xref: /freebsd/sys/dev/bxe/bxe.h (revision 51f61fc0c7ece7a30c737341e65455841bc3f04e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #ifndef __BXE_H__
30 #define __BXE_H__
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/sx.h>
41 #include <sys/module.h>
42 #include <sys/endian.h>
43 #include <sys/types.h>
44 #include <sys/malloc.h>
45 #include <sys/kobj.h>
46 #include <sys/bus.h>
47 #include <sys/rman.h>
48 #include <sys/socket.h>
49 #include <sys/sockio.h>
50 #include <sys/sysctl.h>
51 #include <sys/smp.h>
52 #include <sys/bitstring.h>
53 #include <sys/limits.h>
54 #include <sys/queue.h>
55 #include <sys/taskqueue.h>
56 #include <contrib/zlib/zlib.h>
57 
58 #include <net/if.h>
59 #include <net/if_types.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_dl.h>
63 #include <net/if_var.h>
64 #include <net/if_media.h>
65 #include <net/if_vlan_var.h>
66 #include <net/bpf.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/ip.h>
70 #include <netinet/ip6.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #include <netinet/netdump/netdump.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 
78 #include <machine/atomic.h>
79 #include <machine/resource.h>
80 #include <machine/endian.h>
81 #include <machine/bus.h>
82 #include <machine/in_cksum.h>
83 
84 #include "device_if.h"
85 #include "bus_if.h"
86 #include "pci_if.h"
87 
88 #if _BYTE_ORDER == _LITTLE_ENDIAN
89 #ifndef LITTLE_ENDIAN
90 #define LITTLE_ENDIAN
91 #endif
92 #ifndef __LITTLE_ENDIAN
93 #define __LITTLE_ENDIAN
94 #endif
95 #undef BIG_ENDIAN
96 #undef __BIG_ENDIAN
97 #else /* _BIG_ENDIAN */
98 #ifndef BIG_ENDIAN
99 #define BIG_ENDIAN
100 #endif
101 #ifndef __BIG_ENDIAN
102 #define __BIG_ENDIAN
103 #endif
104 #undef LITTLE_ENDIAN
105 #undef __LITTLE_ENDIAN
106 #endif
107 
108 #include "ecore_mfw_req.h"
109 #include "ecore_fw_defs.h"
110 #include "ecore_hsi.h"
111 #include "ecore_reg.h"
112 #include "bxe_dcb.h"
113 #include "bxe_stats.h"
114 
115 #include "bxe_elink.h"
116 
117 #define VF_MAC_CREDIT_CNT 0
118 #define VF_VLAN_CREDIT_CNT (0)
119 
120 #if __FreeBSD_version < 800054
121 #if defined(__i386__) || defined(__amd64__)
122 #define mb()  __asm volatile("mfence;" : : : "memory")
123 #define wmb() __asm volatile("sfence;" : : : "memory")
124 #define rmb() __asm volatile("lfence;" : : : "memory")
125 static __inline void prefetch(void *x)
126 {
127     __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
128 }
129 #else
130 #define mb()
131 #define rmb()
132 #define wmb()
133 #define prefetch(x)
134 #endif
135 #endif
136 
137 #if __FreeBSD_version >= 1000000
138 #define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
139 #define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
140 #define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
141 #define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
142 #define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
143 #define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
144 #define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
145 #define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
146 #endif
147 
148 #ifndef ARRAY_SIZE
149 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
150 #endif
151 #ifndef ARRSIZE
152 #define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
153 #endif
154 #ifndef DIV_ROUND_UP
155 #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
156 #endif
157 #ifndef roundup
158 #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
159 #endif
160 #ifndef ilog2
161 static inline
162 int bxe_ilog2(int x)
163 {
164     int log = 0;
165     while (x >>= 1) log++;
166     return (log);
167 }
168 #define ilog2(x) bxe_ilog2(x)
169 #endif
170 
171 #include "ecore_sp.h"
172 
173 #define BRCM_VENDORID 0x14e4
174 #define	QLOGIC_VENDORID	0x1077
175 #define PCI_ANY_ID    (uint16_t)(~0U)
176 
177 struct bxe_device_type
178 {
179     uint16_t bxe_vid;
180     uint16_t bxe_did;
181     uint16_t bxe_svid;
182     uint16_t bxe_sdid;
183     char     *bxe_name;
184 };
185 
186 #define BCM_PAGE_SHIFT       12
187 #define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
188 #define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
189 #define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
190 
191 #if BCM_PAGE_SIZE != 4096
192 #error Page sizes other than 4KB are unsupported!
193 #endif
194 
195 #if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
196 #define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
197 #define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
198 #else
199 #define U64_LO(addr) ((uint32_t)(addr))
200 #define U64_HI(addr) (0)
201 #endif
202 #define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
203 
204 #define SET_FLAG(value, mask, flag)            \
205     do {                                       \
206         (value) &= ~(mask);                    \
207         (value) |= ((flag) << (mask##_SHIFT)); \
208     } while (0)
209 
210 #define GET_FLAG(value, mask)              \
211     (((value) & (mask)) >> (mask##_SHIFT))
212 
213 #define GET_FIELD(value, fname)                     \
214     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
215 
216 #define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
217 #define BXE_TSO_MAX_SEGMENTS 32
218 #define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
219 #define BXE_TSO_MAX_SEG_SIZE 4096
220 
221 /* dropless fc FW/HW related params */
222 #define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
223 #define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
224                                   ETH_MAX_AGGREGATION_QUEUES_E1 :    \
225                                   ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
226 #define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
227 #define FW_PREFETCH_CNT      16
228 #define DROPLESS_FC_HEADROOM 100
229 
230 /******************/
231 /* RX SGE defines */
232 /******************/
233 
234 #define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
235 #define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
236 #define RX_SGE_NEXT_PAGE_DESC_CNT 2
237 #define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
238 #define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
239 #define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
240 #define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
241 #define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
242 #define RX_SGE(x)              ((x) & RX_SGE_MAX)
243 
244 #define RX_SGE_NEXT(x)                                              \
245     ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
246      ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
247 
248 #define RX_SGE_MASK_ELEM_SZ    64
249 #define RX_SGE_MASK_ELEM_SHIFT 6
250 #define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
251 
252 /*
253  * Creates a bitmask of all ones in less significant bits.
254  * idx - index of the most significant bit in the created mask.
255  */
256 #define RX_SGE_ONES_MASK(idx)                                      \
257     (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
258 #define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
259 
260 /* Number of uint64_t elements in SGE mask array. */
261 #define RX_SGE_MASK_LEN                                                \
262     ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
263 #define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
264 #define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
265 
266 /*
267  * dropless fc calculations for SGEs
268  * Number of required SGEs is the sum of two:
269  * 1. Number of possible opened aggregations (next packet for
270  *    these aggregations will probably consume SGE immidiatelly)
271  * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
272  *    after placement on BD for new TPA aggregation)
273  * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
274  */
275 #define NUM_SGE_REQ(sc)                                    \
276     (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
277 #define NUM_SGE_PG_REQ(sc)                                                    \
278     ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
279 #define SGE_TH_LO(sc)                                                  \
280     (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
281 #define SGE_TH_HI(sc)                      \
282     (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
283 
284 #define PAGES_PER_SGE_SHIFT  0
285 #define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
286 #define SGE_PAGE_SIZE        BCM_PAGE_SIZE
287 #define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
288 #define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
289 #define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
290 #define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
291 
292 /*****************/
293 /* TX BD defines */
294 /*****************/
295 
296 #define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
297 #define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
298 #define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
299 #define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
300 #define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
301 #define TX_BD_MAX             (TX_BD_TOTAL - 1)
302 
303 #define TX_BD_NEXT(x)                                                 \
304     ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
305      ((x) + 2) : ((x) + 1))
306 #define TX_BD(x)      ((x) & TX_BD_MAX)
307 #define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
308 #define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
309 
310 /*
311  * Trigger pending transmits when the number of available BDs is greater
312  * than 1/8 of the total number of usable BDs.
