1 /*- 2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 24 * THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #ifndef __BXE_H__ 28 #define __BXE_H__ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/kernel.h> 35 #include <sys/systm.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/sx.h> 39 #include <sys/module.h> 40 #include <sys/endian.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kobj.h> 44 #include <sys/bus.h> 45 #include <sys/rman.h> 46 #include <sys/socket.h> 47 #include <sys/sockio.h> 48 #include <sys/sysctl.h> 49 #include <sys/smp.h> 50 #include <sys/bitstring.h> 51 #include <sys/limits.h> 52 #include <sys/queue.h> 53 #include <sys/taskqueue.h> 54 #include <sys/zlib.h> 55 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_arp.h> 59 #include <net/ethernet.h> 60 #include <net/if_dl.h> 61 #include <net/if_var.h> 62 #include <net/if_media.h> 63 #include <net/if_vlan_var.h> 64 #include <net/bpf.h> 65 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #include <netinet/ip6.h> 69 #include <netinet/tcp.h> 70 #include <netinet/udp.h> 71 72 #include <dev/pci/pcireg.h> 73 #include <dev/pci/pcivar.h> 74 75 #include <machine/atomic.h> 76 #include <machine/resource.h> 77 #include <machine/endian.h> 78 #include <machine/bus.h> 79 #include <machine/in_cksum.h> 80 81 #include "device_if.h" 82 #include "bus_if.h" 83 #include "pci_if.h" 84 85 #if _BYTE_ORDER == _LITTLE_ENDIAN 86 #ifndef LITTLE_ENDIAN 87 #define LITTLE_ENDIAN 88 #endif 89 #ifndef __LITTLE_ENDIAN 90 #define __LITTLE_ENDIAN 91 #endif 92 #undef BIG_ENDIAN 93 #undef __BIG_ENDIAN 94 #else /* _BIG_ENDIAN */ 95 #ifndef BIG_ENDIAN 96 #define BIG_ENDIAN 97 #endif 98 #ifndef __BIG_ENDIAN 99 #define __BIG_ENDIAN 100 #endif 101 #undef LITTLE_ENDIAN 102 #undef __LITTLE_ENDIAN 103 #endif 104 105 #include "ecore_mfw_req.h" 106 #include "ecore_fw_defs.h" 107 #include "ecore_hsi.h" 108 #include "ecore_reg.h" 109 #include "bxe_dcb.h" 110 #include "bxe_stats.h" 111 112 #include "bxe_elink.h" 113 114 #define VF_MAC_CREDIT_CNT 0 115 #define VF_VLAN_CREDIT_CNT (0) 116 117 #if __FreeBSD_version < 800054 118 #if defined(__i386__) || defined(__amd64__) 119 #define mb() __asm volatile("mfence;" : : : "memory") 120 #define wmb() __asm volatile("sfence;" : : : "memory") 121 #define rmb() __asm volatile("lfence;" : : : "memory") 122 static __inline void prefetch(void *x) 123 { 124 __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x)); 125 } 126 #else 127 #define mb() 128 #define rmb() 129 #define wmb() 130 #define prefetch(x) 131 #endif 132 #endif 133 134 #if __FreeBSD_version >= 1000000 135 #define PCIR_EXPRESS_DEVICE_STA PCIER_DEVICE_STA 136 #define PCIM_EXP_STA_TRANSACTION_PND PCIEM_STA_TRANSACTION_PND 137 #define PCIR_EXPRESS_LINK_STA PCIER_LINK_STA 138 #define PCIM_LINK_STA_WIDTH PCIEM_LINK_STA_WIDTH 139 #define PCIM_LINK_STA_SPEED PCIEM_LINK_STA_SPEED 140 #define PCIR_EXPRESS_DEVICE_CTL PCIER_DEVICE_CTL 141 #define PCIM_EXP_CTL_MAX_PAYLOAD PCIEM_CTL_MAX_PAYLOAD 142 #define PCIM_EXP_CTL_MAX_READ_REQUEST PCIEM_CTL_MAX_READ_REQUEST 143 #endif 144 145 #ifndef ARRAY_SIZE 146 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) 147 #endif 148 #ifndef ARRSIZE 149 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0])) 150 #endif 151 #ifndef DIV_ROUND_UP 152 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) 153 #endif 154 #ifndef roundup 155 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) 156 #endif 157 #ifndef ilog2 158 static inline 159 int bxe_ilog2(int x) 160 { 161 int log = 0; 162 while (x >>= 1) log++; 163 return (log); 164 } 165 #define ilog2(x) bxe_ilog2(x) 166 #endif 167 168 #include "ecore_sp.h" 169 170 #define BRCM_VENDORID 0x14e4 171 #define QLOGIC_VENDORID 0x1077 172 #define PCI_ANY_ID (uint16_t)(~0U) 173 174 struct bxe_device_type 175 { 176 uint16_t bxe_vid; 177 uint16_t bxe_did; 178 uint16_t bxe_svid; 179 uint16_t bxe_sdid; 180 char *bxe_name; 181 }; 182 183 #define BCM_PAGE_SHIFT 12 184 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT) 185 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1)) 186 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK) 187 188 #if BCM_PAGE_SIZE != 4096 189 #error Page sizes other than 4KB are unsupported! 190 #endif 191 192 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF) 193 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF)) 194 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32)) 195 #else 196 #define U64_LO(addr) ((uint32_t)(addr)) 197 #define U64_HI(addr) (0) 198 #endif 199 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo)) 200 201 #define SET_FLAG(value, mask, flag) \ 202 do { \ 203 (value) &= ~(mask); \ 204 (value) |= ((flag) << (mask##_SHIFT)); \ 205 } while (0) 206 207 #define GET_FLAG(value, mask) \ 208 (((value) & (mask)) >> (mask##_SHIFT)) 209 210 #define GET_FIELD(value, fname) \ 211 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 212 213 #define BXE_MAX_SEGMENTS 12 /* 13-1 for parsing buffer */ 214 #define BXE_TSO_MAX_SEGMENTS 32 215 #define BXE_TSO_MAX_SIZE (65535 + sizeof(struct ether_vlan_header)) 216 #define BXE_TSO_MAX_SEG_SIZE 4096 217 218 /* dropless fc FW/HW related params */ 219 #define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512) 220 #define MAX_AGG_QS(sc) (CHIP_IS_E1(sc) ? \ 221 ETH_MAX_AGGREGATION_QUEUES_E1 : \ 222 ETH_MAX_AGGREGATION_QUEUES_E1H_E2) 223 #define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc)) 224 #define FW_PREFETCH_CNT 16 225 #define DROPLESS_FC_HEADROOM 100 226 227 /******************/ 228 /* RX SGE defines */ 229 /******************/ 230 231 #define RX_SGE_NUM_PAGES 2 /* must be a power of 2 */ 232 #define RX_SGE_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge)) 233 #define RX_SGE_NEXT_PAGE_DESC_CNT 2 234 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT) 235 #define RX_SGE_PER_PAGE_MASK (RX_SGE_TOTAL_PER_PAGE - 1) 236 #define RX_SGE_TOTAL (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES) 237 #define RX_SGE_USABLE (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES) 238 #define RX_SGE_MAX (RX_SGE_TOTAL - 1) 239 #define RX_SGE(x) ((x) & RX_SGE_MAX) 240 241 #define RX_SGE_NEXT(x) \ 242 ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \ 243 ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1) 244 245 #define RX_SGE_MASK_ELEM_SZ 64 246 #define RX_SGE_MASK_ELEM_SHIFT 6 247 #define RX_SGE_MASK_ELEM_MASK ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1) 248 249 /* 250 * Creates a bitmask of all ones in less significant bits. 251 * idx - index of the most significant bit in the created mask. 252 */ 253 #define RX_SGE_ONES_MASK(idx) \ 254 (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1) 255 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0)) 256 257 /* Number of uint64_t elements in SGE mask array. */ 258 #define RX_SGE_MASK_LEN \ 259 ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ) 260 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1) 261 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK) 262 263 /* 264 * dropless fc calculations for SGEs 265 * Number of required SGEs is the sum of two: 266 * 1. Number of possible opened aggregations (next packet for 267 * these aggregations will probably consume SGE immidiatelly) 268 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only 269 * after placement on BD for new TPA aggregation) 270 * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page 271 */ 272 #define NUM_SGE_REQ(sc) \ 273 (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2) 274 #define NUM_SGE_PG_REQ(sc) \ 275 ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE) 276 #define SGE_TH_LO(sc) \ 277 (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT) 278 #define SGE_TH_HI(sc) \ 279 (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM) 280 281 #define PAGES_PER_SGE_SHIFT 0 282 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT) 283 #define SGE_PAGE_SIZE BCM_PAGE_SIZE 284 #define SGE_PAGE_SHIFT BCM_PAGE_SHIFT 285 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr) 286 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE) 287 #define TPA_AGG_SIZE min((8 * SGE_PAGES), 0xffff) 288 289 /*****************/ 290 /* TX BD defines */ 291 /*****************/ 292 293 #define TX_BD_NUM_PAGES 16 /* must be a power of 2 */ 294 #define TX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types)) 295 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1) 296 #define TX_BD_TOTAL (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES) 297 #define TX_BD_USABLE (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES) 298 #define TX_BD_MAX (TX_BD_TOTAL - 1) 299 300 #define TX_BD_NEXT(x) \ 301 ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \ 302 ((x) + 2) : ((x) + 1)) 303 #define TX_BD(x) ((x) & TX_BD_MAX) 304 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8) 305 #define TX_BD_IDX(x) ((x) & TX_BD_USABLE_PER_PAGE) 306 307 /* 308 * Trigger pending transmits when the number of available BDs is greater 309 * than 1/8 of the total number of usable BDs. 310 */ 311 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8) 312 #define BXE_TX_TIMEOUT 5 313 314 /*****************/ 315 /* RX BD defines */ 316 /*****************/ 317 318 #define RX_BD_NUM_PAGES 8 /* power of 2 */ 319 #define RX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd)) 320 #define RX_BD_NEXT_PAGE_DESC_CNT 2 321 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT) 322 #define RX_BD_PER_PAGE_MASK (RX_BD_TOTAL_PER_PAGE - 1) 323 #define RX_BD_TOTAL (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES) 324 #define RX_BD_USABLE (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES) 325 #define RX_BD_MAX (RX_BD_TOTAL - 1) 326 327 #define RX_BD_NEXT(x) \ 328 ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \ 329 ((x) + 3) : ((x) + 1)) 330 #define RX_BD(x) ((x) & RX_BD_MAX) 331 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9) 332 #define RX_BD_IDX(x) ((x) & RX_BD_PER_PAGE_MASK) 333 334 /* 335 * dropless fc calculations for BDs 336 * Number of BDs should be as number of buffers in BRB: 337 * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT 338 * "next" elements on each page 339 */ 340 #define NUM_BD_REQ(sc) \ 341 BRB_SIZE(sc) 342 #define NUM_BD_PG_REQ(sc) \ 343 ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE) 344 #define