xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision e87ec409fa9b21abf79895837fe375ab3d7e408a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
216 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
217 	}
218 }
219 
220 /*
221  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
222  */
223 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
224 			 u32 mbox_addr)
225 {
226 	for ( ; nflit; nflit--, mbox_addr += 8)
227 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
228 }
229 
230 /*
231  * Handle a FW assertion reported in a mailbox.
232  */
233 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
234 {
235 	CH_ALERT(adap,
236 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
237 		  asrt->u.assert.filename_0_7,
238 		  be32_to_cpu(asrt->u.assert.line),
239 		  be32_to_cpu(asrt->u.assert.x),
240 		  be32_to_cpu(asrt->u.assert.y));
241 }
242 
243 struct port_tx_state {
244 	uint64_t rx_pause;
245 	uint64_t tx_frames;
246 };
247 
248 static void
249 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
250 {
251 	uint32_t rx_pause_reg, tx_frames_reg;
252 
253 	if (is_t4(sc)) {
254 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
255 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
256 	} else {
257 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	}
260 
261 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
262 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
263 }
264 
265 static void
266 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
267 {
268 	int i;
269 
270 	for_each_port(sc, i)
271 		read_tx_state_one(sc, i, &tx_state[i]);
272 }
273 
274 static void
275 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
276 {
277 	uint32_t port_ctl_reg;
278 	uint64_t tx_frames, rx_pause;
279 	int i;
280 
281 	for_each_port(sc, i) {
282 		rx_pause = tx_state[i].rx_pause;
283 		tx_frames = tx_state[i].tx_frames;
284 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
285 
286 		if (is_t4(sc))
287 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
288 		else
289 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
290 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
291 		    rx_pause != tx_state[i].rx_pause &&
292 		    tx_frames == tx_state[i].tx_frames) {
293 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
294 			mdelay(1);
295 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
296 		}
297 	}
298 }
299 
300 #define X_CIM_PF_NOACCESS 0xeeeeeeee
301 /**
302  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
303  *	@adap: the adapter
304  *	@mbox: index of the mailbox to use
305  *	@cmd: the command to write
306  *	@size: command length in bytes
307  *	@rpl: where to optionally store the reply
308  *	@sleep_ok: if true we may sleep while awaiting command completion
309  *	@timeout: time to wait for command to finish before timing out
310  *		(negative implies @sleep_ok=false)
311  *
312  *	Sends the given command to FW through the selected mailbox and waits
313  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
314  *	store the FW's reply to the command.  The command and its optional
315  *	reply are of the same length.  Some FW commands like RESET and
316  *	INITIALIZE can take a considerable amount of time to execute.
317  *	@sleep_ok determines whether we may sleep while awaiting the response.
318  *	If sleeping is allowed we use progressive backoff otherwise we spin.
319  *	Note that passing in a negative @timeout is an alternate mechanism
320  *	for specifying @sleep_ok=false.  This is useful when a higher level
321  *	interface allows for specification of @timeout but not @sleep_ok ...
322  *
323  *	The return value is 0 on success or a negative errno on failure.  A
324  *	failure can happen either because we are not able to execute the
325  *	command or FW executes it but signals an error.  In the latter case
326  *	the return value is the error code indicated by FW (negated).
327  */
328 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
329 			    int size, void *rpl, bool sleep_ok, int timeout)
330 {
331 	/*
332 	 * We delay in small increments at first in an effort to maintain
333 	 * responsiveness for simple, fast executing commands but then back
334 	 * off to larger delays to a maximum retry delay.
335 	 */
336 	static const int delay[] = {
337 		1, 1, 3, 5, 10, 10, 20, 50, 100
338 	};
339 	u32 v;
340 	u64 res;
341 	int i, ms, delay_idx, ret, next_tx_check;
342 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
343 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
344 	u32 ctl;
345 	__be64 cmd_rpl[MBOX_LEN/8];
346 	u32 pcie_fw;
347 	struct port_tx_state tx_state[MAX_NPORTS];
348 
349 	if (adap->flags & CHK_MBOX_ACCESS)
350 		ASSERT_SYNCHRONIZED_OP(adap);
351 
352 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
353 		return -EINVAL;
354 
355 	if (adap->flags & IS_VF) {
356 		if (is_t6(adap))
357 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
358 		else
359 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
360 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
361 	}
362 
363 	/*
364 	 * If we have a negative timeout, that implies that we can't sleep.
365 	 */
366 	if (timeout < 0) {
367 		sleep_ok = false;
368 		timeout = -timeout;
369 	}
370 
371 	/*
372 	 * Attempt to gain access to the mailbox.
373 	 */
374 	pcie_fw = 0;
375 	if (!(adap->flags & IS_VF)) {
376 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
377 		if (pcie_fw & F_PCIE_FW_ERR)
378 			goto failed;
379 	}
380 	for (i = 0; i < 4; i++) {
381 		ctl = t4_read_reg(adap, ctl_reg);
382 		v = G_MBOWNER(ctl);
383 		if (v != X_MBOWNER_NONE)
384 			break;
385 	}
386 
387 	/*
388 	 * If we were unable to gain access, report the error to our caller.
389 	 */
390 	if (v != X_MBOWNER_PL) {
391 		if (!(adap->flags & IS_VF)) {
392 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
393 			if (pcie_fw & F_PCIE_FW_ERR)
394 				goto failed;
395 		}
396 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
397 		return ret;
398 	}
399 
400 	/*
401 	 * If we gain ownership of the mailbox and there's a "valid" message
402 	 * in it, this is likely an asynchronous error message from the
403 	 * firmware.  So we'll report that and then proceed on with attempting
404 	 * to issue our own command ... which may well fail if the error
405 	 * presaged the firmware crashing ...
406 	 */
407 	if (ctl & F_MBMSGVALID) {
408 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
409 	}
410 
411 	/*
412 	 * Copy in the new mailbox command and send it on its way ...
413 	 */
414 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
415 	memcpy(cmd_rpl, cmd, size);
416 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
417 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
418 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
419 
420 	if (adap->flags & IS_VF) {
421 		/*
422 		 * For the VFs, the Mailbox Data "registers" are
423 		 * actually backed by T4's "MA" interface rather than
424 		 * PL Registers (as is the case for the PFs).  Because
425 		 * these are in different coherency domains, the write
426 		 * to the VF's PL-register-backed Mailbox Control can
427 		 * race in front of the writes to the MA-backed VF
428 		 * Mailbox Data "registers".  So we need to do a
429 		 * read-back on at least one byte of the VF Mailbox
430 		 * Data registers before doing the write to the VF
431 		 * Mailbox Control register.
432 		 */
433 		t4_read_reg(adap, data_reg);
434 	}
435 
436 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
437 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
438 	next_tx_check = 1000;
439 	delay_idx = 0;
440 	ms = delay[0];
441 
442 	/*
443 	 * Loop waiting for the reply; bail out if we time out or the firmware
444 	 * reports an error.
445 	 */
446 	for (i = 0; i < timeout; i += ms) {
447 		if (!(adap->flags & IS_VF)) {
448 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
449 			if (pcie_fw & F_PCIE_FW_ERR)
450 				break;
451 		}
452 
453 		if (i >= next_tx_check) {
454 			check_tx_state(adap, &tx_state[0]);
455 			next_tx_check = i + 1000;
456 		}
457 
458 		if (sleep_ok) {
459 			ms = delay[delay_idx];  /* last element may repeat */
460 			if (delay_idx < ARRAY_SIZE(delay) - 1)
461 				delay_idx++;
462 			msleep(ms);
463 		} else {
464 			mdelay(ms);
465 		}
466 
467 		v = t4_read_reg(adap, ctl_reg);
468 		if (v == X_CIM_PF_NOACCESS)
469 			continue;
470 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
471 			if (!(v & F_MBMSGVALID)) {
472 				t4_write_reg(adap, ctl_reg,
473 					     V_MBOWNER(X_MBOWNER_NONE));
474 				continue;
475 			}
476 
477 			/*
478 			 * Retrieve the command reply and release the mailbox.
479 			 */
480 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
481 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
482 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
483 
484 			res = be64_to_cpu(cmd_rpl[0]);
485 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
486 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
487 				res = V_FW_CMD_RETVAL(EIO);
488 			} else if (rpl)
489 				memcpy(rpl, cmd_rpl, size);
490 			return -G_FW_CMD_RETVAL((int)res);
491 		}
492 	}
493 
494 	/*
495 	 * We timed out waiting for a reply to our mailbox command.  Report
496 	 * the error and also check to see if the firmware reported any
497 	 * errors ...
498 	 */
499 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
500 	    *(const u8 *)cmd, mbox, pcie_fw);
501 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
502 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
503 failed:
504 	adap->flags &= ~FW_OK;
505 	ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT;
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3831 {
3832 	int8_t fec = 0;
3833 
3834 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3835 		return (unset_means_none ? FEC_NONE : 0);
3836 
3837 	if (caps & FW_PORT_CAP32_FEC_RS)
3838 		fec |= FEC_RS;
3839 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3840 		fec |= FEC_BASER_RS;
3841 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3842 		fec |= FEC_NONE;
3843 
3844 	return (fec);
3845 }
3846 
3847 /*
3848  * Note that 0 is not translated to NO_FEC.
3849  */
3850 static uint32_t fec_to_fwcap(int8_t fec)
3851 {
3852 	uint32_t caps = 0;
3853 
3854 	/* Only real FECs allowed. */
3855 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3856 
3857 	if (fec & FEC_RS)
3858 		caps |= FW_PORT_CAP32_FEC_RS;
3859 	if (fec & FEC_BASER_RS)
3860 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3861 	if (fec & FEC_NONE)
3862 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3863 
3864 	return (caps);
3865 }
3866 
3867 /**
3868  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3869  *	@phy: the PHY to setup
3870  *	@mac: the MAC to setup
3871  *	@lc: the requested link configuration
3872  *
3873  *	Set up a port's MAC and PHY according to a desired link configuration.
3874  *	- If the PHY can auto-negotiate first decide what to advertise, then
3875  *	  enable/disable auto-negotiation as desired, and reset.
3876  *	- If the PHY does not auto-negotiate just reset it.
3877  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3878  *	  otherwise do it later based on the outcome of auto-negotiation.
3879  */
3880 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3881 		  struct link_config *lc)
3882 {
3883 	struct fw_port_cmd c;
3884 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3885 	unsigned int aneg, fc, fec, speed, rcap;
3886 
3887 	fc = 0;
3888 	if (lc->requested_fc & PAUSE_RX)
3889 		fc |= FW_PORT_CAP32_FC_RX;
3890 	if (lc->requested_fc & PAUSE_TX)
3891 		fc |= FW_PORT_CAP32_FC_TX;
3892 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3893 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3894 
3895 	if (lc->requested_aneg == AUTONEG_DISABLE)
3896 		aneg = 0;
3897 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3898 		aneg = FW_PORT_CAP32_ANEG;
3899 	else
3900 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3901 
3902 	if (aneg) {
3903 		speed = lc->pcaps &
3904 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3905 	} else if (lc->requested_speed != 0)
3906 		speed = speed_to_fwcap(lc->requested_speed);
3907 	else
3908 		speed = fwcap_top_speed(lc->pcaps);
3909 
3910 	fec = 0;
3911 	if (fec_supported(speed)) {
3912 		int force_fec;
3913 
3914 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3915 			force_fec = lc->force_fec;
3916 		else
3917 			force_fec = 0;
3918 
3919 		if (lc->requested_fec == FEC_AUTO) {
3920 			if (force_fec > 0) {
3921 				/*
3922 				 * Must use FORCE_FEC even though requested FEC
3923 				 * is AUTO. Set all the FEC bits valid for the
3924 				 * speed and let the firmware pick one.
3925 				 */
3926 				fec |= FW_PORT_CAP32_FORCE_FEC;
3927 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3928 					fec |= FW_PORT_CAP32_FEC_RS;
3929 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3930 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3931 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3932 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3933 				} else {
3934 					fec |= FW_PORT_CAP32_FEC_RS;
3935 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3936 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3937 				}
3938 			} else {
3939 				/*
3940 				 * Set only 1b. Old firmwares can't deal with
3941 				 * multiple bits and new firmwares are free to
3942 				 * ignore this and try whatever FECs they want
3943 				 * because we aren't setting FORCE_FEC here.
3944 				 */
3945 				fec |= fec_to_fwcap(lc->fec_hint);
3946 				MPASS(powerof2(fec));
3947 
3948 				/*
3949 				 * Override the hint if the FEC is not valid for
3950 				 * the potential top speed.  Request the best
3951 				 * FEC at that speed instead.
3952 				 */
3953 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3954 					if (fec == FW_PORT_CAP32_FEC_BASER_RS)
3955 						fec = FW_PORT_CAP32_FEC_RS;
3956 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3957 					if (fec == FW_PORT_CAP32_FEC_RS)
3958 						fec = FW_PORT_CAP32_FEC_BASER_RS;
3959 				}
3960 			}
3961 		} else {
3962 			/*
3963 			 * User has explicitly requested some FEC(s). Set
3964 			 * FORCE_FEC unless prohibited from using it.
3965 			 */
3966 			if (force_fec != 0)
3967 				fec |= FW_PORT_CAP32_FORCE_FEC;
3968 			fec |= fec_to_fwcap(lc->requested_fec &
3969 			    M_FW_PORT_CAP32_FEC);
3970 			if (lc->requested_fec & FEC_MODULE)
3971 				fec |= fec_to_fwcap(lc->fec_hint);
3972 		}
3973 
3974 		/*
3975 		 * This is for compatibility with old firmwares. The original
3976 		 * way to request NO_FEC was to not set any of the FEC bits. New
3977 		 * firmwares understand this too.
3978 		 */
3979 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3980 			fec = 0;
3981 	}
3982 
3983 	/* Force AN on for BT cards. */
3984 	if (isset(&adap->bt_map, port))
3985 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3986 
3987 	rcap = aneg | speed | fc | fec;
3988 	if ((rcap | lc->pcaps) != lc->pcaps) {
3989 #ifdef INVARIANTS
3990 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3991 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3992 #endif
3993 		rcap &= lc->pcaps;
3994 	}
3995 	rcap |= mdi;
3996 
3997 	memset(&c, 0, sizeof(c));
3998 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3999 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4000 				     V_FW_PORT_CMD_PORTID(port));
4001 	if (adap->params.port_caps32) {
4002 		c.action_to_len16 =
4003 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4004 			FW_LEN16(c));
4005 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4006 	} else {
4007 		c.action_to_len16 =
4008 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4009 			    FW_LEN16(c));
4010 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4011 	}
4012 
4013 	lc->requested_caps = rcap;
4014 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4015 }
4016 
4017 /**
4018  *	t4_restart_aneg - restart autonegotiation
4019  *	@adap: the adapter
4020  *	@mbox: mbox to use for the FW command
4021  *	@port: the port id
4022  *
4023  *	Restarts autonegotiation for the selected port.
4024  */
4025 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4026 {
4027 	struct fw_port_cmd c;
4028 
4029 	memset(&c, 0, sizeof(c));
4030 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4031 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4032 				     V_FW_PORT_CMD_PORTID(port));
4033 	c.action_to_len16 =
4034 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4035 			    FW_LEN16(c));
4036 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4037 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4038 }
4039 
4040 struct intr_details {
4041 	u32 mask;
4042 	const char *msg;
4043 };
4044 
4045 struct intr_action {
4046 	u32 mask;
4047 	int arg;
4048 	bool (*action)(struct adapter *, int, bool);
4049 };
4050 
4051 #define NONFATAL_IF_DISABLED 1
4052 struct intr_info {
4053 	const char *name;	/* name of the INT_CAUSE register */
4054 	int cause_reg;		/* INT_CAUSE register */
4055 	int enable_reg;		/* INT_ENABLE register */
4056 	u32 fatal;		/* bits that are fatal */
4057 	int flags;		/* hints */
4058 	const struct intr_details *details;
4059 	const struct intr_action *actions;
4060 };
4061 
4062 static inline char
4063 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4064 {
4065 
4066 	if (cause & fatal)
4067 		return ('!');
4068 	if (cause & enable)
4069 		return ('*');
4070 	return ('-');
4071 }
4072 
4073 static void
4074 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4075 {
4076 	u32 enable, fatal, leftover;
4077 	const struct intr_details *details;
4078 	char alert;
4079 
4080 	enable = t4_read_reg(adap, ii->enable_reg);
4081 	if (ii->flags & NONFATAL_IF_DISABLED)
4082 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4083 	else
4084 		fatal = ii->fatal;
4085 	alert = intr_alert_char(cause, enable, fatal);
4086 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4087 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4088 
4089 	leftover = cause;
4090 	for (details = ii->details; details && details->mask != 0; details++) {
4091 		u32 msgbits = details->mask & cause;
4092 		if (msgbits == 0)
4093 			continue;
4094 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4095 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4096 		    details->msg);
4097 		leftover &= ~msgbits;
4098 	}
4099 	if (leftover != 0 && leftover != cause)
4100 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4101 }
4102 
4103 /*
4104  * Returns true for fatal error.
4105  */
4106 static bool
4107 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4108     u32 additional_cause, bool verbose)
4109 {
4110 	u32 cause, fatal;
4111 	bool rc;
4112 	const struct intr_action *action;
4113 
4114 	/*
4115 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4116 	 * bit special and we need to completely ignore the bits that are not in
4117 	 * PL_INT_ENABLE.
4118 	 */
4119 	cause = t4_read_reg(adap, ii->cause_reg);
4120 	if (ii->cause_reg == A_PL_INT_CAUSE)
4121 		cause &= t4_read_reg(adap, ii->enable_reg);
4122 	if (verbose || cause != 0)
4123 		t4_show_intr_info(adap, ii, cause);
4124 	fatal = cause & ii->fatal;
4125 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4126 		fatal &= t4_read_reg(adap, ii->enable_reg);
4127 	cause |= additional_cause;
4128 	if (cause == 0)
4129 		return (false);
4130 
4131 	rc = fatal != 0;
4132 	for (action = ii->actions; action && action->mask != 0; action++) {
4133 		if (!(action->mask & cause))
4134 			continue;
4135 		rc |= (action->action)(adap, action->arg, verbose);
4136 	}
4137 
4138 	/* clear */
4139 	t4_write_reg(adap, ii->cause_reg, cause);
4140 	(void)t4_read_reg(adap, ii->cause_reg);
4141 
4142 	return (rc);
4143 }
4144 
4145 /*
4146  * Interrupt handler for the PCIE module.
4147  */
4148 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4149 {
4150 	static const struct intr_details sysbus_intr_details[] = {
4151 		{ F_RNPP, "RXNP array parity error" },
4152 		{ F_RPCP, "RXPC array parity error" },
4153 		{ F_RCIP, "RXCIF array parity error" },
4154 		{ F_RCCP, "Rx completions control array parity error" },
4155 		{ F_RFTP, "RXFT array parity error" },
4156 		{ 0 }
4157 	};
4158 	static const struct intr_info sysbus_intr_info = {
4159 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4160 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4161 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4162 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4163 		.flags = 0,
4164 		.details = sysbus_intr_details,
4165 		.actions = NULL,
4166 	};
4167 	static const struct intr_details pcie_port_intr_details[] = {
4168 		{ F_TPCP, "TXPC array parity error" },
4169 		{ F_TNPP, "TXNP array parity error" },
4170 		{ F_TFTP, "TXFT array parity error" },
4171 		{ F_TCAP, "TXCA array parity error" },
4172 		{ F_TCIP, "TXCIF array parity error" },
4173 		{ F_RCAP, "RXCA array parity error" },
4174 		{ F_OTDD, "outbound request TLP discarded" },
4175 		{ F_RDPE, "Rx data parity error" },
4176 		{ F_TDUE, "Tx uncorrectable data error" },
4177 		{ 0 }
4178 	};
4179 	static const struct intr_info pcie_port_intr_info = {
4180 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4181 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4182 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4183 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4184 		    F_OTDD | F_RDPE | F_TDUE,
4185 		.flags = 0,
4186 		.details = pcie_port_intr_details,
4187 		.actions = NULL,
4188 	};
4189 	static const struct intr_details pcie_intr_details[] = {
4190 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4191 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4192 		{ F_MSIDATAPERR, "MSI data parity error" },
4193 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4194 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4195 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4196 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4197 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4198 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4199 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4200 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4201 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4202 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4203 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4204 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4205 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4206 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4207 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4208 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4209 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4210 		{ F_FIDPERR, "PCIe FID parity error" },
4211 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4212 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4213 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4214 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4215 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4216 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4217 		{ F_PCIESINT, "PCIe core secondary fault" },
4218 		{ F_PCIEPINT, "PCIe core primary fault" },
4219 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4220 		{ 0 }
4221 	};
4222 	static const struct intr_details t5_pcie_intr_details[] = {
4223 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4224 		{ F_NONFATALERR, "PCIe non-fatal error" },
4225 		{ F_READRSPERR, "Outbound read error" },
4226 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4227 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4228 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4229 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4230 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4231 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4232 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4233 		{ F_VFIDPERR, "VFID SRAM parity error" },
4234 		{ F_FIDPERR, "FID SRAM parity error" },
4235 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4236 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4237 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4238 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4239 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4240 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4241 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4242 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4243 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4244 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4245 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4246 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4247 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4248 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4249 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4250 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4251 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4252 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4253 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4254 		{ 0 }
4255 	};
4256 	struct intr_info pcie_intr_info = {
4257 		.name = "PCIE_INT_CAUSE",
4258 		.cause_reg = A_PCIE_INT_CAUSE,
4259 		.enable_reg = A_PCIE_INT_ENABLE,
4260 		.fatal = 0xffffffff,
4261 		.flags = NONFATAL_IF_DISABLED,
4262 		.details = NULL,
4263 		.actions = NULL,
4264 	};
4265 	bool fatal = false;
4266 
4267 	if (is_t4(adap)) {
4268 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4269 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4270 
4271 		pcie_intr_info.details = pcie_intr_details;
4272 	} else {
4273 		pcie_intr_info.details = t5_pcie_intr_details;
4274 	}
4275 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4276 
4277 	return (fatal);
4278 }
4279 
4280 /*
4281  * TP interrupt handler.
4282  */
4283 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4284 {
4285 	static const struct intr_details tp_intr_details[] = {
4286 		{ 0x3fffffff, "TP parity error" },
4287 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4288 		{ 0 }
4289 	};
4290 	static const struct intr_info tp_intr_info = {
4291 		.name = "TP_INT_CAUSE",
4292 		.cause_reg = A_TP_INT_CAUSE,
4293 		.enable_reg = A_TP_INT_ENABLE,
4294 		.fatal = 0x7fffffff,
4295 		.flags = NONFATAL_IF_DISABLED,
4296 		.details = tp_intr_details,
4297 		.actions = NULL,
4298 	};
4299 
4300 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4301 }
4302 
4303 /*
4304  * SGE interrupt handler.
4305  */
4306 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4307 {
4308 	static const struct intr_info sge_int1_info = {
4309 		.name = "SGE_INT_CAUSE1",
4310 		.cause_reg = A_SGE_INT_CAUSE1,
4311 		.enable_reg = A_SGE_INT_ENABLE1,
4312 		.fatal = 0xffffffff,
4313 		.flags = NONFATAL_IF_DISABLED,
4314 		.details = NULL,
4315 		.actions = NULL,
4316 	};
4317 	static const struct intr_info sge_int2_info = {
4318 		.name = "SGE_INT_CAUSE2",
4319 		.cause_reg = A_SGE_INT_CAUSE2,
4320 		.enable_reg = A_SGE_INT_ENABLE2,
4321 		.fatal = 0xffffffff,
4322 		.flags = NONFATAL_IF_DISABLED,
4323 		.details = NULL,
4324 		.actions = NULL,
4325 	};
4326 	static const struct intr_details sge_int3_details[] = {
4327 		{ F_ERR_FLM_DBP,
4328 			"DBP pointer delivery for invalid context or QID" },
4329 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4330 			"Invalid QID or header request by IDMA" },
4331 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4332 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4333 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4334 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4335 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4336 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4337 			"SGE GTS with timer 0-5 for IQID > 1023" },
4338 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4339 			"SGE received CPL exceeding IQE size" },
4340 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4341 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4342 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4343 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4344 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4345 		  "SGE IQID > 1023 received CPL for FL" },
4346 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4347 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4348 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4349 		{ F_ERR_ING_CTXT_PRIO,
4350 			"Ingress context manager priority user error" },
4351 		{ F_ERR_EGR_CTXT_PRIO,
4352 			"Egress context manager priority user error" },
4353 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4354 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4355 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4356 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4357 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4358 		{ 0x0000000f, "SGE context access for invalid queue" },
4359 		{ 0 }
4360 	};
4361 	static const struct intr_details t6_sge_int3_details[] = {
4362 		{ F_ERR_FLM_DBP,
4363 			"DBP pointer delivery for invalid context or QID" },
4364 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4365 			"Invalid QID or header request by IDMA" },
4366 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4367 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4368 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4369 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4370 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4371 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4372 			"SGE GTS with timer 0-5 for IQID > 1023" },
4373 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4374 			"SGE received CPL exceeding IQE size" },
4375 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4376 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4377 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4378 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4379 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4380 			"SGE IQID > 1023 received CPL for FL" },
4381 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4382 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4383 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4384 		{ F_ERR_ING_CTXT_PRIO,
4385 			"Ingress context manager priority user error" },
4386 		{ F_ERR_EGR_CTXT_PRIO,
4387 			"Egress context manager priority user error" },
4388 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4389 		{ F_FATAL_WRE_LEN,
4390 			"SGE WRE packet less than advertized length" },
4391 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4392 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4393 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4394 		{ 0x0000000f, "SGE context access for invalid queue" },
4395 		{ 0 }
4396 	};
4397 	struct intr_info sge_int3_info = {
4398 		.name = "SGE_INT_CAUSE3",
4399 		.cause_reg = A_SGE_INT_CAUSE3,
4400 		.enable_reg = A_SGE_INT_ENABLE3,
4401 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4402 		.flags = 0,
4403 		.details = NULL,
4404 		.actions = NULL,
4405 	};
4406 	static const struct intr_info sge_int4_info = {
4407 		.name = "SGE_INT_CAUSE4",
4408 		.cause_reg = A_SGE_INT_CAUSE4,
4409 		.enable_reg = A_SGE_INT_ENABLE4,
4410 		.fatal = 0,
4411 		.flags = 0,
4412 		.details = NULL,
4413 		.actions = NULL,
4414 	};
4415 	static const struct intr_info sge_int5_info = {
4416 		.name = "SGE_INT_CAUSE5",
4417 		.cause_reg = A_SGE_INT_CAUSE5,
4418 		.enable_reg = A_SGE_INT_ENABLE5,
4419 		.fatal = 0xffffffff,
4420 		.flags = NONFATAL_IF_DISABLED,
4421 		.details = NULL,
4422 		.actions = NULL,
4423 	};
4424 	static const struct intr_info sge_int6_info = {
4425 		.name = "SGE_INT_CAUSE6",
4426 		.cause_reg = A_SGE_INT_CAUSE6,
4427 		.enable_reg = A_SGE_INT_ENABLE6,
4428 		.fatal = 0,
4429 		.flags = 0,
4430 		.details = NULL,
4431 		.actions = NULL,
4432 	};
4433 
4434 	bool fatal;
4435 	u32 v;
4436 
4437 	if (chip_id(adap) <= CHELSIO_T5) {
4438 		sge_int3_info.details = sge_int3_details;
4439 	} else {
4440 		sge_int3_info.details = t6_sge_int3_details;
4441 	}
4442 
4443 	fatal = false;
4444 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4445 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4446 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4447 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4448 	if (chip_id(adap) >= CHELSIO_T5)
4449 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4450 	if (chip_id(adap) >= CHELSIO_T6)
4451 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4452 
4453 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4454 	if (v & F_ERROR_QID_VALID) {
4455 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4456 		if (v & F_UNCAPTURED_ERROR)
4457 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4458 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4459 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4460 	}
4461 
4462 	return (fatal);
4463 }
4464 
4465 /*
4466  * CIM interrupt handler.