313  */
314 #define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
315 #define BXE_TX_TIMEOUT 5
316 
317 /*****************/
318 /* RX BD defines */
319 /*****************/
320 
321 #define RX_BD_NUM_PAGES       8 /* power of 2 */
322 #define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
323 #define RX_BD_NEXT_PAGE_DESC_CNT 2
324 #define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
325 #define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
326 #define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
327 #define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
328 #define RX_BD_MAX             (RX_BD_TOTAL - 1)
329 
330 #define RX_BD_NEXT(x)                                               \
331     ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
332      ((x) + 3) : ((x) + 1))
333 #define RX_BD(x)      ((x) & RX_BD_MAX)
334 #define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
335 #define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
336 
337 /*
338  * dropless fc calculations for BDs
339  * Number of BDs should be as number of buffers in BRB:
340  * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
341  * "next" elements on each page
342  */
343 #define NUM_BD_REQ(sc) \
344     BRB_SIZE(sc)
345 #define NUM_BD_PG_REQ(sc)                                                  \
346     ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
347 #define BD_TH_LO(sc)                                \
348     (NUM_BD_REQ(sc) +                               \
349      NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
350      FW_DROP_LEVEL(sc))
351 #define BD_TH_HI(sc)                      \
352     (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
353 #define MIN_RX_AVAIL(sc)                           \
354     ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
355 #define MIN_RX_SIZE_TPA_HW(sc)                         \
356     (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
357                       ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
358 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
359 #define MIN_RX_SIZE_TPA(sc)                         \
360     (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
361 #define MIN_RX_SIZE_NONTPA(sc)                     \
362     (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
363 
364 /***************/
365 /* RCQ defines */
366 /***************/
367 
368 /*
369  * As long as CQE is X times bigger than BD entry we have to allocate X times
370  * more pages for CQ ring in order to keep it balanced with BD ring
371  */
372 #define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
373                              sizeof(struct eth_rx_bd))
374 #define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
375 #define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
376 #define RCQ_NEXT_PAGE_DESC_CNT 1
377 #define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
378 #define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
379 #define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
380 #define RCQ_MAX             (RCQ_TOTAL - 1)
381 
382 #define RCQ_NEXT(x)                                               \
383     ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
384      ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
385 #define RCQ(x)      ((x) & RCQ_MAX)
386 #define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
387 #define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
388 
389 /*
390  * dropless fc calculations for RCQs
391  * Number of RCQs should be as number of buffers in BRB:
392  * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
393  * "next" elements on each page
394  */
395 #define NUM_RCQ_REQ(sc) \
396     BRB_SIZE(sc)
397 #define NUM_RCQ_PG_REQ(sc)                                              \
398     ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
399 #define RCQ_TH_LO(sc)                              \
400     (NUM_RCQ_REQ(sc) +                             \
401      NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
402      FW_DROP_LEVEL(sc))
403 #define RCQ_TH_HI(sc)                      \
404     (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
405 
406 /* This is needed for determening of last_max */
407 #define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
408 
409 #define __SGE_MASK_SET_BIT(el, bit)               \
410     do {                                          \
411         (el) = ((el) | ((uint64_t)0x1 << (bit))); \
412     } while (0)
413 
414 #define __SGE_MASK_CLEAR_BIT(el, bit)                \
415     do {                                             \
416         (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
417     } while (0)
418 
419 #define SGE_MASK_SET_BIT(fp, idx)                                       \
420     __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
421                        ((idx) & RX_SGE_MASK_ELEM_MASK))
422 
423 #define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
424     __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
425                          ((idx) & RX_SGE_MASK_ELEM_MASK))
426 
427 /* Load / Unload modes */
428 #define LOAD_NORMAL       0
429 #define LOAD_OPEN         1
430 #define LOAD_DIAG         2
431 #define LOAD_LOOPBACK_EXT 3
432 #define UNLOAD_NORMAL     0
433 #define UNLOAD_CLOSE      1
434 #define UNLOAD_RECOVERY   2
435 
436 /* Some constants... */
437 //#define MAX_PATH_NUM       2
438 //#define E2_MAX_NUM_OF_VFS  64
439 //#define E1H_FUNC_MAX       8
440 //#define E2_FUNC_MAX        4   /* per path */
441 #define MAX_VNIC_NUM       4
442 #define MAX_FUNC_NUM       8   /* common to all chips */
443 //#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
444 #define MAX_RSS_CHAINS     16 /* a constant for HW limit */
445 #define MAX_MSI_VECTOR     8  /* a constant for HW limit */
446 
447 #define ILT_NUM_PAGE_ENTRIES 3072
448 /*
449  * 57710/11 we use whole table since we have 8 functions.
450  * 57712 we have only 4 functions, but use same size per func, so only half
451  * of the table is used.
452  */
453 #define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
454 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
455 /*
456  * the phys address is shifted right 12 bits and has an added
457  * 1=valid bit added to the 53rd bit
458  * then since this is a wide register(TM)
459  * we split it into two 32 bit writes
460  */
461 #define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
462 #define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
463 
464 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
465 #define ETH_HLEN                  14
466 #define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
467 #define ETH_MIN_PACKET_SIZE       60
468 #define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
469 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
470 /* TCP with Timestamp Option (32) + IPv6 (40) */
471 #define ETH_MAX_TPA_HEADER_SIZE   72
472 
473 /* max supported alignment is 256 (8 shift) */
474 //#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
475 #define BXE_RX_ALIGN_SHIFT 8
476 /* FW uses 2 cache lines alignment for start packet and size  */
477 #define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
478 #define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
479 
480 #define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
481 #define BXE_SET_ERROR_BIT(sc, error) \
482 { \
483                 (sc)->error_status |= (error); \
484 }
485 
486 struct bxe_bar {
487     struct resource    *resource;
488     int                rid;
489     bus_space_tag_t    tag;
490     bus_space_handle_t handle;
491     vm_offset_t        kva;
492 };
493 
494 struct bxe_intr {
495     struct resource *resource;
496     int             rid;
497     void            *tag;
498 };
499 
500 /* Used to manage DMA allocations. */
501 struct bxe_dma {
502     struct bxe_softc  *sc;
503     bus_addr_t        paddr;
504     void              *vaddr;
505     bus_dma_tag_t     tag;
506     bus_dmamap_t      map;
507     bus_dma_segment_t seg;
508     bus_size_t        size;
509     int               nseg;
510     char              msg[32];
511 };
512 
513 /* attn group wiring */
514 #define MAX_DYNAMIC_ATTN_GRPS 8
515 
516 struct attn_route {
517     uint32_t sig[5];
518 };
519 
520 struct iro {
521     uint32_t base;
522     uint16_t m1;
523     uint16_t m2;
524     uint16_t m3;
525     uint16_t size;
526 };
527 
528 union bxe_host_hc_status_block {
529     /* pointer to fp status block e2 */
530     struct host_hc_status_block_e2  *e2_sb;
531     /* pointer to fp status block e1x */
532     struct host_hc_status_block_e1x *e1x_sb;
533 };
534 
535 union bxe_db_prod {
536     struct doorbell_set_prod data;
537     uint32_t                 raw;
538 };
539 
540 struct bxe_sw_tx_bd {
541     struct mbuf  *m;
542     bus_dmamap_t m_map;
543     uint16_t     first_bd;
544     uint8_t      flags;
545 /* set on the first BD descriptor when there is a split BD */
546 #define BXE_TSO_SPLIT_BD (1 << 0)
547 };
548 
549 struct bxe_sw_rx_bd {
550     struct mbuf  *m;
551     bus_dmamap_t m_map;
552 };
553 
554 struct bxe_sw_tpa_info {
555     struct bxe_sw_rx_bd bd;
556     bus_dma_segment_t   seg;
557     uint8_t             state;
558 #define BXE_TPA_STATE_START 1
559 #define BXE_TPA_STATE_STOP  2
560     uint8_t             placement_offset;
561     uint16_t            parsing_flags;
562     uint16_t            vlan_tag;
563     uint16_t            len_on_bd;
564 };
565 
566 /*
567  * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
568  * instances of the fastpath structure when using multiple queues.
569  */
570 struct bxe_fastpath {
571     /* pointer back to parent structure */
572     struct bxe_softc *sc;
573 
574     struct mtx tx_mtx;
575     char       tx_mtx_name[32];
576     struct mtx rx_mtx;
577     char       rx_mtx_name[32];
578 
579 #define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
580 #define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
581 #define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
582 #define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
583 
584 #define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
585 #define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
586 #define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
587 
588     /* status block */
589     struct bxe_dma                 sb_dma;
590     union bxe_host_hc_status_block status_block;
591 
592     /* transmit chain (tx bds) */
593     struct bxe_dma        tx_dma;
594     union eth_tx_bd_types *tx_chain;
595 
596     /* receive chain (rx bds) */
597     struct bxe_dma   rx_dma;
598     struct eth_rx_bd *rx_chain;
599 
600     /* receive completion queue chain (rcq bds) */
601     struct bxe_dma   rcq_dma;
602     union eth_rx_cqe *rcq_chain;
603 
604     /* receive scatter/gather entry chain (for TPA) */
605     struct bxe_dma    rx_sge_dma;
606     struct eth_rx_sge *rx_sge_chain;
607 
608     /* tx mbufs */
609     bus_dma_tag_t       tx_mbuf_tag;
610     struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
611 
612     /* rx mbufs */
613     bus_dma_tag_t       rx_mbuf_tag;
614     struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
615     bus_dmamap_t        rx_mbuf_spare_map;
616 
617     /* rx sge mbufs */
618     bus_dma_tag_t       rx_sge_mbuf_tag;
619     struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
620     bus_dmamap_t        rx_sge_mbuf_spare_map;
621 
622     /* rx tpa mbufs (use the larger size for TPA queue length) */
623     int                    tpa_enable; /* disabled per fastpath upon error */
624     struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
625     bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
626     uint64_t               rx_tpa_queue_used;
627 
628     uint16_t *sb_index_values;
629     uint16_t *sb_running_index;
630     uint32_t ustorm_rx_prods_offset;
631 
632     uint8_t igu_sb_id; /* status block number in HW */
633     uint8_t fw_sb_id;  /* status block number in FW */
634 
635     uint32_t rx_buf_size;
636     int mbuf_alloc_size;
637 
638     int state;
639 #define BXE_FP_STATE_CLOSED  0x01
640 #define BXE_FP_STATE_IRQ     0x02
641 #define BXE_FP_STATE_OPENING 0x04
642 #define BXE_FP_STATE_OPEN    0x08
643 #define BXE_FP_STATE_HALTING 0x10
644 #define BXE_FP_STATE_HALTED  0x20
645 
646     /* reference back to this fastpath queue number */
647     uint8_t index; /* this is also the 'cid' */
648 #define FP_IDX(fp) (fp->index)
649 
650     /* interrupt taskqueue (fast) */
651     struct task      tq_task;
652     struct taskqueue *tq;
653     char             tq_name[32];
654 
655     struct task tx_task;
656     struct timeout_task tx_timeout_task;
657 
658     /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
659     uint8_t cl_id;
660 #define FP_CL_ID(fp) (fp->cl_id)
661     uint8_t cl_qzone_id;
662 
663     uint16_t fp_hc_idx;
664 
665     /* driver copy of the receive buffer descriptor prod/cons indices */
666     uint16_t rx_bd_prod;
667     uint16_t rx_bd_cons;
668 
669     /* driver copy of the receive completion queue prod/cons indices */