BD_TH_LO(sc) \ 345 (NUM_BD_REQ(sc) + \ 346 NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \ 347 FW_DROP_LEVEL(sc)) 348 #define BD_TH_HI(sc) \ 349 (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM) 350 #define MIN_RX_AVAIL(sc) \ 351 ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128) 352 #define MIN_RX_SIZE_TPA_HW(sc) \ 353 (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 : \ 354 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2) 355 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA 356 #define MIN_RX_SIZE_TPA(sc) \ 357 (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc))) 358 #define MIN_RX_SIZE_NONTPA(sc) \ 359 (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc))) 360 361 /***************/ 362 /* RCQ defines */ 363 /***************/ 364 365 /* 366 * As long as CQE is X times bigger than BD entry we have to allocate X times 367 * more pages for CQ ring in order to keep it balanced with BD ring 368 */ 369 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / \ 370 sizeof(struct eth_rx_bd)) 371 #define RCQ_NUM_PAGES (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */ 372 #define RCQ_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe)) 373 #define RCQ_NEXT_PAGE_DESC_CNT 1 374 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT) 375 #define RCQ_TOTAL (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES) 376 #define RCQ_USABLE (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES) 377 #define RCQ_MAX (RCQ_TOTAL - 1) 378 379 #define RCQ_NEXT(x) \ 380 ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \ 381 ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1)) 382 #define RCQ(x) ((x) & RCQ_MAX) 383 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7) 384 #define RCQ_IDX(x) ((x) & RCQ_USABLE_PER_PAGE) 385 386 /* 387 * dropless fc calculations for RCQs 388 * Number of RCQs should be as number of buffers in BRB: 389 * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT 390 * "next" elements on each page 391 */ 392 #define NUM_RCQ_REQ(sc) \ 393 BRB_SIZE(sc) 394 #define NUM_RCQ_PG_REQ(sc) \ 395 ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE) 396 #define RCQ_TH_LO(sc) \ 397 (NUM_RCQ_REQ(sc) + \ 398 NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \ 399 FW_DROP_LEVEL(sc)) 400 #define RCQ_TH_HI(sc) \ 401 (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM) 402 403 /* This is needed for determening of last_max */ 404 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b)) 405 406 #define __SGE_MASK_SET_BIT(el, bit) \ 407 do { \ 408 (el) = ((el) | ((uint64_t)0x1 << (bit))); \ 409 } while (0) 410 411 #define __SGE_MASK_CLEAR_BIT(el, bit) \ 412 do { \ 413 (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \ 414 } while (0) 415 416 #define SGE_MASK_SET_BIT(fp, idx) \ 417 __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \ 418 ((idx) & RX_SGE_MASK_ELEM_MASK)) 419 420 #define SGE_MASK_CLEAR_BIT(fp, idx) \ 421 __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \ 422 ((idx) & RX_SGE_MASK_ELEM_MASK)) 423 424 /* Load / Unload modes */ 425 #define LOAD_NORMAL 0 426 #define LOAD_OPEN 1 427 #define LOAD_DIAG 2 428 #define LOAD_LOOPBACK_EXT 3 429 #define UNLOAD_NORMAL 0 430 #define UNLOAD_CLOSE 1 431 #define UNLOAD_RECOVERY 2 432 433 /* Some constants... */ 434 //#define MAX_PATH_NUM 2 435 //#define E2_MAX_NUM_OF_VFS 64 436 //#define E1H_FUNC_MAX 8 437 //#define E2_FUNC_MAX 4 /* per path */ 438 #define MAX_VNIC_NUM 4 439 #define MAX_FUNC_NUM 8 /* common to all chips */ 440 //#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */ 441 #define MAX_RSS_CHAINS 16 /* a constant for HW limit */ 442 #define MAX_MSI_VECTOR 8 /* a constant for HW limit */ 443 444 #define ILT_NUM_PAGE_ENTRIES 3072 445 /* 446 * 57710/11 we use whole table since we have 8 functions. 447 * 57712 we have only 4 functions, but use same size per func, so only half 448 * of the table is used. 449 */ 450 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8) 451 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC) 452 /* 453 * the phys address is shifted right 12 bits and has an added 454 * 1=valid bit added to the 53rd bit 455 * then since this is a wide register(TM) 456 * we split it into two 32 bit writes 457 */ 458 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF)) 459 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44))) 460 461 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */ 462 #define ETH_HLEN 14 463 #define ETH_OVERHEAD (ETH_HLEN + 8 + 8) 464 #define ETH_MIN_PACKET_SIZE 60 465 #define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */ 466 #define ETH_MAX_JUMBO_PACKET_SIZE 9600 467 /* TCP with Timestamp Option (32) + IPv6 (40) */ 468 #define ETH_MAX_TPA_HEADER_SIZE 72 469 470 /* max supported alignment is 256 (8 shift) */ 471 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8) 472 #define BXE_RX_ALIGN_SHIFT 8 473 /* FW uses 2 cache lines alignment for start packet and size */ 474 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT) 475 #define BXE_FW_RX_ALIGN_END (1 << BXE_RX_ALIGN_SHIFT) 476 477 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */ 478 479 struct bxe_bar { 480 struct resource *resource; 481 int rid; 482 bus_space_tag_t tag; 483 bus_space_handle_t handle; 484 vm_offset_t kva; 485 }; 486 487 struct bxe_intr { 488 struct resource *resource; 489 int rid; 490 void *tag; 491 }; 492 493 /* Used to manage DMA allocations. */ 494 struct bxe_dma { 495 struct bxe_softc *sc; 496 bus_addr_t paddr; 497 void *vaddr; 498 bus_dma_tag_t tag; 499 bus_dmamap_t map; 500 bus_dma_segment_t seg; 501 bus_size_t size; 502 int nseg; 503 char msg[32]; 504 }; 505 506 /* attn group wiring */ 507 #define MAX_DYNAMIC_ATTN_GRPS 8 508 509 struct attn_route { 510 uint32_t sig[5]; 511 }; 512 513 struct iro { 514 uint32_t base; 515 uint16_t m1; 516 uint16_t m2; 517 uint16_t m3; 518 uint16_t size; 519 }; 520 521 union bxe_host_hc_status_block { 522 /* pointer to fp status block e2 */ 523 struct host_hc_status_block_e2 *e2_sb; 524 /* pointer to fp status block e1x */ 525 struct host_hc_status_block_e1x *e1x_sb; 526 }; 527 528 union bxe_db_prod { 529 struct doorbell_set_prod data; 530 uint32_t raw; 531 }; 532 533 struct bxe_sw_tx_bd { 534 struct mbuf *m; 535 bus_dmamap_t m_map; 536 uint16_t first_bd; 537 uint8_t flags; 538 /* set on the first BD descriptor when there is a split BD */ 539 #define BXE_TSO_SPLIT_BD (1 << 0) 540 }; 541 542 struct bxe_sw_rx_bd { 543 struct mbuf *m; 544 bus_dmamap_t m_map; 545 }; 546 547 struct bxe_sw_tpa_info { 548 struct bxe_sw_rx_bd bd; 549 bus_dma_segment_t seg; 550 uint8_t state; 551 #define BXE_TPA_STATE_START 1 552 #define BXE_TPA_STATE_STOP 2 553 uint8_t placement_offset; 554 uint16_t parsing_flags; 555 uint16_t vlan_tag; 556 uint16_t len_on_bd; 557 }; 558 559 /* 560 * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN 561 * instances of the fastpath structure when using multiple queues. 562 */ 563 struct bxe_fastpath { 564 /* pointer back to parent structure */ 565 struct bxe_softc *sc; 566 567 struct mtx tx_mtx; 568 char tx_mtx_name[32]; 569 struct mtx rx_mtx; 570 char rx_mtx_name[32]; 571 572 #define BXE_FP_TX_LOCK(fp) mtx_lock(&fp->tx_mtx) 573 #define BXE_FP_TX_UNLOCK(fp) mtx_unlock(&fp->tx_mtx) 574 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED) 575 #define BXE_FP_TX_TRYLOCK(fp) mtx_trylock(&fp->tx_mtx) 576 577 #define BXE_FP_RX_LOCK(fp) mtx_lock(&fp->rx_mtx) 578 #define BXE_FP_RX_UNLOCK(fp) mtx_unlock(&fp->rx_mtx) 579 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED) 580 581 /* status block */ 582 struct bxe_dma sb_dma; 583 union bxe_host_hc_status_block status_block; 584 585 /* transmit chain (tx bds) */ 586 struct bxe_dma tx_dma; 587 union eth_tx_bd_types *tx_chain; 588 589 /* receive chain (rx bds) */ 590 struct bxe_dma rx_dma; 591 struct eth_rx_bd *rx_chain; 592 593 /* receive completion queue chain (rcq bds) */ 594 struct bxe_dma rcq_dma; 595 union eth_rx_cqe *rcq_chain; 596 597 /* receive scatter/gather entry chain (for TPA) */ 598 struct bxe_dma rx_sge_dma; 599 struct eth_rx_sge *rx_sge_chain; 600 601 /* tx mbufs */ 602 bus_dma_tag_t tx_mbuf_tag; 603 struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL]; 604 605 /* rx mbufs */ 606 bus_dma_tag_t rx_mbuf_tag; 607 struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL]; 608 bus_dmamap_t rx_mbuf_spare_map; 609 610 /* rx sge mbufs */ 611 bus_dma_tag_t rx_sge_mbuf_tag; 612 struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL]; 613 bus_dmamap_t rx_sge_mbuf_spare_map; 614 615 /* rx tpa mbufs (use the larger size for TPA queue length) */ 616 int tpa_enable; /* disabled per fastpath upon error */ 617 struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2]; 618 bus_dmamap_t rx_tpa_info_mbuf_spare_map; 619 uint64_t rx_tpa_queue_used; 620 621 uint16_t *sb_index_values; 622 uint16_t *sb_running_index; 623 uint32_t ustorm_rx_prods_offset; 624 625 uint8_t igu_sb_id; /* status block number in HW */ 626 uint8_t fw_sb_id; /* status block number in FW */ 627 628 uint32_t rx_buf_size; 629 int mbuf_alloc_size; 630 631 int state; 632 #define BXE_FP_STATE_CLOSED 0x01 633 #define BXE_FP_STATE_IRQ 0x02 634 #define BXE_FP_STATE_OPENING 0x04 635 #define BXE_FP_STATE_OPEN 0x08 636 #define BXE_FP_STATE_HALTING 0x10 637 #define BXE_FP_STATE_HALTED 0x20 638 639 /* reference back to this fastpath queue number */ 640 uint8_t index; /* this is also the 'cid' */ 641 #define FP_IDX(fp) (fp->index) 642 643 /* interrupt taskqueue (fast) */ 644 struct task tq_task; 645 struct taskqueue *tq; 646 char tq_name[32]; 647 648 struct task tx_task; 649 struct timeout_task tx_timeout_task; 650 651 /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */ 652 uint8_t cl_id; 653 #define FP_CL_ID(fp) (fp->cl_id) 654 uint8_t cl_qzone_id; 655 656 uint16_t fp_hc_idx; 657 658 /* driver copy of the receive buffer descriptor prod/cons indices */ 659 uint16_t rx_bd_prod; 660 uint16_t rx_bd_cons; 661 662 /* driver copy of the receive completion queue prod/cons indices */ 663 uint16_t rx_cq_prod; 664 uint16_t rx_cq_cons; 665 666 union bxe_db_prod tx_db; 667 668 /* Transmit packet producer index (used in eth_tx_bd). */ 669 uint16_t tx_pkt_prod; 670 uint16_t tx_pkt_cons; 671 672 /* Transmit buffer descriptor producer index. */ 673 uint16_t tx_bd_prod; 674 uint16_t tx_bd_cons; 675 676 