4467  */
4468 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4469 {
4470 	static const struct intr_details cim_host_intr_details[] = {
4471 		/* T6+ */
4472 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4473 
4474 		/* T5+ */
4475 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4476 		{ F_PLCIM_MSTRSPDATAPARERR,
4477 			"PL2CIM master response data parity error" },
4478 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4479 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4480 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4481 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4482 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4483 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4484 
4485 		/* T4+ */
4486 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4487 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4488 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4489 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4490 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4491 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4492 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4493 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4494 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4495 			"CIM IBQ PCIe/SGE_HI parity error" },
4496 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4497 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4498 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4499 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4500 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4501 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4502 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4503 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4504 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4505 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4506 		{ 0}
4507 	};
4508 	static const struct intr_info cim_host_intr_info = {
4509 		.name = "CIM_HOST_INT_CAUSE",
4510 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4511 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4512 		.fatal = 0x007fffe6,
4513 		.flags = NONFATAL_IF_DISABLED,
4514 		.details = cim_host_intr_details,
4515 		.actions = NULL,
4516 	};
4517 	static const struct intr_details cim_host_upacc_intr_details[] = {
4518 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4519 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4520 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4521 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4522 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4523 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4524 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4525 		{ F_SGLWRPLINT,
4526 			"CIM single write to PL space with illegal BEs" },
4527 		{ F_SGLRDPLINT,
4528 			"CIM single read from PL space with illegal BEs" },
4529 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4530 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4531 		{ F_SGLWRCTLINT,
4532 			"CIM single write to CTL space with illegal BEs" },
4533 		{ F_SGLRDCTLINT,
4534 			"CIM single read from CTL space with illegal BEs" },
4535 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4536 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4537 		{ F_SGLWREEPROMINT,
4538 			"CIM single write to EEPROM space with illegal BEs" },
4539 		{ F_SGLRDEEPROMINT,
4540 			"CIM single read from EEPROM space with illegal BEs" },
4541 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4542 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4543 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4544 		{ F_SGLRDFLASHINT,
4545 			"CIM single read from flash space with illegal BEs" },
4546 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4547 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4548 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4549 		{ F_SGLRDBOOTINT,
4550 			"CIM single read from boot space with illegal BEs" },
4551 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4552 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4553 		{ F_ILLRDINT, "CIM illegal read" },
4554 		{ F_ILLWRINT, "CIM illegal write" },
4555 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4556 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4557 		{0}
4558 	};
4559 	static const struct intr_info cim_host_upacc_intr_info = {
4560 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4561 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4562 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4563 		.fatal = 0x3fffeeff,
4564 		.flags = NONFATAL_IF_DISABLED,
4565 		.details = cim_host_upacc_intr_details,
4566 		.actions = NULL,
4567 	};
4568 	static const struct intr_info cim_pf_host_intr_info = {
4569 		.name = "CIM_PF_HOST_INT_CAUSE",
4570 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4571 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4572 		.fatal = 0,
4573 		.flags = 0,
4574 		.details = NULL,
4575 		.actions = NULL,
4576 	};
4577 	u32 val, fw_err;
4578 	bool fatal;
4579 
4580 	/*
4581 	 * When the Firmware detects an internal error which normally wouldn't
4582 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4583 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4584 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4585 	 * interrupt.
4586 	 */
4587 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4588 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4589 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4590 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4591 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4592 	}
4593 
4594 	fatal = (fw_err & F_PCIE_FW_ERR) != 0;
4595 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4596 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4597 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4598 	if (fatal)
4599 		t4_os_cim_err(adap);
4600 
4601 	return (fatal);
4602 }
4603 
4604 /*
4605  * ULP RX interrupt handler.
4606  */
4607 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4608 {
4609 	static const struct intr_details ulprx_intr_details[] = {
4610 		/* T5+ */
4611 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4612 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4613 
4614 		/* T4+ */
4615 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4616 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4617 		{ 0x007fffff, "ULPRX parity error" },
4618 		{ 0 }
4619 	};
4620 	static const struct intr_info ulprx_intr_info = {
4621 		.name = "ULP_RX_INT_CAUSE",
4622 		.cause_reg = A_ULP_RX_INT_CAUSE,
4623 		.enable_reg = A_ULP_RX_INT_ENABLE,
4624 		.fatal = 0x07ffffff,
4625 		.flags = NONFATAL_IF_DISABLED,
4626 		.details = ulprx_intr_details,
4627 		.actions = NULL,
4628 	};
4629 	static const struct intr_info ulprx_intr2_info = {
4630 		.name = "ULP_RX_INT_CAUSE_2",
4631 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4632 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4633 		.fatal = 0,
4634 		.flags = 0,
4635 		.details = NULL,
4636 		.actions = NULL,
4637 	};
4638 	bool fatal = false;
4639 
4640 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4641 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4642 
4643 	return (fatal);
4644 }
4645 
4646 /*
4647  * ULP TX interrupt handler.
4648  */
4649 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4650 {
4651 	static const struct intr_details ulptx_intr_details[] = {
4652 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4653 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4654 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4655 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4656 		{ 0x0fffffff, "ULPTX parity error" },
4657 		{ 0 }
4658 	};
4659 	static const struct intr_info ulptx_intr_info = {
4660 		.name = "ULP_TX_INT_CAUSE",
4661 		.cause_reg = A_ULP_TX_INT_CAUSE,
4662 		.enable_reg = A_ULP_TX_INT_ENABLE,
4663 		.fatal = 0x0fffffff,
4664 		.flags = NONFATAL_IF_DISABLED,
4665 		.details = ulptx_intr_details,
4666 		.actions = NULL,
4667 	};
4668 	static const struct intr_info ulptx_intr2_info = {
4669 		.name = "ULP_TX_INT_CAUSE_2",
4670 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4671 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4672 		.fatal = 0xf0,
4673 		.flags = NONFATAL_IF_DISABLED,
4674 		.details = NULL,
4675 		.actions = NULL,
4676 	};
4677 	bool fatal = false;
4678 
4679 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4680 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4681 
4682 	return (fatal);
4683 }
4684 
4685 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4686 {
4687 	int i;
4688 	u32 data[17];
4689 
4690 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4691 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4692 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4693 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4694 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4695 	}
4696 
4697 	return (false);
4698 }
4699 
4700 /*
4701  * PM TX interrupt handler.
4702  */
4703 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4704 {
4705 	static const struct intr_action pmtx_intr_actions[] = {
4706 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4707 		{ 0 },
4708 	};
4709 	static const struct intr_details pmtx_intr_details[] = {
4710 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4711 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4712 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4713 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4714 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4715 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4716 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4717 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4718 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4719 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4720 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4721 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4722 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4723 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4724 		{ 0 }
4725 	};
4726 	static const struct intr_info pmtx_intr_info = {
4727 		.name = "PM_TX_INT_CAUSE",
4728 		.cause_reg = A_PM_TX_INT_CAUSE,
4729 		.enable_reg = A_PM_TX_INT_ENABLE,
4730 		.fatal = 0xffffffff,
4731 		.flags = 0,
4732 		.details = pmtx_intr_details,
4733 		.actions = pmtx_intr_actions,
4734 	};
4735 
4736 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4737 }
4738 
4739 /*
4740  * PM RX interrupt handler.
4741  */
4742 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4743 {
4744 	static const struct intr_details pmrx_intr_details[] = {
4745 		/* T6+ */
4746 		{ 0x18000000, "PMRX ospi overflow" },
4747 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4748 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4749 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4750 		{ F_SDC_ERR, "PMRX SDC error" },
4751 
4752 		/* T4+ */
4753 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4754 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4755 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4756 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4757 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4758 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4759 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4760 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4761 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4762 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4763 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4764 		{ 0 }
4765 	};
4766 	static const struct intr_info pmrx_intr_info = {
4767 		.name = "PM_RX_INT_CAUSE",
4768 		.cause_reg = A_PM_RX_INT_CAUSE,
4769 		.enable_reg = A_PM_RX_INT_ENABLE,
4770 		.fatal = 0x1fffffff,
4771 		.flags = NONFATAL_IF_DISABLED,
4772 		.details = pmrx_intr_details,
4773 		.actions = NULL,
4774 	};
4775 
4776 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4777 }
4778 
4779 /*
4780  * CPL switch interrupt handler.
4781  */
4782 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4783 {
4784 	static const struct intr_details cplsw_intr_details[] = {
4785 		/* T5+ */
4786 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4787 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4788 
4789 		/* T4+ */
4790 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4791 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4792 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4793 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4794 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4795 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4796 		{ 0 }
4797 	};
4798 	static const struct intr_info cplsw_intr_info = {
4799 		.name = "CPL_INTR_CAUSE",
4800 		.cause_reg = A_CPL_INTR_CAUSE,
4801 		.enable_reg = A_CPL_INTR_ENABLE,
4802 		.fatal = 0xff,
4803 		.flags = NONFATAL_IF_DISABLED,
4804 		.details = cplsw_intr_details,
4805 		.actions = NULL,
4806 	};
4807 
4808 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4809 }
4810 
4811 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4812 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4813 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4814     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4815     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4816     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4817 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4818     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4819     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4820 
4821 /*
4822  * LE interrupt handler.
4823  */
4824 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4825 {
4826 	static const struct intr_details le_intr_details[] = {
4827 		{ F_REQQPARERR, "LE request queue parity error" },
4828 		{ F_UNKNOWNCMD, "LE unknown command" },
4829 		{ F_ACTRGNFULL, "LE active region full" },
4830 		{ F_PARITYERR, "LE parity error" },
4831 		{ F_LIPMISS, "LE LIP miss" },
4832 		{ F_LIP0, "LE 0 LIP error" },
4833 		{ 0 }
4834 	};
4835 	static const struct intr_details t6_le_intr_details[] = {
4836 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4837 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4838 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4839 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4840 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4841 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4842 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4843 		{ F_T6_ACTRGNFULL, "LE active region full" },
4844 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4845 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4846 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4847 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4848 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4849 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4850 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4851 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4852 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4853 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4854 		{ 0 }
4855 	};
4856 	struct intr_info le_intr_info = {
4857 		.name = "LE_DB_INT_CAUSE",
4858 		.cause_reg = A_LE_DB_INT_CAUSE,
4859 		.enable_reg = A_LE_DB_INT_ENABLE,
4860 		.fatal = 0,
4861 		.flags = NONFATAL_IF_DISABLED,
4862 		.details = NULL,
4863 		.actions = NULL,
4864 	};
4865 
4866 	if (chip_id(adap) <= CHELSIO_T5) {
4867 		le_intr_info.details = le_intr_details;
4868 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4869 	} else {
4870 		le_intr_info.details = t6_le_intr_details;
4871 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4872 	}
4873 
4874 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4875 }
4876 
4877 /*
4878  * MPS interrupt handler.
4879  */
4880 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4881 {
4882 	static const struct intr_details mps_rx_perr_intr_details[] = {
4883 		{ 0xffffffff, "MPS Rx parity error" },
4884 		{ 0 }
4885 	};
4886 	static const struct intr_info mps_rx_perr_intr_info = {
4887 		.name = "MPS_RX_PERR_INT_CAUSE",
4888 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4889 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4890 		.fatal = 0xffffffff,
4891 		.flags = NONFATAL_IF_DISABLED,
4892 		.details = mps_rx_perr_intr_details,
4893 		.actions = NULL,
4894 	};
4895 	static const struct intr_details mps_tx_intr_details[] = {
4896 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4897 		{ F_FRMERR, "MPS Tx framing error" },
4898 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4899 		{ F_BUBBLE, "MPS Tx underflow" },
4900 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4901 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4902 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4903 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4904 		{ 0 }
4905 	};
4906 	static const struct intr_info mps_tx_intr_info = {
4907 		.name = "MPS_TX_INT_CAUSE",
4908 		.cause_reg = A_MPS_TX_INT_CAUSE,
4909 		.enable_reg = A_MPS_TX_INT_ENABLE,
4910 		.fatal = 0x1ffff,
4911 		.flags = NONFATAL_IF_DISABLED,
4912 		.details = mps_tx_intr_details,
4913 		.actions = NULL,
4914 	};
4915 	static const struct intr_details mps_trc_intr_details[] = {
4916 		{ F_MISCPERR, "MPS TRC misc parity error" },
4917 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4918 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4919 		{ 0 }
4920 	};
4921 	static const struct intr_info mps_trc_intr_info = {
4922 		.name = "MPS_TRC_INT_CAUSE",
4923 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4924 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4925 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4926 		.flags = 0,
4927 		.details = mps_trc_intr_details,
4928 		.actions = NULL,
4929 	};
4930 	static const struct intr_details mps_stat_sram_intr_details[] = {
4931 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4932 		{ 0 }
4933 	};
4934 	static const struct intr_info mps_stat_sram_intr_info = {
4935 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4936 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4937 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4938 		.fatal = 0x1fffffff,
4939 		.flags = NONFATAL_IF_DISABLED,
4940 		.details = mps_stat_sram_intr_details,
4941 		.actions = NULL,
4942 	};
4943 	static const struct intr_details mps_stat_tx_intr_details[] = {
4944 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4945 		{ 0 }
4946 	};
4947 	static const struct intr_info mps_stat_tx_intr_info = {
4948 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4949 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4950 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4951 		.fatal =  0xffffff,
4952 		.flags = NONFATAL_IF_DISABLED,
4953 		.details = mps_stat_tx_intr_details,
4954 		.actions = NULL,
4955 	};
4956 	static const struct intr_details mps_stat_rx_intr_details[] = {
4957 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4958 		{ 0 }
4959 	};
4960 	static const struct intr_info mps_stat_rx_intr_info = {
4961 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4962 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4963 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4964 		.fatal =  0xffffff,
4965 		.flags = 0,
4966 		.details = mps_stat_rx_intr_details,
4967 		.actions = NULL,
4968 	};
4969 	static const struct intr_details mps_cls_intr_details[] = {
4970 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4971 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4972 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4973 		{ 0 }
4974 	};
4975 	static const struct intr_info mps_cls_intr_info = {
4976 		.name = "MPS_CLS_INT_CAUSE",
4977 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4978 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4979 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4980 		.flags = 0,
4981 		.details = mps_cls_intr_details,
4982 		.actions = NULL,
4983 	};
4984 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4985 		{ 0xff, "MPS statistics SRAM1 parity error" },
4986 		{ 0 }
4987 	};
4988 	static const struct intr_info mps_stat_sram1_intr_info = {
4989 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4990 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4991 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4992 		.fatal = 0xff,
4993 		.flags = 0,
4994 		.details = mps_stat_sram1_intr_details,
4995 		.actions = NULL,
4996 	};
4997 
4998 	bool fatal;
4999 
5000 	fatal = false;
5001 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
5002 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
5003 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
5004 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
5005 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
5006 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
5007 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
5008 	if (chip_id(adap) > CHELSIO_T4) {
5009 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
5010 		    verbose);
5011 	}
5012 
5013 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5014 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5015 
5016 	return (fatal);
5017 
5018 }
5019 
5020 /*
5021  * EDC/MC interrupt handler.
5022  */
5023 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5024 {
5025 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5026 	unsigned int count_reg, v;
5027 	static const struct intr_details mem_intr_details[] = {
5028 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5029 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5030 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5031 		{ 0 }
5032 	};
5033 	struct intr_info ii = {
5034 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5035 		.details = mem_intr_details,
5036 		.flags = 0,
5037 		.actions = NULL,
5038 	};
5039 	bool fatal;
5040 
5041 	switch (idx) {
5042 	case MEM_EDC0:
5043 		ii.name = "EDC0_INT_CAUSE";
5044 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5045 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5046 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5047 		break;
5048 	case MEM_EDC1:
5049 		ii.name = "EDC1_INT_CAUSE";
5050 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5051 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5052 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5053 		break;
5054 	case MEM_MC0:
5055 		ii.name = "MC0_INT_CAUSE";
5056 		if (is_t4(adap)) {
5057 			ii.cause_reg = A_MC_INT_CAUSE;
5058 			ii.enable_reg = A_MC_INT_ENABLE;
5059 			count_reg = A_MC_ECC_STATUS;
5060 		} else {
5061 			ii.cause_reg = A_MC_P_INT_CAUSE;
5062 			ii.enable_reg = A_MC_P_INT_ENABLE;
5063 			count_reg = A_MC_P_ECC_STATUS;
5064 		}
5065 		break;
5066 	case MEM_MC1:
5067 		ii.name = "MC1_INT_CAUSE";
5068 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5069 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5070 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5071 		break;
5072 	}
5073 
5074 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5075 
5076 	v = t4_read_reg(adap, count_reg);
5077 	if (v != 0) {
5078 		if (G_ECC_UECNT(v) != 0) {
5079 			CH_ALERT(adap,
5080 			    "%s: %u uncorrectable ECC data error(s)\n",
5081 			    name[idx], G_ECC_UECNT(v));
5082 		}
5083 		if (G_ECC_CECNT(v) != 0) {
5084 			if (idx <= MEM_EDC1)
5085 				t4_edc_err_read(adap, idx);
5086 			CH_WARN_RATELIMIT(adap,
5087 			    "%s: %u correctable ECC data error(s)\n",
5088 			    name[idx], G_ECC_CECNT(v));
5089 		}
5090 		t4_write_reg(adap, count_reg, 0xffffffff);
5091 	}
5092 
5093 	return (fatal);
5094 }
5095 
5096 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5097 {
5098 	u32 v;
5099 
5100 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5101 	CH_ALERT(adap,
5102 	    "MA address wrap-around error by client %u to address %#x\n",
5103 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5104 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5105 
5106 	return (false);
5107 }
5108 
5109 
5110 /*
5111  * MA interrupt handler.
5112  */
5113 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5114 {
5115 	static const struct intr_action ma_intr_actions[] = {
5116 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5117 		{ 0 },
5118 	};
5119 	static const struct intr_info ma_intr_info = {
5120 		.name = "MA_INT_CAUSE",
5121 		.cause_reg = A_MA_INT_CAUSE,
5122 		.enable_reg = A_MA_INT_ENABLE,
5123 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5124 		.flags = NONFATAL_IF_DISABLED,
5125 		.details = NULL,
5126 		.actions = ma_intr_actions,
5127 	};
5128 	static const struct intr_info ma_perr_status1 = {
5129 		.name = "MA_PARITY_ERROR_STATUS1",
5130 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5131 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5132 		.fatal = 0xffffffff,
5133 		.flags = 0,
5134 		.details = NULL,
5135 		.actions = NULL,
5136 	};
5137 	static const struct intr_info ma_perr_status2 = {
5138 		.name = "MA_PARITY_ERROR_STATUS2",
5139 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5140 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5141 		.fatal = 0xffffffff,
5142 		.flags = 0,
5143 		.details = NULL,
5144 		.actions = NULL,
5145 	};
5146 	bool fatal;
5147 
5148 	fatal = false;
5149 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5150 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5151 	if (chip_id(adap) > CHELSIO_T4)
5152 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5153 
5154 	return (fatal);
5155 }
5156 
5157 /*
5158  * SMB interrupt handler.
5159  */
5160 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5161 {
5162 	static const struct intr_details smb_intr_details[] = {
5163 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5164 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5165 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5166 		{ 0 }
5167 	};
5168 	static const struct intr_info smb_intr_info = {
5169 		.name = "SMB_INT_CAUSE",
5170 		.cause_reg = A_SMB_INT_CAUSE,
5171 		.enable_reg = A_SMB_INT_ENABLE,
5172 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5173 		.flags = 0,
5174 		.details = smb_intr_details,
5175 		.actions = NULL,
5176 	};
5177 
5178 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5179 }
5180 
5181 /*
5182  * NC-SI interrupt handler.
5183  */
5184 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5185 {
5186 	static const struct intr_details ncsi_intr_details[] = {
5187 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5188 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5189 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5190 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5191 		{ 0 }
5192 	};
5193 	static const struct intr_info ncsi_intr_info = {
5194 		.name = "NCSI_INT_CAUSE",
5195 		.cause_reg = A_NCSI_INT_CAUSE,
5196 		.enable_reg = A_NCSI_INT_ENABLE,
5197 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5198 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5199 		.flags = 0,
5200 		.details = ncsi_intr_details,
5201 		.actions = NULL,
5202 	};
5203 
5204 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5205 }
5206 
5207 /*
5208  * MAC interrupt handler.
5209  */
5210 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5211 {
5212 	static const struct intr_details mac_intr_details[] = {
5213 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5214 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5215 		{ 0 }
5216 	};
5217 	char name[32];
5218 	struct intr_info ii;
5219 	bool fatal = false;
5220 
5221 	if (is_t4(adap)) {
5222 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5223 		ii.name = &name[0];
5224 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5225 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5226 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5227 		ii.flags = 0;
5228 		ii.details = mac_intr_details;
5229 		ii.actions = NULL;
5230 	} else {
5231 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5232 		ii.name = &name[0];
5233 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5234 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5235 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5236 		ii.flags = 0;
5237 		ii.details = mac_intr_details;
5238 		ii.actions = NULL;
5239 	}
5240 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5241 
5242 	if (chip_id(adap) >= CHELSIO_T5) {
5243 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5244 		ii.name = &name[0];
5245 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5246 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5247 		ii.fatal = 0;
5248 		ii.flags = 0;
5249 		ii.details = NULL;
5250 		ii.actions = NULL;
5251 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5252 	}
5253 
5254 	if (chip_id(adap) >= CHELSIO_T6) {
5255 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5256 		ii.name = &name[0];
5257 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5258 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5259 		ii.fatal = 0;
5260 		ii.flags = 0;
5261 		ii.details = NULL;
5262 		ii.actions = NULL;
5263 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5264 	}
5265 
5266 	return (fatal);
5267 }
5268 
5269 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5270 {
5271 	static const struct intr_details plpl_intr_details[] = {
5272 		{ F_FATALPERR, "Fatal parity error" },
5273 		{ F_PERRVFID, "VFID_MAP parity error" },
5274 		{ 0 }
5275 	};
5276 	static const struct intr_info plpl_intr_info = {
5277 		.name = "PL_PL_INT_CAUSE",
5278 		.cause_reg = A_PL_PL_INT_CAUSE,
5279 		.enable_reg = A_PL_PL_INT_ENABLE,
5280 		.fatal = F_FATALPERR | F_PERRVFID,
5281 		.flags = NONFATAL_IF_DISABLED,
5282 		.details = plpl_intr_details,
5283 		.actions = NULL,
5284 	};
5285 
5286 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5287 }
5288 
5289 /**
5290  *	t4_slow_intr_handler - control path interrupt handler
5291  *	@adap: the adapter
5292  *	@verbose: increased verbosity, for debug
5293  *
5294  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5295  *	The designation 'slow' is because it involves register reads, while
5296  *	data interrupts typically don't involve any MMIOs.
5297  */
5298 bool t4_slow_intr_handler(struct adapter *adap, bool verbose)
5299 {
5300 	static const struct intr_details pl_intr_details[] = {
5301 		{ F_MC1, "MC1" },
5302 		{ F_UART, "UART" },
5303 		{ F_ULP_TX, "ULP TX" },
5304 		{ F_SGE, "SGE" },
5305 		{ F_HMA, "HMA" },
5306 		{ F_CPL_SWITCH, "CPL Switch" },
5307 		{ F_ULP_RX, "ULP RX" },
5308 		{ F_PM_RX, "PM RX" },
5309 		{ F_PM_TX, "PM TX" },
5310 		{ F_MA, "MA" },
5311 		{ F_TP, "TP" },
5312 		{ F_LE, "LE" },
5313 		{ F_EDC1, "EDC1" },
5314 		{ F_EDC0, "EDC0" },
5315 		{ F_MC, "MC0" },
5316 		{ F_PCIE, "PCIE" },
5317 		{ F_PMU, "PMU" },
5318 		{ F_MAC3, "MAC3" },
5319 		{ F_MAC2, "MAC2" },
5320 		{ F_MAC1, "MAC1" },
5321 		{ F_MAC0, "MAC0" },
5322 		{ F_SMB, "SMB" },
5323 		{ F_SF, "SF" },
5324 		{ F_PL, "PL" },
5325 		{ F_NCSI, "NC-SI" },
5326 		{ F_MPS, "MPS" },
5327 		{ F_MI, "MI" },
5328 		{ F_DBG, "DBG" },
5329 		{ F_I2CM, "I2CM" },
5330 		{ F_CIM, "CIM" },
5331 		{ 0 }
5332 	};
5333 	static const struct intr_info pl_perr_cause = {
5334 		.name = "PL_PERR_CAUSE",
5335 		.cause_reg = A_PL_PERR_CAUSE,
5336 		.enable_reg = A_PL_PERR_ENABLE,
5337 		.fatal = 0xffffffff,
5338 		.flags = 0,
5339 		.details = pl_intr_details,
5340 		.actions = NULL,
5341 	};
5342 	static const struct intr_action pl_intr_action[] = {
5343 		{ F_MC1, MEM_MC1, mem_intr_handler },
5344 		{ F_ULP_TX, -1, ulptx_intr_handler },
5345 		{ F_SGE, -1, sge_intr_handler },
5346 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5347 		{ F_ULP_RX, -1, ulprx_intr_handler },
5348 		{ F_PM_RX, -1, pmrx_intr_handler},
5349 		{ F_PM_TX, -1, pmtx_intr_handler},
5350 		{ F_MA, -1, ma_intr_handler },
5351 		{ F_TP, -1, tp_intr_handler },
5352 		{ F_LE, -1, le_intr_handler },
5353 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5354 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5355 		{ F_MC0, MEM_MC0, mem_intr_handler },
5356 		{ F_PCIE, -1, pcie_intr_handler },
5357 		{ F_MAC3, 3, mac_intr_handler},
5358 		{ F_MAC2, 2, mac_intr_handler},
5359 		{ F_MAC1, 1, mac_intr_handler},
5360 		{ F_MAC0, 0, mac_intr_handler},
5361 		{ F_SMB, -1, smb_intr_handler},
5362 		{ F_PL, -1, plpl_intr_handler },
5363 		{ F_NCSI, -1, ncsi_intr_handler},
5364 		{ F_MPS, -1, mps_intr_handler },
5365 		{ F_CIM, -1, cim_intr_handler },
5366 		{ 0 }
5367 	};
5368 	static const struct intr_info pl_intr_info = {
5369 		.name = "PL_INT_CAUSE",
5370 		.cause_reg = A_PL_INT_CAUSE,
5371 		.enable_reg = A_PL_INT_ENABLE,
5372 		.fatal = 0,
5373 		.flags = 0,
5374 		.details = pl_intr_details,
5375 		.actions = pl_intr_action,
5376 	};
5377 	u32 perr;
5378 
5379 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5380 	if (verbose || perr != 0) {
5381 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5382 		if (perr != 0)
5383 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5384 		if (verbose)
5385 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5386 	}
5387 
5388 	return (t4_handle_intr(adap, &pl_intr_info, perr, verbose));
5389 }
5390 
5391 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5392 
5393 /**
5394  *	t4_intr_enable - enable interrupts
5395  *	@adapter: the adapter whose interrupts should be enabled
5396  *
5397  *	Enable PF-specific interrupts for the calling function and the top-level
5398  *	interrupt concentrator for global interrupts.  Interrupts are already
5399  *	enabled at each module,	here we just enable the roots of the interrupt
5400  *	hierarchies.
5401  *
5402  *	Note: this function should be called only when the driver manages
5403  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5404  *	function at a time should be doing this.
5405  */
5406 void t4_intr_enable(struct adapter *adap)
5407 {
5408 	u32 val = 0;
5409 
5410 	if (chip_id(adap) <= CHELSIO_T5)
5411 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5412 	else
5413 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5414 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5415 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5416 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5417 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5418 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5419 	    F_EGRESS_SIZE_ERR;
5420 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5421 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5422 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5423 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5424 }
5425 
5426 /**
5427  *	t4_intr_disable - disable interrupts
5428  *	@adap: the adapter whose interrupts should be disabled
5429  *
5430  *	Disable interrupts.  We only disable the top-level interrupt
5431  *	concentrators.  The caller must be a PCI function managing global
5432  *	interrupts.
5433  */
5434 void t4_intr_disable(struct adapter *adap)
5435 {
5436 
5437 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5438 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5439 }
5440 
5441 /**
5442  *	t4_intr_clear - clear all interrupts
5443  *	@adap: the adapter whose interrupts should be cleared
5444  *
5445  *	Clears all interrupts.  The caller must be a PCI function managing
5446  *	global interrupts.
5447  */
5448 void t4_intr_clear(struct adapter *adap)
5449 {
5450 	static const u32 cause_reg[] = {
5451 		A_CIM_HOST_INT_CAUSE,
5452 		A_CIM_HOST_UPACC_INT_CAUSE,
5453 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5454 		A_CPL_INTR_CAUSE,
5455 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5456 		A_LE_DB_INT_CAUSE,
5457 		A_MA_INT_WRAP_STATUS,
5458 		A_MA_PARITY_ERROR_STATUS1,
5459 		A_MA_INT_CAUSE,
5460 		A_MPS_CLS_INT_CAUSE,
5461 		A_MPS_RX_PERR_INT_CAUSE,
5462 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5463 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5464 		A_MPS_TRC_INT_CAUSE,
5465 		A_MPS_TX_INT_CAUSE,
5466 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5467 		A_NCSI_INT_CAUSE,
5468 		A_PCIE_INT_CAUSE,
5469 		A_PCIE_NONFAT_ERR,
5470 		A_PL_PL_INT_CAUSE,
5471 		A_PM_RX_INT_CAUSE,
5472 		A_PM_TX_INT_CAUSE,
5473 		A_SGE_INT_CAUSE1,
5474 		A_SGE_INT_CAUSE2,
5475 		A_SGE_INT_CAUSE3,
5476 		A_SGE_INT_CAUSE4,
5477 		A_SMB_INT_CAUSE,
5478 		A_TP_INT_CAUSE,
5479 		A_ULP_RX_INT_CAUSE,
5480 		A_ULP_RX_INT_CAUSE_2,
5481 		A_ULP_TX_INT_CAUSE,
5482 		A_ULP_TX_INT_CAUSE_2,
5483 
5484 		MYPF_REG(A_PL_PF_INT_CAUSE),
5485 	};
5486 	int i;
5487 	const int nchan = adap->chip_params->nchan;
5488 
5489 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5490 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5491 
5492 	if (is_t4(adap)) {
5493 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5494 		    0xffffffff);
5495 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5496 		    0xffffffff);
5497 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5498 		for (i = 0; i < nchan; i++) {
5499 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5500 			    0xffffffff);
5501 		}
5502 	}
5503 	if (chip_id(adap) >= CHELSIO_T5) {
5504 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5505 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5506 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5507 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5508 		if (is_t5(adap)) {
5509 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5510 			    0xffffffff);
5511 		}
5512 		for (i = 0; i < nchan; i++) {
5513 			t4_write_reg(adap, T5_PORT_REG(i,
5514 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5515 			if (chip_id(adap) > CHELSIO_T5) {
5516 				t4_write_reg(adap, T5_PORT_REG(i,
5517 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5518 				    0xffffffff);
5519 			}
5520 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5521 			    0xffffffff);
5522 		}
5523 	}
5524 	if (chip_id(adap) >= CHELSIO_T6) {
5525 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5526 	}
5527 
5528 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5529 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5530 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5531 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5532 }
5533 
5534 /**
5535  *	hash_mac_addr - return the hash value of a MAC address
5536  *	@addr: the 48-bit Ethernet MAC address
5537  *
5538  *	Hashes a MAC address according to the hash function used by HW inexact
5539  *	(hash) address matching.
