1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012-2014 Thomas Skibo <thomasskibo@yahoo.com> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * A network interface driver for Cadence GEM Gigabit Ethernet 31 * interface such as the one used in Xilinx Zynq-7000 SoC. 32 * 33 * Reference: Zynq-7000 All Programmable SoC Technical Reference Manual. 34 * (v1.4) November 16, 2012. Xilinx doc UG585. GEM is covered in Ch. 16 35 * and register definitions are in appendix B.18. 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bus.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/module.h> 45 #include <sys/rman.h> 46 #include <sys/socket.h> 47 #include <sys/sockio.h> 48 #include <sys/sysctl.h> 49 50 #include <machine/bus.h> 51 52 #include <net/ethernet.h> 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/if_dl.h> 56 #include <net/if_media.h> 57 #include <net/if_mib.h> 58 #include <net/if_types.h> 59 60 #ifdef INET 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_var.h> 64 #include <netinet/ip.h> 65 #endif 66 67 #include <net/bpf.h> 68 #include <net/bpfdesc.h> 69 70 #include <dev/fdt/fdt_common.h> 71 #include <dev/ofw/ofw_bus.h> 72 #include <dev/ofw/ofw_bus_subr.h> 73 74 #include <dev/mii/mii.h> 75 #include <dev/mii/miivar.h> 76 #include <dev/mii/mii_fdt.h> 77 78 #include <dev/clk/clk.h> 79 80 #if BUS_SPACE_MAXADDR > BUS_SPACE_MAXADDR_32BIT 81 #define CGEM64 82 #endif 83 84 #include <dev/cadence/if_cgem_hw.h> 85 86 #include "miibus_if.h" 87 88 #define IF_CGEM_NAME "cgem" 89 90 #define CGEM_NUM_RX_DESCS 512 /* size of receive descriptor ring */ 91 #define CGEM_NUM_TX_DESCS 512 /* size of transmit descriptor ring */ 92 93 /* Default for sysctl rxbufs. Must be < CGEM_NUM_RX_DESCS of course. */ 94 #define DEFAULT_NUM_RX_BUFS 256 /* number of receive bufs to queue. */ 95 96 #define TX_MAX_DMA_SEGS 8 /* maximum segs in a tx mbuf dma */ 97 98 #define CGEM_CKSUM_ASSIST (CSUM_IP | CSUM_TCP | CSUM_UDP | \ 99 CSUM_TCP_IPV6 | CSUM_UDP_IPV6) 100 101 #define HWQUIRK_NONE 0 102 #define HWQUIRK_NEEDNULLQS 1 103 #define HWQUIRK_RXHANGWAR 2 104 105 static struct ofw_compat_data compat_data[] = { 106 { "cdns,zynq-gem", HWQUIRK_RXHANGWAR }, /* Deprecated */ 107 { "cdns,zynqmp-gem", HWQUIRK_NEEDNULLQS }, /* Deprecated */ 108 { "xlnx,zynq-gem", HWQUIRK_RXHANGWAR }, 109 { "xlnx,zynqmp-gem", HWQUIRK_NEEDNULLQS }, 110 { "microchip,mpfs-mss-gem", HWQUIRK_NEEDNULLQS }, 111 { "sifive,fu540-c000-gem", HWQUIRK_NONE }, 112 { "sifive,fu740-c000-gem", HWQUIRK_NONE }, 113 { NULL, 0 } 114 }; 115 116 struct cgem_softc { 117 if_t ifp; 118 struct mtx sc_mtx; 119 device_t dev; 120 device_t miibus; 121 u_int mii_media_active; /* last active media */ 122 int if_old_flags; 123 struct resource *mem_res; 124 struct resource *irq_res; 125 void *intrhand; 126 struct callout tick_ch; 127 uint32_t net_ctl_shadow; 128 uint32_t net_cfg_shadow; 129 clk_t clk_pclk; 130 clk_t clk_hclk; 131 clk_t clk_txclk; 132 clk_t clk_rxclk; 133 clk_t clk_tsuclk; 134 int neednullqs; 135 int phy_contype; 136 137 bus_dma_tag_t desc_dma_tag; 138 bus_dma_tag_t mbuf_dma_tag; 139 140 /* receive descriptor ring */ 141 struct cgem_rx_desc *rxring; 142 bus_addr_t rxring_physaddr; 143 struct mbuf *rxring_m[CGEM_NUM_RX_DESCS]; 144 bus_dmamap_t rxring_m_dmamap[CGEM_NUM_RX_DESCS]; 145 int rxring_hd_ptr; /* where to put rcv bufs */ 146 int rxring_tl_ptr; /* where to get receives */ 147 int rxring_queued; /* how many rcv bufs queued */ 148 bus_dmamap_t rxring_dma_map; 149 int rxbufs; /* tunable number rcv bufs */ 150 int rxhangwar; /* rx hang work-around */ 151 u_int rxoverruns; /* rx overruns */ 152 u_int rxnobufs; /* rx buf ring empty events */ 153 u_int rxdmamapfails; /* rx dmamap failures */ 154 uint32_t rx_frames_prev; 155 156 /* transmit descriptor ring */ 157 struct cgem_tx_desc *txring; 158 bus_addr_t txring_physaddr; 159 struct mbuf *txring_m[CGEM_NUM_TX_DESCS]; 160 bus_dmamap_t txring_m_dmamap[CGEM_NUM_TX_DESCS]; 161 int txring_hd_ptr; /* where to put next xmits */ 162 int txring_tl_ptr; /* next xmit mbuf to free */ 163 int txring_queued; /* num xmits segs queued */ 164 u_int txfull; /* tx ring full events */ 165 u_int txdefrags; /* tx calls to m_defrag() */ 166 u_int txdefragfails; /* tx m_defrag() failures */ 167 u_int txdmamapfails; /* tx dmamap failures */ 168 169 /* null descriptor rings */ 170 void *null_qs; 171 bus_addr_t null_qs_physaddr; 172 173 /* hardware provided statistics */ 174 struct cgem_hw_stats { 175 uint64_t tx_bytes; 176 uint32_t tx_frames; 177 uint32_t tx_frames_bcast; 178 uint32_t tx_frames_multi; 179 uint32_t tx_frames_pause; 180 uint32_t tx_frames_64b; 181 uint32_t tx_frames_65to127b; 182 uint32_t tx_frames_128to255b; 183 uint32_t tx_frames_256to511b; 184 uint32_t tx_frames_512to1023b; 185 uint32_t tx_frames_1024to1536b; 186 uint32_t tx_under_runs; 187 uint32_t tx_single_collisn; 188 uint32_t tx_multi_collisn; 189 uint32_t tx_excsv_collisn; 190 uint32_t tx_late_collisn; 191 uint32_t tx_deferred_frames; 192 uint32_t tx_carrier_sense_errs; 193 194 uint64_t rx_bytes; 195 uint32_t rx_frames; 196 uint32_t rx_frames_bcast; 197 uint32_t rx_frames_multi; 198 uint32_t rx_frames_pause; 199 uint32_t rx_frames_64b; 200 uint32_t rx_frames_65to127b; 201 uint32_t rx_frames_128to255b; 202 uint32_t rx_frames_256to511b; 203 uint32_t rx_frames_512to1023b; 204 uint32_t rx_frames_1024to1536b; 205 uint32_t rx_frames_undersize; 206 uint32_t rx_frames_oversize; 207 uint32_t rx_frames_jabber; 208 uint32_t rx_frames_fcs_errs; 209 uint32_t rx_frames_length_errs; 210 uint32_t rx_symbol_errs; 211 uint32_t rx_align_errs; 212 uint32_t rx_resource_errs; 213 uint32_t rx_overrun_errs; 214 uint32_t rx_ip_hdr_csum_errs; 215 uint32_t rx_tcp_csum_errs; 216 uint32_t rx_udp_csum_errs; 217 } stats; 218 }; 219 220 #define RD4(sc, off) (bus_read_4((sc)->mem_res, (off))) 221 #define WR4(sc, off, val) (bus_write_4((sc)->mem_res, (off), (val))) 222 #define BARRIER(sc, off, len, flags) \ 223 (bus_barrier((sc)->mem_res, (off), (len), (flags)) 224 225 #define CGEM_LOCK(sc) mtx_lock(&(sc)->sc_mtx) 226 #define CGEM_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) 227 #define CGEM_LOCK_INIT(sc) mtx_init(&(sc)->sc_mtx, \ 228 device_get_nameunit((sc)->dev), MTX_NETWORK_LOCK, MTX_DEF) 229 #define CGEM_LOCK_DESTROY(sc) mtx_destroy(&(sc)->sc_mtx) 230 #define CGEM_ASSERT_LOCKED(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) 231 232 /* Allow platforms to optionally provide a way to set the reference clock. */ 233 int cgem_set_ref_clk(int unit, int frequency); 234 235 static int cgem_probe(device_t dev); 236 static int cgem_attach(device_t dev); 237 static int cgem_detach(device_t dev); 238 static void cgem_tick(void *); 239 static void cgem_intr(void *); 240 241 static void cgem_mediachange(struct cgem_softc *, struct mii_data *); 242 243 static void 244 cgem_get_mac(struct cgem_softc *sc, u_char eaddr[]) 245 { 246 int i; 247 uint32_t rnd; 248 249 /* See if boot loader gave us a MAC address already. */ 250 for (i = 0; i < 4; i++) { 251 uint32_t low = RD4(sc, CGEM_SPEC_ADDR_LOW(i)); 252 uint32_t high = RD4(sc, CGEM_SPEC_ADDR_HI(i)) & 0xffff; 253 if (low != 0 || high != 0) { 254 eaddr[0] = low & 0xff; 255 eaddr[1] = (low >> 8) & 0xff; 256 eaddr[2] = (low >> 16) & 0xff; 257 eaddr[3] = (low >> 24) & 0xff; 258 eaddr[4] = high & 0xff; 259 eaddr[5] = (high >> 8) & 0xff; 260 break; 261 } 262 } 263 264 /* No MAC from boot loader? Assign a random one. */ 265 if (i == 4) { 266 rnd = arc4random(); 267 268 eaddr[0] = 'b'; 269 eaddr[1] = 's'; 270 eaddr[2] = 'd'; 271 eaddr[3] = (rnd >> 16) & 0xff; 272 eaddr[4] = (rnd >> 8) & 0xff; 273 eaddr[5] = rnd & 0xff; 274 275 device_printf(sc->dev, "no mac address found, assigning " 276 "random: %02x:%02x:%02x:%02x:%02x:%02x\n", eaddr[0], 277 eaddr[1], eaddr[2], eaddr[3], eaddr[4], eaddr[5]); 278 } 279 280 /* Move address to first slot and zero out the rest. */ 281 WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) | 282 (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]); 283 WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]); 284 285 for (i = 1; i < 4; i++) { 286 WR4(sc, CGEM_SPEC_ADDR_LOW(i), 0); 287 WR4(sc, CGEM_SPEC_ADDR_HI(i), 0); 288 } 289 } 290 291 /* 292 * cgem_mac_hash(): map 48-bit address to a 6-bit hash. The 6-bit hash 293 * corresponds to a bit in a 64-bit hash register. Setting that bit in the 294 * hash register enables reception of all frames with a destination address 295 * that hashes to that 6-bit value. 