670     uint16_t rx_cq_prod;
671     uint16_t rx_cq_cons;
672 
673     union bxe_db_prod tx_db;
674 
675     /* Transmit packet producer index (used in eth_tx_bd). */
676     uint16_t tx_pkt_prod;
677     uint16_t tx_pkt_cons;
678 
679     /* Transmit buffer descriptor producer index. */
680     uint16_t tx_bd_prod;
681     uint16_t tx_bd_cons;
682 
683     uint64_t sge_mask[RX_SGE_MASK_LEN];
684     uint16_t rx_sge_prod;
685 
686     struct tstorm_per_queue_stats old_tclient;
687     struct ustorm_per_queue_stats old_uclient;
688     struct xstorm_per_queue_stats old_xclient;
689     struct bxe_eth_q_stats        eth_q_stats;
690     struct bxe_eth_q_stats_old    eth_q_stats_old;
691 
692     /* Pointer to the receive consumer in the status block */
693     uint16_t *rx_cq_cons_sb;
694 
695     /* Pointer to the transmit consumer in the status block */
696     uint16_t *tx_cons_sb;
697 
698     /* transmit timeout until chip reset */
699     int watchdog_timer;
700 
701     /* Free/used buffer descriptor counters. */
702     //uint16_t used_tx_bd;
703 
704     /* Last maximal completed SGE */
705     uint16_t last_max_sge;
706 
707     //uint16_t rx_sge_free_idx;
708 
709     //uint8_t segs;
710 
711 #if __FreeBSD_version >= 800000
712 #define BXE_BR_SIZE 4096
713     struct buf_ring *tx_br;
714 #endif
715 }; /* struct bxe_fastpath */
716 
717 /* sriov XXX */
718 #define BXE_MAX_NUM_OF_VFS 64
719 #define BXE_VF_CID_WND     0
720 #define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
721 #define BXE_CLIENTS_PER_VF 1
722 #define BXE_FIRST_VF_CID   256
723 #define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
724 #define BXE_VF_ID_INVALID  0xFF
725 #define IS_SRIOV(sc) 0
726 
727 #define GET_NUM_VFS_PER_PATH(sc) 0
728 #define GET_NUM_VFS_PER_PF(sc)   0
729 
730 /* maximum number of fast-path interrupt contexts */
731 #define FP_SB_MAX_E1x 16
732 #define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
733 
734 union cdu_context {
735     struct eth_context eth;
736     char pad[1024];
737 };
738 
739 /* CDU host DB constants */
740 #define CDU_ILT_PAGE_SZ_HW 2
741 #define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
742 #define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
743 
744 #define CNIC_ISCSI_CID_MAX 256
745 #define CNIC_FCOE_CID_MAX  2048
746 #define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
747 #define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
748 
749 #define QM_ILT_PAGE_SZ_HW  0
750 #define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
751 #define QM_CID_ROUND       1024
752 
753 /* TM (timers) host DB constants */
754 #define TM_ILT_PAGE_SZ_HW  0
755 #define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
756 /*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
757 #define TM_CONN_NUM        1024
758 #define TM_ILT_SZ          (8 * TM_CONN_NUM)
759 #define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
760 
761 /* SRC (Searcher) host DB constants */
762 #define SRC_ILT_PAGE_SZ_HW 0
763 #define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
764 #define SRC_HASH_BITS      10
765 #define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
766 #define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
767 #define SRC_T2_SZ          SRC_ILT_SZ
768 #define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
769 
770 struct hw_context {
771     struct bxe_dma    vcxt_dma;
772     union cdu_context *vcxt;
773     //bus_addr_t        cxt_mapping;
774     size_t            size;
775 };
776 
777 #define SM_RX_ID 0
778 #define SM_TX_ID 1
779 
780 /* defines for multiple tx priority indices */
781 #define FIRST_TX_ONLY_COS_INDEX 1
782 #define FIRST_TX_COS_INDEX      0
783 
784 #define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
785 
786 #define HC_INDEX_ETH_RX_CQ_CONS       1
787 #define HC_INDEX_OOO_TX_CQ_CONS       4
788 #define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
789 #define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
790 #define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
791 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
792 
793 /* congestion management fairness mode */
794 #define CMNG_FNS_NONE   0
795 #define CMNG_FNS_MINMAX 1
796 
797 /* CMNG constants, as derived from system spec calculations */
798 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
799 #define DEF_MIN_RATE 100
800 /* resolution of the rate shaping timer - 400 usec */
801 #define RS_PERIODIC_TIMEOUT_USEC 400
802 /* number of bytes in single QM arbitration cycle -
803  * coefficient for calculating the fairness timer */
804 #define QM_ARB_BYTES 160000
805 /* resolution of Min algorithm 1:100 */
806 #define MIN_RES 100
807 /* how many bytes above threshold for the minimal credit of Min algorithm*/
808 #define MIN_ABOVE_THRESH 32768
809 /* fairness algorithm integration time coefficient -
810  * for calculating the actual Tfair */
811 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
812 /* memory of fairness algorithm - 2 cycles */
813 #define FAIR_MEM 2
814 
815 #define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
816 #define HC_SEG_ACCESS_ATTN  4
817 #define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
818 
819 /*
820  * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
821  * control by the number of fast-path status blocks supported by the
822  * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
823  * status block represents an independent interrupts context that can
824  * serve a regular L2 networking queue. However special L2 queues such
825  * as the FCoE queue do not require a FP-SB and other components like
826  * the CNIC may consume FP-SB reducing the number of possible L2 queues
827  *
828  * If the maximum number of FP-SB available is X then:
829  * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
830  *    regular L2 queues is Y=X-1
831  * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
832  * c. If the FCoE L2 queue is supported the actual number of L2 queues
833  *    is Y+1
834  * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
835  *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
836  *    FP interrupt context for the CNIC).
837  * e. The number of HW context (CID count) is always X or X+1 if FCoE
838  *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
839  *
840  * So this is quite simple for now as no ULPs are supported yet. :-)
841  */
842 #define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
843 #define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
844 #define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
845 #define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
846 
847 #define FOR_EACH_QUEUE(sc, var)                          \
848     for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
849 
850 #define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
851     for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
852 
853 #define FOR_EACH_ETH_QUEUE(sc, var)                          \
854     for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
855 
856 #define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
857     for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
858 
859 #define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
860     for ((var) = 0; (var) < (sc)->max_cos; (var)++)
861 
862 #define FOR_EACH_CNIC_QUEUE(sc, var)     \
863     for ((var) = BXE_NUM_ETH_QUEUES(sc); \
864          (var) < BXE_NUM_QUEUES(sc);     \
865          (var)++)
866 
867 enum {
868     OOO_IDX_OFFSET,
869     FCOE_IDX_OFFSET,
870     FWD_IDX_OFFSET,
871 };
872 
873 #define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
874 #define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
875 #define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
876 #define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
877 #define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
878 #define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
879 
880 #define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
881 #define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
882 #define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
883 #define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
884 #define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
885 
886 #define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
887 #define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
888 #define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
889 #define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
890 #define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
891 #define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
892 
893 #define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
894 #define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
895 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
896 #define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
897 #define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
898 #define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
899 #define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
900 
901 enum {
902     BXE_PORT_QUERY_IDX,
903     BXE_PF_QUERY_IDX,
904     BXE_FCOE_QUERY_IDX,
905     BXE_FIRST_QUEUE_QUERY_IDX,
906 };
907 
908 struct bxe_fw_stats_req {
909     struct stats_query_header hdr;
910     struct stats_query_entry  query[FP_SB_MAX_E1x +
911                                     BXE_FIRST_QUEUE_QUERY_IDX];
912 };
913 
914 struct bxe_fw_stats_data {
915     struct stats_counter          storm_counters;
916     struct per_port_stats         port;
917     struct per_pf_stats           pf;
918     //struct fcoe_statistics_params fcoe;
919     struct per_queue_stats        queue_stats[1];
920 };
921 
922 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
923 #define BXE_IGU_STAS_MSG_VF_CNT 64
924 #define BXE_IGU_STAS_MSG_PF_CNT 4
925 
926 #define MAX_DMAE_C 8
927 
928 /*
929  * For the main interface up/down code paths, a not-so-fine-grained CORE
930  * mutex lock is used. Inside this code are various calls to kernel routines
931  * that can cause a sleep to occur. Namely memory allocations and taskqueue
932  * handling. If using an MTX lock we are *not* allowed to sleep but we can
933  * with an SX lock. This define forces the CORE lock to use and SX lock.
934  * Undefine this and an MTX lock will be used instead. Note that the IOCTL
935  * path can cause problems since it's called by a non-sleepable thread. To
936  * alleviate a potential sleep, any IOCTL processing that results in the
937  * chip/interface being started/stopped/reinitialized, the actual work is
938  * offloaded to a taskqueue.
939  */
940 #define BXE_CORE_LOCK_SX
941 
942 /*
943  * This is the slowpath data structure. It is mapped into non-paged memory
944  * so that the hardware can access it's contents directly and must be page
945  * aligned.
946  */
947 struct bxe_slowpath {
948 
949     /* used by the DMAE command executer */
950     struct dmae_cmd dmae[MAX_DMAE_C];
951 
952     /* statistics completion */
953     uint32_t stats_comp;
954 
955     /* firmware defined statistics blocks */
956     union mac_stats        mac_stats;
957     struct nig_stats       nig_stats;
958     struct host_port_stats port_stats;
959     struct host_func_stats func_stats;
960     //struct host_func_stats func_stats_base;
961 
962     /* DMAE completion value and data source/sink */
963     uint32_t wb_comp;
964     uint32_t wb_data[4];
965 
966     union {
967         struct mac_configuration_cmd          e1x;
968         struct eth_classify_rules_ramrod_data e2;
969     } mac_rdata;
970 
971     union {
972         struct tstorm_eth_mac_filter_config e1x;
973         struct eth_filter_rules_ramrod_data e2;
974     } rx_mode_rdata;
975 
976     struct eth_rss_update_ramrod_data rss_rdata;
977 
978     union {
979         struct mac_configuration_cmd           e1;
980         struct eth_multicast_rules_ramrod_data e2;
981     } mcast_rdata;
982 
983     union {
984         struct function_start_data        func_start;
985         struct flow_control_configuration pfc_config; /* for DCBX ramrod */
986     } func_rdata;
987 
988     /* Queue State related ramrods */
989     union {
990         struct client_init_ramrod_data   init_data;
991         struct client_update_ramrod_data update_data;
992     } q_rdata;
993 
994     /*
995      * AFEX ramrod can not be a part of func_rdata union because these
996      * events might arrive in parallel to other events from func_rdata.
997      * If they were defined in the same union the data can get corrupted.
998      */
999     struct afex_vif_list_ramrod_data func_afex_rdata;
1000 
1001     union drv_info_to_mcp drv_info_to_mcp;
1002 }; /* struct bxe_slowpath */
1003 
1004 /*
1005  * Port specifc data structure.
1006  */
1007 struct bxe_port {
1008     /*
1009      * Port Management Function (for 57711E only).
1010      * When this field is set the driver instance is
1011      * responsible for managing port specifc
1012      * configurations such as handling link attentions.
