xref: /freebsd/sys/dev/bxe/bxe.c (revision 8aac90f18aef7c9eea906c3ff9a001ca7b94f375)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #define BXE_DRIVER_VERSION "1.78.91"
31 
32 #include "bxe.h"
33 #include "ecore_sp.h"
34 #include "ecore_init.h"
35 #include "ecore_init_ops.h"
36 
37 #include "57710_int_offsets.h"
38 #include "57711_int_offsets.h"
39 #include "57712_int_offsets.h"
40 
41 /*
42  * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43  * explicitly here for older kernels that don't include this changeset.
44  */
45 #ifndef CTLTYPE_U64
46 #define CTLTYPE_U64      CTLTYPE_QUAD
47 #define sysctl_handle_64 sysctl_handle_quad
48 #endif
49 
50 /*
51  * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52  * here as zero(0) for older kernels that don't include this changeset
53  * thereby masking the functionality.
54  */
55 #ifndef CSUM_TCP_IPV6
56 #define CSUM_TCP_IPV6 0
57 #define CSUM_UDP_IPV6 0
58 #endif
59 
60 #define BXE_DEF_SB_ATT_IDX 0x0001
61 #define BXE_DEF_SB_IDX     0x0002
62 
63 /*
64  * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
65  * function HW initialization.
66  */
67 #define FLR_WAIT_USEC     10000 /* 10 msecs */
68 #define FLR_WAIT_INTERVAL 50    /* usecs */
69 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
70 
71 struct pbf_pN_buf_regs {
72     int pN;
73     uint32_t init_crd;
74     uint32_t crd;
75     uint32_t crd_freed;
76 };
77 
78 struct pbf_pN_cmd_regs {
79     int pN;
80     uint32_t lines_occup;
81     uint32_t lines_freed;
82 };
83 
84 /*
85  * PCI Device ID Table used by bxe_probe().
86  */
87 #define BXE_DEVDESC_MAX 64
88 static struct bxe_device_type bxe_devs[] = {
89     {
90         BRCM_VENDORID,
91         CHIP_NUM_57710,
92         PCI_ANY_ID, PCI_ANY_ID,
93         "QLogic NetXtreme II BCM57710 10GbE"
94     },
95     {
96         BRCM_VENDORID,
97         CHIP_NUM_57711,
98         PCI_ANY_ID, PCI_ANY_ID,
99         "QLogic NetXtreme II BCM57711 10GbE"
100     },
101     {
102         BRCM_VENDORID,
103         CHIP_NUM_57711E,
104         PCI_ANY_ID, PCI_ANY_ID,
105         "QLogic NetXtreme II BCM57711E 10GbE"
106     },
107     {
108         BRCM_VENDORID,
109         CHIP_NUM_57712,
110         PCI_ANY_ID, PCI_ANY_ID,
111         "QLogic NetXtreme II BCM57712 10GbE"
112     },
113     {
114         BRCM_VENDORID,
115         CHIP_NUM_57712_MF,
116         PCI_ANY_ID, PCI_ANY_ID,
117         "QLogic NetXtreme II BCM57712 MF 10GbE"
118     },
119     {
120         BRCM_VENDORID,
121         CHIP_NUM_57800,
122         PCI_ANY_ID, PCI_ANY_ID,
123         "QLogic NetXtreme II BCM57800 10GbE"
124     },
125     {
126         BRCM_VENDORID,
127         CHIP_NUM_57800_MF,
128         PCI_ANY_ID, PCI_ANY_ID,
129         "QLogic NetXtreme II BCM57800 MF 10GbE"
130     },
131     {
132         BRCM_VENDORID,
133         CHIP_NUM_57810,
134         PCI_ANY_ID, PCI_ANY_ID,
135         "QLogic NetXtreme II BCM57810 10GbE"
136     },
137     {
138         BRCM_VENDORID,
139         CHIP_NUM_57810_MF,
140         PCI_ANY_ID, PCI_ANY_ID,
141         "QLogic NetXtreme II BCM57810 MF 10GbE"
142     },
143     {
144         BRCM_VENDORID,
145         CHIP_NUM_57811,
146         PCI_ANY_ID, PCI_ANY_ID,
147         "QLogic NetXtreme II BCM57811 10GbE"
148     },
149     {
150         BRCM_VENDORID,
151         CHIP_NUM_57811_MF,
152         PCI_ANY_ID, PCI_ANY_ID,
153         "QLogic NetXtreme II BCM57811 MF 10GbE"
154     },
155     {
156         BRCM_VENDORID,
157         CHIP_NUM_57840_4_10,
158         PCI_ANY_ID, PCI_ANY_ID,
159         "QLogic NetXtreme II BCM57840 4x10GbE"
160     },
161     {
162         QLOGIC_VENDORID,
163         CHIP_NUM_57840_4_10,
164         PCI_ANY_ID, PCI_ANY_ID,
165         "QLogic NetXtreme II BCM57840 4x10GbE"
166     },
167     {
168         BRCM_VENDORID,
169         CHIP_NUM_57840_2_20,
170         PCI_ANY_ID, PCI_ANY_ID,
171         "QLogic NetXtreme II BCM57840 2x20GbE"
172     },
173     {
174         BRCM_VENDORID,
175         CHIP_NUM_57840_MF,
176         PCI_ANY_ID, PCI_ANY_ID,
177         "QLogic NetXtreme II BCM57840 MF 10GbE"
178     },
179     {
180         0, 0, 0, 0, NULL
181     }
182 };
183 
184 MALLOC_DECLARE(M_BXE_ILT);
185 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
186 
187 /*
188  * FreeBSD device entry points.
189  */
190 static int bxe_probe(device_t);
191 static int bxe_attach(device_t);
192 static int bxe_detach(device_t);
193 static int bxe_shutdown(device_t);
194 
195 
196 /*
197  * FreeBSD KLD module/device interface event handler method.
198  */
199 static device_method_t bxe_methods[] = {
200     /* Device interface (device_if.h) */
201     DEVMETHOD(device_probe,     bxe_probe),
202     DEVMETHOD(device_attach,    bxe_attach),
203     DEVMETHOD(device_detach,    bxe_detach),
204     DEVMETHOD(device_shutdown,  bxe_shutdown),
205     /* Bus interface (bus_if.h) */
206     DEVMETHOD(bus_print_child,  bus_generic_print_child),
207     DEVMETHOD(bus_driver_added, bus_generic_driver_added),
208     KOBJMETHOD_END
209 };
210 
211 /*
212  * FreeBSD KLD Module data declaration
213  */
214 static driver_t bxe_driver = {
215     "bxe",                   /* module name */
216     bxe_methods,             /* event handler */
217     sizeof(struct bxe_softc) /* extra data */
218 };
219 
220 MODULE_DEPEND(bxe, pci, 1, 1, 1);
221 MODULE_DEPEND(bxe, ether, 1, 1, 1);
222 DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0);
223 
224 DEBUGNET_DEFINE(bxe);
225 
226 /* resources needed for unloading a previously loaded device */
227 
228 #define BXE_PREV_WAIT_NEEDED 1
229 struct mtx bxe_prev_mtx;
230 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
231 struct bxe_prev_list_node {
232     LIST_ENTRY(bxe_prev_list_node) node;
233     uint8_t bus;
234     uint8_t slot;
235     uint8_t path;
236     uint8_t aer; /* XXX automatic error recovery */
237     uint8_t undi;
238 };
239 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
240 
241 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
242 
243 /* Tunable device values... */
244 
245 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
246     "bxe driver parameters");
247 
248 /* Debug */
249 unsigned long bxe_debug = 0;
250 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
251              &bxe_debug, 0, "Debug logging mode");
252 
253 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
254 static int bxe_interrupt_mode = INTR_MODE_MSIX;
255 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
256            &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
257 
258 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
259 static int bxe_queue_count = 4;
260 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
261            &bxe_queue_count, 0, "Multi-Queue queue count");
262 
263 /* max number of buffers per queue (default RX_BD_USABLE) */
264 static int bxe_max_rx_bufs = 0;
265 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
266            &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
267 
268 /* Host interrupt coalescing RX tick timer (usecs) */
269 static int bxe_hc_rx_ticks = 25;
270 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
271            &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
272 
273 /* Host interrupt coalescing TX tick timer (usecs) */
274 static int bxe_hc_tx_ticks = 50;
275 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
276            &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
277 
278 /* Maximum number of Rx packets to process at a time */
279 static int bxe_rx_budget = 0xffffffff;
280 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_RDTUN,
281            &bxe_rx_budget, 0, "Rx processing budget");
282 
283 /* Maximum LRO aggregation size */
284 static int bxe_max_aggregation_size = 0;
285 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_RDTUN,
286            &bxe_max_aggregation_size, 0, "max aggregation size");
287 
288 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
289 static int bxe_mrrs = -1;
290 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
291            &bxe_mrrs, 0, "PCIe maximum read request size");
292 
293 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
294 static int bxe_autogreeen = 0;
295 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
296            &bxe_autogreeen, 0, "AutoGrEEEn support");
297 
298 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
299 static int bxe_udp_rss = 0;
300 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
301            &bxe_udp_rss, 0, "UDP RSS support");
302 
303 
304 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
305 
306 #define STATS_OFFSET32(stat_name)                   \
307     (offsetof(struct bxe_eth_stats, stat_name) / 4)
308 
309 #define Q_STATS_OFFSET32(stat_name)                   \
310     (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
311 
312 static const struct {
313     uint32_t offset;
314     uint32_t size;
315     uint32_t flags;
316 #define STATS_FLAGS_PORT  1
317 #define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
318 #define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
319     char string[STAT_NAME_LEN];
320 } bxe_eth_stats_arr[] = {
321     { STATS_OFFSET32(total_bytes_received_hi),
322                 8, STATS_FLAGS_BOTH, "rx_bytes" },
323     { STATS_OFFSET32(error_bytes_received_hi),
324                 8, STATS_FLAGS_BOTH, "rx_error_bytes" },
325     { STATS_OFFSET32(total_unicast_packets_received_hi),
326                 8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
327     { STATS_OFFSET32(total_multicast_packets_received_hi),
328                 8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
329     { STATS_OFFSET32(total_broadcast_packets_received_hi),
330                 8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
331     { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
332                 8, STATS_FLAGS_PORT, "rx_crc_errors" },
333     { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
334                 8, STATS_FLAGS_PORT, "rx_align_errors" },
335     { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
336                 8, STATS_FLAGS_PORT, "rx_undersize_packets" },
337     { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
338                 8, STATS_FLAGS_PORT, "rx_oversize_packets" },
339     { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
340                 8, STATS_FLAGS_PORT, "rx_fragments" },
341     { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
342                 8, STATS_FLAGS_PORT, "rx_jabbers" },
343     { STATS_OFFSET32(no_buff_discard_hi),
344                 8, STATS_FLAGS_BOTH, "rx_discards" },
345     { STATS_OFFSET32(mac_filter_discard),
346                 4, STATS_FLAGS_PORT, "rx_filtered_packets" },
347     { STATS_OFFSET32(mf_tag_discard),
348                 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
349     { STATS_OFFSET32(pfc_frames_received_hi),
350                 8, STATS_FLAGS_PORT, "pfc_frames_received" },
351     { STATS_OFFSET32(pfc_frames_sent_hi),
352                 8, STATS_FLAGS_PORT, "pfc_frames_sent" },
353     { STATS_OFFSET32(brb_drop_hi),
354                 8, STATS_FLAGS_PORT, "rx_brb_discard" },
355     { STATS_OFFSET32(brb_truncate_hi),
356                 8, STATS_FLAGS_PORT, "rx_brb_truncate" },
357     { STATS_OFFSET32(pause_frames_received_hi),
358                 8, STATS_FLAGS_PORT, "rx_pause_frames" },
359     { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
360                 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
361     { STATS_OFFSET32(nig_timer_max),
362                 4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
363     { STATS_OFFSET32(total_bytes_transmitted_hi),
364                 8, STATS_FLAGS_BOTH, "tx_bytes" },
365     { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
366                 8, STATS_FLAGS_PORT, "tx_error_bytes" },
367     { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
368                 8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
369     { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
370                 8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
371     { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
372                 8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
373     { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
374                 8, STATS_FLAGS_PORT, "tx_mac_errors" },
375     { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
376                 8, STATS_FLAGS_PORT, "tx_carrier_errors" },
377     { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
378                 8, STATS_FLAGS_PORT, "tx_single_collisions" },
379     { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
380                 8, STATS_FLAGS_PORT, "tx_multi_collisions" },
381     { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
382                 8, STATS_FLAGS_PORT, "tx_deferred" },
383     { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
384                 8, STATS_FLAGS_PORT, "tx_excess_collisions" },
385     { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
386                 8, STATS_FLAGS_PORT, "tx_late_collisions" },
387     { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
388                 8, STATS_FLAGS_PORT, "tx_total_collisions" },
389     { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
390                 8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
391     { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
392                 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
393     { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
394                 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
395     { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
396                 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
397     { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
398                 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
399     { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
400                 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
401     { STATS_OFFSET32(etherstatspktsover1522octets_hi),
402                 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
403     { STATS_OFFSET32(pause_frames_sent_hi),
404                 8, STATS_FLAGS_PORT, "tx_pause_frames" },
405     { STATS_OFFSET32(total_tpa_aggregations_hi),
406                 8, STATS_FLAGS_FUNC, "tpa_aggregations" },
407     { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
408                 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
409     { STATS_OFFSET32(total_tpa_bytes_hi),
410                 8, STATS_FLAGS_FUNC, "tpa_bytes"},
411     { STATS_OFFSET32(eee_tx_lpi),
412                 4, STATS_FLAGS_PORT, "eee_tx_lpi"},
413     { STATS_OFFSET32(rx_calls),
414                 4, STATS_FLAGS_FUNC, "rx_calls"},
415     { STATS_OFFSET32(rx_pkts),
416                 4, STATS_FLAGS_FUNC, "rx_pkts"},
417     { STATS_OFFSET32(rx_tpa_pkts),
418                 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
419     { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
420                 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
421     { STATS_OFFSET32(rx_bxe_service_rxsgl),
422                 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
423     { STATS_OFFSET32(rx_jumbo_sge_pkts),
424                 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
425     { STATS_OFFSET32(rx_soft_errors),
426                 4, STATS_FLAGS_FUNC, "rx_soft_errors"},
427     { STATS_OFFSET32(rx_hw_csum_errors),
428                 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
429     { STATS_OFFSET32(rx_ofld_frames_csum_ip),
430                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
431     { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
432                 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
433     { STATS_OFFSET32(rx_budget_reached),
434                 4, STATS_FLAGS_FUNC, "rx_budget_reached"},
435     { STATS_OFFSET32(tx_pkts),
436                 4, STATS_FLAGS_FUNC, "tx_pkts"},
437     { STATS_OFFSET32(tx_soft_errors),
438                 4, STATS_FLAGS_FUNC, "tx_soft_errors"},
439     { STATS_OFFSET32(tx_ofld_frames_csum_ip),
440                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
441     { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
442                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
443     { STATS_OFFSET32(tx_ofld_frames_csum_udp),
444                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
445     { STATS_OFFSET32(tx_ofld_frames_lso),
446                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
447     { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
448                 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
449     { STATS_OFFSET32(tx_encap_failures),
450                 4, STATS_FLAGS_FUNC, "tx_encap_failures"},
451     { STATS_OFFSET32(tx_hw_queue_full),
452                 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
453     { STATS_OFFSET32(tx_hw_max_queue_depth),
454                 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
455     { STATS_OFFSET32(tx_dma_mapping_failure),
456                 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
457     { STATS_OFFSET32(tx_max_drbr_queue_depth),
458                 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
459     { STATS_OFFSET32(tx_window_violation_std),
460                 4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
461     { STATS_OFFSET32(tx_window_violation_tso),
462                 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
463     { STATS_OFFSET32(tx_chain_lost_mbuf),
464                 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
465     { STATS_OFFSET32(tx_frames_deferred),
466                 4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
467     { STATS_OFFSET32(tx_queue_xoff),
468                 4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
469     { STATS_OFFSET32(mbuf_defrag_attempts),
470                 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
471     { STATS_OFFSET32(mbuf_defrag_failures),
472                 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
473     { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
474                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
475     { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
476                 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
477     { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
478                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
479     { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
480                 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
481     { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
482                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
483     { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
484                 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
485     { STATS_OFFSET32(mbuf_alloc_tx),
486                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
487     { STATS_OFFSET32(mbuf_alloc_rx),
488                 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
489     { STATS_OFFSET32(mbuf_alloc_sge),
490                 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
491     { STATS_OFFSET32(mbuf_alloc_tpa),
492                 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
493     { STATS_OFFSET32(tx_queue_full_return),
494                 4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
495     { STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
496                 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
497     { STATS_OFFSET32(tx_request_link_down_failures),
498                 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
499     { STATS_OFFSET32(bd_avail_too_less_failures),
500                 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
501     { STATS_OFFSET32(tx_mq_not_empty),
502                 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
503     { STATS_OFFSET32(nsegs_path1_errors),
504                 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
505     { STATS_OFFSET32(nsegs_path2_errors),
506                 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
507 
508 
509 };
510 
511 static const struct {
512     uint32_t offset;
513     uint32_t size;
514     char string[STAT_NAME_LEN];
515 } bxe_eth_q_stats_arr[] = {
516     { Q_STATS_OFFSET32(total_bytes_received_hi),
517                 8, "rx_bytes" },
518     { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
519                 8, "rx_ucast_packets" },
520     { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
521                 8, "rx_mcast_packets" },
522     { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
523                 8, "rx_bcast_packets" },
524     { Q_STATS_OFFSET32(no_buff_discard_hi),
525                 8, "rx_discards" },
526     { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
527                 8, "tx_bytes" },
528     { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
529                 8, "tx_ucast_packets" },
530     { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
531                 8, "tx_mcast_packets" },
532     { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
533                 8, "tx_bcast_packets" },
534     { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
535                 8, "tpa_aggregations" },
536     { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
537                 8, "tpa_aggregated_frames"},
538     { Q_STATS_OFFSET32(total_tpa_bytes_hi),
539                 8, "tpa_bytes"},
540     { Q_STATS_OFFSET32(rx_calls),
541                 4, "rx_calls"},
542     { Q_STATS_OFFSET32(rx_pkts),
543                 4, "rx_pkts"},
544     { Q_STATS_OFFSET32(rx_tpa_pkts),
545                 4, "rx_tpa_pkts"},
546     { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
547                 4, "rx_erroneous_jumbo_sge_pkts"},
548     { Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
549                 4, "rx_bxe_service_rxsgl"},
550     { Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
551                 4, "rx_jumbo_sge_pkts"},
552     { Q_STATS_OFFSET32(rx_soft_errors),
553                 4, "rx_soft_errors"},
554     { Q_STATS_OFFSET32(rx_hw_csum_errors),
555                 4, "rx_hw_csum_errors"},
556     { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
557                 4, "rx_ofld_frames_csum_ip"},
558     { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
559                 4, "rx_ofld_frames_csum_tcp_udp"},
560     { Q_STATS_OFFSET32(rx_budget_reached),
561                 4, "rx_budget_reached"},
562     { Q_STATS_OFFSET32(tx_pkts),
563                 4, "tx_pkts"},
564     { Q_STATS_OFFSET32(tx_soft_errors),
565                 4, "tx_soft_errors"},
566     { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
567                 4, "tx_ofld_frames_csum_ip"},
568     { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
569                 4, "tx_ofld_frames_csum_tcp"},
570     { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
571                 4, "tx_ofld_frames_csum_udp"},
572     { Q_STATS_OFFSET32(tx_ofld_frames_lso),
573                 4, "tx_ofld_frames_lso"},
574     { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
575                 4, "tx_ofld_frames_lso_hdr_splits"},
576     { Q_STATS_OFFSET32(tx_encap_failures),
577                 4, "tx_encap_failures"},
578     { Q_STATS_OFFSET32(tx_hw_queue_full),
579                 4, "tx_hw_queue_full"},
580     { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
581                 4, "tx_hw_max_queue_depth"},
582     { Q_STATS_OFFSET32(tx_dma_mapping_failure),
583                 4, "tx_dma_mapping_failure"},
584     { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
585                 4, "tx_max_drbr_queue_depth"},
586     { Q_STATS_OFFSET32(tx_window_violation_std),
587                 4, "tx_window_violation_std"},
588     { Q_STATS_OFFSET32(tx_window_violation_tso),
589                 4, "tx_window_violation_tso"},
590     { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
591                 4, "tx_chain_lost_mbuf"},
592     { Q_STATS_OFFSET32(tx_frames_deferred),
593                 4, "tx_frames_deferred"},
594     { Q_STATS_OFFSET32(tx_queue_xoff),
595                 4, "tx_queue_xoff"},
596     { Q_STATS_OFFSET32(mbuf_defrag_attempts),
597                 4, "mbuf_defrag_attempts"},
598     { Q_STATS_OFFSET32(mbuf_defrag_failures),
599                 4, "mbuf_defrag_failures"},
600     { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
601                 4, "mbuf_rx_bd_alloc_failed"},
602     { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
603                 4, "mbuf_rx_bd_mapping_failed"},
604     { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
605                 4, "mbuf_rx_tpa_alloc_failed"},
606     { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
607                 4, "mbuf_rx_tpa_mapping_failed"},
608     { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
609                 4, "mbuf_rx_sge_alloc_failed"},
610     { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
611                 4, "mbuf_rx_sge_mapping_failed"},
612     { Q_STATS_OFFSET32(mbuf_alloc_tx),
613                 4, "mbuf_alloc_tx"},
614     { Q_STATS_OFFSET32(mbuf_alloc_rx),
615                 4, "mbuf_alloc_rx"},
616     { Q_STATS_OFFSET32(mbuf_alloc_sge),
617                 4, "mbuf_alloc_sge"},
618     { Q_STATS_OFFSET32(mbuf_alloc_tpa),
619                 4, "mbuf_alloc_tpa"},
620     { Q_STATS_OFFSET32(tx_queue_full_return),
621                 4, "tx_queue_full_return"},
622     { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
623                 4, "bxe_tx_mq_sc_state_failures"},
624     { Q_STATS_OFFSET32(tx_request_link_down_failures),
625                 4, "tx_request_link_down_failures"},
626     { Q_STATS_OFFSET32(bd_avail_too_less_failures),
627                 4, "bd_avail_too_less_failures"},
628     { Q_STATS_OFFSET32(tx_mq_not_empty),
629                 4, "tx_mq_not_empty"},
630     { Q_STATS_OFFSET32(nsegs_path1_errors),
631                 4, "nsegs_path1_errors"},
632     { Q_STATS_OFFSET32(nsegs_path2_errors),
633                 4, "nsegs_path2_errors"}
634 
635 
636 };
637 
638 #define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
639 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
640 
641 
642 static void    bxe_cmng_fns_init(struct bxe_softc *sc,
643                                  uint8_t          read_cfg,
644                                  uint8_t          cmng_type);
645 static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
646 static void    storm_memset_cmng(struct bxe_softc *sc,
647                                  struct cmng_init *cmng,
648                                  uint8_t          port);
649 static void    bxe_set_reset_global(struct bxe_softc *sc);
650 static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
651 static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
652                                  int              engine);
653 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
654 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
655                                    uint8_t          *global,
656                                    uint8_t          print);
657 static void    bxe_int_disable(struct bxe_softc *sc);
658 static int     bxe_release_leader_lock(struct bxe_softc *sc);
659 static void    bxe_pf_disable(struct bxe_softc *sc);
660 static void    bxe_free_fp_buffers(struct bxe_softc *sc);
661 static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
662                                       struct bxe_fastpath *fp,
663                                       uint16_t            rx_bd_prod,
664                                       uint16_t            rx_cq_prod,
665                                       uint16_t            rx_sge_prod);
666 static void    bxe_link_report_locked(struct bxe_softc *sc);
667 static void    bxe_link_report(struct bxe_softc *sc);
668 static void    bxe_link_status_update(struct bxe_softc *sc);
669 static void    bxe_periodic_callout_func(void *xsc);
670 static void    bxe_periodic_start(struct bxe_softc *sc);
671 static void    bxe_periodic_stop(struct bxe_softc *sc);
672 static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
673                                     uint16_t prev_index,
674                                     uint16_t index);
675 static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
676                                      int                 queue);
677 static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
678                                      uint16_t            index);
679 static uint8_t bxe_txeof(struct bxe_softc *sc,
680                          struct bxe_fastpath *fp);
681 static void    bxe_task_fp(struct bxe_fastpath *fp);
682 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
683                                      struct mbuf      *m,
684                                      uint8_t          contents);
685 static int     bxe_alloc_mem(struct bxe_softc *sc);
686 static void    bxe_free_mem(struct bxe_softc *sc);
687 static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
688 static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
689 static int     bxe_interrupt_attach(struct bxe_softc *sc);
690 static void    bxe_interrupt_detach(struct bxe_softc *sc);
691 static void    bxe_set_rx_mode(struct bxe_softc *sc);
692 static int     bxe_init_locked(struct bxe_softc *sc);
693 static int     bxe_stop_locked(struct bxe_softc *sc);
694 static void    bxe_sp_err_timeout_task(void *arg, int pending);
695 void           bxe_parity_recover(struct bxe_softc *sc);
696 void           bxe_handle_error(struct bxe_softc *sc);
697 static __noinline int bxe_nic_load(struct bxe_softc *sc,
698                                    int              load_mode);
699 static __noinline int bxe_nic_unload(struct bxe_softc *sc,
700                                      uint32_t         unload_mode,
701                                      uint8_t          keep_link);
