapter: the adapter
865  *	@addr: the start address to write
866  *	@n: length of data to write in bytes
867  *	@data: the data to write
868  *	@byte_oriented: whether to store data as bytes or as words
869  *
870  *	Writes up to a page of data (256 bytes) to the serial flash starting
871  *	at the given address.  All the data must be written to the same page.
872  *	If @byte_oriented is set the write data is stored as byte stream
873  *	(i.e. matches what on disk), otherwise in big-endian.
874  */
875 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
876 			  unsigned int n, const u8 *data, int byte_oriented)
877 {
878 	int ret;
879 	u32 buf[SF_PAGE_SIZE / 4];
880 	unsigned int i, c, left, val, offset = addr & 0xff;
881 
882 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
883 		return -EINVAL;
884 
885 	val = swab32(addr) | SF_PROG_PAGE;
886 
887 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
888 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
889 		goto unlock;
890 
891 	for (left = n; left; left -= c) {
892 		c = min(left, 4U);
893 		for (val = 0, i = 0; i < c; ++i)
894 			val = (val << 8) + *data++;
895 
896 		if (!byte_oriented)
897 			val = htonl(val);
898 
899 		ret = sf1_write(adapter, c, c != left, 1, val);
900 		if (ret)
901 			goto unlock;
902 	}
903 	ret = flash_wait_op(adapter, 8, 1);
904 	if (ret)
905 		goto unlock;
906 
907 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
908 
909 	/* Read the page to verify the write succeeded */
910 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
911 			    byte_oriented);
912 	if (ret)
913 		return ret;
914 
915 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
916 		CH_ERR(adapter, "failed to correctly write the flash page "
917 		       "at %#x\n", addr);
918 		return -EIO;
919 	}
920 	return 0;
921 
922 unlock:
923 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
924 	return ret;
925 }
926 
927 /**
928  *	t4_get_fw_version - read the firmware version
929  *	@adapter: the adapter
930  *	@vers: where to place the version
931  *
932  *	Reads the FW version from flash.
933  */
934 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
935 {
936 	return t4_read_flash(adapter,
937 			     FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1,
938 			     vers, 0);
939 }
940 
941 /**
942  *	t4_get_tp_version - read the TP microcode version
943  *	@adapter: the adapter
944  *	@vers: where to place the version
945  *
946  *	Reads the TP microcode version from flash.
947  */
948 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
949 {
950 	return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr,
951 							      tp_microcode_ver),
952 			     1, vers, 0);
953 }
954 
955 /**
956  *	t4_check_fw_version - check if the FW is compatible with this driver
957  *	@adapter: the adapter
958  *
959  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
960  *	if there's exact match, a negative error if the version could not be
961  *	read or there's a major version mismatch, and a positive value if the
962  *	expected major version is found but there's a minor version mismatch.
963  */
964 int t4_check_fw_version(struct adapter *adapter)
965 {
966 	int ret, major, minor, micro;
967 	int exp_major, exp_minor, exp_micro;
968 
969 	ret = t4_get_fw_version(adapter, &adapter->params.fw_vers);
970 	if (!ret)
971 		ret = t4_get_tp_version(adapter, &adapter->params.tp_vers);
972 	if (ret)
973 		return ret;
974 
975 	major = G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers);
976 	minor = G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers);
977 	micro = G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers);
978 
979 	switch (chip_id(adapter)) {
980 	case CHELSIO_T4:
981 		exp_major = T4FW_VERSION_MAJOR;
982 		exp_minor = T4FW_VERSION_MINOR;
983 		exp_micro = T4FW_VERSION_MICRO;
984 		break;
985 	case CHELSIO_T5:
986 		exp_major = T5FW_VERSION_MAJOR;
987 		exp_minor = T5FW_VERSION_MINOR;
988 		exp_micro = T5FW_VERSION_MICRO;
989 		break;
990 	default:
991 		CH_ERR(adapter, "Unsupported chip type, %x\n",
992 		    chip_id(adapter));
993 		return -EINVAL;
994 	}
995 
996 	if (major != exp_major) {            /* major mismatch - fail */
997 		CH_ERR(adapter, "card FW has major version %u, driver wants "
998 		       "%u\n", major, exp_major);
999 		return -EINVAL;
1000 	}
1001 
1002 	if (minor == exp_minor && micro == exp_micro)
1003 		return 0;                                   /* perfect match */
1004 
1005 	/* Minor/micro version mismatch.  Report it but often it's OK. */
1006 	return 1;
1007 }
1008 
1009 /**
1010  *	t4_flash_erase_sectors - erase a range of flash sectors
1011  *	@adapter: the adapter
1012  *	@start: the first sector to erase
1013  *	@end: the last sector to erase
1014  *
1015  *	Erases the sectors in the given inclusive range.
1016  */
1017 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
1018 {
1019 	int ret = 0;
1020 
1021 	while (start <= end) {
1022 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1023 		    (ret = sf1_write(adapter, 4, 0, 1,
1024 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
1025 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
1026 			CH_ERR(adapter, "erase of flash sector %d failed, "
1027 			       "error %d\n", start, ret);
1028 			break;
1029 		}
1030 		start++;
1031 	}
1032 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
1033 	return ret;
1034 }
1035 
1036 /**
1037  *	t4_flash_cfg_addr - return the address of the flash configuration file
1038  *	@adapter: the adapter
1039  *
1040  *	Return the address within the flash where the Firmware Configuration
1041  *	File is stored, or an error if the device FLASH is too small to contain
1042  *	a Firmware Configuration File.
1043  */
1044 int t4_flash_cfg_addr(struct adapter *adapter)
1045 {
1046 	/*
1047 	 * If the device FLASH isn't large enough to hold a Firmware
1048 	 * Configuration File, return an error.
1049 	 */
1050 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
1051 		return -ENOSPC;
1052 
1053 	return FLASH_CFG_START;
1054 }
1055 
1056 /**
1057  *	t4_load_cfg - download config file
1058  *	@adap: the adapter
1059  *	@cfg_data: the cfg text file to write
1060  *	@size: text file size
1061  *
1062  *	Write the supplied config text file to the card's serial flash.
1063  */
1064 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
1065 {
1066 	int ret, i, n, cfg_addr;
1067 	unsigned int addr;
1068 	unsigned int flash_cfg_start_sec;
1069 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1070 
1071 	cfg_addr = t4_flash_cfg_addr(adap);
1072 	if (cfg_addr < 0)
1073 		return cfg_addr;
1074 
1075 	addr = cfg_addr;
1076 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
1077 
1078 	if (size > FLASH_CFG_MAX_SIZE) {
1079 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
1080 		       FLASH_CFG_MAX_SIZE);
1081 		return -EFBIG;
1082 	}
1083 
1084 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
1085 			 sf_sec_size);
1086 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
1087 				     flash_cfg_start_sec + i - 1);
1088 	/*
1089 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1090 	 * with the on-adapter Firmware Configuration File.
1091 	 */
1092 	if (ret || size == 0)
1093 		goto out;
1094 
1095 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
1096 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
1097 		if ( (size - i) <  SF_PAGE_SIZE)
1098 			n = size - i;
1099 		else
1100 			n = SF_PAGE_SIZE;
1101 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
1102 		if (ret)
1103 			goto out;
1104 
1105 		addr += SF_PAGE_SIZE;
1106 		cfg_data += SF_PAGE_SIZE;
1107 	}
1108 
1109 out:
1110 	if (ret)
1111 		CH_ERR(adap, "config file %s failed %d\n",
1112 		       (size == 0 ? "clear" : "download"), ret);
1113 	return ret;
1114 }
1115 
1116 
1117 /**
1118  *	t4_load_fw - download firmware
1119  *	@adap: the adapter
1120  *	@fw_data: the firmware image to write
1121  *	@size: image size
1122  *
1123  *	Write the supplied firmware image to the card's serial flash.
1124  */
1125 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1126 {
1127 	u32 csum;
1128 	int ret, addr;
1129 	unsigned int i;
1130 	u8 first_page[SF_PAGE_SIZE];
1131 	const u32 *p = (const u32 *)fw_data;
1132 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1133 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1134 	unsigned int fw_start_sec;
1135 	unsigned int fw_start;
1136 	unsigned int fw_size;
1137 
1138 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
1139 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
1140 		fw_start = FLASH_FWBOOTSTRAP_START;
1141 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
1142 	} else {
1143 		fw_start_sec = FLASH_FW_START_SEC;
1144  		fw_start = FLASH_FW_START;
1145 		fw_size = FLASH_FW_MAX_SIZE;
1146 	}
1147 	if (!size) {
1148 		CH_ERR(adap, "FW image has no data\n");
1149 		return -EINVAL;
1150 	}
1151 	if (size & 511) {
1152 		CH_ERR(adap, "FW image size not multiple of 512 bytes\n");
1153 		return -EINVAL;
1154 	}
1155 	if (ntohs(hdr->len512) * 512 != size) {
1156 		CH_ERR(adap, "FW image size differs from size in FW header\n");
1157 		return -EINVAL;
1158 	}
1159 	if (size > fw_size) {
1160 		CH_ERR(adap, "FW image too large, max is %u bytes\n", fw_size);
1161 		return -EFBIG;
1162 	}
1163 	if ((is_t4(adap) && hdr->chip != FW_HDR_CHIP_T4) ||
1164 	    (is_t5(adap) && hdr->chip != FW_HDR_CHIP_T5)) {
1165 		CH_ERR(adap,
1166 		    "FW image (%d) is not suitable for this adapter (%d)\n",
1167 		    hdr->chip, chip_id(adap));
1168 		return -EINVAL;
1169 	}
1170 
1171 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1172 		csum += ntohl(p[i]);
1173 
1174 	if (csum != 0xffffffff) {
1175 		CH_ERR(adap, "corrupted firmware image, checksum %#x\n",
1176 		       csum);
1177 		return -EINVAL;
1178 	}
1179 
1180 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
1181 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
1182 	if (ret)
1183 		goto out;
1184 
1185 	/*
1186 	 * We write the correct version at the end so the driver can see a bad
1187 	 * version if the FW write fails.  Start by writing a copy of the
1188 	 * first page with a bad version.
1189 	 */
1190 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
1191 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
1192 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
1193 	if (ret)
1194 		goto out;
1195 
1196 	addr = fw_start;
1197 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1198 		addr += SF_PAGE_SIZE;
1199 		fw_data += SF_PAGE_SIZE;
1200 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
1201 		if (ret)
1202 			goto out;
1203 	}
1204 
1205 	ret = t4_write_flash(adap,
1206 			     fw_start + offsetof(struct fw_hdr, fw_ver),
1207 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
1208 out:
1209 	if (ret)
1210 		CH_ERR(adap, "firmware download failed, error %d\n", ret);
1211 	return ret;
1212 }
1213 
1214 /* BIOS boot headers */
1215 typedef struct pci_expansion_rom_header {
1216 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1217 	u8	reserved[22]; /* Reserved per processor Architecture data */
1218 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1219 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
1220 
1221 /* Legacy PCI Expansion ROM Header */
1222 typedef struct legacy_pci_expansion_rom_header {
1223 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1224 	u8	size512; /* Current Image Size in units of 512 bytes */
1225 	u8	initentry_point[4];
1226 	u8	cksum; /* Checksum computed on the entire Image */
1227 	u8	reserved[16]; /* Reserved */
1228 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
1229 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
1230 
1231 /* EFI PCI Expansion ROM Header */
1232 typedef struct efi_pci_expansion_rom_header {
1233 	u8	signature[2]; // ROM signature. The value 0xaa55
1234 	u8	initialization_size[2]; /* Units 512. Includes this header */
1235 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
1236 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
1237 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
1238 	u8	compression_type[2]; /* Compression type. */
1239 		/*
1240 		 * Compression type definition
1241 		 * 0x0: uncompressed
1242 		 * 0x1: Compressed
1243 		 * 0x2-0xFFFF: Reserved
1244 		 */
1245 	u8	reserved[8]; /* Reserved */
1246 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
1247 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1248 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
1249 
1250 /* PCI Data Structure Format */
1251 typedef struct pcir_data_structure { /* PCI Data Structure */
1252 	u8	signature[4]; /* Signature. The string "PCIR" */
1253 	u8	vendor_id[2]; /* Vendor Identification */
1254 	u8	device_id[2]; /* Device Identification */
1255 	u8	vital_product[2]; /* Pointer to Vital Product Data */
1256 	u8	length[2]; /* PCIR Data Structure Length */
1257 	u8	revision; /* PCIR Data Structure Revision */
1258 	u8	class_code[3]; /* Class Code */
1259 	u8	image_length[2]; /* Image Length. Multiple of 512B */
1260 	u8	code_revision[2]; /* Revision Level of Code/Data */
1261 	u8	code_type; /* Code Type. */
1262 		/*
1263 		 * PCI Expansion ROM Code Types
1264 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
1265 		 * 0x01: Open Firmware standard for PCI. FCODE
1266 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
1267 		 * 0x03: EFI Image. EFI
1268 		 * 0x04-0xFF: Reserved.
1269 		 */
1270 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
1271 	u8	reserved[2]; /* Reserved */
1272 } pcir_data_t; /* PCI__DATA_STRUCTURE */
1273 
1274 /* BOOT constants */
1275 enum {
1276 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
1277 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
1278 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
1279 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
1280 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
1281 	VENDOR_ID = 0x1425, /* Vendor ID */
1282 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
1283 };
1284 
1285 /*
1286  *	modify_device_id - Modifies the device ID of the Boot BIOS image
1287  *	@adatper: the device ID to write.
1288  *	@boot_data: the boot image to modify.
1289  *
1290  *	Write the supplied device ID to the boot BIOS image.
1291  */
1292 static void modify_device_id(int device_id, u8 *boot_data)
1293 {
1294 	legacy_pci_exp_rom_header_t *header;
1295 	pcir_data_t *pcir_header;
1296 	u32 cur_header = 0;
1297 
1298 	/*
1299 	 * Loop through all chained images and change the device ID's
1300 	 */
1301 	while (1) {
1302 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
1303 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
1304 		    le16_to_cpu(*(u16*)header->pcir_offset)];
1305 
1306 		/*
1307 		 * Only modify the Device ID if code type is Legacy or HP.
1308 		 * 0x00: Okay to modify
1309 		 * 0x01: FCODE. Do not be modify
1310 		 * 0x03: Okay to modify
1311 		 * 0x04-0xFF: Do not modify
1312 		 */
1313 		if (pcir_header->code_type == 0x00) {
1314 			u8 csum = 0;
1315 			int i;
1316 
1317 			/*
1318 			 * Modify Device ID to match current adatper
1319 			 */
1320 			*(u16*) pcir_header->device_id = device_id;
1321 
1322 			/*
1323 			 * Set checksum temporarily to 0.
1324 			 * We will recalculate it later.
1325 			 */
1326 			header->cksum = 0x0;
1327 
1328 			/*
1329 			 * Calculate and update checksum
1330 			 */
1331 			for (i = 0; i < (header->size512 * 512); i++)
1332 				csum += (u8)boot_data[cur_header + i];
1333 
1334 			/*
1335 			 * Invert summed value to create the checksum
1336 			 * Writing new checksum value directly to the boot data
1337 			 */
1338 			boot_data[cur_header + 7] = -csum;
1339 
1340 		} else if (pcir_header->code_type == 0x03) {
1341 
1342 			/*
1343 			 * Modify Device ID to match current adatper
1344 			 */
1345 			*(u16*) pcir_header->device_id = device_id;
1346 
1347 		}
1348 
1349 
1350 		/*
1351 		 * Check indicator element to identify if this is the last
1352 		 * image in the ROM.
1353 		 */
1354 		if (pcir_header->indicator & 0x80)
1355 			break;
1356 
1357 		/*
1358 		 * Move header pointer up to the next image in the ROM.
1359 		 */
1360 		cur_header += header->size512 * 512;
1361 	}
1362 }
1363 
1364 /*
1365  *	t4_load_boot - download boot flash
1366  *	@adapter: the adapter
1367  *	@boot_data: the boot image to write
1368  *	@boot_addr: offset in flash to write boot_data
1369  *	@size: image size
1370  *
1371  *	Write the supplied boot image to the card's serial flash.
1372  *	The boot image has the following sections: a 28-byte header and the
1373  *	boot image.
1374  */
1375 int t4_load_boot(struct adapter *adap, u8 *boot_data,
1376 		 unsigned int boot_addr, unsigned int size)
1377 {
1378 	pci_exp_rom_header_t *header;
1379 	int pcir_offset ;
1380 	pcir_data_t *pcir_header;
1381 	int ret, addr;
1382 	uint16_t device_id;
1383 	unsigned int i;
1384 	unsigned int boot_sector = boot_addr * 1024;
1385 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1386 
1387 	/*
1388 	 * Make sure the boot image does not encroach on the firmware region
1389 	 */
1390 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
1391 		CH_ERR(adap, "boot image encroaching on firmware region\n");
1392 		return -EFBIG;
1393 	}
1394 
1395 	/*
1396 	 * Number of sectors spanned
1397 	 */
1398 	i = DIV_ROUND_UP(size ? size : FLASH_BOOTCFG_MAX_SIZE,
1399 			sf_sec_size);
1400 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
1401 				     (boot_sector >> 16) + i - 1);
1402 
1403 	/*
1404 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1405 	 * with the on-adapter option ROM file
1406 	 */
1407 	if (ret || (size == 0))
1408 		goto out;
1409 
1410 	/* Get boot header */
1411 	header = (pci_exp_rom_header_t *)boot_data;
1412 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
1413 	/* PCIR Data Structure */
1414 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
1415 
1416 	/*
1417 	 * Perform some primitive sanity testing to avoid accidentally
1418 	 * writing garbage over the boot sectors.  We ought to check for
1419 	 * more but it's not worth it for now ...
1420 	 */
1421 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
1422 		CH_ERR(adap, "boot image too small/large\n");
1423 		return -EFBIG;
1424 	}
1425 
1426 	/*
1427 	 * Check BOOT ROM header signature
1428 	 */
1429 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
1430 		CH_ERR(adap, "Boot image missing signature\n");
1431 		return -EINVAL;
1432 	}
1433 
1434 	/*
1435 	 * Check PCI header signature
1436 	 */
1437 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
1438 		CH_ERR(adap, "PCI header missing signature\n");
1439 		return -EINVAL;
1440 	}
1441 
1442 	/*
1443 	 * Check Vendor ID matches Chelsio ID
1444 	 */
1445 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
1446 		CH_ERR(adap, "Vendor ID missing signature\n");
1447 		return -EINVAL;
1448 	}
1449 
1450 	/*
1451 	 * Retrieve adapter's device ID
1452 	 */
1453 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
1454 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
1455 	device_id = (device_id & 0xff) | 0x4000;
1456 
1457 	/*
1458 	 * Check PCIE Device ID
1459 	 */
1460 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
1461 		/*
1462 		 * Change the device ID in the Boot BIOS image to match
1463 		 * the Device ID of the current adapter.