1013      */
1014     uint32_t pmf;
1015 
1016     /* Ethernet maximum transmission unit. */
1017     uint16_t ether_mtu;
1018 
1019     uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1020 
1021     uint32_t ext_phy_config;
1022 
1023     /* Port feature config.*/
1024     uint32_t config;
1025 
1026     /* Defines the features supported by the PHY. */
1027     uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1028 
1029     /* Defines the features advertised by the PHY. */
1030     uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1031 #define ADVERTISED_10baseT_Half    (1 << 1)
1032 #define ADVERTISED_10baseT_Full    (1 << 2)
1033 #define ADVERTISED_100baseT_Half   (1 << 3)
1034 #define ADVERTISED_100baseT_Full   (1 << 4)
1035 #define ADVERTISED_1000baseT_Half  (1 << 5)
1036 #define ADVERTISED_1000baseT_Full  (1 << 6)
1037 #define ADVERTISED_TP              (1 << 7)
1038 #define ADVERTISED_FIBRE           (1 << 8)
1039 #define ADVERTISED_Autoneg         (1 << 9)
1040 #define ADVERTISED_Asym_Pause      (1 << 10)
1041 #define ADVERTISED_Pause           (1 << 11)
1042 #define ADVERTISED_2500baseX_Full  (1 << 15)
1043 #define ADVERTISED_10000baseT_Full (1 << 16)
1044 
1045     uint32_t    phy_addr;
1046 
1047     /* Used to synchronize phy accesses. */
1048     struct mtx  phy_mtx;
1049     char        phy_mtx_name[32];
1050 
1051 #define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1052 #define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1053 #define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1054 
1055     /*
1056      * MCP scratchpad address for port specific statistics.
1057      * The device is responsible for writing statistcss
1058      * back to the MCP for use with management firmware such
1059      * as UMP/NC-SI.
1060      */
1061     uint32_t port_stx;
1062 
1063     struct nig_stats old_nig_stats;
1064 }; /* struct bxe_port */
1065 
1066 struct bxe_mf_info {
1067     uint32_t mf_config[E1HVN_MAX];
1068 
1069     uint32_t vnics_per_port;   /* 1, 2 or 4 */
1070     uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1071     uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1072 
1073 #define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1074 #define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1075 #define VNICS_PER_PATH(sc)                                  \
1076     ((sc)->devinfo.mf_info.vnics_per_port *                 \
1077      ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1078 
1079     uint8_t min_bw[MAX_VNIC_NUM];
1080     uint8_t max_bw[MAX_VNIC_NUM];
1081 
1082     uint16_t ext_id; /* vnic outer vlan or VIF ID */
1083 #define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1084 #define INVALID_VIF_ID 0xFFFF
1085 #define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1086 #define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1087 
1088     uint16_t default_vlan;
1089 #define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1090 
1091     uint8_t niv_allowed_priorities;
1092 #define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1093 
1094     uint8_t niv_default_cos;
1095 #define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1096 
1097     uint8_t niv_mba_enabled;
1098 
1099     enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1100 #define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1101     int                        afex_def_vlan_tag;
1102     uint32_t                   pending_max;
1103 
1104     uint16_t flags;
1105 #define MF_INFO_VALID_MAC       0x0001
1106 
1107     uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1108 #define IS_MF(sc)                        \
1109     (IS_MULTI_VNIC(sc) &&                \
1110      ((sc)->devinfo.mf_info.mf_mode != 0))
1111 #define IS_MF_SD(sc)                                     \
1112     (IS_MULTI_VNIC(sc) &&                                \
1113      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1114 #define IS_MF_SI(sc)                                     \
1115     (IS_MULTI_VNIC(sc) &&                                \
1116      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1117 #define IS_MF_AFEX(sc)                              \
1118     (IS_MULTI_VNIC(sc) &&                           \
1119      ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1120 #define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1121 #define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1122 #define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1123 
1124     uint32_t mf_protos_supported;
1125     #define MF_PROTO_SUPPORT_ETHERNET 0x1
1126     #define MF_PROTO_SUPPORT_ISCSI    0x2
1127     #define MF_PROTO_SUPPORT_FCOE     0x4
1128 }; /* struct bxe_mf_info */
1129 
1130 /* Device information data structure. */
1131 struct bxe_devinfo {
1132     /* PCIe info */
1133     uint16_t vendor_id;
1134     uint16_t device_id;
1135     uint16_t subvendor_id;
1136     uint16_t subdevice_id;
1137 
1138     /*
1139      * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1140      *   C = Chip Number   (bits 16-31)
1141      *   R = Chip Revision (bits 12-15)
1142      *   M = Chip Metal    (bits 4-11)
1143      *   B = Chip Bond ID  (bits 0-3)
1144      */
1145     uint32_t chip_id;
1146 #define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1147 #define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1148 /* device ids */
1149 #define CHIP_NUM_57710        0x164e
1150 #define CHIP_NUM_57711        0x164f
1151 #define CHIP_NUM_57711E       0x1650
1152 #define CHIP_NUM_57712        0x1662
1153 #define CHIP_NUM_57712_MF     0x1663
1154 #define CHIP_NUM_57712_VF     0x166f
1155 #define CHIP_NUM_57800        0x168a
1156 #define CHIP_NUM_57800_MF     0x16a5
1157 #define CHIP_NUM_57800_VF     0x16a9
1158 #define CHIP_NUM_57810        0x168e
1159 #define CHIP_NUM_57810_MF     0x16ae
1160 #define CHIP_NUM_57810_VF     0x16af
1161 #define CHIP_NUM_57811        0x163d
1162 #define CHIP_NUM_57811_MF     0x163e
1163 #define CHIP_NUM_57811_VF     0x163f
1164 #define CHIP_NUM_57840_OBS    0x168d
1165 #define CHIP_NUM_57840_OBS_MF 0x16ab
1166 #define CHIP_NUM_57840_4_10   0x16a1
1167 #define CHIP_NUM_57840_2_20   0x16a2
1168 #define CHIP_NUM_57840_MF     0x16a4
1169 #define CHIP_NUM_57840_VF     0x16ad
1170 
1171 #define CHIP_REV_SHIFT      12
1172 #define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1173 #define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1174 
1175 #define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1176 #define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1177 #define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1178 
1179 #define CHIP_REV_IS_SLOW(sc)    \
1180     (CHIP_REV(sc) > 0x00005000)
1181 #define CHIP_REV_IS_FPGA(sc)                              \
1182     (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1183 #define CHIP_REV_IS_EMUL(sc)                               \
1184     (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1185 #define CHIP_REV_IS_ASIC(sc) \
1186     (!CHIP_REV_IS_SLOW(sc))
1187 
1188 #define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1189 #define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1190 
1191 #define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1192 #define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1193 #define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1194 #define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1195 #define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1196                              (CHIP_IS_57711E(sc)))
1197 #define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1198                              CHIP_IS_E1H((sc)))
1199 
1200 #define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1201 #define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1202 #define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1203 #define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1204                               CHIP_IS_57712_MF(sc))
1205 
1206 #define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1207 #define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1208 #define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1209 #define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1210 #define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1211 #define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1212 #define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1213 #define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1214 #define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1215 #define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1216                               (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1217                               (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1218 #define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1219                               (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1220 #define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1221 
1222 #define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1223                              CHIP_IS_57800_MF(sc) || \
1224                              CHIP_IS_57800_VF(sc) || \
1225                              CHIP_IS_57810(sc)    || \
1226                              CHIP_IS_57810_MF(sc) || \
1227                              CHIP_IS_57810_VF(sc) || \
1228                              CHIP_IS_57811(sc)    || \
1229                              CHIP_IS_57811_MF(sc) || \
1230                              CHIP_IS_57811_VF(sc) || \
1231                              CHIP_IS_57840(sc)    || \
1232                              CHIP_IS_57840_MF(sc) || \
1233                              CHIP_IS_57840_VF(sc))
1234 #define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1235                              (CHIP_REV(sc) == CHIP_REV_Ax))
1236 #define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1237                              (CHIP_REV(sc) == CHIP_REV_Bx))
1238 
1239 #define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1240 #define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1241                              CHIP_IS_E3(sc))
1242 
1243 #define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1244                              CHIP_IS_57712_MF(sc) || \
1245                              CHIP_IS_E3(sc))
1246 
1247 #define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1248                              CHIP_IS_57800_VF(sc) || \
1249                              CHIP_IS_57810_VF(sc) || \
1250                              CHIP_IS_57840_VF(sc))
1251 #define IS_PF(sc)           (!IS_VF(sc))
1252 
1253 /*
1254  * This define is used in two main places:
1255  * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1256  * to nic-only mode or to offload mode. Offload mode is configured if either
1257  * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1258  * already registered for this port (which means that the user wants storage
1259  * services).
1260  * 2. During cnic-related load, to know if offload mode is already configured
1261  * in the HW or needs to be configrued. Since the transition from nic-mode to
1262  * offload-mode in HW causes traffic coruption, nic-mode is configured only
1263  * in ports on which storage services where never requested.
1264  */
1265 #define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1266 
1267     uint8_t  chip_port_mode;
1268 #define CHIP_4_PORT_MODE        0x0
1269 #define CHIP_2_PORT_MODE        0x1
1270 #define CHIP_PORT_MODE_NONE     0x2
1271 #define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1272 #define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1273 
1274     uint8_t int_block;
1275 #define INT_BLOCK_HC            0
1276 #define INT_BLOCK_IGU           1
1277 #define INT_BLOCK_MODE_NORMAL   0
1278 #define INT_BLOCK_MODE_BW_COMP  2
1279 #define CHIP_INT_MODE_IS_NBC(sc)                          \
1280     (!CHIP_IS_E1x(sc) &&                                  \
1281      !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1282 #define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1283 
1284     uint32_t shmem_base;
1285     uint32_t shmem2_base;
1286     uint32_t bc_ver;
1287     char bc_ver_str[32];
1288     uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1289     struct bxe_mf_info mf_info;
1290 
1291     int flash_size;
1292 #define NVRAM_1MB_SIZE      0x20000
1293 #define NVRAM_TIMEOUT_COUNT 30000
1294 #define NVRAM_PAGE_SIZE     256
1295 
1296     /* PCIe capability information */
1297     uint32_t pcie_cap_flags;
1298 #define BXE_PM_CAPABLE_FLAG     0x00000001
1299 #define BXE_PCIE_CAPABLE_FLAG   0x00000002
1300 #define BXE_MSI_CAPABLE_FLAG    0x00000004
1301 #define BXE_MSIX_CAPABLE_FLAG   0x00000008
1302     uint16_t pcie_pm_cap_reg;
1303     uint16_t pcie_pcie_cap_reg;
1304     //uint16_t pcie_devctl;
1305     uint16_t pcie_link_width;
1306     uint16_t pcie_link_speed;
1307     uint16_t pcie_msi_cap_reg;
1308     uint16_t pcie_msix_cap_reg;
1309 
1310     /* device configuration read from bootcode shared memory */
1311     uint32_t hw_config;
1312     uint32_t hw_config2;
1313 }; /* struct bxe_devinfo */
1314 
1315 struct bxe_sp_objs {
1316     struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1317     struct ecore_queue_sp_obj q_obj; /* Queue State object */
1318 }; /* struct bxe_sp_objs */
1319 
1320 /*
1321  * Data that will be used to create a link report message. We will keep the
1322  * data used for the last link report in order to prevent reporting the same
1323  * link parameters twice.