702 
703 static void bxe_handle_sp_tq(void *context, int pending);
704 static void bxe_handle_fp_tq(void *context, int pending);
705 
706 static int bxe_add_cdev(struct bxe_softc *sc);
707 static void bxe_del_cdev(struct bxe_softc *sc);
708 int bxe_grc_dump(struct bxe_softc *sc);
709 static int bxe_alloc_buf_rings(struct bxe_softc *sc);
710 static void bxe_free_buf_rings(struct bxe_softc *sc);
711 
712 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
713 uint32_t
714 calc_crc32(uint8_t  *crc32_packet,
715            uint32_t crc32_length,
716            uint32_t crc32_seed,
717            uint8_t  complement)
718 {
719    uint32_t byte         = 0;
720    uint32_t bit          = 0;
721    uint8_t  msb          = 0;
722    uint32_t temp         = 0;
723    uint32_t shft         = 0;
724    uint8_t  current_byte = 0;
725    uint32_t crc32_result = crc32_seed;
726    const uint32_t CRC32_POLY = 0x1edc6f41;
727 
728    if ((crc32_packet == NULL) ||
729        (crc32_length == 0) ||
730        ((crc32_length % 8) != 0))
731     {
732         return (crc32_result);
733     }
734 
735     for (byte = 0; byte < crc32_length; byte = byte + 1)
736     {
737         current_byte = crc32_packet[byte];
738         for (bit = 0; bit < 8; bit = bit + 1)
739         {
740             /* msb = crc32_result[31]; */
741             msb = (uint8_t)(crc32_result >> 31);
742 
743             crc32_result = crc32_result << 1;
744 
745             /* it (msb != current_byte[bit]) */
746             if (msb != (0x1 & (current_byte >> bit)))
747             {
748                 crc32_result = crc32_result ^ CRC32_POLY;
749                 /* crc32_result[0] = 1 */
750                 crc32_result |= 1;
751             }
752         }
753     }
754 
755     /* Last step is to:
756      * 1. "mirror" every bit
757      * 2. swap the 4 bytes
758      * 3. complement each bit
759      */
760 
761     /* Mirror */
762     temp = crc32_result;
763     shft = sizeof(crc32_result) * 8 - 1;
764 
765     for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
766     {
767         temp <<= 1;
768         temp |= crc32_result & 1;
769         shft-- ;
770     }
771 
772     /* temp[31-bit] = crc32_result[bit] */
773     temp <<= shft;
774 
775     /* Swap */
776     /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
777     {
778         uint32_t t0, t1, t2, t3;
779         t0 = (0x000000ff & (temp >> 24));
780         t1 = (0x0000ff00 & (temp >> 8));
781         t2 = (0x00ff0000 & (temp << 8));
782         t3 = (0xff000000 & (temp << 24));
783         crc32_result = t0 | t1 | t2 | t3;
784     }
785 
786     /* Complement */
787     if (complement)
788     {
789         crc32_result = ~crc32_result;
790     }
791 
792     return (crc32_result);
793 }
794 
795 int
796 bxe_test_bit(int                    nr,
797              volatile unsigned long *addr)
798 {
799     return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
800 }
801 
802 void
803 bxe_set_bit(unsigned int           nr,
804             volatile unsigned long *addr)
805 {
806     atomic_set_acq_long(addr, (1 << nr));
807 }
808 
809 void
810 bxe_clear_bit(int                    nr,
811               volatile unsigned long *addr)
812 {
813     atomic_clear_acq_long(addr, (1 << nr));
814 }
815 
816 int
817 bxe_test_and_set_bit(int                    nr,
818                        volatile unsigned long *addr)
819 {
820     unsigned long x;
821     nr = (1 << nr);
822     do {
823         x = *addr;
824     } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
825     // if (x & nr) bit_was_set; else bit_was_not_set;
826     return (x & nr);
827 }
828 
829 int
830 bxe_test_and_clear_bit(int                    nr,
831                        volatile unsigned long *addr)
832 {
833     unsigned long x;
834     nr = (1 << nr);
835     do {
836         x = *addr;
837     } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
838     // if (x & nr) bit_was_set; else bit_was_not_set;
839     return (x & nr);
840 }
841 
842 int
843 bxe_cmpxchg(volatile int *addr,
844             int          old,
845             int          new)
846 {
847     int x;
848     do {
849         x = *addr;
850     } while (atomic_cmpset_acq_int(addr, old, new) == 0);
851     return (x);
852 }
853 
854 /*
855  * Get DMA memory from the OS.
856  *
857  * Validates that the OS has provided DMA buffers in response to a
858  * bus_dmamap_load call and saves the physical address of those buffers.
859  * When the callback is used the OS will return 0 for the mapping function
860  * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
861  * failures back to the caller.
862  *
863  * Returns:
864  *   Nothing.
865  */
866 static void
867 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
868 {
869     struct bxe_dma *dma = arg;
870 
871     if (error) {
872         dma->paddr = 0;
873         dma->nseg  = 0;
874         BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
875     } else {
876         dma->paddr = segs->ds_addr;
877         dma->nseg  = nseg;
878     }
879 }
880 
881 /*
882  * Allocate a block of memory and map it for DMA. No partial completions
883  * allowed and release any resources acquired if we can't acquire all
884  * resources.
885  *
886  * Returns:
887  *   0 = Success, !0 = Failure
888  */
889 int
890 bxe_dma_alloc(struct bxe_softc *sc,
891               bus_size_t       size,
892               struct bxe_dma   *dma,
893               const char       *msg)
894 {
895     int rc;
896 
897     if (dma->size > 0) {
898         BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
899               (unsigned long)dma->size);
900         return (1);
901     }
902 
903     memset(dma, 0, sizeof(*dma)); /* sanity */
904     dma->sc   = sc;
905     dma->size = size;
906     snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
907 
908     rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
909                             BCM_PAGE_SIZE,      /* alignment */
910                             0,                  /* boundary limit */
911                             BUS_SPACE_MAXADDR,  /* restricted low */
912                             BUS_SPACE_MAXADDR,  /* restricted hi */
913                             NULL,               /* addr filter() */
914                             NULL,               /* addr filter() arg */
915                             size,               /* max map size */
916                             1,                  /* num discontinuous */
917                             size,               /* max seg size */
918                             BUS_DMA_ALLOCNOW,   /* flags */
919                             NULL,               /* lock() */
920                             NULL,               /* lock() arg */
921                             &dma->tag);         /* returned dma tag */
922     if (rc != 0) {
923         BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
924         memset(dma, 0, sizeof(*dma));
925         return (1);
926     }
927 
928     rc = bus_dmamem_alloc(dma->tag,
929                           (void **)&dma->vaddr,
930                           (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
931                           &dma->map);
932     if (rc != 0) {
933         BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
934         bus_dma_tag_destroy(dma->tag);
935         memset(dma, 0, sizeof(*dma));
936         return (1);
937     }
938 
939     rc = bus_dmamap_load(dma->tag,
940                          dma->map,
941                          dma->vaddr,
942                          size,
943                          bxe_dma_map_addr, /* BLOGD in here */
944                          dma,
945                          BUS_DMA_NOWAIT);
946     if (rc != 0) {
947         BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
948         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
949         bus_dma_tag_destroy(dma->tag);
950         memset(dma, 0, sizeof(*dma));
951         return (1);
952     }
953 
954     return (0);
955 }
956 
957 void
958 bxe_dma_free(struct bxe_softc *sc,
959              struct bxe_dma   *dma)
960 {
961     if (dma->size > 0) {
962         DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
963 
964         bus_dmamap_sync(dma->tag, dma->map,
965                         (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
966         bus_dmamap_unload(dma->tag, dma->map);
967         bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
968         bus_dma_tag_destroy(dma->tag);
969     }
970 
971     memset(dma, 0, sizeof(*dma));
972 }
973 
974 /*
975  * These indirect read and write routines are only during init.
976  * The locking is handled by the MCP.
977  */
978 
979 void
980 bxe_reg_wr_ind(struct bxe_softc *sc,
981                uint32_t         addr,
982                uint32_t         val)
983 {
984     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
985     pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
986     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
987 }
988 
989 uint32_t
990 bxe_reg_rd_ind(struct bxe_softc *sc,
991                uint32_t         addr)
992 {
993     uint32_t val;
994 
995     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
996     val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
997     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
998 
999     return (val);
1000 }
1001 
1002 static int
1003 bxe_acquire_hw_lock(struct bxe_softc *sc,
1004                     uint32_t         resource)
1005 {
1006     uint32_t lock_status;
1007     uint32_t resource_bit = (1 << resource);
1008     int func = SC_FUNC(sc);
1009     uint32_t hw_lock_control_reg;
1010     int cnt;
1011 
1012     /* validate the resource is within range */
1013     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1014         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1015             " resource_bit 0x%x\n", resource, resource_bit);
1016         return (-1);
1017     }
1018 
1019     if (func <= 5) {
1020         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1021     } else {
1022         hw_lock_control_reg =
1023                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1024     }
1025 
1026     /* validate the resource is not already taken */
1027     lock_status = REG_RD(sc, hw_lock_control_reg);
1028     if (lock_status & resource_bit) {
1029         BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1030               resource, lock_status, resource_bit);
1031         return (-1);
1032     }
1033 
1034     /* try every 5ms for 5 seconds */
1035     for (cnt = 0; cnt < 1000; cnt++) {
1036         REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1037         lock_status = REG_RD(sc, hw_lock_control_reg);
1038         if (lock_status & resource_bit) {
1039             return (0);
1040         }
1041         DELAY(5000);
1042     }
1043 
1044     BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1045         resource, resource_bit);
1046     return (-1);
1047 }
1048 
1049 static int
1050 bxe_release_hw_lock(struct bxe_softc *sc,
1051                     uint32_t         resource)
1052 {
1053     uint32_t lock_status;
1054     uint32_t resource_bit = (1 << resource);
1055     int func = SC_FUNC(sc);
1056     uint32_t hw_lock_control_reg;
1057 
1058     /* validate the resource is within range */
1059     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1060         BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1061             " resource_bit 0x%x\n", resource, resource_bit);
1062         return (-1);
1063     }
1064 
1065     if (func <= 5) {
1066         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1067     } else {
1068         hw_lock_control_reg =
1069                 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1070     }
1071 
1072     /* validate the resource is currently taken */
1073     lock_status = REG_RD(sc, hw_lock_control_reg);
1074     if (!(lock_status & resource_bit)) {
1075         BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1076               resource, lock_status, resource_bit);
1077         return (-1);
1078     }
1079 
1080     REG_WR(sc, hw_lock_control_reg, resource_bit);
1081     return (0);
1082 }
1083 static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1084 {
1085 	BXE_PHY_LOCK(sc);
1086 	bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1087 }
1088 
1089 static void bxe_release_phy_lock(struct bxe_softc *sc)
1090 {
1091 	bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1092 	BXE_PHY_UNLOCK(sc);
1093 }
1094 /*
1095  * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1096  * had we done things the other way around, if two pfs from the same port
1097  * would attempt to access nvram at the same time, we could run into a
1098  * scenario such as:
1099  * pf A takes the port lock.
1100  * pf B succeeds in taking the same lock since they are from the same port.
1101  * pf A takes the per pf misc lock. Performs eeprom access.
1102  * pf A finishes. Unlocks the per pf misc lock.
1103  * Pf B takes the lock and proceeds to perform it's own access.
1104  * pf A unlocks the per port lock, while pf B is still working (!).
1105  * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1106  * access corrupted by pf B).*
1107  */
1108 static int
1109 bxe_acquire_nvram_lock(struct bxe_softc *sc)
1110 {
1111     int port = SC_PORT(sc);
1112     int count, i;
1113     uint32_t val = 0;
1114 
1115     /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1116     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1117 
1118     /* adjust timeout for emulation/FPGA */
1119     count = NVRAM_TIMEOUT_COUNT;
1120     if (CHIP_REV_IS_SLOW(sc)) {
1121         count *= 100;
1122     }
1123 
1124     /* request access to nvram interface */
1125     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1126            (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1127 
1128     for (i = 0; i < count*10; i++) {
1129         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1130         if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1131             break;
1132         }
1133 
1134         DELAY(5);
1135     }
1136 
1137     if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1138         BLOGE(sc, "Cannot get access to nvram interface "
1139             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1140             port, val);
1141         return (-1);
1142     }
1143 
1144     return (0);
1145 }
1146 
1147 static int
1148 bxe_release_nvram_lock(struct bxe_softc *sc)
1149 {
1150     int port = SC_PORT(sc);
1151     int count, i;
1152     uint32_t val = 0;
1153 
1154     /* adjust timeout for emulation/FPGA */
1155     count = NVRAM_TIMEOUT_COUNT;
1156     if (CHIP_REV_IS_SLOW(sc)) {
1157         count *= 100;
1158     }
1159 
1160     /* relinquish nvram interface */
1161     REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1162            (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1163 
1164     for (i = 0; i < count*10; i++) {
1165         val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1166         if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1167             break;
1168         }
1169 
1170         DELAY(5);
1171     }
1172 
1173     if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1174         BLOGE(sc, "Cannot free access to nvram interface "
1175             "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1176             port, val);
1177         return (-1);
1178     }
1179 
1180     /* release HW lock: protect against other PFs in PF Direct Assignment */
1181     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1182 
1183     return (0);
1184 }
1185 
1186 static void
1187 bxe_enable_nvram_access(struct bxe_softc *sc)
1188 {
1189     uint32_t val;
1190 
1191     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1192 
1193     /* enable both bits, even on read */
1194     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1195            (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1196 }
1197 
1198 static void
1199 bxe_disable_nvram_access(struct bxe_softc *sc)
1200 {
1201     uint32_t val;
1202 
1203     val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1204 
1205     /* disable both bits, even after read */
1206     REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1207            (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1208                     MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1209 }
1210 
1211 static int
1212 bxe_nvram_read_dword(struct bxe_softc *sc,
1213                      uint32_t         offset,
1214                      uint32_t         *ret_val,
1215                      uint32_t         cmd_flags)
1216 {
1217     int count, i, rc;
1218     uint32_t val;
1219 
1220     /* build the command word */
1221     cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1222 
1223     /* need to clear DONE bit separately */
1224     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1225 
1226     /* address of the NVRAM to read from */
1227     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1228            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1229 
1230     /* issue a read command */
1231     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1232 
1233     /* adjust timeout for emulation/FPGA */
1234     count = NVRAM_TIMEOUT_COUNT;
1235     if (CHIP_REV_IS_SLOW(sc)) {
1236         count *= 100;
1237     }
1238 
1239     /* wait for completion */
1240     *ret_val = 0;
1241     rc = -1;
1242     for (i = 0; i < count; i++) {
1243         DELAY(5);
1244         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1245 
1246         if (val & MCPR_NVM_COMMAND_DONE) {
1247             val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1248             /* we read nvram data in cpu order
1249              * but ethtool sees it as an array of bytes
1250              * converting to big-endian will do the work
1251              */
1252             *ret_val = htobe32(val);
1253             rc = 0;
1254             break;
1255         }
1256     }
1257 
1258     if (rc == -1) {
1259         BLOGE(sc, "nvram read timeout expired "
1260             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1261             offset, cmd_flags, val);
1262     }
1263 
1264     return (rc);
1265 }
1266 
1267 static int
1268 bxe_nvram_read(struct bxe_softc *sc,
1269                uint32_t         offset,
1270                uint8_t          *ret_buf,
1271                int              buf_size)
1272 {
1273     uint32_t cmd_flags;
1274     uint32_t val;
1275     int rc;
1276 
1277     if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1278         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1279               offset, buf_size);
1280         return (-1);
1281     }
1282 
1283     if ((offset + buf_size) > sc->devinfo.flash_size) {
1284         BLOGE(sc, "Invalid parameter, "
1285                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1286               offset, buf_size, sc->devinfo.flash_size);
1287         return (-1);
1288     }
1289 
1290     /* request access to nvram interface */
1291     rc = bxe_acquire_nvram_lock(sc);
1292     if (rc) {
1293         return (rc);
1294     }
1295 
1296     /* enable access to nvram interface */
1297     bxe_enable_nvram_access(sc);
1298 
1299     /* read the first word(s) */
1300     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1301     while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1302         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1303         memcpy(ret_buf, &val, 4);
1304 
1305         /* advance to the next dword */
1306         offset += sizeof(uint32_t);
1307         ret_buf += sizeof(uint32_t);
1308         buf_size -= sizeof(uint32_t);
1309         cmd_flags = 0;
1310     }
1311 
1312     if (rc == 0) {
1313         cmd_flags |= MCPR_NVM_COMMAND_LAST;
1314         rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1315         memcpy(ret_buf, &val, 4);
1316     }
1317 
1318     /* disable access to nvram interface */
1319     bxe_disable_nvram_access(sc);
1320     bxe_release_nvram_lock(sc);
1321 
1322     return (rc);
1323 }
1324 
1325 static int
1326 bxe_nvram_write_dword(struct bxe_softc *sc,
1327                       uint32_t         offset,
1328                       uint32_t         val,
1329                       uint32_t         cmd_flags)
1330 {
1331     int count, i, rc;
1332 
1333     /* build the command word */
1334     cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1335 
1336     /* need to clear DONE bit separately */
1337     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1338 
1339     /* write the data */
1340     REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1341 
1342     /* address of the NVRAM to write to */
1343     REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1344            (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1345 
1346     /* issue the write command */
1347     REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1348 
1349     /* adjust timeout for emulation/FPGA */
1350     count = NVRAM_TIMEOUT_COUNT;
1351     if (CHIP_REV_IS_SLOW(sc)) {
1352         count *= 100;
1353     }
1354 
1355     /* wait for completion */
1356     rc = -1;
1357     for (i = 0; i < count; i++) {
1358         DELAY(5);
1359         val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1360         if (val & MCPR_NVM_COMMAND_DONE) {
1361             rc = 0;
1362             break;
1363         }
1364     }
1365 
1366     if (rc == -1) {
1367         BLOGE(sc, "nvram write timeout expired "
1368             "(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1369             offset, cmd_flags, val);
1370     }
1371 
1372     return (rc);
1373 }
1374 
1375 #define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1376 
1377 static int
1378 bxe_nvram_write1(struct bxe_softc *sc,
1379                  uint32_t         offset,
1380                  uint8_t          *data_buf,
1381                  int              buf_size)
1382 {
1383     uint32_t cmd_flags;
1384     uint32_t align_offset;
1385     uint32_t val;
1386     int rc;
1387 
1388     if ((offset + buf_size) > sc->devinfo.flash_size) {
1389         BLOGE(sc, "Invalid parameter, "
1390                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1391               offset, buf_size, sc->devinfo.flash_size);
1392         return (-1);
1393     }
1394 
1395     /* request access to nvram interface */
1396     rc = bxe_acquire_nvram_lock(sc);
1397     if (rc) {
1398         return (rc);
1399     }
1400 
1401     /* enable access to nvram interface */
1402     bxe_enable_nvram_access(sc);
1403 
1404     cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1405     align_offset = (offset & ~0x03);
1406     rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1407 
1408     if (rc == 0) {
1409         val &= ~(0xff << BYTE_OFFSET(offset));
1410         val |= (*data_buf << BYTE_OFFSET(offset));
1411 
1412         /* nvram data is returned as an array of bytes
1413          * convert it back to cpu order
1414          */
1415         val = be32toh(val);
1416 
1417         rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1418     }
1419 
1420     /* disable access to nvram interface */
1421     bxe_disable_nvram_access(sc);
1422     bxe_release_nvram_lock(sc);
1423 
1424     return (rc);
1425 }
1426 
1427 static int
1428 bxe_nvram_write(struct bxe_softc *sc,
1429                 uint32_t         offset,
1430                 uint8_t          *data_buf,
1431                 int              buf_size)
1432 {
1433     uint32_t cmd_flags;
1434     uint32_t val;
1435     uint32_t written_so_far;
1436     int rc;
1437 
1438     if (buf_size == 1) {
1439         return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1440     }
1441 
1442     if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1443         BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1444               offset, buf_size);
1445         return (-1);
1446     }
1447 
1448     if (buf_size == 0) {
1449         return (0); /* nothing to do */
1450     }
1451 
1452     if ((offset + buf_size) > sc->devinfo.flash_size) {
1453         BLOGE(sc, "Invalid parameter, "
1454                   "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1455               offset, buf_size, sc->devinfo.flash_size);
1456         return (-1);
1457     }
1458 
1459     /* request access to nvram interface */
1460     rc = bxe_acquire_nvram_lock(sc);
1461     if (rc) {
1462         return (rc);
1463     }
1464 
1465     /* enable access to nvram interface */
1466     bxe_enable_nvram_access(sc);
1467 
1468     written_so_far = 0;
1469     cmd_flags = MCPR_NVM_COMMAND_FIRST;
1470     while ((written_so_far < buf_size) && (rc == 0)) {
1471         if (written_so_far == (buf_size - sizeof(uint32_t))) {
1472             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1473         } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1474             cmd_flags |= MCPR_NVM_COMMAND_LAST;
1475         } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1476             cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1477         }
1478 
1479         memcpy(&val, data_buf, 4);
1480 
1481         rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1482 
1483         /* advance to the next dword */
1484         offset += sizeof(uint32_t);
1485         data_buf += sizeof(uint32_t);
1486         written_so_far += sizeof(uint32_t);
1487         cmd_flags = 0;
1488     }
1489 
1490     /* disable access to nvram interface */
1491     bxe_disable_nvram_access(sc);
1492     bxe_release_nvram_lock(sc);
1493 
1494     return (rc);
1495 }
1496 
1497 /* copy command into DMAE command memory and set DMAE command Go */
1498 void
1499 bxe_post_dmae(struct bxe_softc    *sc,
1500               struct dmae_cmd *dmae,
1501               int                 idx)
1502 {
1503     uint32_t cmd_offset;
1504     int i;
1505 
1506     cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1507     for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1508         REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1509     }
1510 
1511     REG_WR(sc, dmae_reg_go_c[idx], 1);
1512 }
1513 
1514 uint32_t
1515 bxe_dmae_opcode_add_comp(uint32_t opcode,
1516                          uint8_t  comp_type)
1517 {
1518     return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1519                       DMAE_CMD_C_TYPE_ENABLE));
1520 }
1521 
1522 uint32_t
1523 bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1524 {
1525     return (opcode & ~DMAE_CMD_SRC_RESET);
1526 }
1527 
1528 uint32_t
1529 bxe_dmae_opcode(struct bxe_softc *sc,
1530                 uint8_t          src_type,
1531                 uint8_t          dst_type,
1532                 uint8_t          with_comp,
1533                 uint8_t          comp_type)
1534 {
1535     uint32_t opcode = 0;
1536 
1537     opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1538                (dst_type << DMAE_CMD_DST_SHIFT));
1539 
1540     opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1541 
1542     opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1543 
1544     opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1545                (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1546 
1547     opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1548 
1549 #ifdef __BIG_ENDIAN
1550     opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1551 #else
1552     opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1553 #endif
1554 
1555     if (with_comp) {
1556         opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1557     }
1558 
1559     return (opcode);
1560 }
1561 
1562 static void
1563 bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1564                         struct dmae_cmd *dmae,
1565                         uint8_t             src_type,
1566                         uint8_t             dst_type)
1567 {
1568     memset(dmae, 0, sizeof(struct dmae_cmd));
1569 
1570     /* set the opcode */
1571     dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1572                                    TRUE, DMAE_COMP_PCI);
1573 
1574     /* fill in the completion parameters */
1575     dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1576     dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1577     dmae->comp_val     = DMAE_COMP_VAL;
1578 }
1579 
1580 /* issue a DMAE command over the init channel and wait for completion */
1581 static int
1582 bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1583                          struct dmae_cmd *dmae)
1584 {
1585     uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1586     int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1587 
1588     BXE_DMAE_LOCK(sc);
1589 
1590     /* reset completion */
1591     *wb_comp = 0;
1592 
1593     /* post the command on the channel used for initializations */
1594     bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1595 
1596     /* wait for completion */
1597     DELAY(5);
1598 
1599     while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1600         if (!timeout ||
1601             (sc->recovery_state != BXE_RECOVERY_DONE &&
1602              sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1603             BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1604                 *wb_comp, sc->recovery_state);
1605             BXE_DMAE_UNLOCK(sc);
1606             return (DMAE_TIMEOUT);
1607         }
1608 
1609         timeout--;
1610         DELAY(50);
1611     }
1612 
1613     if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1614         BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1615                 *wb_comp, sc->recovery_state);
1616         BXE_DMAE_UNLOCK(sc);
1617         return (DMAE_PCI_ERROR);
1618     }
1619 
1620     BXE_DMAE_UNLOCK(sc);
1621     return (0);
1622 }
1623 
1624 void
1625 bxe_read_dmae(struct bxe_softc *sc,
1626               uint32_t         src_addr,
1627               uint32_t         len32)
1628 {
1629     struct dmae_cmd dmae;
1630     uint32_t *data;
1631     int i, rc;
1632 
1633     DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1634 
1635     if (!sc->dmae_ready) {
1636         data = BXE_SP(sc, wb_data[0]);
1637 
1638         for (i = 0; i < len32; i++) {
1639             data[i] = (CHIP_IS_E1(sc)) ?