1464 		 */
1465 		modify_device_id(device_id, boot_data);
1466 	}
1467 
1468 	/*
1469 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
1470 	 * we finish copying the rest of the boot image. This will ensure
1471 	 * that the BIOS boot header will only be written if the boot image
1472 	 * was written in full.
1473 	 */
1474 	addr = boot_sector;
1475 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1476 		addr += SF_PAGE_SIZE;
1477 		boot_data += SF_PAGE_SIZE;
1478 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
1479 		if (ret)
1480 			goto out;
1481 	}
1482 
1483 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, boot_data, 0);
1484 
1485 out:
1486 	if (ret)
1487 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
1488 	return ret;
1489 }
1490 
1491 /**
1492  *	t4_read_cimq_cfg - read CIM queue configuration
1493  *	@adap: the adapter
1494  *	@base: holds the queue base addresses in bytes
1495  *	@size: holds the queue sizes in bytes
1496  *	@thres: holds the queue full thresholds in bytes
1497  *
1498  *	Returns the current configuration of the CIM queues, starting with
1499  *	the IBQs, then the OBQs.
1500  */
1501 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
1502 {
1503 	unsigned int i, v;
1504 	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1505 
1506 	for (i = 0; i < CIM_NUM_IBQ; i++) {
1507 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
1508 			     V_QUENUMSELECT(i));
1509 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1510 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1511 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1512 		*thres++ = G_QUEFULLTHRSH(v) * 8;   /* 8-byte unit */
1513 	}
1514 	for (i = 0; i < cim_num_obq; i++) {
1515 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1516 			     V_QUENUMSELECT(i));
1517 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1518 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1519 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1520 	}
1521 }
1522 
1523 /**
1524  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
1525  *	@adap: the adapter
1526  *	@qid: the queue index
1527  *	@data: where to store the queue contents
1528  *	@n: capacity of @data in 32-bit words
1529  *
1530  *	Reads the contents of the selected CIM queue starting at address 0 up
1531  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1532  *	error and the number of 32-bit words actually read on success.
1533  */
1534 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1535 {
1536 	int i, err;
1537 	unsigned int addr;
1538 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
1539 
1540 	if (qid > 5 || (n & 3))
1541 		return -EINVAL;
1542 
1543 	addr = qid * nwords;
1544 	if (n > nwords)
1545 		n = nwords;
1546 
1547 	for (i = 0; i < n; i++, addr++) {
1548 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
1549 			     F_IBQDBGEN);
1550 		/*
1551 		 * It might take 3-10ms before the IBQ debug read access is
1552 		 * allowed.  Wait for 1 Sec with a delay of 1 usec.
1553 		 */
1554 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
1555 				      1000000, 1);
1556 		if (err)
1557 			return err;
1558 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
1559 	}
1560 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
1561 	return i;
1562 }
1563 
1564 /**
1565  *	t4_read_cim_obq - read the contents of a CIM outbound queue
1566  *	@adap: the adapter
1567  *	@qid: the queue index
1568  *	@data: where to store the queue contents
1569  *	@n: capacity of @data in 32-bit words
1570  *
1571  *	Reads the contents of the selected CIM queue starting at address 0 up
1572  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1573  *	error and the number of 32-bit words actually read on success.
1574  */
1575 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1576 {
1577 	int i, err;
1578 	unsigned int addr, v, nwords;
1579 	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1580 
1581 	if (qid >= cim_num_obq || (n & 3))
1582 		return -EINVAL;
1583 
1584 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1585 		     V_QUENUMSELECT(qid));
1586 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1587 
1588 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
1589 	nwords = G_CIMQSIZE(v) * 64;  /* same */
1590 	if (n > nwords)
1591 		n = nwords;
1592 
1593 	for (i = 0; i < n; i++, addr++) {
1594 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
1595 			     F_OBQDBGEN);
1596 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
1597 				      2, 1);
1598 		if (err)
1599 			return err;
1600 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
1601 	}
1602 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
1603 	return i;
1604 }
1605 
1606 enum {
1607 	CIM_QCTL_BASE     = 0,
1608 	CIM_CTL_BASE      = 0x2000,
1609 	CIM_PBT_ADDR_BASE = 0x2800,
1610 	CIM_PBT_LRF_BASE  = 0x3000,
1611 	CIM_PBT_DATA_BASE = 0x3800
1612 };
1613 
1614 /**
1615  *	t4_cim_read - read a block from CIM internal address space
1616  *	@adap: the adapter
1617  *	@addr: the start address within the CIM address space
1618  *	@n: number of words to read
1619  *	@valp: where to store the result
1620  *
1621  *	Reads a block of 4-byte words from the CIM intenal address space.
1622  */
1623 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
1624 		unsigned int *valp)
1625 {
1626 	int ret = 0;
1627 
1628 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1629 		return -EBUSY;
1630 
1631 	for ( ; !ret && n--; addr += 4) {
1632 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
1633 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1634 				      0, 5, 2);
1635 		if (!ret)
1636 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
1637 	}
1638 	return ret;
1639 }
1640 
1641 /**
1642  *	t4_cim_write - write a block into CIM internal address space
1643  *	@adap: the adapter
1644  *	@addr: the start address within the CIM address space
1645  *	@n: number of words to write
1646  *	@valp: set of values to write
1647  *
1648  *	Writes a block of 4-byte words into the CIM intenal address space.
1649  */
1650 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
1651 		 const unsigned int *valp)
1652 {
1653 	int ret = 0;
1654 
1655 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1656 		return -EBUSY;
1657 
1658 	for ( ; !ret && n--; addr += 4) {
1659 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
1660 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
1661 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1662 				      0, 5, 2);
1663 	}
1664 	return ret;
1665 }
1666 
1667 static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val)
1668 {
1669 	return t4_cim_write(adap, addr, 1, &val);
1670 }
1671 
1672 /**
1673  *	t4_cim_ctl_read - read a block from CIM control region
1674  *	@adap: the adapter
1675  *	@addr: the start address within the CIM control region
1676  *	@n: number of words to read
1677  *	@valp: where to store the result
1678  *
1679  *	Reads a block of 4-byte words from the CIM control region.
1680  */
1681 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
1682 		    unsigned int *valp)
1683 {
1684 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
1685 }
1686 
1687 /**
1688  *	t4_cim_read_la - read CIM LA capture buffer
1689  *	@adap: the adapter
1690  *	@la_buf: where to store the LA data
1691  *	@wrptr: the HW write pointer within the capture buffer
1692  *
1693  *	Reads the contents of the CIM LA buffer with the most recent entry at
1694  *	the end	of the returned data and with the entry at @wrptr first.
1695  *	We try to leave the LA in the running state we find it in.
1696  */
1697 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
1698 {
1699 	int i, ret;
1700 	unsigned int cfg, val, idx;
1701 
1702 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
1703 	if (ret)
1704 		return ret;
1705 
1706 	if (cfg & F_UPDBGLAEN) {                /* LA is running, freeze it */
1707 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
1708 		if (ret)
1709 			return ret;
1710 	}
1711 
1712 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1713 	if (ret)
1714 		goto restart;
1715 
1716 	idx = G_UPDBGLAWRPTR(val);
1717 	if (wrptr)
1718 		*wrptr = idx;
1719 
1720 	for (i = 0; i < adap->params.cim_la_size; i++) {
1721 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1722 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
1723 		if (ret)
1724 			break;
1725 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1726 		if (ret)
1727 			break;
1728 		if (val & F_UPDBGLARDEN) {
1729 			ret = -ETIMEDOUT;
1730 			break;
1731 		}
1732 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
1733 		if (ret)
1734 			break;
1735 		idx = (idx + 1) & M_UPDBGLARDPTR;
1736 	}
1737 restart:
1738 	if (cfg & F_UPDBGLAEN) {
1739 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1740 				      cfg & ~F_UPDBGLARDEN);
1741 		if (!ret)
1742 			ret = r;
1743 	}
1744 	return ret;
1745 }
1746 
1747 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
1748 			unsigned int *pif_req_wrptr,
1749 			unsigned int *pif_rsp_wrptr)
1750 {
1751 	int i, j;
1752 	u32 cfg, val, req, rsp;
1753 
1754 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1755 	if (cfg & F_LADBGEN)
1756 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1757 
1758 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
1759 	req = G_POLADBGWRPTR(val);
1760 	rsp = G_PILADBGWRPTR(val);
1761 	if (pif_req_wrptr)
1762 		*pif_req_wrptr = req;
1763 	if (pif_rsp_wrptr)
1764 		*pif_rsp_wrptr = rsp;
1765 
1766 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
1767 		for (j = 0; j < 6; j++) {
1768 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
1769 				     V_PILADBGRDPTR(rsp));
1770 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
1771 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
1772 			req++;
1773 			rsp++;
1774 		}
1775 		req = (req + 2) & M_POLADBGRDPTR;
1776 		rsp = (rsp + 2) & M_PILADBGRDPTR;
1777 	}
1778 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1779 }
1780 
1781 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
1782 {
1783 	u32 cfg;
1784 	int i, j, idx;
1785 
1786 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1787 	if (cfg & F_LADBGEN)
1788 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1789 
1790 	for (i = 0; i < CIM_MALA_SIZE; i++) {
1791 		for (j = 0; j < 5; j++) {
1792 			idx = 8 * i + j;
1793 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
1794 				     V_PILADBGRDPTR(idx));
1795 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
1796 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
1797 		}
1798 	}
1799 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1800 }
1801 
1802 /**
1803  *	t4_tp_read_la - read TP LA capture buffer
1804  *	@adap: the adapter
1805  *	@la_buf: where to store the LA data
1806  *	@wrptr: the HW write pointer within the capture buffer
1807  *
1808  *	Reads the contents of the TP LA buffer with the most recent entry at
1809  *	the end	of the returned data and with the entry at @wrptr first.
1810  *	We leave the LA in the running state we find it in.
1811  */
1812 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
1813 {
1814 	bool last_incomplete;
1815 	unsigned int i, cfg, val, idx;
1816 
1817 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
1818 	if (cfg & F_DBGLAENABLE)                    /* freeze LA */
1819 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1820 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
1821 
1822 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
1823 	idx = G_DBGLAWPTR(val);
1824 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
1825 	if (last_incomplete)
1826 		idx = (idx + 1) & M_DBGLARPTR;
1827 	if (wrptr)
1828 		*wrptr = idx;
1829 
1830 	val &= 0xffff;
1831 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
1832 	val |= adap->params.tp.la_mask;
1833 
1834 	for (i = 0; i < TPLA_SIZE; i++) {
1835 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
1836 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
1837 		idx = (idx + 1) & M_DBGLARPTR;
1838 	}
1839 
1840 	/* Wipe out last entry if it isn't valid */
1841 	if (last_incomplete)
1842 		la_buf[TPLA_SIZE - 1] = ~0ULL;
1843 
1844 	if (cfg & F_DBGLAENABLE)                    /* restore running state */
1845 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1846 			     cfg | adap->params.tp.la_mask);
1847 }
1848 
1849 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
1850 {
1851 	unsigned int i, j;
1852 
1853 	for (i = 0; i < 8; i++) {
1854 		u32 *p = la_buf + i;
1855 
1856 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
1857 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
1858 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
1859 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
1860 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
1861 	}
1862 }
1863 
1864 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1865 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1866 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
1867 
1868 /**
1869  *	t4_link_start - apply link configuration to MAC/PHY
1870  *	@phy: the PHY to setup
1871  *	@mac: the MAC to setup
1872  *	@lc: the requested link configuration
1873  *
1874  *	Set up a port's MAC and PHY according to a desired link configuration.
1875  *	- If the PHY can auto-negotiate first decide what to advertise, then
1876  *	  enable/disable auto-negotiation as desired, and reset.
1877  *	- If the PHY does not auto-negotiate just reset it.
1878  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1879  *	  otherwise do it later based on the outcome of auto-negotiation.
1880  */
1881 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1882 		  struct link_config *lc)
1883 {
1884 	struct fw_port_cmd c;
1885 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
1886 
1887 	lc->link_ok = 0;
1888 	if (lc->requested_fc & PAUSE_RX)
1889 		fc |= FW_PORT_CAP_FC_RX;
1890 	if (lc->requested_fc & PAUSE_TX)
1891 		fc |= FW_PORT_CAP_FC_TX;
1892 
1893 	memset(&c, 0, sizeof(c));
1894 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1895 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1896 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1897 				  FW_LEN16(c));
1898 
1899 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1900 		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1901 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1902 	} else if (lc->autoneg == AUTONEG_DISABLE) {
1903 		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1904 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1905 	} else
1906 		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1907 
1908 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1909 }
1910 
1911 /**
1912  *	t4_restart_aneg - restart autonegotiation
1913  *	@adap: the adapter
1914  *	@mbox: mbox to use for the FW command
1915  *	@port: the port id
1916  *
1917  *	Restarts autonegotiation for the selected port.
1918  */
1919 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1920 {
1921 	struct fw_port_cmd c;
1922 
1923 	memset(&c, 0, sizeof(c));
1924 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1925 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1926 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1927 				  FW_LEN16(c));
1928 	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1929 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1930 }
1931 
1932 struct intr_info {
1933 	unsigned int mask;       /* bits to check in interrupt status */
1934 	const char *msg;         /* message to print or NULL */
1935 	short stat_idx;          /* stat counter to increment or -1 */
1936 	unsigned short fatal;    /* whether the condition reported is fatal */
1937 };
1938 
1939 /**
1940  *	t4_handle_intr_status - table driven interrupt handler
1941  *	@adapter: the adapter that generated the interrupt
1942  *	@reg: the interrupt status register to process
1943  *	@acts: table of interrupt actions
1944  *
1945  *	A table driven interrupt handler that applies a set of masks to an
1946  *	interrupt status word and performs the corresponding actions if the
1947  *	interrupts described by the mask have occured.  The actions include
1948  *	optionally emitting a warning or alert message.  The table is terminated
1949  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
1950  *	conditions.
1951  */
1952 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1953 				 const struct intr_info *acts)
1954 {
1955 	int fatal = 0;
1956 	unsigned int mask = 0;
1957 	unsigned int status = t4_read_reg(adapter, reg);
1958 
1959 	for ( ; acts->mask; ++acts) {
1960 		if (!(status & acts->mask))
1961 			continue;
1962 		if (acts->fatal) {
1963 			fatal++;
1964 			CH_ALERT(adapter, "%s (0x%x)\n",
1965 				 acts->msg, status & acts->mask);
1966 		} else if (acts->msg)
1967 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n",
1968 					  acts->msg, status & acts->mask);
1969 		mask |= acts->mask;
1970 	}
1971 	status &= mask;
1972 	if (status)                           /* clear processed interrupts */
1973 		t4_write_reg(adapter, reg, status);
1974 	return fatal;
1975 }
1976 
1977 /*
1978  * Interrupt handler for the PCIE module.
1979  */
1980 static void pcie_intr_handler(struct adapter *adapter)
1981 {
1982 	static struct intr_info sysbus_intr_info[] = {
1983 		{ F_RNPP, "RXNP array parity error", -1, 1 },
1984 		{ F_RPCP, "RXPC array parity error", -1, 1 },
1985 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
1986 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
1987 		{ F_RFTP, "RXFT array parity error", -1, 1 },
1988 		{ 0 }
1989 	};
1990 	static struct intr_info pcie_port_intr_info[] = {
1991 		{ F_TPCP, "TXPC array parity error", -1, 1 },
1992 		{ F_TNPP, "TXNP array parity error", -1, 1 },
1993 		{ F_TFTP, "TXFT array parity error", -1, 1 },
1994 		{ F_TCAP, "TXCA array parity error", -1, 1 },
1995 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
1996 		{ F_RCAP, "RXCA array parity error", -1, 1 },
1997 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
1998 		{ F_RDPE, "Rx data parity error", -1, 1 },
1999 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
2000 		{ 0 }
2001 	};
2002 	static struct intr_info pcie_intr_info[] = {
2003 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
2004 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
2005 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
2006 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2007 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2008 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2009 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2010 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
2011 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
2012 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2013 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
2014 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2015 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2016 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
2017 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2018 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2019 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
2020 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2021 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2022 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2023 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2024 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
2025 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
2026 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2027 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
2028 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
2029 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
2030 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
2031 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
2032 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
2033 		  0 },
2034 		{ 0 }
2035 	};
2036 
2037 	static struct intr_info t5_pcie_intr_info[] = {
2038 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
2039 		  -1, 1 },
2040 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
2041 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
2042 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2043 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2044 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2045 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2046 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
2047 		  -1, 1 },
2048 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
2049 		  -1, 1 },
2050 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2051 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
2052 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2053 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2054 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
2055 		  -1, 1 },
2056 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2057 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2058 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
2059 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2060 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2061 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2062 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2063 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
2064 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
2065 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2066 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
2067 		  -1, 1 },
2068 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
2069 		  -1, 1 },
2070 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
2071 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
2072 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2073 		{ F_READRSPERR, "Outbound read error", -1,
2074 		  0 },
2075 		{ 0 }
2076 	};
2077 
2078 	int fat;
2079 
2080 	if (is_t4(adapter))
2081 		fat = t4_handle_intr_status(adapter,
2082 					    A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2083 					    sysbus_intr_info) +
2084 		      t4_handle_intr_status(adapter,
2085 					    A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2086 					    pcie_port_intr_info) +
2087 		      t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
2088 					    pcie_intr_info);
2089 	else
2090 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
2091 					    t5_pcie_intr_info);
2092 	if (fat)
2093 		t4_fatal_err(adapter);
2094 }
2095 
2096 /*
2097  * TP interrupt handler.
2098  */
2099 static void tp_intr_handler(struct adapter *adapter)
2100 {
2101 	static struct intr_info tp_intr_info[] = {
2102 		{ 0x3fffffff, "TP parity error", -1, 1 },
2103 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2104 		{ 0 }
2105 	};
2106 
2107 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
2108 		t4_fatal_err(adapter);
2109 }
2110 
2111 /*
2112  * SGE interrupt handler.