1324  */
1325 struct bxe_link_report_data {
1326     uint16_t      line_speed;        /* Effective line speed */
1327     unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1328 };
1329 enum {
1330     BXE_LINK_REPORT_FULL_DUPLEX,
1331     BXE_LINK_REPORT_LINK_DOWN,
1332     BXE_LINK_REPORT_RX_FC_ON,
1333     BXE_LINK_REPORT_TX_FC_ON
1334 };
1335 
1336 /* Top level device private data structure. */
1337 struct bxe_softc {
1338     /*
1339      * First entry must be a pointer to the BSD ifnet struct which
1340      * has a first element of 'void *if_softc' (which is us). XXX
1341      */
1342     if_t 	    ifp;
1343     struct ifmedia  ifmedia; /* network interface media structure */
1344     int             media;
1345 
1346     volatile int    state; /* device state */
1347 #define BXE_STATE_CLOSED                 0x0000
1348 #define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1349 #define BXE_STATE_OPENING_WAITING_PORT   0x2000
1350 #define BXE_STATE_OPEN                   0x3000
1351 #define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1352 #define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1353 #define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1354 #define BXE_STATE_DISABLED               0xD000
1355 #define BXE_STATE_DIAG                   0xE000
1356 #define BXE_STATE_ERROR                  0xF000
1357 
1358     int flags;
1359 #define BXE_ONE_PORT_FLAG    0x00000001
1360 #define BXE_NO_ISCSI         0x00000002
1361 #define BXE_NO_FCOE          0x00000004
1362 #define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1363 //#define BXE_NO_WOL_FLAG      0x00000008
1364 //#define BXE_USING_DAC_FLAG   0x00000010
1365 //#define BXE_USING_MSIX_FLAG  0x00000020
1366 //#define BXE_USING_MSI_FLAG   0x00000040
1367 //#define BXE_DISABLE_MSI_FLAG 0x00000080
1368 #define BXE_NO_MCP_FLAG      0x00000200
1369 #define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1370 //#define BXE_SAFC_TX_FLAG     0x00000400
1371 #define BXE_MF_FUNC_DIS      0x00000800
1372 #define BXE_TX_SWITCHING     0x00001000
1373 #define BXE_NO_PULSE	     0x00002000
1374 
1375     unsigned long debug; /* per-instance debug logging config */
1376 
1377 #define MAX_BARS 5
1378     struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1379 
1380     uint16_t doorbell_size;
1381 
1382     /* periodic timer callout */
1383 #define PERIODIC_STOP 0
1384 #define PERIODIC_GO   1
1385     volatile unsigned long periodic_flags;
1386     struct callout         periodic_callout;
1387 
1388     /* chip start/stop/reset taskqueue */
1389 #define CHIP_TQ_NONE   0
1390 #define CHIP_TQ_START  1
1391 #define CHIP_TQ_STOP   2
1392 #define CHIP_TQ_REINIT 3
1393     volatile unsigned long chip_tq_flags;
1394     struct task            chip_tq_task;
1395     struct taskqueue       *chip_tq;
1396     char                   chip_tq_name[32];
1397 
1398     struct timeout_task        sp_err_timeout_task;
1399 
1400     /* slowpath interrupt taskqueue */
1401     struct task      sp_tq_task;
1402     struct taskqueue *sp_tq;
1403     char             sp_tq_name[32];
1404 
1405     struct bxe_fastpath fp[MAX_RSS_CHAINS];
1406     struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1407 
1408     device_t dev;  /* parent device handle */
1409     uint8_t  unit; /* driver instance number */
1410 
1411     int pcie_bus;    /* PCIe bus number */
1412     int pcie_device; /* PCIe device/slot number */
1413     int pcie_func;   /* PCIe function number */
1414 
1415     uint8_t pfunc_rel; /* function relative */
1416     uint8_t pfunc_abs; /* function absolute */
1417     uint8_t path_id;   /* function absolute */
1418 #define SC_PATH(sc)     (sc->path_id)
1419 #define SC_PORT(sc)     (sc->pfunc_rel & 1)
1420 #define SC_FUNC(sc)     (sc->pfunc_rel)
1421 #define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1422 #define SC_VN(sc)       (sc->pfunc_rel >> 1)
1423 #define SC_L_ID(sc)     (SC_VN(sc) << 2)
1424 #define PORT_ID(sc)     SC_PORT(sc)
1425 #define PATH_ID(sc)     SC_PATH(sc)
1426 #define VNIC_ID(sc)     SC_VN(sc)
1427 #define FUNC_ID(sc)     SC_FUNC(sc)
1428 #define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1429 #define SC_FW_MB_IDX_VN(sc, vn)                                \
1430     (SC_PORT(sc) + (vn) *                                      \
1431      ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1432 #define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1433 
1434     int if_capen; /* enabled interface capabilities */
1435 
1436     struct bxe_devinfo devinfo;
1437     char fw_ver_str[32];
1438     char mf_mode_str[32];
1439     char pci_link_str[32];
1440 
1441     const struct iro *iro_array;
1442 
1443 #ifdef BXE_CORE_LOCK_SX
1444     struct sx      core_sx;
1445     char           core_sx_name[32];
1446 #else
1447     struct mtx     core_mtx;
1448     char           core_mtx_name[32];
1449 #endif
1450     struct mtx     sp_mtx;
1451     char           sp_mtx_name[32];
1452     struct mtx     dmae_mtx;
1453     char           dmae_mtx_name[32];
1454     struct mtx     fwmb_mtx;
1455     char           fwmb_mtx_name[32];
1456     struct mtx     print_mtx;
1457     char           print_mtx_name[32];
1458     struct mtx     stats_mtx;
1459     char           stats_mtx_name[32];
1460     struct mtx     mcast_mtx;
1461     char           mcast_mtx_name[32];
1462 
1463 #ifdef BXE_CORE_LOCK_SX
1464 #define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1465 #define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1466 #define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1467 #define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1468 #else
1469 #define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1470 #define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1471 #define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1472 #define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1473 #endif
1474 
1475 #define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1476 #define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1477 #define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1478 
1479 #define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1480 #define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1481 #define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1482 
1483 #define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1484 #define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1485 #define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1486 
1487 #define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1488 #define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1489 #define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1490 
1491 #define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1492 #define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1493 #define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1494 
1495 #if __FreeBSD_version < 800000
1496 #define BXE_MCAST_LOCK(sc)        \
1497     do {                          \
1498         mtx_lock(&sc->mcast_mtx); \
1499         IF_ADDR_LOCK(sc->ifp);  \
1500     } while (0)
1501 #define BXE_MCAST_UNLOCK(sc)        \
1502     do {                            \
1503         IF_ADDR_UNLOCK(sc->ifp);  \
1504         mtx_unlock(&sc->mcast_mtx); \
1505     } while (0)
1506 #else
1507 #define BXE_MCAST_LOCK(sc)         \
1508     do {                           \
1509         mtx_lock(&sc->mcast_mtx);  \
1510         if_maddr_rlock(sc->ifp); \
1511     } while (0)
1512 #define BXE_MCAST_UNLOCK(sc)         \
1513     do {                             \
1514         if_maddr_runlock(sc->ifp); \
1515         mtx_unlock(&sc->mcast_mtx);  \
1516     } while (0)
1517 #endif
1518 #define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1519 
1520     int dmae_ready;
1521 #define DMAE_READY(sc) (sc->dmae_ready)
1522 
1523     struct ecore_credit_pool_obj vlans_pool;
1524     struct ecore_credit_pool_obj macs_pool;
1525     struct ecore_rx_mode_obj     rx_mode_obj;
1526     struct ecore_mcast_obj       mcast_obj;
1527     struct ecore_rss_config_obj  rss_conf_obj;
1528     struct ecore_func_sp_obj     func_obj;
1529 
1530     uint16_t fw_seq;
1531     uint16_t fw_drv_pulse_wr_seq;
1532     uint32_t func_stx;
1533 
1534     struct elink_params         link_params;
1535     struct elink_vars           link_vars;
1536     uint32_t                    link_cnt;
1537     struct bxe_link_report_data last_reported_link;
1538     char mac_addr_str[32];
1539 
1540     int last_reported_link_state;
1541 
1542     int tx_ring_size;
1543     int rx_ring_size;
1544     int wol;
1545 
1546     int is_leader;
1547     int recovery_state;
1548 #define BXE_RECOVERY_DONE        1
1549 #define BXE_RECOVERY_INIT        2
1550 #define BXE_RECOVERY_WAIT        3
1551 #define BXE_RECOVERY_FAILED      4
1552 #define BXE_RECOVERY_NIC_LOADING 5
1553 
1554 #define BXE_ERR_TXQ_STUCK       0x1  /* Tx queue stuck detected by driver. */
1555 #define BXE_ERR_MISC            0x2  /* MISC ERR */
1556 #define BXE_ERR_PARITY          0x4  /* Parity error detected. */
1557 #define BXE_ERR_STATS_TO        0x8  /* Statistics timeout detected. */
1558 #define BXE_ERR_MC_ASSERT       0x10 /* MC assert attention received. */
1559 #define BXE_ERR_PANIC           0x20 /* Driver asserted. */
1560 #define BXE_ERR_MCP_ASSERT      0x40 /* MCP assert attention received. No Recovery*/
1561 #define BXE_ERR_GLOBAL          0x80 /* PCIe/PXP/IGU/MISC/NIG device blocks error- needs PCIe/Fundamental reset */
1562         uint32_t error_status;
1563 
1564     uint32_t rx_mode;
1565 #define BXE_RX_MODE_NONE     0
1566 #define BXE_RX_MODE_NORMAL   1
1567 #define BXE_RX_MODE_ALLMULTI 2
1568 #define BXE_RX_MODE_PROMISC  3
1569 #define BXE_MAX_MULTICAST    64
1570 
1571     struct bxe_port port;
1572 
1573     struct cmng_init cmng;
1574 
1575     /* user configs */
1576     int      num_queues;
1577     int      max_rx_bufs;
1578     int      hc_rx_ticks;
1579     int      hc_tx_ticks;
1580     int      rx_budget;
1581     int      max_aggregation_size;
1582     int      mrrs;
1583     int      autogreeen;
1584 #define AUTO_GREEN_HW_DEFAULT 0
1585 #define AUTO_GREEN_FORCE_ON   1
1586 #define AUTO_GREEN_FORCE_OFF  2
1587     int      interrupt_mode;
1588 #define INTR_MODE_INTX 0
1589 #define INTR_MODE_MSI  1
1590 #define INTR_MODE_MSIX 2
1591     int      udp_rss;
1592 
1593     /* interrupt allocations */
1594     struct bxe_intr intr[MAX_RSS_CHAINS+1];
1595     int             intr_count;
1596     uint8_t         igu_dsb_id;
1597     uint8_t         igu_base_sb;
1598     uint8_t         igu_sb_cnt;
1599     //uint8_t         min_msix_vec_cnt;
1600     uint32_t        igu_base_addr;
1601     //bus_addr_t      def_status_blk_mapping;
1602     uint8_t         base_fw_ndsb;
1603 #define DEF_SB_IGU_ID 16
1604 #define DEF_SB_ID     HC_SP_SB_ID
1605 
1606     /* parent bus DMA tag  */
1607     bus_dma_tag_t parent_dma_tag;
1608 
1609     /* default status block */
1610     struct bxe_dma              def_sb_dma;
1611     struct host_sp_status_block *def_sb;
1612     uint16_t                    def_idx;
1613     uint16_t                    def_att_idx;
1614     uint32_t                    attn_state;
1615     struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1616 
1617 /* general SP events - stats query, cfc delete, etc */
1618 #define HC_SP_INDEX_ETH_DEF_CONS         3
1619 /* EQ completions */
1620 #define HC_SP_INDEX_EQ_CONS              7
1621 /* FCoE L2 connection completions */
1622 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1623 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1624 /* iSCSI L2 */