uint64_t sge_mask[RX_SGE_MASK_LEN]; 677 uint16_t rx_sge_prod; 678 679 struct tstorm_per_queue_stats old_tclient; 680 struct ustorm_per_queue_stats old_uclient; 681 struct xstorm_per_queue_stats old_xclient; 682 struct bxe_eth_q_stats eth_q_stats; 683 struct bxe_eth_q_stats_old eth_q_stats_old; 684 685 /* Pointer to the receive consumer in the status block */ 686 uint16_t *rx_cq_cons_sb; 687 688 /* Pointer to the transmit consumer in the status block */ 689 uint16_t *tx_cons_sb; 690 691 /* transmit timeout until chip reset */ 692 int watchdog_timer; 693 694 /* Free/used buffer descriptor counters. */ 695 //uint16_t used_tx_bd; 696 697 /* Last maximal completed SGE */ 698 uint16_t last_max_sge; 699 700 //uint16_t rx_sge_free_idx; 701 702 //uint8_t segs; 703 704 #if __FreeBSD_version >= 800000 705 #define BXE_BR_SIZE 4096 706 struct buf_ring *tx_br; 707 #endif 708 }; /* struct bxe_fastpath */ 709 710 /* sriov XXX */ 711 #define BXE_MAX_NUM_OF_VFS 64 712 #define BXE_VF_CID_WND 0 713 #define BXE_CIDS_PER_VF (1 << BXE_VF_CID_WND) 714 #define BXE_CLIENTS_PER_VF 1 715 #define BXE_FIRST_VF_CID 256 716 #define BXE_VF_CIDS (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF) 717 #define BXE_VF_ID_INVALID 0xFF 718 #define IS_SRIOV(sc) 0 719 720 #define GET_NUM_VFS_PER_PATH(sc) 0 721 #define GET_NUM_VFS_PER_PF(sc) 0 722 723 /* maximum number of fast-path interrupt contexts */ 724 #define FP_SB_MAX_E1x 16 725 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2 726 727 union cdu_context { 728 struct eth_context eth; 729 char pad[1024]; 730 }; 731 732 /* CDU host DB constants */ 733 #define CDU_ILT_PAGE_SZ_HW 2 734 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */ 735 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context)) 736 737 #define CNIC_ISCSI_CID_MAX 256 738 #define CNIC_FCOE_CID_MAX 2048 739 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX) 740 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS) 741 742 #define QM_ILT_PAGE_SZ_HW 0 743 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */ 744 #define QM_CID_ROUND 1024 745 746 /* TM (timers) host DB constants */ 747 #define TM_ILT_PAGE_SZ_HW 0 748 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */ 749 /*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */ 750 #define TM_CONN_NUM 1024 751 #define TM_ILT_SZ (8 * TM_CONN_NUM) 752 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ) 753 754 /* SRC (Searcher) host DB constants */ 755 #define SRC_ILT_PAGE_SZ_HW 0 756 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */ 757 #define SRC_HASH_BITS 10 758 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */ 759 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM) 760 #define SRC_T2_SZ SRC_ILT_SZ 761 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ) 762 763 struct hw_context { 764 struct bxe_dma vcxt_dma; 765 union cdu_context *vcxt; 766 //bus_addr_t cxt_mapping; 767 size_t size; 768 }; 769 770 #define SM_RX_ID 0 771 #define SM_TX_ID 1 772 773 /* defines for multiple tx priority indices */ 774 #define FIRST_TX_ONLY_COS_INDEX 1 775 #define FIRST_TX_COS_INDEX 0 776 777 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc)) 778 779 #define HC_INDEX_ETH_RX_CQ_CONS 1 780 #define HC_INDEX_OOO_TX_CQ_CONS 4 781 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5 782 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6 783 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7 784 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0 785 786 /* congestion management fairness mode */ 787 #define CMNG_FNS_NONE 0 788 #define CMNG_FNS_MINMAX 1 789 790 /* CMNG constants, as derived from system spec calculations */ 791 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */ 792 #define DEF_MIN_RATE 100 793 /* resolution of the rate shaping timer - 400 usec */ 794 #define RS_PERIODIC_TIMEOUT_USEC 400 795 /* number of bytes in single QM arbitration cycle - 796 * coefficient for calculating the fairness timer */ 797 #define QM_ARB_BYTES 160000 798 /* resolution of Min algorithm 1:100 */ 799 #define MIN_RES 100 800 /* how many bytes above threshold for the minimal credit of Min algorithm*/ 801 #define MIN_ABOVE_THRESH 32768 802 /* fairness algorithm integration time coefficient - 803 * for calculating the actual Tfair */ 804 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) 805 /* memory of fairness algorithm - 2 cycles */ 806 #define FAIR_MEM 2 807 808 #define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */ 809 #define HC_SEG_ACCESS_ATTN 4 810 #define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */ 811 812 /* 813 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is 814 * control by the number of fast-path status blocks supported by the 815 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default 816 * status block represents an independent interrupts context that can 817 * serve a regular L2 networking queue. However special L2 queues such 818 * as the FCoE queue do not require a FP-SB and other components like 819 * the CNIC may consume FP-SB reducing the number of possible L2 queues 820 * 821 * If the maximum number of FP-SB available is X then: 822 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of 823 * regular L2 queues is Y=X-1 824 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor) 825 * c. If the FCoE L2 queue is supported the actual number of L2 queues 826 * is Y+1 827 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for 828 * slow-path interrupts) or Y+2 if CNIC is supported (one additional 829 * FP interrupt context for the CNIC). 830 * e. The number of HW context (CID count) is always X or X+1 if FCoE 831 * L2 queue is supported. the cid for the FCoE L2 queue is always X. 832 * 833 * So this is quite simple for now as no ULPs are supported yet. :-) 834 */ 835 #define BXE_NUM_QUEUES(sc) ((sc)->num_queues) 836 #define BXE_NUM_ETH_QUEUES(sc) BXE_NUM_QUEUES(sc) 837 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc) 838 #define BXE_NUM_RX_QUEUES(sc) BXE_NUM_QUEUES(sc) 839 840 #define FOR_EACH_QUEUE(sc, var) \ 841 for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++) 842 843 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \ 844 for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++) 845 846 #define FOR_EACH_ETH_QUEUE(sc, var) \ 847 for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++) 848 849 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \ 850 for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++) 851 852 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \ 853 for ((var) = 0; (var) < (sc)->max_cos; (var)++) 854 855 #define FOR_EACH_CNIC_QUEUE(sc, var) \ 856 for ((var) = BXE_NUM_ETH_QUEUES(sc); \ 857 (var) < BXE_NUM_QUEUES(sc); \ 858 (var)++) 859 860 enum { 861 OOO_IDX_OFFSET, 862 FCOE_IDX_OFFSET, 863 FWD_IDX_OFFSET, 864 }; 865 866 #define FCOE_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET) 867 #define bxe_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)]) 868 #define bxe_fcoe(sc, var) (bxe_fcoe_fp(sc)->var) 869 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)]) 870 #define bxe_fcoe_sp_obj(sc, var) (bxe_fcoe_inner_sp_obj(sc)->var) 871 #define bxe_fcoe_tx(sc, var) (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var) 872 873 #define OOO_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET) 874 #define bxe_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)]) 875 #define bxe_ooo(sc, var) (bxe_ooo_fp(sc)->var) 876 #define bxe_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)]) 877 #define bxe_ooo_sp_obj(sc, var) (bxe_ooo_inner_sp_obj(sc)->var) 878 879 #define FWD_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET) 880 #define bxe_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)]) 881 #define bxe_fwd(sc, var) (bxe_fwd_fp(sc)->var) 882 #define bxe_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)]) 883 #define bxe_fwd_sp_obj(sc, var) (bxe_fwd_inner_sp_obj(sc)->var) 884 #define bxe_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX]) 885 886 #define IS_ETH_FP(fp) ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc)) 887 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc)) 888 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc)) 889 #define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc)) 890 #define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc)) 891 #define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc)) 892 #define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc)) 893 894 enum { 895 BXE_PORT_QUERY_IDX, 896 BXE_PF_QUERY_IDX, 897 BXE_FCOE_QUERY_IDX, 898 BXE_FIRST_QUEUE_QUERY_IDX, 899 }; 900 901 struct bxe_fw_stats_req { 902 struct stats_query_header hdr; 903 struct stats_query_entry query[FP_SB_MAX_E1x + 904 BXE_FIRST_QUEUE_QUERY_IDX]; 905 }; 906 907 struct bxe_fw_stats_data { 908 struct stats_counter storm_counters; 909 struct per_port_stats port; 910 struct per_pf_stats pf; 911 //struct fcoe_statistics_params fcoe; 912 struct per_queue_stats queue_stats[1]; 913 }; 914 915 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */ 916 #define BXE_IGU_STAS_MSG_VF_CNT 64 917 #define BXE_IGU_STAS_MSG_PF_CNT 4 918 919 #define MAX_DMAE_C 8 920 921 /* 922 * For the main interface up/down code paths, a not-so-fine-grained CORE 923 * mutex lock is used. Inside this code are various calls to kernel routines 924 * that can cause a sleep to occur. Namely memory allocations and taskqueue 925 * handling. If using an MTX lock we are *not* allowed to sleep but we can 926 * with an SX lock. This define forces the CORE lock to use and SX lock. 927 * Undefine this and an MTX lock will be used instead. Note that the IOCTL 928 * path can cause problems since it's called by a non-sleepable thread. To 929 * alleviate a potential sleep, any IOCTL processing that results in the 930 * chip/interface being started/stopped/reinitialized, the actual work is 931 * offloaded to a taskqueue. 932 */ 933 #define BXE_CORE_LOCK_SX 934 935 /* 936 * This is the slowpath data structure. It is mapped into non-paged memory 937 * so that the hardware can access it's contents directly and must be page 938 * aligned. 