2113  */
2114 static void sge_intr_handler(struct adapter *adapter)
2115 {
2116 	u64 v;
2117 	u32 err;
2118 
2119 	static struct intr_info sge_intr_info[] = {
2120 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
2121 		  "SGE received CPL exceeding IQE size", -1, 1 },
2122 		{ F_ERR_INVALID_CIDX_INC,
2123 		  "SGE GTS CIDX increment too large", -1, 0 },
2124 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2125 		{ F_ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2126 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
2127 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2128 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2129 		  0 },
2130 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2131 		  0 },
2132 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2133 		  0 },
2134 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2135 		  0 },
2136 		{ F_ERR_ING_CTXT_PRIO,
2137 		  "SGE too many priority ingress contexts", -1, 0 },
2138 		{ F_ERR_EGR_CTXT_PRIO,
2139 		  "SGE too many priority egress contexts", -1, 0 },
2140 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2141 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2142 		{ 0 }
2143 	};
2144 
2145 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
2146 	    ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
2147 	if (v) {
2148 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
2149 			 (unsigned long long)v);
2150 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
2151 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
2152 	}
2153 
2154 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
2155 
2156 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
2157 	if (err & F_ERROR_QID_VALID) {
2158 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
2159 		if (err & F_UNCAPTURED_ERROR)
2160 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
2161 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
2162 			     F_UNCAPTURED_ERROR);
2163 	}
2164 
2165 	if (v != 0)
2166 		t4_fatal_err(adapter);
2167 }
2168 
2169 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
2170 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
2171 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
2172 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
2173 
2174 /*
2175  * CIM interrupt handler.
2176  */
2177 static void cim_intr_handler(struct adapter *adapter)
2178 {
2179 	static struct intr_info cim_intr_info[] = {
2180 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2181 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2182 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2183 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2184 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2185 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2186 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2187 		{ 0 }
2188 	};
2189 	static struct intr_info cim_upintr_info[] = {
2190 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2191 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2192 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
2193 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
2194 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2195 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2196 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2197 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2198 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2199 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2200 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2201 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2202 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2203 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2204 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2205 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2206 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2207 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2208 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2209 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2210 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2211 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2212 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2213 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2214 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2215 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2216 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2217 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2218 		{ 0 }
2219 	};
2220 	int fat;
2221 
2222 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
2223 		t4_report_fw_error(adapter);
2224 
2225 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
2226 				    cim_intr_info) +
2227 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
2228 				    cim_upintr_info);
2229 	if (fat)
2230 		t4_fatal_err(adapter);
2231 }
2232 
2233 /*
2234  * ULP RX interrupt handler.
2235  */
2236 static void ulprx_intr_handler(struct adapter *adapter)
2237 {
2238 	static struct intr_info ulprx_intr_info[] = {
2239 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
2240 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
2241 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2242 		{ 0 }
2243 	};
2244 
2245 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
2246 		t4_fatal_err(adapter);
2247 }
2248 
2249 /*
2250  * ULP TX interrupt handler.
2251  */
2252 static void ulptx_intr_handler(struct adapter *adapter)
2253 {
2254 	static struct intr_info ulptx_intr_info[] = {
2255 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2256 		  0 },
2257 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2258 		  0 },
2259 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2260 		  0 },
2261 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2262 		  0 },
2263 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2264 		{ 0 }
2265 	};
2266 
2267 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
2268 		t4_fatal_err(adapter);
2269 }
2270 
2271 /*
2272  * PM TX interrupt handler.
2273  */
2274 static void pmtx_intr_handler(struct adapter *adapter)
2275 {
2276 	static struct intr_info pmtx_intr_info[] = {
2277 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2278 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2279 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2280 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2281 		{ 0xffffff0, "PMTX framing error", -1, 1 },
2282 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2283 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2284 		  1 },
2285 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2286 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2287 		{ 0 }
2288 	};
2289 
2290 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
2291 		t4_fatal_err(adapter);
2292 }
2293 
2294 /*
2295  * PM RX interrupt handler.
2296  */
2297 static void pmrx_intr_handler(struct adapter *adapter)
2298 {
2299 	static struct intr_info pmrx_intr_info[] = {
2300 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2301 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2302 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2303 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2304 		  1 },
2305 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2306 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2307 		{ 0 }
2308 	};
2309 
2310 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
2311 		t4_fatal_err(adapter);
2312 }
2313 
2314 /*
2315  * CPL switch interrupt handler.
2316  */
2317 static void cplsw_intr_handler(struct adapter *adapter)
2318 {
2319 	static struct intr_info cplsw_intr_info[] = {
2320 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2321 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2322 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2323 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2324 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2325 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2326 		{ 0 }
2327 	};
2328 
2329 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
2330 		t4_fatal_err(adapter);
2331 }
2332 
2333 /*
2334  * LE interrupt handler.
2335  */
2336 static void le_intr_handler(struct adapter *adap)
2337 {
2338 	static struct intr_info le_intr_info[] = {
2339 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
2340 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
2341 		{ F_PARITYERR, "LE parity error", -1, 1 },
2342 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
2343 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
2344 		{ 0 }
2345 	};
2346 
2347 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, le_intr_info))
2348 		t4_fatal_err(adap);
2349 }
2350 
2351 /*
2352  * MPS interrupt handler.
2353  */
2354 static void mps_intr_handler(struct adapter *adapter)
2355 {
2356 	static struct intr_info mps_rx_intr_info[] = {
2357 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2358 		{ 0 }
2359 	};
2360 	static struct intr_info mps_tx_intr_info[] = {
2361 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
2362 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2363 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
2364 		  -1, 1 },
2365 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
2366 		  -1, 1 },
2367 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
2368 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2369 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
2370 		{ 0 }
2371 	};
2372 	static struct intr_info mps_trc_intr_info[] = {
2373 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
2374 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
2375 		  1 },
2376 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
2377 		{ 0 }
2378 	};
2379 	static struct intr_info mps_stat_sram_intr_info[] = {
2380 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2381 		{ 0 }
2382 	};
2383 	static struct intr_info mps_stat_tx_intr_info[] = {
2384 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2385 		{ 0 }
2386 	};
2387 	static struct intr_info mps_stat_rx_intr_info[] = {
2388 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2389 		{ 0 }
2390 	};
2391 	static struct intr_info mps_cls_intr_info[] = {
2392 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2393 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2394 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2395 		{ 0 }
2396 	};
2397 
2398 	int fat;
2399 
2400 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
2401 				    mps_rx_intr_info) +
2402 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
2403 				    mps_tx_intr_info) +
2404 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
2405 				    mps_trc_intr_info) +
2406 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
2407 				    mps_stat_sram_intr_info) +
2408 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2409 				    mps_stat_tx_intr_info) +
2410 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2411 				    mps_stat_rx_intr_info) +
2412 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
2413 				    mps_cls_intr_info);
2414 
2415 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
2416 	t4_read_reg(adapter, A_MPS_INT_CAUSE);                    /* flush */
2417 	if (fat)
2418 		t4_fatal_err(adapter);
2419 }
2420 
2421 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | F_ECC_UE_INT_CAUSE)
2422 
2423 /*
2424  * EDC/MC interrupt handler.
2425  */
2426 static void mem_intr_handler(struct adapter *adapter, int idx)
2427 {
2428 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
2429 
2430 	unsigned int addr, cnt_addr, v;
2431 
2432 	if (idx <= MEM_EDC1) {
2433 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
2434 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
2435 	} else {
2436 		if (is_t4(adapter)) {
2437 			addr = A_MC_INT_CAUSE;
2438 			cnt_addr = A_MC_ECC_STATUS;
2439 		} else {
2440 			addr = A_MC_P_INT_CAUSE;
2441 			cnt_addr = A_MC_P_ECC_STATUS;
2442 		}
2443 	}
2444 
2445 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
2446 	if (v & F_PERR_INT_CAUSE)
2447 		CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]);
2448 	if (v & F_ECC_CE_INT_CAUSE) {
2449 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
2450 
2451 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
2452 		CH_WARN_RATELIMIT(adapter,
2453 				  "%u %s correctable ECC data error%s\n",
2454 				  cnt, name[idx], cnt > 1 ? "s" : "");
2455 	}
2456 	if (v & F_ECC_UE_INT_CAUSE)
2457 		CH_ALERT(adapter, "%s uncorrectable ECC data error\n",
2458 			 name[idx]);
2459 
2460 	t4_write_reg(adapter, addr, v);
2461 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
2462 		t4_fatal_err(adapter);
2463 }
2464 
2465 /*
2466  * MA interrupt handler.
2467  */
2468 static void ma_intr_handler(struct adapter *adapter)
2469 {
2470 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
2471 
2472 	if (status & F_MEM_PERR_INT_CAUSE) {
2473 		CH_ALERT(adapter, "MA parity error, parity status %#x\n",
2474 			 t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
2475 		if (is_t5(adapter))
2476 			CH_ALERT(adapter,
2477 				 "MA parity error, parity status %#x\n",
2478 				 t4_read_reg(adapter,
2479 				 	     A_MA_PARITY_ERROR_STATUS2));
2480 	}
2481 	if (status & F_MEM_WRAP_INT_CAUSE) {
2482 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
2483 		CH_ALERT(adapter, "MA address wrap-around error by client %u to"
2484 			 " address %#x\n", G_MEM_WRAP_CLIENT_NUM(v),
2485 			 G_MEM_WRAP_ADDRESS(v) << 4);
2486 	}
2487 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
2488 	t4_fatal_err(adapter);
2489 }
2490 
2491 /*
2492  * SMB interrupt handler.
2493  */
2494 static void smb_intr_handler(struct adapter *adap)
2495 {
2496 	static struct intr_info smb_intr_info[] = {
2497 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
2498 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
2499 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
2500 		{ 0 }
2501 	};
2502 
2503 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
2504 		t4_fatal_err(adap);
2505 }
2506 
2507 /*
2508  * NC-SI interrupt handler.
2509  */
2510 static void ncsi_intr_handler(struct adapter *adap)
2511 {
2512 	static struct intr_info ncsi_intr_info[] = {
2513 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
2514 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
2515 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
2516 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
2517 		{ 0 }
2518 	};
2519 
2520 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
2521 		t4_fatal_err(adap);
2522 }
2523 
2524 /*
2525  * XGMAC interrupt handler.
2526  */
2527 static void xgmac_intr_handler(struct adapter *adap, int port)
2528 {
2529 	u32 v, int_cause_reg;
2530 
2531 	if (is_t4(adap))
2532 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
2533 	else
2534 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
2535 
2536 	v = t4_read_reg(adap, int_cause_reg);
2537 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
2538 	if (!v)
2539 		return;
2540 
2541 	if (v & F_TXFIFO_PRTY_ERR)
2542 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port);
2543 	if (v & F_RXFIFO_PRTY_ERR)
2544 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port);
2545 	t4_write_reg(adap, int_cause_reg, v);
2546 	t4_fatal_err(adap);
2547 }
2548 
2549 /*
2550  * PL interrupt handler.
2551  */
2552 static void pl_intr_handler(struct adapter *adap)
2553 {
2554 	static struct intr_info pl_intr_info[] = {
2555 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2556 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
2557 		{ 0 }
2558 	};
2559 
2560 	static struct intr_info t5_pl_intr_info[] = {
2561 		{ F_PL_BUSPERR, "PL bus parity error", -1, 1 },
2562 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2563 		{ 0 }
2564 	};
2565 
2566 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
2567 	    is_t4(adap) ?  pl_intr_info : t5_pl_intr_info))
2568 		t4_fatal_err(adap);
2569 }
2570 
2571 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2572 #define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC | F_EDC0 | \
2573 		F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \
2574 		F_CPL_SWITCH | F_SGE | F_ULP_TX)
2575 
2576 /**
2577  *	t4_slow_intr_handler - control path interrupt handler
2578  *	@adapter: the adapter
2579  *
2580  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
2581  *	The designation 'slow' is because it involves register reads, while
2582  *	data interrupts typically don't involve any MMIOs.
2583  */
2584 int t4_slow_intr_handler(struct adapter *adapter)
2585 {
2586 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
2587 
2588 	if (!(cause & GLBL_INTR_MASK))
2589 		return 0;
2590 	if (cause & F_CIM)
2591 		cim_intr_handler(adapter);
2592 	if (cause & F_MPS)
2593 		mps_intr_handler(adapter);
2594 	if (cause & F_NCSI)
2595 		ncsi_intr_handler(adapter);
2596 	if (cause & F_PL)
2597 		pl_intr_handler(adapter);
2598 	if (cause & F_SMB)
2599 		smb_intr_handler(adapter);
2600 	if (cause & F_XGMAC0)
2601 		xgmac_intr_handler(adapter, 0);
2602 	if (cause & F_XGMAC1)
2603 		xgmac_intr_handler(adapter, 1);
2604 	if (cause & F_XGMAC_KR0)
2605 		xgmac_intr_handler(adapter, 2);
2606 	if (cause & F_XGMAC_KR1)
2607 		xgmac_intr_handler(adapter, 3);
2608 	if (cause & F_PCIE)
2609 		pcie_intr_handler(adapter);
2610 	if (cause & F_MC)
2611 		mem_intr_handler(adapter, MEM_MC);
2612 	if (cause & F_EDC0)
2613 		mem_intr_handler(adapter, MEM_EDC0);
2614 	if (cause & F_EDC1)
2615 		mem_intr_handler(adapter, MEM_EDC1);
2616 	if (cause & F_LE)
2617 		le_intr_handler(adapter);
2618 	if (cause & F_TP)
2619 		tp_intr_handler(adapter);
2620 	if (cause & F_MA)
2621 		ma_intr_handler(adapter);
2622 	if (cause & F_PM_TX)
2623 		pmtx_intr_handler(adapter);
2624 	if (cause & F_PM_RX)
2625 		pmrx_intr_handler(adapter);
2626 	if (cause & F_ULP_RX)
2627 		ulprx_intr_handler(adapter);
2628 	if (cause & F_CPL_SWITCH)
2629 		cplsw_intr_handler(adapter);
2630 	if (cause & F_SGE)
2631 		sge_intr_handler(adapter);
2632 	if (cause & F_ULP_TX)
2633 		ulptx_intr_handler(adapter);
2634 
2635 	/* Clear the interrupts just processed for which we are the master. */
2636 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
2637 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
2638 	return 1;
2639 }
2640 
2641 /**
2642  *	t4_intr_enable - enable interrupts
2643  *	@adapter: the adapter whose interrupts should be enabled
2644  *
2645  *	Enable PF-specific interrupts for the calling function and the top-level
2646  *	interrupt concentrator for global interrupts.  Interrupts are already
2647  *	enabled at each module,	here we just enable the roots of the interrupt
2648  *	hierarchies.
2649  *
2650  *	Note: this function should be called only when the driver manages
2651  *	non PF-specific interrupts from the various HW modules.  Only one PCI
2652  *	function at a time should be doing this.
2653  */
2654 void t4_intr_enable(struct adapter *adapter)
2655 {
2656 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2657 
2658 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2659 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2660 		     F_ERR_DROPPED_DB | F_ERR_DATA_CPL_ON_HIGH_QID1 |
2661 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2662 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2663 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2664 		     F_ERR_EGR_CTXT_PRIO | F_INGRESS_SIZE_ERR |
2665 		     F_EGRESS_SIZE_ERR);
2666 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2667 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2668 }
2669 
2670 /**
2671  *	t4_intr_disable - disable interrupts
2672  *	@adapter: the adapter whose interrupts should be disabled
2673  *
2674  *	Disable interrupts.  We only disable the top-level interrupt
2675  *	concentrators.  The caller must be a PCI function managing global
2676  *	interrupts.
2677  */
2678 void t4_intr_disable(struct adapter *adapter)
2679 {
2680 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2681 
2682 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2683 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2684 }
2685 
2686 /**
2687  *	t4_intr_clear - clear all interrupts
2688  *	@adapter: the adapter whose interrupts should be cleared
2689  *
2690  *	Clears all interrupts.  The caller must be a PCI function managing
2691  *	global interrupts.
2692  */
2693 void t4_intr_clear(struct adapter *adapter)
2694 {
2695 	static const unsigned int cause_reg[] = {
2696 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
2697 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
2698 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
2699 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
2700 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
2701 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
2702 		A_TP_INT_CAUSE,
2703 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
2704 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
2705 		A_MPS_RX_PERR_INT_CAUSE,
2706 		A_CPL_INTR_CAUSE,
2707 		MYPF_REG(A_PL_PF_INT_CAUSE),
2708 		A_PL_PL_INT_CAUSE,
2709 		A_LE_DB_INT_CAUSE,
2710 	};
2711 
2712 	unsigned int i;
2713 
2714 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
2715 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
2716 
2717 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
2718 				A_MC_P_INT_CAUSE, 0xffffffff);
2719 
2720 	if (is_t4(adapter)) {
2721 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2722 				0xffffffff);
2723 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2724 				0xffffffff);
2725 	} else
2726 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
2727 
2728 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
2729 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
2730 }
2731 
2732 /**
2733  *	hash_mac_addr - return the hash value of a MAC address
2734  *	@addr: the 48-bit Ethernet MAC address
2735  *
2736  *	Hashes a MAC address according to the hash function used by HW inexact
2737  *	(hash) address matching.
2738  */
2739 static int hash_mac_addr(const u8 *addr)
2740 {
2741 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2742 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2743 	a ^= b;
2744 	a ^= (a >> 12);
2745 	a ^= (a >> 6);
2746 	return a & 0x3f;
2747 }
2748 
2749 /**
2750  *	t4_config_rss_range - configure a portion of the RSS mapping table
2751  *	@adapter: the adapter
2752  *	@mbox: mbox to use for the FW command
2753  *	@viid: virtual interface whose RSS subtable is to be written
2754  *	@start: start entry in the table to write
2755  *	@n: how many table entries to write
2756  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
2757  *	@nrspq: number of values in @rspq
2758  *
2759  *	Programs the selected part of the VI's RSS mapping table with the
2760  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
2761  *	until the full table range is populated.
2762  *
2763  *	The caller must ensure the values in @rspq are in the range allowed for
2764  *	@viid.
2765  */
2766 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2767 			int start, int n, const u16 *rspq, unsigned int nrspq)
2768 {
2769 	int ret;
2770 	const u16 *rsp = rspq;
2771 	const u16 *rsp_end = rspq + nrspq;
2772 	struct fw_rss_ind_tbl_cmd cmd;
2773 
2774 	memset(&cmd, 0, sizeof(cmd));
2775 	cmd.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2776 			       F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2777 			       V_FW_RSS_IND_TBL_CMD_VIID(viid));
2778 	cmd.retval_len16 = htonl(FW_LEN16(cmd));
2779 
2780 
2781 	/*
2782 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
2783 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
2784 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
2785 	 * reserved.
2786 	 */
2787 	while (n > 0) {
2788 		int nq = min(n, 32);
2789 		int nq_packed = 0;
2790 		__be32 *qp = &cmd.iq0_to_iq2;
2791 
2792 		/*
2793 		 * Set up the firmware RSS command header to send the next
2794 		 * "nq" Ingress Queue IDs to the firmware.
2795 		 */
2796 		cmd.niqid = htons(nq);
2797 		cmd.startidx = htons(start);
2798 
2799 		/*
2800 		 * "nq" more done for the start of the next loop.
2801 		 */
2802 		start += nq;
2803 		n -= nq;
2804 
2805 		/*
2806 		 * While there are still Ingress Queue IDs to stuff into the
2807 		 * current firmware RSS command, retrieve them from the
2808 		 * Ingress Queue ID array and insert them into the command.