1625 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1626 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1627 
1628     /* event queue */
1629     struct bxe_dma        eq_dma;
1630     union event_ring_elem *eq;
1631     uint16_t              eq_prod;
1632     uint16_t              eq_cons;
1633     uint16_t              *eq_cons_sb;
1634 #define NUM_EQ_PAGES     1 /* must be a power of 2 */
1635 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1636 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1637 #define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1638 #define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1639 #define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1640 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1641 #define NEXT_EQ_IDX(x)                                      \
1642     ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1643          ((x) + 2) : ((x) + 1))
1644 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1645 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1646 
1647     /* slow path */
1648     struct bxe_dma      sp_dma;
1649     struct bxe_slowpath *sp;
1650     unsigned long       sp_state;
1651 
1652     /* slow path queue */
1653     struct bxe_dma spq_dma;
1654     struct eth_spe *spq;
1655 #define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1656 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1657 #define MAX_SPQ_PENDING 8
1658 
1659     uint16_t       spq_prod_idx;
1660     struct eth_spe *spq_prod_bd;
1661     struct eth_spe *spq_last_bd;
1662     uint16_t       *dsb_sp_prod;
1663     //uint16_t       *spq_hw_con;
1664     //uint16_t       spq_left;
1665 
1666     volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1667     volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1668 
1669     /* fw decompression buffer */
1670     struct bxe_dma gz_buf_dma;
1671     void           *gz_buf;
1672     z_streamp      gz_strm;
1673     uint32_t       gz_outlen;
1674 #define GUNZIP_BUF(sc)    (sc->gz_buf)
1675 #define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1676 #define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1677 #define FW_BUF_SIZE       0x40000
1678 
1679     const struct raw_op *init_ops;
1680     const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1681     const uint32_t *init_data;        /* data blob, 32 bit granularity */
1682     uint32_t       init_mode_flags;
1683 #define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1684     /* PRAM blobs - raw data */
1685     const uint8_t *tsem_int_table_data;
1686     const uint8_t *tsem_pram_data;
1687     const uint8_t *usem_int_table_data;
1688     const uint8_t *usem_pram_data;
1689     const uint8_t *xsem_int_table_data;
1690     const uint8_t *xsem_pram_data;
1691     const uint8_t *csem_int_table_data;
1692     const uint8_t *csem_pram_data;
1693 #define INIT_OPS(sc)                 (sc->init_ops)
1694 #define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1695 #define INIT_DATA(sc)                (sc->init_data)
1696 #define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1697 #define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1698 #define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1699 #define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1700 #define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1701 #define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1702 #define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1703 #define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1704 
1705     /* ILT
1706      * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1707      * context size we need 8 ILT entries.
1708      */
1709 #define ILT_MAX_L2_LINES 8
1710     struct hw_context context[ILT_MAX_L2_LINES];
1711     struct ecore_ilt *ilt;
1712 #define ILT_MAX_LINES 256
1713 
1714 /* max supported number of RSS queues: IGU SBs minus one for CNIC */
1715 #define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1716 /* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1717 #if 1
1718 #define BXE_L2_MAX_CID(sc)                                              \
1719     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1720 #else
1721 #define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1722     (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1723 #endif
1724 #if 1
1725 #define BXE_L2_CID_COUNT(sc)                                             \
1726     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1727 #else
1728 #define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1729     (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1730 #endif
1731 #define L2_ILT_LINES(sc)                                \
1732     (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1733 
1734     int qm_cid_count;
1735 
1736     uint8_t dropless_fc;
1737 
1738     /* total number of FW statistics requests */
1739     uint8_t fw_stats_num;
1740     /*
1741      * This is a memory buffer that will contain both statistics ramrod
1742      * request and data.
1743      */
1744     struct bxe_dma fw_stats_dma;
1745     /*
1746      * FW statistics request shortcut (points at the beginning of fw_stats
1747      * buffer).
1748      */
1749     int                     fw_stats_req_size;
1750     struct bxe_fw_stats_req *fw_stats_req;
1751     bus_addr_t              fw_stats_req_mapping;
1752     /*
1753      * FW statistics data shortcut (points at the beginning of fw_stats
1754      * buffer + fw_stats_req_size).
1755      */
1756     int                      fw_stats_data_size;
1757     struct bxe_fw_stats_data *fw_stats_data;
1758     bus_addr_t               fw_stats_data_mapping;
1759 
1760     /* tracking a pending STAT_QUERY ramrod */
1761     uint16_t stats_pending;
1762     /* number of completed statistics ramrods */
1763     uint16_t stats_comp;
1764     uint16_t stats_counter;
1765     uint8_t  stats_init;
1766     int      stats_state;
1767 
1768     struct bxe_eth_stats         eth_stats;
1769     struct host_func_stats       func_stats;
1770     struct bxe_eth_stats_old     eth_stats_old;
1771     struct bxe_net_stats_old     net_stats_old;
1772     struct bxe_fw_port_stats_old fw_stats_old;
1773 
1774     struct dmae_cmd stats_dmae; /* used by dmae command loader */
1775     int                 executer_idx;
1776 
1777     int mtu;
1778 
1779     /* LLDP params */
1780     struct bxe_config_lldp_params lldp_config_params;
1781     /* DCB support on/off */
1782     int dcb_state;
1783 #define BXE_DCB_STATE_OFF 0
1784 #define BXE_DCB_STATE_ON  1
1785     /* DCBX engine mode */
1786     int dcbx_enabled;
1787 #define BXE_DCBX_ENABLED_OFF        0
1788 #define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1789 #define BXE_DCBX_ENABLED_ON_NEG_ON  2
1790 #define BXE_DCBX_ENABLED_INVALID    -1
1791     uint8_t dcbx_mode_uset;
1792     struct bxe_config_dcbx_params dcbx_config_params;
1793     struct bxe_dcbx_port_params   dcbx_port_params;
1794     int dcb_version;
1795 
1796     uint8_t cnic_support;
1797     uint8_t cnic_enabled;
1798     uint8_t cnic_loaded;
1799 #define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1800 #define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1801 #define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1802 
1803     /* multiple tx classes of service */
1804     uint8_t max_cos;
1805 #define BXE_MAX_PRIORITY 8
1806     /* priority to cos mapping */
1807     uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1808 
1809     int panic;
1810 
1811     struct cdev *ioctl_dev;
1812 
1813     void *grc_dump;
1814     unsigned int trigger_grcdump;
1815     unsigned int  grcdump_done;
1816     unsigned int grcdump_started;
1817     int bxe_pause_param;
1818     void *eeprom;
1819 }; /* struct bxe_softc */
1820 
1821 /* IOCTL sub-commands for edebug and firmware upgrade */
1822 #define BXE_IOC_RD_NVRAM        1
1823 #define BXE_IOC_WR_NVRAM        2
1824 #define BXE_IOC_STATS_SHOW_NUM  3
1825 #define BXE_IOC_STATS_SHOW_STR  4
1826 #define BXE_IOC_STATS_SHOW_CNT  5
1827 
1828 struct bxe_nvram_data {
1829     uint32_t op; /* ioctl sub-command */
1830     uint32_t offset;
1831     uint32_t len;
1832     uint32_t value[1]; /* variable */
1833 };
1834 
1835 union bxe_stats_show_data {
1836     uint32_t op; /* ioctl sub-command */
1837 
1838     struct {
1839         uint32_t num; /* return number of stats */
1840         uint32_t len; /* length of each string item */
1841     } desc;
1842 
1843     /* variable length... */
1844     char str[1]; /* holds names of desc.num stats, each desc.len in length */
1845 
1846     /* variable length... */
1847     uint64_t stats[1]; /* holds all stats */
1848 };
1849 
1850 /* function init flags */
1851 #define FUNC_FLG_RSS     0x0001
1852 #define FUNC_FLG_STATS   0x0002
1853 /* FUNC_FLG_UNMATCHED       0x0004 */
1854 #define FUNC_FLG_TPA     0x0008
1855 #define FUNC_FLG_SPQ     0x0010
1856 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1857 
1858 struct bxe_func_init_params {
1859     bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1860     bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1861     uint16_t   func_flgs;
1862     uint16_t   func_id;     /* abs function id */
1863     uint16_t   pf_id;
1864     uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1865 };
1866 
1867 /* memory resources reside at BARs 0, 2, 4 */
1868 /* Run `pciconf -lb` to see mappings */
1869 #define BAR0 0
1870 #define BAR1 2
1871 #define BAR2 4
1872 
1873 #ifdef BXE_REG_NO_INLINE
1874 
1875 uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1876 uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1877 uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1878 
1879 void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1880 void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1881 void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1882 
1883 #define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1884 #define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1885 #define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1886 
1887 #define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1888 #define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1889 #define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1890 
1891 #else /* not BXE_REG_NO_INLINE */
1892 
1893 #define REG_WR8(sc, offset, val)            \
1894     bus_space_write_1(sc->bar[BAR0].tag,    \
1895                       sc->bar[BAR0].handle, \
1896                       offset, val)
1897 
1898 #define REG_WR16(sc, offset, val)           \
1899     bus_space_write_2(sc->bar[BAR0].tag,    \
1900                       sc->bar[BAR0].handle, \
1901                       offset, val)
1902 
1903 #define REG_WR32(sc, offset, val)           \
1904     bus_space_write_4(sc->bar[BAR0].tag,    \
1905                       sc->bar[BAR0].handle, \
1906                       offset, val)
1907 
1908 #define REG_RD8(sc, offset)                \
1909     bus_space_read_1(sc->bar[BAR0].tag,    \
1910                      sc->bar[BAR0].handle, \
1911                      offset)
1912 
1913 #define REG_RD16(sc, offset)               \
1914     bus_space_read_2(sc->bar[BAR0].tag,    \
1915                      sc->bar[BAR0].handle, \
1916                      offset)
1917 
1918 #define REG_RD32(sc, offset)               \
1919     bus_space_read_4(sc->bar[BAR0].tag,    \
1920                      sc->bar[BAR0].handle, \
1921                      offset)
1922 
1923 #endif /* BXE_REG_NO_INLINE */
1924 
1925 #define REG_RD(sc, offset)      REG_RD32(sc, offset)
1926 #define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1927 