1640                           bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1641                           REG_RD(sc, (src_addr + (i * 4)));
1642         }
1643 
1644         return;
1645     }
1646 
1647     /* set opcode and fixed command fields */
1648     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1649 
1650     /* fill in addresses and len */
1651     dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1652     dmae.src_addr_hi = 0;
1653     dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1654     dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1655     dmae.len         = len32;
1656 
1657     /* issue the command and wait for completion */
1658     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1659         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1660     }
1661 }
1662 
1663 void
1664 bxe_write_dmae(struct bxe_softc *sc,
1665                bus_addr_t       dma_addr,
1666                uint32_t         dst_addr,
1667                uint32_t         len32)
1668 {
1669     struct dmae_cmd dmae;
1670     int rc;
1671 
1672     if (!sc->dmae_ready) {
1673         DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1674 
1675         if (CHIP_IS_E1(sc)) {
1676             ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1677         } else {
1678             ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1679         }
1680 
1681         return;
1682     }
1683 
1684     /* set opcode and fixed command fields */
1685     bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1686 
1687     /* fill in addresses and len */
1688     dmae.src_addr_lo = U64_LO(dma_addr);
1689     dmae.src_addr_hi = U64_HI(dma_addr);
1690     dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1691     dmae.dst_addr_hi = 0;
1692     dmae.len         = len32;
1693 
1694     /* issue the command and wait for completion */
1695     if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1696         bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1697     }
1698 }
1699 
1700 void
1701 bxe_write_dmae_phys_len(struct bxe_softc *sc,
1702                         bus_addr_t       phys_addr,
1703                         uint32_t         addr,
1704                         uint32_t         len)
1705 {
1706     int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1707     int offset = 0;
1708 
1709     while (len > dmae_wr_max) {
1710         bxe_write_dmae(sc,
1711                        (phys_addr + offset), /* src DMA address */
1712                        (addr + offset),      /* dst GRC address */
1713                        dmae_wr_max);
1714         offset += (dmae_wr_max * 4);
1715         len -= dmae_wr_max;
1716     }
1717 
1718     bxe_write_dmae(sc,
1719                    (phys_addr + offset), /* src DMA address */
1720                    (addr + offset),      /* dst GRC address */
1721                    len);
1722 }
1723 
1724 void
1725 bxe_set_ctx_validation(struct bxe_softc   *sc,
1726                        struct eth_context *cxt,
1727                        uint32_t           cid)
1728 {
1729     /* ustorm cxt validation */
1730     cxt->ustorm_ag_context.cdu_usage =
1731         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1732             CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1733     /* xcontext validation */
1734     cxt->xstorm_ag_context.cdu_reserved =
1735         CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1736             CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1737 }
1738 
1739 static void
1740 bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1741                             uint8_t          port,
1742                             uint8_t          fw_sb_id,
1743                             uint8_t          sb_index,
1744                             uint8_t          ticks)
1745 {
1746     uint32_t addr =
1747         (BAR_CSTRORM_INTMEM +
1748          CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1749 
1750     REG_WR8(sc, addr, ticks);
1751 
1752     BLOGD(sc, DBG_LOAD,
1753           "port %d fw_sb_id %d sb_index %d ticks %d\n",
1754           port, fw_sb_id, sb_index, ticks);
1755 }
1756 
1757 static void
1758 bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1759                             uint8_t          port,
1760                             uint16_t         fw_sb_id,
1761                             uint8_t          sb_index,
1762                             uint8_t          disable)
1763 {
1764     uint32_t enable_flag =
1765         (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1766     uint32_t addr =
1767         (BAR_CSTRORM_INTMEM +
1768          CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1769     uint8_t flags;
1770 
1771     /* clear and set */
1772     flags = REG_RD8(sc, addr);
1773     flags &= ~HC_INDEX_DATA_HC_ENABLED;
1774     flags |= enable_flag;
1775     REG_WR8(sc, addr, flags);
1776 
1777     BLOGD(sc, DBG_LOAD,
1778           "port %d fw_sb_id %d sb_index %d disable %d\n",
1779           port, fw_sb_id, sb_index, disable);
1780 }
1781 
1782 void
1783 bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1784                              uint8_t          fw_sb_id,
1785                              uint8_t          sb_index,
1786                              uint8_t          disable,
1787                              uint16_t         usec)
1788 {
1789     int port = SC_PORT(sc);
1790     uint8_t ticks = (usec / 4); /* XXX ??? */
1791 
1792     bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1793 
1794     disable = (disable) ? 1 : ((usec) ? 0 : 1);
1795     bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1796 }
1797 
1798 void
1799 elink_cb_udelay(struct bxe_softc *sc,
1800                 uint32_t         usecs)
1801 {
1802     DELAY(usecs);
1803 }
1804 
1805 uint32_t
1806 elink_cb_reg_read(struct bxe_softc *sc,
1807                   uint32_t         reg_addr)
1808 {
1809     return (REG_RD(sc, reg_addr));
1810 }
1811 
1812 void
1813 elink_cb_reg_write(struct bxe_softc *sc,
1814                    uint32_t         reg_addr,
1815                    uint32_t         val)
1816 {
1817     REG_WR(sc, reg_addr, val);
1818 }
1819 
1820 void
1821 elink_cb_reg_wb_write(struct bxe_softc *sc,
1822                       uint32_t         offset,
1823                       uint32_t         *wb_write,
1824                       uint16_t         len)
1825 {
1826     REG_WR_DMAE(sc, offset, wb_write, len);
1827 }
1828 
1829 void
1830 elink_cb_reg_wb_read(struct bxe_softc *sc,
1831                      uint32_t         offset,
1832                      uint32_t         *wb_write,
1833                      uint16_t         len)
1834 {
1835     REG_RD_DMAE(sc, offset, wb_write, len);
1836 }
1837 
1838 uint8_t
1839 elink_cb_path_id(struct bxe_softc *sc)
1840 {
1841     return (SC_PATH(sc));
1842 }
1843 
1844 void
1845 elink_cb_event_log(struct bxe_softc     *sc,
1846                    const elink_log_id_t elink_log_id,
1847                    ...)
1848 {
1849     /* XXX */
1850     BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1851 }
1852 
1853 static int
1854 bxe_set_spio(struct bxe_softc *sc,
1855              int              spio,
1856              uint32_t         mode)
1857 {
1858     uint32_t spio_reg;
1859 
1860     /* Only 2 SPIOs are configurable */
1861     if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1862         BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1863         return (-1);
1864     }
1865 
1866     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1867 
1868     /* read SPIO and mask except the float bits */
1869     spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1870 
1871     switch (mode) {
1872     case MISC_SPIO_OUTPUT_LOW:
1873         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1874         /* clear FLOAT and set CLR */
1875         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1876         spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1877         break;
1878 
1879     case MISC_SPIO_OUTPUT_HIGH:
1880         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1881         /* clear FLOAT and set SET */
1882         spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1883         spio_reg |=  (spio << MISC_SPIO_SET_POS);
1884         break;
1885 
1886     case MISC_SPIO_INPUT_HI_Z:
1887         BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1888         /* set FLOAT */
1889         spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1890         break;
1891 
1892     default:
1893         break;
1894     }
1895 
1896     REG_WR(sc, MISC_REG_SPIO, spio_reg);
1897     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1898 
1899     return (0);
1900 }
1901 
1902 static int
1903 bxe_gpio_read(struct bxe_softc *sc,
1904               int              gpio_num,
1905               uint8_t          port)
1906 {
1907     /* The GPIO should be swapped if swap register is set and active */
1908     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1909                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1910     int gpio_shift = (gpio_num +
1911                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1912     uint32_t gpio_mask = (1 << gpio_shift);
1913     uint32_t gpio_reg;
1914 
1915     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1916         BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1917             " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1918             gpio_mask);
1919         return (-1);
1920     }
1921 
1922     /* read GPIO value */
1923     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1924 
1925     /* get the requested pin value */
1926     return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1927 }
1928 
1929 static int
1930 bxe_gpio_write(struct bxe_softc *sc,
1931                int              gpio_num,
1932                uint32_t         mode,
1933                uint8_t          port)
1934 {
1935     /* The GPIO should be swapped if swap register is set and active */
1936     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1937                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1938     int gpio_shift = (gpio_num +
1939                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1940     uint32_t gpio_mask = (1 << gpio_shift);
1941     uint32_t gpio_reg;
1942 
1943     if (gpio_num > MISC_REGISTERS_GPIO_3) {
1944         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1945             " gpio_shift %d gpio_mask 0x%x\n",
1946             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1947         return (-1);
1948     }
1949 
1950     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1951 
1952     /* read GPIO and mask except the float bits */
1953     gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1954 
1955     switch (mode) {
1956     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1957         BLOGD(sc, DBG_PHY,
1958               "Set GPIO %d (shift %d) -> output low\n",
1959               gpio_num, gpio_shift);
1960         /* clear FLOAT and set CLR */
1961         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1962         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1963         break;
1964 
1965     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1966         BLOGD(sc, DBG_PHY,
1967               "Set GPIO %d (shift %d) -> output high\n",
1968               gpio_num, gpio_shift);
1969         /* clear FLOAT and set SET */
1970         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1971         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1972         break;
1973 
1974     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1975         BLOGD(sc, DBG_PHY,
1976               "Set GPIO %d (shift %d) -> input\n",
1977               gpio_num, gpio_shift);
1978         /* set FLOAT */
1979         gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1980         break;
1981 
1982     default:
1983         break;
1984     }
1985 
1986     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1987     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1988 
1989     return (0);
1990 }
1991 
1992 static int
1993 bxe_gpio_mult_write(struct bxe_softc *sc,
1994                     uint8_t          pins,
1995                     uint32_t         mode)
1996 {
1997     uint32_t gpio_reg;
1998 
1999     /* any port swapping should be handled by caller */
2000 
2001     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2002 
2003     /* read GPIO and mask except the float bits */
2004     gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2005     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2006     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2007     gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2008 
2009     switch (mode) {
2010     case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2011         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2012         /* set CLR */
2013         gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2014         break;
2015 
2016     case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2017         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2018         /* set SET */
2019         gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2020         break;
2021 
2022     case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2023         BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2024         /* set FLOAT */
2025         gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2026         break;
2027 
2028     default:
2029         BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2030             " gpio_reg 0x%x\n", pins, mode, gpio_reg);
2031         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2032         return (-1);
2033     }
2034 
2035     REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2036     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2037 
2038     return (0);
2039 }
2040 
2041 static int
2042 bxe_gpio_int_write(struct bxe_softc *sc,
2043                    int              gpio_num,
2044                    uint32_t         mode,
2045                    uint8_t          port)
2046 {
2047     /* The GPIO should be swapped if swap register is set and active */
2048     int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2049                       REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2050     int gpio_shift = (gpio_num +
2051                       (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2052     uint32_t gpio_mask = (1 << gpio_shift);
2053     uint32_t gpio_reg;
2054 
2055     if (gpio_num > MISC_REGISTERS_GPIO_3) {
2056         BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2057             " gpio_shift %d gpio_mask 0x%x\n",
2058             gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2059         return (-1);
2060     }
2061 
2062     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2063 
2064     /* read GPIO int */
2065     gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2066 
2067     switch (mode) {
2068     case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2069         BLOGD(sc, DBG_PHY,
2070               "Clear GPIO INT %d (shift %d) -> output low\n",
2071               gpio_num, gpio_shift);
2072         /* clear SET and set CLR */
2073         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2074         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2075         break;
2076 
2077     case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2078         BLOGD(sc, DBG_PHY,
2079               "Set GPIO INT %d (shift %d) -> output high\n",
2080               gpio_num, gpio_shift);
2081         /* clear CLR and set SET */
2082         gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2083         gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2084         break;
2085 
2086     default:
2087         break;
2088     }
2089 
2090     REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2091     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092 
2093     return (0);
2094 }
2095 
2096 uint32_t
2097 elink_cb_gpio_read(struct bxe_softc *sc,
2098                    uint16_t         gpio_num,
2099                    uint8_t          port)
2100 {
2101     return (bxe_gpio_read(sc, gpio_num, port));
2102 }
2103 
2104 uint8_t
2105 elink_cb_gpio_write(struct bxe_softc *sc,
2106                     uint16_t         gpio_num,
2107                     uint8_t          mode, /* 0=low 1=high */
2108                     uint8_t          port)
2109 {
2110     return (bxe_gpio_write(sc, gpio_num, mode, port));
2111 }
2112 
2113 uint8_t
2114 elink_cb_gpio_mult_write(struct bxe_softc *sc,
2115                          uint8_t          pins,
2116                          uint8_t          mode) /* 0=low 1=high */
2117 {
2118     return (bxe_gpio_mult_write(sc, pins, mode));
2119 }
2120 
2121 uint8_t
2122 elink_cb_gpio_int_write(struct bxe_softc *sc,
2123                         uint16_t         gpio_num,
2124                         uint8_t          mode, /* 0=low 1=high */
2125                         uint8_t          port)
2126 {
2127     return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2128 }
2129 
2130 void
2131 elink_cb_notify_link_changed(struct bxe_softc *sc)
2132 {
2133     REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2134                 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2135 }
2136 
2137 /* send the MCP a request, block until there is a reply */
2138 uint32_t
2139 elink_cb_fw_command(struct bxe_softc *sc,
2140                     uint32_t         command,
2141                     uint32_t         param)
2142 {
2143     int mb_idx = SC_FW_MB_IDX(sc);
2144     uint32_t seq;
2145     uint32_t rc = 0;
2146     uint32_t cnt = 1;
2147     uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2148 
2149     BXE_FWMB_LOCK(sc);
2150 
2151     seq = ++sc->fw_seq;
2152     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2153     SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2154 
2155     BLOGD(sc, DBG_PHY,
2156           "wrote command 0x%08x to FW MB param 0x%08x\n",
2157           (command | seq), param);
2158 
2159     /* Let the FW do it's magic. GIve it up to 5 seconds... */
2160     do {
2161         DELAY(delay * 1000);
2162         rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2163     } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2164 
2165     BLOGD(sc, DBG_PHY,
2166           "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2167           cnt*delay, rc, seq);
2168 
2169     /* is this a reply to our command? */
2170     if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2171         rc &= FW_MSG_CODE_MASK;
2172     } else {
2173         /* Ruh-roh! */
2174         BLOGE(sc, "FW failed to respond!\n");
2175         // XXX bxe_fw_dump(sc);
2176         rc = 0;
2177     }
2178 
2179     BXE_FWMB_UNLOCK(sc);
2180     return (rc);
2181 }
2182 
2183 static uint32_t
2184 bxe_fw_command(struct bxe_softc *sc,
2185                uint32_t         command,
2186                uint32_t         param)
2187 {
2188     return (elink_cb_fw_command(sc, command, param));
2189 }
2190 
2191 static void
2192 __storm_memset_dma_mapping(struct bxe_softc *sc,
2193                            uint32_t         addr,
2194                            bus_addr_t       mapping)
2195 {
2196     REG_WR(sc, addr, U64_LO(mapping));
2197     REG_WR(sc, (addr + 4), U64_HI(mapping));
2198 }
2199 
2200 static void
2201 storm_memset_spq_addr(struct bxe_softc *sc,
2202                       bus_addr_t       mapping,
2203                       uint16_t         abs_fid)
2204 {
2205     uint32_t addr = (XSEM_REG_FAST_MEMORY +
2206                      XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2207     __storm_memset_dma_mapping(sc, addr, mapping);
2208 }
2209 
2210 static void
2211 storm_memset_vf_to_pf(struct bxe_softc *sc,
2212                       uint16_t         abs_fid,
2213                       uint16_t         pf_id)
2214 {
2215     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2216     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2217     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2218     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2219 }
2220 
2221 static void
2222 storm_memset_func_en(struct bxe_softc *sc,
2223                      uint16_t         abs_fid,
2224                      uint8_t          enable)
2225 {
2226     REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2227     REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2228     REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2229     REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2230 }
2231 
2232 static void
2233 storm_memset_eq_data(struct bxe_softc       *sc,
2234                      struct event_ring_data *eq_data,
2235                      uint16_t               pfid)
2236 {
2237     uint32_t addr;
2238     size_t size;
2239 
2240     addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2241     size = sizeof(struct event_ring_data);
2242     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2243 }
2244 
2245 static void
2246 storm_memset_eq_prod(struct bxe_softc *sc,
2247                      uint16_t         eq_prod,
2248                      uint16_t         pfid)
2249 {
2250     uint32_t addr = (BAR_CSTRORM_INTMEM +
2251                      CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2252     REG_WR16(sc, addr, eq_prod);
2253 }
2254 
2255 /*
2256  * Post a slowpath command.