2809 		 */
2810 		while (nq > 0) {
2811 			/*
2812 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
2813 			 * around the Ingress Queue ID array if necessary) and
2814 			 * insert them into the firmware RSS command at the
2815 			 * current 3-tuple position within the commad.
2816 			 */
2817 			u16 qbuf[3];
2818 			u16 *qbp = qbuf;
2819 			int nqbuf = min(3, nq);
2820 
2821 			nq -= nqbuf;
2822 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
2823 			while (nqbuf && nq_packed < 32) {
2824 				nqbuf--;
2825 				nq_packed++;
2826 				*qbp++ = *rsp++;
2827 				if (rsp >= rsp_end)
2828 					rsp = rspq;
2829 			}
2830 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2831 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2832 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2833 		}
2834 
2835 		/*
2836 		 * Send this portion of the RRS table update to the firmware;
2837 		 * bail out on any errors.
2838 		 */
2839 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2840 		if (ret)
2841 			return ret;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 /**
2848  *	t4_config_glbl_rss - configure the global RSS mode
2849  *	@adapter: the adapter
2850  *	@mbox: mbox to use for the FW command
2851  *	@mode: global RSS mode
2852  *	@flags: mode-specific flags
2853  *
2854  *	Sets the global RSS mode.
2855  */
2856 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2857 		       unsigned int flags)
2858 {
2859 	struct fw_rss_glb_config_cmd c;
2860 
2861 	memset(&c, 0, sizeof(c));
2862 	c.op_to_write = htonl(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
2863 			      F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
2864 	c.retval_len16 = htonl(FW_LEN16(c));
2865 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2866 		c.u.manual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2867 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2868 		c.u.basicvirtual.mode_pkd =
2869 			htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2870 		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2871 	} else
2872 		return -EINVAL;
2873 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2874 }
2875 
2876 /**
2877  *	t4_config_vi_rss - configure per VI RSS settings
2878  *	@adapter: the adapter
2879  *	@mbox: mbox to use for the FW command
2880  *	@viid: the VI id
2881  *	@flags: RSS flags
2882  *	@defq: id of the default RSS queue for the VI.
2883  *
2884  *	Configures VI-specific RSS properties.
2885  */
2886 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2887 		     unsigned int flags, unsigned int defq)
2888 {
2889 	struct fw_rss_vi_config_cmd c;
2890 
2891 	memset(&c, 0, sizeof(c));
2892 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2893 			     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2894 			     V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2895 	c.retval_len16 = htonl(FW_LEN16(c));
2896 	c.u.basicvirtual.defaultq_to_udpen = htonl(flags |
2897 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2898 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2899 }
2900 
2901 /* Read an RSS table row */
2902 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
2903 {
2904 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
2905 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
2906 				   5, 0, val);
2907 }
2908 
2909 /**
2910  *	t4_read_rss - read the contents of the RSS mapping table
2911  *	@adapter: the adapter
2912  *	@map: holds the contents of the RSS mapping table
2913  *
2914  *	Reads the contents of the RSS hash->queue mapping table.
2915  */
2916 int t4_read_rss(struct adapter *adapter, u16 *map)
2917 {
2918 	u32 val;
2919 	int i, ret;
2920 
2921 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
2922 		ret = rd_rss_row(adapter, i, &val);
2923 		if (ret)
2924 			return ret;
2925 		*map++ = G_LKPTBLQUEUE0(val);
2926 		*map++ = G_LKPTBLQUEUE1(val);
2927 	}
2928 	return 0;
2929 }
2930 
2931 /**
2932  *	t4_read_rss_key - read the global RSS key
2933  *	@adap: the adapter
2934  *	@key: 10-entry array holding the 320-bit RSS key
2935  *
2936  *	Reads the global 320-bit RSS key.
2937  */
2938 void t4_read_rss_key(struct adapter *adap, u32 *key)
2939 {
2940 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2941 			 A_TP_RSS_SECRET_KEY0);
2942 }
2943 
2944 /**
2945  *	t4_write_rss_key - program one of the RSS keys
2946  *	@adap: the adapter
2947  *	@key: 10-entry array holding the 320-bit RSS key
2948  *	@idx: which RSS key to write
2949  *
2950  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
2951  *	0..15 the corresponding entry in the RSS key table is written,
2952  *	otherwise the global RSS key is written.
2953  */
2954 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
2955 {
2956 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2957 			  A_TP_RSS_SECRET_KEY0);
2958 	if (idx >= 0 && idx < 16)
2959 		t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2960 			     V_KEYWRADDR(idx) | F_KEYWREN);
2961 }
2962 
2963 /**
2964  *	t4_read_rss_pf_config - read PF RSS Configuration Table
2965  *	@adapter: the adapter
2966  *	@index: the entry in the PF RSS table to read
2967  *	@valp: where to store the returned value
2968  *
2969  *	Reads the PF RSS Configuration Table at the specified index and returns
2970  *	the value found there.
2971  */
2972 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp)
2973 {
2974 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2975 			 valp, 1, A_TP_RSS_PF0_CONFIG + index);
2976 }
2977 
2978 /**
2979  *	t4_write_rss_pf_config - write PF RSS Configuration Table
2980  *	@adapter: the adapter
2981  *	@index: the entry in the VF RSS table to read
2982  *	@val: the value to store
2983  *
2984  *	Writes the PF RSS Configuration Table at the specified index with the
2985  *	specified value.
2986  */
2987 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val)
2988 {
2989 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2990 			  &val, 1, A_TP_RSS_PF0_CONFIG + index);
2991 }
2992 
2993 /**
2994  *	t4_read_rss_vf_config - read VF RSS Configuration Table
2995  *	@adapter: the adapter
2996  *	@index: the entry in the VF RSS table to read
2997  *	@vfl: where to store the returned VFL
2998  *	@vfh: where to store the returned VFH
2999  *
3000  *	Reads the VF RSS Configuration Table at the specified index and returns
3001  *	the (VFL, VFH) values found there.
3002  */
3003 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
3004 			   u32 *vfl, u32 *vfh)
3005 {
3006 	u32 vrt;
3007 
3008 	/*
3009 	 * Request that the index'th VF Table values be read into VFL/VFH.
3010 	 */
3011 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
3012 	vrt &= ~(F_VFRDRG | V_VFWRADDR(M_VFWRADDR) | F_VFWREN | F_KEYWREN);
3013 	vrt |= V_VFWRADDR(index) | F_VFRDEN;
3014 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
3015 
3016 	/*
3017 	 * Grab the VFL/VFH values ...
3018 	 */
3019 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3020 			 vfl, 1, A_TP_RSS_VFL_CONFIG);
3021 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3022 			 vfh, 1, A_TP_RSS_VFH_CONFIG);
3023 }
3024 
3025 /**
3026  *	t4_write_rss_vf_config - write VF RSS Configuration Table
3027  *
3028  *	@adapter: the adapter
3029  *	@index: the entry in the VF RSS table to write
3030  *	@vfl: the VFL to store
3031  *	@vfh: the VFH to store
3032  *
3033  *	Writes the VF RSS Configuration Table at the specified index with the
3034  *	specified (VFL, VFH) values.
3035  */
3036 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
3037 			    u32 vfl, u32 vfh)
3038 {
3039 	u32 vrt;
3040 
3041 	/*
3042 	 * Load up VFL/VFH with the values to be written ...
3043 	 */
3044 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3045 			  &vfl, 1, A_TP_RSS_VFL_CONFIG);
3046 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3047 			  &vfh, 1, A_TP_RSS_VFH_CONFIG);
3048 
3049 	/*
3050 	 * Write the VFL/VFH into the VF Table at index'th location.
3051 	 */
3052 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
3053 	vrt &= ~(F_VFRDRG | F_VFRDEN | V_VFWRADDR(M_VFWRADDR) | F_KEYWREN);
3054 	vrt |= V_VFWRADDR(index) | F_VFWREN;
3055 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
3056 }
3057 
3058 /**
3059  *	t4_read_rss_pf_map - read PF RSS Map
3060  *	@adapter: the adapter
3061  *
3062  *	Reads the PF RSS Map register and returns its value.
3063  */
3064 u32 t4_read_rss_pf_map(struct adapter *adapter)
3065 {
3066 	u32 pfmap;
3067 
3068 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3069 			 &pfmap, 1, A_TP_RSS_PF_MAP);
3070 	return pfmap;
3071 }
3072 
3073 /**
3074  *	t4_write_rss_pf_map - write PF RSS Map
3075  *	@adapter: the adapter
3076  *	@pfmap: PF RSS Map value
3077  *
3078  *	Writes the specified value to the PF RSS Map register.
3079  */
3080 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
3081 {
3082 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3083 			  &pfmap, 1, A_TP_RSS_PF_MAP);
3084 }
3085 
3086 /**
3087  *	t4_read_rss_pf_mask - read PF RSS Mask
3088  *	@adapter: the adapter
3089  *
3090  *	Reads the PF RSS Mask register and returns its value.
3091  */
3092 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3093 {
3094 	u32 pfmask;
3095 
3096 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3097 			 &pfmask, 1, A_TP_RSS_PF_MSK);
3098 	return pfmask;
3099 }
3100 
3101 /**
3102  *	t4_write_rss_pf_mask - write PF RSS Mask
3103  *	@adapter: the adapter
3104  *	@pfmask: PF RSS Mask value
3105  *
3106  *	Writes the specified value to the PF RSS Mask register.
3107  */
3108 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
3109 {
3110 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3111 			  &pfmask, 1, A_TP_RSS_PF_MSK);
3112 }
3113 
3114 /**
3115  *	t4_set_filter_mode - configure the optional components of filter tuples
3116  *	@adap: the adapter
3117  *	@mode_map: a bitmap selcting which optional filter components to enable
3118  *
3119  *	Sets the filter mode by selecting the optional components to enable
3120  *	in filter tuples.  Returns 0 on success and a negative error if the
3121  *	requested mode needs more bits than are available for optional
3122  *	components.
3123  */
3124 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
3125 {
3126 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
3127 
3128 	int i, nbits = 0;
3129 
3130 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
3131 		if (mode_map & (1 << i))
3132 			nbits += width[i];
3133 	if (nbits > FILTER_OPT_LEN)
3134 		return -EINVAL;
3135 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1,
3136 			  A_TP_VLAN_PRI_MAP);
3137 	return 0;
3138 }
3139 
3140 /**
3141  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
3142  *	@adap: the adapter
3143  *	@v4: holds the TCP/IP counter values
3144  *	@v6: holds the TCP/IPv6 counter values
3145  *
3146  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3147  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3148  */
3149 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3150 			 struct tp_tcp_stats *v6)
3151 {
3152 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
3153 
3154 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
3155 #define STAT(x)     val[STAT_IDX(x)]
3156 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3157 
3158 	if (v4) {
3159 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3160 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
3161 		v4->tcpOutRsts = STAT(OUT_RST);
3162 		v4->tcpInSegs  = STAT64(IN_SEG);
3163 		v4->tcpOutSegs = STAT64(OUT_SEG);
3164 		v4->tcpRetransSegs = STAT64(RXT_SEG);
3165 	}
3166 	if (v6) {
3167 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3168 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
3169 		v6->tcpOutRsts = STAT(OUT_RST);
3170 		v6->tcpInSegs  = STAT64(IN_SEG);
3171 		v6->tcpOutSegs = STAT64(OUT_SEG);
3172 		v6->tcpRetransSegs = STAT64(RXT_SEG);
3173 	}
3174 #undef STAT64
3175 #undef STAT
3176 #undef STAT_IDX
3177 }
3178 
3179 /**
3180  *	t4_tp_get_err_stats - read TP's error MIB counters
3181  *	@adap: the adapter
3182  *	@st: holds the counter values
3183  *
3184  *	Returns the values of TP's error counters.
3185  */
3186 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3187 {
3188 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->macInErrs,
3189 			 12, A_TP_MIB_MAC_IN_ERR_0);
3190 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlCongDrops,
3191 			 8, A_TP_MIB_TNL_CNG_DROP_0);
3192 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlTxDrops,
3193 			 4, A_TP_MIB_TNL_DROP_0);
3194 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofldVlanDrops,
3195 			 4, A_TP_MIB_OFD_VLN_DROP_0);
3196 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6InErrs,
3197 			 4, A_TP_MIB_TCP_V6IN_ERR_0);
3198 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofldNoNeigh,
3199 			 2, A_TP_MIB_OFD_ARP_DROP);
3200 }
3201 
3202 /**
3203  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
3204  *	@adap: the adapter
3205  *	@st: holds the counter values
3206  *
3207  *	Returns the values of TP's proxy counters.
3208  */
3209 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
3210 {
3211 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
3212 			 4, A_TP_MIB_TNL_LPBK_0);
3213 }
3214 
3215 /**
3216  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
3217  *	@adap: the adapter
3218  *	@st: holds the counter values
3219  *
3220  *	Returns the values of TP's CPL counters.
3221  */
3222 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3223 {
3224 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
3225 			 8, A_TP_MIB_CPL_IN_REQ_0);
3226 }
3227 
3228 /**
3229  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3230  *	@adap: the adapter
3231  *	@st: holds the counter values
3232  *
3233  *	Returns the values of TP's RDMA counters.
3234  */
3235 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3236 {
3237 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_mod,
3238 			 2, A_TP_MIB_RQE_DFR_MOD);
3239 }
3240 
3241 /**
3242  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3243  *	@adap: the adapter
3244  *	@idx: the port index
3245  *	@st: holds the counter values
3246  *
3247  *	Returns the values of TP's FCoE counters for the selected port.
3248  */
3249 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3250 		       struct tp_fcoe_stats *st)
3251 {
3252 	u32 val[2];
3253 
3254 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDDP,
3255 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
3256 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDrop,
3257 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
3258 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3259 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
3260 	st->octetsDDP = ((u64)val[0] << 32) | val[1];
3261 }
3262 
3263 /**
3264  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3265  *	@adap: the adapter
3266  *	@st: holds the counter values
3267  *
3268  *	Returns the values of TP's counters for non-TCP directly-placed packets.
3269  */
3270 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3271 {
3272 	u32 val[4];
3273 
3274 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
3275 			 A_TP_MIB_USM_PKTS);
3276 	st->frames = val[0];
3277 	st->drops = val[1];
3278 	st->octets = ((u64)val[2] << 32) | val[3];
3279 }
3280 
3281 /**
3282  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
3283  *	@adap: the adapter
3284  *	@mtus: where to store the MTU values
3285  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
3286  *
3287  *	Reads the HW path MTU table.
3288  */
3289 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3290 {
3291 	u32 v;
3292 	int i;
3293 
3294 	for (i = 0; i < NMTUS; ++i) {
3295 		t4_write_reg(adap, A_TP_MTU_TABLE,
3296 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
3297 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
3298 		mtus[i] = G_MTUVALUE(v);
3299 		if (mtu_log)
3300 			mtu_log[i] = G_MTUWIDTH(v);
3301 	}
3302 }
3303 
3304 /**
3305  *	t4_read_cong_tbl - reads the congestion control table
3306  *	@adap: the adapter
3307  *	@incr: where to store the alpha values
3308  *
3309  *	Reads the additive increments programmed into the HW congestion
3310  *	control table.
3311  */
3312 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3313 {
3314 	unsigned int mtu, w;
3315 
3316 	for (mtu = 0; mtu < NMTUS; ++mtu)
3317 		for (w = 0; w < NCCTRL_WIN; ++w) {
3318 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
3319 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
3320 			incr[mtu][w] = (u16)t4_read_reg(adap,
3321 						A_TP_CCTRL_TABLE) & 0x1fff;
3322 		}
3323 }
3324 
3325 /**
3326  *	t4_read_pace_tbl - read the pace table
3327  *	@adap: the adapter
3328  *	@pace_vals: holds the returned values
3329  *
3330  *	Returns the values of TP's pace table in microseconds.
3331  */
3332 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
3333 {
3334 	unsigned int i, v;
3335 
3336 	for (i = 0; i < NTX_SCHED; i++) {
3337 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
3338 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
3339 		pace_vals[i] = dack_ticks_to_usec(adap, v);
3340 	}
3341 }
3342 
3343 /**
3344  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3345  *	@adap: the adapter
3346  *	@addr: the indirect TP register address
3347  *	@mask: specifies the field within the register to modify
3348  *	@val: new value for the field
3349  *
3350  *	Sets a field of an indirect TP register to the given value.
3351  */
3352 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3353 			    unsigned int mask, unsigned int val)
3354 {
3355 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
3356 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
3357 	t4_write_reg(adap, A_TP_PIO_DATA, val);
3358 }
3359 
3360 /**
3361  *	init_cong_ctrl - initialize congestion control parameters
3362  *	@a: the alpha values for congestion control
3363  *	@b: the beta values for congestion control
3364  *
3365  *	Initialize the congestion control parameters.
3366  */
3367 static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
3368 {
3369 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3370 	a[9] = 2;
3371 	a[10] = 3;
3372 	a[11] = 4;
3373 	a[12] = 5;
3374 	a[13] = 6;
3375 	a[14] = 7;
3376 	a[15] = 8;
3377 	a[16] = 9;
3378 	a[17] = 10;
3379 	a[18] = 14;
3380 	a[19] = 17;
3381 	a[20] = 21;
3382 	a[21] = 25;
3383 	a[22] = 30;
3384 	a[23] = 35;
3385 	a[24] = 45;
3386 	a[25] = 60;
3387 	a[26] = 80;
3388 	a[27] = 100;
3389 	a[28] = 200;
3390 	a[29] = 300;
3391 	a[30] = 400;
3392 	a[31] = 500;
3393 
3394 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
3395 	b[9] = b[10] = 1;
3396 	b[11] = b[12] = 2;
3397 	b[13] = b[14] = b[15] = b[16] = 3;
3398 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
3399 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
3400 	b[28] = b[29] = 6;
3401 	b[30] = b[31] = 7;
3402 }
3403 
3404 /* The minimum additive increment value for the congestion control table */
3405 #define CC_MIN_INCR 2U
3406 
3407 /**
3408  *	t4_load_mtus - write the MTU and congestion control HW tables
3409  *	@adap: the adapter
3410  *	@mtus: the values for the MTU table
3411  *	@alpha: the values for the congestion control alpha parameter
3412  *	@beta: the values for the congestion control beta parameter
3413  *
3414  *	Write the HW MTU table with the supplied MTUs and the high-speed
3415  *	congestion control table with the supplied alpha, beta, and MTUs.
3416  *	We write the two tables together because the additive increments
3417  *	depend on the MTUs.