5540  */
5541 static int hash_mac_addr(const u8 *addr)
5542 {
5543 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5544 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5545 	a ^= b;
5546 	a ^= (a >> 12);
5547 	a ^= (a >> 6);
5548 	return a & 0x3f;
5549 }
5550 
5551 /**
5552  *	t4_config_rss_range - configure a portion of the RSS mapping table
5553  *	@adapter: the adapter
5554  *	@mbox: mbox to use for the FW command
5555  *	@viid: virtual interface whose RSS subtable is to be written
5556  *	@start: start entry in the table to write
5557  *	@n: how many table entries to write
5558  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5559  *	@nrspq: number of values in @rspq
5560  *
5561  *	Programs the selected part of the VI's RSS mapping table with the
5562  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5563  *	until the full table range is populated.
5564  *
5565  *	The caller must ensure the values in @rspq are in the range allowed for
5566  *	@viid.
5567  */
5568 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5569 			int start, int n, const u16 *rspq, unsigned int nrspq)
5570 {
5571 	int ret;
5572 	const u16 *rsp = rspq;
5573 	const u16 *rsp_end = rspq + nrspq;
5574 	struct fw_rss_ind_tbl_cmd cmd;
5575 
5576 	memset(&cmd, 0, sizeof(cmd));
5577 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5578 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5579 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5580 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5581 
5582 	/*
5583 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5584 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5585 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5586 	 * reserved.
5587 	 */
5588 	while (n > 0) {
5589 		int nq = min(n, 32);
5590 		int nq_packed = 0;
5591 		__be32 *qp = &cmd.iq0_to_iq2;
5592 
5593 		/*
5594 		 * Set up the firmware RSS command header to send the next
5595 		 * "nq" Ingress Queue IDs to the firmware.
5596 		 */
5597 		cmd.niqid = cpu_to_be16(nq);
5598 		cmd.startidx = cpu_to_be16(start);
5599 
5600 		/*
5601 		 * "nq" more done for the start of the next loop.
5602 		 */
5603 		start += nq;
5604 		n -= nq;
5605 
5606 		/*
5607 		 * While there are still Ingress Queue IDs to stuff into the
5608 		 * current firmware RSS command, retrieve them from the
5609 		 * Ingress Queue ID array and insert them into the command.
5610 		 */
5611 		while (nq > 0) {
5612 			/*
5613 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5614 			 * around the Ingress Queue ID array if necessary) and
5615 			 * insert them into the firmware RSS command at the
5616 			 * current 3-tuple position within the commad.
5617 			 */
5618 			u16 qbuf[3];
5619 			u16 *qbp = qbuf;
5620 			int nqbuf = min(3, nq);
5621 
5622 			nq -= nqbuf;
5623 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5624 			while (nqbuf && nq_packed < 32) {
5625 				nqbuf--;
5626 				nq_packed++;
5627 				*qbp++ = *rsp++;
5628 				if (rsp >= rsp_end)
5629 					rsp = rspq;
5630 			}
5631 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5632 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5633 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5634 		}
5635 
5636 		/*
5637 		 * Send this portion of the RRS table update to the firmware;
5638 		 * bail out on any errors.
5639 		 */
5640 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5641 		if (ret)
5642 			return ret;
5643 	}
5644 	return 0;
5645 }
5646 
5647 /**
5648  *	t4_config_glbl_rss - configure the global RSS mode
5649  *	@adapter: the adapter
5650  *	@mbox: mbox to use for the FW command
5651  *	@mode: global RSS mode
5652  *	@flags: mode-specific flags
5653  *
5654  *	Sets the global RSS mode.
5655  */
5656 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5657 		       unsigned int flags)
5658 {
5659 	struct fw_rss_glb_config_cmd c;
5660 
5661 	memset(&c, 0, sizeof(c));
5662 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5663 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5664 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5665 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5666 		c.u.manual.mode_pkd =
5667 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5668 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5669 		c.u.basicvirtual.mode_keymode =
5670 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5671 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5672 	} else
5673 		return -EINVAL;
5674 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5675 }
5676 
5677 /**
5678  *	t4_config_vi_rss - configure per VI RSS settings
5679  *	@adapter: the adapter
5680  *	@mbox: mbox to use for the FW command
5681  *	@viid: the VI id
5682  *	@flags: RSS flags
5683  *	@defq: id of the default RSS queue for the VI.
5684  *	@skeyidx: RSS secret key table index for non-global mode
5685  *	@skey: RSS vf_scramble key for VI.
5686  *
5687  *	Configures VI-specific RSS properties.
5688  */
5689 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5690 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5691 		     unsigned int skey)
5692 {
5693 	struct fw_rss_vi_config_cmd c;
5694 
5695 	memset(&c, 0, sizeof(c));
5696 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5697 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5698 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5699 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5700 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5701 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5702 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5703 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5704 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5705 
5706 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5707 }
5708 
5709 /* Read an RSS table row */
5710 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5711 {
5712 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5713 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5714 				   5, 0, val);
5715 }
5716 
5717 /**
5718  *	t4_read_rss - read the contents of the RSS mapping table
5719  *	@adapter: the adapter
5720  *	@map: holds the contents of the RSS mapping table
5721  *
5722  *	Reads the contents of the RSS hash->queue mapping table.
5723  */
5724 int t4_read_rss(struct adapter *adapter, u16 *map)
5725 {
5726 	u32 val;
5727 	int i, ret;
5728 	int rss_nentries = adapter->chip_params->rss_nentries;
5729 
5730 	for (i = 0; i < rss_nentries / 2; ++i) {
5731 		ret = rd_rss_row(adapter, i, &val);
5732 		if (ret)
5733 			return ret;
5734 		*map++ = G_LKPTBLQUEUE0(val);
5735 		*map++ = G_LKPTBLQUEUE1(val);
5736 	}
5737 	return 0;
5738 }
5739 
5740 /**
5741  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5742  * @adap: the adapter
5743  * @cmd: TP fw ldst address space type
5744  * @vals: where the indirect register values are stored/written
5745  * @nregs: how many indirect registers to read/write
5746  * @start_idx: index of first indirect register to read/write
5747  * @rw: Read (1) or Write (0)
5748  * @sleep_ok: if true we may sleep while awaiting command completion
5749  *
5750  * Access TP indirect registers through LDST
5751  **/
5752 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5753 			    unsigned int nregs, unsigned int start_index,
5754 			    unsigned int rw, bool sleep_ok)
5755 {
5756 	int ret = 0;
5757 	unsigned int i;
5758 	struct fw_ldst_cmd c;
5759 
5760 	for (i = 0; i < nregs; i++) {
5761 		memset(&c, 0, sizeof(c));
5762 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5763 						F_FW_CMD_REQUEST |
5764 						(rw ? F_FW_CMD_READ :
5765 						      F_FW_CMD_WRITE) |
5766 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5767 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5768 
5769 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5770 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5771 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5772 				      sleep_ok);
5773 		if (ret)
5774 			return ret;
5775 
5776 		if (rw)
5777 			vals[i] = be32_to_cpu(c.u.addrval.val);
5778 	}
5779 	return 0;
5780 }
5781 
5782 /**
5783  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5784  * @adap: the adapter
5785  * @reg_addr: Address Register
5786  * @reg_data: Data register
5787  * @buff: where the indirect register values are stored/written
5788  * @nregs: how many indirect registers to read/write
5789  * @start_index: index of first indirect register to read/write
5790  * @rw: READ(1) or WRITE(0)
5791  * @sleep_ok: if true we may sleep while awaiting command completion
5792  *
5793  * Read/Write TP indirect registers through LDST if possible.
5794  * Else, use backdoor access
5795  **/
5796 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5797 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5798 			      bool sleep_ok)
5799 {
5800 	int rc = -EINVAL;
5801 	int cmd;
5802 
5803 	switch (reg_addr) {
5804 	case A_TP_PIO_ADDR:
5805 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5806 		break;
5807 	case A_TP_TM_PIO_ADDR:
5808 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5809 		break;
5810 	case A_TP_MIB_INDEX:
5811 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5812 		break;
5813 	default:
5814 		goto indirect_access;
5815 	}
5816 
5817 	if (t4_use_ldst(adap))
5818 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5819 				      sleep_ok);
5820 
5821 indirect_access:
5822 
5823 	if (rc) {
5824 		if (rw)
5825 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5826 					 start_index);
5827 		else
5828 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5829 					  start_index);
5830 	}
5831 }
5832 
5833 /**
5834  * t4_tp_pio_read - Read TP PIO registers
5835  * @adap: the adapter
5836  * @buff: where the indirect register values are written
5837  * @nregs: how many indirect registers to read
5838  * @start_index: index of first indirect register to read
5839  * @sleep_ok: if true we may sleep while awaiting command completion
5840  *
5841  * Read TP PIO Registers
5842  **/
5843 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5844 		    u32 start_index, bool sleep_ok)
5845 {
5846 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5847 			  start_index, 1, sleep_ok);
5848 }
5849 
5850 /**
5851  * t4_tp_pio_write - Write TP PIO registers
5852  * @adap: the adapter
5853  * @buff: where the indirect register values are stored
5854  * @nregs: how many indirect registers to write
5855  * @start_index: index of first indirect register to write
5856  * @sleep_ok: if true we may sleep while awaiting command completion
5857  *
5858  * Write TP PIO Registers
5859  **/
5860 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5861 		     u32 start_index, bool sleep_ok)
5862 {
5863 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5864 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5865 }
5866 
5867 /**
5868  * t4_tp_tm_pio_read - Read TP TM PIO registers
5869  * @adap: the adapter
5870  * @buff: where the indirect register values are written
5871  * @nregs: how many indirect registers to read
5872  * @start_index: index of first indirect register to read
5873  * @sleep_ok: if true we may sleep while awaiting command completion
5874  *
5875  * Read TP TM PIO Registers
5876  **/
5877 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5878 		       u32 start_index, bool sleep_ok)
5879 {
5880 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5881 			  nregs, start_index, 1, sleep_ok);
5882 }
5883 
5884 /**
5885  * t4_tp_mib_read - Read TP MIB registers
5886  * @adap: the adapter
5887  * @buff: where the indirect register values are written
5888  * @nregs: how many indirect registers to read
5889  * @start_index: index of first indirect register to read
5890  * @sleep_ok: if true we may sleep while awaiting command completion
5891  *
5892  * Read TP MIB Registers
5893  **/
5894 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5895 		    bool sleep_ok)
5896 {
5897 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5898 			  start_index, 1, sleep_ok);
5899 }
5900 
5901 /**
5902  *	t4_read_rss_key - read the global RSS key
5903  *	@adap: the adapter
5904  *	@key: 10-entry array holding the 320-bit RSS key
5905  * 	@sleep_ok: if true we may sleep while awaiting command completion
5906  *
5907  *	Reads the global 320-bit RSS key.
5908  */
5909 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5910 {
5911 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5912 }
5913 
5914 /**
5915  *	t4_write_rss_key - program one of the RSS keys
5916  *	@adap: the adapter
5917  *	@key: 10-entry array holding the 320-bit RSS key
5918  *	@idx: which RSS key to write
5919  * 	@sleep_ok: if true we may sleep while awaiting command completion
5920  *
5921  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5922  *	0..15 the corresponding entry in the RSS key table is written,
5923  *	otherwise the global RSS key is written.
5924  */
5925 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5926 		      bool sleep_ok)
5927 {
5928 	u8 rss_key_addr_cnt = 16;
5929 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5930 
5931 	/*
5932 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5933 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5934 	 * as index[5:4](upper 2) into key table
5935 	 */
5936 	if ((chip_id(adap) > CHELSIO_T5) &&
5937 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5938 		rss_key_addr_cnt = 32;
5939 
5940 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5941 
5942 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5943 		if (rss_key_addr_cnt > 16)
5944 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5945 				     vrt | V_KEYWRADDRX(idx >> 4) |
5946 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5947 		else
5948 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5949 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5950 	}
5951 }
5952 
5953 /**
5954  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5955  *	@adapter: the adapter
5956  *	@index: the entry in the PF RSS table to read
5957  *	@valp: where to store the returned value
5958  * 	@sleep_ok: if true we may sleep while awaiting command completion
5959  *
5960  *	Reads the PF RSS Configuration Table at the specified index and returns
5961  *	the value found there.
5962  */
5963 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5964 			   u32 *valp, bool sleep_ok)
5965 {
5966 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5967 }
5968 
5969 /**
5970  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5971  *	@adapter: the adapter
5972  *	@index: the entry in the VF RSS table to read
5973  *	@val: the value to store
5974  * 	@sleep_ok: if true we may sleep while awaiting command completion
5975  *
5976  *	Writes the PF RSS Configuration Table at the specified index with the
5977  *	specified value.
5978  */
5979 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5980 			    u32 val, bool sleep_ok)
5981 {
5982 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5983 			sleep_ok);
5984 }
5985 
5986 /**
5987  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5988  *	@adapter: the adapter
5989  *	@index: the entry in the VF RSS table to read
5990  *	@vfl: where to store the returned VFL
5991  *	@vfh: where to store the returned VFH
5992  * 	@sleep_ok: if true we may sleep while awaiting command completion
5993  *
5994  *	Reads the VF RSS Configuration Table at the specified index and returns
5995  *	the (VFL, VFH) values found there.
5996  */
5997 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5998 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5999 {
6000 	u32 vrt, mask, data;
6001 
6002 	if (chip_id(adapter) <= CHELSIO_T5) {
6003 		mask = V_VFWRADDR(M_VFWRADDR);
6004 		data = V_VFWRADDR(index);
6005 	} else {
6006 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6007 		 data = V_T6_VFWRADDR(index);
6008 	}
6009 	/*
6010 	 * Request that the index'th VF Table values be read into VFL/VFH.
6011 	 */
6012 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6013 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6014 	vrt |= data | F_VFRDEN;
6015 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6016 
6017 	/*
6018 	 * Grab the VFL/VFH values ...
6019 	 */
6020 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6021 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6022 }
6023 
6024 /**
6025  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6026  *
6027  *	@adapter: the adapter
6028  *	@index: the entry in the VF RSS table to write
6029  *	@vfl: the VFL to store
6030  *	@vfh: the VFH to store
6031  *
6032  *	Writes the VF RSS Configuration Table at the specified index with the
6033  *	specified (VFL, VFH) values.
6034  */
6035 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6036 			    u32 vfl, u32 vfh, bool sleep_ok)
6037 {
6038 	u32 vrt, mask, data;
6039 
6040 	if (chip_id(adapter) <= CHELSIO_T5) {
6041 		mask = V_VFWRADDR(M_VFWRADDR);
6042 		data = V_VFWRADDR(index);
6043 	} else {
6044 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6045 		data = V_T6_VFWRADDR(index);
6046 	}
6047 
6048 	/*
6049 	 * Load up VFL/VFH with the values to be written ...
6050 	 */
6051 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6052 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6053 
6054 	/*
6055 	 * Write the VFL/VFH into the VF Table at index'th location.
6056 	 */
6057 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6058 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6059 	vrt |= data | F_VFRDEN;
6060 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6061 }
6062 
6063 /**
6064  *	t4_read_rss_pf_map - read PF RSS Map
6065  *	@adapter: the adapter
6066  * 	@sleep_ok: if true we may sleep while awaiting command completion
6067  *
6068  *	Reads the PF RSS Map register and returns its value.
6069  */
6070 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6071 {
6072 	u32 pfmap;
6073 
6074 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6075 
6076 	return pfmap;
6077 }
6078 
6079 /**
6080  *	t4_write_rss_pf_map - write PF RSS Map
6081  *	@adapter: the adapter
6082  *	@pfmap: PF RSS Map value
6083  *
6084  *	Writes the specified value to the PF RSS Map register.
6085  */
6086 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6087 {
6088 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6089 }
6090 
6091 /**
6092  *	t4_read_rss_pf_mask - read PF RSS Mask
6093  *	@adapter: the adapter
6094  * 	@sleep_ok: if true we may sleep while awaiting command completion
6095  *
6096  *	Reads the PF RSS Mask register and returns its value.
6097  */
6098 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6099 {
6100 	u32 pfmask;
6101 
6102 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6103 
6104 	return pfmask;
6105 }
6106 
6107 /**
6108  *	t4_write_rss_pf_mask - write PF RSS Mask
6109  *	@adapter: the adapter
6110  *	@pfmask: PF RSS Mask value
6111  *
6112  *	Writes the specified value to the PF RSS Mask register.
6113  */
6114 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6115 {
6116 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6117 }
6118 
6119 /**
6120  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6121  *	@adap: the adapter
6122  *	@v4: holds the TCP/IP counter values
6123  *	@v6: holds the TCP/IPv6 counter values
6124  * 	@sleep_ok: if true we may sleep while awaiting command completion
6125  *
6126  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6127  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6128  */
6129 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6130 			 struct tp_tcp_stats *v6, bool sleep_ok)
6131 {
6132 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6133 
6134 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6135 #define STAT(x)     val[STAT_IDX(x)]
6136 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6137 
6138 	if (v4) {
6139 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6140 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6141 		v4->tcp_out_rsts = STAT(OUT_RST);
6142 		v4->tcp_in_segs  = STAT64(IN_SEG);
6143 		v4->tcp_out_segs = STAT64(OUT_SEG);
6144 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6145 	}
6146 	if (v6) {
6147 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6148 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6149 		v6->tcp_out_rsts = STAT(OUT_RST);
6150 		v6->tcp_in_segs  = STAT64(IN_SEG);
6151 		v6->tcp_out_segs = STAT64(OUT_SEG);
6152 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6153 	}
6154 #undef STAT64
6155 #undef STAT
6156 #undef STAT_IDX
6157 }
6158 
6159 /**
6160  *	t4_tp_get_err_stats - read TP's error MIB counters
6161  *	@adap: the adapter
6162  *	@st: holds the counter values
6163  * 	@sleep_ok: if true we may sleep while awaiting command completion
6164  *
6165  *	Returns the values of TP's error counters.
6166  */
6167 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6168 			 bool sleep_ok)
6169 {
6170 	int nchan = adap->chip_params->nchan;
6171 
6172 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6173 		       sleep_ok);
6174 
6175 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6176 		       sleep_ok);
6177 
6178 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6179 		       sleep_ok);
6180 
6181 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6182 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6183 
6184 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6185 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6186 
6187 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6188 		       sleep_ok);
6189 
6190 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6191 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6192 
6193 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6194 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6195 
6196 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6197 		       sleep_ok);
6198 }
6199 
6200 /**
6201  *	t4_tp_get_err_stats - read TP's error MIB counters
6202  *	@adap: the adapter
6203  *	@st: holds the counter values
6204  * 	@sleep_ok: if true we may sleep while awaiting command completion
6205  *
6206  *	Returns the values of TP's error counters.
6207  */
6208 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6209 			 bool sleep_ok)
6210 {
6211 	int nchan = adap->chip_params->nchan;
6212 
6213 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6214 		       sleep_ok);
6215 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6216 		       sleep_ok);
6217 }
6218 
6219 /**
6220  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6221  *	@adap: the adapter
6222  *	@st: holds the counter values
6223  *
6224  *	Returns the values of TP's proxy counters.
6225  */
6226 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6227     bool sleep_ok)
6228 {
6229 	int nchan = adap->chip_params->nchan;
6230 
6231 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6232 }
6233 
6234 /**
6235  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6236  *	@adap: the adapter
6237  *	@st: holds the counter values
6238  * 	@sleep_ok: if true we may sleep while awaiting command completion
6239  *
6240  *	Returns the values of TP's CPL counters.
6241  */
6242 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6243 			 bool sleep_ok)
6244 {
6245 	int nchan = adap->chip_params->nchan;
6246 
6247 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6248 
6249 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6250 }
6251 
6252 /**
6253  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6254  *	@adap: the adapter
6255  *	@st: holds the counter values
6256  *
6257  *	Returns the values of TP's RDMA counters.
6258  */
6259 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6260 			  bool sleep_ok)
6261 {
6262 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6263 		       sleep_ok);
6264 }
6265 
6266 /**
6267  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6268  *	@adap: the adapter
6269  *	@idx: the port index
6270  *	@st: holds the counter values
6271  * 	@sleep_ok: if true we may sleep while awaiting command completion
6272  *
6273  *	Returns the values of TP's FCoE counters for the selected port.
6274  */
6275 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6276 		       struct tp_fcoe_stats *st, bool sleep_ok)
6277 {
6278 	u32 val[2];
6279 
6280 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6281 		       sleep_ok);
6282 
6283 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6284 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6285 
6286 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6287 		       sleep_ok);
6288 
6289 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6290 }
6291 
6292 /**
6293  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6294  *	@adap: the adapter
6295  *	@st: holds the counter values
6296  * 	@sleep_ok: if true we may sleep while awaiting command completion
6297  *
6298  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6299  */
6300 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6301 		      bool sleep_ok)
6302 {
6303 	u32 val[4];
6304 
6305 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6306 
6307 	st->frames = val[0];
6308 	st->drops = val[1];
6309 	st->octets = ((u64)val[2] << 32) | val[3];
6310 }
6311 
6312 /**
6313  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6314  *	@adap: the adapter
6315  *	@st: holds the counter values
6316  * 	@sleep_ok: if true we may sleep while awaiting command completion
6317  *
6318  *	Returns the values of TP's counters for tids.
6319  */
6320 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6321 		      bool sleep_ok)
6322 {
6323 
6324 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6325 }
6326 
6327 /**
6328  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6329  *	@adap: the adapter
6330  *	@mtus: where to store the MTU values
6331  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6332  *
6333  *	Reads the HW path MTU table.
6334  */
6335 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6336 {
6337 	u32 v;
6338 	int i;
6339 
6340 	for (i = 0; i < NMTUS; ++i) {
6341 		t4_write_reg(adap, A_TP_MTU_TABLE,
6342 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6343 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6344 		mtus[i] = G_MTUVALUE(v);
6345 		if (mtu_log)
6346 			mtu_log[i] = G_MTUWIDTH(v);
6347 	}
6348 }
6349 
6350 /**
6351  *	t4_read_cong_tbl - reads the congestion control table
6352  *	@adap: the adapter
6353  *	@incr: where to store the alpha values
6354  *
6355  *	Reads the additive increments programmed into the HW congestion
6356  *	control table.
6357  */
6358 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6359 {
6360 	unsigned int mtu, w;
6361 
6362 	for (mtu = 0; mtu < NMTUS; ++mtu)
6363 		for (w = 0; w < NCCTRL_WIN; ++w) {
6364 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6365 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6366 			incr[mtu][w] = (u16)t4_read_reg(adap,
6367 						A_TP_CCTRL_TABLE) & 0x1fff;
6368 		}
6369 }
6370 
6371 /**
6372  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6373  *	@adap: the adapter
6374  *	@addr: the indirect TP register address
6375  *	@mask: specifies the field within the register to modify
6376  *	@val: new value for the field
6377  *
6378  *	Sets a field of an indirect TP register to the given value.
6379  */
6380 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6381 			    unsigned int mask, unsigned int val)
6382 {
6383 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6384 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6385 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6386 }
6387 
6388 /**
6389  *	init_cong_ctrl - initialize congestion control parameters
6390  *	@a: the alpha values for congestion control
6391  *	@b: the beta values for congestion control
6392  *
6393  *	Initialize the congestion control parameters.
6394  */
6395 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6396 {
6397 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6398 	a[9] = 2;
6399 	a[10] = 3;
6400 	a[11] = 4;
6401 	a[12] = 5;
6402 	a[13] = 6;
6403 	a[14] = 7;
6404 	a[15] = 8;
6405 	a[16] = 9;
6406 	a[17] = 10;
6407 	a[18] = 14;
6408 	a[19] = 17;
6409 	a[20] = 21;
6410 	a[21] = 25;
6411 	a[22] = 30;
6412 	a[23] = 35;
6413 	a[24] = 45;
6414 	a[25] = 60;
6415 	a[26] = 80;
6416 	a[27] = 100;
6417 	a[28] = 200;
6418 	a[29] = 300;
6419 	a[30] = 400;
6420 	a[31] = 500;
6421 
6422 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6423 	b[9] = b[10] = 1;
6424 	b[11] = b[12] = 2;
6425 	b[13] = b[14] = b[15] = b[16] = 3;
6426 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6427 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6428 	b[28] = b[29] = 6;
6429 	b[30] = b[31] = 7;
6430 }
6431 
6432 /* The minimum additive increment value for the congestion control table */
6433 #define CC_MIN_INCR 2U
6434 
6435 /**
6436  *	t4_load_mtus - write the MTU and congestion control HW tables
6437  *	@adap: the adapter
6438  *	@mtus: the values for the MTU table
6439  *	@alpha: the values for the congestion control alpha parameter
6440  *	@beta: the values for the congestion control beta parameter
6441  *
6442  *	Write the HW MTU table with the supplied MTUs and the high-speed
6443  *	congestion control table with the supplied alpha, beta, and MTUs.
6444  *	We write the two tables together because the additive increments
6445  *	depend on the MTUs.
6446  */
6447 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6448 		  const unsigned short *alpha, const unsigned short *beta)
6449 {
6450 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6451 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6452 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6453 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6454 	};
6455 
6456 	unsigned int i, w;
6457 
6458 	for (i = 0; i < NMTUS; ++i) {
6459 		unsigned int mtu = mtus[i];
6460 		unsigned int log2 = fls(mtu);
6461 
6462 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6463 			log2--;
6464 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6465 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6466 
6467 		for (w = 0; w < NCCTRL_WIN; ++w) {
6468 			unsigned int inc;
6469 
6470 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6471 				  CC_MIN_INCR);
6472 
6473 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6474 				     (w << 16) | (beta[w] << 13) | inc);
6475 		}
6476 	}
6477 }
6478 
6479 /**
6480  *	t4_set_pace_tbl - set the pace table
6481  *	@adap: the adapter
6482  *	@pace_vals: the pace values in microseconds
6483  *	@start: index of the first entry in the HW pace table to set
6484  *	@n: how many entries to set
6485  *
6486  *	Sets (a subset of the) HW pace table.
6487  */
6488 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6489 		     unsigned int start, unsigned int n)
6490 {
6491 	unsigned int vals[NTX_SCHED], i;
6492 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6493 
6494 	if (n > NTX_SCHED)
6495 	    return -ERANGE;
6496 
6497 	/* convert values from us to dack ticks, rounding to closest value */
6498 	for (i = 0; i < n; i++, pace_vals++) {
6499 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6500 		if (vals[i] > 0x7ff)
6501 			return -ERANGE;
6502 		if (*pace_vals && vals[i] == 0)
6503 			return -ERANGE;
6504 	}
6505 	for (i = 0; i < n; i++, start++)
6506 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6507 	return 0;
6508 }
6509 
6510 /**
6511  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6512  *	@adap: the adapter
6513  *	@kbps: target rate in Kbps
6514  *	@sched: the scheduler index
6515  *
6516  *	Configure a Tx HW scheduler for the target rate.
6517  */
6518 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6519 {
6520 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6521 	unsigned int clk = adap->params.vpd.cclk * 1000;
6522 	unsigned int selected_cpt = 0, selected_bpt = 0;
6523 
6524 	if (kbps > 0) {
6525 		kbps *= 125;     /* -> bytes */
6526 		for (cpt = 1; cpt <= 255; cpt++) {
6527 			tps = clk / cpt;
6528 			bpt = (kbps + tps / 2) / tps;
6529 			if (bpt > 0 && bpt <= 255) {
6530 				v = bpt * tps;
6531 				delta = v >= kbps ? v - kbps : kbps - v;
6532 				if (delta < mindelta) {
6533 					mindelta = delta;
6534 					selected_cpt = cpt;
6535 					selected_bpt = bpt;
6536 				}
6537 			} else if (selected_cpt)
6538 				break;
6539 		}
6540 		if (!selected_cpt)
6541 			return -EINVAL;
6542 	}
6543 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6544 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6545 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6546 	if (sched & 1)
6547 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6548 	else
6549 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6550 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6551 	return 0;
6552 }
6553 
6554 /**
6555  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6556  *	@adap: the adapter
6557  *	@sched: the scheduler index
6558  *	@ipg: the interpacket delay in tenths of nanoseconds
6559  *
6560  *	Set the interpacket delay for a HW packet rate scheduler.