2257  *
2258  * A slowpath command is used to propagate a configuration change through
2259  * the controller in a controlled manner, allowing each STORM processor and
2260  * other H/W blocks to phase in the change.  The commands sent on the
2261  * slowpath are referred to as ramrods.  Depending on the ramrod used the
2262  * completion of the ramrod will occur in different ways.  Here's a
2263  * breakdown of ramrods and how they complete:
2264  *
2265  * RAMROD_CMD_ID_ETH_PORT_SETUP
2266  *   Used to setup the leading connection on a port.  Completes on the
2267  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2268  *
2269  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2270  *   Used to setup an additional connection on a port.  Completes on the
2271  *   RCQ of the multi-queue/RSS connection being initialized.
2272  *
2273  * RAMROD_CMD_ID_ETH_STAT_QUERY
2274  *   Used to force the storm processors to update the statistics database
2275  *   in host memory.  This ramrod is send on the leading connection CID and
2276  *   completes as an index increment of the CSTORM on the default status
2277  *   block.
2278  *
2279  * RAMROD_CMD_ID_ETH_UPDATE
2280  *   Used to update the state of the leading connection, usually to udpate
2281  *   the RSS indirection table.  Completes on the RCQ of the leading
2282  *   connection. (Not currently used under FreeBSD until OS support becomes
2283  *   available.)
2284  *
2285  * RAMROD_CMD_ID_ETH_HALT
2286  *   Used when tearing down a connection prior to driver unload.  Completes
2287  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2288  *   use this on the leading connection.
2289  *
2290  * RAMROD_CMD_ID_ETH_SET_MAC
2291  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2292  *   the RCQ of the leading connection.
2293  *
2294  * RAMROD_CMD_ID_ETH_CFC_DEL
2295  *   Used when tearing down a conneciton prior to driver unload.  Completes
2296  *   on the RCQ of the leading connection (since the current connection
2297  *   has been completely removed from controller memory).
2298  *
2299  * RAMROD_CMD_ID_ETH_PORT_DEL
2300  *   Used to tear down the leading connection prior to driver unload,
2301  *   typically fp[0].  Completes as an index increment of the CSTORM on the
2302  *   default status block.
2303  *
2304  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2305  *   Used for connection offload.  Completes on the RCQ of the multi-queue
2306  *   RSS connection that is being offloaded.  (Not currently used under
2307  *   FreeBSD.)
2308  *
2309  * There can only be one command pending per function.
2310  *
2311  * Returns:
2312  *   0 = Success, !0 = Failure.
2313  */
2314 
2315 /* must be called under the spq lock */
2316 static inline
2317 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2318 {
2319     struct eth_spe *next_spe = sc->spq_prod_bd;
2320 
2321     if (sc->spq_prod_bd == sc->spq_last_bd) {
2322         /* wrap back to the first eth_spq */
2323         sc->spq_prod_bd = sc->spq;
2324         sc->spq_prod_idx = 0;
2325     } else {
2326         sc->spq_prod_bd++;
2327         sc->spq_prod_idx++;
2328     }
2329 
2330     return (next_spe);
2331 }
2332 
2333 /* must be called under the spq lock */
2334 static inline
2335 void bxe_sp_prod_update(struct bxe_softc *sc)
2336 {
2337     int func = SC_FUNC(sc);
2338 
2339     /*
2340      * Make sure that BD data is updated before writing the producer.
2341      * BD data is written to the memory, the producer is read from the
2342      * memory, thus we need a full memory barrier to ensure the ordering.
2343      */
2344     mb();
2345 
2346     REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2347              sc->spq_prod_idx);
2348 
2349     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2350                       BUS_SPACE_BARRIER_WRITE);
2351 }
2352 
2353 /**
2354  * bxe_is_contextless_ramrod - check if the current command ends on EQ
2355  *
2356  * @cmd:      command to check
2357  * @cmd_type: command type
2358  */
2359 static inline
2360 int bxe_is_contextless_ramrod(int cmd,
2361                               int cmd_type)
2362 {
2363     if ((cmd_type == NONE_CONNECTION_TYPE) ||
2364         (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2365         (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2366         (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2367         (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2368         (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2369         (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2370         return (TRUE);
2371     } else {
2372         return (FALSE);
2373     }
2374 }
2375 
2376 /**
2377  * bxe_sp_post - place a single command on an SP ring
2378  *
2379  * @sc:         driver handle
2380  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2381  * @cid:        SW CID the command is related to
2382  * @data_hi:    command private data address (high 32 bits)
2383  * @data_lo:    command private data address (low 32 bits)
2384  * @cmd_type:   command type (e.g. NONE, ETH)
2385  *
2386  * SP data is handled as if it's always an address pair, thus data fields are
2387  * not swapped to little endian in upper functions. Instead this function swaps
2388  * data as if it's two uint32 fields.
2389  */
2390 int
2391 bxe_sp_post(struct bxe_softc *sc,
2392             int              command,
2393             int              cid,
2394             uint32_t         data_hi,
2395             uint32_t         data_lo,
2396             int              cmd_type)
2397 {
2398     struct eth_spe *spe;
2399     uint16_t type;
2400     int common;
2401 
2402     common = bxe_is_contextless_ramrod(command, cmd_type);
2403 
2404     BXE_SP_LOCK(sc);
2405 
2406     if (common) {
2407         if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2408             BLOGE(sc, "EQ ring is full!\n");
2409             BXE_SP_UNLOCK(sc);
2410             return (-1);
2411         }
2412     } else {
2413         if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2414             BLOGE(sc, "SPQ ring is full!\n");
2415             BXE_SP_UNLOCK(sc);
2416             return (-1);
2417         }
2418     }
2419 
2420     spe = bxe_sp_get_next(sc);
2421 
2422     /* CID needs port number to be encoded int it */
2423     spe->hdr.conn_and_cmd_data =
2424         htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2425 
2426     type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2427 
2428     /* TBD: Check if it works for VFs */
2429     type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2430              SPE_HDR_T_FUNCTION_ID);
2431 
2432     spe->hdr.type = htole16(type);
2433 
2434     spe->data.update_data_addr.hi = htole32(data_hi);
2435     spe->data.update_data_addr.lo = htole32(data_lo);
2436 
2437     /*
2438      * It's ok if the actual decrement is issued towards the memory
2439      * somewhere between the lock and unlock. Thus no more explict
2440      * memory barrier is needed.
2441      */
2442     if (common) {
2443         atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2444     } else {
2445         atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2446     }
2447 
2448     BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2449     BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2450           BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2451     BLOGD(sc, DBG_SP,
2452           "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2453           sc->spq_prod_idx,
2454           (uint32_t)U64_HI(sc->spq_dma.paddr),
2455           (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2456           command,
2457           common,
2458           HW_CID(sc, cid),
2459           data_hi,
2460           data_lo,
2461           type,
2462           atomic_load_acq_long(&sc->cq_spq_left),
2463           atomic_load_acq_long(&sc->eq_spq_left));
2464 
2465     bxe_sp_prod_update(sc);
2466 
2467     BXE_SP_UNLOCK(sc);
2468     return (0);
2469 }
2470 
2471 /**
2472  * bxe_debug_print_ind_table - prints the indirection table configuration.
2473  *
2474  * @sc: driver hanlde
2475  * @p:  pointer to rss configuration
2476  */
2477 
2478 /*
2479  * FreeBSD Device probe function.
2480  *
2481  * Compares the device found to the driver's list of supported devices and
2482  * reports back to the bsd loader whether this is the right driver for the device.
2483  * This is the driver entry function called from the "kldload" command.
2484  *
2485  * Returns:
2486  *   BUS_PROBE_DEFAULT on success, positive value on failure.
2487  */
2488 static int
2489 bxe_probe(device_t dev)
2490 {
2491     struct bxe_device_type *t;
2492     char *descbuf;
2493     uint16_t did, sdid, svid, vid;
2494 
2495     /* Find our device structure */
2496     t = bxe_devs;
2497 
2498     /* Get the data for the device to be probed. */
2499     vid  = pci_get_vendor(dev);
2500     did  = pci_get_device(dev);
2501     svid = pci_get_subvendor(dev);
2502     sdid = pci_get_subdevice(dev);
2503 
2504     /* Look through the list of known devices for a match. */
2505     while (t->bxe_name != NULL) {
2506         if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2507             ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2508             ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2509             descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2510             if (descbuf == NULL)
2511                 return (ENOMEM);
2512 
2513             /* Print out the device identity. */
2514             snprintf(descbuf, BXE_DEVDESC_MAX,
2515                      "%s (%c%d) BXE v:%s", t->bxe_name,
2516                      (((pci_read_config(dev, PCIR_REVID, 4) &
2517                         0xf0) >> 4) + 'A'),
2518                      (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2519                      BXE_DRIVER_VERSION);
2520 
2521             device_set_desc_copy(dev, descbuf);
2522             free(descbuf, M_TEMP);
2523             return (BUS_PROBE_DEFAULT);
2524         }
2525         t++;
2526     }
2527 
2528     return (ENXIO);
2529 }
2530 
2531 static void
2532 bxe_init_mutexes(struct bxe_softc *sc)
2533 {
2534 #ifdef BXE_CORE_LOCK_SX
2535     snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2536              "bxe%d_core_lock", sc->unit);
2537     sx_init(&sc->core_sx, sc->core_sx_name);
2538 #else
2539     snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2540              "bxe%d_core_lock", sc->unit);
2541     mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2542 #endif
2543 
2544     snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2545              "bxe%d_sp_lock", sc->unit);
2546     mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2547 
2548     snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2549              "bxe%d_dmae_lock", sc->unit);
2550     mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2551 
2552     snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2553              "bxe%d_phy_lock", sc->unit);
2554     mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2555 
2556     snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2557              "bxe%d_fwmb_lock", sc->unit);
2558     mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2559 
2560     snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2561              "bxe%d_print_lock", sc->unit);
2562     mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2563 
2564     snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2565              "bxe%d_stats_lock", sc->unit);
2566     mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2567 
2568     snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2569              "bxe%d_mcast_lock", sc->unit);
2570     mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2571 }
2572 
2573 static void
2574 bxe_release_mutexes(struct bxe_softc *sc)
2575 {
2576 #ifdef BXE_CORE_LOCK_SX
2577     sx_destroy(&sc->core_sx);
2578 #else
2579     if (mtx_initialized(&sc->core_mtx)) {
2580         mtx_destroy(&sc->core_mtx);
2581     }
2582 #endif
2583 
2584     if (mtx_initialized(&sc->sp_mtx)) {
2585         mtx_destroy(&sc->sp_mtx);
2586     }
2587 
2588     if (mtx_initialized(&sc->dmae_mtx)) {
2589         mtx_destroy(&sc->dmae_mtx);
2590     }
2591 
2592     if (mtx_initialized(&sc->port.phy_mtx)) {
2593         mtx_destroy(&sc->port.phy_mtx);
2594     }
2595 
2596     if (mtx_initialized(&sc->fwmb_mtx)) {
2597         mtx_destroy(&sc->fwmb_mtx);
2598     }
2599 
2600     if (mtx_initialized(&sc->print_mtx)) {
2601         mtx_destroy(&sc->print_mtx);
2602     }
2603 
2604     if (mtx_initialized(&sc->stats_mtx)) {
2605         mtx_destroy(&sc->stats_mtx);
2606     }
2607 
2608     if (mtx_initialized(&sc->mcast_mtx)) {
2609         mtx_destroy(&sc->mcast_mtx);
2610     }
2611 }
2612 
2613 static void
2614 bxe_tx_disable(struct bxe_softc* sc)
2615 {
2616     if_t ifp = sc->ifp;
2617 
2618     /* tell the stack the driver is stopped and TX queue is full */
2619     if (ifp !=  NULL) {
2620         if_setdrvflags(ifp, 0);
2621     }
2622 }
2623 
2624 static void
2625 bxe_drv_pulse(struct bxe_softc *sc)
2626 {
2627     SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2628              sc->fw_drv_pulse_wr_seq);
2629 }
2630 
2631 static inline uint16_t
2632 bxe_tx_avail(struct bxe_softc *sc,
2633              struct bxe_fastpath *fp)
2634 {
2635     int16_t  used;
2636     uint16_t prod;
2637     uint16_t cons;
2638 
2639     prod = fp->tx_bd_prod;
2640     cons = fp->tx_bd_cons;
2641 
2642     used = SUB_S16(prod, cons);
2643 
2644     return (int16_t)(sc->tx_ring_size) - used;
2645 }
2646 
2647 static inline int
2648 bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2649 {
2650     uint16_t hw_cons;
2651 
2652     mb(); /* status block fields can change */
2653     hw_cons = le16toh(*fp->tx_cons_sb);
2654     return (hw_cons != fp->tx_pkt_cons);
2655 }
2656 
2657 static inline uint8_t
2658 bxe_has_tx_work(struct bxe_fastpath *fp)
2659 {
2660     /* expand this for multi-cos if ever supported */
2661     return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2662 }
2663 
2664 static inline int
2665 bxe_has_rx_work(struct bxe_fastpath *fp)
2666 {
2667     uint16_t rx_cq_cons_sb;
2668 
2669     mb(); /* status block fields can change */
2670     rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2671     if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2672         rx_cq_cons_sb++;
2673     return (fp->rx_cq_cons != rx_cq_cons_sb);
2674 }
2675 
2676 static void
2677 bxe_sp_event(struct bxe_softc    *sc,
2678              struct bxe_fastpath *fp,
2679              union eth_rx_cqe    *rr_cqe)
2680 {
2681     int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2682     int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2683     enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2684     struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2685 
2686     BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2687           fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2688 
2689     switch (command) {
2690     case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2691         BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2692         drv_cmd = ECORE_Q_CMD_UPDATE;
2693         break;
2694 
2695     case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2696         BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2697         drv_cmd = ECORE_Q_CMD_SETUP;
2698         break;
2699 
2700     case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2701         BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2702         drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2703         break;
2704 
2705     case (RAMROD_CMD_ID_ETH_HALT):
2706         BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2707         drv_cmd = ECORE_Q_CMD_HALT;
2708         break;
2709 
2710     case (RAMROD_CMD_ID_ETH_TERMINATE):
2711         BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2712         drv_cmd = ECORE_Q_CMD_TERMINATE;
2713         break;
2714 
2715     case (RAMROD_CMD_ID_ETH_EMPTY):
2716         BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2717         drv_cmd = ECORE_Q_CMD_EMPTY;
2718         break;
2719 
2720     default:
2721         BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2722               command, fp->index);
2723         return;
2724     }
2725 
2726     if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2727         q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2728         /*
2729          * q_obj->complete_cmd() failure means that this was
2730          * an unexpected completion.
2731          *
2732          * In this case we don't want to increase the sc->spq_left
2733          * because apparently we haven't sent this command the first
2734          * place.
2735          */
2736         // bxe_panic(sc, ("Unexpected SP completion\n"));
2737         return;
2738     }
2739 
2740     atomic_add_acq_long(&sc->cq_spq_left, 1);
2741 
2742     BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2743           atomic_load_acq_long(&sc->cq_spq_left));
2744 }
2745 
2746 /*
2747  * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2748  * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2749  * the current aggregation queue as in-progress.
2750  */
2751 static void
2752 bxe_tpa_start(struct bxe_softc            *sc,
2753               struct bxe_fastpath         *fp,
2754               uint16_t                    queue,
2755               uint16_t                    cons,
2756               uint16_t                    prod,
2757               struct eth_fast_path_rx_cqe *cqe)
2758 {
2759     struct bxe_sw_rx_bd tmp_bd;
2760     struct bxe_sw_rx_bd *rx_buf;
2761     struct eth_rx_bd *rx_bd;
2762     int max_agg_queues __diagused;
2763     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2764     uint16_t index;
2765 
2766     BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2767                        "cons=%d prod=%d\n",
2768           fp->index, queue, cons, prod);
2769 
2770     max_agg_queues = MAX_AGG_QS(sc);
2771 
2772     KASSERT((queue < max_agg_queues),
2773             ("fp[%02d] invalid aggr queue (%d >= %d)!",
2774              fp->index, queue, max_agg_queues));
2775 
2776     KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2777             ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2778              fp->index, queue));
2779 
2780     /* copy the existing mbuf and mapping from the TPA pool */
2781     tmp_bd = tpa_info->bd;
2782 
2783     if (tmp_bd.m == NULL) {
2784         uint32_t *tmp;
2785 
2786         tmp = (uint32_t *)cqe;
2787 
2788         BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2789               fp->index, queue, cons, prod);
2790         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2791             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2792 
2793         /* XXX Error handling? */
2794         return;
2795     }
2796 
2797     /* change the TPA queue to the start state */
2798     tpa_info->state            = BXE_TPA_STATE_START;
2799     tpa_info->placement_offset = cqe->placement_offset;
2800     tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2801     tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2802     tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2803 
2804     fp->rx_tpa_queue_used |= (1 << queue);
2805 
2806     /*
2807      * If all the buffer descriptors are filled with mbufs then fill in
2808      * the current consumer index with a new BD. Else if a maximum Rx
2809      * buffer limit is imposed then fill in the next producer index.
2810      */
2811     index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2812                 prod : cons;
2813 
2814     /* move the received mbuf and mapping to TPA pool */
2815     tpa_info->bd = fp->rx_mbuf_chain[cons];
2816 
2817     /* release any existing RX BD mbuf mappings */
2818     if (cons != index) {
2819         rx_buf = &fp->rx_mbuf_chain[cons];
2820 
2821         if (rx_buf->m_map != NULL) {
2822             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2823                             BUS_DMASYNC_POSTREAD);
2824             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2825         }
2826 
2827         /*
2828          * We get here when the maximum number of rx buffers is less than
2829          * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2830          * it out here without concern of a memory leak.
2831          */
2832         fp->rx_mbuf_chain[cons].m = NULL;
2833     }
2834 
2835     /* update the Rx SW BD with the mbuf info from the TPA pool */
2836     fp->rx_mbuf_chain[index] = tmp_bd;
2837 
2838     /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2839     rx_bd = &fp->rx_chain[index];
2840     rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2841     rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2842 }
2843 
2844 /*
2845  * When a TPA aggregation is completed, loop through the individual mbufs
2846  * of the aggregation, combining them into a single mbuf which will be sent
2847  * up the stack. Refill all freed SGEs with mbufs as we go along.
2848  */
2849 static int
2850 bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2851                    struct bxe_fastpath       *fp,
2852                    struct bxe_sw_tpa_info    *tpa_info,
2853                    uint16_t                  queue,
2854                    uint16_t                  pages,
2855                    struct mbuf               *m,
2856 			       struct eth_end_agg_rx_cqe *cqe,
2857                    uint16_t                  cqe_idx)
2858 {
2859     struct mbuf *m_frag;
2860     uint32_t frag_len, frag_size, i;
2861     uint16_t sge_idx;
2862     int rc = 0;
2863     int j;
2864 
2865     frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2866 
2867     BLOGD(sc, DBG_LRO,
2868           "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2869           fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2870 
2871     /* make sure the aggregated frame is not too big to handle */
2872     if (pages > 8 * PAGES_PER_SGE) {
2873 
2874         uint32_t *tmp = (uint32_t *)cqe;
2875 
2876         BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2877                   "pkt_len=%d len_on_bd=%d frag_size=%d\n",
2878               fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2879               tpa_info->len_on_bd, frag_size);
2880 
2881         BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2882             *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2883 
2884         bxe_panic(sc, ("sge page count error\n"));
2885         return (EINVAL);
2886     }
2887 
2888     /*
2889      * Scan through the scatter gather list pulling individual mbufs into a
2890      * single mbuf for the host stack.
2891      */
2892     for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2893         sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2894 
2895         /*
2896          * Firmware gives the indices of the SGE as if the ring is an array
2897          * (meaning that the "next" element will consume 2 indices).
2898          */
2899         frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2900 
2901         BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2902                            "sge_idx=%d frag_size=%d frag_len=%d\n",
2903               fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2904 
2905         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2906 
2907         /* allocate a new mbuf for the SGE */
2908         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2909         if (rc) {
2910             /* Leave all remaining SGEs in the ring! */
2911             return (rc);
2912         }
2913 
2914         /* update the fragment length */
2915         m_frag->m_len = frag_len;
2916 
2917         /* concatenate the fragment to the head mbuf */
2918         m_cat(m, m_frag);
2919         fp->eth_q_stats.mbuf_alloc_sge--;
2920 
2921         /* update the TPA mbuf size and remaining fragment size */
2922         m->m_pkthdr.len += frag_len;
2923         frag_size -= frag_len;
2924     }
2925 
2926     BLOGD(sc, DBG_LRO,
2927           "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2928           fp->index, queue, frag_size);
2929 
2930     return (rc);
2931 }
2932 
2933 static inline void
2934 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2935 {
2936     int i, j;
2937 
2938     for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2939         int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2940 
2941         for (j = 0; j < 2; j++) {
2942             BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2943             idx--;
2944         }
2945     }
2946 }
2947 
2948 static inline void
2949 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2950 {
2951     /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2952     memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2953 
2954     /*
2955      * Clear the two last indices in the page to 1. These are the indices that
2956      * correspond to the "next" element, hence will never be indicated and
2957      * should be removed from the calculations.