939 */ 940 struct bxe_slowpath { 941 942 /* used by the DMAE command executer */ 943 struct dmae_cmd dmae[MAX_DMAE_C]; 944 945 /* statistics completion */ 946 uint32_t stats_comp; 947 948 /* firmware defined statistics blocks */ 949 union mac_stats mac_stats; 950 struct nig_stats nig_stats; 951 struct host_port_stats port_stats; 952 struct host_func_stats func_stats; 953 //struct host_func_stats func_stats_base; 954 955 /* DMAE completion value and data source/sink */ 956 uint32_t wb_comp; 957 uint32_t wb_data[4]; 958 959 union { 960 struct mac_configuration_cmd e1x; 961 struct eth_classify_rules_ramrod_data e2; 962 } mac_rdata; 963 964 union { 965 struct tstorm_eth_mac_filter_config e1x; 966 struct eth_filter_rules_ramrod_data e2; 967 } rx_mode_rdata; 968 969 struct eth_rss_update_ramrod_data rss_rdata; 970 971 union { 972 struct mac_configuration_cmd e1; 973 struct eth_multicast_rules_ramrod_data e2; 974 } mcast_rdata; 975 976 union { 977 struct function_start_data func_start; 978 struct flow_control_configuration pfc_config; /* for DCBX ramrod */ 979 } func_rdata; 980 981 /* Queue State related ramrods */ 982 union { 983 struct client_init_ramrod_data init_data; 984 struct client_update_ramrod_data update_data; 985 } q_rdata; 986 987 /* 988 * AFEX ramrod can not be a part of func_rdata union because these 989 * events might arrive in parallel to other events from func_rdata. 990 * If they were defined in the same union the data can get corrupted. 991 */ 992 struct afex_vif_list_ramrod_data func_afex_rdata; 993 994 union drv_info_to_mcp drv_info_to_mcp; 995 }; /* struct bxe_slowpath */ 996 997 /* 998 * Port specifc data structure. 999 */ 1000 struct bxe_port { 1001 /* 1002 * Port Management Function (for 57711E only). 1003 * When this field is set the driver instance is 1004 * responsible for managing port specifc 1005 * configurations such as handling link attentions. 1006 */ 1007 uint32_t pmf; 1008 1009 /* Ethernet maximum transmission unit. */ 1010 uint16_t ether_mtu; 1011 1012 uint32_t link_config[ELINK_LINK_CONFIG_SIZE]; 1013 1014 uint32_t ext_phy_config; 1015 1016 /* Port feature config.*/ 1017 uint32_t config; 1018 1019 /* Defines the features supported by the PHY. */ 1020 uint32_t supported[ELINK_LINK_CONFIG_SIZE]; 1021 1022 /* Defines the features advertised by the PHY. */ 1023 uint32_t advertising[ELINK_LINK_CONFIG_SIZE]; 1024 #define ADVERTISED_10baseT_Half (1 << 1) 1025 #define ADVERTISED_10baseT_Full (1 << 2) 1026 #define ADVERTISED_100baseT_Half (1 << 3) 1027 #define ADVERTISED_100baseT_Full (1 << 4) 1028 #define ADVERTISED_1000baseT_Half (1 << 5) 1029 #define ADVERTISED_1000baseT_Full (1 << 6) 1030 #define ADVERTISED_TP (1 << 7) 1031 #define ADVERTISED_FIBRE (1 << 8) 1032 #define ADVERTISED_Autoneg (1 << 9) 1033 #define ADVERTISED_Asym_Pause (1 << 10) 1034 #define ADVERTISED_Pause (1 << 11) 1035 #define ADVERTISED_2500baseX_Full (1 << 15) 1036 #define ADVERTISED_10000baseT_Full (1 << 16) 1037 1038 uint32_t phy_addr; 1039 1040 /* Used to synchronize phy accesses. */ 1041 struct mtx phy_mtx; 1042 char phy_mtx_name[32]; 1043 1044 #define BXE_PHY_LOCK(sc) mtx_lock(&sc->port.phy_mtx) 1045 #define BXE_PHY_UNLOCK(sc) mtx_unlock(&sc->port.phy_mtx) 1046 #define BXE_PHY_LOCK_ASSERT(sc) mtx_assert(&sc->port.phy_mtx, MA_OWNED) 1047 1048 /* 1049 * MCP scratchpad address for port specific statistics. 1050 * The device is responsible for writing statistcss 1051 * back to the MCP for use with management firmware such 1052 * as UMP/NC-SI. 1053 */ 1054 uint32_t port_stx; 1055 1056 struct nig_stats old_nig_stats; 1057 }; /* struct bxe_port */ 1058 1059 struct bxe_mf_info { 1060 uint32_t mf_config[E1HVN_MAX]; 1061 1062 uint32_t vnics_per_port; /* 1, 2 or 4 */ 1063 uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */ 1064 uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */ 1065 1066 #define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode) 1067 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port) 1068 #define VNICS_PER_PATH(sc) \ 1069 ((sc)->devinfo.mf_info.vnics_per_port * \ 1070 ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 )) 1071 1072 uint8_t min_bw[MAX_VNIC_NUM]; 1073 uint8_t max_bw[MAX_VNIC_NUM]; 1074 1075 uint16_t ext_id; /* vnic outer vlan or VIF ID */ 1076 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096) 1077 #define INVALID_VIF_ID 0xFFFF 1078 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id) 1079 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id) 1080 1081 uint16_t default_vlan; 1082 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan) 1083 1084 uint8_t niv_allowed_priorities; 1085 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities) 1086 1087 uint8_t niv_default_cos; 1088 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos) 1089 1090 uint8_t niv_mba_enabled; 1091 1092 enum mf_cfg_afex_vlan_mode afex_vlan_mode; 1093 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode) 1094 int afex_def_vlan_tag; 1095 uint32_t pending_max; 1096 1097 uint16_t flags; 1098 #define MF_INFO_VALID_MAC 0x0001 1099 1100 uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */ 1101 #define IS_MF(sc) \ 1102 (IS_MULTI_VNIC(sc) && \ 1103 ((sc)->devinfo.mf_info.mf_mode != 0)) 1104 #define IS_MF_SD(sc) \ 1105 (IS_MULTI_VNIC(sc) && \ 1106 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)) 1107 #define IS_MF_SI(sc) \ 1108 (IS_MULTI_VNIC(sc) && \ 1109 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)) 1110 #define IS_MF_AFEX(sc) \ 1111 (IS_MULTI_VNIC(sc) && \ 1112 ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX)) 1113 #define IS_MF_SD_MODE(sc) IS_MF_SD(sc) 1114 #define IS_MF_SI_MODE(sc) IS_MF_SI(sc) 1115 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc) 1116 1117 uint32_t mf_protos_supported; 1118 #define MF_PROTO_SUPPORT_ETHERNET 0x1 1119 #define MF_PROTO_SUPPORT_ISCSI 0x2 1120 #define MF_PROTO_SUPPORT_FCOE 0x4 1121 }; /* struct bxe_mf_info */ 1122 1123 /* Device information data structure. */ 1124 struct bxe_devinfo { 1125 /* PCIe info */ 1126 uint16_t vendor_id; 1127 uint16_t device_id; 1128 uint16_t subvendor_id; 1129 uint16_t subdevice_id; 1130 1131 /* 1132 * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB' 1133 * C = Chip Number (bits 16-31) 1134 * R = Chip Revision (bits 12-15) 1135 * M = Chip Metal (bits 4-11) 1136 * B = Chip Bond ID (bits 0-3) 1137 */ 1138 uint32_t chip_id; 1139 #define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000) 1140 #define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16) 1141 /* device ids */ 1142 #define CHIP_NUM_57710 0x164e 1143 #define CHIP_NUM_57711 0x164f 1144 #define CHIP_NUM_57711E 0x1650 1145 #define CHIP_NUM_57712 0x1662 1146 #define CHIP_NUM_57712_MF 0x1663 1147 #define CHIP_NUM_57712_VF 0x166f 1148 #define CHIP_NUM_57800 0x168a 1149 #define CHIP_NUM_57800_MF 0x16a5 1150 #define CHIP_NUM_57800_VF 0x16a9 1151 #define CHIP_NUM_57810 0x168e 1152 #define CHIP_NUM_57810_MF 0x16ae 1153 #define CHIP_NUM_57810_VF 0x16af 1154 #define CHIP_NUM_57811 0x163d 1155 #define CHIP_NUM_57811_MF 0x163e 1156 #define CHIP_NUM_57811_VF 0x163f 1157 #define CHIP_NUM_57840_OBS 0x168d 1158 #define CHIP_NUM_57840_OBS_MF 0x16ab 1159 #define CHIP_NUM_57840_4_10 0x16a1 1160 #define CHIP_NUM_57840_2_20 0x16a2 1161 #define CHIP_NUM_57840_MF 0x16a4 1162 #define CHIP_NUM_57840_VF 0x16ad 1163 1164 #define CHIP_REV_SHIFT 12 1165 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT) 1166 #define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK) 1167 1168 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT) 1169 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT) 1170 #define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT) 1171 1172 #define CHIP_REV_IS_SLOW(sc) \ 1173 (CHIP_REV(sc) > 0x00005000) 1174 #define CHIP_REV_IS_FPGA(sc) \ 1175 (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000)) 1176 #define CHIP_REV_IS_EMUL(sc) \ 1177 (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000)) 1178 #define CHIP_REV_IS_ASIC(sc) \ 1179 (!CHIP_REV_IS_SLOW(sc)) 1180 1181 #define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0) 1182 #define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f) 1183 1184 #define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) 1185 #define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710) 1186 #define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711) 1187 #define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E) 1188 #define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \ 1189 (CHIP_IS_57711E(sc))) 1190 #define CHIP_IS_E1x(sc) (CHIP_IS_E1((sc)) || \ 1191 CHIP_IS_E1H((sc))) 1192 1193 #define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712) 1194 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF) 1195 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF) 1196 #define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \ 1197 CHIP_IS_57712_MF(sc)) 1198 1199 #define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800) 1200 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF) 1201 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF) 1202 #define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810) 1203 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF) 1204 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF) 1205 #define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811) 1206 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF) 1207 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF) 1208 #define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \ 1209 (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \ 1210 (CHIP_NUM(sc) == CHIP_NUM_57840_2_20)) 1211 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \ 1212 (CHIP_NUM(sc) == CHIP_NUM_57840_MF)) 1213 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF) 1214 1215 #define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \ 1216 CHIP_IS_57800_MF(sc) || \ 1217 CHIP_IS_57800_VF(sc) || \ 1218 CHIP_IS_57810(sc) || \ 1219 CHIP_IS_57810_MF(sc) || \ 1220 CHIP_IS_57810_VF(sc) || \ 1221 CHIP_IS_57811(sc) || \ 1222 CHIP_IS_57811_MF(sc) || \ 1223 CHIP_IS_57811_VF(sc) || \ 1224 CHIP_IS_57840(sc) || \ 1225 CHIP_IS_57840_MF(sc) || \ 1226 CHIP_IS_57840_VF(sc)) 1227 #define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \ 1228 (CHIP_REV(sc) == CHIP_REV_Ax)) 1229 #define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \ 1230 (CHIP_REV(sc) == CHIP_REV_Bx)) 1231 1232 #define USES_WARPCORE(sc) (CHIP_IS_E3(sc)) 1233 #define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \ 1234 CHIP_IS_E3(sc)) 1235 1236 #define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \ 1237 CHIP_IS_57712_MF(sc) || \ 1238 CHIP_IS_E3(sc)) 1239 1240 #define IS_VF(sc) (CHIP_IS_57712_VF(sc) || \ 1241 CHIP_IS_57800_VF(sc) || \ 1242 CHIP_IS_57810_VF(sc) || \ 1243 CHIP_IS_57840_VF(sc)) 1244 #define IS_PF(sc) (!IS_VF(sc)) 1245 1246 /* 1247 * This define is used in two main places: 1248 * 1. In the early stages of nic_load, to know if to configure Parser/Searcher 1249 * to nic-only mode or to offload mode. Offload mode is configured if either 1250 * the chip is E1x (where NIC_MODE register is not applicable), or if cnic 1251 * already registered for this port (which means that the user wants storage 1252 * services). 