296 * 297 * The hash function is described in sec. 16.2.3 in the Zynq-7000 Tech 298 * Reference Manual. Bits 0-5 in the hash are the exclusive-or of 299 * every sixth bit in the destination address. 300 */ 301 static int 302 cgem_mac_hash(u_char eaddr[]) 303 { 304 int hash; 305 int i, j; 306 307 hash = 0; 308 for (i = 0; i < 6; i++) 309 for (j = i; j < 48; j += 6) 310 if ((eaddr[j >> 3] & (1 << (j & 7))) != 0) 311 hash ^= (1 << i); 312 313 return hash; 314 } 315 316 static u_int 317 cgem_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 318 { 319 uint32_t *hashes = arg; 320 int index; 321 322 index = cgem_mac_hash(LLADDR(sdl)); 323 if (index > 31) 324 hashes[0] |= (1U << (index - 32)); 325 else 326 hashes[1] |= (1U << index); 327 328 return (1); 329 } 330 331 /* 332 * After any change in rx flags or multi-cast addresses, set up hash registers 333 * and net config register bits. 334 */ 335 static void 336 cgem_rx_filter(struct cgem_softc *sc) 337 { 338 if_t ifp = sc->ifp; 339 uint32_t hashes[2] = { 0, 0 }; 340 341 sc->net_cfg_shadow &= ~(CGEM_NET_CFG_MULTI_HASH_EN | 342 CGEM_NET_CFG_NO_BCAST | CGEM_NET_CFG_COPY_ALL); 343 344 if ((if_getflags(ifp) & IFF_PROMISC) != 0) 345 sc->net_cfg_shadow |= CGEM_NET_CFG_COPY_ALL; 346 else { 347 if ((if_getflags(ifp) & IFF_BROADCAST) == 0) 348 sc->net_cfg_shadow |= CGEM_NET_CFG_NO_BCAST; 349 if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) { 350 hashes[0] = 0xffffffff; 351 hashes[1] = 0xffffffff; 352 } else 353 if_foreach_llmaddr(ifp, cgem_hash_maddr, hashes); 354 355 if (hashes[0] != 0 || hashes[1] != 0) 356 sc->net_cfg_shadow |= CGEM_NET_CFG_MULTI_HASH_EN; 357 } 358 359 WR4(sc, CGEM_HASH_TOP, hashes[0]); 360 WR4(sc, CGEM_HASH_BOT, hashes[1]); 361 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 362 } 363 364 /* For bus_dmamap_load() callback. */ 365 static void 366 cgem_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 367 { 368 369 if (nsegs != 1 || error != 0) 370 return; 371 *(bus_addr_t *)arg = segs[0].ds_addr; 372 } 373 374 /* Set up null queues for priority queues we actually can't disable. */ 375 static void 376 cgem_null_qs(struct cgem_softc *sc) 377 { 378 struct cgem_rx_desc *rx_desc; 379 struct cgem_tx_desc *tx_desc; 380 uint32_t queue_mask; 381 int n; 382 383 /* Read design config register 6 to determine number of queues. */ 384 queue_mask = (RD4(sc, CGEM_DESIGN_CFG6) & 385 CGEM_DESIGN_CFG6_DMA_PRIO_Q_MASK) >> 1; 386 if (queue_mask == 0) 387 return; 388 389 /* Create empty RX queue and empty TX buf queues. */ 390 memset(sc->null_qs, 0, sizeof(struct cgem_rx_desc) + 391 sizeof(struct cgem_tx_desc)); 392 rx_desc = sc->null_qs; 393 rx_desc->addr = CGEM_RXDESC_OWN | CGEM_RXDESC_WRAP; 394 tx_desc = (struct cgem_tx_desc *)(rx_desc + 1); 395 tx_desc->ctl = CGEM_TXDESC_USED | CGEM_TXDESC_WRAP; 396 397 /* Point all valid ring base pointers to the null queues. */ 398 for (n = 1; (queue_mask & 1) != 0; n++, queue_mask >>= 1) { 399 WR4(sc, CGEM_RX_QN_BAR(n), sc->null_qs_physaddr); 400 WR4(sc, CGEM_TX_QN_BAR(n), sc->null_qs_physaddr + 401 sizeof(struct cgem_rx_desc)); 402 } 403 } 404 405 /* Create DMA'able descriptor rings. */ 406 static int 407 cgem_setup_descs(struct cgem_softc *sc) 408 { 409 int i, err; 410 int desc_rings_size = CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc) + 411 CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc); 412 413 if (sc->neednullqs) 414 desc_rings_size += sizeof(struct cgem_rx_desc) + 415 sizeof(struct cgem_tx_desc); 416 417 sc->txring = NULL; 418 sc->rxring = NULL; 419 420 /* Allocate non-cached DMA space for RX and TX descriptors. */ 421 err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 422 #ifdef CGEM64 423 1ULL << 32, /* Do not cross a 4G boundary. */ 424 #else 425 0, 426 #endif 427 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 428 desc_rings_size, 1, desc_rings_size, 0, 429 busdma_lock_mutex, &sc->sc_mtx, &sc->desc_dma_tag); 430 if (err) 431 return (err); 432 433 /* Set up a bus_dma_tag for mbufs. */ 434 err = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, 435 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 436 TX_MAX_DMA_SEGS, MCLBYTES, 0, busdma_lock_mutex, &sc->sc_mtx, 437 &sc->mbuf_dma_tag); 438 if (err) 439 return (err); 440 441 /* 442 * Allocate DMA memory. We allocate transmit, receive and null 443 * descriptor queues all at once because the hardware only provides 444 * one register for the upper 32 bits of rx and tx descriptor queues 445 * hardware addresses. 446 */ 447 err = bus_dmamem_alloc(sc->desc_dma_tag, (void **)&sc->rxring, 448 BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, 449 &sc->rxring_dma_map); 450 if (err) 451 return (err); 452 453 /* Load descriptor DMA memory. */ 454 err = bus_dmamap_load(sc->desc_dma_tag, sc->rxring_dma_map, 455 (void *)sc->rxring, desc_rings_size, 456 cgem_getaddr, &sc->rxring_physaddr, BUS_DMA_NOWAIT); 457 if (err) 458 return (err); 459 460 /* Initialize RX descriptors. */ 461 for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { 462 sc->rxring[i].addr = CGEM_RXDESC_OWN; 463 sc->rxring[i].ctl = 0; 464 sc->rxring_m[i] = NULL; 465 sc->rxring_m_dmamap[i] = NULL; 466 } 467 sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; 468 469 sc->rxring_hd_ptr = 0; 470 sc->rxring_tl_ptr = 0; 471 sc->rxring_queued = 0; 472 473 sc->txring = (struct cgem_tx_desc *)(sc->rxring + CGEM_NUM_RX_DESCS); 474 sc->txring_physaddr = sc->rxring_physaddr + CGEM_NUM_RX_DESCS * 475 sizeof(struct cgem_rx_desc); 476 477 /* Initialize TX descriptor ring. */ 478 for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { 479 sc->txring[i].addr = 0; 480 sc->txring[i].ctl = CGEM_TXDESC_USED; 481 sc->txring_m[i] = NULL; 482 sc->txring_m_dmamap[i] = NULL; 483 } 484 sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; 485 486 sc->txring_hd_ptr = 0; 487 sc->txring_tl_ptr = 0; 488 sc->txring_queued = 0; 489 490 if (sc->neednullqs) { 491 sc->null_qs = (void *)(sc->txring + CGEM_NUM_TX_DESCS); 492 sc->null_qs_physaddr = sc->txring_physaddr + 493 CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc); 494 495 cgem_null_qs(sc); 496 } 497 498 return (0); 499 } 500 501 /* Fill receive descriptor ring with mbufs. */ 502 static void 503 cgem_fill_rqueue(struct cgem_softc *sc) 504 { 505 struct mbuf *m = NULL; 506 bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; 507 int nsegs; 508 509 CGEM_ASSERT_LOCKED(sc); 510 511 while (sc->rxring_queued < sc->rxbufs) { 512 /* Get a cluster mbuf. */ 513 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 514 if (m == NULL) 515 break; 516 517 m->m_len = MCLBYTES; 518 m->m_pkthdr.len = MCLBYTES; 519 m->m_pkthdr.rcvif = sc->ifp; 520 521 /* Load map and plug in physical address. */ 522 if (bus_dmamap_create(sc->mbuf_dma_tag, 0, 523 &sc->rxring_m_dmamap[sc->rxring_hd_ptr])) { 524 sc->rxdmamapfails++; 525 m_free(m); 526 break; 527 } 528 if (bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, 529 sc->rxring_m_dmamap[sc->rxring_hd_ptr], m, 530 segs, &nsegs, BUS_DMA_NOWAIT)) { 531 sc->rxdmamapfails++; 532 bus_dmamap_destroy(sc->mbuf_dma_tag, 533 sc->rxring_m_dmamap[sc->rxring_hd_ptr]); 534 sc->rxring_m_dmamap[sc->rxring_hd_ptr] = NULL; 535 m_free(m); 536 break; 537 } 538 sc->rxring_m[sc->rxring_hd_ptr] = m; 539 540 /* Sync cache with receive buffer. */ 