3418  */
3419 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
3420 		  const unsigned short *alpha, const unsigned short *beta)
3421 {
3422 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
3423 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
3424 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
3425 		28672, 40960, 57344, 81920, 114688, 163840, 229376
3426 	};
3427 
3428 	unsigned int i, w;
3429 
3430 	for (i = 0; i < NMTUS; ++i) {
3431 		unsigned int mtu = mtus[i];
3432 		unsigned int log2 = fls(mtu);
3433 
3434 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
3435 			log2--;
3436 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
3437 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
3438 
3439 		for (w = 0; w < NCCTRL_WIN; ++w) {
3440 			unsigned int inc;
3441 
3442 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
3443 				  CC_MIN_INCR);
3444 
3445 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
3446 				     (w << 16) | (beta[w] << 13) | inc);
3447 		}
3448 	}
3449 }
3450 
3451 /**
3452  *	t4_set_pace_tbl - set the pace table
3453  *	@adap: the adapter
3454  *	@pace_vals: the pace values in microseconds
3455  *	@start: index of the first entry in the HW pace table to set
3456  *	@n: how many entries to set
3457  *
3458  *	Sets (a subset of the) HW pace table.
3459  */
3460 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
3461 		     unsigned int start, unsigned int n)
3462 {
3463 	unsigned int vals[NTX_SCHED], i;
3464 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
3465 
3466 	if (n > NTX_SCHED)
3467 	    return -ERANGE;
3468 
3469 	/* convert values from us to dack ticks, rounding to closest value */
3470 	for (i = 0; i < n; i++, pace_vals++) {
3471 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
3472 		if (vals[i] > 0x7ff)
3473 			return -ERANGE;
3474 		if (*pace_vals && vals[i] == 0)
3475 			return -ERANGE;
3476 	}
3477 	for (i = 0; i < n; i++, start++)
3478 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
3479 	return 0;
3480 }
3481 
3482 /**
3483  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
3484  *	@adap: the adapter
3485  *	@kbps: target rate in Kbps
3486  *	@sched: the scheduler index
3487  *
3488  *	Configure a Tx HW scheduler for the target rate.
3489  */
3490 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
3491 {
3492 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3493 	unsigned int clk = adap->params.vpd.cclk * 1000;
3494 	unsigned int selected_cpt = 0, selected_bpt = 0;
3495 
3496 	if (kbps > 0) {
3497 		kbps *= 125;     /* -> bytes */
3498 		for (cpt = 1; cpt <= 255; cpt++) {
3499 			tps = clk / cpt;
3500 			bpt = (kbps + tps / 2) / tps;
3501 			if (bpt > 0 && bpt <= 255) {
3502 				v = bpt * tps;
3503 				delta = v >= kbps ? v - kbps : kbps - v;
3504 				if (delta < mindelta) {
3505 					mindelta = delta;
3506 					selected_cpt = cpt;
3507 					selected_bpt = bpt;
3508 				}
3509 			} else if (selected_cpt)
3510 				break;
3511 		}
3512 		if (!selected_cpt)
3513 			return -EINVAL;
3514 	}
3515 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
3516 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3517 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3518 	if (sched & 1)
3519 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3520 	else
3521 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3522 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3523 	return 0;
3524 }
3525 
3526 /**
3527  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
3528  *	@adap: the adapter
3529  *	@sched: the scheduler index
3530  *	@ipg: the interpacket delay in tenths of nanoseconds
3531  *
3532  *	Set the interpacket delay for a HW packet rate scheduler.
3533  */
3534 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
3535 {
3536 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3537 
3538 	/* convert ipg to nearest number of core clocks */
3539 	ipg *= core_ticks_per_usec(adap);
3540 	ipg = (ipg + 5000) / 10000;
3541 	if (ipg > M_TXTIMERSEPQ0)
3542 		return -EINVAL;
3543 
3544 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3545 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3546 	if (sched & 1)
3547 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
3548 	else
3549 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
3550 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3551 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
3552 	return 0;
3553 }
3554 
3555 /**
3556  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
3557  *	@adap: the adapter
3558  *	@sched: the scheduler index
3559  *	@kbps: the byte rate in Kbps
3560  *	@ipg: the interpacket delay in tenths of nanoseconds
3561  *
3562  *	Return the current configuration of a HW Tx scheduler.
3563  */
3564 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
3565 		     unsigned int *ipg)
3566 {
3567 	unsigned int v, addr, bpt, cpt;
3568 
3569 	if (kbps) {
3570 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
3571 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3572 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3573 		if (sched & 1)
3574 			v >>= 16;
3575 		bpt = (v >> 8) & 0xff;
3576 		cpt = v & 0xff;
3577 		if (!cpt)
3578 			*kbps = 0;        /* scheduler disabled */
3579 		else {
3580 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
3581 			*kbps = (v * bpt) / 125;
3582 		}
3583 	}
3584 	if (ipg) {
3585 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3586 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3587 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3588 		if (sched & 1)
3589 			v >>= 16;
3590 		v &= 0xffff;
3591 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
3592 	}
3593 }
3594 
3595 /*
3596  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
3597  * clocks.  The formula is
3598  *
3599  * bytes/s = bytes256 * 256 * ClkFreq / 4096
3600  *
3601  * which is equivalent to
3602  *
3603  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
3604  */
3605 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
3606 {
3607 	u64 v = bytes256 * adap->params.vpd.cclk;
3608 
3609 	return v * 62 + v / 2;
3610 }
3611 
3612 /**
3613  *	t4_get_chan_txrate - get the current per channel Tx rates
3614  *	@adap: the adapter
3615  *	@nic_rate: rates for NIC traffic
3616  *	@ofld_rate: rates for offloaded traffic
3617  *
3618  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
3619  *	for each channel.
3620  */
3621 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
3622 {
3623 	u32 v;
3624 
3625 	v = t4_read_reg(adap, A_TP_TX_TRATE);
3626 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
3627 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
3628 	nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
3629 	nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
3630 
3631 	v = t4_read_reg(adap, A_TP_TX_ORATE);
3632 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
3633 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
3634 	ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
3635 	ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
3636 }
3637 
3638 /**
3639  *	t4_set_trace_filter - configure one of the tracing filters
3640  *	@adap: the adapter
3641  *	@tp: the desired trace filter parameters
3642  *	@idx: which filter to configure
3643  *	@enable: whether to enable or disable the filter
3644  *
3645  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
3646  *	it indicates that the filter is already written in the register and it
3647  *	just needs to be enabled or disabled.
3648  */
3649 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
3650     int idx, int enable)
3651 {
3652 	int i, ofst = idx * 4;
3653 	u32 data_reg, mask_reg, cfg;
3654 	u32 multitrc = F_TRCMULTIFILTER;
3655 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
3656 
3657 	if (idx < 0 || idx >= NTRACE)
3658 		return -EINVAL;
3659 
3660 	if (tp == NULL || !enable) {
3661 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
3662 		    enable ? en : 0);
3663 		return 0;
3664 	}
3665 
3666 	/*
3667 	 * TODO - After T4 data book is updated, specify the exact
3668 	 * section below.
3669 	 *
3670 	 * See T4 data book - MPS section for a complete description
3671 	 * of the below if..else handling of A_MPS_TRC_CFG register
3672 	 * value.
3673 	 */
3674 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
3675 	if (cfg & F_TRCMULTIFILTER) {
3676 		/*
3677 		 * If multiple tracers are enabled, then maximum
3678 		 * capture size is 2.5KB (FIFO size of a single channel)
3679 		 * minus 2 flits for CPL_TRACE_PKT header.
3680 		 */
3681 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
3682 			return -EINVAL;
3683 	} else {
3684 		/*
3685 		 * If multiple tracers are disabled, to avoid deadlocks
3686 		 * maximum packet capture size of 9600 bytes is recommended.
3687 		 * Also in this mode, only trace0 can be enabled and running.
3688 		 */
3689 		multitrc = 0;
3690 		if (tp->snap_len > 9600 || idx)
3691 			return -EINVAL;
3692 	}
3693 
3694 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
3695 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
3696 	    tp->min_len > M_TFMINPKTSIZE)
3697 		return -EINVAL;
3698 
3699 	/* stop the tracer we'll be changing */
3700 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
3701 
3702 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
3703 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
3704 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
3705 
3706 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3707 		t4_write_reg(adap, data_reg, tp->data[i]);
3708 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
3709 	}
3710 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
3711 		     V_TFCAPTUREMAX(tp->snap_len) |
3712 		     V_TFMINPKTSIZE(tp->min_len));
3713 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
3714 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
3715 		     (is_t4(adap) ?
3716 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
3717 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
3718 
3719 	return 0;
3720 }
3721 
3722 /**
3723  *	t4_get_trace_filter - query one of the tracing filters
3724  *	@adap: the adapter
3725  *	@tp: the current trace filter parameters
3726  *	@idx: which trace filter to query
3727  *	@enabled: non-zero if the filter is enabled
3728  *
3729  *	Returns the current settings of one of the HW tracing filters.
3730  */
3731 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
3732 			 int *enabled)
3733 {
3734 	u32 ctla, ctlb;
3735 	int i, ofst = idx * 4;
3736 	u32 data_reg, mask_reg;
3737 
3738 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
3739 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
3740 
3741 	if (is_t4(adap)) {
3742 		*enabled = !!(ctla & F_TFEN);
3743 		tp->port =  G_TFPORT(ctla);
3744 		tp->invert = !!(ctla & F_TFINVERTMATCH);
3745 	} else {
3746 		*enabled = !!(ctla & F_T5_TFEN);
3747 		tp->port = G_T5_TFPORT(ctla);
3748 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
3749 	}
3750 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
3751 	tp->min_len = G_TFMINPKTSIZE(ctlb);
3752 	tp->skip_ofst = G_TFOFFSET(ctla);
3753 	tp->skip_len = G_TFLENGTH(ctla);
3754 
3755 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
3756 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
3757 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
3758 
3759 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3760 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
3761 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
3762 	}
3763 }
3764 
3765 /**
3766  *	t4_pmtx_get_stats - returns the HW stats from PMTX
3767  *	@adap: the adapter
3768  *	@cnt: where to store the count statistics
3769  *	@cycles: where to store the cycle statistics
3770  *
3771  *	Returns performance statistics from PMTX.
3772  */
3773 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3774 {
3775 	int i;
3776 	u32 data[2];
3777 
3778 	for (i = 0; i < PM_NSTATS; i++) {
3779 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
3780 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
3781 		if (is_t4(adap))
3782 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
3783 		else {
3784 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
3785 					 A_PM_TX_DBG_DATA, data, 2,
3786 					 A_PM_TX_DBG_STAT_MSB);
3787 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3788 		}
3789 	}
3790 }
3791 
3792 /**
3793  *	t4_pmrx_get_stats - returns the HW stats from PMRX
3794  *	@adap: the adapter
3795  *	@cnt: where to store the count statistics
3796  *	@cycles: where to store the cycle statistics
3797  *
3798  *	Returns performance statistics from PMRX.
3799  */
3800 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3801 {
3802 	int i;
3803 	u32 data[2];
3804 
3805 	for (i = 0; i < PM_NSTATS; i++) {
3806 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
3807 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
3808 		if (is_t4(adap))
3809 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
3810 		else {
3811 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
3812 					 A_PM_RX_DBG_DATA, data, 2,
3813 					 A_PM_RX_DBG_STAT_MSB);
3814 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3815 		}
3816 	}
3817 }
3818 
3819 /**
3820  *	get_mps_bg_map - return the buffer groups associated with a port
3821  *	@adap: the adapter
3822  *	@idx: the port index
3823  *
3824  *	Returns a bitmap indicating which MPS buffer groups are associated
3825  *	with the given port.  Bit i is set if buffer group i is used by the
3826  *	port.
3827  */
3828 static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
3829 {
3830 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
3831 
3832 	if (n == 0)
3833 		return idx == 0 ? 0xf : 0;
3834 	if (n == 1)
3835 		return idx < 2 ? (3 << (2 * idx)) : 0;
3836 	return 1 << idx;
3837 }
3838 
3839 /**
3840  *      t4_get_port_stats_offset - collect port stats relative to a previous
3841  *                                 snapshot
3842  *      @adap: The adapter
3843  *      @idx: The port
3844  *      @stats: Current stats to fill
3845  *      @offset: Previous stats snapshot
3846  */
3847 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3848 		struct port_stats *stats,
3849 		struct port_stats *offset)
3850 {
3851 	u64 *s, *o;
3852 	int i;
3853 
3854 	t4_get_port_stats(adap, idx, stats);
3855 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
3856 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
3857 			i++, s++, o++)
3858 		*s -= *o;
3859 }
3860 
3861 /**
3862  *	t4_get_port_stats - collect port statistics
3863  *	@adap: the adapter
3864  *	@idx: the port index
3865  *	@p: the stats structure to fill
3866  *
3867  *	Collect statistics related to the given port from HW.
3868  */
3869 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3870 {
3871 	u32 bgmap = get_mps_bg_map(adap, idx);
3872 
3873 #define GET_STAT(name) \
3874 	t4_read_reg64(adap, \
3875 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
3876 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3877 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3878 
3879 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3880 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3881 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3882 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3883 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3884 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3885 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3886 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3887 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3888 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3889 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3890 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3891 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3892 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3893 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
3894 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3895 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3896 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3897 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3898 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3899 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3900 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3901 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3902 
3903 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3904 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3905 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3906 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3907 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3908 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3909 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3910 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3911 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3912 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3913 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3914 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3915 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3916 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3917 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3918 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3919 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3920 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3921 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3922 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3923 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3924 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3925 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3926 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3927 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3928 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3929 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3930 
3931 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3932 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3933 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3934 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3935 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3936 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3937 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3938 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3939 
3940 #undef GET_STAT
3941 #undef GET_STAT_COM
3942 }
3943 
3944 /**
3945  *	t4_clr_port_stats - clear port statistics
3946  *	@adap: the adapter
3947  *	@idx: the port index
3948  *
3949  *	Clear HW statistics for the given port.
3950  */
3951 void t4_clr_port_stats(struct adapter *adap, int idx)
3952 {
3953 	unsigned int i;
3954 	u32 bgmap = get_mps_bg_map(adap, idx);
3955 	u32 port_base_addr;
3956 
3957 	if (is_t4(adap))
3958 		port_base_addr = PORT_BASE(idx);
3959 	else
3960 		port_base_addr = T5_PORT_BASE(idx);
3961 
3962 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3963 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3964 		t4_write_reg(adap, port_base_addr + i, 0);
3965 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3966 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3967 		t4_write_reg(adap, port_base_addr + i, 0);
3968 	for (i = 0; i < 4; i++)
3969 		if (bgmap & (1 << i)) {
3970 			t4_write_reg(adap,
3971 				A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
3972 			t4_write_reg(adap,
3973 				A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
3974 		}
3975 }
3976 
3977 /**
3978  *	t4_get_lb_stats - collect loopback port statistics
3979  *	@adap: the adapter
3980  *	@idx: the loopback port index
3981  *	@p: the stats structure to fill
3982  *
3983  *	Return HW statistics for the given loopback port.
3984  */
3985 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
3986 {
3987 	u32 bgmap = get_mps_bg_map(adap, idx);
3988 
3989 #define GET_STAT(name) \
3990 	t4_read_reg64(adap, \
3991 	(is_t4(adap) ? \
3992 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
3993 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
3994 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3995 
3996 	p->octets           = GET_STAT(BYTES);
3997 	p->frames           = GET_STAT(FRAMES);
3998 	p->bcast_frames     = GET_STAT(BCAST);
3999 	p->mcast_frames     = GET_STAT(MCAST);
4000 	p->ucast_frames     = GET_STAT(UCAST);
4001 	p->error_frames     = GET_STAT(ERROR);
4002 
4003 	p->frames_64        = GET_STAT(64B);
4004 	p->frames_65_127    = GET_STAT(65B_127B);
4005 	p->frames_128_255   = GET_STAT(128B_255B);
4006 	p->frames_256_511   = GET_STAT(256B_511B);
4007 	p->frames_512_1023  = GET_STAT(512B_1023B);
4008 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
4009 	p->frames_1519_max  = GET_STAT(1519B_MAX);
4010 	p->drop             = GET_STAT(DROP_FRAMES);
4011 
4012 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
4013 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
4014 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
4015 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
4016 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
4017 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
4018 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
4019 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4020 
4021 #undef GET_STAT
4022 #undef GET_STAT_COM
4023 }
4024 
4025 /**
4026  *	t4_wol_magic_enable - enable/disable magic packet WoL
4027  *	@adap: the adapter
4028  *	@port: the physical port index
4029  *	@addr: MAC address expected in magic packets, %NULL to disable
4030  *
4031  *	Enables/disables magic packet wake-on-LAN for the selected port.
4032  */
4033 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
4034 			 const u8 *addr)
4035 {
4036 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
4037 
4038 	if (is_t4(adap)) {
4039 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
4040 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
4041 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4042 	} else {
4043 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
4044 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
4045 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4046 	}
4047 
4048 	if (addr) {
4049 		t4_write_reg(adap, mag_id_reg_l,
4050 			     (addr[2] << 24) | (addr[3] << 16) |
4051 			     (addr[4] << 8) | addr[5]);
4052 		t4_write_reg(adap, mag_id_reg_h,
4053 			     (addr[0] << 8) | addr[1]);
4054 	}
4055 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
4056 			 V_MAGICEN(addr != NULL));
4057 }
4058 
4059 /**
4060  *	t4_wol_pat_enable - enable/disable pattern-based WoL
4061  *	@adap: the adapter
4062  *	@port: the physical port index
4063  *	@map: bitmap of which HW pattern filters to set
4064  *	@mask0: byte mask for bytes 0-63 of a packet
4065  *	@mask1: byte mask for bytes 64-127 of a packet
4066  *	@crc: Ethernet CRC for selected bytes
4067  *	@enable: enable/disable switch
4068  *
4069  *	Sets the pattern filters indicated in @map to mask out the bytes
4070  *	specified in @mask0/@mask1 in received packets and compare the CRC of
4071  *	the resulting packet against @crc.  If @enable is %true pattern-based
4072  *	WoL is enabled, otherwise disabled.
4073  */
4074 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
4075 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
4076 {
4077 	int i;
4078 	u32 port_cfg_reg;
4079 
4080 	if (is_t4(adap))
4081 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4082 	else
4083 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4084 
4085 	if (!enable) {
4086 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
4087 		return 0;
4088 	}
4089 	if (map > 0xff)
4090 		return -EINVAL;
4091 
4092 #define EPIO_REG(name) \
4093 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
4094 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
4095 
4096 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
4097 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
4098 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
4099 
4100 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
4101 		if (!(map & 1))
4102 			continue;
4103 
4104 		/* write byte masks */
4105 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
4106 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
4107 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4108 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4109 			return -ETIMEDOUT;
4110 
4111 		/* write CRC */
4112 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
4113 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
4114 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4115 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4116 			return -ETIMEDOUT;
4117 	}
4118 #undef EPIO_REG
4119 
4120 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
4121 	return 0;
4122 }
4123 
4124 /**
4125  *	t4_mk_filtdelwr - create a delete filter WR
4126  *	@ftid: the filter ID
4127  *	@wr: the filter work request to populate
4128  *	@qid: ingress queue to receive the delete notification
4129  *
4130  *	Creates a filter work request to delete the supplied filter.  If @qid is
4131  *	negative the delete notification is suppressed.