2958      */
2959     bxe_clear_sge_mask_next_elems(fp);
2960 }
2961 
2962 static inline void
2963 bxe_update_last_max_sge(struct bxe_fastpath *fp,
2964                         uint16_t            idx)
2965 {
2966     uint16_t last_max = fp->last_max_sge;
2967 
2968     if (SUB_S16(idx, last_max) > 0) {
2969         fp->last_max_sge = idx;
2970     }
2971 }
2972 
2973 static inline void
2974 bxe_update_sge_prod(struct bxe_softc          *sc,
2975                     struct bxe_fastpath       *fp,
2976                     uint16_t                  sge_len,
2977                     union eth_sgl_or_raw_data *cqe)
2978 {
2979     uint16_t last_max, last_elem, first_elem;
2980     uint16_t delta = 0;
2981     uint16_t i;
2982 
2983     if (!sge_len) {
2984         return;
2985     }
2986 
2987     /* first mark all used pages */
2988     for (i = 0; i < sge_len; i++) {
2989         BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2990                             RX_SGE(le16toh(cqe->sgl[i])));
2991     }
2992 
2993     BLOGD(sc, DBG_LRO,
2994           "fp[%02d] fp_cqe->sgl[%d] = %d\n",
2995           fp->index, sge_len - 1,
2996           le16toh(cqe->sgl[sge_len - 1]));
2997 
2998     /* assume that the last SGE index is the biggest */
2999     bxe_update_last_max_sge(fp,
3000                             le16toh(cqe->sgl[sge_len - 1]));
3001 
3002     last_max = RX_SGE(fp->last_max_sge);
3003     last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3004     first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3005 
3006     /* if ring is not full */
3007     if (last_elem + 1 != first_elem) {
3008         last_elem++;
3009     }
3010 
3011     /* now update the prod */
3012     for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3013         if (__predict_true(fp->sge_mask[i])) {
3014             break;
3015         }
3016 
3017         fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3018         delta += BIT_VEC64_ELEM_SZ;
3019     }
3020 
3021     if (delta > 0) {
3022         fp->rx_sge_prod += delta;
3023         /* clear page-end entries */
3024         bxe_clear_sge_mask_next_elems(fp);
3025     }
3026 
3027     BLOGD(sc, DBG_LRO,
3028           "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3029           fp->index, fp->last_max_sge, fp->rx_sge_prod);
3030 }
3031 
3032 /*
3033  * The aggregation on the current TPA queue has completed. Pull the individual
3034  * mbuf fragments together into a single mbuf, perform all necessary checksum
3035  * calculations, and send the resuting mbuf to the stack.
3036  */
3037 static void
3038 bxe_tpa_stop(struct bxe_softc          *sc,
3039              struct bxe_fastpath       *fp,
3040              struct bxe_sw_tpa_info    *tpa_info,
3041              uint16_t                  queue,
3042              uint16_t                  pages,
3043 			 struct eth_end_agg_rx_cqe *cqe,
3044              uint16_t                  cqe_idx)
3045 {
3046     if_t ifp = sc->ifp;
3047     struct mbuf *m;
3048     int rc = 0;
3049 
3050     BLOGD(sc, DBG_LRO,
3051           "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3052           fp->index, queue, tpa_info->placement_offset,
3053           le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3054 
3055     m = tpa_info->bd.m;
3056 
3057     /* allocate a replacement before modifying existing mbuf */
3058     rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3059     if (rc) {
3060         /* drop the frame and log an error */
3061         fp->eth_q_stats.rx_soft_errors++;
3062         goto bxe_tpa_stop_exit;
3063     }
3064 
3065     /* we have a replacement, fixup the current mbuf */
3066     m_adj(m, tpa_info->placement_offset);
3067     m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3068 
3069     /* mark the checksums valid (taken care of by the firmware) */
3070     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3071     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3072     m->m_pkthdr.csum_data = 0xffff;
3073     m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3074                                CSUM_IP_VALID   |
3075                                CSUM_DATA_VALID |
3076                                CSUM_PSEUDO_HDR);
3077 
3078     /* aggregate all of the SGEs into a single mbuf */
3079     rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3080     if (rc) {
3081         /* drop the packet and log an error */
3082         fp->eth_q_stats.rx_soft_errors++;
3083         m_freem(m);
3084     } else {
3085         if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3086             m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3087             m->m_flags |= M_VLANTAG;
3088         }
3089 
3090         /* assign packet to this interface interface */
3091         if_setrcvif(m, ifp);
3092 
3093         /* specify what RSS queue was used for this flow */
3094         m->m_pkthdr.flowid = fp->index;
3095         BXE_SET_FLOWID(m);
3096 
3097         if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3098         fp->eth_q_stats.rx_tpa_pkts++;
3099 
3100         /* pass the frame to the stack */
3101         if_input(ifp, m);
3102     }
3103 
3104     /* we passed an mbuf up the stack or dropped the frame */
3105     fp->eth_q_stats.mbuf_alloc_tpa--;
3106 
3107 bxe_tpa_stop_exit:
3108 
3109     fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3110     fp->rx_tpa_queue_used &= ~(1 << queue);
3111 }
3112 
3113 static uint8_t
3114 bxe_service_rxsgl(
3115                  struct bxe_fastpath *fp,
3116                  uint16_t len,
3117                  uint16_t lenonbd,
3118                  struct mbuf *m,
3119                  struct eth_fast_path_rx_cqe *cqe_fp)
3120 {
3121     struct mbuf *m_frag;
3122     uint16_t frags, frag_len;
3123     uint16_t sge_idx = 0;
3124     uint16_t j;
3125     uint8_t i, rc = 0;
3126     uint32_t frag_size;
3127 
3128     /* adjust the mbuf */
3129     m->m_len = lenonbd;
3130 
3131     frag_size =  len - lenonbd;
3132     frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3133 
3134     for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3135         sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3136 
3137         m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3138         frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3139         m_frag->m_len = frag_len;
3140 
3141        /* allocate a new mbuf for the SGE */
3142         rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3143         if (rc) {
3144             /* Leave all remaining SGEs in the ring! */
3145             return (rc);
3146         }
3147         fp->eth_q_stats.mbuf_alloc_sge--;
3148 
3149         /* concatenate the fragment to the head mbuf */
3150         m_cat(m, m_frag);
3151 
3152         frag_size -= frag_len;
3153     }
3154 
3155     bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3156 
3157     return rc;
3158 }
3159 
3160 static uint8_t
3161 bxe_rxeof(struct bxe_softc    *sc,
3162           struct bxe_fastpath *fp)
3163 {
3164     if_t ifp = sc->ifp;
3165     uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3166     uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3167     int rx_pkts = 0;
3168     int rc = 0;
3169 
3170     BXE_FP_RX_LOCK(fp);
3171 
3172     /* CQ "next element" is of the size of the regular element */
3173     hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3174     if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3175         hw_cq_cons++;
3176     }
3177 
3178     bd_cons = fp->rx_bd_cons;
3179     bd_prod = fp->rx_bd_prod;
3180     bd_prod_fw = bd_prod;
3181     sw_cq_cons = fp->rx_cq_cons;
3182     sw_cq_prod = fp->rx_cq_prod;
3183 
3184     /*
3185      * Memory barrier necessary as speculative reads of the rx
3186      * buffer can be ahead of the index in the status block
3187      */
3188     rmb();
3189 
3190     BLOGD(sc, DBG_RX,
3191           "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3192           fp->index, hw_cq_cons, sw_cq_cons);
3193 
3194     while (sw_cq_cons != hw_cq_cons) {
3195         struct bxe_sw_rx_bd *rx_buf = NULL;
3196         union eth_rx_cqe *cqe;
3197         struct eth_fast_path_rx_cqe *cqe_fp;
3198         uint8_t cqe_fp_flags;
3199         enum eth_rx_cqe_type cqe_fp_type;
3200         uint16_t len, lenonbd,  pad;
3201         struct mbuf *m = NULL;
3202 
3203         comp_ring_cons = RCQ(sw_cq_cons);
3204         bd_prod = RX_BD(bd_prod);
3205         bd_cons = RX_BD(bd_cons);
3206 
3207         cqe          = &fp->rcq_chain[comp_ring_cons];
3208         cqe_fp       = &cqe->fast_path_cqe;
3209         cqe_fp_flags = cqe_fp->type_error_flags;
3210         cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3211 
3212         BLOGD(sc, DBG_RX,
3213               "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3214               "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3215               "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3216               fp->index,
3217               hw_cq_cons,
3218               sw_cq_cons,
3219               bd_prod,
3220               bd_cons,
3221               CQE_TYPE(cqe_fp_flags),
3222               cqe_fp_flags,
3223               cqe_fp->status_flags,
3224               le32toh(cqe_fp->rss_hash_result),
3225               le16toh(cqe_fp->vlan_tag),
3226               le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3227               le16toh(cqe_fp->len_on_bd));
3228 
3229         /* is this a slowpath msg? */
3230         if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3231             bxe_sp_event(sc, fp, cqe);
3232             goto next_cqe;
3233         }
3234 
3235         rx_buf = &fp->rx_mbuf_chain[bd_cons];
3236 
3237         if (!CQE_TYPE_FAST(cqe_fp_type)) {
3238             struct bxe_sw_tpa_info *tpa_info;
3239             uint16_t frag_size, pages;
3240             uint8_t queue;
3241 
3242             if (CQE_TYPE_START(cqe_fp_type)) {
3243                 bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3244                               bd_cons, bd_prod, cqe_fp);
3245                 m = NULL; /* packet not ready yet */
3246                 goto next_rx;
3247             }
3248 
3249             KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3250                     ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3251 
3252             queue = cqe->end_agg_cqe.queue_index;
3253             tpa_info = &fp->rx_tpa_info[queue];
3254 
3255             BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3256                   fp->index, queue);
3257 
3258             frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3259                          tpa_info->len_on_bd);
3260             pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3261 
3262             bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3263                          &cqe->end_agg_cqe, comp_ring_cons);
3264 
3265             bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3266 
3267             goto next_cqe;
3268         }
3269 
3270         /* non TPA */
3271 
3272         /* is this an error packet? */
3273         if (__predict_false(cqe_fp_flags &
3274                             ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3275             BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3276             fp->eth_q_stats.rx_soft_errors++;
3277             goto next_rx;
3278         }
3279 
3280         len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3281         lenonbd = le16toh(cqe_fp->len_on_bd);
3282         pad = cqe_fp->placement_offset;
3283 
3284         m = rx_buf->m;
3285 
3286         if (__predict_false(m == NULL)) {
3287             BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3288                   bd_cons, fp->index);
3289             goto next_rx;
3290         }
3291 
3292         /* XXX double copy if packet length under a threshold */
3293 
3294         /*
3295          * If all the buffer descriptors are filled with mbufs then fill in
3296          * the current consumer index with a new BD. Else if a maximum Rx
3297          * buffer limit is imposed then fill in the next producer index.
3298          */
3299         rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3300                                   (sc->max_rx_bufs != RX_BD_USABLE) ?
3301                                       bd_prod : bd_cons);
3302         if (rc != 0) {
3303 
3304             /* we simply reuse the received mbuf and don't post it to the stack */
3305             m = NULL;
3306 
3307             BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3308                   fp->index, rc);
3309             fp->eth_q_stats.rx_soft_errors++;
3310 
3311             if (sc->max_rx_bufs != RX_BD_USABLE) {
3312                 /* copy this consumer index to the producer index */
3313                 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3314                        sizeof(struct bxe_sw_rx_bd));
3315                 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3316             }
3317 
3318             goto next_rx;
3319         }
3320 
3321         /* current mbuf was detached from the bd */
3322         fp->eth_q_stats.mbuf_alloc_rx--;
3323 
3324         /* we allocated a replacement mbuf, fixup the current one */
3325         m_adj(m, pad);
3326         m->m_pkthdr.len = m->m_len = len;
3327 
3328         if ((len > 60) && (len > lenonbd)) {
3329             fp->eth_q_stats.rx_bxe_service_rxsgl++;
3330             rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3331             if (rc)
3332                 break;
3333             fp->eth_q_stats.rx_jumbo_sge_pkts++;
3334         } else if (lenonbd < len) {
3335             fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3336         }
3337 
3338         /* assign packet to this interface interface */
3339 	if_setrcvif(m, ifp);
3340 
3341         /* assume no hardware checksum has complated */
3342         m->m_pkthdr.csum_flags = 0;
3343 
3344         /* validate checksum if offload enabled */
3345         if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3346             /* check for a valid IP frame */
3347             if (!(cqe->fast_path_cqe.status_flags &
3348                   ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3349                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3350                 if (__predict_false(cqe_fp_flags &
3351                                     ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3352                     fp->eth_q_stats.rx_hw_csum_errors++;
3353                 } else {
3354                     fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3355                     m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3356                 }
3357             }
3358 
3359             /* check for a valid TCP/UDP frame */
3360             if (!(cqe->fast_path_cqe.status_flags &
3361                   ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3362                 if (__predict_false(cqe_fp_flags &
3363                                     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3364                     fp->eth_q_stats.rx_hw_csum_errors++;
3365                 } else {
3366                     fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3367                     m->m_pkthdr.csum_data = 0xFFFF;
3368                     m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3369                                                CSUM_PSEUDO_HDR);
3370                 }
3371             }
3372         }
3373 
3374         /* if there is a VLAN tag then flag that info */
3375         if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3376             m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3377             m->m_flags |= M_VLANTAG;
3378         }
3379 
3380         /* specify what RSS queue was used for this flow */
3381         m->m_pkthdr.flowid = fp->index;
3382         BXE_SET_FLOWID(m);
3383 
3384 next_rx:
3385 
3386         bd_cons    = RX_BD_NEXT(bd_cons);
3387         bd_prod    = RX_BD_NEXT(bd_prod);
3388         bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3389 
3390         /* pass the frame to the stack */
3391         if (__predict_true(m != NULL)) {
3392             if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3393             rx_pkts++;
3394             if_input(ifp, m);
3395         }
3396 
3397 next_cqe:
3398 
3399         sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3400         sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3401 
3402         /* limit spinning on the queue */
3403         if (rc != 0)
3404             break;
3405 
3406         if (rx_pkts == sc->rx_budget) {
3407             fp->eth_q_stats.rx_budget_reached++;
3408             break;
3409         }
3410     } /* while work to do */
3411 
3412     fp->rx_bd_cons = bd_cons;
3413     fp->rx_bd_prod = bd_prod_fw;
3414     fp->rx_cq_cons = sw_cq_cons;
3415     fp->rx_cq_prod = sw_cq_prod;
3416 
3417     /* Update producers */
3418     bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3419 
3420     fp->eth_q_stats.rx_pkts += rx_pkts;
3421     fp->eth_q_stats.rx_calls++;
3422 
3423     BXE_FP_RX_UNLOCK(fp);
3424 
3425     return (sw_cq_cons != hw_cq_cons);
3426 }
3427 
3428 static uint16_t
3429 bxe_free_tx_pkt(struct bxe_softc    *sc,
3430                 struct bxe_fastpath *fp,
3431                 uint16_t            idx)
3432 {
3433     struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3434     struct eth_tx_start_bd *tx_start_bd;
3435     uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3436     uint16_t new_cons;
3437     int nbd;
3438 
3439     /* unmap the mbuf from non-paged memory */
3440     bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3441 
3442     tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3443     nbd = le16toh(tx_start_bd->nbd) - 1;
3444 
3445     new_cons = (tx_buf->first_bd + nbd);
3446 
3447     /* free the mbuf */
3448     if (__predict_true(tx_buf->m != NULL)) {
3449         m_freem(tx_buf->m);
3450         fp->eth_q_stats.mbuf_alloc_tx--;
3451     } else {
3452         fp->eth_q_stats.tx_chain_lost_mbuf++;
3453     }
3454 
3455     tx_buf->m = NULL;
3456     tx_buf->first_bd = 0;
3457 
3458     return (new_cons);
3459 }
3460 
3461 /* transmit timeout watchdog */
3462 static int
3463 bxe_watchdog(struct bxe_softc    *sc,
3464              struct bxe_fastpath *fp)
3465 {
3466     BXE_FP_TX_LOCK(fp);
3467 
3468     if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3469         BXE_FP_TX_UNLOCK(fp);
3470         return (0);
3471     }
3472 
3473     BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3474 
3475     BXE_FP_TX_UNLOCK(fp);
3476     BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
3477     taskqueue_enqueue_timeout(taskqueue_thread,
3478         &sc->sp_err_timeout_task, hz/10);
3479 
3480     return (-1);
3481 }
3482 
3483 /* processes transmit completions */
3484 static uint8_t
3485 bxe_txeof(struct bxe_softc    *sc,
3486           struct bxe_fastpath *fp)
3487 {
3488     if_t ifp = sc->ifp;
3489     uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3490     uint16_t tx_bd_avail;
3491 
3492     BXE_FP_TX_LOCK_ASSERT(fp);
3493 
3494     bd_cons = fp->tx_bd_cons;
3495     hw_cons = le16toh(*fp->tx_cons_sb);
3496     sw_cons = fp->tx_pkt_cons;
3497 
3498     while (sw_cons != hw_cons) {
3499         pkt_cons = TX_BD(sw_cons);
3500 
3501         BLOGD(sc, DBG_TX,
3502               "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3503               fp->index, hw_cons, sw_cons, pkt_cons);
3504 
3505         bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3506 
3507         sw_cons++;
3508     }
3509 
3510     fp->tx_pkt_cons = sw_cons;
3511     fp->tx_bd_cons  = bd_cons;
3512 
3513     BLOGD(sc, DBG_TX,
3514           "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3515           fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3516 
3517     mb();
3518 
3519     tx_bd_avail = bxe_tx_avail(sc, fp);
3520 
3521     if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3522         if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3523     } else {
3524         if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3525     }
3526 
3527     if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3528         /* reset the watchdog timer if there are pending transmits */
3529         fp->watchdog_timer = BXE_TX_TIMEOUT;
3530         return (TRUE);
3531     } else {
3532         /* clear watchdog when there are no pending transmits */
3533         fp->watchdog_timer = 0;
3534         return (FALSE);
3535     }
3536 }
3537 
3538 static void
3539 bxe_drain_tx_queues(struct bxe_softc *sc)
3540 {
3541     struct bxe_fastpath *fp;
3542     int i, count;
3543 
3544     /* wait until all TX fastpath tasks have completed */
3545     for (i = 0; i < sc->num_queues; i++) {
3546         fp = &sc->fp[i];
3547 
3548         count = 1000;
3549 
3550         while (bxe_has_tx_work(fp)) {
3551 
3552             BXE_FP_TX_LOCK(fp);
3553             bxe_txeof(sc, fp);
3554             BXE_FP_TX_UNLOCK(fp);
3555 
3556             if (count == 0) {
3557                 BLOGE(sc, "Timeout waiting for fp[%d] "
3558                           "transmits to complete!\n", i);
3559                 bxe_panic(sc, ("tx drain failure\n"));
3560                 return;
3561             }
3562 
3563             count--;
3564             DELAY(1000);
3565             rmb();
3566         }
3567     }
3568 
3569     return;
3570 }
3571 
3572 static int
3573 bxe_del_all_macs(struct bxe_softc          *sc,
3574                  struct ecore_vlan_mac_obj *mac_obj,
3575                  int                       mac_type,
3576                  uint8_t                   wait_for_comp)
3577 {
3578     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3579     int rc;
3580 
3581     /* wait for completion of requested */
3582     if (wait_for_comp) {
3583         bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3584     }
3585 
3586     /* Set the mac type of addresses we want to clear */
3587     bxe_set_bit(mac_type, &vlan_mac_flags);
3588 
3589     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3590     if (rc < 0) {
3591         BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3592             rc, mac_type, wait_for_comp);
3593     }
3594 
3595     return (rc);
3596 }
3597 
3598 static int
3599 bxe_fill_accept_flags(struct bxe_softc *sc,
3600                       uint32_t         rx_mode,
3601                       unsigned long    *rx_accept_flags,
3602                       unsigned long    *tx_accept_flags)
3603 {
3604     /* Clear the flags first */
3605     *rx_accept_flags = 0;
3606     *tx_accept_flags = 0;
3607 
3608     switch (rx_mode) {
3609     case BXE_RX_MODE_NONE:
3610         /*
3611          * 'drop all' supersedes any accept flags that may have been
3612          * passed to the function.
3613          */
3614         break;
3615 
3616     case BXE_RX_MODE_NORMAL:
3617         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3618         bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3619         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3620 
3621         /* internal switching mode */
3622         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3623         bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3624         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3625 
3626         break;
3627 
3628     case BXE_RX_MODE_ALLMULTI:
3629         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3630         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3631         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3632 
3633         /* internal switching mode */
3634         bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3635         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3636         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3637 
3638         break;
3639 
3640     case BXE_RX_MODE_PROMISC:
3641         /*
3642          * According to deffinition of SI mode, iface in promisc mode
3643          * should receive matched and unmatched (in resolution of port)
3644          * unicast packets.