541 bus_dmamap_sync(sc->mbuf_dma_tag, 542 sc->rxring_m_dmamap[sc->rxring_hd_ptr], 543 BUS_DMASYNC_PREREAD); 544 545 /* Write rx descriptor and increment head pointer. */ 546 sc->rxring[sc->rxring_hd_ptr].ctl = 0; 547 #ifdef CGEM64 548 sc->rxring[sc->rxring_hd_ptr].addrhi = segs[0].ds_addr >> 32; 549 #endif 550 if (sc->rxring_hd_ptr == CGEM_NUM_RX_DESCS - 1) { 551 sc->rxring[sc->rxring_hd_ptr].addr = segs[0].ds_addr | 552 CGEM_RXDESC_WRAP; 553 sc->rxring_hd_ptr = 0; 554 } else 555 sc->rxring[sc->rxring_hd_ptr++].addr = segs[0].ds_addr; 556 557 sc->rxring_queued++; 558 } 559 } 560 561 /* Pull received packets off of receive descriptor ring. */ 562 static void 563 cgem_recv(struct cgem_softc *sc) 564 { 565 if_t ifp = sc->ifp; 566 struct mbuf *m, *m_hd, **m_tl; 567 uint32_t ctl; 568 569 CGEM_ASSERT_LOCKED(sc); 570 571 /* Pick up all packets in which the OWN bit is set. */ 572 m_hd = NULL; 573 m_tl = &m_hd; 574 while (sc->rxring_queued > 0 && 575 (sc->rxring[sc->rxring_tl_ptr].addr & CGEM_RXDESC_OWN) != 0) { 576 ctl = sc->rxring[sc->rxring_tl_ptr].ctl; 577 578 /* Grab filled mbuf. */ 579 m = sc->rxring_m[sc->rxring_tl_ptr]; 580 sc->rxring_m[sc->rxring_tl_ptr] = NULL; 581 582 /* Sync cache with receive buffer. */ 583 bus_dmamap_sync(sc->mbuf_dma_tag, 584 sc->rxring_m_dmamap[sc->rxring_tl_ptr], 585 BUS_DMASYNC_POSTREAD); 586 587 /* Unload and destroy dmamap. */ 588 bus_dmamap_unload(sc->mbuf_dma_tag, 589 sc->rxring_m_dmamap[sc->rxring_tl_ptr]); 590 bus_dmamap_destroy(sc->mbuf_dma_tag, 591 sc->rxring_m_dmamap[sc->rxring_tl_ptr]); 592 sc->rxring_m_dmamap[sc->rxring_tl_ptr] = NULL; 593 594 /* Increment tail pointer. */ 595 if (++sc->rxring_tl_ptr == CGEM_NUM_RX_DESCS) 596 sc->rxring_tl_ptr = 0; 597 sc->rxring_queued--; 598 599 /* 600 * Check FCS and make sure entire packet landed in one mbuf 601 * cluster (which is much bigger than the largest ethernet 602 * packet). 603 */ 604 if ((ctl & CGEM_RXDESC_BAD_FCS) != 0 || 605 (ctl & (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) != 606 (CGEM_RXDESC_SOF | CGEM_RXDESC_EOF)) { 607 /* discard. */ 608 m_free(m); 609 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 610 continue; 611 } 612 613 /* Ready it to hand off to upper layers. */ 614 m->m_data += ETHER_ALIGN; 615 m->m_len = (ctl & CGEM_RXDESC_LENGTH_MASK); 616 m->m_pkthdr.rcvif = ifp; 617 m->m_pkthdr.len = m->m_len; 618 619 /* 620 * Are we using hardware checksumming? Check the status in the 621 * receive descriptor. 622 */ 623 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { 624 /* TCP or UDP checks out, IP checks out too. */ 625 if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == 626 CGEM_RXDESC_CKSUM_STAT_TCP_GOOD || 627 (ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == 628 CGEM_RXDESC_CKSUM_STAT_UDP_GOOD) { 629 m->m_pkthdr.csum_flags |= 630 CSUM_IP_CHECKED | CSUM_IP_VALID | 631 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 632 m->m_pkthdr.csum_data = 0xffff; 633 } else if ((ctl & CGEM_RXDESC_CKSUM_STAT_MASK) == 634 CGEM_RXDESC_CKSUM_STAT_IP_GOOD) { 635 /* Only IP checks out. */ 636 m->m_pkthdr.csum_flags |= 637 CSUM_IP_CHECKED | CSUM_IP_VALID; 638 m->m_pkthdr.csum_data = 0xffff; 639 } 640 } 641 642 /* Queue it up for delivery below. */ 643 *m_tl = m; 644 m_tl = &m->m_next; 645 } 646 647 /* Replenish receive buffers. */ 648 cgem_fill_rqueue(sc); 649 650 /* Unlock and send up packets. */ 651 CGEM_UNLOCK(sc); 652 while (m_hd != NULL) { 653 m = m_hd; 654 m_hd = m_hd->m_next; 655 m->m_next = NULL; 656 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 657 if_input(ifp, m); 658 } 659 CGEM_LOCK(sc); 660 } 661 662 /* Find completed transmits and free their mbufs. */ 663 static void 664 cgem_clean_tx(struct cgem_softc *sc) 665 { 666 struct mbuf *m; 667 uint32_t ctl; 668 669 CGEM_ASSERT_LOCKED(sc); 670 671 /* free up finished transmits. */ 672 while (sc->txring_queued > 0 && 673 ((ctl = sc->txring[sc->txring_tl_ptr].ctl) & 674 CGEM_TXDESC_USED) != 0) { 675 /* Sync cache. */ 676 bus_dmamap_sync(sc->mbuf_dma_tag, 677 sc->txring_m_dmamap[sc->txring_tl_ptr], 678 BUS_DMASYNC_POSTWRITE); 679 680 /* Unload and destroy DMA map. */ 681 bus_dmamap_unload(sc->mbuf_dma_tag, 682 sc->txring_m_dmamap[sc->txring_tl_ptr]); 683 bus_dmamap_destroy(sc->mbuf_dma_tag, 684 sc->txring_m_dmamap[sc->txring_tl_ptr]); 685 sc->txring_m_dmamap[sc->txring_tl_ptr] = NULL; 686 687 /* Free up the mbuf. */ 688 m = sc->txring_m[sc->txring_tl_ptr]; 689 sc->txring_m[sc->txring_tl_ptr] = NULL; 690 m_freem(m); 691 692 /* Check the status. */ 693 if ((ctl & CGEM_TXDESC_AHB_ERR) != 0) { 694 /* Serious bus error. log to console. */ 695 #ifdef CGEM64 696 device_printf(sc->dev, 697 "cgem_clean_tx: AHB error, addr=0x%x%08x\n", 698 sc->txring[sc->txring_tl_ptr].addrhi, 699 sc->txring[sc->txring_tl_ptr].addr); 700 #else 701 device_printf(sc->dev, 702 "cgem_clean_tx: AHB error, addr=0x%x\n", 703 sc->txring[sc->txring_tl_ptr].addr); 704 #endif 705 } else if ((ctl & (CGEM_TXDESC_RETRY_ERR | 706 CGEM_TXDESC_LATE_COLL)) != 0) { 707 if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1); 708 } else 709 if_inc_counter(sc->ifp, IFCOUNTER_OPACKETS, 1); 710 711 /* 712 * If the packet spanned more than one tx descriptor, skip 713 * descriptors until we find the end so that only 714 * start-of-frame descriptors are processed. 715 */ 716 while ((ctl & CGEM_TXDESC_LAST_BUF) == 0) { 717 if ((ctl & CGEM_TXDESC_WRAP) != 0) 718 sc->txring_tl_ptr = 0; 719 else 720 sc->txring_tl_ptr++; 721 sc->txring_queued--; 722 723 ctl = sc->txring[sc->txring_tl_ptr].ctl; 724 725 sc->txring[sc->txring_tl_ptr].ctl = 726 ctl | CGEM_TXDESC_USED; 727 } 728 729 /* Next descriptor. */ 730 if ((ctl & CGEM_TXDESC_WRAP) != 0) 731 sc->txring_tl_ptr = 0; 732 else 733 sc->txring_tl_ptr++; 734 sc->txring_queued--; 735 736 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_OACTIVE); 737 } 738 } 739 740 /* Start transmits. */ 741 static void 742 cgem_start_locked(if_t ifp) 743 { 744 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 745 struct mbuf *m; 746 bus_dma_segment_t segs[TX_MAX_DMA_SEGS]; 747 uint32_t ctl; 748 int i, nsegs, wrap, err; 749 750 CGEM_ASSERT_LOCKED(sc); 751 752 if ((if_getdrvflags(ifp) & IFF_DRV_OACTIVE) != 0) 753 return; 754 755 for (;;) { 756 /* Check that there is room in the descriptor ring. */ 757 if (sc->txring_queued >= 758 CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) { 759 /* Try to make room. */ 760 cgem_clean_tx(sc); 761 762 /* Still no room? */ 763 if (sc->txring_queued >= 764 CGEM_NUM_TX_DESCS - TX_MAX_DMA_SEGS * 2) { 765 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 766 sc->txfull++; 767 break; 768 } 769 } 770 771 /* Grab next transmit packet. */ 772 m = if_dequeue(ifp); 773 if (m == NULL) 774 break; 775 776 /* Create and load DMA map. */ 777 if (bus_dmamap_create(sc->mbuf_dma_tag, 0, 778 &sc->txring_m_dmamap[sc->txring_hd_ptr])) { 779 m_freem(m); 780 sc->txdmamapfails++; 781 continue; 782 } 783 err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, 784 sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, &nsegs, 785 BUS_DMA_NOWAIT); 786 if (err == EFBIG) { 787 /* Too many segments! defrag and try again. */ 788 struct mbuf *m2 = m_defrag(m, M_NOWAIT); 789 790 if (m2 == NULL) { 791 sc->txdefragfails++; 792 m_freem(m); 793 bus_dmamap_destroy(sc->mbuf_dma_tag, 794 sc->txring_m_dmamap[sc->txring_hd_ptr]); 795 sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL; 796 continue; 797 } 798 m = m2; 799 err = bus_dmamap_load_mbuf_sg(sc->mbuf_dma_tag, 800 sc->txring_m_dmamap[sc->txring_hd_ptr], m, segs, 801 &nsegs, BUS_DMA_NOWAIT); 802 sc->txdefrags++; 803 } 804 if (err) { 805 /* Give up. */ 806 m_freem(m); 807 bus_dmamap_destroy(sc->mbuf_dma_tag, 808 sc->txring_m_dmamap[sc->txring_hd_ptr]); 809 sc->txring_m_dmamap[sc->txring_hd_ptr] = NULL; 810 sc->txdmamapfails++; 811 continue; 812 } 813 sc->txring_m[sc->txring_hd_ptr] = m; 