4132  */
4133 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4134 {
4135 	memset(wr, 0, sizeof(*wr));
4136 	wr->op_pkd = htonl(V_FW_WR_OP(FW_FILTER_WR));
4137 	wr->len16_pkd = htonl(V_FW_WR_LEN16(sizeof(*wr) / 16));
4138 	wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
4139 			      V_FW_FILTER_WR_NOREPLY(qid < 0));
4140 	wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
4141 	if (qid >= 0)
4142 		wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
4143 }
4144 
4145 #define INIT_CMD(var, cmd, rd_wr) do { \
4146 	(var).op_to_write = htonl(V_FW_CMD_OP(FW_##cmd##_CMD) | \
4147 				  F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
4148 	(var).retval_len16 = htonl(FW_LEN16(var)); \
4149 } while (0)
4150 
4151 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val)
4152 {
4153 	struct fw_ldst_cmd c;
4154 
4155 	memset(&c, 0, sizeof(c));
4156 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4157 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
4158 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4159 	c.u.addrval.addr = htonl(addr);
4160 	c.u.addrval.val = htonl(val);
4161 
4162 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4163 }
4164 
4165 /**
4166  *	t4_mdio_rd - read a PHY register through MDIO
4167  *	@adap: the adapter
4168  *	@mbox: mailbox to use for the FW command
4169  *	@phy_addr: the PHY address
4170  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4171  *	@reg: the register to read
4172  *	@valp: where to store the value
4173  *
4174  *	Issues a FW command through the given mailbox to read a PHY register.
4175  */
4176 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4177 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
4178 {
4179 	int ret;
4180 	struct fw_ldst_cmd c;
4181 
4182 	memset(&c, 0, sizeof(c));
4183 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4184 		F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4185 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4186 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4187 				   V_FW_LDST_CMD_MMD(mmd));
4188 	c.u.mdio.raddr = htons(reg);
4189 
4190 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4191 	if (ret == 0)
4192 		*valp = ntohs(c.u.mdio.rval);
4193 	return ret;
4194 }
4195 
4196 /**
4197  *	t4_mdio_wr - write a PHY register through MDIO
4198  *	@adap: the adapter
4199  *	@mbox: mailbox to use for the FW command
4200  *	@phy_addr: the PHY address
4201  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4202  *	@reg: the register to write
4203  *	@valp: value to write
4204  *
4205  *	Issues a FW command through the given mailbox to write a PHY register.
4206  */
4207 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4208 	       unsigned int mmd, unsigned int reg, unsigned int val)
4209 {
4210 	struct fw_ldst_cmd c;
4211 
4212 	memset(&c, 0, sizeof(c));
4213 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4214 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4215 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4216 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4217 				   V_FW_LDST_CMD_MMD(mmd));
4218 	c.u.mdio.raddr = htons(reg);
4219 	c.u.mdio.rval = htons(val);
4220 
4221 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4222 }
4223 
4224 /**
4225  *	t4_i2c_rd - read I2C data from adapter
4226  *	@adap: the adapter
4227  *	@port: Port number if per-port device; <0 if not
4228  *	@devid: per-port device ID or absolute device ID
4229  *	@offset: byte offset into device I2C space
4230  *	@len: byte length of I2C space data
4231  *	@buf: buffer in which to return I2C data
4232  *
4233  *	Reads the I2C data from the indicated device and location.
4234  */
4235 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
4236 	      int port, unsigned int devid,
4237 	      unsigned int offset, unsigned int len,
4238 	      u8 *buf)
4239 {
4240 	struct fw_ldst_cmd ldst;
4241 	int ret;
4242 
4243 	if (port >= 4 ||
4244 	    devid >= 256 ||
4245 	    offset >= 256 ||
4246 	    len > sizeof ldst.u.i2c.data)
4247 		return -EINVAL;
4248 
4249 	memset(&ldst, 0, sizeof ldst);
4250 	ldst.op_to_addrspace =
4251 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4252 			    F_FW_CMD_REQUEST |
4253 			    F_FW_CMD_READ |
4254 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
4255 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
4256 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
4257 	ldst.u.i2c.did = devid;
4258 	ldst.u.i2c.boffset = offset;
4259 	ldst.u.i2c.blen = len;
4260 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
4261 	if (!ret)
4262 		memcpy(buf, ldst.u.i2c.data, len);
4263 	return ret;
4264 }
4265 
4266 /**
4267  *	t4_i2c_wr - write I2C data to adapter
4268  *	@adap: the adapter
4269  *	@port: Port number if per-port device; <0 if not
4270  *	@devid: per-port device ID or absolute device ID
4271  *	@offset: byte offset into device I2C space
4272  *	@len: byte length of I2C space data
4273  *	@buf: buffer containing new I2C data
4274  *
4275  *	Write the I2C data to the indicated device and location.
4276  */
4277 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
4278 	      int port, unsigned int devid,
4279 	      unsigned int offset, unsigned int len,
4280 	      u8 *buf)
4281 {
4282 	struct fw_ldst_cmd ldst;
4283 
4284 	if (port >= 4 ||
4285 	    devid >= 256 ||
4286 	    offset >= 256 ||
4287 	    len > sizeof ldst.u.i2c.data)
4288 		return -EINVAL;
4289 
4290 	memset(&ldst, 0, sizeof ldst);
4291 	ldst.op_to_addrspace =
4292 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4293 			    F_FW_CMD_REQUEST |
4294 			    F_FW_CMD_WRITE |
4295 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
4296 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
4297 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
4298 	ldst.u.i2c.did = devid;
4299 	ldst.u.i2c.boffset = offset;
4300 	ldst.u.i2c.blen = len;
4301 	memcpy(ldst.u.i2c.data, buf, len);
4302 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
4303 }
4304 
4305 /**
4306  *	t4_sge_ctxt_flush - flush the SGE context cache
4307  *	@adap: the adapter
4308  *	@mbox: mailbox to use for the FW command
4309  *
4310  *	Issues a FW command through the given mailbox to flush the
4311  *	SGE context cache.
4312  */
4313 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4314 {
4315 	int ret;
4316 	struct fw_ldst_cmd c;
4317 
4318 	memset(&c, 0, sizeof(c));
4319 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4320 			F_FW_CMD_READ |
4321 			V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC));
4322 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4323 	c.u.idctxt.msg_ctxtflush = htonl(F_FW_LDST_CMD_CTXTFLUSH);
4324 
4325 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4326 	return ret;
4327 }
4328 
4329 /**
4330  *	t4_sge_ctxt_rd - read an SGE context through FW
4331  *	@adap: the adapter
4332  *	@mbox: mailbox to use for the FW command
4333  *	@cid: the context id
4334  *	@ctype: the context type
4335  *	@data: where to store the context data
4336  *
4337  *	Issues a FW command through the given mailbox to read an SGE context.
4338  */
4339 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
4340 		   enum ctxt_type ctype, u32 *data)
4341 {
4342 	int ret;
4343 	struct fw_ldst_cmd c;
4344 
4345 	if (ctype == CTXT_EGRESS)
4346 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
4347 	else if (ctype == CTXT_INGRESS)
4348 		ret = FW_LDST_ADDRSPC_SGE_INGC;
4349 	else if (ctype == CTXT_FLM)
4350 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
4351 	else
4352 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
4353 
4354 	memset(&c, 0, sizeof(c));
4355 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4356 				  F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret));
4357 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4358 	c.u.idctxt.physid = htonl(cid);
4359 
4360 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4361 	if (ret == 0) {
4362 		data[0] = ntohl(c.u.idctxt.ctxt_data0);
4363 		data[1] = ntohl(c.u.idctxt.ctxt_data1);
4364 		data[2] = ntohl(c.u.idctxt.ctxt_data2);
4365 		data[3] = ntohl(c.u.idctxt.ctxt_data3);
4366 		data[4] = ntohl(c.u.idctxt.ctxt_data4);
4367 		data[5] = ntohl(c.u.idctxt.ctxt_data5);
4368 	}
4369 	return ret;
4370 }
4371 
4372 /**
4373  *	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
4374  *	@adap: the adapter
4375  *	@cid: the context id
4376  *	@ctype: the context type
4377  *	@data: where to store the context data
4378  *
4379  *	Reads an SGE context directly, bypassing FW.  This is only for
4380  *	debugging when FW is unavailable.
4381  */
4382 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
4383 		      u32 *data)
4384 {
4385 	int i, ret;
4386 
4387 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
4388 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
4389 	if (!ret)
4390 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
4391 			*data++ = t4_read_reg(adap, i);
4392 	return ret;
4393 }
4394 
4395 /**
4396  *	t4_fw_hello - establish communication with FW
4397  *	@adap: the adapter
4398  *	@mbox: mailbox to use for the FW command
4399  *	@evt_mbox: mailbox to receive async FW events
4400  *	@master: specifies the caller's willingness to be the device master
4401  *	@state: returns the current device state (if non-NULL)
4402  *
4403  *	Issues a command to establish communication with FW.  Returns either
4404  *	an error (negative integer) or the mailbox of the Master PF.
4405  */
4406 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4407 		enum dev_master master, enum dev_state *state)
4408 {
4409 	int ret;
4410 	struct fw_hello_cmd c;
4411 	u32 v;
4412 	unsigned int master_mbox;
4413 	int retries = FW_CMD_HELLO_RETRIES;
4414 
4415 retry:
4416 	memset(&c, 0, sizeof(c));
4417 	INIT_CMD(c, HELLO, WRITE);
4418 	c.err_to_clearinit = htonl(
4419 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
4420 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
4421 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
4422 			M_FW_HELLO_CMD_MBMASTER) |
4423 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
4424 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
4425 		F_FW_HELLO_CMD_CLEARINIT);
4426 
4427 	/*
4428 	 * Issue the HELLO command to the firmware.  If it's not successful
4429 	 * but indicates that we got a "busy" or "timeout" condition, retry
4430 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
4431 	 * retry limit, check to see if the firmware left us any error
4432 	 * information and report that if so ...
4433 	 */
4434 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4435 	if (ret != FW_SUCCESS) {
4436 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4437 			goto retry;
4438 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
4439 			t4_report_fw_error(adap);
4440 		return ret;
4441 	}
4442 
4443 	v = ntohl(c.err_to_clearinit);
4444 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
4445 	if (state) {
4446 		if (v & F_FW_HELLO_CMD_ERR)
4447 			*state = DEV_STATE_ERR;
4448 		else if (v & F_FW_HELLO_CMD_INIT)
4449 			*state = DEV_STATE_INIT;
4450 		else
4451 			*state = DEV_STATE_UNINIT;
4452 	}
4453 
4454 	/*
4455 	 * If we're not the Master PF then we need to wait around for the
4456 	 * Master PF Driver to finish setting up the adapter.
4457 	 *
4458 	 * Note that we also do this wait if we're a non-Master-capable PF and
4459 	 * there is no current Master PF; a Master PF may show up momentarily
4460 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
4461 	 * OS loads lots of different drivers rapidly at the same time).  In
4462 	 * this case, the Master PF returned by the firmware will be
4463 	 * M_PCIE_FW_MASTER so the test below will work ...
4464 	 */
4465 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
4466 	    master_mbox != mbox) {
4467 		int waiting = FW_CMD_HELLO_TIMEOUT;
4468 
4469 		/*
4470 		 * Wait for the firmware to either indicate an error or
4471 		 * initialized state.  If we see either of these we bail out
4472 		 * and report the issue to the caller.  If we exhaust the
4473 		 * "hello timeout" and we haven't exhausted our retries, try
4474 		 * again.  Otherwise bail with a timeout error.
4475 		 */
4476 		for (;;) {
4477 			u32 pcie_fw;
4478 
4479 			msleep(50);
4480 			waiting -= 50;
4481 
4482 			/*
4483 			 * If neither Error nor Initialialized are indicated
4484 			 * by the firmware keep waiting till we exhaust our
4485 			 * timeout ... and then retry if we haven't exhausted
4486 			 * our retries ...
4487 			 */
4488 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
4489 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
4490 				if (waiting <= 0) {
4491 					if (retries-- > 0)
4492 						goto retry;
4493 
4494 					return -ETIMEDOUT;
4495 				}
4496 				continue;
4497 			}
4498 
4499 			/*
4500 			 * We either have an Error or Initialized condition
4501 			 * report errors preferentially.
4502 			 */
4503 			if (state) {
4504 				if (pcie_fw & F_PCIE_FW_ERR)
4505 					*state = DEV_STATE_ERR;
4506 				else if (pcie_fw & F_PCIE_FW_INIT)
4507 					*state = DEV_STATE_INIT;
4508 			}
4509 
4510 			/*
4511 			 * If we arrived before a Master PF was selected and
4512 			 * there's not a valid Master PF, grab its identity
4513 			 * for our caller.
4514 			 */
4515 			if (master_mbox == M_PCIE_FW_MASTER &&
4516 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
4517 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
4518 			break;
4519 		}
4520 	}
4521 
4522 	return master_mbox;
4523 }
4524 
4525 /**
4526  *	t4_fw_bye - end communication with FW
4527  *	@adap: the adapter
4528  *	@mbox: mailbox to use for the FW command
4529  *
4530  *	Issues a command to terminate communication with FW.
4531  */
4532 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4533 {
4534 	struct fw_bye_cmd c;
4535 
4536 	memset(&c, 0, sizeof(c));
4537 	INIT_CMD(c, BYE, WRITE);
4538 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4539 }
4540 
4541 /**
4542  *	t4_fw_reset - issue a reset to FW
4543  *	@adap: the adapter
4544  *	@mbox: mailbox to use for the FW command
4545  *	@reset: specifies the type of reset to perform
4546  *
4547  *	Issues a reset command of the specified type to FW.
4548  */
4549 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4550 {
4551 	struct fw_reset_cmd c;
4552 
4553 	memset(&c, 0, sizeof(c));
4554 	INIT_CMD(c, RESET, WRITE);
4555 	c.val = htonl(reset);
4556 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4557 }
4558 
4559 /**
4560  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4561  *	@adap: the adapter
4562  *	@mbox: mailbox to use for the FW RESET command (if desired)
4563  *	@force: force uP into RESET even if FW RESET command fails
4564  *
4565  *	Issues a RESET command to firmware (if desired) with a HALT indication
4566  *	and then puts the microprocessor into RESET state.  The RESET command
4567  *	will only be issued if a legitimate mailbox is provided (mbox <=
4568  *	M_PCIE_FW_MASTER).
4569  *
4570  *	This is generally used in order for the host to safely manipulate the
4571  *	adapter without fear of conflicting with whatever the firmware might
4572  *	be doing.  The only way out of this state is to RESTART the firmware
4573  *	...
4574  */
4575 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4576 {
4577 	int ret = 0;
4578 
4579 	/*
4580 	 * If a legitimate mailbox is provided, issue a RESET command
4581 	 * with a HALT indication.
4582 	 */
4583 	if (mbox <= M_PCIE_FW_MASTER) {
4584 		struct fw_reset_cmd c;
4585 
4586 		memset(&c, 0, sizeof(c));
4587 		INIT_CMD(c, RESET, WRITE);
4588 		c.val = htonl(F_PIORST | F_PIORSTMODE);
4589 		c.halt_pkd = htonl(F_FW_RESET_CMD_HALT);
4590 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4591 	}
4592 
4593 	/*
4594 	 * Normally we won't complete the operation if the firmware RESET
4595 	 * command fails but if our caller insists we'll go ahead and put the
4596 	 * uP into RESET.  This can be useful if the firmware is hung or even
4597 	 * missing ...  We'll have to take the risk of putting the uP into
4598 	 * RESET without the cooperation of firmware in that case.
4599 	 *
4600 	 * We also force the firmware's HALT flag to be on in case we bypassed
4601 	 * the firmware RESET command above or we're dealing with old firmware
4602 	 * which doesn't have the HALT capability.  This will serve as a flag
4603 	 * for the incoming firmware to know that it's coming out of a HALT
4604 	 * rather than a RESET ... if it's new enough to understand that ...
4605 	 */
4606 	if (ret == 0 || force) {
4607 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
4608 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT);
4609 	}
4610 
4611 	/*
4612 	 * And we always return the result of the firmware RESET command
4613 	 * even when we force the uP into RESET ...
4614 	 */
4615 	return ret;
4616 }
4617 
4618 /**
4619  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
4620  *	@adap: the adapter
4621  *	@reset: if we want to do a RESET to restart things
4622  *
4623  *	Restart firmware previously halted by t4_fw_halt().  On successful
4624  *	return the previous PF Master remains as the new PF Master and there
4625  *	is no need to issue a new HELLO command, etc.
4626  *
4627  *	We do this in two ways:
4628  *
4629  *	 1. If we're dealing with newer firmware we'll simply want to take
4630  *	    the chip's microprocessor out of RESET.  This will cause the
4631  *	    firmware to start up from its start vector.  And then we'll loop
4632  *	    until the firmware indicates it's started again (PCIE_FW.HALT
4633  *	    reset to 0) or we timeout.
4634  *
4635  *	 2. If we're dealing with older firmware then we'll need to RESET
4636  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
4637  *	    flag and automatically RESET itself on startup.
4638  */
4639 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
4640 {
4641 	if (reset) {
4642 		/*
4643 		 * Since we're directing the RESET instead of the firmware
4644 		 * doing it automatically, we need to clear the PCIE_FW.HALT
4645 		 * bit.
4646 		 */
4647 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
4648 
4649 		/*
4650 		 * If we've been given a valid mailbox, first try to get the
4651 		 * firmware to do the RESET.  If that works, great and we can
4652 		 * return success.  Otherwise, if we haven't been given a
4653 		 * valid mailbox or the RESET command failed, fall back to
4654 		 * hitting the chip with a hammer.
4655 		 */
4656 		if (mbox <= M_PCIE_FW_MASTER) {
4657 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4658 			msleep(100);
4659 			if (t4_fw_reset(adap, mbox,
4660 					F_PIORST | F_PIORSTMODE) == 0)
4661 				return 0;
4662 		}
4663 
4664 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
4665 		msleep(2000);
4666 	} else {
4667 		int ms;
4668 
4669 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4670 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
4671 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
4672 				return FW_SUCCESS;
4673 			msleep(100);
4674 			ms += 100;
4675 		}
4676 		return -ETIMEDOUT;
4677 	}
4678 	return 0;
4679 }
4680 
4681 /**
4682  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4683  *	@adap: the adapter
4684  *	@mbox: mailbox to use for the FW RESET command (if desired)
4685  *	@fw_data: the firmware image to write
4686  *	@size: image size
4687  *	@force: force upgrade even if firmware doesn't cooperate
4688  *
4689  *	Perform all of the steps necessary for upgrading an adapter's
4690  *	firmware image.  Normally this requires the cooperation of the
4691  *	existing firmware in order to halt all existing activities
4692  *	but if an invalid mailbox token is passed in we skip that step
4693  *	(though we'll still put the adapter microprocessor into RESET in
4694  *	that case).