6561  */
6562 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6563 {
6564 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6565 
6566 	/* convert ipg to nearest number of core clocks */
6567 	ipg *= core_ticks_per_usec(adap);
6568 	ipg = (ipg + 5000) / 10000;
6569 	if (ipg > M_TXTIMERSEPQ0)
6570 		return -EINVAL;
6571 
6572 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6573 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6574 	if (sched & 1)
6575 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6576 	else
6577 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6578 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6579 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6580 	return 0;
6581 }
6582 
6583 /*
6584  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6585  * clocks.  The formula is
6586  *
6587  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6588  *
6589  * which is equivalent to
6590  *
6591  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6592  */
6593 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6594 {
6595 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6596 
6597 	return v * 62 + v / 2;
6598 }
6599 
6600 /**
6601  *	t4_get_chan_txrate - get the current per channel Tx rates
6602  *	@adap: the adapter
6603  *	@nic_rate: rates for NIC traffic
6604  *	@ofld_rate: rates for offloaded traffic
6605  *
6606  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6607  *	for each channel.
6608  */
6609 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6610 {
6611 	u32 v;
6612 
6613 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6614 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6615 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6616 	if (adap->chip_params->nchan > 2) {
6617 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6618 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6619 	}
6620 
6621 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6622 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6623 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6624 	if (adap->chip_params->nchan > 2) {
6625 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6626 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6627 	}
6628 }
6629 
6630 /**
6631  *	t4_set_trace_filter - configure one of the tracing filters
6632  *	@adap: the adapter
6633  *	@tp: the desired trace filter parameters
6634  *	@idx: which filter to configure
6635  *	@enable: whether to enable or disable the filter
6636  *
6637  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6638  *	it indicates that the filter is already written in the register and it
6639  *	just needs to be enabled or disabled.
6640  */
6641 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6642     int idx, int enable)
6643 {
6644 	int i, ofst = idx * 4;
6645 	u32 data_reg, mask_reg, cfg;
6646 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6647 
6648 	if (idx < 0 || idx >= NTRACE)
6649 		return -EINVAL;
6650 
6651 	if (tp == NULL || !enable) {
6652 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6653 		    enable ? en : 0);
6654 		return 0;
6655 	}
6656 
6657 	/*
6658 	 * TODO - After T4 data book is updated, specify the exact
6659 	 * section below.
6660 	 *
6661 	 * See T4 data book - MPS section for a complete description
6662 	 * of the below if..else handling of A_MPS_TRC_CFG register
6663 	 * value.
6664 	 */
6665 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6666 	if (cfg & F_TRCMULTIFILTER) {
6667 		/*
6668 		 * If multiple tracers are enabled, then maximum
6669 		 * capture size is 2.5KB (FIFO size of a single channel)
6670 		 * minus 2 flits for CPL_TRACE_PKT header.
6671 		 */
6672 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6673 			return -EINVAL;
6674 	} else {
6675 		/*
6676 		 * If multiple tracers are disabled, to avoid deadlocks
6677 		 * maximum packet capture size of 9600 bytes is recommended.
6678 		 * Also in this mode, only trace0 can be enabled and running.
6679 		 */
6680 		if (tp->snap_len > 9600 || idx)
6681 			return -EINVAL;
6682 	}
6683 
6684 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6685 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6686 	    tp->min_len > M_TFMINPKTSIZE)
6687 		return -EINVAL;
6688 
6689 	/* stop the tracer we'll be changing */
6690 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6691 
6692 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6693 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6694 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6695 
6696 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6697 		t4_write_reg(adap, data_reg, tp->data[i]);
6698 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6699 	}
6700 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6701 		     V_TFCAPTUREMAX(tp->snap_len) |
6702 		     V_TFMINPKTSIZE(tp->min_len));
6703 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6704 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6705 		     (is_t4(adap) ?
6706 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6707 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6708 
6709 	return 0;
6710 }
6711 
6712 /**
6713  *	t4_get_trace_filter - query one of the tracing filters
6714  *	@adap: the adapter
6715  *	@tp: the current trace filter parameters
6716  *	@idx: which trace filter to query
6717  *	@enabled: non-zero if the filter is enabled
6718  *
6719  *	Returns the current settings of one of the HW tracing filters.
6720  */
6721 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6722 			 int *enabled)
6723 {
6724 	u32 ctla, ctlb;
6725 	int i, ofst = idx * 4;
6726 	u32 data_reg, mask_reg;
6727 
6728 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6729 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6730 
6731 	if (is_t4(adap)) {
6732 		*enabled = !!(ctla & F_TFEN);
6733 		tp->port =  G_TFPORT(ctla);
6734 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6735 	} else {
6736 		*enabled = !!(ctla & F_T5_TFEN);
6737 		tp->port = G_T5_TFPORT(ctla);
6738 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6739 	}
6740 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6741 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6742 	tp->skip_ofst = G_TFOFFSET(ctla);
6743 	tp->skip_len = G_TFLENGTH(ctla);
6744 
6745 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6746 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6747 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6748 
6749 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6750 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6751 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6752 	}
6753 }
6754 
6755 /**
6756  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6757  *	@adap: the adapter
6758  *	@cnt: where to store the count statistics
6759  *	@cycles: where to store the cycle statistics
6760  *
6761  *	Returns performance statistics from PMTX.
6762  */
6763 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6764 {
6765 	int i;
6766 	u32 data[2];
6767 
6768 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6769 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6770 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6771 		if (is_t4(adap))
6772 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6773 		else {
6774 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6775 					 A_PM_TX_DBG_DATA, data, 2,
6776 					 A_PM_TX_DBG_STAT_MSB);
6777 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6778 		}
6779 	}
6780 }
6781 
6782 /**
6783  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6784  *	@adap: the adapter
6785  *	@cnt: where to store the count statistics
6786  *	@cycles: where to store the cycle statistics
6787  *
6788  *	Returns performance statistics from PMRX.
6789  */
6790 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6791 {
6792 	int i;
6793 	u32 data[2];
6794 
6795 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6796 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6797 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6798 		if (is_t4(adap)) {
6799 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6800 		} else {
6801 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6802 					 A_PM_RX_DBG_DATA, data, 2,
6803 					 A_PM_RX_DBG_STAT_MSB);
6804 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6805 		}
6806 	}
6807 }
6808 
6809 /**
6810  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6811  *	@adap: the adapter
6812  *	@idx: the port index
6813  *
6814  *	Returns a bitmap indicating which MPS buffer groups are associated
6815  *	with the given port.  Bit i is set if buffer group i is used by the
6816  *	port.
6817  */
6818 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6819 {
6820 	u32 n;
6821 
6822 	if (adap->params.mps_bg_map)
6823 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6824 
6825 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6826 	if (n == 0)
6827 		return idx == 0 ? 0xf : 0;
6828 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6829 		return idx < 2 ? (3 << (2 * idx)) : 0;
6830 	return 1 << idx;
6831 }
6832 
6833 /*
6834  * TP RX e-channels associated with the port.
6835  */
6836 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6837 {
6838 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6839 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6840 
6841 	if (n == 0)
6842 		return idx == 0 ? all_chan : 0;
6843 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6844 		return idx < 2 ? (3 << (2 * idx)) : 0;
6845 	return 1 << idx;
6846 }
6847 
6848 /*
6849  * TP RX c-channel associated with the port.
6850  */
6851 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6852 {
6853 	u32 param, val;
6854 	int ret;
6855 
6856 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6857 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6858 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6859 	if (!ret)
6860 		return (val >> (8 * idx)) & 0xff;
6861 
6862         return 0;
6863 }
6864 
6865 /**
6866  *      t4_get_port_type_description - return Port Type string description
6867  *      @port_type: firmware Port Type enumeration
6868  */
6869 const char *t4_get_port_type_description(enum fw_port_type port_type)
6870 {
6871 	static const char *const port_type_description[] = {
6872 		"Fiber_XFI",
6873 		"Fiber_XAUI",
6874 		"BT_SGMII",
6875 		"BT_XFI",
6876 		"BT_XAUI",
6877 		"KX4",
6878 		"CX4",
6879 		"KX",
6880 		"KR",
6881 		"SFP",
6882 		"BP_AP",
6883 		"BP4_AP",
6884 		"QSFP_10G",
6885 		"QSA",
6886 		"QSFP",
6887 		"BP40_BA",
6888 		"KR4_100G",
6889 		"CR4_QSFP",
6890 		"CR_QSFP",
6891 		"CR2_QSFP",
6892 		"SFP28",
6893 		"KR_SFP28",
6894 	};
6895 
6896 	if (port_type < ARRAY_SIZE(port_type_description))
6897 		return port_type_description[port_type];
6898 	return "UNKNOWN";
6899 }
6900 
6901 /**
6902  *      t4_get_port_stats_offset - collect port stats relative to a previous
6903  *				   snapshot
6904  *      @adap: The adapter
6905  *      @idx: The port
6906  *      @stats: Current stats to fill
6907  *      @offset: Previous stats snapshot
6908  */
6909 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6910 		struct port_stats *stats,
6911 		struct port_stats *offset)
6912 {
6913 	u64 *s, *o;
6914 	int i;
6915 
6916 	t4_get_port_stats(adap, idx, stats);
6917 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6918 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6919 			i++, s++, o++)
6920 		*s -= *o;
6921 }
6922 
6923 /**
6924  *	t4_get_port_stats - collect port statistics
6925  *	@adap: the adapter
6926  *	@idx: the port index
6927  *	@p: the stats structure to fill
6928  *
6929  *	Collect statistics related to the given port from HW.
6930  */
6931 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6932 {
6933 	struct port_info *pi = adap->port[idx];
6934 	u32 bgmap = pi->mps_bg_map;
6935 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6936 
6937 #define GET_STAT(name) \
6938 	t4_read_reg64(adap, \
6939 	(is_t4(adap) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L) : \
6940 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L)))
6941 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6942 
6943 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6944 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6945 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6946 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6947 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6948 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6949 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6950 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6951 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6952 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6953 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6954 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6955 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6956 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6957 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6958 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6959 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6960 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6961 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6962 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6963 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6964 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6965 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6966 
6967 	if (chip_id(adap) >= CHELSIO_T5) {
6968 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6969 			p->tx_frames -= p->tx_pause;
6970 			p->tx_octets -= p->tx_pause * 64;
6971 		}
6972 		if (stat_ctl & F_COUNTPAUSEMCTX)
6973 			p->tx_mcast_frames -= p->tx_pause;
6974 	}
6975 
6976 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6977 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6978 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6979 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6980 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6981 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6982 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6983 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6984 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6985 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6986 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6987 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6988 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6989 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6990 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6991 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6992 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6993 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6994 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6995 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6996 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6997 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6998 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6999 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
7000 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
7001 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
7002 
7003 	if (pi->fcs_reg != -1)
7004 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
7005 
7006 	if (chip_id(adap) >= CHELSIO_T5) {
7007 		if (stat_ctl & F_COUNTPAUSESTATRX) {
7008 			p->rx_frames -= p->rx_pause;
7009 			p->rx_octets -= p->rx_pause * 64;
7010 		}
7011 		if (stat_ctl & F_COUNTPAUSEMCRX)
7012 			p->rx_mcast_frames -= p->rx_pause;
7013 	}
7014 
7015 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
7016 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
7017 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
7018 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
7019 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
7020 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
7021 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
7022 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
7023 
7024 #undef GET_STAT
7025 #undef GET_STAT_COM
7026 }
7027 
7028 /**
7029  *	t4_get_lb_stats - collect loopback port statistics
7030  *	@adap: the adapter
7031  *	@idx: the loopback port index
7032  *	@p: the stats structure to fill
7033  *
7034  *	Return HW statistics for the given loopback port.
7035  */
7036 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7037 {
7038 
7039 #define GET_STAT(name) \
7040 	t4_read_reg64(adap, \
7041 	(is_t4(adap) ? \
7042 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7043 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7044 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7045 
7046 	p->octets	= GET_STAT(BYTES);
7047 	p->frames	= GET_STAT(FRAMES);
7048 	p->bcast_frames	= GET_STAT(BCAST);
7049 	p->mcast_frames	= GET_STAT(MCAST);
7050 	p->ucast_frames	= GET_STAT(UCAST);
7051 	p->error_frames	= GET_STAT(ERROR);
7052 
7053 	p->frames_64		= GET_STAT(64B);
7054 	p->frames_65_127	= GET_STAT(65B_127B);
7055 	p->frames_128_255	= GET_STAT(128B_255B);
7056 	p->frames_256_511	= GET_STAT(256B_511B);
7057 	p->frames_512_1023	= GET_STAT(512B_1023B);
7058 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7059 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7060 	p->drop			= GET_STAT(DROP_FRAMES);
7061 
7062 	if (idx < adap->params.nports) {
7063 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7064 
7065 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7066 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7067 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7068 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7069 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7070 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7071 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7072 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7073 	}
7074 
7075 #undef GET_STAT
7076 #undef GET_STAT_COM
7077 }
7078 
7079 /**
7080  *	t4_wol_magic_enable - enable/disable magic packet WoL
7081  *	@adap: the adapter
7082  *	@port: the physical port index
7083  *	@addr: MAC address expected in magic packets, %NULL to disable
7084  *
7085  *	Enables/disables magic packet wake-on-LAN for the selected port.
7086  */
7087 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7088 			 const u8 *addr)
7089 {
7090 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7091 
7092 	if (is_t4(adap)) {
7093 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7094 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7095 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7096 	} else {
7097 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7098 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7099 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7100 	}
7101 
7102 	if (addr) {
7103 		t4_write_reg(adap, mag_id_reg_l,
7104 			     (addr[2] << 24) | (addr[3] << 16) |
7105 			     (addr[4] << 8) | addr[5]);
7106 		t4_write_reg(adap, mag_id_reg_h,
7107 			     (addr[0] << 8) | addr[1]);
7108 	}
7109 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7110 			 V_MAGICEN(addr != NULL));
7111 }
7112 
7113 /**
7114  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7115  *	@adap: the adapter
7116  *	@port: the physical port index
7117  *	@map: bitmap of which HW pattern filters to set
7118  *	@mask0: byte mask for bytes 0-63 of a packet
7119  *	@mask1: byte mask for bytes 64-127 of a packet
7120  *	@crc: Ethernet CRC for selected bytes
7121  *	@enable: enable/disable switch
7122  *
7123  *	Sets the pattern filters indicated in @map to mask out the bytes
7124  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7125  *	the resulting packet against @crc.  If @enable is %true pattern-based
7126  *	WoL is enabled, otherwise disabled.
7127  */
7128 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7129 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7130 {
7131 	int i;
7132 	u32 port_cfg_reg;
7133 
7134 	if (is_t4(adap))
7135 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7136 	else
7137 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7138 
7139 	if (!enable) {
7140 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7141 		return 0;
7142 	}
7143 	if (map > 0xff)
7144 		return -EINVAL;
7145 
7146 #define EPIO_REG(name) \
7147 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7148 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7149 
7150 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7151 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7152 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7153 
7154 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7155 		if (!(map & 1))
7156 			continue;
7157 
7158 		/* write byte masks */
7159 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7160 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7161 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7162 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7163 			return -ETIMEDOUT;
7164 
7165 		/* write CRC */
7166 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7167 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7168 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7169 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7170 			return -ETIMEDOUT;
7171 	}
7172 #undef EPIO_REG
7173 
7174 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7175 	return 0;
7176 }
7177 
7178 /*     t4_mk_filtdelwr - create a delete filter WR
7179  *     @ftid: the filter ID
7180  *     @wr: the filter work request to populate
7181  *     @qid: ingress queue to receive the delete notification
7182  *
7183  *     Creates a filter work request to delete the supplied filter.  If @qid is
7184  *     negative the delete notification is suppressed.
7185  */
7186 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7187 {
7188 	memset(wr, 0, sizeof(*wr));
7189 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7190 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7191 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7192 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7193 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7194 	if (qid >= 0)
7195 		wr->rx_chan_rx_rpl_iq =
7196 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7197 }
7198 
7199 #define INIT_CMD(var, cmd, rd_wr) do { \
7200 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7201 					F_FW_CMD_REQUEST | \
7202 					F_FW_CMD_##rd_wr); \
7203 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7204 } while (0)
7205 
7206 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7207 			  u32 addr, u32 val)
7208 {
7209 	u32 ldst_addrspace;
7210 	struct fw_ldst_cmd c;
7211 
7212 	memset(&c, 0, sizeof(c));
7213 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7214 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7215 					F_FW_CMD_REQUEST |
7216 					F_FW_CMD_WRITE |
7217 					ldst_addrspace);
7218 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7219 	c.u.addrval.addr = cpu_to_be32(addr);
7220 	c.u.addrval.val = cpu_to_be32(val);
7221 
7222 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7223 }
7224 
7225 /**
7226  *	t4_mdio_rd - read a PHY register through MDIO
7227  *	@adap: the adapter
7228  *	@mbox: mailbox to use for the FW command
7229  *	@phy_addr: the PHY address
7230  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7231  *	@reg: the register to read
7232  *	@valp: where to store the value
7233  *
7234  *	Issues a FW command through the given mailbox to read a PHY register.
7235  */
7236 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7237 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7238 {
7239 	int ret;
7240 	u32 ldst_addrspace;
7241 	struct fw_ldst_cmd c;
7242 
7243 	memset(&c, 0, sizeof(c));
7244 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7245 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7246 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7247 					ldst_addrspace);
7248 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7249 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7250 					 V_FW_LDST_CMD_MMD(mmd));
7251 	c.u.mdio.raddr = cpu_to_be16(reg);
7252 
7253 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7254 	if (ret == 0)
7255 		*valp = be16_to_cpu(c.u.mdio.rval);
7256 	return ret;
7257 }
7258 
7259 /**
7260  *	t4_mdio_wr - write a PHY register through MDIO
7261  *	@adap: the adapter
7262  *	@mbox: mailbox to use for the FW command
7263  *	@phy_addr: the PHY address
7264  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7265  *	@reg: the register to write
7266  *	@valp: value to write
7267  *
7268  *	Issues a FW command through the given mailbox to write a PHY register.
7269  */
7270 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7271 	       unsigned int mmd, unsigned int reg, unsigned int val)
7272 {
7273 	u32 ldst_addrspace;
7274 	struct fw_ldst_cmd c;
7275 
7276 	memset(&c, 0, sizeof(c));
7277 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7278 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7279 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7280 					ldst_addrspace);
7281 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7282 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7283 					 V_FW_LDST_CMD_MMD(mmd));
7284 	c.u.mdio.raddr = cpu_to_be16(reg);
7285 	c.u.mdio.rval = cpu_to_be16(val);
7286 
7287 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7288 }
7289 
7290 /**
7291  *
7292  *	t4_sge_decode_idma_state - decode the idma state
7293  *	@adap: the adapter
7294  *	@state: the state idma is stuck in
7295  */
7296 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7297 {
7298 	static const char * const t4_decode[] = {
7299 		"IDMA_IDLE",
7300 		"IDMA_PUSH_MORE_CPL_FIFO",
7301 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7302 		"Not used",
7303 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7304 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7305 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7306 		"IDMA_SEND_FIFO_TO_IMSG",
7307 		"IDMA_FL_REQ_DATA_FL_PREP",
7308 		"IDMA_FL_REQ_DATA_FL",
7309 		"IDMA_FL_DROP",
7310 		"IDMA_FL_H_REQ_HEADER_FL",
7311 		"IDMA_FL_H_SEND_PCIEHDR",
7312 		"IDMA_FL_H_PUSH_CPL_FIFO",
7313 		"IDMA_FL_H_SEND_CPL",
7314 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7315 		"IDMA_FL_H_SEND_IP_HDR",
7316 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7317 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7318 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7319 		"IDMA_FL_D_SEND_PCIEHDR",
7320 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7321 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7322 		"IDMA_FL_SEND_PCIEHDR",
7323 		"IDMA_FL_PUSH_CPL_FIFO",
7324 		"IDMA_FL_SEND_CPL",
7325 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7326 		"IDMA_FL_SEND_PAYLOAD",
7327 		"IDMA_FL_REQ_NEXT_DATA_FL",
7328 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7329 		"IDMA_FL_SEND_PADDING",
7330 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7331 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7332 		"IDMA_FL_REQ_DATAFL_DONE",
7333 		"IDMA_FL_REQ_HEADERFL_DONE",
7334 	};
7335 	static const char * const t5_decode[] = {
7336 		"IDMA_IDLE",
7337 		"IDMA_ALMOST_IDLE",
7338 		"IDMA_PUSH_MORE_CPL_FIFO",
7339 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7340 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7341 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7342 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7343 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7344 		"IDMA_SEND_FIFO_TO_IMSG",
7345 		"IDMA_FL_REQ_DATA_FL",
7346 		"IDMA_FL_DROP",
7347 		"IDMA_FL_DROP_SEND_INC",
7348 		"IDMA_FL_H_REQ_HEADER_FL",
7349 		"IDMA_FL_H_SEND_PCIEHDR",
7350 		"IDMA_FL_H_PUSH_CPL_FIFO",
7351 		"IDMA_FL_H_SEND_CPL",
7352 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7353 		"IDMA_FL_H_SEND_IP_HDR",
7354 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7355 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7356 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7357 		"IDMA_FL_D_SEND_PCIEHDR",
7358 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7359 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7360 		"IDMA_FL_SEND_PCIEHDR",
7361 		"IDMA_FL_PUSH_CPL_FIFO",
7362 		"IDMA_FL_SEND_CPL",
7363 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7364 		"IDMA_FL_SEND_PAYLOAD",
7365 		"IDMA_FL_REQ_NEXT_DATA_FL",
7366 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7367 		"IDMA_FL_SEND_PADDING",
7368 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7369 	};
7370 	static const char * const t6_decode[] = {
7371 		"IDMA_IDLE",
7372 		"IDMA_PUSH_MORE_CPL_FIFO",
7373 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7374 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7375 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7376 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7377 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7378 		"IDMA_FL_REQ_DATA_FL",
7379 		"IDMA_FL_DROP",
7380 		"IDMA_FL_DROP_SEND_INC",
7381 		"IDMA_FL_H_REQ_HEADER_FL",
7382 		"IDMA_FL_H_SEND_PCIEHDR",
7383 		"IDMA_FL_H_PUSH_CPL_FIFO",
7384 		"IDMA_FL_H_SEND_CPL",
7385 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7386 		"IDMA_FL_H_SEND_IP_HDR",
7387 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7388 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7389 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7390 		"IDMA_FL_D_SEND_PCIEHDR",
7391 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7392 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7393 		"IDMA_FL_SEND_PCIEHDR",
7394 		"IDMA_FL_PUSH_CPL_FIFO",
7395 		"IDMA_FL_SEND_CPL",
7396 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7397 		"IDMA_FL_SEND_PAYLOAD",
7398 		"IDMA_FL_REQ_NEXT_DATA_FL",
7399 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7400 		"IDMA_FL_SEND_PADDING",
7401 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7402 	};
7403 	static const u32 sge_regs[] = {
7404 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7405 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7406 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7407 	};
7408 	const char * const *sge_idma_decode;
7409 	int sge_idma_decode_nstates;
7410 	int i;
7411 	unsigned int chip_version = chip_id(adapter);
7412 
7413 	/* Select the right set of decode strings to dump depending on the
7414 	 * adapter chip type.
7415 	 */
7416 	switch (chip_version) {
7417 	case CHELSIO_T4:
7418 		sge_idma_decode = (const char * const *)t4_decode;
7419 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7420 		break;
7421 
7422 	case CHELSIO_T5:
7423 		sge_idma_decode = (const char * const *)t5_decode;
7424 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7425 		break;
7426 
7427 	case CHELSIO_T6:
7428 		sge_idma_decode = (const char * const *)t6_decode;
7429 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7430 		break;
7431 
7432 	default:
7433 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7434 		return;
7435 	}
7436 
7437 	if (state < sge_idma_decode_nstates)
7438 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7439 	else
7440 		CH_WARN(adapter, "idma state %d unknown\n", state);
7441 
7442 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7443 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7444 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7445 }
7446 
7447 /**
7448  *      t4_sge_ctxt_flush - flush the SGE context cache
7449  *      @adap: the adapter
7450  *      @mbox: mailbox to use for the FW command
7451  *
7452  *      Issues a FW command through the given mailbox to flush the
7453  *      SGE context cache.
7454  */
7455 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7456 {
7457 	int ret;
7458 	u32 ldst_addrspace;
7459 	struct fw_ldst_cmd c;
7460 
7461 	memset(&c, 0, sizeof(c));
7462 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7463 						 FW_LDST_ADDRSPC_SGE_EGRC :
7464 						 FW_LDST_ADDRSPC_SGE_INGC);
7465 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7466 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7467 					ldst_addrspace);
7468 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7469 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7470 
7471 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7472 	return ret;
7473 }
7474 
7475 /**
7476  *      t4_fw_hello - establish communication with FW
7477  *      @adap: the adapter
7478  *      @mbox: mailbox to use for the FW command
7479  *      @evt_mbox: mailbox to receive async FW events
7480  *      @master: specifies the caller's willingness to be the device master
7481  *	@state: returns the current device state (if non-NULL)
7482  *
7483  *	Issues a command to establish communication with FW.  Returns either
7484  *	an error (negative integer) or the mailbox of the Master PF.
7485  */
7486 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7487 		enum dev_master master, enum dev_state *state)
7488 {
7489 	int ret;
7490 	struct fw_hello_cmd c;
7491 	u32 v;
7492 	unsigned int master_mbox;
7493 	int retries = FW_CMD_HELLO_RETRIES;
7494 
7495 retry:
7496 	memset(&c, 0, sizeof(c));
7497 	INIT_CMD(c, HELLO, WRITE);
7498 	c.err_to_clearinit = cpu_to_be32(
7499 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7500 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7501 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7502 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7503 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7504 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7505 		F_FW_HELLO_CMD_CLEARINIT);
7506 
7507 	/*
7508 	 * Issue the HELLO command to the firmware.  If it's not successful
7509 	 * but indicates that we got a "busy" or "timeout" condition, retry
7510 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7511 	 * retry limit, check to see if the firmware left us any error
7512 	 * information and report that if so ...
7513 	 */
7514 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7515 	if (ret != FW_SUCCESS) {
7516 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7517 			goto retry;
7518 		return ret;
7519 	}
7520 
7521 	v = be32_to_cpu(c.err_to_clearinit);
7522 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7523 	if (state) {
7524 		if (v & F_FW_HELLO_CMD_ERR)
7525 			*state = DEV_STATE_ERR;
7526 		else if (v & F_FW_HELLO_CMD_INIT)
7527 			*state = DEV_STATE_INIT;
7528 		else
7529 			*state = DEV_STATE_UNINIT;
7530 	}
7531 
7532 	/*
7533 	 * If we're not the Master PF then we need to wait around for the
7534 	 * Master PF Driver to finish setting up the adapter.
7535 	 *
7536 	 * Note that we also do this wait if we're a non-Master-capable PF and
7537 	 * there is no current Master PF; a Master PF may show up momentarily
7538 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7539 	 * OS loads lots of different drivers rapidly at the same time).  In
7540 	 * this case, the Master PF returned by the firmware will be
7541 	 * M_PCIE_FW_MASTER so the test below will work ...
7542 	 */
7543 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7544 	    master_mbox != mbox) {
7545 		int waiting = FW_CMD_HELLO_TIMEOUT;
7546 
7547 		/*
7548 		 * Wait for the firmware to either indicate an error or
7549 		 * initialized state.  If we see either of these we bail out
7550 		 * and report the issue to the caller.  If we exhaust the
7551 		 * "hello timeout" and we haven't exhausted our retries, try
7552 		 * again.  Otherwise bail with a timeout error.
7553 		 */
7554 		for (;;) {
7555 			u32 pcie_fw;
7556 
7557 			msleep(50);
7558 			waiting -= 50;
7559 
7560 			/*
7561 			 * If neither Error nor Initialialized are indicated
7562 			 * by the firmware keep waiting till we exhaust our
7563 			 * timeout ... and then retry if we haven't exhausted
7564 			 * our retries ...
7565 			 */
7566 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7567 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7568 				if (waiting <= 0) {
7569 					if (retries-- > 0)
7570 						goto retry;
7571 
7572 					return -ETIMEDOUT;
7573 				}
7574 				continue;
7575 			}
7576 
7577 			/*
7578 			 * We either have an Error or Initialized condition
7579 			 * report errors preferentially.
7580 			 */
7581 			if (state) {
7582 				if (pcie_fw & F_PCIE_FW_ERR)
7583 					*state = DEV_STATE_ERR;
7584 				else if (pcie_fw & F_PCIE_FW_INIT)
7585 					*state = DEV_STATE_INIT;
7586 			}
7587 
7588 			/*
7589 			 * If we arrived before a Master PF was selected and
7590 			 * there's not a valid Master PF, grab its identity
7591 			 * for our caller.
7592 			 */
7593 			if (master_mbox == M_PCIE_FW_MASTER &&
7594 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7595 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7596 			break;
7597 		}
7598 	}
7599 
7600 	return master_mbox;
7601 }
7602 
7603 /**
7604  *	t4_fw_bye - end communication with FW
7605  *	@adap: the adapter
7606  *	@mbox: mailbox to use for the FW command
7607  *
7608  *	Issues a command to terminate communication with FW.