814 815 /* Sync tx buffer with cache. */ 816 bus_dmamap_sync(sc->mbuf_dma_tag, 817 sc->txring_m_dmamap[sc->txring_hd_ptr], 818 BUS_DMASYNC_PREWRITE); 819 820 /* Set wrap flag if next packet might run off end of ring. */ 821 wrap = sc->txring_hd_ptr + nsegs + TX_MAX_DMA_SEGS >= 822 CGEM_NUM_TX_DESCS; 823 824 /* 825 * Fill in the TX descriptors back to front so that USED bit in 826 * first descriptor is cleared last. 827 */ 828 for (i = nsegs - 1; i >= 0; i--) { 829 /* Descriptor address. */ 830 sc->txring[sc->txring_hd_ptr + i].addr = 831 segs[i].ds_addr; 832 #ifdef CGEM64 833 sc->txring[sc->txring_hd_ptr + i].addrhi = 834 segs[i].ds_addr >> 32; 835 #endif 836 /* Descriptor control word. */ 837 ctl = segs[i].ds_len; 838 if (i == nsegs - 1) { 839 ctl |= CGEM_TXDESC_LAST_BUF; 840 if (wrap) 841 ctl |= CGEM_TXDESC_WRAP; 842 } 843 sc->txring[sc->txring_hd_ptr + i].ctl = ctl; 844 845 if (i != 0) 846 sc->txring_m[sc->txring_hd_ptr + i] = NULL; 847 } 848 849 if (wrap) 850 sc->txring_hd_ptr = 0; 851 else 852 sc->txring_hd_ptr += nsegs; 853 sc->txring_queued += nsegs; 854 855 /* Kick the transmitter. */ 856 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow | 857 CGEM_NET_CTRL_START_TX); 858 859 /* If there is a BPF listener, bounce a copy to him. */ 860 ETHER_BPF_MTAP(ifp, m); 861 } 862 } 863 864 static void 865 cgem_start(if_t ifp) 866 { 867 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 868 869 CGEM_LOCK(sc); 870 cgem_start_locked(ifp); 871 CGEM_UNLOCK(sc); 872 } 873 874 static void 875 cgem_poll_hw_stats(struct cgem_softc *sc) 876 { 877 uint32_t n; 878 879 CGEM_ASSERT_LOCKED(sc); 880 881 sc->stats.tx_bytes += RD4(sc, CGEM_OCTETS_TX_BOT); 882 sc->stats.tx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_TX_TOP) << 32; 883 884 sc->stats.tx_frames += RD4(sc, CGEM_FRAMES_TX); 885 sc->stats.tx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_TX); 886 sc->stats.tx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_TX); 887 sc->stats.tx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_TX); 888 sc->stats.tx_frames_64b += RD4(sc, CGEM_FRAMES_64B_TX); 889 sc->stats.tx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_TX); 890 sc->stats.tx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_TX); 891 sc->stats.tx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_TX); 892 sc->stats.tx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_TX); 893 sc->stats.tx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_TX); 894 sc->stats.tx_under_runs += RD4(sc, CGEM_TX_UNDERRUNS); 895 896 n = RD4(sc, CGEM_SINGLE_COLL_FRAMES); 897 sc->stats.tx_single_collisn += n; 898 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 899 n = RD4(sc, CGEM_MULTI_COLL_FRAMES); 900 sc->stats.tx_multi_collisn += n; 901 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 902 n = RD4(sc, CGEM_EXCESSIVE_COLL_FRAMES); 903 sc->stats.tx_excsv_collisn += n; 904 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 905 n = RD4(sc, CGEM_LATE_COLL); 906 sc->stats.tx_late_collisn += n; 907 if_inc_counter(sc->ifp, IFCOUNTER_COLLISIONS, n); 908 909 sc->stats.tx_deferred_frames += RD4(sc, CGEM_DEFERRED_TX_FRAMES); 910 sc->stats.tx_carrier_sense_errs += RD4(sc, CGEM_CARRIER_SENSE_ERRS); 911 912 sc->stats.rx_bytes += RD4(sc, CGEM_OCTETS_RX_BOT); 913 sc->stats.rx_bytes += (uint64_t)RD4(sc, CGEM_OCTETS_RX_TOP) << 32; 914 915 sc->stats.rx_frames += RD4(sc, CGEM_FRAMES_RX); 916 sc->stats.rx_frames_bcast += RD4(sc, CGEM_BCAST_FRAMES_RX); 917 sc->stats.rx_frames_multi += RD4(sc, CGEM_MULTI_FRAMES_RX); 918 sc->stats.rx_frames_pause += RD4(sc, CGEM_PAUSE_FRAMES_RX); 919 sc->stats.rx_frames_64b += RD4(sc, CGEM_FRAMES_64B_RX); 920 sc->stats.rx_frames_65to127b += RD4(sc, CGEM_FRAMES_65_127B_RX); 921 sc->stats.rx_frames_128to255b += RD4(sc, CGEM_FRAMES_128_255B_RX); 922 sc->stats.rx_frames_256to511b += RD4(sc, CGEM_FRAMES_256_511B_RX); 923 sc->stats.rx_frames_512to1023b += RD4(sc, CGEM_FRAMES_512_1023B_RX); 924 sc->stats.rx_frames_1024to1536b += RD4(sc, CGEM_FRAMES_1024_1518B_RX); 925 sc->stats.rx_frames_undersize += RD4(sc, CGEM_UNDERSZ_RX); 926 sc->stats.rx_frames_oversize += RD4(sc, CGEM_OVERSZ_RX); 927 sc->stats.rx_frames_jabber += RD4(sc, CGEM_JABBERS_RX); 928 sc->stats.rx_frames_fcs_errs += RD4(sc, CGEM_FCS_ERRS); 929 sc->stats.rx_frames_length_errs += RD4(sc, CGEM_LENGTH_FIELD_ERRS); 930 sc->stats.rx_symbol_errs += RD4(sc, CGEM_RX_SYMBOL_ERRS); 931 sc->stats.rx_align_errs += RD4(sc, CGEM_ALIGN_ERRS); 932 sc->stats.rx_resource_errs += RD4(sc, CGEM_RX_RESOURCE_ERRS); 933 sc->stats.rx_overrun_errs += RD4(sc, CGEM_RX_OVERRUN_ERRS); 934 sc->stats.rx_ip_hdr_csum_errs += RD4(sc, CGEM_IP_HDR_CKSUM_ERRS); 935 sc->stats.rx_tcp_csum_errs += RD4(sc, CGEM_TCP_CKSUM_ERRS); 936 sc->stats.rx_udp_csum_errs += RD4(sc, CGEM_UDP_CKSUM_ERRS); 937 } 938 939 static void 940 cgem_tick(void *arg) 941 { 942 struct cgem_softc *sc = (struct cgem_softc *)arg; 943 struct mii_data *mii; 944 945 CGEM_ASSERT_LOCKED(sc); 946 947 /* Poll the phy. */ 948 if (sc->miibus != NULL) { 949 mii = device_get_softc(sc->miibus); 950 mii_tick(mii); 951 } 952 953 /* Poll statistics registers. */ 954 cgem_poll_hw_stats(sc); 955 956 /* Check for receiver hang. */ 957 if (sc->rxhangwar && sc->rx_frames_prev == sc->stats.rx_frames) { 958 /* 959 * Reset receiver logic by toggling RX_EN bit. 1usec 960 * delay is necessary especially when operating at 100mbps 961 * and 10mbps speeds. 962 */ 963 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow & 964 ~CGEM_NET_CTRL_RX_EN); 965 DELAY(1); 966 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); 967 } 968 sc->rx_frames_prev = sc->stats.rx_frames; 969 970 /* Next callout in one second. */ 971 callout_reset(&sc->tick_ch, hz, cgem_tick, sc); 972 } 973 974 /* Interrupt handler. */ 975 static void 976 cgem_intr(void *arg) 977 { 978 struct cgem_softc *sc = (struct cgem_softc *)arg; 979 if_t ifp = sc->ifp; 980 uint32_t istatus; 981 982 CGEM_LOCK(sc); 983 984 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 985 CGEM_UNLOCK(sc); 986 return; 987 } 988 989 /* Read interrupt status and immediately clear the bits. */ 990 istatus = RD4(sc, CGEM_INTR_STAT); 991 WR4(sc, CGEM_INTR_STAT, istatus); 992 993 /* Packets received. */ 994 if ((istatus & CGEM_INTR_RX_COMPLETE) != 0) 995 cgem_recv(sc); 996 997 /* Free up any completed transmit buffers. */ 998 cgem_clean_tx(sc); 999 1000 /* Hresp not ok. Something is very bad with DMA. Try to clear. */ 1001 if ((istatus & CGEM_INTR_HRESP_NOT_OK) != 0) { 1002 device_printf(sc->dev, 1003 "cgem_intr: hresp not okay! rx_status=0x%x\n", 1004 RD4(sc, CGEM_RX_STAT)); 1005 WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_HRESP_NOT_OK); 1006 } 1007 1008 /* Receiver overrun. */ 1009 if ((istatus & CGEM_INTR_RX_OVERRUN) != 0) { 1010 /* Clear status bit. */ 1011 WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_OVERRUN); 1012 sc->rxoverruns++; 1013 } 1014 1015 /* Receiver ran out of bufs. */ 1016 if ((istatus & CGEM_INTR_RX_USED_READ) != 0) { 1017 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow | 1018 CGEM_NET_CTRL_FLUSH_DPRAM_PKT); 1019 cgem_fill_rqueue(sc); 1020 sc->rxnobufs++; 1021 } 1022 1023 /* Restart transmitter if needed. */ 1024 if (!if_sendq_empty(ifp)) 1025 cgem_start_locked(ifp); 1026 1027 CGEM_UNLOCK(sc); 1028 } 1029 1030 /* Reset hardware. */ 1031 static void 1032 cgem_reset(struct cgem_softc *sc) 1033 { 1034 1035 CGEM_ASSERT_LOCKED(sc); 1036 1037 /* Determine data bus width from design configuration register. */ 1038 switch (RD4(sc, CGEM_DESIGN_CFG1) & 1039 CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_MASK) { 1040 case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_64: 1041 sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_64; 1042 break; 1043 case CGEM_DESIGN_CFG1_DMA_BUS_WIDTH_128: 1044 sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_128; 1045 break; 1046 