4695  *
4696  *	On successful return the new firmware will have been loaded and
4697  *	the adapter will have been fully RESET losing all previous setup
4698  *	state.  On unsuccessful return the adapter may be completely hosed ...
4699  *	positive errno indicates that the adapter is ~probably~ intact, a
4700  *	negative errno indicates that things are looking bad ...
4701  */
4702 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4703 		  const u8 *fw_data, unsigned int size, int force)
4704 {
4705 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4706 	unsigned int bootstrap = ntohl(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
4707 	int reset, ret;
4708 
4709 	if (!bootstrap) {
4710 		ret = t4_fw_halt(adap, mbox, force);
4711 		if (ret < 0 && !force)
4712 			return ret;
4713 	}
4714 
4715 	ret = t4_load_fw(adap, fw_data, size);
4716 	if (ret < 0 || bootstrap)
4717 		return ret;
4718 
4719 	/*
4720 	 * Older versions of the firmware don't understand the new
4721 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4722 	 * restart.  So for newly loaded older firmware we'll have to do the
4723 	 * RESET for it so it starts up on a clean slate.  We can tell if
4724 	 * the newly loaded firmware will handle this right by checking
4725 	 * its header flags to see if it advertises the capability.
4726 	 */
4727 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
4728 	return t4_fw_restart(adap, mbox, reset);
4729 }
4730 
4731 /**
4732  *	t4_fw_initialize - ask FW to initialize the device
4733  *	@adap: the adapter
4734  *	@mbox: mailbox to use for the FW command
4735  *
4736  *	Issues a command to FW to partially initialize the device.  This
4737  *	performs initialization that generally doesn't depend on user input.
4738  */
4739 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
4740 {
4741 	struct fw_initialize_cmd c;
4742 
4743 	memset(&c, 0, sizeof(c));
4744 	INIT_CMD(c, INITIALIZE, WRITE);
4745 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4746 }
4747 
4748 /**
4749  *	t4_query_params - query FW or device parameters
4750  *	@adap: the adapter
4751  *	@mbox: mailbox to use for the FW command
4752  *	@pf: the PF
4753  *	@vf: the VF
4754  *	@nparams: the number of parameters
4755  *	@params: the parameter names
4756  *	@val: the parameter values
4757  *
4758  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
4759  *	queried at once.
4760  */
4761 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4762 		    unsigned int vf, unsigned int nparams, const u32 *params,
4763 		    u32 *val)
4764 {
4765 	int i, ret;
4766 	struct fw_params_cmd c;
4767 	__be32 *p = &c.param[0].mnem;
4768 
4769 	if (nparams > 7)
4770 		return -EINVAL;
4771 
4772 	memset(&c, 0, sizeof(c));
4773 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4774 			    F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) |
4775 			    V_FW_PARAMS_CMD_VFN(vf));
4776 	c.retval_len16 = htonl(FW_LEN16(c));
4777 
4778 	for (i = 0; i < nparams; i++, p += 2, params++)
4779 		*p = htonl(*params);
4780 
4781 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4782 	if (ret == 0)
4783 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
4784 			*val++ = ntohl(*p);
4785 	return ret;
4786 }
4787 
4788 /**
4789  *	t4_set_params - sets FW or device parameters
4790  *	@adap: the adapter
4791  *	@mbox: mailbox to use for the FW command
4792  *	@pf: the PF
4793  *	@vf: the VF
4794  *	@nparams: the number of parameters
4795  *	@params: the parameter names
4796  *	@val: the parameter values
4797  *
4798  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
4799  *	specified at once.
4800  */
4801 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4802 		  unsigned int vf, unsigned int nparams, const u32 *params,
4803 		  const u32 *val)
4804 {
4805 	struct fw_params_cmd c;
4806 	__be32 *p = &c.param[0].mnem;
4807 
4808 	if (nparams > 7)
4809 		return -EINVAL;
4810 
4811 	memset(&c, 0, sizeof(c));
4812 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4813 			    F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) |
4814 			    V_FW_PARAMS_CMD_VFN(vf));
4815 	c.retval_len16 = htonl(FW_LEN16(c));
4816 
4817 	while (nparams--) {
4818 		*p++ = htonl(*params);
4819 		params++;
4820 		*p++ = htonl(*val);
4821 		val++;
4822 	}
4823 
4824 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4825 }
4826 
4827 /**
4828  *	t4_cfg_pfvf - configure PF/VF resource limits
4829  *	@adap: the adapter
4830  *	@mbox: mailbox to use for the FW command
4831  *	@pf: the PF being configured
4832  *	@vf: the VF being configured
4833  *	@txq: the max number of egress queues
4834  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
4835  *	@rxqi: the max number of interrupt-capable ingress queues
4836  *	@rxq: the max number of interruptless ingress queues
4837  *	@tc: the PCI traffic class
4838  *	@vi: the max number of virtual interfaces
4839  *	@cmask: the channel access rights mask for the PF/VF
4840  *	@pmask: the port access rights mask for the PF/VF
4841  *	@nexact: the maximum number of exact MPS filters
4842  *	@rcaps: read capabilities
4843  *	@wxcaps: write/execute capabilities
4844  *
4845  *	Configures resource limits and capabilities for a physical or virtual
4846  *	function.
4847  */
4848 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
4849 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
4850 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
4851 		unsigned int vi, unsigned int cmask, unsigned int pmask,
4852 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
4853 {
4854 	struct fw_pfvf_cmd c;
4855 
4856 	memset(&c, 0, sizeof(c));
4857 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
4858 			    F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
4859 			    V_FW_PFVF_CMD_VFN(vf));
4860 	c.retval_len16 = htonl(FW_LEN16(c));
4861 	c.niqflint_niq = htonl(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
4862 			       V_FW_PFVF_CMD_NIQ(rxq));
4863 	c.type_to_neq = htonl(V_FW_PFVF_CMD_CMASK(cmask) |
4864 			      V_FW_PFVF_CMD_PMASK(pmask) |
4865 			      V_FW_PFVF_CMD_NEQ(txq));
4866 	c.tc_to_nexactf = htonl(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) |
4867 				V_FW_PFVF_CMD_NEXACTF(nexact));
4868 	c.r_caps_to_nethctrl = htonl(V_FW_PFVF_CMD_R_CAPS(rcaps) |
4869 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
4870 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
4871 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4872 }
4873 
4874 /**
4875  *	t4_alloc_vi_func - allocate a virtual interface
4876  *	@adap: the adapter
4877  *	@mbox: mailbox to use for the FW command
4878  *	@port: physical port associated with the VI
4879  *	@pf: the PF owning the VI
4880  *	@vf: the VF owning the VI
4881  *	@nmac: number of MAC addresses needed (1 to 5)
4882  *	@mac: the MAC addresses of the VI
4883  *	@rss_size: size of RSS table slice associated with this VI
4884  *	@portfunc: which Port Application Function MAC Address is desired
4885  *	@idstype: Intrusion Detection Type
4886  *
4887  *	Allocates a virtual interface for the given physical port.  If @mac is
4888  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
4889  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
4890  *	stored consecutively so the space needed is @nmac * 6 bytes.
4891  *	Returns a negative error number or the non-negative VI id.
4892  */
4893 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
4894 		     unsigned int port, unsigned int pf, unsigned int vf,
4895 		     unsigned int nmac, u8 *mac, u16 *rss_size,
4896 		     unsigned int portfunc, unsigned int idstype)
4897 {
4898 	int ret;
4899 	struct fw_vi_cmd c;
4900 
4901 	memset(&c, 0, sizeof(c));
4902 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4903 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
4904 			    V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
4905 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
4906 	c.type_to_viid = htons(V_FW_VI_CMD_TYPE(idstype) |
4907 			       V_FW_VI_CMD_FUNC(portfunc));
4908 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
4909 	c.nmac = nmac - 1;
4910 
4911 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4912 	if (ret)
4913 		return ret;
4914 
4915 	if (mac) {
4916 		memcpy(mac, c.mac, sizeof(c.mac));
4917 		switch (nmac) {
4918 		case 5:
4919 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
4920 		case 4:
4921 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
4922 		case 3:
4923 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
4924 		case 2:
4925 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
4926 		}
4927 	}
4928 	if (rss_size)
4929 		*rss_size = G_FW_VI_CMD_RSSSIZE(ntohs(c.norss_rsssize));
4930 	return G_FW_VI_CMD_VIID(htons(c.type_to_viid));
4931 }
4932 
4933 /**
4934  *	t4_alloc_vi - allocate an [Ethernet Function] virtual interface
4935  *	@adap: the adapter
4936  *	@mbox: mailbox to use for the FW command
4937  *	@port: physical port associated with the VI
4938  *	@pf: the PF owning the VI
4939  *	@vf: the VF owning the VI
4940  *	@nmac: number of MAC addresses needed (1 to 5)
4941  *	@mac: the MAC addresses of the VI
4942  *	@rss_size: size of RSS table slice associated with this VI
4943  *
4944  *	backwards compatible and convieniance routine to allocate a Virtual
4945  *	Interface with a Ethernet Port Application Function and Intrustion
4946  *	Detection System disabled.
4947  */
4948 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4949 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4950 		u16 *rss_size)
4951 {
4952 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
4953 				FW_VI_FUNC_ETH, 0);
4954 }
4955 
4956 /**
4957  *	t4_free_vi - free a virtual interface
4958  *	@adap: the adapter
4959  *	@mbox: mailbox to use for the FW command
4960  *	@pf: the PF owning the VI
4961  *	@vf: the VF owning the VI
4962  *	@viid: virtual interface identifiler
4963  *
4964  *	Free a previously allocated virtual interface.
4965  */
4966 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
4967 	       unsigned int vf, unsigned int viid)
4968 {
4969 	struct fw_vi_cmd c;
4970 
4971 	memset(&c, 0, sizeof(c));
4972 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) |
4973 			    F_FW_CMD_REQUEST |
4974 			    F_FW_CMD_EXEC |
4975 			    V_FW_VI_CMD_PFN(pf) |
4976 			    V_FW_VI_CMD_VFN(vf));
4977 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_FREE | FW_LEN16(c));
4978 	c.type_to_viid = htons(V_FW_VI_CMD_VIID(viid));
4979 
4980 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4981 }
4982 
4983 /**
4984  *	t4_set_rxmode - set Rx properties of a virtual interface
4985  *	@adap: the adapter
4986  *	@mbox: mailbox to use for the FW command
4987  *	@viid: the VI id
4988  *	@mtu: the new MTU or -1
4989  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
4990  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
4991  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
4992  *	@vlanex: 1 to enable HVLAN extraction, 0 to disable it, -1 no change
4993  *	@sleep_ok: if true we may sleep while awaiting command completion
4994  *
4995  *	Sets Rx properties of a virtual interface.
4996  */
4997 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
4998 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
4999 		  bool sleep_ok)
5000 {
5001 	struct fw_vi_rxmode_cmd c;
5002 
5003 	/* convert to FW values */
5004 	if (mtu < 0)
5005 		mtu = M_FW_VI_RXMODE_CMD_MTU;
5006 	if (promisc < 0)
5007 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
5008 	if (all_multi < 0)
5009 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
5010 	if (bcast < 0)
5011 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
5012 	if (vlanex < 0)
5013 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
5014 
5015 	memset(&c, 0, sizeof(c));
5016 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST |
5017 			     F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid));
5018 	c.retval_len16 = htonl(FW_LEN16(c));
5019 	c.mtu_to_vlanexen = htonl(V_FW_VI_RXMODE_CMD_MTU(mtu) |
5020 				  V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
5021 				  V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
5022 				  V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
5023 				  V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
5024 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5025 }
5026 
5027 /**
5028  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
5029  *	@adap: the adapter
5030  *	@mbox: mailbox to use for the FW command
5031  *	@viid: the VI id
5032  *	@free: if true any existing filters for this VI id are first removed
5033  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
5034  *	@addr: the MAC address(es)
5035  *	@idx: where to store the index of each allocated filter
5036  *	@hash: pointer to hash address filter bitmap
5037  *	@sleep_ok: call is allowed to sleep
5038  *
5039  *	Allocates an exact-match filter for each of the supplied addresses and
5040  *	sets it to the corresponding address.  If @idx is not %NULL it should
5041  *	have at least @naddr entries, each of which will be set to the index of
5042  *	the filter allocated for the corresponding MAC address.  If a filter
5043  *	could not be allocated for an address its index is set to 0xffff.
5044  *	If @hash is not %NULL addresses that fail to allocate an exact filter
5045  *	are hashed and update the hash filter bitmap pointed at by @hash.
5046  *
5047  *	Returns a negative error number or the number of filters allocated.
5048  */
5049 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
5050 		      unsigned int viid, bool free, unsigned int naddr,
5051 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
5052 {
5053 	int offset, ret = 0;
5054 	struct fw_vi_mac_cmd c;
5055 	unsigned int nfilters = 0;
5056 	unsigned int max_naddr = is_t4(adap) ?
5057 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
5058 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5059 	unsigned int rem = naddr;
5060 
5061 	if (naddr > max_naddr)
5062 		return -EINVAL;
5063 
5064 	for (offset = 0; offset < naddr ; /**/) {
5065 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
5066 					 ? rem
5067 					 : ARRAY_SIZE(c.u.exact));
5068 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
5069 						     u.exact[fw_naddr]), 16);
5070 		struct fw_vi_mac_exact *p;
5071 		int i;
5072 
5073 		memset(&c, 0, sizeof(c));
5074 		c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) |
5075 				     F_FW_CMD_REQUEST |
5076 				     F_FW_CMD_WRITE |
5077 				     V_FW_CMD_EXEC(free) |
5078 				     V_FW_VI_MAC_CMD_VIID(viid));
5079 		c.freemacs_to_len16 = htonl(V_FW_VI_MAC_CMD_FREEMACS(free) |
5080 					    V_FW_CMD_LEN16(len16));
5081 
5082 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5083 			p->valid_to_idx = htons(
5084 				F_FW_VI_MAC_CMD_VALID |
5085 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
5086 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
5087 		}
5088 
5089 		/*
5090 		 * It's okay if we run out of space in our MAC address arena.
5091 		 * Some of the addresses we submit may get stored so we need
5092 		 * to run through the reply to see what the results were ...
5093 		 */
5094 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5095 		if (ret && ret != -FW_ENOMEM)
5096 			break;
5097 
5098 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5099 			u16 index = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5100 
5101 			if (idx)
5102 				idx[offset+i] = (index >=  max_naddr
5103 						 ? 0xffff
5104 						 : index);
5105 			if (index < max_naddr)
5106 				nfilters++;
5107 			else if (hash)
5108 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
5109 		}
5110 
5111 		free = false;
5112 		offset += fw_naddr;
5113 		rem -= fw_naddr;
5114 	}
5115 
5116 	if (ret == 0 || ret == -FW_ENOMEM)
5117 		ret = nfilters;
5118 	return ret;
5119 }
5120 
5121 /**
5122  *	t4_change_mac - modifies the exact-match filter for a MAC address
5123  *	@adap: the adapter
5124  *	@mbox: mailbox to use for the FW command
5125  *	@viid: the VI id
5126  *	@idx: index of existing filter for old value of MAC address, or -1
5127  *	@addr: the new MAC address value
5128  *	@persist: whether a new MAC allocation should be persistent
5129  *	@add_smt: if true also add the address to the HW SMT
5130  *
5131  *	Modifies an exact-match filter and sets it to the new MAC address if
5132  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
5133  *	latter case the address is added persistently if @persist is %true.
5134  *
5135  *	Note that in general it is not possible to modify the value of a given
5136  *	filter so the generic way to modify an address filter is to free the one
5137  *	being used by the old address value and allocate a new filter for the
5138  *	new address value.
5139  *
5140  *	Returns a negative error number or the index of the filter with the new
5141  *	MAC value.  Note that this index may differ from @idx.
5142  */
5143 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5144 		  int idx, const u8 *addr, bool persist, bool add_smt)
5145 {
5146 	int ret, mode;
5147 	struct fw_vi_mac_cmd c;
5148 	struct fw_vi_mac_exact *p = c.u.exact;
5149 	unsigned int max_mac_addr = is_t4(adap) ?
5150 				    NUM_MPS_CLS_SRAM_L_INSTANCES :
5151 				    NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5152 
5153 	if (idx < 0)                             /* new allocation */
5154 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5155 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5156 
5157 	memset(&c, 0, sizeof(c));
5158 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5159 			     F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid));
5160 	c.freemacs_to_len16 = htonl(V_FW_CMD_LEN16(1));
5161 	p->valid_to_idx = htons(F_FW_VI_MAC_CMD_VALID |
5162 				V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
5163 				V_FW_VI_MAC_CMD_IDX(idx));
5164 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
5165 
5166 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5167 	if (ret == 0) {
5168 		ret = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5169 		if (ret >= max_mac_addr)
5170 			ret = -ENOMEM;
5171 	}
5172 	return ret;
5173 }
5174 
5175 /**
5176  *	t4_set_addr_hash - program the MAC inexact-match hash filter
5177  *	@adap: the adapter
5178  *	@mbox: mailbox to use for the FW command
5179  *	@viid: the VI id
5180  *	@ucast: whether the hash filter should also match unicast addresses
5181  *	@vec: the value to be written to the hash filter
5182  *	@sleep_ok: call is allowed to sleep
5183  *
5184  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
5185  */
5186 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5187 		     bool ucast, u64 vec, bool sleep_ok)
5188 {
5189 	struct fw_vi_mac_cmd c;
5190 
5191 	memset(&c, 0, sizeof(c));
5192 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5193 			     F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid));
5194 	c.freemacs_to_len16 = htonl(F_FW_VI_MAC_CMD_HASHVECEN |
5195 				    V_FW_VI_MAC_CMD_HASHUNIEN(ucast) |
5196 				    V_FW_CMD_LEN16(1));
5197 	c.u.hash.hashvec = cpu_to_be64(vec);
5198 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5199 }
5200 
5201 /**
5202  *	t4_enable_vi - enable/disable a virtual interface
5203  *	@adap: the adapter
5204  *	@mbox: mailbox to use for the FW command
5205  *	@viid: the VI id
5206  *	@rx_en: 1=enable Rx, 0=disable Rx
5207  *	@tx_en: 1=enable Tx, 0=disable Tx
5208  *
5209  *	Enables/disables a virtual interface.
5210  */
5211 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5212 		 bool rx_en, bool tx_en)
5213 {
5214 	struct fw_vi_enable_cmd c;
5215 
5216 	memset(&c, 0, sizeof(c));
5217 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5218 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5219 	c.ien_to_len16 = htonl(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
5220 			       V_FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
5221 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5222 }
5223 
5224 /**
5225  *	t4_identify_port - identify a VI's port by blinking its LED
5226  *	@adap: the adapter
5227  *	@mbox: mailbox to use for the FW command
5228  *	@viid: the VI id
5229  *	@nblinks: how many times to blink LED at 2.5 Hz
5230  *
5231  *	Identifies a VI's port by blinking its LED.