7609  */
7610 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7611 {
7612 	struct fw_bye_cmd c;
7613 
7614 	memset(&c, 0, sizeof(c));
7615 	INIT_CMD(c, BYE, WRITE);
7616 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7617 }
7618 
7619 /**
7620  *	t4_fw_reset - issue a reset to FW
7621  *	@adap: the adapter
7622  *	@mbox: mailbox to use for the FW command
7623  *	@reset: specifies the type of reset to perform
7624  *
7625  *	Issues a reset command of the specified type to FW.
7626  */
7627 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7628 {
7629 	struct fw_reset_cmd c;
7630 
7631 	memset(&c, 0, sizeof(c));
7632 	INIT_CMD(c, RESET, WRITE);
7633 	c.val = cpu_to_be32(reset);
7634 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7635 }
7636 
7637 /**
7638  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7639  *	@adap: the adapter
7640  *	@mbox: mailbox to use for the FW RESET command (if desired)
7641  *	@force: force uP into RESET even if FW RESET command fails
7642  *
7643  *	Issues a RESET command to firmware (if desired) with a HALT indication
7644  *	and then puts the microprocessor into RESET state.  The RESET command
7645  *	will only be issued if a legitimate mailbox is provided (mbox <=
7646  *	M_PCIE_FW_MASTER).
7647  *
7648  *	This is generally used in order for the host to safely manipulate the
7649  *	adapter without fear of conflicting with whatever the firmware might
7650  *	be doing.  The only way out of this state is to RESTART the firmware
7651  *	...
7652  */
7653 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7654 {
7655 	int ret = 0;
7656 
7657 	/*
7658 	 * If a legitimate mailbox is provided, issue a RESET command
7659 	 * with a HALT indication.
7660 	 */
7661 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7662 		struct fw_reset_cmd c;
7663 
7664 		memset(&c, 0, sizeof(c));
7665 		INIT_CMD(c, RESET, WRITE);
7666 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7667 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7668 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7669 	}
7670 
7671 	/*
7672 	 * Normally we won't complete the operation if the firmware RESET
7673 	 * command fails but if our caller insists we'll go ahead and put the
7674 	 * uP into RESET.  This can be useful if the firmware is hung or even
7675 	 * missing ...  We'll have to take the risk of putting the uP into
7676 	 * RESET without the cooperation of firmware in that case.
7677 	 *
7678 	 * We also force the firmware's HALT flag to be on in case we bypassed
7679 	 * the firmware RESET command above or we're dealing with old firmware
7680 	 * which doesn't have the HALT capability.  This will serve as a flag
7681 	 * for the incoming firmware to know that it's coming out of a HALT
7682 	 * rather than a RESET ... if it's new enough to understand that ...
7683 	 */
7684 	if (ret == 0 || force) {
7685 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7686 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7687 				 F_PCIE_FW_HALT);
7688 	}
7689 
7690 	/*
7691 	 * And we always return the result of the firmware RESET command
7692 	 * even when we force the uP into RESET ...
7693 	 */
7694 	return ret;
7695 }
7696 
7697 /**
7698  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7699  *	@adap: the adapter
7700  *
7701  *	Restart firmware previously halted by t4_fw_halt().  On successful
7702  *	return the previous PF Master remains as the new PF Master and there
7703  *	is no need to issue a new HELLO command, etc.
7704  */
7705 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7706 {
7707 	int ms;
7708 
7709 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7710 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7711 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7712 			return FW_SUCCESS;
7713 		msleep(100);
7714 		ms += 100;
7715 	}
7716 
7717 	return -ETIMEDOUT;
7718 }
7719 
7720 /**
7721  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7722  *	@adap: the adapter
7723  *	@mbox: mailbox to use for the FW RESET command (if desired)
7724  *	@fw_data: the firmware image to write
7725  *	@size: image size
7726  *	@force: force upgrade even if firmware doesn't cooperate
7727  *
7728  *	Perform all of the steps necessary for upgrading an adapter's
7729  *	firmware image.  Normally this requires the cooperation of the
7730  *	existing firmware in order to halt all existing activities
7731  *	but if an invalid mailbox token is passed in we skip that step
7732  *	(though we'll still put the adapter microprocessor into RESET in
7733  *	that case).
7734  *
7735  *	On successful return the new firmware will have been loaded and
7736  *	the adapter will have been fully RESET losing all previous setup
7737  *	state.  On unsuccessful return the adapter may be completely hosed ...
7738  *	positive errno indicates that the adapter is ~probably~ intact, a
7739  *	negative errno indicates that things are looking bad ...
7740  */
7741 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7742 		  const u8 *fw_data, unsigned int size, int force)
7743 {
7744 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7745 	unsigned int bootstrap =
7746 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7747 	int ret;
7748 
7749 	if (!t4_fw_matches_chip(adap, fw_hdr))
7750 		return -EINVAL;
7751 
7752 	if (!bootstrap) {
7753 		ret = t4_fw_halt(adap, mbox, force);
7754 		if (ret < 0 && !force)
7755 			return ret;
7756 	}
7757 
7758 	ret = t4_load_fw(adap, fw_data, size);
7759 	if (ret < 0 || bootstrap)
7760 		return ret;
7761 
7762 	return t4_fw_restart(adap, mbox);
7763 }
7764 
7765 /**
7766  *	t4_fw_initialize - ask FW to initialize the device
7767  *	@adap: the adapter
7768  *	@mbox: mailbox to use for the FW command
7769  *
7770  *	Issues a command to FW to partially initialize the device.  This
7771  *	performs initialization that generally doesn't depend on user input.
7772  */
7773 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7774 {
7775 	struct fw_initialize_cmd c;
7776 
7777 	memset(&c, 0, sizeof(c));
7778 	INIT_CMD(c, INITIALIZE, WRITE);
7779 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7780 }
7781 
7782 /**
7783  *	t4_query_params_rw - query FW or device parameters
7784  *	@adap: the adapter
7785  *	@mbox: mailbox to use for the FW command
7786  *	@pf: the PF
7787  *	@vf: the VF
7788  *	@nparams: the number of parameters
7789  *	@params: the parameter names
7790  *	@val: the parameter values
7791  *	@rw: Write and read flag
7792  *
7793  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7794  *	queried at once.
7795  */
7796 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7797 		       unsigned int vf, unsigned int nparams, const u32 *params,
7798 		       u32 *val, int rw)
7799 {
7800 	int i, ret;
7801 	struct fw_params_cmd c;
7802 	__be32 *p = &c.param[0].mnem;
7803 
7804 	if (nparams > 7)
7805 		return -EINVAL;
7806 
7807 	memset(&c, 0, sizeof(c));
7808 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7809 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7810 				  V_FW_PARAMS_CMD_PFN(pf) |
7811 				  V_FW_PARAMS_CMD_VFN(vf));
7812 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7813 
7814 	for (i = 0; i < nparams; i++) {
7815 		*p++ = cpu_to_be32(*params++);
7816 		if (rw)
7817 			*p = cpu_to_be32(*(val + i));
7818 		p++;
7819 	}
7820 
7821 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7822 	if (ret == 0)
7823 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7824 			*val++ = be32_to_cpu(*p);
7825 	return ret;
7826 }
7827 
7828 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7829 		    unsigned int vf, unsigned int nparams, const u32 *params,
7830 		    u32 *val)
7831 {
7832 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7833 }
7834 
7835 /**
7836  *      t4_set_params_timeout - sets FW or device parameters
7837  *      @adap: the adapter
7838  *      @mbox: mailbox to use for the FW command
7839  *      @pf: the PF
7840  *      @vf: the VF
7841  *      @nparams: the number of parameters
7842  *      @params: the parameter names
7843  *      @val: the parameter values
7844  *      @timeout: the timeout time
7845  *
7846  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7847  *      specified at once.
7848  */
7849 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7850 			  unsigned int pf, unsigned int vf,
7851 			  unsigned int nparams, const u32 *params,
7852 			  const u32 *val, int timeout)
7853 {
7854 	struct fw_params_cmd c;
7855 	__be32 *p = &c.param[0].mnem;
7856 
7857 	if (nparams > 7)
7858 		return -EINVAL;
7859 
7860 	memset(&c, 0, sizeof(c));
7861 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7862 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7863 				  V_FW_PARAMS_CMD_PFN(pf) |
7864 				  V_FW_PARAMS_CMD_VFN(vf));
7865 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7866 
7867 	while (nparams--) {
7868 		*p++ = cpu_to_be32(*params++);
7869 		*p++ = cpu_to_be32(*val++);
7870 	}
7871 
7872 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7873 }
7874 
7875 /**
7876  *	t4_set_params - sets FW or device parameters
7877  *	@adap: the adapter
7878  *	@mbox: mailbox to use for the FW command
7879  *	@pf: the PF
7880  *	@vf: the VF
7881  *	@nparams: the number of parameters
7882  *	@params: the parameter names
7883  *	@val: the parameter values
7884  *
7885  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7886  *	specified at once.
7887  */
7888 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7889 		  unsigned int vf, unsigned int nparams, const u32 *params,
7890 		  const u32 *val)
7891 {
7892 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7893 				     FW_CMD_MAX_TIMEOUT);
7894 }
7895 
7896 /**
7897  *	t4_cfg_pfvf - configure PF/VF resource limits
7898  *	@adap: the adapter
7899  *	@mbox: mailbox to use for the FW command
7900  *	@pf: the PF being configured
7901  *	@vf: the VF being configured
7902  *	@txq: the max number of egress queues
7903  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7904  *	@rxqi: the max number of interrupt-capable ingress queues
7905  *	@rxq: the max number of interruptless ingress queues
7906  *	@tc: the PCI traffic class
7907  *	@vi: the max number of virtual interfaces
7908  *	@cmask: the channel access rights mask for the PF/VF
7909  *	@pmask: the port access rights mask for the PF/VF
7910  *	@nexact: the maximum number of exact MPS filters
7911  *	@rcaps: read capabilities
7912  *	@wxcaps: write/execute capabilities
7913  *
7914  *	Configures resource limits and capabilities for a physical or virtual
7915  *	function.
7916  */
7917 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7918 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7919 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7920 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7921 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7922 {
7923 	struct fw_pfvf_cmd c;
7924 
7925 	memset(&c, 0, sizeof(c));
7926 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7927 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7928 				  V_FW_PFVF_CMD_VFN(vf));
7929 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7930 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7931 				     V_FW_PFVF_CMD_NIQ(rxq));
7932 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7933 				    V_FW_PFVF_CMD_PMASK(pmask) |
7934 				    V_FW_PFVF_CMD_NEQ(txq));
7935 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7936 				      V_FW_PFVF_CMD_NVI(vi) |
7937 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7938 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7939 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7940 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7941 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7942 }
7943 
7944 /**
7945  *	t4_alloc_vi_func - allocate a virtual interface
7946  *	@adap: the adapter
7947  *	@mbox: mailbox to use for the FW command
7948  *	@port: physical port associated with the VI
7949  *	@pf: the PF owning the VI
7950  *	@vf: the VF owning the VI
7951  *	@nmac: number of MAC addresses needed (1 to 5)
7952  *	@mac: the MAC addresses of the VI
7953  *	@rss_size: size of RSS table slice associated with this VI
7954  *	@portfunc: which Port Application Function MAC Address is desired
7955  *	@idstype: Intrusion Detection Type
7956  *
7957  *	Allocates a virtual interface for the given physical port.  If @mac is
7958  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7959  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7960  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7961  *	stored consecutively so the space needed is @nmac * 6 bytes.
7962  *	Returns a negative error number or the non-negative VI id.
7963  */
7964 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7965 		     unsigned int port, unsigned int pf, unsigned int vf,
7966 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7967 		     uint8_t *vfvld, uint16_t *vin,
7968 		     unsigned int portfunc, unsigned int idstype)
7969 {
7970 	int ret;
7971 	struct fw_vi_cmd c;
7972 
7973 	memset(&c, 0, sizeof(c));
7974 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7975 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7976 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7977 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7978 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7979 				     V_FW_VI_CMD_FUNC(portfunc));
7980 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7981 	c.nmac = nmac - 1;
7982 	if(!rss_size)
7983 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7984 
7985 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7986 	if (ret)
7987 		return ret;
7988 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7989 
7990 	if (mac) {
7991 		memcpy(mac, c.mac, sizeof(c.mac));
7992 		switch (nmac) {
7993 		case 5:
7994 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7995 		case 4:
7996 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7997 		case 3:
7998 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7999 		case 2:
8000 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
8001 		}
8002 	}
8003 	if (rss_size)
8004 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
8005 	if (vfvld) {
8006 		*vfvld = adap->params.viid_smt_extn_support ?
8007 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
8008 		    G_FW_VIID_VIVLD(ret);
8009 	}
8010 	if (vin) {
8011 		*vin = adap->params.viid_smt_extn_support ?
8012 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
8013 		    G_FW_VIID_VIN(ret);
8014 	}
8015 
8016 	return ret;
8017 }
8018 
8019 /**
8020  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
8021  *      @adap: the adapter
8022  *      @mbox: mailbox to use for the FW command
8023  *      @port: physical port associated with the VI
8024  *      @pf: the PF owning the VI
8025  *      @vf: the VF owning the VI
8026  *      @nmac: number of MAC addresses needed (1 to 5)
8027  *      @mac: the MAC addresses of the VI
8028  *      @rss_size: size of RSS table slice associated with this VI
8029  *
8030  *	backwards compatible and convieniance routine to allocate a Virtual
8031  *	Interface with a Ethernet Port Application Function and Intrustion
8032  *	Detection System disabled.
8033  */
8034 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8035 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8036 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8037 {
8038 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8039 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8040 }
8041 
8042 /**
8043  * 	t4_free_vi - free a virtual interface
8044  * 	@adap: the adapter
8045  * 	@mbox: mailbox to use for the FW command
8046  * 	@pf: the PF owning the VI
8047  * 	@vf: the VF owning the VI
8048  * 	@viid: virtual interface identifiler
8049  *
8050  * 	Free a previously allocated virtual interface.
8051  */
8052 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8053 	       unsigned int vf, unsigned int viid)
8054 {
8055 	struct fw_vi_cmd c;
8056 
8057 	memset(&c, 0, sizeof(c));
8058 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8059 				  F_FW_CMD_REQUEST |
8060 				  F_FW_CMD_EXEC |
8061 				  V_FW_VI_CMD_PFN(pf) |
8062 				  V_FW_VI_CMD_VFN(vf));
8063 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8064 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8065 
8066 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8067 }
8068 
8069 /**
8070  *	t4_set_rxmode - set Rx properties of a virtual interface
8071  *	@adap: the adapter
8072  *	@mbox: mailbox to use for the FW command
8073  *	@viid: the VI id
8074  *	@mtu: the new MTU or -1
8075  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8076  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8077  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8078  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8079  *	@sleep_ok: if true we may sleep while awaiting command completion
8080  *
8081  *	Sets Rx properties of a virtual interface.
8082  */
8083 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8084 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8085 		  bool sleep_ok)
8086 {
8087 	struct fw_vi_rxmode_cmd c;
8088 
8089 	/* convert to FW values */
8090 	if (mtu < 0)
8091 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8092 	if (promisc < 0)
8093 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8094 	if (all_multi < 0)
8095 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8096 	if (bcast < 0)
8097 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8098 	if (vlanex < 0)
8099 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8100 
8101 	memset(&c, 0, sizeof(c));
8102 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8103 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8104 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8105 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8106 	c.mtu_to_vlanexen =
8107 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8108 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8109 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8110 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8111 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8112 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8113 }
8114 
8115 /**
8116  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8117  *	@adap: the adapter
8118  *	@viid: the VI id
8119  *	@mac: the MAC address
8120  *	@mask: the mask
8121  *	@vni: the VNI id for the tunnel protocol
8122  *	@vni_mask: mask for the VNI id
8123  *	@dip_hit: to enable DIP match for the MPS entry
8124  *	@lookup_type: MAC address for inner (1) or outer (0) header
8125  *	@sleep_ok: call is allowed to sleep
8126  *
8127  *	Allocates an MPS entry with specified MAC address and VNI value.
8128  *
8129  *	Returns a negative error number or the allocated index for this mac.
8130  */
8131 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8132 			    const u8 *addr, const u8 *mask, unsigned int vni,
8133 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8134 			    bool sleep_ok)
8135 {
8136 	struct fw_vi_mac_cmd c;
8137 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8138 	int ret = 0;
8139 	u32 val;
8140 
8141 	memset(&c, 0, sizeof(c));
8142 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8143 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8144 				   V_FW_VI_MAC_CMD_VIID(viid));
8145 	val = V_FW_CMD_LEN16(1) |
8146 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8147 	c.freemacs_to_len16 = cpu_to_be32(val);
8148 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8149 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8150 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8151 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8152 
8153 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8154 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8155 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8156 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8157 
8158 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8159 	if (ret == 0)
8160 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8161 	return ret;
8162 }
8163 
8164 /**
8165  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8166  *	@adap: the adapter
8167  *	@viid: the VI id
8168  *	@mac: the MAC address
8169  *	@mask: the mask
8170  *	@idx: index at which to add this entry
8171  *	@port_id: the port index
8172  *	@lookup_type: MAC address for inner (1) or outer (0) header
8173  *	@sleep_ok: call is allowed to sleep
8174  *
8175  *	Adds the mac entry at the specified index using raw mac interface.
8176  *
8177  *	Returns a negative error number or the allocated index for this mac.
8178  */
8179 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8180 			  const u8 *addr, const u8 *mask, unsigned int idx,
8181 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8182 {
8183 	int ret = 0;
8184 	struct fw_vi_mac_cmd c;
8185 	struct fw_vi_mac_raw *p = &c.u.raw;
8186 	u32 val;
8187 
8188 	memset(&c, 0, sizeof(c));
8189 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8190 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8191 				   V_FW_VI_MAC_CMD_VIID(viid));
8192 	val = V_FW_CMD_LEN16(1) |
8193 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8194 	c.freemacs_to_len16 = cpu_to_be32(val);
8195 
8196 	/* Specify that this is an inner mac address */
8197 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8198 
8199 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8200 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8201 				   V_DATAPORTNUM(port_id));
8202 	/* Lookup mask and port mask */
8203 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8204 				    V_DATAPORTNUM(M_DATAPORTNUM));
8205 
8206 	/* Copy the address and the mask */
8207 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8208 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8209 
8210 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8211 	if (ret == 0) {
8212 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8213 		if (ret != idx)
8214 			ret = -ENOMEM;
8215 	}
8216 
8217 	return ret;
8218 }
8219 
8220 /**
8221  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8222  *	@adap: the adapter
8223  *	@mbox: mailbox to use for the FW command
8224  *	@viid: the VI id
8225  *	@free: if true any existing filters for this VI id are first removed
8226  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8227  *	@addr: the MAC address(es)
8228  *	@idx: where to store the index of each allocated filter
8229  *	@hash: pointer to hash address filter bitmap
8230  *	@sleep_ok: call is allowed to sleep
8231  *
8232  *	Allocates an exact-match filter for each of the supplied addresses and
8233  *	sets it to the corresponding address.  If @idx is not %NULL it should
8234  *	have at least @naddr entries, each of which will be set to the index of
8235  *	the filter allocated for the corresponding MAC address.  If a filter
8236  *	could not be allocated for an address its index is set to 0xffff.
8237  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8238  *	are hashed and update the hash filter bitmap pointed at by @hash.
8239  *
8240  *	Returns a negative error number or the number of filters allocated.
8241  */
8242 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8243 		      unsigned int viid, bool free, unsigned int naddr,
8244 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8245 {
8246 	int offset, ret = 0;
8247 	struct fw_vi_mac_cmd c;
8248 	unsigned int nfilters = 0;
8249 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8250 	unsigned int rem = naddr;
8251 
8252 	if (naddr > max_naddr)
8253 		return -EINVAL;
8254 
8255 	for (offset = 0; offset < naddr ; /**/) {
8256 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8257 					 ? rem
8258 					 : ARRAY_SIZE(c.u.exact));
8259 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8260 						     u.exact[fw_naddr]), 16);
8261 		struct fw_vi_mac_exact *p;
8262 		int i;
8263 
8264 		memset(&c, 0, sizeof(c));
8265 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8266 					   F_FW_CMD_REQUEST |
8267 					   F_FW_CMD_WRITE |
8268 					   V_FW_CMD_EXEC(free) |
8269 					   V_FW_VI_MAC_CMD_VIID(viid));
8270 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8271 						  V_FW_CMD_LEN16(len16));
8272 
8273 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8274 			p->valid_to_idx =
8275 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8276 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8277 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8278 		}
8279 
8280 		/*
8281 		 * It's okay if we run out of space in our MAC address arena.
8282 		 * Some of the addresses we submit may get stored so we need
8283 		 * to run through the reply to see what the results were ...
8284 		 */
8285 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8286 		if (ret && ret != -FW_ENOMEM)
8287 			break;
8288 
8289 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8290 			u16 index = G_FW_VI_MAC_CMD_IDX(
8291 						be16_to_cpu(p->valid_to_idx));
8292 
8293 			if (idx)
8294 				idx[offset+i] = (index >=  max_naddr
8295 						 ? 0xffff
8296 						 : index);
8297 			if (index < max_naddr)
8298 				nfilters++;
8299 			else if (hash)
8300 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8301 		}
8302 
8303 		free = false;
8304 		offset += fw_naddr;
8305 		rem -= fw_naddr;
8306 	}
8307 
8308 	if (ret == 0 || ret == -FW_ENOMEM)
8309 		ret = nfilters;
8310 	return ret;
8311 }
8312 
8313 /**
8314  *	t4_free_encap_mac_filt - frees MPS entry at given index
8315  *	@adap: the adapter
8316  *	@viid: the VI id
8317  *	@idx: index of MPS entry to be freed
8318  *	@sleep_ok: call is allowed to sleep
8319  *
8320  *	Frees the MPS entry at supplied index
8321  *
8322  *	Returns a negative error number or zero on success
8323  */
8324 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8325 			   int idx, bool sleep_ok)
8326 {
8327 	struct fw_vi_mac_exact *p;
8328 	struct fw_vi_mac_cmd c;
8329 	u8 addr[] = {0,0,0,0,0,0};
8330 	int ret = 0;
8331 	u32 exact;
8332 
8333 	memset(&c, 0, sizeof(c));
8334 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8335 				   F_FW_CMD_REQUEST |
8336 				   F_FW_CMD_WRITE |
8337 				   V_FW_CMD_EXEC(0) |
8338 				   V_FW_VI_MAC_CMD_VIID(viid));
8339 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8340 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8341 					  exact |
8342 					  V_FW_CMD_LEN16(1));
8343 	p = c.u.exact;
8344 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8345 				      V_FW_VI_MAC_CMD_IDX(idx));
8346 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8347 
8348 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8349 	return ret;
8350 }
8351 
8352 /**
8353  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8354  *	@adap: the adapter
8355  *	@viid: the VI id
8356  *	@addr: the MAC address
8357  *	@mask: the mask
8358  *	@idx: index of the entry in mps tcam
8359  *	@lookup_type: MAC address for inner (1) or outer (0) header
8360  *	@port_id: the port index
8361  *	@sleep_ok: call is allowed to sleep
8362  *
8363  *	Removes the mac entry at the specified index using raw mac interface.
8364  *
8365  *	Returns a negative error number on failure.
8366  */
8367 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8368 			 const u8 *addr, const u8 *mask, unsigned int idx,
8369 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8370 {
8371 	struct fw_vi_mac_cmd c;
8372 	struct fw_vi_mac_raw *p = &c.u.raw;
8373 	u32 raw;
8374 
8375 	memset(&c, 0, sizeof(c));
8376 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8377 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8378 				   V_FW_CMD_EXEC(0) |
8379 				   V_FW_VI_MAC_CMD_VIID(viid));
8380 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8381 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8382 					  raw |
8383 					  V_FW_CMD_LEN16(1));
8384 
8385 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8386 				     FW_VI_MAC_ID_BASED_FREE);
8387 
8388 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8389 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8390 				   V_DATAPORTNUM(port_id));
8391 	/* Lookup mask and port mask */
8392 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8393 				    V_DATAPORTNUM(M_DATAPORTNUM));
8394 
8395 	/* Copy the address and the mask */
8396 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8397 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8398 
8399 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8400 }
8401 
8402 /**
8403  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8404  *	@adap: the adapter
8405  *	@mbox: mailbox to use for the FW command
8406  *	@viid: the VI id
8407  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8408  *	@addr: the MAC address(es)
8409  *	@sleep_ok: call is allowed to sleep
8410  *
8411  *	Frees the exact-match filter for each of the supplied addresses
8412  *
8413  *	Returns a negative error number or the number of filters freed.
8414  */
8415 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8416 		      unsigned int viid, unsigned int naddr,
8417 		      const u8 **addr, bool sleep_ok)
8418 {
8419 	int offset, ret = 0;
8420 	struct fw_vi_mac_cmd c;
8421 	unsigned int nfilters = 0;
8422 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8423 	unsigned int rem = naddr;
8424 
8425 	if (naddr > max_naddr)
8426 		return -EINVAL;
8427 
8428 	for (offset = 0; offset < (int)naddr ; /**/) {
8429 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8430 					 ? rem
8431 					 : ARRAY_SIZE(c.u.exact));
8432 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8433 						     u.exact[fw_naddr]), 16);
8434 		struct fw_vi_mac_exact *p;
8435 		int i;
8436 
8437 		memset(&c, 0, sizeof(c));
8438 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8439 				     F_FW_CMD_REQUEST |
8440 				     F_FW_CMD_WRITE |
8441 				     V_FW_CMD_EXEC(0) |
8442 				     V_FW_VI_MAC_CMD_VIID(viid));
8443 		c.freemacs_to_len16 =
8444 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8445 					    V_FW_CMD_LEN16(len16));
8446 
8447 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8448 			p->valid_to_idx = cpu_to_be16(
8449 				F_FW_VI_MAC_CMD_VALID |
8450 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8451 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8452 		}
8453 
8454 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8455 		if (ret)
8456 			break;
8457 
8458 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8459 			u16 index = G_FW_VI_MAC_CMD_IDX(
8460 						be16_to_cpu(p->valid_to_idx));
8461 
8462 			if (index < max_naddr)
8463 				nfilters++;
8464 		}
8465 
8466 		offset += fw_naddr;
8467 		rem -= fw_naddr;
8468 	}
8469 
8470 	if (ret == 0)
8471 		ret = nfilters;
8472 	return ret;
8473 }
8474 
8475 /**
8476  *	t4_change_mac - modifies the exact-match filter for a MAC address
8477  *	@adap: the adapter
8478  *	@mbox: mailbox to use for the FW command
8479  *	@viid: the VI id
8480  *	@idx: index of existing filter for old value of MAC address, or -1
8481  *	@addr: the new MAC address value
8482  *	@persist: whether a new MAC allocation should be persistent
8483  *	@smt_idx: add MAC to SMT and return its index, or NULL
8484  *
8485  *	Modifies an exact-match filter and sets it to the new MAC address if
8486  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8487  *	latter case the address is added persistently if @persist is %true.
8488  *
8489  *	Note that in general it is not possible to modify the value of a given
8490  *	filter so the generic way to modify an address filter is to free the one
8491  *	being used by the old address value and allocate a new filter for the
8492  *	new address value.
8493  *
8494  *	Returns a negative error number or the index of the filter with the new
8495  *	MAC value.  Note that this index may differ from @idx.
8496  */
8497 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8498 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8499 {
8500 	int ret, mode;
8501 	struct fw_vi_mac_cmd c;
8502 	struct fw_vi_mac_exact *p = c.u.exact;
8503 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8504 
8505 	if (idx < 0)		/* new allocation */
8506 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8507 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8508 
8509 	memset(&c, 0, sizeof(c));
8510 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8511 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8512 				   V_FW_VI_MAC_CMD_VIID(viid));
8513 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8514 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8515 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8516 				      V_FW_VI_MAC_CMD_IDX(idx));
8517 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8518 
8519 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8520 	if (ret == 0) {
8521 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8522 		if (ret >= max_mac_addr)
8523 			ret = -ENOMEM;
8524 		if (smt_idx) {
8525 			if (adap->params.viid_smt_extn_support)
8526 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8527 			else {
8528 				if (chip_id(adap) <= CHELSIO_T5)
8529 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8530 				else
8531 					*smt_idx = viid & M_FW_VIID_VIN;
8532 			}
8533 		}
8534 	}
8535 	return ret;
8536 }
8537 
8538 /**
8539  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8540  *	@adap: the adapter
8541  *	@mbox: mailbox to use for the FW command
8542  *	@viid: the VI id
8543  *	@ucast: whether the hash filter should also match unicast addresses
8544  *	@vec: the value to be written to the hash filter
8545  *	@sleep_ok: call is allowed to sleep
8546  *
8547  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8548  */
8549 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8550 		     bool ucast, u64 vec, bool sleep_ok)
8551 {
8552 	struct fw_vi_mac_cmd c;
8553 	u32 val;
8554 
8555 	memset(&c, 0, sizeof(c));
8556 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8557 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8558 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8559 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8560 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8561 	c.freemacs_to_len16 = cpu_to_be32(val);
8562 	c.u.hash.hashvec = cpu_to_be64(vec);
8563 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8564 }
8565 
8566 /**
8567  *      t4_enable_vi_params - enable/disable a virtual interface
8568  *      @adap: the adapter
8569  *      @mbox: mailbox to use for the FW command
8570  *      @viid: the VI id
8571  *      @rx_en: 1=enable Rx, 0=disable Rx
8572  *      @tx_en: 1=enable Tx, 0=disable Tx
8573  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8574  *
8575  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8576  *      only makes sense when enabling a Virtual Interface ...