default: 1047 sc->net_cfg_shadow = CGEM_NET_CFG_DBUS_WIDTH_32; 1048 } 1049 1050 WR4(sc, CGEM_NET_CTRL, 0); 1051 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1052 WR4(sc, CGEM_NET_CTRL, CGEM_NET_CTRL_CLR_STAT_REGS); 1053 WR4(sc, CGEM_TX_STAT, CGEM_TX_STAT_ALL); 1054 WR4(sc, CGEM_RX_STAT, CGEM_RX_STAT_ALL); 1055 WR4(sc, CGEM_INTR_DIS, CGEM_INTR_ALL); 1056 WR4(sc, CGEM_HASH_BOT, 0); 1057 WR4(sc, CGEM_HASH_TOP, 0); 1058 WR4(sc, CGEM_TX_QBAR, 0); /* manual says do this. */ 1059 WR4(sc, CGEM_RX_QBAR, 0); 1060 1061 /* Get management port running even if interface is down. */ 1062 sc->net_cfg_shadow |= CGEM_NET_CFG_MDC_CLK_DIV_48; 1063 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1064 1065 sc->net_ctl_shadow = CGEM_NET_CTRL_MGMT_PORT_EN; 1066 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); 1067 } 1068 1069 /* Bring up the hardware. */ 1070 static void 1071 cgem_config(struct cgem_softc *sc) 1072 { 1073 if_t ifp = sc->ifp; 1074 uint32_t dma_cfg; 1075 u_char *eaddr = if_getlladdr(ifp); 1076 1077 CGEM_ASSERT_LOCKED(sc); 1078 1079 /* Program Net Config Register. */ 1080 sc->net_cfg_shadow &= (CGEM_NET_CFG_MDC_CLK_DIV_MASK | 1081 CGEM_NET_CFG_DBUS_WIDTH_MASK); 1082 sc->net_cfg_shadow |= (CGEM_NET_CFG_FCS_REMOVE | 1083 CGEM_NET_CFG_RX_BUF_OFFSET(ETHER_ALIGN) | 1084 CGEM_NET_CFG_GIGE_EN | CGEM_NET_CFG_1536RXEN | 1085 CGEM_NET_CFG_FULL_DUPLEX | CGEM_NET_CFG_SPEED100); 1086 1087 /* Check connection type, enable SGMII bits if necessary. */ 1088 if (sc->phy_contype == MII_CONTYPE_SGMII) { 1089 sc->net_cfg_shadow |= CGEM_NET_CFG_SGMII_EN; 1090 sc->net_cfg_shadow |= CGEM_NET_CFG_PCS_SEL; 1091 } 1092 1093 /* Enable receive checksum offloading? */ 1094 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 1095 sc->net_cfg_shadow |= CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; 1096 1097 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1098 1099 /* Program DMA Config Register. */ 1100 dma_cfg = CGEM_DMA_CFG_RX_BUF_SIZE(MCLBYTES) | 1101 CGEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL_8K | 1102 CGEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL | 1103 CGEM_DMA_CFG_AHB_FIXED_BURST_LEN_16 | 1104 #ifdef CGEM64 1105 CGEM_DMA_CFG_ADDR_BUS_64 | 1106 #endif 1107 CGEM_DMA_CFG_DISC_WHEN_NO_AHB; 1108 1109 /* Enable transmit checksum offloading? */ 1110 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 1111 dma_cfg |= CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN; 1112 1113 WR4(sc, CGEM_DMA_CFG, dma_cfg); 1114 1115 /* Write the rx and tx descriptor ring addresses to the QBAR regs. */ 1116 WR4(sc, CGEM_RX_QBAR, (uint32_t)sc->rxring_physaddr); 1117 WR4(sc, CGEM_TX_QBAR, (uint32_t)sc->txring_physaddr); 1118 #ifdef CGEM64 1119 WR4(sc, CGEM_RX_QBAR_HI, (uint32_t)(sc->rxring_physaddr >> 32)); 1120 WR4(sc, CGEM_TX_QBAR_HI, (uint32_t)(sc->txring_physaddr >> 32)); 1121 #endif 1122 1123 /* Enable rx and tx. */ 1124 sc->net_ctl_shadow |= (CGEM_NET_CTRL_TX_EN | CGEM_NET_CTRL_RX_EN); 1125 WR4(sc, CGEM_NET_CTRL, sc->net_ctl_shadow); 1126 1127 /* Set receive address in case it changed. */ 1128 WR4(sc, CGEM_SPEC_ADDR_LOW(0), (eaddr[3] << 24) | 1129 (eaddr[2] << 16) | (eaddr[1] << 8) | eaddr[0]); 1130 WR4(sc, CGEM_SPEC_ADDR_HI(0), (eaddr[5] << 8) | eaddr[4]); 1131 1132 /* Set up interrupts. */ 1133 WR4(sc, CGEM_INTR_EN, CGEM_INTR_RX_COMPLETE | CGEM_INTR_RX_OVERRUN | 1134 CGEM_INTR_TX_USED_READ | CGEM_INTR_RX_USED_READ | 1135 CGEM_INTR_HRESP_NOT_OK); 1136 } 1137 1138 /* Turn on interface and load up receive ring with buffers. */ 1139 static void 1140 cgem_init_locked(struct cgem_softc *sc) 1141 { 1142 struct mii_data *mii; 1143 1144 CGEM_ASSERT_LOCKED(sc); 1145 1146 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) != 0) 1147 return; 1148 1149 cgem_config(sc); 1150 cgem_fill_rqueue(sc); 1151 1152 if_setdrvflagbits(sc->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); 1153 1154 if (sc->miibus != NULL) { 1155 mii = device_get_softc(sc->miibus); 1156 mii_mediachg(mii); 1157 } 1158 1159 callout_reset(&sc->tick_ch, hz, cgem_tick, sc); 1160 } 1161 1162 static void 1163 cgem_init(void *arg) 1164 { 1165 struct cgem_softc *sc = (struct cgem_softc *)arg; 1166 1167 CGEM_LOCK(sc); 1168 cgem_init_locked(sc); 1169 CGEM_UNLOCK(sc); 1170 } 1171 1172 /* Turn off interface. Free up any buffers in transmit or receive queues. */ 1173 static void 1174 cgem_stop(struct cgem_softc *sc) 1175 { 1176 int i; 1177 1178 CGEM_ASSERT_LOCKED(sc); 1179 1180 callout_stop(&sc->tick_ch); 1181 1182 /* Shut down hardware. */ 1183 cgem_reset(sc); 1184 1185 /* Clear out transmit queue. */ 1186 memset(sc->txring, 0, CGEM_NUM_TX_DESCS * sizeof(struct cgem_tx_desc)); 1187 for (i = 0; i < CGEM_NUM_TX_DESCS; i++) { 1188 sc->txring[i].ctl = CGEM_TXDESC_USED; 1189 if (sc->txring_m[i]) { 1190 /* Unload and destroy dmamap. */ 1191 bus_dmamap_unload(sc->mbuf_dma_tag, 1192 sc->txring_m_dmamap[i]); 1193 bus_dmamap_destroy(sc->mbuf_dma_tag, 1194 sc->txring_m_dmamap[i]); 1195 sc->txring_m_dmamap[i] = NULL; 1196 m_freem(sc->txring_m[i]); 1197 sc->txring_m[i] = NULL; 1198 } 1199 } 1200 sc->txring[CGEM_NUM_TX_DESCS - 1].ctl |= CGEM_TXDESC_WRAP; 1201 1202 sc->txring_hd_ptr = 0; 1203 sc->txring_tl_ptr = 0; 1204 sc->txring_queued = 0; 1205 1206 /* Clear out receive queue. */ 1207 memset(sc->rxring, 0, CGEM_NUM_RX_DESCS * sizeof(struct cgem_rx_desc)); 1208 for (i = 0; i < CGEM_NUM_RX_DESCS; i++) { 1209 sc->rxring[i].addr = CGEM_RXDESC_OWN; 1210 if (sc->rxring_m[i]) { 1211 /* Unload and destroy dmamap. */ 1212 bus_dmamap_unload(sc->mbuf_dma_tag, 1213 sc->rxring_m_dmamap[i]); 1214 bus_dmamap_destroy(sc->mbuf_dma_tag, 1215 sc->rxring_m_dmamap[i]); 1216 sc->rxring_m_dmamap[i] = NULL; 1217 1218 m_freem(sc->rxring_m[i]); 1219 sc->rxring_m[i] = NULL; 1220 } 1221 } 1222 sc->rxring[CGEM_NUM_RX_DESCS - 1].addr |= CGEM_RXDESC_WRAP; 1223 1224 sc->rxring_hd_ptr = 0; 1225 sc->rxring_tl_ptr = 0; 1226 sc->rxring_queued = 0; 1227 1228 /* Force next statchg or linkchg to program net config register. */ 1229 sc->mii_media_active = 0; 1230 } 1231 1232 static int 1233 cgem_ioctl(if_t ifp, u_long cmd, caddr_t data) 1234 { 1235 struct cgem_softc *sc = if_getsoftc(ifp); 1236 struct ifreq *ifr = (struct ifreq *)data; 1237 struct mii_data *mii; 1238 int error = 0, mask; 1239 1240 switch (cmd) { 1241 case SIOCSIFFLAGS: 1242 CGEM_LOCK(sc); 1243 if ((if_getflags(ifp) & IFF_UP) != 0) { 1244 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1245 if (((if_getflags(ifp) ^ sc->if_old_flags) & 1246 (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 1247 cgem_rx_filter(sc); 1248 } 1249 } else { 1250 cgem_init_locked(sc); 1251 } 1252 } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1253 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 1254 cgem_stop(sc); 1255 } 1256 sc->if_old_flags = if_getflags(ifp); 1257 CGEM_UNLOCK(sc); 1258 break; 1259 1260 case SIOCADDMULTI: 1261 case SIOCDELMULTI: 1262 /* Set up multi-cast filters. */ 1263 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 1264 CGEM_LOCK(sc); 1265 cgem_rx_filter(sc); 1266 CGEM_UNLOCK(sc); 1267 } 1268 break; 1269 1270 case SIOCSIFMEDIA: 1271 case SIOCGIFMEDIA: 1272 if (sc->miibus == NULL) 1273 return (ENXIO); 1274 mii = device_get_softc(sc->miibus); 1275 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1276 break; 1277 1278 case SIOCSIFCAP: 1279 CGEM_LOCK(sc); 1280 mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; 1281 1282 if ((mask & IFCAP_TXCSUM) != 0) { 1283 if ((ifr->ifr_reqcap & IFCAP_TXCSUM) != 0) { 1284 /* Turn on TX checksumming. */ 1285 if_setcapenablebit(ifp, IFCAP_TXCSUM | 1286 IFCAP_TXCSUM_IPV6, 0); 1287 if_sethwassistbits(ifp, CGEM_CKSUM_ASSIST, 0); 1288 1289 WR4(sc, CGEM_DMA_CFG, 1290 RD4(sc, CGEM_DMA_CFG) | 1291 CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); 1292 } else { 1293 /* Turn off TX checksumming. */ 1294 if_setcapenablebit(ifp, 0, IFCAP_TXCSUM | 1295 IFCAP_TXCSUM_IPV6); 