3645          */
3646         bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3647         bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3648         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3649         bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3650 
3651         /* internal switching mode */
3652         bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3653         bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3654 
3655         if (IS_MF_SI(sc)) {
3656             bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3657         } else {
3658             bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3659         }
3660 
3661         break;
3662 
3663     default:
3664         BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3665         return (-1);
3666     }
3667 
3668     /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3669     if (rx_mode != BXE_RX_MODE_NONE) {
3670         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3671         bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3672     }
3673 
3674     return (0);
3675 }
3676 
3677 static int
3678 bxe_set_q_rx_mode(struct bxe_softc *sc,
3679                   uint8_t          cl_id,
3680                   unsigned long    rx_mode_flags,
3681                   unsigned long    rx_accept_flags,
3682                   unsigned long    tx_accept_flags,
3683                   unsigned long    ramrod_flags)
3684 {
3685     struct ecore_rx_mode_ramrod_params ramrod_param;
3686     int rc;
3687 
3688     memset(&ramrod_param, 0, sizeof(ramrod_param));
3689 
3690     /* Prepare ramrod parameters */
3691     ramrod_param.cid = 0;
3692     ramrod_param.cl_id = cl_id;
3693     ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3694     ramrod_param.func_id = SC_FUNC(sc);
3695 
3696     ramrod_param.pstate = &sc->sp_state;
3697     ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3698 
3699     ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3700     ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3701 
3702     bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3703 
3704     ramrod_param.ramrod_flags = ramrod_flags;
3705     ramrod_param.rx_mode_flags = rx_mode_flags;
3706 
3707     ramrod_param.rx_accept_flags = rx_accept_flags;
3708     ramrod_param.tx_accept_flags = tx_accept_flags;
3709 
3710     rc = ecore_config_rx_mode(sc, &ramrod_param);
3711     if (rc < 0) {
3712         BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3713             "rx_accept_flags 0x%x tx_accept_flags 0x%x "
3714             "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3715             (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3716             (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3717         return (rc);
3718     }
3719 
3720     return (0);
3721 }
3722 
3723 static int
3724 bxe_set_storm_rx_mode(struct bxe_softc *sc)
3725 {
3726     unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3727     unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3728     int rc;
3729 
3730     rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3731                                &tx_accept_flags);
3732     if (rc) {
3733         return (rc);
3734     }
3735 
3736     bxe_set_bit(RAMROD_RX, &ramrod_flags);
3737     bxe_set_bit(RAMROD_TX, &ramrod_flags);
3738 
3739     /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3740     return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3741                               rx_accept_flags, tx_accept_flags,
3742                               ramrod_flags));
3743 }
3744 
3745 /* returns the "mcp load_code" according to global load_count array */
3746 static int
3747 bxe_nic_load_no_mcp(struct bxe_softc *sc)
3748 {
3749     int path = SC_PATH(sc);
3750     int port = SC_PORT(sc);
3751 
3752     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3753           path, load_count[path][0], load_count[path][1],
3754           load_count[path][2]);
3755     load_count[path][0]++;
3756     load_count[path][1 + port]++;
3757     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3758           path, load_count[path][0], load_count[path][1],
3759           load_count[path][2]);
3760     if (load_count[path][0] == 1) {
3761         return (FW_MSG_CODE_DRV_LOAD_COMMON);
3762     } else if (load_count[path][1 + port] == 1) {
3763         return (FW_MSG_CODE_DRV_LOAD_PORT);
3764     } else {
3765         return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3766     }
3767 }
3768 
3769 /* returns the "mcp load_code" according to global load_count array */
3770 static int
3771 bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3772 {
3773     int port = SC_PORT(sc);
3774     int path = SC_PATH(sc);
3775 
3776     BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3777           path, load_count[path][0], load_count[path][1],
3778           load_count[path][2]);
3779     load_count[path][0]--;
3780     load_count[path][1 + port]--;
3781     BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3782           path, load_count[path][0], load_count[path][1],
3783           load_count[path][2]);
3784     if (load_count[path][0] == 0) {
3785         return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3786     } else if (load_count[path][1 + port] == 0) {
3787         return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3788     } else {
3789         return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3790     }
3791 }
3792 
3793 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3794 static uint32_t
3795 bxe_send_unload_req(struct bxe_softc *sc,
3796                     int              unload_mode)
3797 {
3798     uint32_t reset_code = 0;
3799 
3800     /* Select the UNLOAD request mode */
3801     if (unload_mode == UNLOAD_NORMAL) {
3802         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3803     } else {
3804         reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3805     }
3806 
3807     /* Send the request to the MCP */
3808     if (!BXE_NOMCP(sc)) {
3809         reset_code = bxe_fw_command(sc, reset_code, 0);
3810     } else {
3811         reset_code = bxe_nic_unload_no_mcp(sc);
3812     }
3813 
3814     return (reset_code);
3815 }
3816 
3817 /* send UNLOAD_DONE command to the MCP */
3818 static void
3819 bxe_send_unload_done(struct bxe_softc *sc,
3820                      uint8_t          keep_link)
3821 {
3822     uint32_t reset_param =
3823         keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3824 
3825     /* Report UNLOAD_DONE to MCP */
3826     if (!BXE_NOMCP(sc)) {
3827         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3828     }
3829 }
3830 
3831 static int
3832 bxe_func_wait_started(struct bxe_softc *sc)
3833 {
3834     int tout = 50;
3835 
3836     if (!sc->port.pmf) {
3837         return (0);
3838     }
3839 
3840     /*
3841      * (assumption: No Attention from MCP at this stage)
3842      * PMF probably in the middle of TX disable/enable transaction
3843      * 1. Sync IRS for default SB
3844      * 2. Sync SP queue - this guarantees us that attention handling started
3845      * 3. Wait, that TX disable/enable transaction completes
3846      *
3847      * 1+2 guarantee that if DCBX attention was scheduled it already changed
3848      * pending bit of transaction from STARTED-->TX_STOPPED, if we already
3849      * received completion for the transaction the state is TX_STOPPED.
3850      * State will return to STARTED after completion of TX_STOPPED-->STARTED
3851      * transaction.
3852      */
3853 
3854     /* XXX make sure default SB ISR is done */
3855     /* need a way to synchronize an irq (intr_mtx?) */
3856 
3857     /* XXX flush any work queues */
3858 
3859     while (ecore_func_get_state(sc, &sc->func_obj) !=
3860            ECORE_F_STATE_STARTED && tout--) {
3861         DELAY(20000);
3862     }
3863 
3864     if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3865         /*
3866          * Failed to complete the transaction in a "good way"
3867          * Force both transactions with CLR bit.
3868          */
3869         struct ecore_func_state_params func_params = { NULL };
3870 
3871         BLOGE(sc, "Unexpected function state! "
3872                   "Forcing STARTED-->TX_STOPPED-->STARTED\n");
3873 
3874         func_params.f_obj = &sc->func_obj;
3875         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3876 
3877         /* STARTED-->TX_STOPPED */
3878         func_params.cmd = ECORE_F_CMD_TX_STOP;
3879         ecore_func_state_change(sc, &func_params);
3880 
3881         /* TX_STOPPED-->STARTED */
3882         func_params.cmd = ECORE_F_CMD_TX_START;
3883         return (ecore_func_state_change(sc, &func_params));
3884     }
3885 
3886     return (0);
3887 }
3888 
3889 static int
3890 bxe_stop_queue(struct bxe_softc *sc,
3891                int              index)
3892 {
3893     struct bxe_fastpath *fp = &sc->fp[index];
3894     struct ecore_queue_state_params q_params = { NULL };
3895     int rc;
3896 
3897     BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3898 
3899     q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3900     /* We want to wait for completion in this context */
3901     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3902 
3903     /* Stop the primary connection: */
3904 
3905     /* ...halt the connection */
3906     q_params.cmd = ECORE_Q_CMD_HALT;
3907     rc = ecore_queue_state_change(sc, &q_params);
3908     if (rc) {
3909         return (rc);
3910     }
3911 
3912     /* ...terminate the connection */
3913     q_params.cmd = ECORE_Q_CMD_TERMINATE;
3914     memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3915     q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3916     rc = ecore_queue_state_change(sc, &q_params);
3917     if (rc) {
3918         return (rc);
3919     }
3920 
3921     /* ...delete cfc entry */
3922     q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3923     memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3924     q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3925     return (ecore_queue_state_change(sc, &q_params));
3926 }
3927 
3928 /* wait for the outstanding SP commands */
3929 static inline uint8_t
3930 bxe_wait_sp_comp(struct bxe_softc *sc,
3931                  unsigned long    mask)
3932 {
3933     unsigned long tmp;
3934     int tout = 5000; /* wait for 5 secs tops */
3935 
3936     while (tout--) {
3937         mb();
3938         if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3939             return (TRUE);
3940         }
3941 
3942         DELAY(1000);
3943     }
3944 
3945     mb();
3946 
3947     tmp = atomic_load_acq_long(&sc->sp_state);
3948     if (tmp & mask) {
3949         BLOGE(sc, "Filtering completion timed out: "
3950                   "sp_state 0x%lx, mask 0x%lx\n",
3951               tmp, mask);
3952         return (FALSE);
3953     }
3954 
3955     return (FALSE);
3956 }
3957 
3958 static int
3959 bxe_func_stop(struct bxe_softc *sc)
3960 {
3961     struct ecore_func_state_params func_params = { NULL };
3962     int rc;
3963 
3964     /* prepare parameters for function state transitions */
3965     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3966     func_params.f_obj = &sc->func_obj;
3967     func_params.cmd = ECORE_F_CMD_STOP;
3968 
3969     /*
3970      * Try to stop the function the 'good way'. If it fails (in case
3971      * of a parity error during bxe_chip_cleanup()) and we are
3972      * not in a debug mode, perform a state transaction in order to
3973      * enable further HW_RESET transaction.
3974      */
3975     rc = ecore_func_state_change(sc, &func_params);
3976     if (rc) {
3977         BLOGE(sc, "FUNC_STOP ramrod failed. "
3978                   "Running a dry transaction (%d)\n", rc);
3979         bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3980         return (ecore_func_state_change(sc, &func_params));
3981     }
3982 
3983     return (0);
3984 }
3985 
3986 static int
3987 bxe_reset_hw(struct bxe_softc *sc,
3988              uint32_t         load_code)
3989 {
3990     struct ecore_func_state_params func_params = { NULL };
3991 
3992     /* Prepare parameters for function state transitions */
3993     bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3994 
3995     func_params.f_obj = &sc->func_obj;
3996     func_params.cmd = ECORE_F_CMD_HW_RESET;
3997 
3998     func_params.params.hw_init.load_phase = load_code;
3999 
4000     return (ecore_func_state_change(sc, &func_params));
4001 }
4002 
4003 static void
4004 bxe_int_disable_sync(struct bxe_softc *sc,
4005                      int              disable_hw)
4006 {
4007     if (disable_hw) {
4008         /* prevent the HW from sending interrupts */
4009         bxe_int_disable(sc);
4010     }
4011 
4012     /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4013     /* make sure all ISRs are done */
4014 
4015     /* XXX make sure sp_task is not running */
4016     /* cancel and flush work queues */
4017 }
4018 
4019 static void
4020 bxe_chip_cleanup(struct bxe_softc *sc,
4021                  uint32_t         unload_mode,
4022                  uint8_t          keep_link)
4023 {
4024     int port = SC_PORT(sc);
4025     struct ecore_mcast_ramrod_params rparam = { NULL };
4026     uint32_t reset_code;
4027     int i, rc = 0;
4028 
4029     bxe_drain_tx_queues(sc);
4030 
4031     /* give HW time to discard old tx messages */
4032     DELAY(1000);
4033 
4034     /* Clean all ETH MACs */
4035     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4036     if (rc < 0) {
4037         BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4038     }
4039 
4040     /* Clean up UC list  */
4041     rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4042     if (rc < 0) {
4043         BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4044     }
4045 
4046     /* Disable LLH */
4047     if (!CHIP_IS_E1(sc)) {
4048         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4049     }
4050 
4051     /* Set "drop all" to stop Rx */
4052 
4053     /*
4054      * We need to take the BXE_MCAST_LOCK() here in order to prevent
4055      * a race between the completion code and this code.
4056      */
4057     BXE_MCAST_LOCK(sc);
4058 
4059     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4060         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4061     } else {
4062         bxe_set_storm_rx_mode(sc);
4063     }
4064 
4065     /* Clean up multicast configuration */
4066     rparam.mcast_obj = &sc->mcast_obj;
4067     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4068     if (rc < 0) {
4069         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4070     }
4071 
4072     BXE_MCAST_UNLOCK(sc);
4073 
4074     // XXX bxe_iov_chip_cleanup(sc);
4075 
4076     /*
4077      * Send the UNLOAD_REQUEST to the MCP. This will return if
4078      * this function should perform FUNCTION, PORT, or COMMON HW
4079      * reset.
4080      */
4081     reset_code = bxe_send_unload_req(sc, unload_mode);
4082 
4083     /*
4084      * (assumption: No Attention from MCP at this stage)
4085      * PMF probably in the middle of TX disable/enable transaction
4086      */
4087     rc = bxe_func_wait_started(sc);
4088     if (rc) {
4089         BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4090     }
4091 
4092     /*
4093      * Close multi and leading connections
4094      * Completions for ramrods are collected in a synchronous way
4095      */
4096     for (i = 0; i < sc->num_queues; i++) {
4097         if (bxe_stop_queue(sc, i)) {
4098             goto unload_error;
4099         }
4100     }
4101 
4102     /*
4103      * If SP settings didn't get completed so far - something
4104      * very wrong has happen.
4105      */
4106     if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4107         BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4108     }
4109 
4110 unload_error:
4111 
4112     rc = bxe_func_stop(sc);
4113     if (rc) {
4114         BLOGE(sc, "Function stop failed!(%d)\n", rc);
4115     }
4116 
4117     /* disable HW interrupts */
4118     bxe_int_disable_sync(sc, TRUE);
4119 
4120     /* detach interrupts */
4121     bxe_interrupt_detach(sc);
4122 
4123     /* Reset the chip */
4124     rc = bxe_reset_hw(sc, reset_code);
4125     if (rc) {
4126         BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4127     }
4128 
4129     /* Report UNLOAD_DONE to MCP */
4130     bxe_send_unload_done(sc, keep_link);
4131 }
4132 
4133 static void
4134 bxe_disable_close_the_gate(struct bxe_softc *sc)
4135 {
4136     uint32_t val;
4137     int port = SC_PORT(sc);
4138 
4139     BLOGD(sc, DBG_LOAD,
4140           "Disabling 'close the gates'\n");
4141 
4142     if (CHIP_IS_E1(sc)) {
4143         uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4144                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
4145         val = REG_RD(sc, addr);
4146         val &= ~(0x300);
4147         REG_WR(sc, addr, val);
4148     } else {
4149         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4150         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4151                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4152         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4153     }
4154 }
4155 
4156 /*
4157  * Cleans the object that have internal lists without sending
4158  * ramrods. Should be run when interrupts are disabled.
4159  */
4160 static void
4161 bxe_squeeze_objects(struct bxe_softc *sc)
4162 {
4163     unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4164     struct ecore_mcast_ramrod_params rparam = { NULL };
4165     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4166     int rc;
4167 
4168     /* Cleanup MACs' object first... */
4169 
4170     /* Wait for completion of requested */
4171     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4172     /* Perform a dry cleanup */
4173     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4174 
4175     /* Clean ETH primary MAC */
4176     bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4177     rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4178                              &ramrod_flags);
4179     if (rc != 0) {
4180         BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4181     }
4182 
4183     /* Cleanup UC list */
4184     vlan_mac_flags = 0;
4185     bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4186     rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4187                              &ramrod_flags);
4188     if (rc != 0) {
4189         BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4190     }
4191 
4192     /* Now clean mcast object... */
4193 
4194     rparam.mcast_obj = &sc->mcast_obj;
4195     bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4196 
4197     /* Add a DEL command... */
4198     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4199     if (rc < 0) {
4200         BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4201     }
4202 
4203     /* now wait until all pending commands are cleared */
4204 
4205     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4206     while (rc != 0) {
4207         if (rc < 0) {
4208             BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4209             return;
4210         }
4211 
4212         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4213     }
4214 }
4215 
4216 /* stop the controller */
4217 static __noinline int
4218 bxe_nic_unload(struct bxe_softc *sc,
4219                uint32_t         unload_mode,
4220                uint8_t          keep_link)
4221 {
4222     uint8_t global = FALSE;
4223     uint32_t val;
4224     int i;
4225 
4226     BXE_CORE_LOCK_ASSERT(sc);
4227 
4228     if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4229 
4230     for (i = 0; i < sc->num_queues; i++) {
4231         struct bxe_fastpath *fp;
4232 
4233         fp = &sc->fp[i];
4234 	fp->watchdog_timer = 0;
4235         BXE_FP_TX_LOCK(fp);
4236         BXE_FP_TX_UNLOCK(fp);
4237     }
4238 
4239     BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4240 
4241     /* mark driver as unloaded in shmem2 */
4242     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4243         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4244         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4245                   val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4246     }
4247 
4248     if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4249         (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4250 
4251 	if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
4252             /*
4253              * We can get here if the driver has been unloaded
4254              * during parity error recovery and is either waiting for a
4255              * leader to complete or for other functions to unload and
4256              * then ifconfig down has been issued. In this case we want to
4257              * unload and let other functions to complete a recovery
4258              * process.
4259              */
4260             sc->recovery_state = BXE_RECOVERY_DONE;
4261             sc->is_leader = 0;
4262             bxe_release_leader_lock(sc);
4263             mb();
4264             BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4265 	}
4266         BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4267             " state = 0x%x\n", sc->recovery_state, sc->state);
4268         return (-1);
4269     }
4270 
4271     /*
4272      * Nothing to do during unload if previous bxe_nic_load()
4273      * did not completed successfully - all resourses are released.
4274      */
4275     if ((sc->state == BXE_STATE_CLOSED) ||
4276         (sc->state == BXE_STATE_ERROR)) {
4277         return (0);
4278     }
4279 
4280     sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4281     mb();
4282 
4283     /* stop tx */
4284     bxe_tx_disable(sc);
4285 
4286     sc->rx_mode = BXE_RX_MODE_NONE;
4287     /* XXX set rx mode ??? */
4288 
4289     if (IS_PF(sc) && !sc->grcdump_done) {
4290         /* set ALWAYS_ALIVE bit in shmem */
4291         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4292 
4293         bxe_drv_pulse(sc);
4294 
4295         bxe_stats_handle(sc, STATS_EVENT_STOP);
4296         bxe_save_statistics(sc);
4297     }
4298 
4299     /* wait till consumers catch up with producers in all queues */
4300     bxe_drain_tx_queues(sc);
4301 
4302     /* if VF indicate to PF this function is going down (PF will delete sp
4303      * elements and clear initializations
4304      */
4305     if (IS_VF(sc)) {
4306         ; /* bxe_vfpf_close_vf(sc); */
4307     } else if (unload_mode != UNLOAD_RECOVERY) {
4308         /* if this is a normal/close unload need to clean up chip */
4309         if (!sc->grcdump_done)
4310             bxe_chip_cleanup(sc, unload_mode, keep_link);
4311     } else {
4312         /* Send the UNLOAD_REQUEST to the MCP */
4313         bxe_send_unload_req(sc, unload_mode);
4314 
4315         /*
4316          * Prevent transactions to host from the functions on the
4317          * engine that doesn't reset global blocks in case of global
4318          * attention once gloabl blocks are reset and gates are opened
4319          * (the engine which leader will perform the recovery
4320          * last).
4321          */
4322         if (!CHIP_IS_E1x(sc)) {
4323             bxe_pf_disable(sc);
4324         }
4325 
4326         /* disable HW interrupts */
4327         bxe_int_disable_sync(sc, TRUE);
4328 
4329         /* detach interrupts */
4330         bxe_interrupt_detach(sc);
4331 
4332         /* Report UNLOAD_DONE to MCP */
4333         bxe_send_unload_done(sc, FALSE);
4334     }
4335 
4336     /*
4337      * At this stage no more interrupts will arrive so we may safely clean
4338      * the queue'able objects here in case they failed to get cleaned so far.
4339      */
4340     if (IS_PF(sc)) {
4341         bxe_squeeze_objects(sc);
4342     }
4343 
4344     /* There should be no more pending SP commands at this stage */
4345     sc->sp_state = 0;
4346 
4347     sc->port.pmf = 0;
4348 
4349     bxe_free_fp_buffers(sc);
4350 
4351     if (IS_PF(sc)) {
4352         bxe_free_mem(sc);
4353     }
4354 
4355     bxe_free_fw_stats_mem(sc);
4356 
4357     sc->state = BXE_STATE_CLOSED;
4358 
4359     /*
4360      * Check if there are pending parity attentions. If there are - set
4361      * RECOVERY_IN_PROGRESS.
4362      */
4363     if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4364         bxe_set_reset_in_progress(sc);
4365 
4366         /* Set RESET_IS_GLOBAL if needed */
4367         if (global) {
4368             bxe_set_reset_global(sc);
4369         }
4370     }
4371 
4372     /*
4373      * The last driver must disable a "close the gate" if there is no
4374      * parity attention or "process kill" pending.
4375      */
4376     if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4377         bxe_reset_is_done(sc, SC_PATH(sc))) {
4378         bxe_disable_close_the_gate(sc);
4379     }
4380 
4381     BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4382 
4383     bxe_link_report(sc);
4384 
4385     return (0);
4386 }
4387 
4388 /*
4389  * Called by the OS to set various media options (i.e. link, speed, etc.) when
4390  * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4391  */
4392 static int
4393 bxe_ifmedia_update(if_t ifp)
4394 {
4395     struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4396     struct ifmedia *ifm;
4397 
4398     ifm = &sc->ifmedia;
4399 
4400     /* We only support Ethernet media type. */
4401     if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4402         return (EINVAL);
4403     }
4404 
4405     switch (IFM_SUBTYPE(ifm->ifm_media)) {
4406     case IFM_AUTO:
4407          break;
4408     case IFM_10G_CX4:
4409     case IFM_10G_SR:
4410     case IFM_10G_T:
4411     case IFM_10G_TWINAX:
4412     default:
4413         /* We don't support changing the media type. */
4414         BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4415               IFM_SUBTYPE(ifm->ifm_media));
4416         return (EINVAL);
4417     }
4418 
4419     return (0);
4420 }
4421 
4422 /*
4423  * Called by the OS to get the current media status (i.e. link, speed, etc.).
4424  */
4425 static void
4426 bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr)
4427 {
4428     struct bxe_softc *sc = if_getsoftc(ifp);
4429 
4430     /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
4431        line if the IFM_AVALID flag is *NOT* set. So we need to set this
4432        flag unconditionally (irrespective of the admininistrative
4433        'up/down' state of the interface) to ensure that the line is always
4434        displayed.
4435     */
4436     ifmr->ifm_status = IFM_AVALID;
4437 
4438     /* Setup the default interface info. */
4439     ifmr->ifm_active = IFM_ETHER;
4440 
4441     /* Report link down if the driver isn't running. */
4442     if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4443         ifmr->ifm_active |= IFM_NONE;
4444         BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
4445         BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
4446                 __func__, sc->link_vars.link_up);
4447         return;
4448     }
4449 
4450 
4451     if (sc->link_vars.link_up) {
4452         ifmr->ifm_status |= IFM_ACTIVE;
4453         ifmr->ifm_active |= IFM_FDX;
4454     } else {
4455         ifmr->ifm_active |= IFM_NONE;
4456         BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
4457                 __func__);
4458         return;
4459     }
4460 
4461     ifmr->ifm_active |= sc->media;
4462     return;
4463 }
4464 
4465 static void
4466 bxe_handle_chip_tq(void *context,
4467                    int  pending)
4468 {
4469     struct bxe_softc *sc = (struct bxe_softc *)context;
4470     long work = atomic_load_acq_long(&sc->chip_tq_flags);
4471 
4472     switch (work)
4473     {
4474 
4475     case CHIP_TQ_REINIT:
4476         if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4477             /* restart the interface */
4478             BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4479             bxe_periodic_stop(sc);
4480             BXE_CORE_LOCK(sc);
4481             bxe_stop_locked(sc);
4482             bxe_init_locked(sc);
4483             BXE_CORE_UNLOCK(sc);
4484         }
4485         break;
4486 
4487     default:
4488         break;
4489     }
4490 }
4491 
4492 /*
4493  * Handles any IOCTL calls from the operating system.