8577  */
8578 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8579 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8580 {
8581 	struct fw_vi_enable_cmd c;
8582 
8583 	memset(&c, 0, sizeof(c));
8584 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8585 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8586 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8587 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8588 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8589 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8590 				     FW_LEN16(c));
8591 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8592 }
8593 
8594 /**
8595  *	t4_enable_vi - enable/disable a virtual interface
8596  *	@adap: the adapter
8597  *	@mbox: mailbox to use for the FW command
8598  *	@viid: the VI id
8599  *	@rx_en: 1=enable Rx, 0=disable Rx
8600  *	@tx_en: 1=enable Tx, 0=disable Tx
8601  *
8602  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8603  *	only makes sense when enabling a Virtual Interface ...
8604  */
8605 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8606 		 bool rx_en, bool tx_en)
8607 {
8608 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8609 }
8610 
8611 /**
8612  *	t4_identify_port - identify a VI's port by blinking its LED
8613  *	@adap: the adapter
8614  *	@mbox: mailbox to use for the FW command
8615  *	@viid: the VI id
8616  *	@nblinks: how many times to blink LED at 2.5 Hz
8617  *
8618  *	Identifies a VI's port by blinking its LED.
8619  */
8620 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8621 		     unsigned int nblinks)
8622 {
8623 	struct fw_vi_enable_cmd c;
8624 
8625 	memset(&c, 0, sizeof(c));
8626 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8627 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8628 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8629 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8630 	c.blinkdur = cpu_to_be16(nblinks);
8631 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8632 }
8633 
8634 /**
8635  *	t4_iq_stop - stop an ingress queue and its FLs
8636  *	@adap: the adapter
8637  *	@mbox: mailbox to use for the FW command
8638  *	@pf: the PF owning the queues
8639  *	@vf: the VF owning the queues
8640  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8641  *	@iqid: ingress queue id
8642  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8643  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8644  *
8645  *	Stops an ingress queue and its associated FLs, if any.  This causes
8646  *	any current or future data/messages destined for these queues to be
8647  *	tossed.
8648  */
8649 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8650 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8651 	       unsigned int fl0id, unsigned int fl1id)
8652 {
8653 	struct fw_iq_cmd c;
8654 
8655 	memset(&c, 0, sizeof(c));
8656 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8657 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8658 				  V_FW_IQ_CMD_VFN(vf));
8659 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8660 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8661 	c.iqid = cpu_to_be16(iqid);
8662 	c.fl0id = cpu_to_be16(fl0id);
8663 	c.fl1id = cpu_to_be16(fl1id);
8664 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8665 }
8666 
8667 /**
8668  *	t4_iq_free - free an ingress queue and its FLs
8669  *	@adap: the adapter
8670  *	@mbox: mailbox to use for the FW command
8671  *	@pf: the PF owning the queues
8672  *	@vf: the VF owning the queues
8673  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8674  *	@iqid: ingress queue id
8675  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8676  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8677  *
8678  *	Frees an ingress queue and its associated FLs, if any.
8679  */
8680 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8681 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8682 	       unsigned int fl0id, unsigned int fl1id)
8683 {
8684 	struct fw_iq_cmd c;
8685 
8686 	memset(&c, 0, sizeof(c));
8687 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8688 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8689 				  V_FW_IQ_CMD_VFN(vf));
8690 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8691 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8692 	c.iqid = cpu_to_be16(iqid);
8693 	c.fl0id = cpu_to_be16(fl0id);
8694 	c.fl1id = cpu_to_be16(fl1id);
8695 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8696 }
8697 
8698 /**
8699  *	t4_eth_eq_stop - stop an Ethernet egress queue
8700  *	@adap: the adapter
8701  *	@mbox: mailbox to use for the FW command
8702  *	@pf: the PF owning the queues
8703  *	@vf: the VF owning the queues
8704  *	@eqid: egress queue id
8705  *
8706  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8707  *	freed but is not otherwise functional after this call.
8708  */
8709 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8710                    unsigned int vf, unsigned int eqid)
8711 {
8712 	struct fw_eq_eth_cmd c;
8713 
8714 	memset(&c, 0, sizeof(c));
8715 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8716 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8717 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8718 				  V_FW_EQ_ETH_CMD_VFN(vf));
8719 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8720 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8721 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8722 }
8723 
8724 /**
8725  *	t4_eth_eq_free - free an Ethernet egress queue
8726  *	@adap: the adapter
8727  *	@mbox: mailbox to use for the FW command
8728  *	@pf: the PF owning the queue
8729  *	@vf: the VF owning the queue
8730  *	@eqid: egress queue id
8731  *
8732  *	Frees an Ethernet egress queue.
8733  */
8734 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8735 		   unsigned int vf, unsigned int eqid)
8736 {
8737 	struct fw_eq_eth_cmd c;
8738 
8739 	memset(&c, 0, sizeof(c));
8740 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8741 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8742 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8743 				  V_FW_EQ_ETH_CMD_VFN(vf));
8744 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8745 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8746 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8747 }
8748 
8749 /**
8750  *	t4_ctrl_eq_free - free a control egress queue
8751  *	@adap: the adapter
8752  *	@mbox: mailbox to use for the FW command
8753  *	@pf: the PF owning the queue
8754  *	@vf: the VF owning the queue
8755  *	@eqid: egress queue id
8756  *
8757  *	Frees a control egress queue.
8758  */
8759 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8760 		    unsigned int vf, unsigned int eqid)
8761 {
8762 	struct fw_eq_ctrl_cmd c;
8763 
8764 	memset(&c, 0, sizeof(c));
8765 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8766 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8767 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8768 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8769 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8770 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8771 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8772 }
8773 
8774 /**
8775  *	t4_ofld_eq_free - free an offload egress queue
8776  *	@adap: the adapter
8777  *	@mbox: mailbox to use for the FW command
8778  *	@pf: the PF owning the queue
8779  *	@vf: the VF owning the queue
8780  *	@eqid: egress queue id
8781  *
8782  *	Frees a control egress queue.
8783  */
8784 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8785 		    unsigned int vf, unsigned int eqid)
8786 {
8787 	struct fw_eq_ofld_cmd c;
8788 
8789 	memset(&c, 0, sizeof(c));
8790 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8791 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8792 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8793 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8794 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8795 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8796 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8797 }
8798 
8799 /**
8800  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8801  *	@link_down_rc: Link Down Reason Code
8802  *
8803  *	Returns a string representation of the Link Down Reason Code.
8804  */
8805 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8806 {
8807 	static const char *reason[] = {
8808 		"Link Down",
8809 		"Remote Fault",
8810 		"Auto-negotiation Failure",
8811 		"Reserved3",
8812 		"Insufficient Airflow",
8813 		"Unable To Determine Reason",
8814 		"No RX Signal Detected",
8815 		"Reserved7",
8816 	};
8817 
8818 	if (link_down_rc >= ARRAY_SIZE(reason))
8819 		return "Bad Reason Code";
8820 
8821 	return reason[link_down_rc];
8822 }
8823 
8824 /*
8825  * Return the highest speed set in the port capabilities, in Mb/s.
8826  */
8827 unsigned int fwcap_to_speed(uint32_t caps)
8828 {
8829 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8830 		do { \
8831 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8832 				return __speed; \
8833 		} while (0)
8834 
8835 	TEST_SPEED_RETURN(400G, 400000);
8836 	TEST_SPEED_RETURN(200G, 200000);
8837 	TEST_SPEED_RETURN(100G, 100000);
8838 	TEST_SPEED_RETURN(50G,   50000);
8839 	TEST_SPEED_RETURN(40G,   40000);
8840 	TEST_SPEED_RETURN(25G,   25000);
8841 	TEST_SPEED_RETURN(10G,   10000);
8842 	TEST_SPEED_RETURN(1G,     1000);
8843 	TEST_SPEED_RETURN(100M,    100);
8844 
8845 	#undef TEST_SPEED_RETURN
8846 
8847 	return 0;
8848 }
8849 
8850 /*
8851  * Return the port capabilities bit for the given speed, which is in Mb/s.
8852  */
8853 uint32_t speed_to_fwcap(unsigned int speed)
8854 {
8855 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8856 		do { \
8857 			if (speed == __speed) \
8858 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8859 		} while (0)
8860 
8861 	TEST_SPEED_RETURN(400G, 400000);
8862 	TEST_SPEED_RETURN(200G, 200000);
8863 	TEST_SPEED_RETURN(100G, 100000);
8864 	TEST_SPEED_RETURN(50G,   50000);
8865 	TEST_SPEED_RETURN(40G,   40000);
8866 	TEST_SPEED_RETURN(25G,   25000);
8867 	TEST_SPEED_RETURN(10G,   10000);
8868 	TEST_SPEED_RETURN(1G,     1000);
8869 	TEST_SPEED_RETURN(100M,    100);
8870 
8871 	#undef TEST_SPEED_RETURN
8872 
8873 	return 0;
8874 }
8875 
8876 /*
8877  * Return the port capabilities bit for the highest speed in the capabilities.
8878  */
8879 uint32_t fwcap_top_speed(uint32_t caps)
8880 {
8881 	#define TEST_SPEED_RETURN(__caps_speed) \
8882 		do { \
8883 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8884 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8885 		} while (0)
8886 
8887 	TEST_SPEED_RETURN(400G);
8888 	TEST_SPEED_RETURN(200G);
8889 	TEST_SPEED_RETURN(100G);
8890 	TEST_SPEED_RETURN(50G);
8891 	TEST_SPEED_RETURN(40G);
8892 	TEST_SPEED_RETURN(25G);
8893 	TEST_SPEED_RETURN(10G);
8894 	TEST_SPEED_RETURN(1G);
8895 	TEST_SPEED_RETURN(100M);
8896 
8897 	#undef TEST_SPEED_RETURN
8898 
8899 	return 0;
8900 }
8901 
8902 /**
8903  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8904  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8905  *
8906  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8907  *	32-bit Port Capabilities value.
8908  */
8909 static uint32_t lstatus_to_fwcap(u32 lstatus)
8910 {
8911 	uint32_t linkattr = 0;
8912 
8913 	/*
8914 	 * Unfortunately the format of the Link Status in the old
8915 	 * 16-bit Port Information message isn't the same as the
8916 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8917 	 */
8918 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8919 		linkattr |= FW_PORT_CAP32_FC_RX;
8920 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8921 		linkattr |= FW_PORT_CAP32_FC_TX;
8922 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8923 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8924 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8925 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8926 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8927 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8928 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8929 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8930 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8931 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8932 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8933 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8934 
8935 	return linkattr;
8936 }
8937 
8938 /*
8939  * Updates all fields owned by the common code in port_info and link_config
8940  * based on information provided by the firmware.  Does not touch any
8941  * requested_* field.
8942  */
8943 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8944     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8945 {
8946 	struct link_config old_lc, *lc = &pi->link_cfg;
8947 	unsigned char fc;
8948 	u32 stat, linkattr;
8949 	int old_ptype, old_mtype;
8950 
8951 	old_ptype = pi->port_type;
8952 	old_mtype = pi->mod_type;
8953 	old_lc = *lc;
8954 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8955 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8956 
8957 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8958 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8959 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8960 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8961 
8962 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8963 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8964 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8965 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8966 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8967 
8968 		linkattr = lstatus_to_fwcap(stat);
8969 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8970 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8971 
8972 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8973 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8974 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8975 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8976 
8977 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8978 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8979 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8980 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8981 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8982 
8983 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8984 	} else {
8985 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8986 		return;
8987 	}
8988 
8989 	lc->speed = fwcap_to_speed(linkattr);
8990 	lc->fec = fwcap_to_fec(linkattr, true);
8991 
8992 	fc = 0;
8993 	if (linkattr & FW_PORT_CAP32_FC_RX)
8994 		fc |= PAUSE_RX;
8995 	if (linkattr & FW_PORT_CAP32_FC_TX)
8996 		fc |= PAUSE_TX;
8997 	lc->fc = fc;
8998 
8999 	if (mod_changed != NULL)
9000 		*mod_changed = false;
9001 	if (link_changed != NULL)
9002 		*link_changed = false;
9003 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
9004 	    old_lc.pcaps != lc->pcaps) {
9005 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
9006 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
9007 		if (mod_changed != NULL)
9008 			*mod_changed = true;
9009 	}
9010 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
9011 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
9012 		if (link_changed != NULL)
9013 			*link_changed = true;
9014 	}
9015 }
9016 
9017 /**
9018  *	t4_update_port_info - retrieve and update port information if changed
9019  *	@pi: the port_info
9020  *
9021  *	We issue a Get Port Information Command to the Firmware and, if
9022  *	successful, we check to see if anything is different from what we
9023  *	last recorded and update things accordingly.
9024  */
9025  int t4_update_port_info(struct port_info *pi)
9026  {
9027 	struct adapter *sc = pi->adapter;
9028 	struct fw_port_cmd cmd;
9029 	enum fw_port_action action;
9030 	int ret;
9031 
9032 	memset(&cmd, 0, sizeof(cmd));
9033 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9034 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9035 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9036 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9037 	    FW_PORT_ACTION_GET_PORT_INFO;
9038 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9039 	    FW_LEN16(cmd));
9040 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9041 	if (ret)
9042 		return ret;
9043 
9044 	handle_port_info(pi, &cmd, action, NULL, NULL);
9045 	return 0;
9046 }
9047 
9048 /**
9049  *	t4_handle_fw_rpl - process a FW reply message
9050  *	@adap: the adapter
9051  *	@rpl: start of the FW message
9052  *
9053  *	Processes a FW message, such as link state change messages.
9054  */
9055 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9056 {
9057 	u8 opcode = *(const u8 *)rpl;
9058 	const struct fw_port_cmd *p = (const void *)rpl;
9059 	enum fw_port_action action =
9060 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9061 	bool mod_changed, link_changed;
9062 
9063 	if (opcode == FW_PORT_CMD &&
9064 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9065 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9066 		/* link/module state change message */
9067 		int i;
9068 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9069 		struct port_info *pi = NULL;
9070 
9071 		for_each_port(adap, i) {
9072 			pi = adap2pinfo(adap, i);
9073 			if (pi->tx_chan == chan)
9074 				break;
9075 		}
9076 
9077 		PORT_LOCK(pi);
9078 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9079 		PORT_UNLOCK(pi);
9080 		if (mod_changed)
9081 			t4_os_portmod_changed(pi);
9082 		if (link_changed) {
9083 			PORT_LOCK(pi);
9084 			t4_os_link_changed(pi);
9085 			PORT_UNLOCK(pi);
9086 		}
9087 	} else {
9088 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9089 		return -EINVAL;
9090 	}
9091 	return 0;
9092 }
9093 
9094 /**
9095  *	get_pci_mode - determine a card's PCI mode
9096  *	@adapter: the adapter
9097  *	@p: where to store the PCI settings
9098  *
9099  *	Determines a card's PCI mode and associated parameters, such as speed
9100  *	and width.
9101  */
9102 static void get_pci_mode(struct adapter *adapter,
9103 				   struct pci_params *p)
9104 {
9105 	u16 val;
9106 	u32 pcie_cap;
9107 
9108 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9109 	if (pcie_cap) {
9110 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9111 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9112 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9113 	}
9114 }
9115 
9116 struct flash_desc {
9117 	u32 vendor_and_model_id;
9118 	u32 size_mb;
9119 };
9120 
9121 int t4_get_flash_params(struct adapter *adapter)
9122 {
9123 	/*
9124 	 * Table for non-standard supported Flash parts.  Note, all Flash
9125 	 * parts must have 64KB sectors.
9126 	 */
9127 	static struct flash_desc supported_flash[] = {
9128 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9129 	};
9130 
9131 	int ret;
9132 	u32 flashid = 0;
9133 	unsigned int part, manufacturer;
9134 	unsigned int density, size = 0;
9135 
9136 
9137 	/*
9138 	 * Issue a Read ID Command to the Flash part.  We decode supported
9139 	 * Flash parts and their sizes from this.  There's a newer Query
9140 	 * Command which can retrieve detailed geometry information but many
9141 	 * Flash parts don't support it.
9142 	 */
9143 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9144 	if (!ret)
9145 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9146 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9147 	if (ret < 0)
9148 		return ret;
9149 
9150 	/*
9151 	 * Check to see if it's one of our non-standard supported Flash parts.
9152 	 */
9153 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9154 		if (supported_flash[part].vendor_and_model_id == flashid) {
9155 			adapter->params.sf_size =
9156 				supported_flash[part].size_mb;
9157 			adapter->params.sf_nsec =
9158 				adapter->params.sf_size / SF_SEC_SIZE;
9159 			goto found;
9160 		}
9161 
9162 	/*
9163 	 * Decode Flash part size.  The code below looks repetative with
9164 	 * common encodings, but that's not guaranteed in the JEDEC
9165 	 * specification for the Read JADEC ID command.  The only thing that
9166 	 * we're guaranteed by the JADEC specification is where the
9167 	 * Manufacturer ID is in the returned result.  After that each
9168 	 * Manufacturer ~could~ encode things completely differently.
9169 	 * Note, all Flash parts must have 64KB sectors.
9170 	 */
9171 	manufacturer = flashid & 0xff;
9172 	switch (manufacturer) {
9173 	case 0x20: /* Micron/Numonix */
9174 		/*
9175 		 * This Density -> Size decoding table is taken from Micron
9176 		 * Data Sheets.
9177 		 */
9178 		density = (flashid >> 16) & 0xff;
9179 		switch (density) {
9180 		case 0x14: size = 1 << 20; break; /*   1MB */
9181 		case 0x15: size = 1 << 21; break; /*   2MB */
9182 		case 0x16: size = 1 << 22; break; /*   4MB */
9183 		case 0x17: size = 1 << 23; break; /*   8MB */
9184 		case 0x18: size = 1 << 24; break; /*  16MB */
9185 		case 0x19: size = 1 << 25; break; /*  32MB */
9186 		case 0x20: size = 1 << 26; break; /*  64MB */
9187 		case 0x21: size = 1 << 27; break; /* 128MB */
9188 		case 0x22: size = 1 << 28; break; /* 256MB */
9189 		}
9190 		break;
9191 
9192 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9193 		/*
9194 		 * This Density -> Size decoding table is taken from ISSI
9195 		 * Data Sheets.
9196 		 */
9197 		density = (flashid >> 16) & 0xff;
9198 		switch (density) {
9199 		case 0x16: size = 1 << 25; break; /*  32MB */
9200 		case 0x17: size = 1 << 26; break; /*  64MB */
9201 		}
9202 		break;
9203 
9204 	case 0xc2: /* Macronix */
9205 		/*
9206 		 * This Density -> Size decoding table is taken from Macronix
9207 		 * Data Sheets.
9208 		 */
9209 		density = (flashid >> 16) & 0xff;
9210 		switch (density) {
9211 		case 0x17: size = 1 << 23; break; /*   8MB */
9212 		case 0x18: size = 1 << 24; break; /*  16MB */
9213 		}
9214 		break;
9215 
9216 	case 0xef: /* Winbond */
9217 		/*
9218 		 * This Density -> Size decoding table is taken from Winbond
9219 		 * Data Sheets.
9220 		 */
9221 		density = (flashid >> 16) & 0xff;
9222 		switch (density) {
9223 		case 0x17: size = 1 << 23; break; /*   8MB */
9224 		case 0x18: size = 1 << 24; break; /*  16MB */
9225 		}
9226 		break;
9227 	}
9228 
9229 	/* If we didn't recognize the FLASH part, that's no real issue: the
9230 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9231 	 * use a FLASH part which is at least 4MB in size and has 64KB
9232 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9233 	 * than 4MB, but that's all we really need.
9234 	 */
9235 	if (size == 0) {
9236 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9237 		size = 1 << 22;
9238 	}
9239 
9240 	/*
9241 	 * Store decoded Flash size and fall through into vetting code.
9242 	 */
9243 	adapter->params.sf_size = size;
9244 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9245 
9246  found:
9247 	/*
9248 	 * We should ~probably~ reject adapters with FLASHes which are too
9249 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9250 	 * still like to use.  So instead we emit a scary message ...
9251 	 */
9252 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9253 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9254 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9255 
9256 	return 0;
9257 }
9258 
9259 static void set_pcie_completion_timeout(struct adapter *adapter,
9260 						  u8 range)
9261 {
9262 	u16 val;
9263 	u32 pcie_cap;
9264 
9265 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9266 	if (pcie_cap) {
9267 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9268 		val &= 0xfff0;
9269 		val |= range ;
9270 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9271 	}
9272 }
9273 
9274 const struct chip_params *t4_get_chip_params(int chipid)
9275 {
9276 	static const struct chip_params chip_params[] = {
9277 		{
9278 			/* T4 */
9279 			.nchan = NCHAN,
9280 			.pm_stats_cnt = PM_NSTATS,
9281 			.cng_ch_bits_log = 2,
9282 			.nsched_cls = 15,
9283 			.cim_num_obq = CIM_NUM_OBQ,
9284 			.filter_opt_len = FILTER_OPT_LEN,
9285 			.mps_rplc_size = 128,
9286 			.vfcount = 128,
9287 			.sge_fl_db = F_DBPRIO,
9288 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9289 			.rss_nentries = RSS_NENTRIES,
9290 		},
9291 		{
9292 			/* T5 */
9293 			.nchan = NCHAN,
9294 			.pm_stats_cnt = PM_NSTATS,
9295 			.cng_ch_bits_log = 2,
9296 			.nsched_cls = 16,
9297 			.cim_num_obq = CIM_NUM_OBQ_T5,
9298 			.filter_opt_len = T5_FILTER_OPT_LEN,
9299 			.mps_rplc_size = 128,
9300 			.vfcount = 128,
9301 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9302 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9303 			.rss_nentries = RSS_NENTRIES,
9304 		},
9305 		{
9306 			/* T6 */
9307 			.nchan = T6_NCHAN,
9308 			.pm_stats_cnt = T6_PM_NSTATS,
9309 			.cng_ch_bits_log = 3,
9310 			.nsched_cls = 16,
9311 			.cim_num_obq = CIM_NUM_OBQ_T5,
9312 			.filter_opt_len = T5_FILTER_OPT_LEN,
9313 			.mps_rplc_size = 256,
9314 			.vfcount = 256,
9315 			.sge_fl_db = 0,
9316 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9317 			.rss_nentries = T6_RSS_NENTRIES,
9318 		},
9319 	};
9320 
9321 	chipid -= CHELSIO_T4;
9322 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9323 		return NULL;
9324 
9325 	return &chip_params[chipid];
9326 }
9327 
9328 /**
9329  *	t4_prep_adapter - prepare SW and HW for operation
9330  *	@adapter: the adapter
9331  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9332  *
9333  *	Initialize adapter SW state for the various HW modules, set initial
9334  *	values for some adapter tunables, take PHYs out of reset, and
9335  *	initialize the MDIO interface.
9336  */
9337 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9338 {
9339 	int ret;
9340 	uint16_t device_id;
9341 	uint32_t pl_rev;
9342 
9343 	get_pci_mode(adapter, &adapter->params.pci);
9344 
9345 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9346 	adapter->params.chipid = G_CHIPID(pl_rev);
9347 	adapter->params.rev = G_REV(pl_rev);
9348 	if (adapter->params.chipid == 0) {
9349 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9350 		adapter->params.chipid = CHELSIO_T4;
9351 
9352 		/* T4A1 chip is not supported */
9353 		if (adapter->params.rev == 1) {
9354 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9355 			return -EINVAL;
9356 		}
9357 	}
9358 
9359 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9360 	if (adapter->chip_params == NULL)
9361 		return -EINVAL;
9362 
9363 	adapter->params.pci.vpd_cap_addr =
9364 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9365 
9366 	ret = t4_get_flash_params(adapter);
9367 	if (ret < 0)
9368 		return ret;
9369 
9370 	/* Cards with real ASICs have the chipid in the PCIe device id */
9371 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9372 	if (device_id >> 12 == chip_id(adapter))
9373 		adapter->params.cim_la_size = CIMLA_SIZE;
9374 	else {
9375 		/* FPGA */
9376 		adapter->params.fpga = 1;
9377 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9378 	}
9379 
9380 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9381 	if (ret < 0)
9382 		return ret;
9383 
9384 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9385 
9386 	/*
9387 	 * Default port and clock for debugging in case we can't reach FW.
9388 	 */
9389 	adapter->params.nports = 1;
9390 	adapter->params.portvec = 1;
9391 	adapter->params.vpd.cclk = 50000;
9392 
9393 	/* Set pci completion timeout value to 4 seconds. */
9394 	set_pcie_completion_timeout(adapter, 0xd);
9395 	return 0;
9396 }
9397 
9398 /**
9399  *	t4_shutdown_adapter - shut down adapter, host & wire
9400  *	@adapter: the adapter
9401  *
9402  *	Perform an emergency shutdown of the adapter and stop it from
9403  *	continuing any further communication on the ports or DMA to the
9404  *	host.  This is typically used when the adapter and/or firmware
9405  *	have crashed and we want to prevent any further accidental
9406  *	communication with the rest of the world.  This will also force
9407  *	the port Link Status to go down -- if register writes work --
9408  *	which should help our peers figure out that we're down.
9409  */
9410 int t4_shutdown_adapter(struct adapter *adapter)
9411 {
9412 	int port;
9413 	const bool bt = adapter->bt_map != 0;
9414 
9415 	t4_intr_disable(adapter);
9416 	if (bt)
9417 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
9418 	for_each_port(adapter, port) {
9419 		u32 a_port_cfg = is_t4(adapter) ?
9420 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9421 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9422 
9423 		t4_write_reg(adapter, a_port_cfg,
9424 			     t4_read_reg(adapter, a_port_cfg)
9425 			     & ~V_SIGNAL_DET(1));
9426 		if (!bt) {
9427 			u32 hss_cfg0 = is_t4(adapter) ?
9428 					 PORT_REG(port, A_XGMAC_PORT_HSS_CFG0) :
9429 					 T5_PORT_REG(port, A_MAC_PORT_HSS_CFG0);
9430 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
9431 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
9432 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
9433 			    F_HSSPLLBYPA);
9434 		}
9435 	}
9436 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9437 
9438 	return 0;
9439 }
9440 
9441 /**
9442  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9443  *	@adapter: the adapter
9444  *	@qid: the Queue ID
9445  *	@qtype: the Ingress or Egress type for @qid
9446  *	@user: true if this request is for a user mode queue
9447  *	@pbar2_qoffset: BAR2 Queue Offset
9448  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9449  *
9450  *	Returns the BAR2 SGE Queue Registers information associated with the
9451  *	indicated Absolute Queue ID.  These are passed back in return value
9452  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9453  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9454  *
9455  *	This may return an error which indicates that BAR2 SGE Queue
9456  *	registers aren't available.  If an error is not returned, then the
9457  *	following values are returned:
9458  *
9459  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9460  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9461  *
9462  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9463  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9464  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9465  *	then these "Inferred Queue ID" register may not be used.
9466  */
9467 int t4_bar2_sge_qregs(struct adapter *adapter,
9468 		      unsigned int qid,
9469 		      enum t4_bar2_qtype qtype,
9470 		      int user,
9471 		      u64 *pbar2_qoffset,
9472 		      unsigned int *pbar2_qid)
9473 {
9474 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9475 	u64 bar2_page_offset, bar2_qoffset;
9476 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9477 
9478 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9479 	 * mode queues.
9480 	 */
9481 	if (!user && is_t4(adapter))
9482 		return -EINVAL;
9483 
9484 	/* Get our SGE Page Size parameters.
9485 	 */
9486 	page_shift = adapter->params.sge.page_shift;
9487 	page_size = 1 << page_shift;
9488 
9489 	/* Get the right Queues per Page parameters for our Queue.
9490 	 */
9491 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9492 		     ? adapter->params.sge.eq_s_qpp
9493 		     : adapter->params.sge.iq_s_qpp);
9494 	qpp_mask = (1 << qpp_shift) - 1;
9495 
9496 	/* Calculate the basics of the BAR2 SGE Queue register area:
9497 	 *  o The BAR2 page the Queue registers will be in.
9498 	 *  o The BAR2 Queue ID.
9499 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9500 	 */
9501 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9502 	bar2_qid = qid & qpp_mask;
9503 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9504 
9505 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9506 	 * hardware will infer the Absolute Queue ID simply from the writes to
9507 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9508 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9509 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9510 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9511 	 * from the BAR2 Page and BAR2 Queue ID.
9512 	 *
9513 	 * One important censequence of this is that some BAR2 SGE registers
9514 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9515 	 * there.  But other registers synthesize the SGE Queue ID purely
9516 	 * from the writes to the registers -- the Write Combined Doorbell
9517 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9518 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9519 	 * Queue ID can be inferred from simple writes.
9520 	 */
9521 	bar2_qoffset = bar2_page_offset;
9522 	bar2_qinferred = (bar2_qid_offset < page_size);
9523 	if (bar2_qinferred) {
9524 		bar2_qoffset += bar2_qid_offset;
9525 		bar2_qid = 0;
9526 	}
9527 
9528 	*pbar2_qoffset = bar2_qoffset;
9529 	*pbar2_qid = bar2_qid;
9530 	return 0;
9531 }
9532 
9533 /**
9534  *	t4_init_devlog_params - initialize adapter->params.devlog
9535  *	@adap: the adapter
9536  *	@fw_attach: whether we can talk to the firmware
9537  *
9538  *	Initialize various fields of the adapter's Firmware Device Log
9539  *	Parameters structure.