1296 if_sethwassistbits(ifp, 0, CGEM_CKSUM_ASSIST); 1297 1298 WR4(sc, CGEM_DMA_CFG, 1299 RD4(sc, CGEM_DMA_CFG) & 1300 ~CGEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN); 1301 } 1302 } 1303 if ((mask & IFCAP_RXCSUM) != 0) { 1304 if ((ifr->ifr_reqcap & IFCAP_RXCSUM) != 0) { 1305 /* Turn on RX checksumming. */ 1306 if_setcapenablebit(ifp, IFCAP_RXCSUM | 1307 IFCAP_RXCSUM_IPV6, 0); 1308 sc->net_cfg_shadow |= 1309 CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; 1310 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1311 } else { 1312 /* Turn off RX checksumming. */ 1313 if_setcapenablebit(ifp, 0, IFCAP_RXCSUM | 1314 IFCAP_RXCSUM_IPV6); 1315 sc->net_cfg_shadow &= 1316 ~CGEM_NET_CFG_RX_CHKSUM_OFFLD_EN; 1317 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1318 } 1319 } 1320 if ((if_getcapenable(ifp) & (IFCAP_RXCSUM | IFCAP_TXCSUM)) == 1321 (IFCAP_RXCSUM | IFCAP_TXCSUM)) 1322 if_setcapenablebit(ifp, IFCAP_VLAN_HWCSUM, 0); 1323 else 1324 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWCSUM); 1325 1326 CGEM_UNLOCK(sc); 1327 break; 1328 default: 1329 error = ether_ioctl(ifp, cmd, data); 1330 break; 1331 } 1332 1333 return (error); 1334 } 1335 1336 /* MII bus support routines. 1337 */ 1338 static int 1339 cgem_ifmedia_upd(if_t ifp) 1340 { 1341 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 1342 struct mii_data *mii; 1343 struct mii_softc *miisc; 1344 int error = 0; 1345 1346 mii = device_get_softc(sc->miibus); 1347 CGEM_LOCK(sc); 1348 if ((if_getflags(ifp) & IFF_UP) != 0) { 1349 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1350 PHY_RESET(miisc); 1351 error = mii_mediachg(mii); 1352 } 1353 CGEM_UNLOCK(sc); 1354 1355 return (error); 1356 } 1357 1358 static void 1359 cgem_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 1360 { 1361 struct cgem_softc *sc = (struct cgem_softc *) if_getsoftc(ifp); 1362 struct mii_data *mii; 1363 1364 mii = device_get_softc(sc->miibus); 1365 CGEM_LOCK(sc); 1366 mii_pollstat(mii); 1367 ifmr->ifm_active = mii->mii_media_active; 1368 ifmr->ifm_status = mii->mii_media_status; 1369 CGEM_UNLOCK(sc); 1370 } 1371 1372 static int 1373 cgem_miibus_readreg(device_t dev, int phy, int reg) 1374 { 1375 struct cgem_softc *sc = device_get_softc(dev); 1376 int tries, val; 1377 1378 WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | 1379 CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_READ | 1380 (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | 1381 (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT)); 1382 1383 /* Wait for completion. */ 1384 tries=0; 1385 while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { 1386 DELAY(5); 1387 if (++tries > 200) { 1388 device_printf(dev, "phy read timeout: %d\n", reg); 1389 return (-1); 1390 } 1391 } 1392 1393 val = RD4(sc, CGEM_PHY_MAINT) & CGEM_PHY_MAINT_DATA_MASK; 1394 1395 if (reg == MII_EXTSR) 1396 /* 1397 * MAC does not support half-duplex at gig speeds. 1398 * Let mii(4) exclude the capability. 1399 */ 1400 val &= ~(EXTSR_1000XHDX | EXTSR_1000THDX); 1401 1402 return (val); 1403 } 1404 1405 static int 1406 cgem_miibus_writereg(device_t dev, int phy, int reg, int data) 1407 { 1408 struct cgem_softc *sc = device_get_softc(dev); 1409 int tries; 1410 1411 WR4(sc, CGEM_PHY_MAINT, CGEM_PHY_MAINT_CLAUSE_22 | 1412 CGEM_PHY_MAINT_MUST_10 | CGEM_PHY_MAINT_OP_WRITE | 1413 (phy << CGEM_PHY_MAINT_PHY_ADDR_SHIFT) | 1414 (reg << CGEM_PHY_MAINT_REG_ADDR_SHIFT) | 1415 (data & CGEM_PHY_MAINT_DATA_MASK)); 1416 1417 /* Wait for completion. */ 1418 tries = 0; 1419 while ((RD4(sc, CGEM_NET_STAT) & CGEM_NET_STAT_PHY_MGMT_IDLE) == 0) { 1420 DELAY(5); 1421 if (++tries > 200) { 1422 device_printf(dev, "phy write timeout: %d\n", reg); 1423 return (-1); 1424 } 1425 } 1426 1427 return (0); 1428 } 1429 1430 static void 1431 cgem_miibus_statchg(device_t dev) 1432 { 1433 struct cgem_softc *sc = device_get_softc(dev); 1434 struct mii_data *mii = device_get_softc(sc->miibus); 1435 1436 CGEM_ASSERT_LOCKED(sc); 1437 1438 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1439 (IFM_ACTIVE | IFM_AVALID) && 1440 sc->mii_media_active != mii->mii_media_active) 1441 cgem_mediachange(sc, mii); 1442 } 1443 1444 static void 1445 cgem_miibus_linkchg(device_t dev) 1446 { 1447 struct cgem_softc *sc = device_get_softc(dev); 1448 struct mii_data *mii = device_get_softc(sc->miibus); 1449 1450 CGEM_ASSERT_LOCKED(sc); 1451 1452 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1453 (IFM_ACTIVE | IFM_AVALID) && 1454 sc->mii_media_active != mii->mii_media_active) 1455 cgem_mediachange(sc, mii); 1456 } 1457 1458 /* 1459 * Overridable weak symbol cgem_set_ref_clk(). This allows platforms to 1460 * provide a function to set the cgem's reference clock. 1461 */ 1462 static int __used 1463 cgem_default_set_ref_clk(int unit, int frequency) 1464 { 1465 1466 return 0; 1467 } 1468 __weak_reference(cgem_default_set_ref_clk, cgem_set_ref_clk); 1469 1470 /* Call to set reference clock and network config bits according to media. */ 1471 static void 1472 cgem_mediachange(struct cgem_softc *sc, struct mii_data *mii) 1473 { 1474 int ref_clk_freq; 1475 1476 CGEM_ASSERT_LOCKED(sc); 1477 1478 /* Update hardware to reflect media. */ 1479 sc->net_cfg_shadow &= ~(CGEM_NET_CFG_SPEED100 | CGEM_NET_CFG_GIGE_EN | 1480 CGEM_NET_CFG_FULL_DUPLEX); 1481 1482 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1483 case IFM_1000_T: 1484 sc->net_cfg_shadow |= (CGEM_NET_CFG_SPEED100 | 1485 CGEM_NET_CFG_GIGE_EN); 1486 ref_clk_freq = 125000000; 1487 break; 1488 case IFM_100_TX: 1489 sc->net_cfg_shadow |= CGEM_NET_CFG_SPEED100; 1490 ref_clk_freq = 25000000; 1491 break; 1492 default: 1493 ref_clk_freq = 2500000; 1494 } 1495 1496 if ((mii->mii_media_active & IFM_FDX) != 0) 1497 sc->net_cfg_shadow |= CGEM_NET_CFG_FULL_DUPLEX; 1498 1499 WR4(sc, CGEM_NET_CFG, sc->net_cfg_shadow); 1500 1501 if (sc->clk_pclk != NULL) { 1502 CGEM_UNLOCK(sc); 1503 if (clk_set_freq(sc->clk_pclk, ref_clk_freq, 0)) 1504 device_printf(sc->dev, "could not set ref clk to %d\n", 1505 ref_clk_freq); 1506 CGEM_LOCK(sc); 1507 } 1508 1509 sc->mii_media_active = mii->mii_media_active; 1510 } 1511 1512 static void 1513 cgem_add_sysctls(device_t dev) 1514 { 1515 struct cgem_softc *sc = device_get_softc(dev); 1516 struct sysctl_ctx_list *ctx; 1517 struct sysctl_oid_list *child; 1518 struct sysctl_oid *tree; 1519 1520 ctx = device_get_sysctl_ctx(dev); 1521 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); 1522 1523 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxbufs", CTLFLAG_RW, 1524 &sc->rxbufs, 0, "Number receive buffers to provide"); 1525 1526 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rxhangwar", CTLFLAG_RW, 1527 &sc->rxhangwar, 0, "Enable receive hang work-around"); 1528 1529 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxoverruns", CTLFLAG_RD, 1530 &sc->rxoverruns, 0, "Receive overrun events"); 1531 1532 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxnobufs", CTLFLAG_RD, 1533 &sc->rxnobufs, 0, "Receive buf queue empty events"); 1534 1535 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_rxdmamapfails", CTLFLAG_RD, 1536 &sc->rxdmamapfails, 0, "Receive DMA map failures"); 1537 1538 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txfull", CTLFLAG_RD, 1539 &sc->txfull, 0, "Transmit ring full events"); 1540 1541 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdmamapfails", CTLFLAG_RD, 1542 &sc->txdmamapfails, 0, "Transmit DMA map failures"); 1543 1544 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefrags", CTLFLAG_RD, 1545 &sc->txdefrags, 0, "Transmit m_defrag() calls"); 1546 1547 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "_txdefragfails", CTLFLAG_RD, 1548 &sc->txdefragfails, 0, "Transmit m_defrag() failures"); 1549 1550 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", 1551 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "GEM