4494  *
4495  * Returns:
4496  *   0 = Success, >0 Failure
4497  */
4498 static int
4499 bxe_ioctl(if_t ifp,
4500           u_long       command,
4501           caddr_t      data)
4502 {
4503     struct bxe_softc *sc = if_getsoftc(ifp);
4504     struct ifreq *ifr = (struct ifreq *)data;
4505     int mask = 0;
4506     int reinit = 0;
4507     int error = 0;
4508 
4509     int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4510     int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4511 
4512     switch (command)
4513     {
4514     case SIOCSIFMTU:
4515         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4516               ifr->ifr_mtu);
4517 
4518         if (sc->mtu == ifr->ifr_mtu) {
4519             /* nothing to change */
4520             break;
4521         }
4522 
4523         if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4524             BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4525                   ifr->ifr_mtu, mtu_min, mtu_max);
4526             error = EINVAL;
4527             break;
4528         }
4529 
4530         atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4531                              (unsigned long)ifr->ifr_mtu);
4532 	/*
4533         atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4534                               (unsigned long)ifr->ifr_mtu);
4535 	XXX - Not sure why it needs to be atomic
4536 	*/
4537 	if_setmtu(ifp, ifr->ifr_mtu);
4538         reinit = 1;
4539         break;
4540 
4541     case SIOCSIFFLAGS:
4542         /* toggle the interface state up or down */
4543         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4544 
4545 	BXE_CORE_LOCK(sc);
4546         /* check if the interface is up */
4547         if (if_getflags(ifp) & IFF_UP) {
4548             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4549                 /* set the receive mode flags */
4550                 bxe_set_rx_mode(sc);
4551             } else if(sc->state != BXE_STATE_DISABLED) {
4552 		bxe_init_locked(sc);
4553             }
4554         } else {
4555             if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4556 		bxe_periodic_stop(sc);
4557 		bxe_stop_locked(sc);
4558             }
4559         }
4560 	BXE_CORE_UNLOCK(sc);
4561 
4562         break;
4563 
4564     case SIOCADDMULTI:
4565     case SIOCDELMULTI:
4566         /* add/delete multicast addresses */
4567         BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4568 
4569         /* check if the interface is up */
4570         if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4571             /* set the receive mode flags */
4572 	    BXE_CORE_LOCK(sc);
4573             bxe_set_rx_mode(sc);
4574 	    BXE_CORE_UNLOCK(sc);
4575         }
4576 
4577         break;
4578 
4579     case SIOCSIFCAP:
4580         /* find out which capabilities have changed */
4581         mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4582 
4583         BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4584               mask);
4585 
4586         /* toggle the LRO capabilites enable flag */
4587         if (mask & IFCAP_LRO) {
4588 	    if_togglecapenable(ifp, IFCAP_LRO);
4589             BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4590                   (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4591             reinit = 1;
4592         }
4593 
4594         /* toggle the TXCSUM checksum capabilites enable flag */
4595         if (mask & IFCAP_TXCSUM) {
4596 	    if_togglecapenable(ifp, IFCAP_TXCSUM);
4597             BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4598                   (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4599             if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4600                 if_sethwassistbits(ifp, (CSUM_IP      |
4601                                     CSUM_TCP      |
4602                                     CSUM_UDP      |
4603                                     CSUM_TSO      |
4604                                     CSUM_TCP_IPV6 |
4605                                     CSUM_UDP_IPV6), 0);
4606             } else {
4607 		if_clearhwassist(ifp); /* XXX */
4608             }
4609         }
4610 
4611         /* toggle the RXCSUM checksum capabilities enable flag */
4612         if (mask & IFCAP_RXCSUM) {
4613 	    if_togglecapenable(ifp, IFCAP_RXCSUM);
4614             BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4615                   (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4616             if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4617                 if_sethwassistbits(ifp, (CSUM_IP      |
4618                                     CSUM_TCP      |
4619                                     CSUM_UDP      |
4620                                     CSUM_TSO      |
4621                                     CSUM_TCP_IPV6 |
4622                                     CSUM_UDP_IPV6), 0);
4623             } else {
4624 		if_clearhwassist(ifp); /* XXX */
4625             }
4626         }
4627 
4628         /* toggle TSO4 capabilities enabled flag */
4629         if (mask & IFCAP_TSO4) {
4630             if_togglecapenable(ifp, IFCAP_TSO4);
4631             BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4632                   (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4633         }
4634 
4635         /* toggle TSO6 capabilities enabled flag */
4636         if (mask & IFCAP_TSO6) {
4637 	    if_togglecapenable(ifp, IFCAP_TSO6);
4638             BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4639                   (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4640         }
4641 
4642         /* toggle VLAN_HWTSO capabilities enabled flag */
4643         if (mask & IFCAP_VLAN_HWTSO) {
4644 
4645 	    if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4646             BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4647                   (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4648         }
4649 
4650         /* toggle VLAN_HWCSUM capabilities enabled flag */
4651         if (mask & IFCAP_VLAN_HWCSUM) {
4652             /* XXX investigate this... */
4653             BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4654             error = EINVAL;
4655         }
4656 
4657         /* toggle VLAN_MTU capabilities enable flag */
4658         if (mask & IFCAP_VLAN_MTU) {
4659             /* XXX investigate this... */
4660             BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4661             error = EINVAL;
4662         }
4663 
4664         /* toggle VLAN_HWTAGGING capabilities enabled flag */
4665         if (mask & IFCAP_VLAN_HWTAGGING) {
4666             /* XXX investigate this... */
4667             BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4668             error = EINVAL;
4669         }
4670 
4671         /* toggle VLAN_HWFILTER capabilities enabled flag */
4672         if (mask & IFCAP_VLAN_HWFILTER) {
4673             /* XXX investigate this... */
4674             BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4675             error = EINVAL;
4676         }
4677 
4678         /* XXX not yet...
4679          * IFCAP_WOL_MAGIC
4680          */
4681 
4682         break;
4683 
4684     case SIOCSIFMEDIA:
4685     case SIOCGIFMEDIA:
4686         /* set/get interface media */
4687         BLOGD(sc, DBG_IOCTL,
4688               "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4689               (command & 0xff));
4690         error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4691         break;
4692 
4693     default:
4694         BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4695               (command & 0xff));
4696         error = ether_ioctl(ifp, command, data);
4697         break;
4698     }
4699 
4700     if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4701         BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4702               "Re-initializing hardware from IOCTL change\n");
4703 	bxe_periodic_stop(sc);
4704 	BXE_CORE_LOCK(sc);
4705 	bxe_stop_locked(sc);
4706 	bxe_init_locked(sc);
4707 	BXE_CORE_UNLOCK(sc);
4708     }
4709 
4710     return (error);
4711 }
4712 
4713 static __noinline void
4714 bxe_dump_mbuf(struct bxe_softc *sc,
4715               struct mbuf      *m,
4716               uint8_t          contents)
4717 {
4718     char * type;
4719     int i = 0;
4720 
4721     if (!(sc->debug & DBG_MBUF)) {
4722         return;
4723     }
4724 
4725     if (m == NULL) {
4726         BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4727         return;
4728     }
4729 
4730     while (m) {
4731 
4732         BLOGD(sc, DBG_MBUF,
4733               "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4734               i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4735 
4736         if (m->m_flags & M_PKTHDR) {
4737              BLOGD(sc, DBG_MBUF,
4738                    "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4739                    i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4740                    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
4741         }
4742 
4743         if (m->m_flags & M_EXT) {
4744             switch (m->m_ext.ext_type) {
4745             case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
4746             case EXT_SFBUF:      type = "EXT_SFBUF";      break;
4747             case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
4748             case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
4749             case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
4750             case EXT_PACKET:     type = "EXT_PACKET";     break;
4751             case EXT_MBUF:       type = "EXT_MBUF";       break;
4752             case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
4753             case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
4754             case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4755             case EXT_EXTREF:     type = "EXT_EXTREF";     break;
4756             default:             type = "UNKNOWN";        break;
4757             }
4758 
4759             BLOGD(sc, DBG_MBUF,
4760                   "%02d: - m_ext: %p ext_size=%d type=%s\n",
4761                   i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4762         }
4763 
4764         if (contents) {
4765             bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4766         }
4767 
4768         m = m->m_next;
4769         i++;
4770     }
4771 }
4772 
4773 /*
4774  * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4775  * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4776  * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4777  * The headers comes in a separate bd in FreeBSD so 13-3=10.
4778  * Returns: 0 if OK to send, 1 if packet needs further defragmentation
4779  */
4780 static int
4781 bxe_chktso_window(struct bxe_softc  *sc,
4782                   int               nsegs,
4783                   bus_dma_segment_t *segs,
4784                   struct mbuf       *m)
4785 {
4786     uint32_t num_wnds, wnd_size, wnd_sum;
4787     int32_t frag_idx, wnd_idx;
4788     unsigned short lso_mss;
4789 
4790     wnd_sum = 0;
4791     wnd_size = 10;
4792     num_wnds = nsegs - wnd_size;
4793     lso_mss = htole16(m->m_pkthdr.tso_segsz);
4794 
4795     /*
4796      * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4797      * first window sum of data while skipping the first assuming it is the
4798      * header in FreeBSD.
4799      */
4800     for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4801         wnd_sum += htole16(segs[frag_idx].ds_len);
4802     }
4803 
4804     /* check the first 10 bd window size */
4805     if (wnd_sum < lso_mss) {
4806         return (1);
4807     }
4808 
4809     /* run through the windows */
4810     for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4811         /* subtract the first mbuf->m_len of the last wndw(-header) */
4812         wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4813         /* add the next mbuf len to the len of our new window */
4814         wnd_sum += htole16(segs[frag_idx].ds_len);
4815         if (wnd_sum < lso_mss) {
4816             return (1);
4817         }
4818     }
4819 
4820     return (0);
4821 }
4822 
4823 static uint8_t
4824 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4825                     struct mbuf         *m,
4826                     uint32_t            *parsing_data)
4827 {
4828     struct ether_vlan_header *eh = NULL;
4829     struct ip *ip4 = NULL;
4830     struct ip6_hdr *ip6 = NULL;
4831     caddr_t ip = NULL;
4832     struct tcphdr *th = NULL;
4833     int e_hlen, ip_hlen, l4_off;
4834     uint16_t proto;
4835 
4836     if (m->m_pkthdr.csum_flags == CSUM_IP) {
4837         /* no L4 checksum offload needed */
4838         return (0);
4839     }
4840 
4841     /* get the Ethernet header */
4842     eh = mtod(m, struct ether_vlan_header *);
4843 
4844     /* handle VLAN encapsulation if present */
4845     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4846         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4847         proto  = ntohs(eh->evl_proto);
4848     } else {
4849         e_hlen = ETHER_HDR_LEN;
4850         proto  = ntohs(eh->evl_encap_proto);
4851     }
4852 
4853     switch (proto) {
4854     case ETHERTYPE_IP:
4855         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4856         ip4 = (m->m_len < sizeof(struct ip)) ?
4857                   (struct ip *)m->m_next->m_data :
4858                   (struct ip *)(m->m_data + e_hlen);
4859         /* ip_hl is number of 32-bit words */
4860         ip_hlen = (ip4->ip_hl << 2);
4861         ip = (caddr_t)ip4;
4862         break;
4863     case ETHERTYPE_IPV6:
4864         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4865         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4866                   (struct ip6_hdr *)m->m_next->m_data :
4867                   (struct ip6_hdr *)(m->m_data + e_hlen);
4868         /* XXX cannot support offload with IPv6 extensions */
4869         ip_hlen = sizeof(struct ip6_hdr);
4870         ip = (caddr_t)ip6;
4871         break;
4872     default:
4873         /* We can't offload in this case... */
4874         /* XXX error stat ??? */
4875         return (0);
4876     }
4877 
4878     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4879     l4_off = (e_hlen + ip_hlen);
4880 
4881     *parsing_data |=
4882         (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4883          ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4884 
4885     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4886                                   CSUM_TSO |
4887                                   CSUM_TCP_IPV6)) {
4888         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4889         th = (struct tcphdr *)(ip + ip_hlen);
4890         /* th_off is number of 32-bit words */
4891         *parsing_data |= ((th->th_off <<
4892                            ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4893                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4894         return (l4_off + (th->th_off << 2)); /* entire header length */
4895     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4896                                          CSUM_UDP_IPV6)) {
4897         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4898         return (l4_off + sizeof(struct udphdr)); /* entire header length */
4899     } else {
4900         /* XXX error stat ??? */
4901         return (0);
4902     }
4903 }
4904 
4905 static uint8_t
4906 bxe_set_pbd_csum(struct bxe_fastpath        *fp,
4907                  struct mbuf                *m,
4908                  struct eth_tx_parse_bd_e1x *pbd)
4909 {
4910     struct ether_vlan_header *eh = NULL;
4911     struct ip *ip4 = NULL;
4912     struct ip6_hdr *ip6 = NULL;
4913     caddr_t ip = NULL;
4914     struct tcphdr *th = NULL;
4915     struct udphdr *uh = NULL;
4916     int e_hlen, ip_hlen;
4917     uint16_t proto;
4918     uint8_t hlen;
4919     uint16_t tmp_csum;
4920     uint32_t *tmp_uh;
4921 
4922     /* get the Ethernet header */
4923     eh = mtod(m, struct ether_vlan_header *);
4924 
4925     /* handle VLAN encapsulation if present */
4926     if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4927         e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4928         proto  = ntohs(eh->evl_proto);
4929     } else {
4930         e_hlen = ETHER_HDR_LEN;
4931         proto  = ntohs(eh->evl_encap_proto);
4932     }
4933 
4934     switch (proto) {
4935     case ETHERTYPE_IP:
4936         /* get the IP header, if mbuf len < 20 then header in next mbuf */
4937         ip4 = (m->m_len < sizeof(struct ip)) ?
4938                   (struct ip *)m->m_next->m_data :
4939                   (struct ip *)(m->m_data + e_hlen);
4940         /* ip_hl is number of 32-bit words */
4941         ip_hlen = (ip4->ip_hl << 1);
4942         ip = (caddr_t)ip4;
4943         break;
4944     case ETHERTYPE_IPV6:
4945         /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4946         ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4947                   (struct ip6_hdr *)m->m_next->m_data :
4948                   (struct ip6_hdr *)(m->m_data + e_hlen);
4949         /* XXX cannot support offload with IPv6 extensions */
4950         ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4951         ip = (caddr_t)ip6;
4952         break;
4953     default:
4954         /* We can't offload in this case... */
4955         /* XXX error stat ??? */
4956         return (0);
4957     }
4958 
4959     hlen = (e_hlen >> 1);
4960 
4961     /* note that rest of global_data is indirectly zeroed here */
4962     if (m->m_flags & M_VLANTAG) {
4963         pbd->global_data =
4964             htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4965     } else {
4966         pbd->global_data = htole16(hlen);
4967     }
4968 
4969     pbd->ip_hlen_w = ip_hlen;
4970 
4971     hlen += pbd->ip_hlen_w;
4972 
4973     /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4974 
4975     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4976                                   CSUM_TSO |
4977                                   CSUM_TCP_IPV6)) {
4978         th = (struct tcphdr *)(ip + (ip_hlen << 1));
4979         /* th_off is number of 32-bit words */
4980         hlen += (uint16_t)(th->th_off << 1);
4981     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4982                                          CSUM_UDP_IPV6)) {
4983         uh = (struct udphdr *)(ip + (ip_hlen << 1));
4984         hlen += (sizeof(struct udphdr) / 2);
4985     } else {
4986         /* valid case as only CSUM_IP was set */
4987         return (0);
4988     }
4989 
4990     pbd->total_hlen_w = htole16(hlen);
4991 
4992     if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4993                                   CSUM_TSO |
4994                                   CSUM_TCP_IPV6)) {
4995         fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4996         pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4997     } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4998                                          CSUM_UDP_IPV6)) {
4999         fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5000 
5001         /*
5002          * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5003          * checksums and does not know anything about the UDP header and where
5004          * the checksum field is located. It only knows about TCP. Therefore
5005          * we "lie" to the hardware for outgoing UDP packets w/ checksum
5006          * offload. Since the checksum field offset for TCP is 16 bytes and
5007          * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5008          * bytes less than the start of the UDP header. This allows the
5009          * hardware to write the checksum in the correct spot. But the
5010          * hardware will compute a checksum which includes the last 10 bytes
5011          * of the IP header. To correct this we tweak the stack computed
5012          * pseudo checksum by folding in the calculation of the inverse
5013          * checksum for those final 10 bytes of the IP header. This allows
5014          * the correct checksum to be computed by the hardware.
5015          */
5016 
5017         /* set pointer 10 bytes before UDP header */
5018         tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5019 
5020         /* calculate a pseudo header checksum over the first 10 bytes */
5021         tmp_csum = in_pseudo(*tmp_uh,
5022                              *(tmp_uh + 1),
5023                              *(uint16_t *)(tmp_uh + 2));
5024 
5025         pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5026     }
5027 
5028     return (hlen * 2); /* entire header length, number of bytes */
5029 }
5030 
5031 static void
5032 bxe_set_pbd_lso_e2(struct mbuf *m,
5033                    uint32_t    *parsing_data)
5034 {
5035     *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5036                        ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5037                       ETH_TX_PARSE_BD_E2_LSO_MSS);
5038 
5039     /* XXX test for IPv6 with extension header... */
5040 }
5041 
5042 static void
5043 bxe_set_pbd_lso(struct mbuf                *m,
5044                 struct eth_tx_parse_bd_e1x *pbd)
5045 {
5046     struct ether_vlan_header *eh = NULL;
5047     struct ip *ip = NULL;
5048     struct tcphdr *th = NULL;
5049     int e_hlen;
5050 
5051     /* get the Ethernet header */
5052     eh = mtod(m, struct ether_vlan_header *);
5053 
5054     /* handle VLAN encapsulation if present */
5055     e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5056                  (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5057 
5058     /* get the IP and TCP header, with LSO entire header in first mbuf */
5059     /* XXX assuming IPv4 */
5060     ip = (struct ip *)(m->m_data + e_hlen);
5061     th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5062 
5063     pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5064     pbd->tcp_send_seq = ntohl(th->th_seq);
5065     pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5066 
5067 #if 1
5068         /* XXX IPv4 */
5069         pbd->ip_id = ntohs(ip->ip_id);
5070         pbd->tcp_pseudo_csum =
5071             ntohs(in_pseudo(ip->ip_src.s_addr,
5072                             ip->ip_dst.s_addr,
5073                             htons(IPPROTO_TCP)));
5074 #else
5075         /* XXX IPv6 */
5076         pbd->tcp_pseudo_csum =
5077             ntohs(in_pseudo(&ip6->ip6_src,
5078                             &ip6->ip6_dst,
5079                             htons(IPPROTO_TCP)));
5080 #endif
5081 
5082     pbd->global_data |=
5083         htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5084 }
5085 
5086 /*
5087  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5088  * visible to the controller.
5089  *
5090  * If an mbuf is submitted to this routine and cannot be given to the
5091  * controller (e.g. it has too many fragments) then the function may free
5092  * the mbuf and return to the caller.
5093  *
5094  * Returns:
5095  *   0 = Success, !0 = Failure
5096  *   Note the side effect that an mbuf may be freed if it causes a problem.
5097  */
5098 static int
5099 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5100 {
5101     bus_dma_segment_t segs[32];
5102     struct mbuf *m0;
5103     struct bxe_sw_tx_bd *tx_buf;
5104     struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5105     struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5106     /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5107     struct eth_tx_bd *tx_data_bd;
5108     struct eth_tx_bd *tx_total_pkt_size_bd;
5109     struct eth_tx_start_bd *tx_start_bd;
5110     uint16_t bd_prod, pkt_prod, total_pkt_size;
5111     uint8_t mac_type;
5112     int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5113     struct bxe_softc *sc;
5114     uint16_t tx_bd_avail;
5115     struct ether_vlan_header *eh;
5116     uint32_t pbd_e2_parsing_data = 0;
5117     uint8_t hlen = 0;
5118     int tmp_bd;
5119     int i;
5120 
5121     sc = fp->sc;
5122 
5123     M_ASSERTPKTHDR(*m_head);
5124 
5125     m0 = *m_head;
5126     rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5127     tx_start_bd = NULL;
5128     tx_data_bd = NULL;
5129     tx_total_pkt_size_bd = NULL;
5130 
5131     /* get the H/W pointer for packets and BDs */
5132     pkt_prod = fp->tx_pkt_prod;
5133     bd_prod = fp->tx_bd_prod;
5134 
5135     mac_type = UNICAST_ADDRESS;
5136 
5137     /* map the mbuf into the next open DMAable memory */
5138     tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5139     error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5140                                     tx_buf->m_map, m0,
5141                                     segs, &nsegs, BUS_DMA_NOWAIT);
5142 
5143     /* mapping errors */
5144     if(__predict_false(error != 0)) {
5145         fp->eth_q_stats.tx_dma_mapping_failure++;
5146         if (error == ENOMEM) {
5147             /* resource issue, try again later */
5148             rc = ENOMEM;
5149         } else if (error == EFBIG) {
5150             /* possibly recoverable with defragmentation */
5151             fp->eth_q_stats.mbuf_defrag_attempts++;
5152             m0 = m_defrag(*m_head, M_NOWAIT);
5153             if (m0 == NULL) {
5154                 fp->eth_q_stats.mbuf_defrag_failures++;
5155                 rc = ENOBUFS;
5156             } else {
5157                 /* defrag successful, try mapping again */
5158                 *m_head = m0;
5159                 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5160                                                 tx_buf->m_map, m0,
5161                                                 segs, &nsegs, BUS_DMA_NOWAIT);
5162                 if (error) {
5163                     fp->eth_q_stats.tx_dma_mapping_failure++;
5164                     rc = error;
5165                 }
5166             }
5167         } else {
5168             /* unknown, unrecoverable mapping error */
5169             BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5170             bxe_dump_mbuf(sc, m0, FALSE);
5171             rc = error;
5172         }
5173 
5174         goto bxe_tx_encap_continue;
5175     }
5176 
5177     tx_bd_avail = bxe_tx_avail(sc, fp);
5178 
5179     /* make sure there is enough room in the send queue */
5180     if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5181         /* Recoverable, try again later. */
5182         fp->eth_q_stats.tx_hw_queue_full++;
5183         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5184         rc = ENOMEM;
5185         goto bxe_tx_encap_continue;
5186     }
5187 
5188     /* capture the current H/W TX chain high watermark */
5189     if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5190                         (TX_BD_USABLE - tx_bd_avail))) {
5191         fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5192     }
5193 
5194     /* make sure it fits in the packet window */
5195     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5196         /*
5197          * The mbuf may be to big for the controller to handle. If the frame
5198          * is a TSO frame we'll need to do an additional check.