1928 #define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1929 #define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1930 
1931 #define BXE_SP(sc, var) (&(sc)->sp->var)
1932 #define BXE_SP_MAPPING(sc, var) \
1933     (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1934 
1935 #define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1936 #define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1937 
1938 #define REG_RD_DMAE(sc, offset, valp, len32)               \
1939     do {                                                   \
1940         bxe_read_dmae(sc, offset, len32);                  \
1941         memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1942     } while (0)
1943 
1944 #define REG_WR_DMAE(sc, offset, valp, len32)                            \
1945     do {                                                                \
1946         memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1947         bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1948     } while (0)
1949 
1950 #define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1951     REG_WR_DMAE(sc, offset, valp, len32)
1952 
1953 #define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1954     REG_RD_DMAE(sc, offset, valp, len32)
1955 
1956 #define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1957     do {                                                           \
1958         /* if (le32_swap) {                                     */ \
1959         /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1960         /* }                                                    */ \
1961         memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1962         ecore_write_big_buf_wb(sc, addr, len32);                   \
1963     } while (0)
1964 
1965 #define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1966 #define BXE_DB_SHIFT     7   /* 128 bytes */
1967 #if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1968 #error "Minimum DB doorbell stride is 8"
1969 #endif
1970 #define DPM_TRIGGER_TYPE 0x40
1971 #define DOORBELL(sc, cid, val)                                              \
1972     do {                                                                    \
1973         bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1974                           ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1975                           (uint32_t)val);                                   \
1976     } while(0)
1977 
1978 #define SHMEM_ADDR(sc, field)                                       \
1979     (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1980 #define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1981 #define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1982 #define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1983 
1984 #define SHMEM2_ADDR(sc, field)                                        \
1985     (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1986 #define SHMEM2_HAS(sc, field)                                            \
1987     (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1988                                  offsetof(struct shmem2_region, field)))
1989 #define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1990 #define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1991 
1992 #define MFCFG_ADDR(sc, field)                                  \
1993     (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1994 #define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1995 #define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1996 #define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1997 
1998 /* DMAE command defines */
1999 
2000 #define DMAE_TIMEOUT      -1
2001 #define DMAE_PCI_ERROR    -2 /* E2 and onward */
2002 #define DMAE_NOT_RDY      -3
2003 #define DMAE_PCI_ERR_FLAG 0x80000000
2004 
2005 #define DMAE_SRC_PCI      0
2006 #define DMAE_SRC_GRC      1
2007 
2008 #define DMAE_DST_NONE     0
2009 #define DMAE_DST_PCI      1
2010 #define DMAE_DST_GRC      2
2011 
2012 #define DMAE_COMP_PCI     0
2013 #define DMAE_COMP_GRC     1
2014 
2015 #define DMAE_COMP_REGULAR 0
2016 #define DMAE_COM_SET_ERR  1
2017 
2018 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
2019 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
2020 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
2021 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
2022 
2023 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
2024 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
2025 
2026 #define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
2027 #define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
2028 #define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
2029 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
2030 
2031 #define DMAE_CMD_PORT_0 0
2032 #define DMAE_CMD_PORT_1 DMAE_CMD_PORT
2033 
2034 #define DMAE_SRC_PF 0
2035 #define DMAE_SRC_VF 1
2036 
2037 #define DMAE_DST_PF 0
2038 #define DMAE_DST_VF 1
2039 
2040 #define DMAE_C_SRC 0
2041 #define DMAE_C_DST 1
2042 
2043 #define DMAE_LEN32_RD_MAX     0x80
2044 #define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2045 
2046 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2047 
2048 #define MAX_DMAE_C_PER_PORT 8
2049 #define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2050 #define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2051 
2052 static const uint32_t dmae_reg_go_c[] = {
2053     DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2054     DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2055     DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2056     DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2057 };
2058 
2059 #define ATTN_NIG_FOR_FUNC     (1L << 8)
2060 #define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2061 #define GPIO_2_FUNC           (1L << 10)
2062 #define GPIO_3_FUNC           (1L << 11)
2063 #define GPIO_4_FUNC           (1L << 12)
2064 #define ATTN_GENERAL_ATTN_1   (1L << 13)
2065 #define ATTN_GENERAL_ATTN_2   (1L << 14)
2066 #define ATTN_GENERAL_ATTN_3   (1L << 15)
2067 #define ATTN_GENERAL_ATTN_4   (1L << 13)
2068 #define ATTN_GENERAL_ATTN_5   (1L << 14)
2069 #define ATTN_GENERAL_ATTN_6   (1L << 15)
2070 #define ATTN_HARD_WIRED_MASK  0xff00
2071 #define ATTENTION_ID          4
2072 
2073 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2074     AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2075 
2076 #define MAX_IGU_ATTN_ACK_TO 100
2077 
2078 #define STORM_ASSERT_ARRAY_SIZE 50
2079 
2080 #define BXE_PMF_LINK_ASSERT(sc) \
2081     GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2082 
2083 #define BXE_MC_ASSERT_BITS \
2084     (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2085      GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2086      GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2087      GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2088 
2089 #define BXE_MCP_ASSERT \
2090     GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2091 
2092 #define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2093 #define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2094                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2095                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2096                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2097                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2098                          GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2099 
2100 #define MULTI_MASK 0x7f
2101 
2102 #define PFS_PER_PORT(sc)                               \
2103     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2104 #define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2105 
2106 #define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2107     ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2108      PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2109 
2110 #define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2111     for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2112          (i) < MAX_FUNC_NUM;                       \
2113          (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2114 
2115 #define BXE_SWCID_SHIFT 17
2116 #define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2117 
2118 #define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2119 #define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2120 
2121 #define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2122 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2123 #define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2124 #define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2125 #define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2126 
2127 /* must be used on a CID before placing it on a HW ring */
2128 #define HW_CID(sc, x) \
2129     ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2130 
2131 #define SPEED_10    10
2132 #define SPEED_100   100
2133 #define SPEED_1000  1000
2134 #define SPEED_2500  2500
2135 #define SPEED_10000 10000
2136 
2137 #define PCI_PM_D0    1
2138 #define PCI_PM_D3hot 2
2139 
2140 #ifndef DUPLEX_UNKNOWN
2141 #define DUPLEX_UNKNOWN (0xff)
2142 #endif
2143 
2144 #ifndef SPEED_UNKNOWN
2145 #define SPEED_UNKNOWN (-1)
2146 #endif
2147 
2148 /* Enable or disable autonegotiation. */
2149 #define AUTONEG_DISABLE         0x00
2150 #define AUTONEG_ENABLE          0x01
2151 
2152 /* Which connector port. */
2153 #define PORT_TP                 0x00
2154 #define PORT_AUI                0x01
2155 #define PORT_MII                0x02
2156 #define PORT_FIBRE              0x03
2157 #define PORT_BNC                0x04
2158 #define PORT_DA                 0x05
2159 #define PORT_NONE               0xef
2160 #define PORT_OTHER              0xff
2161 
2162 int  bxe_test_bit(int nr, volatile unsigned long * addr);
2163 void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2164 void bxe_clear_bit(int nr, volatile unsigned long * addr);
2165 int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2166 int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2167 int  bxe_cmpxchg(volatile int *addr, int old, int new);
2168 
2169 void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2170                     uint32_t val);
2171 uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2172 
2173 
2174 int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2175                   struct bxe_dma *dma, const char *msg);
2176 void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2177 
2178 uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2179 uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2180 uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2181                          uint8_t dst_type, uint8_t with_comp,
2182                          uint8_t comp_type);
2183 void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2184 void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2185 void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2186                     uint32_t dst_addr, uint32_t len32);
2187 void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2188                              uint32_t addr, uint32_t len);
2189 
2190 void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2191                             uint32_t cid);
2192 void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2193                                   uint8_t sb_index, uint8_t disable,
2194                                   uint16_t usec);
2195 
2196 int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2197                 uint32_t data_hi, uint32_t data_lo, int cmd_type);
2198 