5232  */
5233 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5234 		     unsigned int nblinks)
5235 {
5236 	struct fw_vi_enable_cmd c;
5237 
5238 	memset(&c, 0, sizeof(c));
5239 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5240 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5241 	c.ien_to_len16 = htonl(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
5242 	c.blinkdur = htons(nblinks);
5243 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5244 }
5245 
5246 /**
5247  *	t4_iq_start_stop - enable/disable an ingress queue and its FLs
5248  *	@adap: the adapter
5249  *	@mbox: mailbox to use for the FW command
5250  *	@start: %true to enable the queues, %false to disable them
5251  *	@pf: the PF owning the queues
5252  *	@vf: the VF owning the queues
5253  *	@iqid: ingress queue id
5254  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5255  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5256  *
5257  *	Starts or stops an ingress queue and its associated FLs, if any.
5258  */
5259 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
5260 		     unsigned int pf, unsigned int vf, unsigned int iqid,
5261 		     unsigned int fl0id, unsigned int fl1id)
5262 {
5263 	struct fw_iq_cmd c;
5264 
5265 	memset(&c, 0, sizeof(c));
5266 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5267 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5268 			    V_FW_IQ_CMD_VFN(vf));
5269 	c.alloc_to_len16 = htonl(V_FW_IQ_CMD_IQSTART(start) |
5270 				 V_FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
5271 	c.iqid = htons(iqid);
5272 	c.fl0id = htons(fl0id);
5273 	c.fl1id = htons(fl1id);
5274 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5275 }
5276 
5277 /**
5278  *	t4_iq_free - free an ingress queue and its FLs
5279  *	@adap: the adapter
5280  *	@mbox: mailbox to use for the FW command
5281  *	@pf: the PF owning the queues
5282  *	@vf: the VF owning the queues
5283  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
5284  *	@iqid: ingress queue id
5285  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5286  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5287  *
5288  *	Frees an ingress queue and its associated FLs, if any.
5289  */
5290 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5291 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
5292 	       unsigned int fl0id, unsigned int fl1id)
5293 {
5294 	struct fw_iq_cmd c;
5295 
5296 	memset(&c, 0, sizeof(c));
5297 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5298 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5299 			    V_FW_IQ_CMD_VFN(vf));
5300 	c.alloc_to_len16 = htonl(F_FW_IQ_CMD_FREE | FW_LEN16(c));
5301 	c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(iqtype));
5302 	c.iqid = htons(iqid);
5303 	c.fl0id = htons(fl0id);
5304 	c.fl1id = htons(fl1id);
5305 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5306 }
5307 
5308 /**
5309  *	t4_eth_eq_free - free an Ethernet egress queue
5310  *	@adap: the adapter
5311  *	@mbox: mailbox to use for the FW command
5312  *	@pf: the PF owning the queue
5313  *	@vf: the VF owning the queue
5314  *	@eqid: egress queue id
5315  *
5316  *	Frees an Ethernet egress queue.
5317  */
5318 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5319 		   unsigned int vf, unsigned int eqid)
5320 {
5321 	struct fw_eq_eth_cmd c;
5322 
5323 	memset(&c, 0, sizeof(c));
5324 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
5325 			    F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) |
5326 			    V_FW_EQ_ETH_CMD_VFN(vf));
5327 	c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
5328 	c.eqid_pkd = htonl(V_FW_EQ_ETH_CMD_EQID(eqid));
5329 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5330 }
5331 
5332 /**
5333  *	t4_ctrl_eq_free - free a control egress queue
5334  *	@adap: the adapter
5335  *	@mbox: mailbox to use for the FW command
5336  *	@pf: the PF owning the queue
5337  *	@vf: the VF owning the queue
5338  *	@eqid: egress queue id
5339  *
5340  *	Frees a control egress queue.
5341  */
5342 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5343 		    unsigned int vf, unsigned int eqid)
5344 {
5345 	struct fw_eq_ctrl_cmd c;
5346 
5347 	memset(&c, 0, sizeof(c));
5348 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
5349 			    F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) |
5350 			    V_FW_EQ_CTRL_CMD_VFN(vf));
5351 	c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
5352 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_EQID(eqid));
5353 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5354 }
5355 
5356 /**
5357  *	t4_ofld_eq_free - free an offload egress queue
5358  *	@adap: the adapter
5359  *	@mbox: mailbox to use for the FW command
5360  *	@pf: the PF owning the queue
5361  *	@vf: the VF owning the queue
5362  *	@eqid: egress queue id
5363  *
5364  *	Frees a control egress queue.
5365  */
5366 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5367 		    unsigned int vf, unsigned int eqid)
5368 {
5369 	struct fw_eq_ofld_cmd c;
5370 
5371 	memset(&c, 0, sizeof(c));
5372 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
5373 			    F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) |
5374 			    V_FW_EQ_OFLD_CMD_VFN(vf));
5375 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
5376 	c.eqid_pkd = htonl(V_FW_EQ_OFLD_CMD_EQID(eqid));
5377 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5378 }
5379 
5380 /**
5381  *	t4_handle_fw_rpl - process a FW reply message
5382  *	@adap: the adapter
5383  *	@rpl: start of the FW message
5384  *
5385  *	Processes a FW message, such as link state change messages.
5386  */
5387 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5388 {
5389 	u8 opcode = *(const u8 *)rpl;
5390 	const struct fw_port_cmd *p = (const void *)rpl;
5391 	unsigned int action = G_FW_PORT_CMD_ACTION(ntohl(p->action_to_len16));
5392 
5393 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
5394 		/* link/module state change message */
5395 		int speed = 0, fc = 0, i;
5396 		int chan = G_FW_PORT_CMD_PORTID(ntohl(p->op_to_portid));
5397 		struct port_info *pi = NULL;
5398 		struct link_config *lc;
5399 		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
5400 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
5401 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
5402 
5403 		if (stat & F_FW_PORT_CMD_RXPAUSE)
5404 			fc |= PAUSE_RX;
5405 		if (stat & F_FW_PORT_CMD_TXPAUSE)
5406 			fc |= PAUSE_TX;
5407 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
5408 			speed = SPEED_100;
5409 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
5410 			speed = SPEED_1000;
5411 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
5412 			speed = SPEED_10000;
5413 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
5414 			speed = SPEED_40000;
5415 
5416 		for_each_port(adap, i) {
5417 			pi = adap2pinfo(adap, i);
5418 			if (pi->tx_chan == chan)
5419 				break;
5420 		}
5421 		lc = &pi->link_cfg;
5422 
5423 		if (mod != pi->mod_type) {
5424 			pi->mod_type = mod;
5425 			t4_os_portmod_changed(adap, i);
5426 		}
5427 		if (link_ok != lc->link_ok || speed != lc->speed ||
5428 		    fc != lc->fc) {                    /* something changed */
5429 			int reason;
5430 
5431 			if (!link_ok && lc->link_ok)
5432 				reason = G_FW_PORT_CMD_LINKDNRC(stat);
5433 			else
5434 				reason = -1;
5435 
5436 			lc->link_ok = link_ok;
5437 			lc->speed = speed;
5438 			lc->fc = fc;
5439 			lc->supported = ntohs(p->u.info.pcap);
5440 			t4_os_link_changed(adap, i, link_ok, reason);
5441 		}
5442 	} else {
5443 		CH_WARN_RATELIMIT(adap,
5444 		    "Unknown firmware reply 0x%x (0x%x)\n", opcode, action);
5445 		return -EINVAL;
5446 	}
5447 	return 0;
5448 }
5449 
5450 /**
5451  *	get_pci_mode - determine a card's PCI mode
5452  *	@adapter: the adapter
5453  *	@p: where to store the PCI settings
5454  *
5455  *	Determines a card's PCI mode and associated parameters, such as speed
5456  *	and width.
5457  */
5458 static void __devinit get_pci_mode(struct adapter *adapter,
5459 				   struct pci_params *p)
5460 {
5461 	u16 val;
5462 	u32 pcie_cap;
5463 
5464 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5465 	if (pcie_cap) {
5466 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
5467 		p->speed = val & PCI_EXP_LNKSTA_CLS;
5468 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5469 	}
5470 }
5471 
5472 /**
5473  *	init_link_config - initialize a link's SW state
5474  *	@lc: structure holding the link state
5475  *	@caps: link capabilities
5476  *
5477  *	Initializes the SW state maintained for each link, including the link's
5478  *	capabilities and default speed/flow-control/autonegotiation settings.
5479  */
5480 static void __devinit init_link_config(struct link_config *lc,
5481 				       unsigned int caps)
5482 {
5483 	lc->supported = caps;
5484 	lc->requested_speed = 0;
5485 	lc->speed = 0;
5486 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5487 	if (lc->supported & FW_PORT_CAP_ANEG) {
5488 		lc->advertising = lc->supported & ADVERT_MASK;
5489 		lc->autoneg = AUTONEG_ENABLE;
5490 		lc->requested_fc |= PAUSE_AUTONEG;
5491 	} else {
5492 		lc->advertising = 0;
5493 		lc->autoneg = AUTONEG_DISABLE;
5494 	}
5495 }
5496 
5497 static int __devinit get_flash_params(struct adapter *adapter)
5498 {
5499 	int ret;
5500 	u32 info = 0;
5501 
5502 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
5503 	if (!ret)
5504 		ret = sf1_read(adapter, 3, 0, 1, &info);
5505 	t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
5506 	if (ret < 0)
5507 		return ret;
5508 
5509 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
5510 		return -EINVAL;
5511 	info >>= 16;                           /* log2 of size */
5512 	if (info >= 0x14 && info < 0x18)
5513 		adapter->params.sf_nsec = 1 << (info - 16);
5514 	else if (info == 0x18)
5515 		adapter->params.sf_nsec = 64;
5516 	else
5517 		return -EINVAL;
5518 	adapter->params.sf_size = 1 << info;
5519 	return 0;
5520 }
5521 
5522 static void __devinit set_pcie_completion_timeout(struct adapter *adapter,
5523 						  u8 range)
5524 {
5525 	u16 val;
5526 	u32 pcie_cap;
5527 
5528 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5529 	if (pcie_cap) {
5530 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
5531 		val &= 0xfff0;
5532 		val |= range ;
5533 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
5534 	}
5535 }
5536 
5537 /**
5538  *	t4_prep_adapter - prepare SW and HW for operation
5539  *	@adapter: the adapter
5540  *	@reset: if true perform a HW reset
5541  *
5542  *	Initialize adapter SW state for the various HW modules, set initial
5543  *	values for some adapter tunables, take PHYs out of reset, and
5544  *	initialize the MDIO interface.
5545  */
5546 int __devinit t4_prep_adapter(struct adapter *adapter)
5547 {
5548 	int ret;
5549 	uint16_t device_id;
5550 	uint32_t pl_rev;
5551 
5552 	get_pci_mode(adapter, &adapter->params.pci);
5553 
5554 	pl_rev = t4_read_reg(adapter, A_PL_REV);
5555 	adapter->params.chipid = G_CHIPID(pl_rev);
5556 	adapter->params.rev = G_REV(pl_rev);
5557 	if (adapter->params.chipid == 0) {
5558 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
5559 		adapter->params.chipid = CHELSIO_T4;
5560 
5561 		/* T4A1 chip is not supported */
5562 		if (adapter->params.rev == 1) {
5563 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
5564 			return -EINVAL;
5565 		}
5566 	}
5567 	adapter->params.pci.vpd_cap_addr =
5568 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5569 
5570 	ret = get_flash_params(adapter);
5571 	if (ret < 0)
5572 		return ret;
5573 
5574 	ret = get_vpd_params(adapter, &adapter->params.vpd);
5575 	if (ret < 0)
5576 		return ret;
5577 
5578 	/* Cards with real ASICs have the chipid in the PCIe device id */
5579 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
5580 	if (device_id >> 12 == adapter->params.chipid)
5581 		adapter->params.cim_la_size = CIMLA_SIZE;
5582 	else {
5583 		/* FPGA */
5584 		adapter->params.fpga = 1;
5585 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
5586 	}
5587 
5588 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5589 
5590 	/*
5591 	 * Default port and clock for debugging in case we can't reach FW.
5592 	 */
5593 	adapter->params.nports = 1;
5594 	adapter->params.portvec = 1;
5595 	adapter->params.vpd.cclk = 50000;
5596 
5597 	/* Set pci completion timeout value to 4 seconds. */
5598 	set_pcie_completion_timeout(adapter, 0xd);
5599 	return 0;
5600 }
5601 
5602 /**
5603  *	t4_init_tp_params - initialize adap->params.tp
5604  *	@adap: the adapter
5605  *
5606  *	Initialize various fields of the adapter's TP Parameters structure.
5607  */
5608 int __devinit t4_init_tp_params(struct adapter *adap)
5609 {
5610 	int chan;
5611 	u32 v;
5612 
5613 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5614 	adap->params.tp.tre = G_TIMERRESOLUTION(v);
5615 	adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5616 
5617 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5618 	for (chan = 0; chan < NCHAN; chan++)
5619 		adap->params.tp.tx_modq[chan] = chan;
5620 
5621 	/*
5622 	 * Cache the adapter's Compressed Filter Mode and global Incress
5623 	 * Configuration.
5624 	 */
5625         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5626                          &adap->params.tp.vlan_pri_map, 1,
5627                          A_TP_VLAN_PRI_MAP);
5628 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5629 			 &adap->params.tp.ingress_config, 1,
5630 			 A_TP_INGRESS_CONFIG);
5631 
5632 	/*
5633 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5634 	 * shift positions of several elements of the Compressed Filter Tuple
5635 	 * for this adapter which we need frequently ...
5636 	 */
5637 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5638 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5639 	adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5640 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
5641 
5642 	/*
5643 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
5644 	 * represents the presense of an Outer VLAN instead of a VNIC ID.
5645 	 */
5646 	if ((adap->params.tp.ingress_config & F_VNIC) == 0)
5647 		adap->params.tp.vnic_shift = -1;
5648 
5649 	return 0;
5650 }
5651 
5652 /**
5653  *	t4_filter_field_shift - calculate filter field shift
5654  *	@adap: the adapter
5655  *	@filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5656  *
5657  *	Return the shift position of a filter field within the Compressed
5658  *	Filter Tuple.  The filter field is specified via its selection bit
5659  *	within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5660  */
5661 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
5662 {
5663 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5664 	unsigned int sel;
5665 	int field_shift;
5666 
5667 	if ((filter_mode & filter_sel) == 0)
5668 		return -1;
5669 
5670 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5671 	    switch (filter_mode & sel) {
5672 		case F_FCOE:          field_shift += W_FT_FCOE;          break;
5673 		case F_PORT:          field_shift += W_FT_PORT;          break;
5674 		case F_VNIC_ID:       field_shift += W_FT_VNIC_ID;       break;
5675 		case F_VLAN:          field_shift += W_FT_VLAN;          break;
5676 		case F_TOS:           field_shift += W_FT_TOS;           break;
5677 		case F_PROTOCOL:      field_shift += W_FT_PROTOCOL;      break;
5678 		case F_ETHERTYPE:     field_shift += W_FT_ETHERTYPE;     break;
5679 		case F_MACMATCH:      field_shift += W_FT_MACMATCH;      break;
5680 		case F_MPSHITTYPE:    field_shift += W_FT_MPSHITTYPE;    break;
5681 		case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break;
5682 	    }
5683 	}
5684 	return field_shift;
5685 }
5686 
5687 int __devinit t4_port_init(struct port_info *p, int mbox, int pf, int vf)
5688 {
5689 	u8 addr[6];
5690 	int ret, i, j;
5691 	struct fw_port_cmd c;
5692 	u16 rss_size;
5693 	adapter_t *adap = p->adapter;
5694 
5695 	memset(&c, 0, sizeof(c));
5696 
5697 	for (i = 0, j = -1; i <= p->port_id; i++) {
5698 		do {
5699 			j++;
5700 		} while ((adap->params.portvec & (1 << j)) == 0);
5701 	}
5702 
5703 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
5704 			       F_FW_CMD_REQUEST | F_FW_CMD_READ |
5705 			       V_FW_PORT_CMD_PORTID(j));
5706 	c.action_to_len16 = htonl(
5707 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
5708 		FW_LEN16(c));
5709 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5710 	if (ret)
5711 		return ret;
5712 
5713 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
5714 	if (ret < 0)
5715 		return ret;
5716 
5717 	p->viid = ret;
5718 	p->tx_chan = j;
5719 	p->rx_chan_map = get_mps_bg_map(adap, j);
5720 	p->lport = j;
5721 	p->rss_size = rss_size;
5722 	t4_os_set_hw_addr(adap, p->port_id, addr);
5723 
5724 	ret = ntohl(c.u.info.lstatus_to_modtype);
5725 	p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
5726 		G_FW_PORT_CMD_MDIOADDR(ret) : -1;
5727 	p->port_type = G_FW_PORT_CMD_PTYPE(ret);
5728 	p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
5729 
5730 	init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
5731 
5732 	return 0;
5733 }
5734 
5735 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
5736     		    int sleep_ok)
5737 {
5738 	struct fw_sched_cmd cmd;
5739 
5740 	memset(&cmd, 0, sizeof(cmd));
5741 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
5742 				      F_FW_CMD_REQUEST |
5743 				      F_FW_CMD_WRITE);
5744 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5745 
5746 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
5747 	cmd.u.config.type = type;
5748 	cmd.u.config.minmaxen = minmaxen;
5749 
5750 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
5751 			       NULL, sleep_ok);
5752 }
5753 
5754 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
5755 		    int rateunit, int ratemode, int channel, int cl,
5756 		    int minrate, int maxrate, int weight, int pktsize,
5757 		    int sleep_ok)
5758 {
5759 	struct fw_sched_cmd cmd;
5760 
5761 	memset(&cmd, 0, sizeof(cmd));
5762 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
5763 				      F_FW_CMD_REQUEST |
5764 				      F_FW_CMD_WRITE);
5765 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5766 
5767 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
5768 	cmd.u.params.type = type;
5769 	cmd.u.params.level = level;
5770 	cmd.u.params.mode = mode;
5771 	cmd.u.params.ch = channel;
5772 	cmd.u.params.cl = cl;
5773 	cmd.u.params.unit = rateunit;
5774 	cmd.u.params.rate = ratemode;
5775 	cmd.u.params.min = cpu_to_be32(minrate);
5776 	cmd.u.params.max = cpu_to_be32(maxrate);
5777 	cmd.u.params.weight = cpu_to_be16(weight);
5778 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
5779 
5780 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
5781 			       NULL, sleep_ok);
5782 }
5783