statistics"); 1552 child = SYSCTL_CHILDREN(tree); 1553 1554 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "tx_bytes", CTLFLAG_RD, 1555 &sc->stats.tx_bytes, "Total bytes transmitted"); 1556 1557 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames", CTLFLAG_RD, 1558 &sc->stats.tx_frames, 0, "Total frames transmitted"); 1559 1560 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_bcast", CTLFLAG_RD, 1561 &sc->stats.tx_frames_bcast, 0, 1562 "Number broadcast frames transmitted"); 1563 1564 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_multi", CTLFLAG_RD, 1565 &sc->stats.tx_frames_multi, 0, 1566 "Number multicast frames transmitted"); 1567 1568 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_pause", 1569 CTLFLAG_RD, &sc->stats.tx_frames_pause, 0, 1570 "Number pause frames transmitted"); 1571 1572 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_64b", CTLFLAG_RD, 1573 &sc->stats.tx_frames_64b, 0, 1574 "Number frames transmitted of size 64 bytes or less"); 1575 1576 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_65to127b", CTLFLAG_RD, 1577 &sc->stats.tx_frames_65to127b, 0, 1578 "Number frames transmitted of size 65-127 bytes"); 1579 1580 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_128to255b", 1581 CTLFLAG_RD, &sc->stats.tx_frames_128to255b, 0, 1582 "Number frames transmitted of size 128-255 bytes"); 1583 1584 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_256to511b", 1585 CTLFLAG_RD, &sc->stats.tx_frames_256to511b, 0, 1586 "Number frames transmitted of size 256-511 bytes"); 1587 1588 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_512to1023b", 1589 CTLFLAG_RD, &sc->stats.tx_frames_512to1023b, 0, 1590 "Number frames transmitted of size 512-1023 bytes"); 1591 1592 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_frames_1024to1536b", 1593 CTLFLAG_RD, &sc->stats.tx_frames_1024to1536b, 0, 1594 "Number frames transmitted of size 1024-1536 bytes"); 1595 1596 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_under_runs", 1597 CTLFLAG_RD, &sc->stats.tx_under_runs, 0, 1598 "Number transmit under-run events"); 1599 1600 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_single_collisn", 1601 CTLFLAG_RD, &sc->stats.tx_single_collisn, 0, 1602 "Number single-collision transmit frames"); 1603 1604 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_multi_collisn", 1605 CTLFLAG_RD, &sc->stats.tx_multi_collisn, 0, 1606 "Number multi-collision transmit frames"); 1607 1608 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_excsv_collisn", 1609 CTLFLAG_RD, &sc->stats.tx_excsv_collisn, 0, 1610 "Number excessive collision transmit frames"); 1611 1612 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_late_collisn", 1613 CTLFLAG_RD, &sc->stats.tx_late_collisn, 0, 1614 "Number late-collision transmit frames"); 1615 1616 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_deferred_frames", 1617 CTLFLAG_RD, &sc->stats.tx_deferred_frames, 0, 1618 "Number deferred transmit frames"); 1619 1620 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tx_carrier_sense_errs", 1621 CTLFLAG_RD, &sc->stats.tx_carrier_sense_errs, 0, 1622 "Number carrier sense errors on transmit"); 1623 1624 SYSCTL_ADD_UQUAD(ctx, child, OID_AUTO, "rx_bytes", CTLFLAG_RD, 1625 &sc->stats.rx_bytes, "Total bytes received"); 1626 1627 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames", CTLFLAG_RD, 1628 &sc->stats.rx_frames, 0, "Total frames received"); 1629 1630 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_bcast", 1631 CTLFLAG_RD, &sc->stats.rx_frames_bcast, 0, 1632 "Number broadcast frames received"); 1633 1634 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_multi", 1635 CTLFLAG_RD, &sc->stats.rx_frames_multi, 0, 1636 "Number multicast frames received"); 1637 1638 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_pause", 1639 CTLFLAG_RD, &sc->stats.rx_frames_pause, 0, 1640 "Number pause frames received"); 1641 1642 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_64b", 1643 CTLFLAG_RD, &sc->stats.rx_frames_64b, 0, 1644 "Number frames received of size 64 bytes or less"); 1645 1646 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_65to127b", 1647 CTLFLAG_RD, &sc->stats.rx_frames_65to127b, 0, 1648 "Number frames received of size 65-127 bytes"); 1649 1650 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_128to255b", 1651 CTLFLAG_RD, &sc->stats.rx_frames_128to255b, 0, 1652 "Number frames received of size 128-255 bytes"); 1653 1654 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_256to511b", 1655 CTLFLAG_RD, &sc->stats.rx_frames_256to511b, 0, 1656 "Number frames received of size 256-511 bytes"); 1657 1658 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_512to1023b", 1659 CTLFLAG_RD, &sc->stats.rx_frames_512to1023b, 0, 1660 "Number frames received of size 512-1023 bytes"); 1661 1662 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_1024to1536b", 1663 CTLFLAG_RD, &sc->stats.rx_frames_1024to1536b, 0, 1664 "Number frames received of size 1024-1536 bytes"); 1665 1666 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_undersize", 1667 CTLFLAG_RD, &sc->stats.rx_frames_undersize, 0, 1668 "Number undersize frames received"); 1669 1670 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_oversize", 1671 CTLFLAG_RD, &sc->stats.rx_frames_oversize, 0, 1672 "Number oversize frames received"); 1673 1674 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_jabber", 1675 CTLFLAG_RD, &sc->stats.rx_frames_jabber, 0, 1676 "Number jabber frames received"); 1677 1678 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_fcs_errs", 1679 CTLFLAG_RD, &sc->stats.rx_frames_fcs_errs, 0, 1680 "Number frames received with FCS errors"); 1681 1682 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_length_errs", 1683 CTLFLAG_RD, &sc->stats.rx_frames_length_errs, 0, 1684 "Number frames received with length errors"); 1685 1686 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_symbol_errs", 1687 CTLFLAG_RD, &sc->stats.rx_symbol_errs, 0, 1688 "Number receive symbol errors"); 1689 1690 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_align_errs", 1691 CTLFLAG_RD, &sc->stats.rx_align_errs, 0, 1692 "Number receive alignment errors"); 1693 1694 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_resource_errs", 1695 CTLFLAG_RD, &sc->stats.rx_resource_errs, 0, 1696 "Number frames received when no rx buffer available"); 1697 1698 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_overrun_errs", 1699 CTLFLAG_RD, &sc->stats.rx_overrun_errs, 0, 1700 "Number frames received but not copied due to receive overrun"); 1701 1702 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_ip_hdr_csum_errs", 1703 CTLFLAG_RD, &sc->stats.rx_ip_hdr_csum_errs, 0, 1704 "Number frames received with IP header checksum errors"); 1705 1706 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_tcp_csum_errs", 1707 CTLFLAG_RD, &sc->stats.rx_tcp_csum_errs, 0, 1708 "Number frames received with TCP checksum errors"); 1709 1710 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rx_frames_udp_csum_errs", 1711 CTLFLAG_RD, &sc->stats.rx_udp_csum_errs, 0, 1712 "Number frames received with UDP checksum errors"); 1713 } 1714 1715 static int 1716 cgem_probe(device_t dev) 1717 { 1718 1719 if (!ofw_bus_status_okay(dev)) 1720 return (ENXIO); 1721 1722 if (ofw_bus_search_compatible(dev, compat_data)->ocd_str == NULL) 1723 return (ENXIO); 1724 1725 device_set_desc(dev, "Cadence CGEM Gigabit Ethernet Interface"); 1726 return (0); 1727 } 1728 1729 static int 1730 cgem_attach(device_t dev) 1731 { 1732 struct cgem_softc *sc = device_get_softc(dev); 1733 if_t ifp = NULL; 1734 int rid, err; 1735 u_char eaddr[ETHER_ADDR_LEN]; 1736 int hwquirks; 1737 phandle_t node; 1738 1739 sc->dev = dev; 1740 CGEM_LOCK_INIT(sc); 1741 1742 /* Key off of compatible string and set hardware-specific options. */ 1743 hwquirks = ofw_bus_search_compatible(dev, compat_data)->ocd_data; 1744 if ((hwquirks & HWQUIRK_NEEDNULLQS) != 0) 1745 sc->neednullqs = 1; 1746 if ((hwquirks & HWQUIRK_RXHANGWAR) != 0) 1747 sc->rxhangwar = 1; 1748 /* 1749 * Both pclk and hclk are mandatory but we don't have a proper 1750 * clock driver for Zynq so don't make it fatal if we can't 1751 * get them. 1752 */ 1753 if (clk_get_by_ofw_name(dev, 0, "pclk", &sc->clk_pclk) != 0) 1754 device_printf(dev, 1755 "could not retrieve pclk.