1253 * 2. During cnic-related load, to know if offload mode is already configured 1254 * in the HW or needs to be configrued. Since the transition from nic-mode to 1255 * offload-mode in HW causes traffic coruption, nic-mode is configured only 1256 * in ports on which storage services where never requested. 1257 */ 1258 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc)) 1259 1260 uint8_t chip_port_mode; 1261 #define CHIP_4_PORT_MODE 0x0 1262 #define CHIP_2_PORT_MODE 0x1 1263 #define CHIP_PORT_MODE_NONE 0x2 1264 #define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode) 1265 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) 1266 1267 uint8_t int_block; 1268 #define INT_BLOCK_HC 0 1269 #define INT_BLOCK_IGU 1 1270 #define INT_BLOCK_MODE_NORMAL 0 1271 #define INT_BLOCK_MODE_BW_COMP 2 1272 #define CHIP_INT_MODE_IS_NBC(sc) \ 1273 (!CHIP_IS_E1x(sc) && \ 1274 !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP)) 1275 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc)) 1276 1277 uint32_t shmem_base; 1278 uint32_t shmem2_base; 1279 uint32_t bc_ver; 1280 char bc_ver_str[32]; 1281 uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */ 1282 struct bxe_mf_info mf_info; 1283 1284 int flash_size; 1285 #define NVRAM_1MB_SIZE 0x20000 1286 #define NVRAM_TIMEOUT_COUNT 30000 1287 #define NVRAM_PAGE_SIZE 256 1288 1289 /* PCIe capability information */ 1290 uint32_t pcie_cap_flags; 1291 #define BXE_PM_CAPABLE_FLAG 0x00000001 1292 #define BXE_PCIE_CAPABLE_FLAG 0x00000002 1293 #define BXE_MSI_CAPABLE_FLAG 0x00000004 1294 #define BXE_MSIX_CAPABLE_FLAG 0x00000008 1295 uint16_t pcie_pm_cap_reg; 1296 uint16_t pcie_pcie_cap_reg; 1297 //uint16_t pcie_devctl; 1298 uint16_t pcie_link_width; 1299 uint16_t pcie_link_speed; 1300 uint16_t pcie_msi_cap_reg; 1301 uint16_t pcie_msix_cap_reg; 1302 1303 /* device configuration read from bootcode shared memory */ 1304 uint32_t hw_config; 1305 uint32_t hw_config2; 1306 }; /* struct bxe_devinfo */ 1307 1308 struct bxe_sp_objs { 1309 struct ecore_vlan_mac_obj mac_obj; /* MACs object */ 1310 struct ecore_queue_sp_obj q_obj; /* Queue State object */ 1311 }; /* struct bxe_sp_objs */ 1312 1313 /* 1314 * Data that will be used to create a link report message. We will keep the 1315 * data used for the last link report in order to prevent reporting the same 1316 * link parameters twice. 1317 */ 1318 struct bxe_link_report_data { 1319 uint16_t line_speed; /* Effective line speed */ 1320 unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */ 1321 }; 1322 enum { 1323 BXE_LINK_REPORT_FULL_DUPLEX, 1324 BXE_LINK_REPORT_LINK_DOWN, 1325 BXE_LINK_REPORT_RX_FC_ON, 1326 BXE_LINK_REPORT_TX_FC_ON 1327 }; 1328 1329 /* Top level device private data structure. */ 1330 struct bxe_softc { 1331 /* 1332 * First entry must be a pointer to the BSD ifnet struct which 1333 * has a first element of 'void *if_softc' (which is us). XXX 1334 */ 1335 if_t ifp; 1336 struct ifmedia ifmedia; /* network interface media structure */ 1337 int media; 1338 1339 volatile int state; /* device state */ 1340 #define BXE_STATE_CLOSED 0x0000 1341 #define BXE_STATE_OPENING_WAITING_LOAD 0x1000 1342 #define BXE_STATE_OPENING_WAITING_PORT 0x2000 1343 #define BXE_STATE_OPEN 0x3000 1344 #define BXE_STATE_CLOSING_WAITING_HALT 0x4000 1345 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000 1346 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000 1347 #define BXE_STATE_DISABLED 0xD000 1348 #define BXE_STATE_DIAG 0xE000 1349 #define BXE_STATE_ERROR 0xF000 1350 1351 int flags; 1352 #define BXE_ONE_PORT_FLAG 0x00000001 1353 #define BXE_NO_ISCSI 0x00000002 1354 #define BXE_NO_FCOE 0x00000004 1355 #define BXE_ONE_PORT(sc) (sc->flags & BXE_ONE_PORT_FLAG) 1356 //#define BXE_NO_WOL_FLAG 0x00000008 1357 //#define BXE_USING_DAC_FLAG 0x00000010 1358 //#define BXE_USING_MSIX_FLAG 0x00000020 1359 //#define BXE_USING_MSI_FLAG 0x00000040 1360 //#define BXE_DISABLE_MSI_FLAG 0x00000080 1361 #define BXE_NO_MCP_FLAG 0x00000200 1362 #define BXE_NOMCP(sc) (sc->flags & BXE_NO_MCP_FLAG) 1363 //#define BXE_SAFC_TX_FLAG 0x00000400 1364 #define BXE_MF_FUNC_DIS 0x00000800 1365 #define BXE_TX_SWITCHING 0x00001000 1366 #define BXE_NO_PULSE 0x00002000 1367 1368 unsigned long debug; /* per-instance debug logging config */ 1369 1370 #define MAX_BARS 5 1371 struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */ 1372 1373 uint16_t doorbell_size; 1374 1375 /* periodic timer callout */ 1376 #define PERIODIC_STOP 0 1377 #define PERIODIC_GO 1 1378 volatile unsigned long periodic_flags; 1379 struct callout periodic_callout; 1380 1381 /* chip start/stop/reset taskqueue */ 1382 #define CHIP_TQ_NONE 0 1383 #define CHIP_TQ_START 1 1384 #define CHIP_TQ_STOP 2 1385 #define CHIP_TQ_REINIT 3 1386 volatile unsigned long chip_tq_flags; 1387 struct task chip_tq_task; 1388 struct taskqueue *chip_tq; 1389 char chip_tq_name[32]; 1390 1391 /* slowpath interrupt taskqueue */ 1392 struct task sp_tq_task; 1393 struct taskqueue *sp_tq; 1394 char sp_tq_name[32]; 1395 1396 struct bxe_fastpath fp[MAX_RSS_CHAINS]; 1397 struct bxe_sp_objs sp_objs[MAX_RSS_CHAINS]; 1398 1399 device_t dev; /* parent device handle */ 1400 uint8_t unit; /* driver instance number */ 1401 1402 int pcie_bus; /* PCIe bus number */ 1403 int pcie_device; /* PCIe device/slot number */ 1404 int pcie_func; /* PCIe function number */ 1405 1406 uint8_t pfunc_rel; /* function relative */ 1407 uint8_t pfunc_abs; /* function absolute */ 1408 uint8_t path_id; /* function absolute */ 1409 #define SC_PATH(sc) (sc->path_id) 1410 #define SC_PORT(sc) (sc->pfunc_rel & 1) 1411 #define SC_FUNC(sc) (sc->pfunc_rel) 1412 #define SC_ABS_FUNC(sc) (sc->pfunc_abs) 1413 #define SC_VN(sc) (sc->pfunc_rel >> 1) 1414 #define SC_L_ID(sc) (SC_VN(sc) << 2) 1415 #define PORT_ID(sc) SC_PORT(sc) 1416 #define PATH_ID(sc) SC_PATH(sc) 1417 #define VNIC_ID(sc) SC_VN(sc) 1418 #define FUNC_ID(sc) SC_FUNC(sc) 1419 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc) 1420 #define SC_FW_MB_IDX_VN(sc, vn) \ 1421 (SC_PORT(sc) + (vn) * \ 1422 ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1)) 1423 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc)) 1424 1425 int if_capen; /* enabled interface capabilities */ 1426 1427 struct bxe_devinfo devinfo; 1428 char fw_ver_str[32]; 1429 char mf_mode_str[32]; 1430 char pci_link_str[32]; 1431 1432 const struct iro *iro_array; 1433 1434 #ifdef BXE_CORE_LOCK_SX 1435 struct sx core_sx; 1436 char core_sx_name[32]; 1437 #else 1438 struct mtx core_mtx; 1439 char core_mtx_name[32]; 1440 #endif 1441 struct mtx sp_mtx; 1442 char sp_mtx_name[32]; 1443 struct mtx dmae_mtx; 1444 char dmae_mtx_name[32]; 1445 struct mtx fwmb_mtx; 1446 char fwmb_mtx_name[32]; 1447 struct mtx print_mtx; 1448 char print_mtx_name[32]; 1449 struct mtx stats_mtx; 1450 char stats_mtx_name[32]; 1451 struct mtx mcast_mtx; 1452 char mcast_mtx_name[32]; 1453 1454 #ifdef BXE_CORE_LOCK_SX 1455 #define BXE_CORE_TRYLOCK(sc) sx_try_xlock(&sc->core_sx) 1456 #define BXE_CORE_LOCK(sc) sx_xlock(&sc->core_sx) 1457 #define BXE_CORE_UNLOCK(sc) sx_xunlock(&sc->core_sx) 1458 #define BXE_CORE_LOCK_ASSERT(sc) sx_assert(&sc->core_sx, SA_XLOCKED) 1459 #else 1460 #define BXE_CORE_TRYLOCK(sc) mtx_trylock(&sc->core_mtx) 1461 #define BXE_CORE_LOCK(sc) mtx_lock(&sc->core_mtx) 1462 #define BXE_CORE_UNLOCK(sc) mtx_unlock(&sc->core_mtx) 1463 #define BXE_CORE_LOCK_ASSERT(sc) mtx_assert(&sc->core_mtx, MA_OWNED) 1464 #endif 1465 1466 #define BXE_SP_LOCK(sc) mtx_lock(&sc->sp_mtx) 1467 #define BXE_SP_UNLOCK(sc) mtx_unlock(&sc->sp_mtx) 1468 #define BXE_SP_LOCK_ASSERT(sc) mtx_assert(&sc->sp_mtx, MA_OWNED) 1469 1470 #define BXE_DMAE_LOCK(sc) mtx_lock(&sc->dmae_mtx) 1471 #define BXE_DMAE_UNLOCK(sc) mtx_unlock(&sc->dmae_mtx) 1472 #define BXE_DMAE_LOCK_ASSERT(sc) mtx_assert(&sc->dmae_mtx, MA_OWNED) 1473 1474 #define BXE_FWMB_LOCK(sc) mtx_lock(&sc->fwmb_mtx) 1475 #define BXE_FWMB_UNLOCK(sc) mtx_unlock(&sc->fwmb_mtx) 1476 #define BXE_FWMB_LOCK_ASSERT(sc) mtx_assert(&sc->fwmb_mtx, MA_OWNED) 1477 1478 #define BXE_PRINT_LOCK(sc) mtx_lock(&sc->print_mtx) 1479 #define BXE_PRINT_UNLOCK(sc) mtx_unlock(&sc->print_mtx) 1480 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED) 1481 1482 #define BXE_STATS_LOCK(sc) mtx_lock(&sc->stats_mtx) 1483 #define BXE_STATS_UNLOCK(sc) mtx_unlock(&sc->stats_mtx) 1484 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED) 1485 1486 #if __FreeBSD_version < 800000 1487 #define BXE_MCAST_LOCK(sc) \ 1488 do { \ 1489 mtx_lock(&sc->mcast_mtx); \ 1490 IF_ADDR_LOCK(sc->ifp); \ 1491 } while (0) 1492 #define BXE_MCAST_UNLOCK(sc) \ 1493 do { \ 1494 IF_ADDR_UNLOCK(sc->ifp); \ 1495 mtx_unlock(&sc->mcast_mtx); \ 1496 } while (0) 1497 #else 1498 #define BXE_MCAST_LOCK(sc) \ 1499 do { \ 1500 mtx_lock(&sc->mcast_mtx); \ 1501 if_maddr_rlock(sc->ifp); \ 1502 } while (0) 1503 #define BXE_MCAST_UNLOCK(sc) \ 1504 do { \ 1505 if_maddr_runlock(sc->ifp); \ 1506 mtx_unlock(&sc->mcast_mtx); \ 1507 } while (0) 1508 #endif 1509 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED) 1510 1511 int dmae_ready; 1512 #define DMAE_READY(sc) (sc->dmae_ready) 1513 1514 struct ecore_credit_pool_obj vlans_pool; 1515 struct ecore_credit_pool_obj macs_pool; 1516 struct ecore_rx_mode_obj rx_mode_obj; 1517 struct ecore_mcast_obj mcast_obj; 1518 struct ecore_rss_config_obj rss_conf_obj; 1519 struct ecore_func_sp_obj func_obj; 1520 1521 uint16_t fw_seq; 1522 uint16_t fw_drv_pulse_wr_seq; 1523 uint32_t func_stx; 1524 1525 struct elink_params link_params; 1526 struct elink_vars link_vars; 1527 uint32_t link_cnt; 1528 struct bxe_link_report_data