9540  */
9541 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9542 {
9543 	struct devlog_params *dparams = &adap->params.devlog;
9544 	u32 pf_dparams;
9545 	unsigned int devlog_meminfo;
9546 	struct fw_devlog_cmd devlog_cmd;
9547 	int ret;
9548 
9549 	/* If we're dealing with newer firmware, the Device Log Paramerters
9550 	 * are stored in a designated register which allows us to access the
9551 	 * Device Log even if we can't talk to the firmware.
9552 	 */
9553 	pf_dparams =
9554 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9555 	if (pf_dparams) {
9556 		unsigned int nentries, nentries128;
9557 
9558 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9559 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9560 
9561 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9562 		nentries = (nentries128 + 1) * 128;
9563 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9564 
9565 		return 0;
9566 	}
9567 
9568 	/*
9569 	 * For any failing returns ...
9570 	 */
9571 	memset(dparams, 0, sizeof *dparams);
9572 
9573 	/*
9574 	 * If we can't talk to the firmware, there's really nothing we can do
9575 	 * at this point.
9576 	 */
9577 	if (!fw_attach)
9578 		return -ENXIO;
9579 
9580 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9581 	 */
9582 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9583 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9584 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9585 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9586 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9587 			 &devlog_cmd);
9588 	if (ret)
9589 		return ret;
9590 
9591 	devlog_meminfo =
9592 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9593 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9594 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9595 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9596 
9597 	return 0;
9598 }
9599 
9600 /**
9601  *	t4_init_sge_params - initialize adap->params.sge
9602  *	@adapter: the adapter
9603  *
9604  *	Initialize various fields of the adapter's SGE Parameters structure.
9605  */
9606 int t4_init_sge_params(struct adapter *adapter)
9607 {
9608 	u32 r;
9609 	struct sge_params *sp = &adapter->params.sge;
9610 	unsigned i, tscale = 1;
9611 
9612 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9613 	sp->counter_val[0] = G_THRESHOLD_0(r);
9614 	sp->counter_val[1] = G_THRESHOLD_1(r);
9615 	sp->counter_val[2] = G_THRESHOLD_2(r);
9616 	sp->counter_val[3] = G_THRESHOLD_3(r);
9617 
9618 	if (chip_id(adapter) >= CHELSIO_T6) {
9619 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9620 		tscale = G_TSCALE(r);
9621 		if (tscale == 0)
9622 			tscale = 1;
9623 		else
9624 			tscale += 2;
9625 	}
9626 
9627 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9628 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9629 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9630 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9631 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9632 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9633 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9634 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9635 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9636 
9637 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9638 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9639 	if (is_t4(adapter))
9640 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9641 	else if (is_t5(adapter))
9642 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9643 	else
9644 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9645 
9646 	/* egress queues: log2 of # of doorbells per BAR2 page */
9647 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9648 	r >>= S_QUEUESPERPAGEPF0 +
9649 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9650 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9651 
9652 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9653 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9654 	r >>= S_QUEUESPERPAGEPF0 +
9655 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9656 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9657 
9658 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9659 	r >>= S_HOSTPAGESIZEPF0 +
9660 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9661 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9662 
9663 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9664 	sp->sge_control = r;
9665 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9666 	sp->fl_pktshift = G_PKTSHIFT(r);
9667 	if (chip_id(adapter) <= CHELSIO_T5) {
9668 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9669 		    X_INGPADBOUNDARY_SHIFT);
9670 	} else {
9671 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9672 		    X_T6_INGPADBOUNDARY_SHIFT);
9673 	}
9674 	if (is_t4(adapter))
9675 		sp->pack_boundary = sp->pad_boundary;
9676 	else {
9677 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9678 		if (G_INGPACKBOUNDARY(r) == 0)
9679 			sp->pack_boundary = 16;
9680 		else
9681 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9682 	}
9683 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9684 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9685 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9686 
9687 	return 0;
9688 }
9689 
9690 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9691 static inline uint16_t
9692 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9693 {
9694 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9695 	int i;
9696 	uint16_t filter_mask;
9697 	uint64_t mask;		/* field mask */
9698 
9699 	filter_mask = 0;
9700 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9701 		if ((filter_mode & (1 << i)) == 0)
9702 			continue;
9703 		mask = (1 << width[i]) - 1;
9704 		if ((hashmask & mask) == mask)
9705 			filter_mask |= 1 << i;
9706 		hashmask >>= width[i];
9707 	}
9708 
9709 	return (filter_mask);
9710 }
9711 
9712 /*
9713  * Read and cache the adapter's compressed filter mode and ingress config.
9714  */
9715 static void
9716 read_filter_mode_and_ingress_config(struct adapter *adap)
9717 {
9718 	int rc;
9719 	uint32_t v, param[2], val[2];
9720 	struct tp_params *tpp = &adap->params.tp;
9721 	uint64_t hash_mask;
9722 
9723 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9724 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9725 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9726 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9727 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9728 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9729 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9730 	if (rc == 0) {
9731 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9732 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9733 		tpp->vnic_mode = val[1];
9734 	} else {
9735 		/*
9736 		 * Old firmware.  Read filter mode/mask and ingress config
9737 		 * straight from the hardware.
9738 		 */
9739 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9740 		tpp->filter_mode = v & 0xffff;
9741 
9742 		hash_mask = 0;
9743 		if (chip_id(adap) > CHELSIO_T4) {
9744 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9745 			hash_mask = v;
9746 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9747 			hash_mask |= (u64)v << 32;
9748 		}
9749 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9750 		    tpp->filter_mode);
9751 
9752 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9753 		if (v & F_VNIC)
9754 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9755 		else
9756 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9757 	}
9758 
9759 	/*
9760 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9761 	 * shift positions of several elements of the Compressed Filter Tuple
9762 	 * for this adapter which we need frequently ...
9763 	 */
9764 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9765 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9766 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9767 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9768 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9769 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9770 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9771 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9772 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9773 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9774 }
9775 
9776 /**
9777  *      t4_init_tp_params - initialize adap->params.tp
9778  *      @adap: the adapter
9779  *
9780  *      Initialize various fields of the adapter's TP Parameters structure.
9781  */
9782 int t4_init_tp_params(struct adapter *adap)
9783 {
9784 	int chan;
9785 	u32 tx_len, rx_len, r, v;
9786 	struct tp_params *tpp = &adap->params.tp;
9787 
9788 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9789 	tpp->tre = G_TIMERRESOLUTION(v);
9790 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9791 
9792 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9793 	for (chan = 0; chan < MAX_NCHAN; chan++)
9794 		tpp->tx_modq[chan] = chan;
9795 
9796 	read_filter_mode_and_ingress_config(adap);
9797 
9798 	if (chip_id(adap) > CHELSIO_T5) {
9799 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9800 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9801 	} else
9802 		tpp->rx_pkt_encap = false;
9803 
9804 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9805 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9806 
9807 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9808 	rx_len = min(rx_len, G_MAXRXDATA(r));
9809 	tx_len = min(tx_len, G_MAXRXDATA(r));
9810 
9811 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9812 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9813 	rx_len = min(rx_len, v);
9814 	tx_len = min(tx_len, v);
9815 
9816 	tpp->max_tx_pdu = tx_len;
9817 	tpp->max_rx_pdu = rx_len;
9818 
9819 	return 0;
9820 }
9821 
9822 /**
9823  *      t4_filter_field_shift - calculate filter field shift
9824  *      @adap: the adapter
9825  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9826  *
9827  *      Return the shift position of a filter field within the Compressed
9828  *      Filter Tuple.  The filter field is specified via its selection bit
9829  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9830  */
9831 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9832 {
9833 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9834 	unsigned int sel;
9835 	int field_shift;
9836 
9837 	if ((filter_mode & filter_sel) == 0)
9838 		return -1;
9839 
9840 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9841 		switch (filter_mode & sel) {
9842 		case F_FCOE:
9843 			field_shift += W_FT_FCOE;
9844 			break;
9845 		case F_PORT:
9846 			field_shift += W_FT_PORT;
9847 			break;
9848 		case F_VNIC_ID:
9849 			field_shift += W_FT_VNIC_ID;
9850 			break;
9851 		case F_VLAN:
9852 			field_shift += W_FT_VLAN;
9853 			break;
9854 		case F_TOS:
9855 			field_shift += W_FT_TOS;
9856 			break;
9857 		case F_PROTOCOL:
9858 			field_shift += W_FT_PROTOCOL;
9859 			break;
9860 		case F_ETHERTYPE:
9861 			field_shift += W_FT_ETHERTYPE;
9862 			break;
9863 		case F_MACMATCH:
9864 			field_shift += W_FT_MACMATCH;
9865 			break;
9866 		case F_MPSHITTYPE:
9867 			field_shift += W_FT_MPSHITTYPE;
9868 			break;
9869 		case F_FRAGMENTATION:
9870 			field_shift += W_FT_FRAGMENTATION;
9871 			break;
9872 		}
9873 	}
9874 	return field_shift;
9875 }
9876 
9877 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9878 {
9879 	u8 addr[6];
9880 	int ret, i, j;
9881 	struct port_info *p = adap2pinfo(adap, port_id);
9882 	u32 param, val;
9883 	struct vi_info *vi = &p->vi[0];
9884 
9885 	for (i = 0, j = -1; i <= p->port_id; i++) {
9886 		do {
9887 			j++;
9888 		} while ((adap->params.portvec & (1 << j)) == 0);
9889 	}
9890 
9891 	p->tx_chan = j;
9892 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9893 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9894 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9895 	p->lport = j;
9896 
9897 	if (!(adap->flags & IS_VF) ||
9898 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9899  		t4_update_port_info(p);
9900 	}
9901 
9902 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9903 	    &vi->vfvld, &vi->vin);
9904 	if (ret < 0)
9905 		return ret;
9906 
9907 	vi->viid = ret;
9908 	t4_os_set_hw_addr(p, addr);
9909 
9910 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9911 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9912 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9913 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9914 	if (ret)
9915 		vi->rss_base = 0xffff;
9916 	else {
9917 		/* MPASS((val >> 16) == rss_size); */
9918 		vi->rss_base = val & 0xffff;
9919 	}
9920 
9921 	return 0;
9922 }
9923 
9924 /**
9925  *	t4_read_cimq_cfg - read CIM queue configuration
9926  *	@adap: the adapter
9927  *	@base: holds the queue base addresses in bytes
9928  *	@size: holds the queue sizes in bytes
9929  *	@thres: holds the queue full thresholds in bytes
9930  *
9931  *	Returns the current configuration of the CIM queues, starting with
9932  *	the IBQs, then the OBQs.
9933  */
9934 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9935 {
9936 	unsigned int i, v;
9937 	int cim_num_obq = adap->chip_params->cim_num_obq;
9938 
9939 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9940 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9941 			     V_QUENUMSELECT(i));
9942 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9943 		/* value is in 256-byte units */
9944 		*base++ = G_CIMQBASE(v) * 256;
9945 		*size++ = G_CIMQSIZE(v) * 256;
9946 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9947 	}
9948 	for (i = 0; i < cim_num_obq; i++) {
9949 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9950 			     V_QUENUMSELECT(i));
9951 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9952 		/* value is in 256-byte units */
9953 		*base++ = G_CIMQBASE(v) * 256;
9954 		*size++ = G_CIMQSIZE(v) * 256;
9955 	}
9956 }
9957 
9958 /**
9959  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9960  *	@adap: the adapter
9961  *	@qid: the queue index
9962  *	@data: where to store the queue contents
9963  *	@n: capacity of @data in 32-bit words
9964  *
9965  *	Reads the contents of the selected CIM queue starting at address 0 up
9966  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9967  *	error and the number of 32-bit words actually read on success.
9968  */
9969 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9970 {
9971 	int i, err, attempts;
9972 	unsigned int addr;
9973 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9974 
9975 	if (qid > 5 || (n & 3))
9976 		return -EINVAL;
9977 
9978 	addr = qid * nwords;
9979 	if (n > nwords)
9980 		n = nwords;
9981 
9982 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9983 	 * Wait for 1 Sec with a delay of 1 usec.
9984 	 */
9985 	attempts = 1000000;
9986 
9987 	for (i = 0; i < n; i++, addr++) {
9988 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9989 			     F_IBQDBGEN);
9990 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9991 				      attempts, 1);
9992 		if (err)
9993 			return err;
9994 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9995 	}
9996 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9997 	return i;
9998 }
9999 
10000 /**
10001  *	t4_read_cim_obq - read the contents of a CIM outbound queue
10002  *	@adap: the adapter
10003  *	@qid: the queue index
10004  *	@data: where to store the queue contents
10005  *	@n: capacity of @data in 32-bit words
10006  *
10007  *	Reads the contents of the selected CIM queue starting at address 0 up
10008  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
10009  *	error and the number of 32-bit words actually read on success.
10010  */
10011 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
10012 {
10013 	int i, err;
10014 	unsigned int addr, v, nwords;
10015 	int cim_num_obq = adap->chip_params->cim_num_obq;
10016 
10017 	if ((qid > (cim_num_obq - 1)) || (n & 3))
10018 		return -EINVAL;
10019 
10020 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
10021 		     V_QUENUMSELECT(qid));
10022 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
10023 
10024 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
10025 	nwords = G_CIMQSIZE(v) * 64;  /* same */
10026 	if (n > nwords)
10027 		n = nwords;
10028 
10029 	for (i = 0; i < n; i++, addr++) {
10030 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10031 			     F_OBQDBGEN);
10032 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10033 				      2, 1);
10034 		if (err)
10035 			return err;
10036 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10037 	}
10038 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10039 	return i;
10040 }
10041 
10042 enum {
10043 	CIM_QCTL_BASE     = 0,
10044 	CIM_CTL_BASE      = 0x2000,
10045 	CIM_PBT_ADDR_BASE = 0x2800,
10046 	CIM_PBT_LRF_BASE  = 0x3000,
10047 	CIM_PBT_DATA_BASE = 0x3800
10048 };
10049 
10050 /**
10051  *	t4_cim_read - read a block from CIM internal address space
10052  *	@adap: the adapter
10053  *	@addr: the start address within the CIM address space
10054  *	@n: number of words to read
10055  *	@valp: where to store the result
10056  *
10057  *	Reads a block of 4-byte words from the CIM intenal address space.
10058  */
10059 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10060 		unsigned int *valp)
10061 {
10062 	int ret = 0;
10063 
10064 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10065 		return -EBUSY;
10066 
10067 	for ( ; !ret && n--; addr += 4) {
10068 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10069 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10070 				      0, 5, 2);
10071 		if (!ret)
10072 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10073 	}
10074 	return ret;
10075 }
10076 
10077 /**
10078  *	t4_cim_write - write a block into CIM internal address space
10079  *	@adap: the adapter
10080  *	@addr: the start address within the CIM address space
10081  *	@n: number of words to write
10082  *	@valp: set of values to write
10083  *
10084  *	Writes a block of 4-byte words into the CIM intenal address space.
10085  */
10086 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10087 		 const unsigned int *valp)
10088 {
10089 	int ret = 0;
10090 
10091 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10092 		return -EBUSY;
10093 
10094 	for ( ; !ret && n--; addr += 4) {
10095 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10096 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10097 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10098 				      0, 5, 2);
10099 	}
10100 	return ret;
10101 }
10102 
10103 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10104 			 unsigned int val)
10105 {
10106 	return t4_cim_write(adap, addr, 1, &val);
10107 }
10108 
10109 /**
10110  *	t4_cim_ctl_read - read a block from CIM control region
10111  *	@adap: the adapter
10112  *	@addr: the start address within the CIM control region
10113  *	@n: number of words to read
10114  *	@valp: where to store the result
10115  *
10116  *	Reads a block of 4-byte words from the CIM control region.
10117  */
10118 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10119 		    unsigned int *valp)
10120 {
10121 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10122 }
10123 
10124 /**
10125  *	t4_cim_read_la - read CIM LA capture buffer
10126  *	@adap: the adapter
10127  *	@la_buf: where to store the LA data
10128  *	@wrptr: the HW write pointer within the capture buffer
10129  *
10130  *	Reads the contents of the CIM LA buffer with the most recent entry at
10131  *	the end	of the returned data and with the entry at @wrptr first.
10132  *	We try to leave the LA in the running state we find it in.
10133  */
10134 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10135 {
10136 	int i, ret;
10137 	unsigned int cfg, val, idx;
10138 
10139 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10140 	if (ret)
10141 		return ret;
10142 
10143 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10144 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10145 		if (ret)
10146 			return ret;
10147 	}
10148 
10149 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10150 	if (ret)
10151 		goto restart;
10152 
10153 	idx = G_UPDBGLAWRPTR(val);
10154 	if (wrptr)
10155 		*wrptr = idx;
10156 
10157 	for (i = 0; i < adap->params.cim_la_size; i++) {
10158 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10159 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10160 		if (ret)
10161 			break;
10162 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10163 		if (ret)
10164 			break;
10165 		if (val & F_UPDBGLARDEN) {
10166 			ret = -ETIMEDOUT;
10167 			break;
10168 		}
10169 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10170 		if (ret)
10171 			break;
10172 
10173 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10174 		 * identify the 32-bit portion of the full 312-bit data
10175 		 */
10176 		if (is_t6(adap) && (idx & 0xf) >= 9)
10177 			idx = (idx & 0xff0) + 0x10;
10178 		else
10179 			idx++;
10180 		/* address can't exceed 0xfff */
10181 		idx &= M_UPDBGLARDPTR;
10182 	}
10183 restart:
10184 	if (cfg & F_UPDBGLAEN) {
10185 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10186 				      cfg & ~F_UPDBGLARDEN);
10187 		if (!ret)
10188 			ret = r;
10189 	}
10190 	return ret;
10191 }
10192 
10193 /**
10194  *	t4_tp_read_la - read TP LA capture buffer
10195  *	@adap: the adapter
10196  *	@la_buf: where to store the LA data
10197  *	@wrptr: the HW write pointer within the capture buffer
10198  *
10199  *	Reads the contents of the TP LA buffer with the most recent entry at
10200  *	the end	of the returned data and with the entry at @wrptr first.
10201  *	We leave the LA in the running state we find it in.
10202  */
10203 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10204 {
10205 	bool last_incomplete;
10206 	unsigned int i, cfg, val, idx;
10207 
10208 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10209 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10210 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10211 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10212 
10213 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10214 	idx = G_DBGLAWPTR(val);
10215 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10216 	if (last_incomplete)
10217 		idx = (idx + 1) & M_DBGLARPTR;
10218 	if (wrptr)
10219 		*wrptr = idx;
10220 
10221 	val &= 0xffff;
10222 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10223 	val |= adap->params.tp.la_mask;
10224 
10225 	for (i = 0; i < TPLA_SIZE; i++) {
10226 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10227 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10228 		idx = (idx + 1) & M_DBGLARPTR;
10229 	}
10230 
10231 	/* Wipe out last entry if it isn't valid */
10232 	if (last_incomplete)
10233 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10234 
10235 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10236 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10237 			     cfg | adap->params.tp.la_mask);
10238 }
10239 
10240 /*
10241  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10242  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10243  * state for more than the Warning Threshold then we'll issue a warning about
10244  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10245  * appears to be hung every Warning Repeat second till the situation clears.
10246  * If the situation clears, we'll note that as well.
10247  */
10248 #define SGE_IDMA_WARN_THRESH 1
10249 #define SGE_IDMA_WARN_REPEAT 300
10250 
10251 /**
10252  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10253  *	@adapter: the adapter
10254  *	@idma: the adapter IDMA Monitor state
10255  *
10256  *	Initialize the state of an SGE Ingress DMA Monitor.
10257  */
10258 void t4_idma_monitor_init(struct adapter *adapter,
10259 			  struct sge_idma_monitor_state *idma)
10260 {
10261 	/* Initialize the state variables for detecting an SGE Ingress DMA
10262 	 * hang.  The SGE has internal counters which count up on each clock
10263 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10264 	 * same state they were on the previous clock tick.  The clock used is
10265 	 * the Core Clock so we have a limit on the maximum "time" they can
10266 	 * record; typically a very small number of seconds.  For instance,
10267 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10268 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10269 	 * risk of having the "timers" overflow and give us the flexibility to
10270 	 * maintain a Hung SGE State Machine of our own which operates across
10271 	 * a longer time frame.
10272 	 */
10273 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10274 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10275 }
10276 
10277 /**
10278  *	t4_idma_monitor - monitor SGE Ingress DMA state
10279  *	@adapter: the adapter
10280  *	@idma: the adapter IDMA Monitor state
10281  *	@hz: number of ticks/second
10282  *	@ticks: number of ticks since the last IDMA Monitor call
10283  */
10284 void t4_idma_monitor(struct adapter *adapter,
10285 		     struct sge_idma_monitor_state *idma,
10286 		     int hz, int ticks)
10287 {
10288 	int i, idma_same_state_cnt[2];
10289 
10290 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10291 	  * are counters inside the SGE which count up on each clock when the
10292 	  * SGE finds its Ingress DMA State Engines in the same states they
10293 	  * were in the previous clock.  The counters will peg out at
10294 	  * 0xffffffff without wrapping around so once they pass the 1s
10295 	  * threshold they'll stay above that till the IDMA state changes.
10296 	  */
10297 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10298 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10299 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10300 
10301 	for (i = 0; i < 2; i++) {
10302 		u32 debug0, debug11;
10303 
10304 		/* If the Ingress DMA Same State Counter ("timer") is less
10305 		 * than 1s, then we can reset our synthesized Stall Timer and
10306 		 * continue.  If we have previously emitted warnings about a
10307 		 * potential stalled Ingress Queue, issue a note indicating
10308 		 * that the Ingress Queue has resumed forward progress.
10309 		 */
10310 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10311 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10312 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10313 					"resumed after %d seconds\n",
10314 					i, idma->idma_qid[i],
10315 					idma->idma_stalled[i]/hz);
10316 			idma->idma_stalled[i] = 0;
10317 			continue;
10318 		}
10319 
10320 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10321 		 * domain.  The first time we get here it'll be because we
10322 		 * passed the 1s Threshold; each additional time it'll be
10323 		 * because the RX Timer Callback is being fired on its regular
10324 		 * schedule.
10325 		 *
10326 		 * If the stall is below our Potential Hung Ingress Queue
10327 		 * Warning Threshold, continue.
10328 		 */
10329 		if (idma->idma_stalled[i] == 0) {
10330 			idma->idma_stalled[i] = hz;
10331 			idma->idma_warn[i] = 0;
10332 		} else {
10333 			idma->idma_stalled[i] += ticks;
10334 			idma->idma_warn[i] -= ticks;
10335 		}
10336 
10337 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10338 			continue;
10339 
10340 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10341 		 */
10342 		if (idma->idma_warn[i] > 0)
10343 			continue;
10344 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10345 
10346 		/* Read and save the SGE IDMA State and Queue ID information.
10347 		 * We do this every time in case it changes across time ...
10348 		 * can't be too careful ...
10349 		 */
10350 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10351 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10352 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10353 
10354 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10355 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10356 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10357 
10358 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10359 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10360 			i, idma->idma_qid[i], idma->idma_state[i],
10361 			idma->idma_stalled[i]/hz,
10362 			debug0, debug11);
10363 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10364 	}
10365 }
10366 
10367 /**
10368  *     t4_set_vf_mac - Set MAC address for the specified VF
10369  *     @adapter: The adapter
10370  *     @pf: the PF used to instantiate the VFs
10371  *     @vf: one of the VFs instantiated by the specified PF
10372  *     @naddr: the number of MAC addresses
10373  *     @addr: the MAC address(es) to be set to the specified VF
10374  */
10375 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10376 		  unsigned int naddr, u8 *addr)
10377 {
10378 	struct fw_acl_mac_cmd cmd;
10379 
10380 	memset(&cmd, 0, sizeof(cmd));
10381 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10382 				    F_FW_CMD_REQUEST |
10383 				    F_FW_CMD_WRITE |
10384 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10385 				    V_FW_ACL_MAC_CMD_VFN(vf));
10386 
10387 	/* Note: Do not enable the ACL */
10388 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10389 	cmd.nmac = naddr;
10390 
10391 	switch (pf) {
10392 	case 3:
10393 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10394 		break;
10395 	case 2:
10396 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10397 		break;
10398 	case 1:
10399 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10400 		break;
10401 	case 0:
10402 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10403 		break;
10404 	}
10405 
10406 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10407 }
10408 
10409 /**
10410  *	t4_read_pace_tbl - read the pace table
10411  *	@adap: the adapter
10412  *	@pace_vals: holds the returned values
10413  *
10414  *	Returns the values of TP's pace table in microseconds.
10415  */
10416 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10417 {
10418 	unsigned int i, v;
10419 
10420 	for (i = 0; i < NTX_SCHED; i++) {
10421 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10422 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10423 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10424 	}
10425 }
10426 
10427 /**
10428  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10429  *	@adap: the adapter
10430  *	@sched: the scheduler index
10431  *	@kbps: the byte rate in Kbps
10432  *	@ipg: the interpacket delay in tenths of nanoseconds
10433  *
10434  *	Return the current configuration of a HW Tx scheduler.
10435  */
10436 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10437 		     unsigned int *ipg, bool sleep_ok)
10438 {
10439 	unsigned int v, addr, bpt, cpt;
10440 
10441 	if (kbps) {
10442 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10443 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10444 		if (sched & 1)
10445 			v >>= 16;
10446 		bpt = (v >> 8) & 0xff;
10447 		cpt = v & 0xff;
10448 		if (!cpt)
10449 			*kbps = 0;	/* scheduler disabled */
10450 		else {
10451 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10452 			*kbps = (v * bpt) / 125;
10453 		}
10454 	}
10455 	if (ipg) {
10456 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10457 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10458 		if (sched & 1)
10459 			v >>= 16;
10460 		v &= 0xffff;
10461 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10462 	}
10463 }
10464 
10465 /**
10466  *	t4_load_cfg - download config file
10467  *	@adap: the adapter
10468  *	@cfg_data: the cfg text file to write
10469  *	@size: text file size
10470  *
10471  *	Write the supplied config text file to the card's serial flash.
10472  */
10473 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10474 {
10475 	int ret, i, n, cfg_addr;
10476 	unsigned int addr;
10477 	unsigned int flash_cfg_start_sec;
10478 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10479 
10480 	cfg_addr = t4_flash_cfg_addr(adap);
10481 	if (cfg_addr < 0)
10482 		return cfg_addr;
10483 
10484 	addr = cfg_addr;
10485 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10486 
10487 	if (size > FLASH_CFG_MAX_SIZE) {
10488 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10489 		       FLASH_CFG_MAX_SIZE);
10490 		return -EFBIG;
10491 	}
10492 
10493 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10494 			 sf_sec_size);
10495 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10496 				     flash_cfg_start_sec + i - 1);
10497 	/*
10498 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10499 	 * with the on-adapter Firmware Configuration File.
10500 	 */
10501 	if (ret || size == 0)
10502 		goto out;
10503 
10504 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10505 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10506 		if ( (size - i) <  SF_PAGE_SIZE)
10507 			n = size - i;
10508 		else
10509 			n = SF_PAGE_SIZE;
10510 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10511 		if (ret)
10512 			goto out;
10513 
10514 		addr += SF_PAGE_SIZE;
10515 		cfg_data += SF_PAGE_SIZE;
10516 	}
10517 
10518 out:
10519 	if (ret)
10520 		CH_ERR(adap, "config file %s failed %d\n",
10521 		       (size == 0 ? "clear" : "download"), ret);
10522 	return ret;
10523 }
10524 
10525 /**
10526  *	t5_fw_init_extern_mem - initialize the external memory
10527  *	@adap: the adapter
10528  *
10529  *	Initializes the external memory on T5.
10530  */
10531 int t5_fw_init_extern_mem(struct adapter *adap)
10532 {
10533 	u32 params[1], val[1];
10534 	int ret;
10535 
10536 	if (!is_t5(adap))
10537 		return 0;
10538 
10539 	val[0] = 0xff; /* Initialize all MCs */
10540 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10541 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10542 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10543 			FW_CMD_MAX_TIMEOUT);
10544 
10545 	return ret;
10546 }
10547 
10548 /* BIOS boot headers */
10549 typedef struct pci_expansion_rom_header {
10550 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10551 	u8	reserved[22]; /* Reserved per processor Architecture data */
10552 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10553 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10554 
10555 /* Legacy PCI Expansion ROM Header */
10556 typedef struct legacy_pci_expansion_rom_header {
10557 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10558 	u8	size512; /* Current Image Size in units of 512 bytes */
10559 	u8	initentry_point[4];
10560 	u8	cksum; /* Checksum computed on the entire Image */
10561 	u8	reserved[16]; /* Reserved */
10562 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10563 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10564 
10565 /* EFI PCI Expansion ROM Header */
10566 typedef struct efi_pci_expansion_rom_header {
10567 	u8	signature[2]; // ROM signature. The value 0xaa55
10568 	u8	initialization_size[2]; /* Units 512. Includes this header */
10569 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10570 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10571 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10572 	u8	compression_type[2]; /* Compression type. */
10573 		/*
10574 		 * Compression type definition
10575 		 * 0x0: uncompressed
10576 		 * 0x1: Compressed
10577 		 * 0x2-0xFFFF: Reserved
10578 		 */
10579 	u8	reserved[8]; /* Reserved */
10580 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10581 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10582 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10583 
10584 /* PCI Data Structure Format */
10585 typedef struct pcir_data_structure { /* PCI Data Structure */
10586 	u8	signature[4]; /* Signature. The string "PCIR" */
10587 	u8	vendor_id[2]; /* Vendor Identification */
10588 	u8	device_id[2]; /* Device Identification */
10589 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10590 	u8	length[2]; /* PCIR Data Structure Length */
10591 	u8	revision; /* PCIR Data Structure Revision */
10592 	u8	class_code[3]; /* Class Code */
10593 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10594 	u8	code_revision[2]; /* Revision Level of Code/Data */
10595 	u8	code_type; /* Code Type. */
10596 		/*
10597 		 * PCI Expansion ROM Code Types
10598 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10599 		 * 0x01: Open Firmware standard for PCI. FCODE
10600 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10601 		 * 0x03: EFI Image. EFI
10602 		 * 0x04-0xFF: Reserved.