\n"); 1756 else { 1757 if (clk_enable(sc->clk_pclk) != 0) 1758 device_printf(dev, "could not enable pclk.\n"); 1759 } 1760 if (clk_get_by_ofw_name(dev, 0, "hclk", &sc->clk_hclk) != 0) 1761 device_printf(dev, 1762 "could not retrieve hclk.\n"); 1763 else { 1764 if (clk_enable(sc->clk_hclk) != 0) 1765 device_printf(dev, "could not enable hclk.\n"); 1766 } 1767 1768 /* Optional clocks */ 1769 if (clk_get_by_ofw_name(dev, 0, "tx_clk", &sc->clk_txclk) == 0) { 1770 if (clk_enable(sc->clk_txclk) != 0) { 1771 device_printf(dev, "could not enable tx_clk.\n"); 1772 err = ENXIO; 1773 goto err_pclk; 1774 } 1775 } 1776 if (clk_get_by_ofw_name(dev, 0, "rx_clk", &sc->clk_rxclk) == 0) { 1777 if (clk_enable(sc->clk_rxclk) != 0) { 1778 device_printf(dev, "could not enable rx_clk.\n"); 1779 err = ENXIO; 1780 goto err_tx_clk; 1781 } 1782 } 1783 if (clk_get_by_ofw_name(dev, 0, "tsu_clk", &sc->clk_tsuclk) == 0) { 1784 if (clk_enable(sc->clk_tsuclk) != 0) { 1785 device_printf(dev, "could not enable tsu_clk.\n"); 1786 err = ENXIO; 1787 goto err_rx_clk; 1788 } 1789 } 1790 1791 node = ofw_bus_get_node(dev); 1792 sc->phy_contype = mii_fdt_get_contype(node); 1793 1794 /* Get memory resource. */ 1795 rid = 0; 1796 sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 1797 RF_ACTIVE); 1798 if (sc->mem_res == NULL) { 1799 device_printf(dev, "could not allocate memory resources.\n"); 1800 err = ENOMEM; 1801 goto err_tsu_clk; 1802 } 1803 1804 /* Get IRQ resource. */ 1805 rid = 0; 1806 sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1807 RF_ACTIVE); 1808 if (sc->irq_res == NULL) { 1809 device_printf(dev, "could not allocate interrupt resource.\n"); 1810 cgem_detach(dev); 1811 return (ENOMEM); 1812 } 1813 1814 /* Set up ifnet structure. */ 1815 ifp = sc->ifp = if_alloc(IFT_ETHER); 1816 if (ifp == NULL) { 1817 device_printf(dev, "could not allocate ifnet structure\n"); 1818 cgem_detach(dev); 1819 return (ENOMEM); 1820 } 1821 if_setsoftc(ifp, sc); 1822 if_initname(ifp, IF_CGEM_NAME, device_get_unit(dev)); 1823 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 1824 if_setinitfn(ifp, cgem_init); 1825 if_setioctlfn(ifp, cgem_ioctl); 1826 if_setstartfn(ifp, cgem_start); 1827 if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | 1828 IFCAP_VLAN_MTU | IFCAP_VLAN_HWCSUM, 0); 1829 if_setsendqlen(ifp, CGEM_NUM_TX_DESCS); 1830 if_setsendqready(ifp); 1831 1832 /* Disable hardware checksumming by default. */ 1833 if_sethwassist(ifp, 0); 1834 if_setcapenable(ifp, if_getcapabilities(ifp) & 1835 ~(IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 | IFCAP_VLAN_HWCSUM)); 1836 1837 sc->if_old_flags = if_getflags(ifp); 1838 sc->rxbufs = DEFAULT_NUM_RX_BUFS; 1839 1840 /* Reset hardware. */ 1841 CGEM_LOCK(sc); 1842 cgem_reset(sc); 1843 CGEM_UNLOCK(sc); 1844 1845 /* Attach phy to mii bus. */ 1846 err = mii_attach(dev, &sc->miibus, ifp, 1847 cgem_ifmedia_upd, cgem_ifmedia_sts, BMSR_DEFCAPMASK, 1848 MII_PHY_ANY, MII_OFFSET_ANY, 0); 1849 if (err) 1850 device_printf(dev, "warning: attaching PHYs failed\n"); 1851 1852 /* Set up TX and RX descriptor area. */ 1853 err = cgem_setup_descs(sc); 1854 if (err) { 1855 device_printf(dev, "could not set up dma mem for descs.\n"); 1856 cgem_detach(dev); 1857 goto err; 1858 } 1859 1860 /* Get a MAC address. */ 1861 cgem_get_mac(sc, eaddr); 1862 1863 /* Start ticks. */ 1864 callout_init_mtx(&sc->tick_ch, &sc->sc_mtx, 0); 1865 1866 ether_ifattach(ifp, eaddr); 1867 1868 err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_NET | INTR_MPSAFE | 1869 INTR_EXCL, NULL, cgem_intr, sc, &sc->intrhand); 1870 if (err) { 1871 device_printf(dev, "could not set interrupt handler.\n"); 1872 ether_ifdetach(ifp); 1873 cgem_detach(dev); 1874 goto err; 1875 } 1876 1877 cgem_add_sysctls(dev); 1878 1879 return (0); 1880 1881 err_tsu_clk: 1882 if (sc->clk_tsuclk) 1883 clk_release(sc->clk_tsuclk); 1884 err_rx_clk: 1885 if (sc->clk_rxclk) 1886 clk_release(sc->clk_rxclk); 1887 err_tx_clk: 1888 if (sc->clk_txclk) 1889 clk_release(sc->clk_txclk); 1890 err_pclk: 1891 if (sc->clk_pclk) 1892 clk_release(sc->clk_pclk); 1893 if (sc->clk_hclk) 1894 clk_release(sc->clk_hclk); 1895 err: 1896 return (err); 1897 } 1898 1899 static int 1900 cgem_detach(device_t dev) 1901 { 1902 struct cgem_softc *sc = device_get_softc(dev); 1903 int i; 1904 1905 if (sc == NULL) 1906 return (ENODEV); 1907 1908 if (device_is_attached(dev)) { 1909 CGEM_LOCK(sc); 1910 cgem_stop(sc); 1911 CGEM_UNLOCK(sc); 1912 callout_drain(&sc->tick_ch); 1913 if_setflagbits(sc->ifp, 0, IFF_UP); 1914 ether_ifdetach(sc->ifp); 1915 } 1916 1917 if (sc->miibus != NULL) { 1918 device_delete_child(dev, sc->miibus); 1919 sc->miibus = NULL; 1920 } 1921 1922 /* Release resources. */ 1923 if (sc->mem_res != NULL) { 1924 bus_release_resource(dev, SYS_RES_MEMORY, 1925 rman_get_rid(sc->mem_res), sc->mem_res); 1926 sc->mem_res = NULL; 1927 } 1928 if (sc->irq_res != NULL) { 1929 if (sc->intrhand) 1930 bus_teardown_intr(dev, sc->irq_res, sc->intrhand); 1931 bus_release_resource(dev, SYS_RES_IRQ, 1932 rman_get_rid(sc->irq_res), sc->irq_res); 1933 sc->irq_res = NULL; 1934 } 1935 1936 /* Release DMA resources. */ 1937 if (sc->rxring != NULL) { 1938 if (sc->rxring_physaddr != 0) { 1939 bus_dmamap_unload(sc->desc_dma_tag, 1940 sc->rxring_dma_map); 1941 sc->rxring_physaddr = 0; 1942 sc->txring_physaddr = 0; 1943 sc->null_qs_physaddr = 0; 1944 } 1945 bus_dmamem_free(sc->desc_dma_tag, sc->rxring, 1946 sc->rxring_dma_map); 1947 sc->rxring = NULL; 1948 sc->txring = NULL; 1949 sc->null_qs = NULL; 1950 1951 for (i = 0; i < CGEM_NUM_RX_DESCS; i++) 1952 if (sc->rxring_m_dmamap[i] != NULL) { 1953 bus_dmamap_destroy(sc->mbuf_dma_tag, 1954 sc->rxring_m_dmamap[i]); 1955 sc->rxring_m_dmamap[i] = NULL; 1956 } 1957 for (i = 0; i < CGEM_NUM_TX_DESCS; i++) 1958 if (sc->txring_m_dmamap[i] != NULL) { 1959 bus_dmamap_destroy(sc->mbuf_dma_tag, 1960 sc->txring_m_dmamap[i]); 1961 sc->txring_m_dmamap[i] = NULL; 1962 } 1963 } 1964 if (sc->desc_dma_tag != NULL) { 1965 bus_dma_tag_destroy(sc->desc_dma_tag); 1966 sc->desc_dma_tag = NULL; 1967 } 1968 if (sc->mbuf_dma_tag != NULL) { 1969 bus_dma_tag_destroy(sc->mbuf_dma_tag); 1970 sc->mbuf_dma_tag = NULL; 1971 } 1972 1973 bus_generic_detach(dev); 1974 1975 if (sc->clk_tsuclk) 1976 clk_release(sc->clk_tsuclk); 1977 if (sc->clk_rxclk) 1978 clk_release(sc->clk_rxclk); 1979 if (sc->clk_txclk) 1980 clk_release(sc->clk_txclk); 1981 if (sc->clk_pclk) 1982 clk_release(sc->clk_pclk); 1983 if (sc->clk_hclk) 1984 clk_release(sc->clk_hclk); 1985 1986 CGEM_LOCK_DESTROY(sc); 1987 1988 return (0); 1989 } 1990 1991 static device_method_t cgem_methods[] = { 1992 /* Device interface */ 1993 DEVMETHOD(device_probe, cgem_probe), 1994 DEVMETHOD(device_attach, cgem_attach), 1995 DEVMETHOD(device_detach, cgem_detach), 1996 1997 /* MII interface */ 1998 DEVMETHOD(miibus_readreg, cgem_miibus_readreg), 1999 DEVMETHOD(miibus_writereg, cgem_miibus_writereg), 2000 DEVMETHOD(miibus_statchg, cgem_miibus_statchg), 2001 DEVMETHOD(miibus_linkchg, cgem_miibus_linkchg), 2002 2003 DEVMETHOD_END 2004 }; 2005 2006 static driver_t cgem_driver = { 2007 "cgem", 2008 cgem_methods, 2009 sizeof(struct cgem_softc), 2010 }; 2011 2012 DRIVER_MODULE(cgem, simplebus, cgem_driver, NULL, NULL); 2013 DRIVER_MODULE(miibus, cgem, miibus_driver, NULL, NULL); 2014 MODULE_DEPEND(cgem, miibus, 1, 1, 1); 2015 MODULE_DEPEND(cgem, ether, 1, 1, 1); 2016 SIMPLEBUS_PNP_INFO(compat_data); 2017