last_reported_link; 1529 char mac_addr_str[32]; 1530 1531 int last_reported_link_state; 1532 1533 int tx_ring_size; 1534 int rx_ring_size; 1535 int wol; 1536 1537 int is_leader; 1538 int recovery_state; 1539 #define BXE_RECOVERY_DONE 1 1540 #define BXE_RECOVERY_INIT 2 1541 #define BXE_RECOVERY_WAIT 3 1542 #define BXE_RECOVERY_FAILED 4 1543 #define BXE_RECOVERY_NIC_LOADING 5 1544 1545 uint32_t rx_mode; 1546 #define BXE_RX_MODE_NONE 0 1547 #define BXE_RX_MODE_NORMAL 1 1548 #define BXE_RX_MODE_ALLMULTI 2 1549 #define BXE_RX_MODE_PROMISC 3 1550 #define BXE_MAX_MULTICAST 64 1551 1552 struct bxe_port port; 1553 1554 struct cmng_init cmng; 1555 1556 /* user configs */ 1557 int num_queues; 1558 int max_rx_bufs; 1559 int hc_rx_ticks; 1560 int hc_tx_ticks; 1561 int rx_budget; 1562 int max_aggregation_size; 1563 int mrrs; 1564 int autogreeen; 1565 #define AUTO_GREEN_HW_DEFAULT 0 1566 #define AUTO_GREEN_FORCE_ON 1 1567 #define AUTO_GREEN_FORCE_OFF 2 1568 int interrupt_mode; 1569 #define INTR_MODE_INTX 0 1570 #define INTR_MODE_MSI 1 1571 #define INTR_MODE_MSIX 2 1572 int udp_rss; 1573 1574 /* interrupt allocations */ 1575 struct bxe_intr intr[MAX_RSS_CHAINS+1]; 1576 int intr_count; 1577 uint8_t igu_dsb_id; 1578 uint8_t igu_base_sb; 1579 uint8_t igu_sb_cnt; 1580 //uint8_t min_msix_vec_cnt; 1581 uint32_t igu_base_addr; 1582 //bus_addr_t def_status_blk_mapping; 1583 uint8_t base_fw_ndsb; 1584 #define DEF_SB_IGU_ID 16 1585 #define DEF_SB_ID HC_SP_SB_ID 1586 1587 /* parent bus DMA tag */ 1588 bus_dma_tag_t parent_dma_tag; 1589 1590 /* default status block */ 1591 struct bxe_dma def_sb_dma; 1592 struct host_sp_status_block *def_sb; 1593 uint16_t def_idx; 1594 uint16_t def_att_idx; 1595 uint32_t attn_state; 1596 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS]; 1597 1598 /* general SP events - stats query, cfc delete, etc */ 1599 #define HC_SP_INDEX_ETH_DEF_CONS 3 1600 /* EQ completions */ 1601 #define HC_SP_INDEX_EQ_CONS 7 1602 /* FCoE L2 connection completions */ 1603 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6 1604 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4 1605 /* iSCSI L2 */ 1606 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5 1607 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1 1608 1609 /* event queue */ 1610 struct bxe_dma eq_dma; 1611 union event_ring_elem *eq; 1612 uint16_t eq_prod; 1613 uint16_t eq_cons; 1614 uint16_t *eq_cons_sb; 1615 #define NUM_EQ_PAGES 1 /* must be a power of 2 */ 1616 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem)) 1617 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1) 1618 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES) 1619 #define EQ_DESC_MASK (NUM_EQ_DESC - 1) 1620 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2) 1621 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */ 1622 #define NEXT_EQ_IDX(x) \ 1623 ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \ 1624 ((x) + 2) : ((x) + 1)) 1625 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */ 1626 #define EQ_DESC(x) ((x) & EQ_DESC_MASK) 1627 1628 /* slow path */ 1629 struct bxe_dma sp_dma; 1630 struct bxe_slowpath *sp; 1631 unsigned long sp_state; 1632 1633 /* slow path queue */ 1634 struct bxe_dma spq_dma; 1635 struct eth_spe *spq; 1636 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe)) 1637 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1) 1638 #define MAX_SPQ_PENDING 8 1639 1640 uint16_t spq_prod_idx; 1641 struct eth_spe *spq_prod_bd; 1642 struct eth_spe *spq_last_bd; 1643 uint16_t *dsb_sp_prod; 1644 //uint16_t *spq_hw_con; 1645 //uint16_t spq_left; 1646 1647 volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */ 1648 volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */ 1649 1650 /* fw decompression buffer */ 1651 struct bxe_dma gz_buf_dma; 1652 void *gz_buf; 1653 z_streamp gz_strm; 1654 uint32_t gz_outlen; 1655 #define GUNZIP_BUF(sc) (sc->gz_buf) 1656 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen) 1657 #define GUNZIP_PHYS(sc) (sc->gz_buf_dma.paddr) 1658 #define FW_BUF_SIZE 0x40000 1659 1660 const struct raw_op *init_ops; 1661 const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */ 1662 const uint32_t *init_data; /* data blob, 32 bit granularity */ 1663 uint32_t init_mode_flags; 1664 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags) 1665 /* PRAM blobs - raw data */ 1666 const uint8_t *tsem_int_table_data; 1667 const uint8_t *tsem_pram_data; 1668 const uint8_t *usem_int_table_data; 1669 const uint8_t *usem_pram_data; 1670 const uint8_t *xsem_int_table_data; 1671 const uint8_t *xsem_pram_data; 1672 const uint8_t *csem_int_table_data; 1673 const uint8_t *csem_pram_data; 1674 #define INIT_OPS(sc) (sc->init_ops) 1675 #define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets) 1676 #define INIT_DATA(sc) (sc->init_data) 1677 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data) 1678 #define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data) 1679 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data) 1680 #define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data) 1681 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data) 1682 #define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data) 1683 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data) 1684 #define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data) 1685 1686 /* ILT 1687 * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB 1688 * context size we need 8 ILT entries. 1689 */ 1690 #define ILT_MAX_L2_LINES 8 1691 struct hw_context context[ILT_MAX_L2_LINES]; 1692 struct ecore_ilt *ilt; 1693 #define ILT_MAX_LINES 256 1694 1695 /* max supported number of RSS queues: IGU SBs minus one for CNIC */ 1696 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc)) 1697 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */ 1698 #if 1 1699 #define BXE_L2_MAX_CID(sc) \ 1700 (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) 1701 #else 1702 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */ \ 1703 (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc)) 1704 #endif 1705 #if 1 1706 #define BXE_L2_CID_COUNT(sc) \ 1707 (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc)) 1708 #else 1709 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */ \ 1710 (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc)) 1711 #endif 1712 #define L2_ILT_LINES(sc) \ 1713 (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS)) 1714 1715 int qm_cid_count; 1716 1717 uint8_t dropless_fc; 1718 1719 /* total number of FW statistics requests */ 1720 uint8_t fw_stats_num; 1721 /* 1722 * This is a memory buffer that will contain both statistics ramrod 1723 * request and data. 1724 */ 1725 struct bxe_dma fw_stats_dma; 1726 /* 1727 * FW statistics request shortcut (points at the beginning of fw_stats 1728 * buffer). 1729 */ 1730 int fw_stats_req_size; 1731 struct bxe_fw_stats_req *fw_stats_req; 1732 bus_addr_t fw_stats_req_mapping; 1733 /* 1734 * FW statistics data shortcut (points at the beginning of fw_stats 1735 * buffer + fw_stats_req_size). 1736 */ 1737 int fw_stats_data_size; 1738 struct bxe_fw_stats_data *fw_stats_data; 1739 bus_addr_t fw_stats_data_mapping; 1740 1741 /* tracking a pending STAT_QUERY ramrod */ 1742 uint16_t stats_pending; 1743 /* number of completed statistics ramrods */ 1744 uint16_t stats_comp; 1745 uint16_t stats_counter; 1746 uint8_t stats_init; 1747 int stats_state; 1748 1749 struct bxe_eth_stats eth_stats; 1750 struct host_func_stats func_stats; 1751 struct bxe_eth_stats_old eth_stats_old; 1752 struct bxe_net_stats_old net_stats_old; 1753 struct bxe_fw_port_stats_old fw_stats_old; 1754 1755 struct dmae_cmd stats_dmae; /* used by dmae command loader */ 1756 int executer_idx; 1757 1758 int mtu; 1759 1760 /* LLDP params */ 1761 struct bxe_config_lldp_params lldp_config_params; 1762 /* DCB support on/off */ 1763 int dcb_state; 1764 #define BXE_DCB_STATE_OFF 0 1765 #define BXE_DCB_STATE_ON 1 1766 /* DCBX engine mode */ 1767 int dcbx_enabled; 1768 #define BXE_DCBX_ENABLED_OFF 0 1769 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1 1770 #define BXE_DCBX_ENABLED_ON_NEG_ON 2 1771 #define BXE_DCBX_ENABLED_INVALID -1 1772 uint8_t dcbx_mode_uset; 1773 struct bxe_config_dcbx_params dcbx_config_params; 1774 struct bxe_dcbx_port_params dcbx_port_params; 1775 int dcb_version; 1776 1777 uint8_t cnic_support; 1778 uint8_t cnic_enabled; 1779 uint8_t cnic_loaded; 1780 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */ 1781 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */ 1782 #define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */ 1783 1784 /* multiple tx classes of service */ 1785 uint8_t max_cos; 1786 #define BXE_MAX_PRIORITY 8 1787 /* priority to cos mapping */ 1788 uint8_t prio_to_cos[BXE_MAX_PRIORITY]; 1789 1790 int panic; 1791 1792 struct cdev *ioctl_dev; 1793 1794 void *grc_dump; 1795 unsigned int trigger_grcdump; 1796 unsigned int grcdump_done; 1797 unsigned int grcdump_started; 1798 int bxe_pause_param; 1799 void *eeprom; 1800 }; /* struct bxe_softc */ 1801 1802 /* IOCTL sub-commands for edebug and firmware upgrade */ 1803 #define BXE_IOC_RD_NVRAM 1 1804 #define BXE_IOC_WR_NVRAM 2 1805 #define BXE_IOC_STATS_SHOW_NUM 3 1806 #define BXE_IOC_STATS_SHOW_STR 4 1807 #define BXE_IOC_STATS_SHOW_CNT 5 1808 1809 struct bxe_nvram_data { 1810 uint32_t op; /* ioctl sub-command */ 1811 uint32_t offset; 1812 uint32_t len; 1813 uint32_t value[1]; /* variable */ 1814 }; 1815 1816 union bxe_stats_show_data { 1817 uint32_t op; /* ioctl sub-command */ 1818 1819 struct { 1820 uint32_t num; /* return number of stats */ 1821 uint32_t len; /* length of each string item */ 1822 } desc; 1823 1824 /* variable length... */ 1825 char str[1]; /* holds names of desc.num stats, each desc.len in length */ 1826 1827 /* variable length... */ 1828 uint64_t stats[1]; /* holds all stats */ 1829 }; 1830 1831 /* function init flags */ 1832 #define FUNC_FLG_RSS 0x0001 1833 #define FUNC_FLG_STATS 0x0002 1834 /* FUNC_FLG_UNMATCHED 0x0004 */ 1835 #define FUNC_FLG_TPA 0x0008 1836 #define FUNC_FLG_SPQ 0x0010 1837 #define FUNC_FLG_LEADING 0x0020 /* PF only */ 1838 1839 struct bxe_func_init_params { 1840 bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */ 1841 bus_addr_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */ 1842 uint16_t func_flgs; 1843 uint16_t