10603 		 */
10604 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10605 	u8	reserved[2]; /* Reserved */
10606 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10607 
10608 /* BOOT constants */
10609 enum {
10610 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10611 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10612 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10613 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10614 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10615 	VENDOR_ID = 0x1425, /* Vendor ID */
10616 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10617 };
10618 
10619 /*
10620  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10621  *	@adatper: the device ID to write.
10622  *	@boot_data: the boot image to modify.
10623  *
10624  *	Write the supplied device ID to the boot BIOS image.
10625  */
10626 static void modify_device_id(int device_id, u8 *boot_data)
10627 {
10628 	legacy_pci_exp_rom_header_t *header;
10629 	pcir_data_t *pcir_header;
10630 	u32 cur_header = 0;
10631 
10632 	/*
10633 	 * Loop through all chained images and change the device ID's
10634 	 */
10635 	while (1) {
10636 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10637 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10638 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10639 
10640 		/*
10641 		 * Only modify the Device ID if code type is Legacy or HP.
10642 		 * 0x00: Okay to modify
10643 		 * 0x01: FCODE. Do not be modify
10644 		 * 0x03: Okay to modify
10645 		 * 0x04-0xFF: Do not modify
10646 		 */
10647 		if (pcir_header->code_type == 0x00) {
10648 			u8 csum = 0;
10649 			int i;
10650 
10651 			/*
10652 			 * Modify Device ID to match current adatper
10653 			 */
10654 			*(u16*) pcir_header->device_id = device_id;
10655 
10656 			/*
10657 			 * Set checksum temporarily to 0.
10658 			 * We will recalculate it later.
10659 			 */
10660 			header->cksum = 0x0;
10661 
10662 			/*
10663 			 * Calculate and update checksum
10664 			 */
10665 			for (i = 0; i < (header->size512 * 512); i++)
10666 				csum += (u8)boot_data[cur_header + i];
10667 
10668 			/*
10669 			 * Invert summed value to create the checksum
10670 			 * Writing new checksum value directly to the boot data
10671 			 */
10672 			boot_data[cur_header + 7] = -csum;
10673 
10674 		} else if (pcir_header->code_type == 0x03) {
10675 
10676 			/*
10677 			 * Modify Device ID to match current adatper
10678 			 */
10679 			*(u16*) pcir_header->device_id = device_id;
10680 
10681 		}
10682 
10683 
10684 		/*
10685 		 * Check indicator element to identify if this is the last
10686 		 * image in the ROM.
10687 		 */
10688 		if (pcir_header->indicator & 0x80)
10689 			break;
10690 
10691 		/*
10692 		 * Move header pointer up to the next image in the ROM.
10693 		 */
10694 		cur_header += header->size512 * 512;
10695 	}
10696 }
10697 
10698 /*
10699  *	t4_load_boot - download boot flash
10700  *	@adapter: the adapter
10701  *	@boot_data: the boot image to write
10702  *	@boot_addr: offset in flash to write boot_data
10703  *	@size: image size
10704  *
10705  *	Write the supplied boot image to the card's serial flash.
10706  *	The boot image has the following sections: a 28-byte header and the
10707  *	boot image.
10708  */
10709 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10710 		 unsigned int boot_addr, unsigned int size)
10711 {
10712 	pci_exp_rom_header_t *header;
10713 	int pcir_offset ;
10714 	pcir_data_t *pcir_header;
10715 	int ret, addr;
10716 	uint16_t device_id;
10717 	unsigned int i;
10718 	unsigned int boot_sector = (boot_addr * 1024 );
10719 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10720 
10721 	/*
10722 	 * Make sure the boot image does not encroach on the firmware region
10723 	 */
10724 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10725 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10726 		return -EFBIG;
10727 	}
10728 
10729 	/*
10730 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10731 	 * and Boot configuration data sections. These 3 boot sections span
10732 	 * sectors 0 to 7 in flash and live right before the FW image location.
10733 	 */
10734 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10735 			sf_sec_size);
10736 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10737 				     (boot_sector >> 16) + i - 1);
10738 
10739 	/*
10740 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10741 	 * with the on-adapter option ROM file
10742 	 */
10743 	if (ret || (size == 0))
10744 		goto out;
10745 
10746 	/* Get boot header */
10747 	header = (pci_exp_rom_header_t *)boot_data;
10748 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10749 	/* PCIR Data Structure */
10750 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10751 
10752 	/*
10753 	 * Perform some primitive sanity testing to avoid accidentally
10754 	 * writing garbage over the boot sectors.  We ought to check for
10755 	 * more but it's not worth it for now ...
10756 	 */
10757 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10758 		CH_ERR(adap, "boot image too small/large\n");
10759 		return -EFBIG;
10760 	}
10761 
10762 #ifndef CHELSIO_T4_DIAGS
10763 	/*
10764 	 * Check BOOT ROM header signature
10765 	 */
10766 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10767 		CH_ERR(adap, "Boot image missing signature\n");
10768 		return -EINVAL;
10769 	}
10770 
10771 	/*
10772 	 * Check PCI header signature
10773 	 */
10774 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10775 		CH_ERR(adap, "PCI header missing signature\n");
10776 		return -EINVAL;
10777 	}
10778 
10779 	/*
10780 	 * Check Vendor ID matches Chelsio ID
10781 	 */
10782 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10783 		CH_ERR(adap, "Vendor ID missing signature\n");
10784 		return -EINVAL;
10785 	}
10786 #endif
10787 
10788 	/*
10789 	 * Retrieve adapter's device ID
10790 	 */
10791 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10792 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10793 	device_id = device_id & 0xf0ff;
10794 
10795 	/*
10796 	 * Check PCIE Device ID
10797 	 */
10798 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10799 		/*
10800 		 * Change the device ID in the Boot BIOS image to match
10801 		 * the Device ID of the current adapter.
10802 		 */
10803 		modify_device_id(device_id, boot_data);
10804 	}
10805 
10806 	/*
10807 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10808 	 * we finish copying the rest of the boot image. This will ensure
10809 	 * that the BIOS boot header will only be written if the boot image
10810 	 * was written in full.
10811 	 */
10812 	addr = boot_sector;
10813 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10814 		addr += SF_PAGE_SIZE;
10815 		boot_data += SF_PAGE_SIZE;
10816 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10817 		if (ret)
10818 			goto out;
10819 	}
10820 
10821 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10822 			     (const u8 *)header, 0);
10823 
10824 out:
10825 	if (ret)
10826 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10827 	return ret;
10828 }
10829 
10830 /*
10831  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10832  *	@adapter: the adapter
10833  *
10834  *	Return the address within the flash where the OptionROM Configuration
10835  *	is stored, or an error if the device FLASH is too small to contain
10836  *	a OptionROM Configuration.
10837  */
10838 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10839 {
10840 	/*
10841 	 * If the device FLASH isn't large enough to hold a Firmware
10842 	 * Configuration File, return an error.
10843 	 */
10844 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10845 		return -ENOSPC;
10846 
10847 	return FLASH_BOOTCFG_START;
10848 }
10849 
10850 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10851 {
10852 	int ret, i, n, cfg_addr;
10853 	unsigned int addr;
10854 	unsigned int flash_cfg_start_sec;
10855 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10856 
10857 	cfg_addr = t4_flash_bootcfg_addr(adap);
10858 	if (cfg_addr < 0)
10859 		return cfg_addr;
10860 
10861 	addr = cfg_addr;
10862 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10863 
10864 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10865 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10866 			FLASH_BOOTCFG_MAX_SIZE);
10867 		return -EFBIG;
10868 	}
10869 
10870 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10871 			 sf_sec_size);
10872 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10873 					flash_cfg_start_sec + i - 1);
10874 
10875 	/*
10876 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10877 	 * with the on-adapter OptionROM Configuration File.
10878 	 */
10879 	if (ret || size == 0)
10880 		goto out;
10881 
10882 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10883 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10884 		if ( (size - i) <  SF_PAGE_SIZE)
10885 			n = size - i;
10886 		else
10887 			n = SF_PAGE_SIZE;
10888 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10889 		if (ret)
10890 			goto out;
10891 
10892 		addr += SF_PAGE_SIZE;
10893 		cfg_data += SF_PAGE_SIZE;
10894 	}
10895 
10896 out:
10897 	if (ret)
10898 		CH_ERR(adap, "boot config data %s failed %d\n",
10899 				(size == 0 ? "clear" : "download"), ret);
10900 	return ret;
10901 }
10902 
10903 /**
10904  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10905  *	@adap: the adapter
10906  *	@mode: a bitmap selecting which optional filter components to enable
10907  *	@mask: a bitmap selecting which components to enable in filter mask
10908  *	@vnic_mode: the ingress config/vnic mode setting
10909  *
10910  *	Sets the filter mode and mask by selecting the optional components to
10911  *	enable in filter tuples.  Returns 0 on success and a negative error if
10912  *	the requested mode needs more bits than are available for optional
10913  *	components.  The filter mask must be a subset of the filter mode.
10914  */
10915 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10916 {
10917 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10918 	int i, nbits, rc;
10919 	uint32_t param, val;
10920 	uint16_t fmode, fmask;
10921 	const int maxbits = adap->chip_params->filter_opt_len;
10922 
10923 	if (mode != -1 || mask != -1) {
10924 		if (mode != -1) {
10925 			fmode = mode;
10926 			nbits = 0;
10927 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10928 				if (fmode & (1 << i))
10929 					nbits += width[i];
10930 			}
10931 			if (nbits > maxbits) {
10932 				CH_ERR(adap, "optional fields in the filter "
10933 				    "mode (0x%x) add up to %d bits "
10934 				    "(must be <= %db).  Remove some fields and "
10935 				    "try again.\n", fmode, nbits, maxbits);
10936 				return -E2BIG;
10937 			}
10938 
10939 			/*
10940 			 * Hardware wants the bits to be maxed out.  Keep
10941 			 * setting them until there's no room for more.
10942 			 */
10943 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10944 				if (fmode & (1 << i))
10945 					continue;
10946 				if (nbits + width[i] <= maxbits) {
10947 					fmode |= 1 << i;
10948 					nbits += width[i];
10949 					if (nbits == maxbits)
10950 						break;
10951 				}
10952 			}
10953 
10954 			fmask = fmode & adap->params.tp.filter_mask;
10955 			if (fmask != adap->params.tp.filter_mask) {
10956 				CH_WARN(adap,
10957 				    "filter mask will be changed from 0x%x to "
10958 				    "0x%x to comply with the filter mode (0x%x).\n",
10959 				    adap->params.tp.filter_mask, fmask, fmode);
10960 			}
10961 		} else {
10962 			fmode = adap->params.tp.filter_mode;
10963 			fmask = mask;
10964 			if ((fmode | fmask) != fmode) {
10965 				CH_ERR(adap,
10966 				    "filter mask (0x%x) must be a subset of "
10967 				    "the filter mode (0x%x).\n", fmask, fmode);
10968 				return -EINVAL;
10969 			}
10970 		}
10971 
10972 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10973 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10974 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10975 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10976 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10977 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10978 		    &val);
10979 		if (rc < 0)
10980 			return rc;
10981 	}
10982 
10983 	if (vnic_mode != -1) {
10984 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10985 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10986 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10987 		val = vnic_mode;
10988 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10989 		    &val);
10990 		if (rc < 0)
10991 			return rc;
10992 	}
10993 
10994 	/* Refresh. */
10995 	read_filter_mode_and_ingress_config(adap);
10996 
10997 	return 0;
10998 }
10999 
11000 /**
11001  *	t4_clr_port_stats - clear port statistics
11002  *	@adap: the adapter
11003  *	@idx: the port index
11004  *
11005  *	Clear HW statistics for the given port.
11006  */
11007 void t4_clr_port_stats(struct adapter *adap, int idx)
11008 {
11009 	unsigned int i;
11010 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
11011 	u32 port_base_addr;
11012 
11013 	if (is_t4(adap))
11014 		port_base_addr = PORT_BASE(idx);
11015 	else
11016 		port_base_addr = T5_PORT_BASE(idx);
11017 
11018 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
11019 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
11020 		t4_write_reg(adap, port_base_addr + i, 0);
11021 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
11022 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
11023 		t4_write_reg(adap, port_base_addr + i, 0);
11024 	for (i = 0; i < 4; i++)
11025 		if (bgmap & (1 << i)) {
11026 			t4_write_reg(adap,
11027 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
11028 			t4_write_reg(adap,
11029 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
11030 		}
11031 }
11032 
11033 /**
11034  *	t4_i2c_io - read/write I2C data from adapter
11035  *	@adap: the adapter
11036  *	@port: Port number if per-port device; <0 if not
11037  *	@devid: per-port device ID or absolute device ID
11038  *	@offset: byte offset into device I2C space
11039  *	@len: byte length of I2C space data
11040  *	@buf: buffer in which to return I2C data for read
11041  *	      buffer which holds the I2C data for write
11042  *	@write: if true, do a write; else do a read
11043  *	Reads/Writes the I2C data from/to the indicated device and location.
11044  */
11045 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11046 	      int port, unsigned int devid,
11047 	      unsigned int offset, unsigned int len,
11048 	      u8 *buf, bool write)
11049 {
11050 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11051 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11052 	int ret = 0;
11053 
11054 	if (len > I2C_PAGE_SIZE)
11055 		return -EINVAL;
11056 
11057 	/* Dont allow reads that spans multiple pages */
11058 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11059 		return -EINVAL;
11060 
11061 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11062 	ldst_cmd.op_to_addrspace =
11063 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11064 			    F_FW_CMD_REQUEST |
11065 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11066 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11067 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11068 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11069 	ldst_cmd.u.i2c.did = devid;
11070 
11071 	while (len > 0) {
11072 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11073 
11074 		ldst_cmd.u.i2c.boffset = offset;
11075 		ldst_cmd.u.i2c.blen = i2c_len;
11076 
11077 		if (write)
11078 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11079 
11080 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11081 				 write ? NULL : &ldst_rpl);
11082 		if (ret)
11083 			break;
11084 
11085 		if (!write)
11086 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11087 		offset += i2c_len;
11088 		buf += i2c_len;
11089 		len -= i2c_len;
11090 	}
11091 
11092 	return ret;
11093 }
11094 
11095 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11096 	      int port, unsigned int devid,
11097 	      unsigned int offset, unsigned int len,
11098 	      u8 *buf)
11099 {
11100 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11101 }
11102 
11103 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11104 	      int port, unsigned int devid,
11105 	      unsigned int offset, unsigned int len,
11106 	      u8 *buf)
11107 {
11108 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11109 }
11110 
11111 /**
11112  * 	t4_sge_ctxt_rd - read an SGE context through FW
11113  * 	@adap: the adapter
11114  * 	@mbox: mailbox to use for the FW command
11115  * 	@cid: the context id
11116  * 	@ctype: the context type
11117  * 	@data: where to store the context data
11118  *
11119  * 	Issues a FW command through the given mailbox to read an SGE context.
11120  */
11121 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11122 		   enum ctxt_type ctype, u32 *data)
11123 {
11124 	int ret;
11125 	struct fw_ldst_cmd c;
11126 
11127 	if (ctype == CTXT_EGRESS)
11128 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11129 	else if (ctype == CTXT_INGRESS)
11130 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11131 	else if (ctype == CTXT_FLM)
11132 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11133 	else
11134 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11135 
11136 	memset(&c, 0, sizeof(c));
11137 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11138 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11139 					V_FW_LDST_CMD_ADDRSPACE(ret));
11140 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11141 	c.u.idctxt.physid = cpu_to_be32(cid);
11142 
11143 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11144 	if (ret == 0) {
11145 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11146 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11147 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11148 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11149 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11150 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11151 	}
11152 	return ret;
11153 }
11154 
11155 /**
11156  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11157  * 	@adap: the adapter
11158  * 	@cid: the context id
11159  * 	@ctype: the context type
11160  * 	@data: where to store the context data
11161  *
11162  * 	Reads an SGE context directly, bypassing FW.  This is only for
11163  * 	debugging when FW is unavailable.
11164  */
11165 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11166 		      u32 *data)
11167 {
11168 	int i, ret;
11169 
11170 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11171 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11172 	if (!ret)
11173 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11174 			*data++ = t4_read_reg(adap, i);
11175 	return ret;
11176 }
11177 
11178 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11179     int sleep_ok)
11180 {
11181 	struct fw_sched_cmd cmd;
11182 
11183 	memset(&cmd, 0, sizeof(cmd));
11184 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11185 				      F_FW_CMD_REQUEST |
11186 				      F_FW_CMD_WRITE);
11187 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11188 
11189 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11190 	cmd.u.config.type = type;
11191 	cmd.u.config.minmaxen = minmaxen;
11192 
11193 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11194 			       NULL, sleep_ok);
11195 }
11196 
11197 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11198 		    int rateunit, int ratemode, int channel, int cl,
11199 		    int minrate, int maxrate, int weight, int pktsize,
11200 		    int burstsize, int sleep_ok)
11201 {
11202 	struct fw_sched_cmd cmd;
11203 
11204 	memset(&cmd, 0, sizeof(cmd));
11205 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11206 				      F_FW_CMD_REQUEST |
11207 				      F_FW_CMD_WRITE);
11208 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11209 
11210 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11211 	cmd.u.params.type = type;
11212 	cmd.u.params.level = level;
11213 	cmd.u.params.mode = mode;
11214 	cmd.u.params.ch = channel;
11215 	cmd.u.params.cl = cl;
11216 	cmd.u.params.unit = rateunit;
11217 	cmd.u.params.rate = ratemode;
11218 	cmd.u.params.min = cpu_to_be32(minrate);
11219 	cmd.u.params.max = cpu_to_be32(maxrate);
11220 	cmd.u.params.weight = cpu_to_be16(weight);
11221 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11222 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11223 
11224 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11225 			       NULL, sleep_ok);
11226 }
11227 
11228 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11229     unsigned int maxrate, int sleep_ok)
11230 {
11231 	struct fw_sched_cmd cmd;
11232 
11233 	memset(&cmd, 0, sizeof(cmd));
11234 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11235 				      F_FW_CMD_REQUEST |
11236 				      F_FW_CMD_WRITE);
11237 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11238 
11239 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11240 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11241 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11242 	cmd.u.params.ch = channel;
11243 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11244 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11245 
11246 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11247 			       NULL, sleep_ok);
11248 }
11249 
11250 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11251     int weight, int sleep_ok)
11252 {
11253 	struct fw_sched_cmd cmd;
11254 
11255 	if (weight < 0 || weight > 100)
11256 		return -EINVAL;
11257 
11258 	memset(&cmd, 0, sizeof(cmd));
11259 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11260 				      F_FW_CMD_REQUEST |
11261 				      F_FW_CMD_WRITE);
11262 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11263 
11264 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11265 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11266 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11267 	cmd.u.params.ch = channel;
11268 	cmd.u.params.cl = cl;
11269 	cmd.u.params.weight = cpu_to_be16(weight);
11270 
11271 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11272 			       NULL, sleep_ok);
11273 }
11274 
11275 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11276     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11277 {
11278 	struct fw_sched_cmd cmd;
11279 
11280 	memset(&cmd, 0, sizeof(cmd));
11281 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11282 				      F_FW_CMD_REQUEST |
11283 				      F_FW_CMD_WRITE);
11284 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11285 
11286 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11287 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11288 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11289 	cmd.u.params.mode = mode;
11290 	cmd.u.params.ch = channel;
11291 	cmd.u.params.cl = cl;
11292 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11293 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11294 	cmd.u.params.max = cpu_to_be32(maxrate);
11295 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11296 
11297 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11298 			       NULL, sleep_ok);
11299 }
11300 
11301 /*
11302  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11303  *	@adapter: the adapter
11304  * 	@mbox: mailbox to use for the FW command
11305  * 	@pf: the PF owning the queue
11306  * 	@vf: the VF owning the queue
11307  *	@timeout: watchdog timeout in ms
11308  *	@action: watchdog timer / action
11309  *
11310  *	There are separate watchdog timers for each possible watchdog
11311  *	action.  Configure one of the watchdog timers by setting a non-zero
11312  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11313  */
11314 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11315 		       unsigned int pf, unsigned int vf,
11316 		       unsigned int timeout, unsigned int action)
11317 {
11318 	struct fw_watchdog_cmd wdog;
11319 	unsigned int ticks;
11320 
11321 	/*
11322 	 * The watchdog command expects a timeout in units of 10ms so we need
11323 	 * to convert it here (via rounding) and force a minimum of one 10ms
11324 	 * "tick" if the timeout is non-zero but the conversion results in 0
11325 	 * ticks.
11326 	 */
11327 	ticks = (timeout + 5)/10;
11328 	if (timeout && !ticks)
11329 		ticks = 1;
11330 
11331 	memset(&wdog, 0, sizeof wdog);
11332 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11333 				     F_FW_CMD_REQUEST |
11334 				     F_FW_CMD_WRITE |
11335 				     V_FW_PARAMS_CMD_PFN(pf) |
11336 				     V_FW_PARAMS_CMD_VFN(vf));
11337 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11338 	wdog.timeout = cpu_to_be32(ticks);
11339 	wdog.action = cpu_to_be32(action);
11340 
11341 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11342 }
11343 
11344 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11345 {
11346 	struct fw_devlog_cmd devlog_cmd;
11347 	int ret;
11348 
11349 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11350 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11351 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11352 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11353 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11354 			 sizeof(devlog_cmd), &devlog_cmd);
11355 	if (ret)
11356 		return ret;
11357 
11358 	*level = devlog_cmd.level;
11359 	return 0;
11360 }
11361 
11362 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11363 {
11364 	struct fw_devlog_cmd devlog_cmd;
11365 
11366 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11367 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11368 					     F_FW_CMD_REQUEST |
11369 					     F_FW_CMD_WRITE);
11370 	devlog_cmd.level = level;
11371 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11372 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11373 			  sizeof(devlog_cmd), &devlog_cmd);
11374 }
11375 
11376 int t4_configure_add_smac(struct adapter *adap)
11377 {
11378 	unsigned int param, val;
11379 	int ret = 0;
11380 
11381 	adap->params.smac_add_support = 0;
11382 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11383 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11384 	/* Query FW to check if FW supports adding source mac address
11385 	 * to TCAM feature or not.
11386 	 * If FW returns 1, driver can use this feature and driver need to send
11387 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11388 	 * enable adding smac to TCAM.
11389 	 */
11390 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11391 	if (ret)
11392 		return ret;
11393 
11394 	if (val == 1) {
11395 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11396 				    &param, &val);
11397 		if (!ret)
11398 			/* Firmware allows adding explicit TCAM entries.
11399 			 * Save this internally.
11400 			 */
11401 			adap->params.smac_add_support = 1;
11402 	}
11403 
11404 	return ret;
11405 }
11406 
11407 int t4_configure_ringbb(struct adapter *adap)
11408 {
11409 	unsigned int param, val;
11410 	int ret = 0;
11411 
11412 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11413 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11414 	/* Query FW to check if FW supports ring switch feature or not.
11415 	 * If FW returns 1, driver can use this feature and driver need to send
11416 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11417 	 * enable the ring backbone configuration.
11418 	 */
11419 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11420 	if (ret < 0) {
11421 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11422 			ret);
11423 		goto out;
11424 	}
11425 
11426 	if (val != 1) {
11427 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11428 		goto out;
11429 	}
11430 
11431 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11432 	if (ret < 0) {
11433 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11434 			ret);
11435 		goto out;
11436 	}
11437 
11438 out:
11439 	return ret;
11440 }
11441 
11442 /*
11443  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11444  *	@adapter: the adapter
11445  *	@mbox: mailbox to use for the FW command
11446  *	@vf: one of the VFs instantiated by the specified PF
11447  *	@vlan: The vlanid to be set
11448  *
11449  */
11450 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11451 		    u16 vlan)
11452 {
11453 	struct fw_acl_vlan_cmd vlan_cmd;
11454 	unsigned int enable;
11455 
11456 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11457 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11458 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11459 					 F_FW_CMD_REQUEST |
11460 					 F_FW_CMD_WRITE |
11461 					 F_FW_CMD_EXEC |
11462 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11463 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11464 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11465 	/* Drop all packets that donot match vlan id */
11466 	vlan_cmd.dropnovlan_fm = (enable
11467 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11468 				     F_FW_ACL_VLAN_CMD_FM)
11469 				  : 0);
11470 	if (enable != 0) {
11471 		vlan_cmd.nvlan = 1;
11472 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11473 	}
11474 
11475 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11476 }
11477 
11478 /**
11479  *	t4_del_mac - Removes the exact-match filter for a MAC address
11480  *	@adap: the adapter
11481  *	@mbox: mailbox to use for the FW command
11482  *	@viid: the VI id
11483  *	@addr: the MAC address value
11484  *	@smac: if true, delete from only the smac region of MPS
11485  *
11486  *	Modifies an exact-match filter and sets it to the new MAC address if
11487  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11488  *	latter case the address is added persistently if @persist is %true.
11489  *
11490  *	Returns a negative error number or the index of the filter with the new
11491  *	MAC value.  Note that this index may differ from @idx.
11492  */
11493 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11494 	       const u8 *addr, bool smac)
11495 {
11496 	int ret;
11497 	struct fw_vi_mac_cmd c;
11498 	struct fw_vi_mac_exact *p = c.u.exact;
11499 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11500 
11501 	memset(&c, 0, sizeof(c));
11502 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11503 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11504 				   V_FW_VI_MAC_CMD_VIID(viid));
11505 	c.freemacs_to_len16 = cpu_to_be32(
11506 					V_FW_CMD_LEN16(1) |
11507 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11508 
11509 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11510 	p->valid_to_idx = cpu_to_be16(
11511 				F_FW_VI_MAC_CMD_VALID |
11512 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11513 
11514 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11515 	if (ret == 0) {
11516 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11517 		if (ret < max_mac_addr)
11518 			return -ENOMEM;
11519 	}
11520 
11521 	return ret;
11522 }
11523 
11524 /**
11525  *	t4_add_mac - Adds an exact-match filter for a MAC address
11526  *	@adap: the adapter
11527  *	@mbox: mailbox to use for the FW command
11528  *	@viid: the VI id
11529  *	@idx: index of existing filter for old value of MAC address, or -1
11530  *	@addr: the new MAC address value
11531  *	@persist: whether a new MAC allocation should be persistent
11532  *	@add_smt: if true also add the address to the HW SMT
11533  *	@smac: if true, update only the smac region of MPS
11534  *
11535  *	Modifies an exact-match filter and sets it to the new MAC address if
11536  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11537  *	latter case the address is added persistently if @persist is %true.
11538  *
11539  *	Returns a negative error number or the index of the filter with the new
11540  *	MAC value.  Note that this index may differ from @idx.
11541  */
11542 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11543 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11544 {
11545 	int ret, mode;
11546 	struct fw_vi_mac_cmd c;
11547 	struct fw_vi_mac_exact *p = c.u.exact;
11548 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11549 
11550 	if (idx < 0)		/* new allocation */
11551 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11552 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11553 
11554 	memset(&c, 0, sizeof(c));
11555 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11556 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11557 				   V_FW_VI_MAC_CMD_VIID(viid));
11558 	c.freemacs_to_len16 = cpu_to_be32(
11559 				V_FW_CMD_LEN16(1) |
11560 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11561 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11562 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11563 				      V_FW_VI_MAC_CMD_IDX(idx));
11564 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11565 
11566 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11567 	if (ret == 0) {
11568 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11569 		if (ret >= max_mac_addr)
11570 			return -ENOMEM;
11571 		if (smt_idx) {
11572 			/* Does fw supports returning smt_idx? */
11573 			if (adap->params.viid_smt_extn_support)
11574 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11575 			else {
11576 				/* In T4/T5, SMT contains 256 SMAC entries
11577 				 * organized in 128 rows of 2 entries each.
11578 				 * In T6, SMT contains 256 SMAC entries in
11579 				 * 256 rows.
11580 				 */
11581 				if (chip_id(adap) <= CHELSIO_T5)
11582 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11583 				else
11584 					*smt_idx = (viid & M_FW_VIID_VIN);
11585 			}
11586 		}
11587 	}
11588 
11589 	return ret;
11590 }
11591