2199 void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2200                     uint8_t segment, uint16_t index, uint8_t op,
2201                     uint8_t update);
2202 
2203 void ecore_init_e1_firmware(struct bxe_softc *sc);
2204 void ecore_init_e1h_firmware(struct bxe_softc *sc);
2205 void ecore_init_e2_firmware(struct bxe_softc *sc);
2206 
2207 void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2208                                size_t size, uint32_t *data);
2209 
2210 /*********************/
2211 /* LOGGING AND DEBUG */
2212 /*********************/
2213 
2214 /* debug logging codepaths */
2215 #define DBG_LOAD   0x00000001 /* load and unload    */
2216 #define DBG_INTR   0x00000002 /* interrupt handling */
2217 #define DBG_SP     0x00000004 /* slowpath handling  */
2218 #define DBG_STATS  0x00000008 /* stats updates      */
2219 #define DBG_TX     0x00000010 /* packet transmit    */
2220 #define DBG_RX     0x00000020 /* packet receive     */
2221 #define DBG_PHY    0x00000040 /* phy/link handling  */
2222 #define DBG_IOCTL  0x00000080 /* ioctl handling     */
2223 #define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2224 #define DBG_REGS   0x00000200 /* register access    */
2225 #define DBG_LRO    0x00000400 /* lro processing     */
2226 #define DBG_ASSERT 0x80000000 /* debug assert       */
2227 #define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2228 
2229 #define DBASSERT(sc, exp, msg)                         \
2230     do {                                               \
2231         if (__predict_false(sc->debug & DBG_ASSERT)) { \
2232             if (__predict_false(!(exp))) {             \
2233                 panic msg;                             \
2234             }                                          \
2235         }                                              \
2236     } while (0)
2237 
2238 /* log a debug message */
2239 #define BLOGD(sc, codepath, format, args...)           \
2240     do {                                               \
2241         if (__predict_false(sc->debug & (codepath))) { \
2242             device_printf((sc)->dev,                   \
2243                           "%s(%s:%d) " format,         \
2244                           __FUNCTION__,                \
2245                           __FILE__,                    \
2246                           __LINE__,                    \
2247                           ## args);                    \
2248         }                                              \
2249     } while(0)
2250 
2251 /* log a info message */
2252 #define BLOGI(sc, format, args...)             \
2253     do {                                       \
2254         if (__predict_false(sc->debug)) {      \
2255             device_printf((sc)->dev,           \
2256                           "%s(%s:%d) " format, \
2257                           __FUNCTION__,        \
2258                           __FILE__,            \
2259                           __LINE__,            \
2260                           ## args);            \
2261         } else {                               \
2262             device_printf((sc)->dev,           \
2263                           format,              \
2264                           ## args);            \
2265         }                                      \
2266     } while(0)
2267 
2268 /* log a warning message */
2269 #define BLOGW(sc, format, args...)                      \
2270     do {                                                \
2271         if (__predict_false(sc->debug)) {               \
2272             device_printf((sc)->dev,                    \
2273                           "%s(%s:%d) WARNING: " format, \
2274                           __FUNCTION__,                 \
2275                           __FILE__,                     \
2276                           __LINE__,                     \
2277                           ## args);                     \
2278         } else {                                        \
2279             device_printf((sc)->dev,                    \
2280                           "WARNING: " format,           \
2281                           ## args);                     \
2282         }                                               \
2283     } while(0)
2284 
2285 /* log a error message */
2286 #define BLOGE(sc, format, args...)                    \
2287     do {                                              \
2288         if (__predict_false(sc->debug)) {             \
2289             device_printf((sc)->dev,                  \
2290                           "%s(%s:%d) ERROR: " format, \
2291                           __FUNCTION__,               \
2292                           __FILE__,                   \
2293                           __LINE__,                   \
2294                           ## args);                   \
2295         } else {                                      \
2296             device_printf((sc)->dev,                  \
2297                           "ERROR: " format,           \
2298                           ## args);                   \
2299         }                                             \
2300     } while(0)
2301 
2302 #ifdef ECORE_STOP_ON_ERROR
2303 
2304 #define bxe_panic(sc, msg) \
2305     do {                   \
2306         panic msg;         \
2307     } while (0)
2308 
2309 #else
2310 
2311 #define bxe_panic(sc, msg) \
2312     device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2313 
2314 #endif
2315 
2316 #define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2317 #define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2318 
2319 void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2320                   uint8_t *mem, uint32_t len);
2321 void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2322                         struct mbuf *m, uint8_t contents);
2323 
2324 #if __FreeBSD_version >= 800000
2325 #if (__FreeBSD_version >= 1001513 && __FreeBSD_version < 1100000) ||\
2326     __FreeBSD_version >= 1100048
2327 #define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2328 #define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2329 #else
2330 #define BXE_VALID_FLOWID(m) ((m->m_flags & M_FLOWID) != 0)
2331 #define BXE_SET_FLOWID(m) m->m_flags |= M_FLOWID
2332 #endif
2333 #endif /* #if __FreeBSD_version >= 800000 */
2334 
2335 /***********/
2336 /* INLINES */
2337 /***********/
2338 
2339 static inline uint32_t
2340 reg_poll(struct bxe_softc *sc,
2341          uint32_t         reg,
2342          uint32_t         expected,
2343          int              ms,
2344          int              wait)
2345 {
2346     uint32_t val;
2347 
2348     do {
2349         val = REG_RD(sc, reg);
2350         if (val == expected) {
2351             break;
2352         }
2353         ms -= wait;
2354         DELAY(wait * 1000);
2355     } while (ms > 0);
2356 
2357     return (val);
2358 }
2359 
2360 static inline void
2361 bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2362 {
2363     mb(); /* status block is written to by the chip */
2364     fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2365 }
2366 
2367 static inline void
2368 bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2369                    uint8_t          igu_sb_id,
2370                    uint8_t          segment,
2371                    uint16_t         index,
2372                    uint8_t          op,
2373                    uint8_t          update,
2374                    uint32_t         igu_addr)
2375 {
2376     struct igu_regular cmd_data = {0};
2377 
2378     cmd_data.sb_id_and_flags =
2379         ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2380          (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2381          (update << IGU_REGULAR_BUPDATE_SHIFT) |
2382          (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2383 
2384     BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2385             cmd_data.sb_id_and_flags, igu_addr);
2386     REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2387 
2388     /* Make sure that ACK is written */
2389     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2390                       BUS_SPACE_BARRIER_WRITE);
2391     mb();
2392 }
2393 
2394 static inline void
2395 bxe_hc_ack_sb(struct bxe_softc *sc,
2396               uint8_t          sb_id,
2397               uint8_t          storm,
2398               uint16_t         index,
2399               uint8_t          op,
2400               uint8_t          update)
2401 {
2402     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2403                         COMMAND_REG_INT_ACK);
2404     struct igu_ack_register igu_ack;
2405 
2406     igu_ack.status_block_index = index;
2407     igu_ack.sb_id_and_flags =
2408         ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2409          (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2410          (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2411          (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2412 
2413     REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2414 
2415     /* Make sure that ACK is written */
2416     bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2417                       BUS_SPACE_BARRIER_WRITE);
2418     mb();
2419 }
2420 
2421 static inline void
2422 bxe_ack_sb(struct bxe_softc *sc,
2423            uint8_t          igu_sb_id,
2424            uint8_t          storm,
2425            uint16_t         index,
2426            uint8_t          op,
2427            uint8_t          update)
2428 {
2429     if (sc->devinfo.int_block == INT_BLOCK_HC)
2430         bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2431     else {
2432         uint8_t segment;
2433         if (CHIP_INT_MODE_IS_BC(sc)) {
2434             segment = storm;
2435         } else if (igu_sb_id != sc->igu_dsb_id) {
2436             segment = IGU_SEG_ACCESS_DEF;
2437         } else if (storm == ATTENTION_ID) {
2438             segment = IGU_SEG_ACCESS_ATTN;
2439         } else {
2440             segment = IGU_SEG_ACCESS_DEF;
2441         }
2442         bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2443     }
2444 }
2445 
2446 static inline uint16_t
2447 bxe_hc_ack_int(struct bxe_softc *sc)
2448 {
2449     uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2450                         COMMAND_REG_SIMD_MASK);
2451     uint32_t result = REG_RD(sc, hc_addr);
2452 
2453     mb();
2454     return (result);
2455 }
2456 
2457 static inline uint16_t
2458 bxe_igu_ack_int(struct bxe_softc *sc)
2459 {
2460     uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2461     uint32_t result = REG_RD(sc, igu_addr);
2462 
2463     BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2464           result, igu_addr);
2465 
2466     mb();
2467     return (result);
2468 }
2469 
2470 static inline uint16_t
2471 bxe_ack_int(struct bxe_softc *sc)
2472 {
2473     mb();
2474     if (sc->devinfo.int_block == INT_BLOCK_HC) {
2475         return (bxe_hc_ack_int(sc));
2476     } else {
2477         return (bxe_igu_ack_int(sc));
2478     }
2479 }
2480 
2481 static inline int
2482 func_by_vn(struct bxe_softc *sc,
2483            int              vn)
2484 {
2485     return (2 * vn + SC_PORT(sc));
2486 }
2487 
2488 /*
2489  * Statistics ID are global per chip/path, while Client IDs for E1x
2490  * are per port.
2491  */
2492 static inline uint8_t
2493 bxe_stats_id(struct bxe_fastpath *fp)
2494 {
2495     struct bxe_softc *sc = fp->sc;
2496 
2497     if (!CHIP_IS_E1x(sc)) {
2498         return (fp->cl_id);
2499     }
2500 
2501     return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2502 }
2503 
2504 #endif /* __BXE_H__ */
2505 
2506