func_id; /* abs function id */ 1844 uint16_t pf_id; 1845 uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */ 1846 }; 1847 1848 /* memory resources reside at BARs 0, 2, 4 */ 1849 /* Run `pciconf -lb` to see mappings */ 1850 #define BAR0 0 1851 #define BAR1 2 1852 #define BAR2 4 1853 1854 #ifdef BXE_REG_NO_INLINE 1855 1856 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset); 1857 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset); 1858 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset); 1859 1860 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val); 1861 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val); 1862 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val); 1863 1864 #define REG_RD8(sc, offset) bxe_reg_read8(sc, offset) 1865 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset) 1866 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset) 1867 1868 #define REG_WR8(sc, offset, val) bxe_reg_write8(sc, offset, val) 1869 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val) 1870 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val) 1871 1872 #else /* not BXE_REG_NO_INLINE */ 1873 1874 #define REG_WR8(sc, offset, val) \ 1875 bus_space_write_1(sc->bar[BAR0].tag, \ 1876 sc->bar[BAR0].handle, \ 1877 offset, val) 1878 1879 #define REG_WR16(sc, offset, val) \ 1880 bus_space_write_2(sc->bar[BAR0].tag, \ 1881 sc->bar[BAR0].handle, \ 1882 offset, val) 1883 1884 #define REG_WR32(sc, offset, val) \ 1885 bus_space_write_4(sc->bar[BAR0].tag, \ 1886 sc->bar[BAR0].handle, \ 1887 offset, val) 1888 1889 #define REG_RD8(sc, offset) \ 1890 bus_space_read_1(sc->bar[BAR0].tag, \ 1891 sc->bar[BAR0].handle, \ 1892 offset) 1893 1894 #define REG_RD16(sc, offset) \ 1895 bus_space_read_2(sc->bar[BAR0].tag, \ 1896 sc->bar[BAR0].handle, \ 1897 offset) 1898 1899 #define REG_RD32(sc, offset) \ 1900 bus_space_read_4(sc->bar[BAR0].tag, \ 1901 sc->bar[BAR0].handle, \ 1902 offset) 1903 1904 #endif /* BXE_REG_NO_INLINE */ 1905 1906 #define REG_RD(sc, offset) REG_RD32(sc, offset) 1907 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val) 1908 1909 #define REG_RD_IND(sc, offset) bxe_reg_rd_ind(sc, offset) 1910 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val) 1911 1912 #define BXE_SP(sc, var) (&(sc)->sp->var) 1913 #define BXE_SP_MAPPING(sc, var) \ 1914 (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var)) 1915 1916 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var) 1917 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index]) 1918 1919 #define REG_RD_DMAE(sc, offset, valp, len32) \ 1920 do { \ 1921 bxe_read_dmae(sc, offset, len32); \ 1922 memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \ 1923 } while (0) 1924 1925 #define REG_WR_DMAE(sc, offset, valp, len32) \ 1926 do { \ 1927 memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4); \ 1928 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \ 1929 } while (0) 1930 1931 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \ 1932 REG_WR_DMAE(sc, offset, valp, len32) 1933 1934 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \ 1935 REG_RD_DMAE(sc, offset, valp, len32) 1936 1937 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \ 1938 do { \ 1939 /* if (le32_swap) { */ \ 1940 /* BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \ 1941 /* } */ \ 1942 memcpy(GUNZIP_BUF(sc), data, len32 * 4); \ 1943 ecore_write_big_buf_wb(sc, addr, len32); \ 1944 } while (0) 1945 1946 #define BXE_DB_MIN_SHIFT 3 /* 8 bytes */ 1947 #define BXE_DB_SHIFT 7 /* 128 bytes */ 1948 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT) 1949 #error "Minimum DB doorbell stride is 8" 1950 #endif 1951 #define DPM_TRIGGER_TYPE 0x40 1952 #define DOORBELL(sc, cid, val) \ 1953 do { \ 1954 bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle, \ 1955 ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \ 1956 (uint32_t)val); \ 1957 } while(0) 1958 1959 #define SHMEM_ADDR(sc, field) \ 1960 (sc->devinfo.shmem_base + offsetof(struct shmem_region, field)) 1961 #define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field)) 1962 #define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field)) 1963 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val) 1964 1965 #define SHMEM2_ADDR(sc, field) \ 1966 (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field)) 1967 #define SHMEM2_HAS(sc, field) \ 1968 (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \ 1969 offsetof(struct shmem2_region, field))) 1970 #define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field)) 1971 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val) 1972 1973 #define MFCFG_ADDR(sc, field) \ 1974 (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field)) 1975 #define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field)) 1976 #define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field)) 1977 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val) 1978 1979 /* DMAE command defines */ 1980 1981 #define DMAE_TIMEOUT -1 1982 #define DMAE_PCI_ERROR -2 /* E2 and onward */ 1983 #define DMAE_NOT_RDY -3 1984 #define DMAE_PCI_ERR_FLAG 0x80000000 1985 1986 #define DMAE_SRC_PCI 0 1987 #define DMAE_SRC_GRC 1 1988 1989 #define DMAE_DST_NONE 0 1990 #define DMAE_DST_PCI 1 1991 #define DMAE_DST_GRC 2 1992 1993 #define DMAE_COMP_PCI 0 1994 #define DMAE_COMP_GRC 1 1995 1996 #define DMAE_COMP_REGULAR 0 1997 #define DMAE_COM_SET_ERR 1 1998 1999 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT) 2000 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT) 2001 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT) 2002 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT) 2003 2004 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT) 2005 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT) 2006 2007 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_CMD_ENDIANITY_SHIFT) 2008 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_CMD_ENDIANITY_SHIFT) 2009 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_CMD_ENDIANITY_SHIFT) 2010 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT) 2011 2012 #define DMAE_CMD_PORT_0 0 2013 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT 2014 2015 #define DMAE_SRC_PF 0 2016 #define DMAE_SRC_VF 1 2017 2018 #define DMAE_DST_PF 0 2019 #define DMAE_DST_VF 1 2020 2021 #define DMAE_C_SRC 0 2022 #define DMAE_C_DST 1 2023 2024 #define DMAE_LEN32_RD_MAX 0x80 2025 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000) 2026 2027 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */ 2028 2029 #define MAX_DMAE_C_PER_PORT 8 2030 #define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc)) 2031 #define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX) 2032 2033 static const uint32_t dmae_reg_go_c[] = { 2034 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3, 2035 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7, 2036 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11, 2037 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15 2038 }; 2039 2040 #define ATTN_NIG_FOR_FUNC (1L << 8) 2041 #define ATTN_SW_TIMER_4_FUNC (1L << 9) 2042 #define GPIO_2_FUNC (1L << 10) 2043 #define GPIO_3_FUNC (1L << 11) 2044 #define GPIO_4_FUNC (1L << 12) 2045 #define ATTN_GENERAL_ATTN_1 (1L << 13) 2046 #define ATTN_GENERAL_ATTN_2 (1L << 14) 2047 #define ATTN_GENERAL_ATTN_3 (1L << 15) 2048 #define ATTN_GENERAL_ATTN_4 (1L << 13) 2049 #define ATTN_GENERAL_ATTN_5 (1L << 14) 2050 #define ATTN_GENERAL_ATTN_6 (1L << 15) 2051 #define ATTN_HARD_WIRED_MASK 0xff00 2052 #define ATTENTION_ID 4 2053 2054 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \ 2055 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR 2056 2057 #define MAX_IGU_ATTN_ACK_TO 100 2058 2059 #define STORM_ASSERT_ARRAY_SIZE 50 2060 2061 #define BXE_PMF_LINK_ASSERT(sc) \ 2062 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc)) 2063 2064 #define BXE_MC_ASSERT_BITS \ 2065 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2066 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2067 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \ 2068 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT)) 2069 2070 #define BXE_MCP_ASSERT \ 2071 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT) 2072 2073 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC) 2074 #define BXE_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \ 2075 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \ 2076 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \ 2077 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \ 2078 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \ 2079 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC)) 2080 2081 #define MULTI_MASK 0x7f 2082 2083 #define PFS_PER_PORT(sc) \ 2084 ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4) 2085 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc) 2086 2087 #define FIRST_ABS_FUNC_IN_PORT(sc) \ 2088 ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \ 2089 PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc)))) 2090 2091 #define FOREACH_ABS_FUNC_IN_PORT(sc, i) \ 2092 for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \ 2093 (i) < MAX_FUNC_NUM; \ 2094 (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc))) 2095 2096 #define BXE_SWCID_SHIFT 17 2097 #define BXE_SWCID_MASK ((0x1 << BXE_SWCID_SHIFT) - 1) 2098 2099 #define SW_CID(x) (le32toh(x) & BXE_SWCID_MASK) 2100 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT) 2101 2102 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE) 2103 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG) 2104 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG) 2105 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD) 2106 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH) 2107 2108 /* must be used on a CID before placing it on a HW ring */ 2109 #define HW_CID(sc, x) \ 2110 ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x)) 2111 2112 #define SPEED_10 10 2113 #define SPEED_100 100 2114 #define SPEED_1000 1000 2115 #define SPEED_2500 2500 2116 #define SPEED_10000 10000 2117 2118 #define PCI_PM_D0 1 2119 #define PCI_PM_D3hot 2 2120 2121 #ifndef DUPLEX_UNKNOWN 2122 #define DUPLEX_UNKNOWN (0xff) 2123 #endif 2124 2125 #ifndef SPEED_UNKNOWN 2126 #define SPEED_UNKNOWN (-1) 2127 #endif 2128 2129 /* Enable or disable autonegotiation. */ 2130 #define AUTONEG_DISABLE 0x00 2131 #define AUTONEG_ENABLE 0x01 2132 2133 /* Which connector port. */ 2134 #define PORT_TP 0x00 2135 #define PORT_AUI 0x01 2136 #define PORT_MII 0x02 2137 #define PORT_FIBRE 0x03 2138 #define PORT_BNC 0x04 2139 #define PORT_DA 0x05 2140 #define PORT_NONE 0xef 2141 #define PORT_OTHER 0xff 2142 2143 int bxe_test_bit(int nr, volatile unsigned long * addr); 2144 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr); 2145 void bxe_clear_bit(int nr, volatile unsigned long * addr); 2146 int bxe_test_and_set_bit(int nr, volatile unsigned long * addr); 2147 int bxe_test_and_clear_bit(int nr, volatile unsigned long * addr); 2148 int bxe_cmpxchg(volatile int *addr, int old, int new); 2149 2150 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, 2151 uint32_t val); 2152 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr); 2153 2154 2155 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size, 2156 struct bxe_dma *dma, const char *msg); 2157 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma); 2158 2159 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type); 2160 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode); 2161 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type, 2162 uint8_t dst_type, uint8_t with_comp, 2163 uint8_t comp_type); 2164 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx); 2165 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32); 2166 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr, 2167 uint32_t dst_addr, uint32_t len32); 2168 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr, 2169 uint32_t addr, uint32_t len); 2170 2171 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt, 2172 uint32_t cid); 2173 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id, 2174 uint8_t sb_index, uint8_t disable, 2175 uint16_t usec); 2176 2177 int bxe_sp_post(struct bxe_softc *sc, int command, int cid, 2178 uint32_t data_hi, uint32_t data_lo, int cmd_type); 2179 2180 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id, 2181 uint8_t segment, uint16_t index, uint8_t op, 2182 uint8_t update); 2183 2184 void ecore_init_e1_firmware(struct bxe_softc *sc); 2185 void ecore_init_e1h_firmware(struct bxe_softc *sc); 2186 void ecore_init_e2_firmware(struct bxe_softc *sc); 2187 2188 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr, 2189 size_t size, uint32_t *data); 2190 2191 /*********************/ 2192 /* LOGGING AND DEBUG */ 2193 /*********************/ 2194 2195 /* debug logging codepaths */ 2196 #define DBG_LOAD 0x00000001 /* load and unload */ 2197 #define DBG_INTR 0x00000002 /* interrupt handling */ 2198 #define DBG_SP 0x00000004 /* slowpath handling */ 2199 #define DBG_STATS 0x00000008 /* stats updates */ 2200 #define DBG_TX 0x00000010 /* packet transmit */ 2201 #define DBG_RX 0x00000020 /* packet receive */ 2202 #define DBG_PHY 0x00000040 /* phy/link handling */ 2203 #define DBG_IOCTL 0x00000080 /* ioctl handling */ 2204 #define DBG_MBUF 0x00000100 /* dumping mbuf info */ 2205 #define DBG_REGS 0x00000200 /* register access */ 2206 #define DBG_LRO 0x00000400 /* lro processing */ 2207 #define DBG_ASSERT 0x80000000 /* debug assert */ 2208 #define DBG_ALL 0xFFFFFFFF /* flying monkeys */ 2209 2210 #define DBASSERT(sc, exp, msg) \ 2211 do { \ 2212 if (__predict_false(sc->debug & DBG_ASSERT)) { \ 2213 if (__predict_false(!(exp))) { \ 2214 panic msg; \ 2215 } \ 2216 } \ 2217 } while (0) 2218 2219 /* log a debug message */ 2220 #define BLOGD(sc, codepath, format, args...) \ 2221 do { \ 2222 if (__predict_false(sc->debug & (codepath))) { \ 2223 device_printf((sc)->dev, \ 2224 "%s(%s:%d) " format, \ 2225 __FUNCTION__, \ 2226 __FILE__, \ 2227 __LINE__, \ 2228 ## args); \ 2229 } \ 2230 } while(0) 2231 2232 /* log a info message */ 2233 #define BLOGI(sc, format, args...) \ 2234 do { \ 2235 if (__predict_false(sc->debug)) { \ 2236 device_printf((sc)->dev, \ 2237 "%s(%s:%d) " format, \ 2238 __FUNCTION__, \ 2239 __FILE__, \ 2240 __LINE__, \ 2241 ## args); \ 2242 } else { \ 2243 device_printf((sc)->dev, \ 2244 format, \ 2245 ## args); \ 2246 } \ 2247 } while(0) 2248 2249 /* log a warning message */ 2250 #define BLOGW(sc, format, args...) \ 2251 do { \ 2252 if (__predict_false(sc->debug)) { \ 2253 device_printf((sc)->dev, \ 2254 "%s(%s:%d) WARNING: " format, \ 2255 __FUNCTION__, \ 2256 __FILE__, \ 2257 __LINE__, \ 2258 ## args); \ 2259 } else { \ 2260 device_printf((sc)->dev, \ 2261 "WARNING: " format, \ 2262 ## args); \ 2263 } \ 2264 } while(0) 2265 2266 /* log a error message */ 2267 #define BLOGE(sc, format, args...) \ 2268 do { \ 2269 if (__predict_false(sc->debug)) { \ 2270 device_printf((sc)->dev, \ 2271 "%s(%s:%d) ERROR: " format, \ 2272 __FUNCTION__, \ 2273 __FILE__, \ 2274 __LINE__, \ 2275 ## args); \ 2276 } else { \ 2277 device_printf((sc)->dev, \ 2278 "ERROR: " format, \ 2279 ## args); \ 2280 } \ 2281 } while(0) 2282 2283 #ifdef ECORE_STOP_ON_ERROR 2284 2285 #define bxe_panic(sc, msg) \ 2286 do { \ 2287 panic msg; \ 2288 } while (0) 2289 2290 #else 2291 2292 #define bxe_panic(sc, msg) \ 2293 device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__); 2294 2295 #endif 2296 2297 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data)); 2298 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe) 2299 2300 void bxe_dump_mem(struct bxe_softc *sc, char *tag, 2301 uint8_t *mem, uint32_t len); 2302 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag, 2303 struct mbuf *m, uint8_t contents); 2304 2305 #if __FreeBSD_version >= 800000 2306 #if (__FreeBSD_version >= 1001513 && __FreeBSD_version < 1100000) ||\ 2307 __FreeBSD_version >= 1100048 2308 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE) 2309 #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2310 #else 2311 #define BXE_VALID_FLOWID(m) ((m->m_flags & M_FLOWID) != 0) 2312 #define BXE_SET_FLOWID(m) m->m_flags |= M_FLOWID 2313 #endif 2314 #endif /* #if __FreeBSD_version >= 800000 */ 2315 2316 /***********/ 2317 /* INLINES */ 2318 /***********/ 2319 2320 static inline uint32_t 2321 reg_poll(struct bxe_softc *sc, 2322 uint32_t reg, 2323 uint32_t expected, 2324 int ms, 2325 int wait) 2326 { 2327 uint32_t val; 2328 2329 do { 2330 val = REG_RD(sc, reg); 2331 if (val == expected) { 2332 break; 2333 } 2334 ms -= wait; 2335 DELAY(wait * 1000); 2336 } while (ms > 0); 2337 2338 return (val); 2339 } 2340 2341 static inline void 2342 bxe_update_fp_sb_idx(struct bxe_fastpath *fp) 2343 { 2344 mb(); /* status block is written to by the chip */ 2345 fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID]; 2346 } 2347 2348 static inline void 2349 bxe_igu_ack_sb_gen(struct bxe_softc *sc, 2350 uint8_t igu_sb_id, 2351 uint8_t segment, 2352 uint16_t index, 2353 uint8_t op, 2354 uint8_t update, 2355 uint32_t igu_addr) 2356 { 2357 struct igu_regular cmd_data = {0}; 2358 2359 cmd_data.sb_id_and_flags = 2360 ((index << IGU_REGULAR_SB_INDEX_SHIFT) | 2361 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | 2362 (update << IGU_REGULAR_BUPDATE_SHIFT) | 2363 (op << IGU_REGULAR_ENABLE_INT_SHIFT)); 2364 2365 BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n", 2366 cmd_data.sb_id_and_flags, igu_addr); 2367 REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags); 2368 2369 /* Make sure that ACK is written */ 2370 bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0, 2371 BUS_SPACE_BARRIER_WRITE); 2372 mb(); 2373 } 2374 2375 static inline void 2376 bxe_hc_ack_sb(struct bxe_softc *sc, 2377 uint8_t sb_id, 2378 uint8_t storm, 2379 uint16_t index, 2380 uint8_t op, 2381 uint8_t update) 2382 { 2383 uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 + 2384 COMMAND_REG_INT_ACK); 2385 struct igu_ack_register igu_ack; 2386 2387 igu_ack.status_block_index = index; 2388 igu_ack.sb_id_and_flags = 2389 ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) | 2390 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) | 2391 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) | 2392 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT)); 2393 2394 REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack)); 2395 2396 /* Make sure that ACK is written */ 2397 bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0, 2398 BUS_SPACE_BARRIER_WRITE); 2399 mb(); 2400 } 2401 2402 static inline void 2403 bxe_ack_sb(struct bxe_softc *sc, 2404 uint8_t igu_sb_id, 2405 uint8_t storm, 2406 uint16_t index, 2407 uint8_t op, 2408 uint8_t update) 2409 { 2410 if (sc->devinfo.int_block == INT_BLOCK_HC) 2411 bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update); 2412 else { 2413 uint8_t segment; 2414 if (CHIP_INT_MODE_IS_BC(sc)) { 2415 segment = storm; 2416 } else if (igu_sb_id != sc->igu_dsb_id) { 2417 segment = IGU_SEG_ACCESS_DEF; 2418 } else if (storm == ATTENTION_ID) { 2419 segment = IGU_SEG_ACCESS_ATTN; 2420 } else { 2421 segment = IGU_SEG_ACCESS_DEF; 2422 } 2423 bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update); 2424 } 2425 } 2426 2427 static inline uint16_t 2428 bxe_hc_ack_int(struct bxe_softc *sc) 2429 { 2430 uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 + 2431 COMMAND_REG_SIMD_MASK); 2432 uint32_t result = REG_RD(sc, hc_addr); 2433 2434 mb(); 2435 return (result); 2436 } 2437 2438 static inline uint16_t 2439 bxe_igu_ack_int(struct bxe_softc *sc) 2440 { 2441 uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8); 2442 uint32_t result = REG_RD(sc, igu_addr); 2443 2444 BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n", 2445 result, igu_addr); 2446 2447 mb(); 2448 return (result); 2449 } 2450 2451 static inline uint16_t 2452 bxe_ack_int(struct bxe_softc *sc) 2453 { 2454 mb(); 2455 if (sc->devinfo.int_block == INT_BLOCK_HC) { 2456 return (bxe_hc_ack_int(sc)); 2457 } else { 2458 return (bxe_igu_ack_int(sc)); 2459 } 2460 } 2461 2462 static inline int 2463 func_by_vn(struct bxe_softc *sc, 2464 int vn) 2465 { 2466 return (2 * vn + SC_PORT(sc)); 2467 } 2468 2469 /* 2470 * Statistics ID are global per chip/path, while Client IDs for E1x 2471 * are per port. 2472 */ 2473 static inline uint8_t 2474 bxe_stats_id(struct bxe_fastpath *fp) 2475 { 2476 struct bxe_softc *sc = fp->sc; 2477 2478 if (!CHIP_IS_E1x(sc)) { 2479 return (fp->cl_id); 2480 } 2481 2482 return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x); 2483 } 2484 2485 #endif /* __BXE_H__ */ 2486 2487