5199          */
5200         if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5201             if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5202                 goto bxe_tx_encap_continue; /* OK to send */
5203             } else {
5204                 fp->eth_q_stats.tx_window_violation_tso++;
5205             }
5206         } else {
5207             fp->eth_q_stats.tx_window_violation_std++;
5208         }
5209 
5210         /* lets try to defragment this mbuf and remap it */
5211         fp->eth_q_stats.mbuf_defrag_attempts++;
5212         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5213 
5214         m0 = m_defrag(*m_head, M_NOWAIT);
5215         if (m0 == NULL) {
5216             fp->eth_q_stats.mbuf_defrag_failures++;
5217             /* Ugh, just drop the frame... :( */
5218             rc = ENOBUFS;
5219         } else {
5220             /* defrag successful, try mapping again */
5221             *m_head = m0;
5222             error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5223                                             tx_buf->m_map, m0,
5224                                             segs, &nsegs, BUS_DMA_NOWAIT);
5225             if (error) {
5226                 fp->eth_q_stats.tx_dma_mapping_failure++;
5227                 /* No sense in trying to defrag/copy chain, drop it. :( */
5228                 rc = error;
5229             } else {
5230                /* if the chain is still too long then drop it */
5231                 if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5232                     /*
5233                      * in case TSO is enabled nsegs should be checked against
5234                      * BXE_TSO_MAX_SEGMENTS
5235                      */
5236                     if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5237                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5238                         fp->eth_q_stats.nsegs_path1_errors++;
5239                         rc = ENODEV;
5240                     }
5241                 } else {
5242                     if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5243                         bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5244                         fp->eth_q_stats.nsegs_path2_errors++;
5245                         rc = ENODEV;
5246                     }
5247                 }
5248             }
5249         }
5250     }
5251 
5252 bxe_tx_encap_continue:
5253 
5254     /* Check for errors */
5255     if (rc) {
5256         if (rc == ENOMEM) {
5257             /* recoverable try again later  */
5258         } else {
5259             fp->eth_q_stats.tx_soft_errors++;
5260             fp->eth_q_stats.mbuf_alloc_tx--;
5261             m_freem(*m_head);
5262             *m_head = NULL;
5263         }
5264 
5265         return (rc);
5266     }
5267 
5268     /* set flag according to packet type (UNICAST_ADDRESS is default) */
5269     if (m0->m_flags & M_BCAST) {
5270         mac_type = BROADCAST_ADDRESS;
5271     } else if (m0->m_flags & M_MCAST) {
5272         mac_type = MULTICAST_ADDRESS;
5273     }
5274 
5275     /* store the mbuf into the mbuf ring */
5276     tx_buf->m        = m0;
5277     tx_buf->first_bd = fp->tx_bd_prod;
5278     tx_buf->flags    = 0;
5279 
5280     /* prepare the first transmit (start) BD for the mbuf */
5281     tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5282 
5283     BLOGD(sc, DBG_TX,
5284           "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5285           pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5286 
5287     tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5288     tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5289     tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5290     total_pkt_size += tx_start_bd->nbytes;
5291     tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5292 
5293     tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5294 
5295     /* all frames have at least Start BD + Parsing BD */
5296     nbds = nsegs + 1;
5297     tx_start_bd->nbd = htole16(nbds);
5298 
5299     if (m0->m_flags & M_VLANTAG) {
5300         tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5301         tx_start_bd->bd_flags.as_bitfield |=
5302             (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5303     } else {
5304         /* vf tx, start bd must hold the ethertype for fw to enforce it */
5305         if (IS_VF(sc)) {
5306             /* map ethernet header to find type and header length */
5307             eh = mtod(m0, struct ether_vlan_header *);
5308             tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5309         } else {
5310             /* used by FW for packet accounting */
5311             tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5312         }
5313     }
5314 
5315     /*
5316      * add a parsing BD from the chain. The parsing BD is always added
5317      * though it is only used for TSO and chksum
5318      */
5319     bd_prod = TX_BD_NEXT(bd_prod);
5320 
5321     if (m0->m_pkthdr.csum_flags) {
5322         if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5323             fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5324             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5325         }
5326 
5327         if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5328             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5329                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5330         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5331             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5332                                                   ETH_TX_BD_FLAGS_IS_UDP |
5333                                                   ETH_TX_BD_FLAGS_L4_CSUM);
5334         } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5335                    (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5336             tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5337         } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5338             tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5339                                                   ETH_TX_BD_FLAGS_IS_UDP);
5340         }
5341     }
5342 
5343     if (!CHIP_IS_E1x(sc)) {
5344         pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5345         memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5346 
5347         if (m0->m_pkthdr.csum_flags) {
5348             hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5349         }
5350 
5351         SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5352                  mac_type);
5353     } else {
5354         uint16_t global_data = 0;
5355 
5356         pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5357         memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5358 
5359         if (m0->m_pkthdr.csum_flags) {
5360             hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5361         }
5362 
5363         SET_FLAG(global_data,
5364                  ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5365         pbd_e1x->global_data |= htole16(global_data);
5366     }
5367 
5368     /* setup the parsing BD with TSO specific info */
5369     if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5370         fp->eth_q_stats.tx_ofld_frames_lso++;
5371         tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5372 
5373         if (__predict_false(tx_start_bd->nbytes > hlen)) {
5374             fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5375 
5376             /* split the first BD into header/data making the fw job easy */
5377             nbds++;
5378             tx_start_bd->nbd = htole16(nbds);
5379             tx_start_bd->nbytes = htole16(hlen);
5380 
5381             bd_prod = TX_BD_NEXT(bd_prod);
5382 
5383             /* new transmit BD after the tx_parse_bd */
5384             tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5385             tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5386             tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5387             tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5388             if (tx_total_pkt_size_bd == NULL) {
5389                 tx_total_pkt_size_bd = tx_data_bd;
5390             }
5391 
5392             BLOGD(sc, DBG_TX,
5393                   "TSO split header size is %d (%x:%x) nbds %d\n",
5394                   le16toh(tx_start_bd->nbytes),
5395                   le32toh(tx_start_bd->addr_hi),
5396                   le32toh(tx_start_bd->addr_lo),
5397                   nbds);
5398         }
5399 
5400         if (!CHIP_IS_E1x(sc)) {
5401             bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5402         } else {
5403             bxe_set_pbd_lso(m0, pbd_e1x);
5404         }
5405     }
5406 
5407     if (pbd_e2_parsing_data) {
5408         pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5409     }
5410 
5411     /* prepare remaining BDs, start tx bd contains first seg/frag */
5412     for (i = 1; i < nsegs ; i++) {
5413         bd_prod = TX_BD_NEXT(bd_prod);
5414         tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5415         tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5416         tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5417         tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5418         if (tx_total_pkt_size_bd == NULL) {
5419             tx_total_pkt_size_bd = tx_data_bd;
5420         }
5421         total_pkt_size += tx_data_bd->nbytes;
5422     }
5423 
5424     BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5425 
5426     if (tx_total_pkt_size_bd != NULL) {
5427         tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5428     }
5429 
5430     if (__predict_false(sc->debug & DBG_TX)) {
5431         tmp_bd = tx_buf->first_bd;
5432         for (i = 0; i < nbds; i++)
5433         {
5434             if (i == 0) {
5435                 BLOGD(sc, DBG_TX,
5436                       "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5437                       "bd_flags=0x%x hdr_nbds=%d\n",
5438                       tx_start_bd,
5439                       tmp_bd,
5440                       le16toh(tx_start_bd->nbd),
5441                       le16toh(tx_start_bd->vlan_or_ethertype),
5442                       tx_start_bd->bd_flags.as_bitfield,
5443                       (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5444             } else if (i == 1) {
5445                 if (pbd_e1x) {
5446                     BLOGD(sc, DBG_TX,
5447                           "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5448                           "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5449                           "tcp_seq=%u total_hlen_w=%u\n",
5450                           pbd_e1x,
5451                           tmp_bd,
5452                           pbd_e1x->global_data,
5453                           pbd_e1x->ip_hlen_w,
5454                           pbd_e1x->ip_id,
5455                           pbd_e1x->lso_mss,
5456                           pbd_e1x->tcp_flags,
5457                           pbd_e1x->tcp_pseudo_csum,
5458                           pbd_e1x->tcp_send_seq,
5459                           le16toh(pbd_e1x->total_hlen_w));
5460                 } else { /* if (pbd_e2) */
5461                     BLOGD(sc, DBG_TX,
5462                           "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5463                           "src=%02x:%02x:%02x parsing_data=0x%x\n",
5464                           pbd_e2,
5465                           tmp_bd,
5466                           pbd_e2->data.mac_addr.dst_hi,
5467                           pbd_e2->data.mac_addr.dst_mid,
5468                           pbd_e2->data.mac_addr.dst_lo,
5469                           pbd_e2->data.mac_addr.src_hi,
5470                           pbd_e2->data.mac_addr.src_mid,
5471                           pbd_e2->data.mac_addr.src_lo,
5472                           pbd_e2->parsing_data);
5473                 }
5474             }
5475 
5476             if (i != 1) { /* skip parse db as it doesn't hold data */
5477                 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5478                 BLOGD(sc, DBG_TX,
5479                       "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5480                       tx_data_bd,
5481                       tmp_bd,
5482                       le16toh(tx_data_bd->nbytes),
5483                       le32toh(tx_data_bd->addr_hi),
5484                       le32toh(tx_data_bd->addr_lo));
5485             }
5486 
5487             tmp_bd = TX_BD_NEXT(tmp_bd);
5488         }
5489     }
5490 
5491     BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5492 
5493     /* update TX BD producer index value for next TX */
5494     bd_prod = TX_BD_NEXT(bd_prod);
5495 
5496     /*
5497      * If the chain of tx_bd's describing this frame is adjacent to or spans
5498      * an eth_tx_next_bd element then we need to increment the nbds value.
5499      */
5500     if (TX_BD_IDX(bd_prod) < nbds) {
5501         nbds++;
5502     }
5503 
5504     /* don't allow reordering of writes for nbd and packets */
5505     mb();
5506 
5507     fp->tx_db.data.prod += nbds;
5508 
5509     /* producer points to the next free tx_bd at this point */
5510     fp->tx_pkt_prod++;
5511     fp->tx_bd_prod = bd_prod;
5512 
5513     DOORBELL(sc, fp->index, fp->tx_db.raw);
5514 
5515     fp->eth_q_stats.tx_pkts++;
5516 
5517     /* Prevent speculative reads from getting ahead of the status block. */
5518     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5519                       0, 0, BUS_SPACE_BARRIER_READ);
5520 
5521     /* Prevent speculative reads from getting ahead of the doorbell. */
5522     bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5523                       0, 0, BUS_SPACE_BARRIER_READ);
5524 
5525     return (0);
5526 }
5527 
5528 static void
5529 bxe_tx_start_locked(struct bxe_softc *sc,
5530                     if_t ifp,
5531                     struct bxe_fastpath *fp)
5532 {
5533     struct mbuf *m = NULL;
5534     int tx_count = 0;
5535     uint16_t tx_bd_avail;
5536 
5537     BXE_FP_TX_LOCK_ASSERT(fp);
5538 
5539     /* keep adding entries while there are frames to send */
5540     while (!if_sendq_empty(ifp)) {
5541 
5542         /*
5543          * check for any frames to send
5544          * dequeue can still be NULL even if queue is not empty
5545          */
5546         m = if_dequeue(ifp);
5547         if (__predict_false(m == NULL)) {
5548             break;
5549         }
5550 
5551         /* the mbuf now belongs to us */
5552         fp->eth_q_stats.mbuf_alloc_tx++;
5553 
5554         /*
5555          * Put the frame into the transmit ring. If we don't have room,
5556          * place the mbuf back at the head of the TX queue, set the
5557          * OACTIVE flag, and wait for the NIC to drain the chain.
5558          */
5559         if (__predict_false(bxe_tx_encap(fp, &m))) {
5560             fp->eth_q_stats.tx_encap_failures++;
5561             if (m != NULL) {
5562                 /* mark the TX queue as full and return the frame */
5563                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5564 		if_sendq_prepend(ifp, m);
5565                 fp->eth_q_stats.mbuf_alloc_tx--;
5566                 fp->eth_q_stats.tx_queue_xoff++;
5567             }
5568 
5569             /* stop looking for more work */
5570             break;
5571         }
5572 
5573         /* the frame was enqueued successfully */
5574         tx_count++;
5575 
5576         /* send a copy of the frame to any BPF listeners. */
5577         ether_bpf_mtap_if(ifp, m);
5578 
5579         tx_bd_avail = bxe_tx_avail(sc, fp);
5580 
5581         /* handle any completions if we're running low */
5582         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5583             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5584             bxe_txeof(sc, fp);
5585             if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5586                 break;
5587             }
5588         }
5589     }
5590 
5591     /* all TX packets were dequeued and/or the tx ring is full */
5592     if (tx_count > 0) {
5593         /* reset the TX watchdog timeout timer */
5594         fp->watchdog_timer = BXE_TX_TIMEOUT;
5595     }
5596 }
5597 
5598 /* Legacy (non-RSS) dispatch routine */
5599 static void
5600 bxe_tx_start(if_t ifp)
5601 {
5602     struct bxe_softc *sc;
5603     struct bxe_fastpath *fp;
5604 
5605     sc = if_getsoftc(ifp);
5606 
5607     if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5608         BLOGW(sc, "Interface not running, ignoring transmit request\n");
5609         return;
5610     }
5611 
5612     if (!sc->link_vars.link_up) {
5613         BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5614         return;
5615     }
5616 
5617     fp = &sc->fp[0];
5618 
5619     if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5620         fp->eth_q_stats.tx_queue_full_return++;
5621         return;
5622     }
5623 
5624     BXE_FP_TX_LOCK(fp);
5625     bxe_tx_start_locked(sc, ifp, fp);
5626     BXE_FP_TX_UNLOCK(fp);
5627 }
5628 
5629 static int
5630 bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5631                        if_t                ifp,
5632                        struct bxe_fastpath *fp,
5633                        struct mbuf         *m)
5634 {
5635     struct buf_ring *tx_br = fp->tx_br;
5636     struct mbuf *next;
5637     int depth, rc, tx_count;
5638     uint16_t tx_bd_avail;
5639 
5640     rc = tx_count = 0;
5641 
5642     BXE_FP_TX_LOCK_ASSERT(fp);
5643 
5644     if (sc->state != BXE_STATE_OPEN)  {
5645         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5646         return ENETDOWN;
5647     }
5648 
5649     if (!tx_br) {
5650         BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5651         return (EINVAL);
5652     }
5653 
5654     if (m != NULL) {
5655         rc = drbr_enqueue(ifp, tx_br, m);
5656         if (rc != 0) {
5657             fp->eth_q_stats.tx_soft_errors++;
5658             goto bxe_tx_mq_start_locked_exit;
5659         }
5660     }
5661 
5662     if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5663         fp->eth_q_stats.tx_request_link_down_failures++;
5664         goto bxe_tx_mq_start_locked_exit;
5665     }
5666 
5667     /* fetch the depth of the driver queue */
5668     depth = drbr_inuse(ifp, tx_br);
5669     if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5670         fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5671     }
5672 
5673     /* keep adding entries while there are frames to send */
5674     while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5675         /* handle any completions if we're running low */
5676         tx_bd_avail = bxe_tx_avail(sc, fp);
5677         if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5678             /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5679             bxe_txeof(sc, fp);
5680             tx_bd_avail = bxe_tx_avail(sc, fp);
5681             if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5682                 fp->eth_q_stats.bd_avail_too_less_failures++;
5683                 m_freem(next);
5684                 drbr_advance(ifp, tx_br);
5685                 rc = ENOBUFS;
5686                 break;
5687             }
5688         }
5689 
5690         /* the mbuf now belongs to us */
5691         fp->eth_q_stats.mbuf_alloc_tx++;
5692 
5693         /*
5694          * Put the frame into the transmit ring. If we don't have room,
5695          * place the mbuf back at the head of the TX queue, set the
5696          * OACTIVE flag, and wait for the NIC to drain the chain.
5697          */
5698         rc = bxe_tx_encap(fp, &next);
5699         if (__predict_false(rc != 0)) {
5700             fp->eth_q_stats.tx_encap_failures++;
5701             if (next != NULL) {
5702                 /* mark the TX queue as full and save the frame */
5703                 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5704                 drbr_putback(ifp, tx_br, next);
5705                 fp->eth_q_stats.mbuf_alloc_tx--;
5706                 fp->eth_q_stats.tx_frames_deferred++;
5707             } else
5708                 drbr_advance(ifp, tx_br);
5709 
5710             /* stop looking for more work */
5711             break;
5712         }
5713 
5714         /* the transmit frame was enqueued successfully */
5715         tx_count++;
5716 
5717         /* send a copy of the frame to any BPF listeners */
5718         ether_bpf_mtap_if(ifp, next);
5719 
5720         drbr_advance(ifp, tx_br);
5721     }
5722 
5723     /* all TX packets were dequeued and/or the tx ring is full */
5724     if (tx_count > 0) {
5725         /* reset the TX watchdog timeout timer */
5726         fp->watchdog_timer = BXE_TX_TIMEOUT;
5727     }
5728 
5729 bxe_tx_mq_start_locked_exit:
5730     /* If we didn't drain the drbr, enqueue a task in the future to do it. */
5731     if (!drbr_empty(ifp, tx_br)) {
5732         fp->eth_q_stats.tx_mq_not_empty++;
5733         taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5734     }
5735 
5736     return (rc);
5737 }
5738 
5739 static void
5740 bxe_tx_mq_start_deferred(void *arg,
5741                          int pending)
5742 {
5743     struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5744     struct bxe_softc *sc = fp->sc;
5745     if_t ifp = sc->ifp;
5746 
5747     BXE_FP_TX_LOCK(fp);
5748     bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5749     BXE_FP_TX_UNLOCK(fp);
5750 }
5751 
5752 /* Multiqueue (TSS) dispatch routine. */
5753 static int
5754 bxe_tx_mq_start(if_t ifp,
5755                 struct mbuf  *m)
5756 {
5757     struct bxe_softc *sc = if_getsoftc(ifp);
5758     struct bxe_fastpath *fp;
5759     int fp_index, rc;
5760 
5761     fp_index = 0; /* default is the first queue */
5762 
5763     /* check if flowid is set */
5764 
5765     if (BXE_VALID_FLOWID(m))
5766         fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5767 
5768     fp = &sc->fp[fp_index];
5769 
5770     if (sc->state != BXE_STATE_OPEN)  {
5771         fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5772         return ENETDOWN;
5773     }
5774 
5775     if (BXE_FP_TX_TRYLOCK(fp)) {
5776         rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5777         BXE_FP_TX_UNLOCK(fp);
5778     } else {
5779         rc = drbr_enqueue(ifp, fp->tx_br, m);
5780         taskqueue_enqueue(fp->tq, &fp->tx_task);
5781     }
5782 
5783     return (rc);
5784 }
5785 
5786 static void
5787 bxe_mq_flush(if_t ifp)
5788 {
5789     struct bxe_softc *sc = if_getsoftc(ifp);
5790     struct bxe_fastpath *fp;
5791     struct mbuf *m;
5792     int i;
5793 
5794     for (i = 0; i < sc->num_queues; i++) {
5795         fp = &sc->fp[i];
5796 
5797         if (fp->state != BXE_FP_STATE_IRQ) {
5798             BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5799                   fp->index, fp->state);
5800             continue;
5801         }
5802 
5803         if (fp->tx_br != NULL) {
5804             BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5805             BXE_FP_TX_LOCK(fp);
5806             while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5807                 m_freem(m);
5808             }
5809             BXE_FP_TX_UNLOCK(fp);
5810         }
5811     }
5812 
5813     if_qflush(ifp);
5814 }
5815 
5816 static uint16_t
5817 bxe_cid_ilt_lines(struct bxe_softc *sc)
5818 {
5819     if (IS_SRIOV(sc)) {
5820         return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5821     }
5822     return (L2_ILT_LINES(sc));
5823 }
5824 
5825 static void
5826 bxe_ilt_set_info(struct bxe_softc *sc)
5827 {
5828     struct ilt_client_info *ilt_client;
5829     struct ecore_ilt *ilt = sc->ilt;
5830     uint16_t line = 0;
5831 
5832     ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5833     BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5834 
5835     /* CDU */
5836     ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5837     ilt_client->client_num = ILT_CLIENT_CDU;
5838     ilt_client->page_size = CDU_ILT_PAGE_SZ;
5839     ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5840     ilt_client->start = line;
5841     line += bxe_cid_ilt_lines(sc);
5842 
5843     if (CNIC_SUPPORT(sc)) {
5844         line += CNIC_ILT_LINES;
5845     }
5846 
5847     ilt_client->end = (line - 1);
5848 
5849     BLOGD(sc, DBG_LOAD,
5850           "ilt client[CDU]: start %d, end %d, "
5851           "psz 0x%x, flags 0x%x, hw psz %d\n",
5852           ilt_client->start, ilt_client->end,
5853           ilt_client->page_size,
5854           ilt_client->flags,
5855           ilog2(ilt_client->page_size >> 12));
5856 
5857     /* QM */
5858     if (QM_INIT(sc->qm_cid_count)) {
5859         ilt_client = &ilt->clients[ILT_CLIENT_QM];
5860         ilt_client->client_num = ILT_CLIENT_QM;
5861         ilt_client->page_size = QM_ILT_PAGE_SZ;
5862         ilt_client->flags = 0;
5863         ilt_client->start = line;
5864 
5865         /* 4 bytes for each cid */
5866         line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5867                              QM_ILT_PAGE_SZ);
5868 
5869         ilt_client->end = (line - 1);
5870 
5871         BLOGD(sc, DBG_LOAD,
5872               "ilt client[QM]: start %d, end %d, "
5873               "psz 0x%x, flags 0x%x, hw psz %d\n",
5874               ilt_client->start, ilt_client->end,
5875               ilt_client->page_size, ilt_client->flags,
5876               ilog2(ilt_client->page_size >> 12));
5877     }
5878 
5879     if (CNIC_SUPPORT(sc)) {
5880         /* SRC */
5881         ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5882         ilt_client->client_num = ILT_CLIENT_SRC;
5883         ilt_client->page_size = SRC_ILT_PAGE_SZ;
5884         ilt_client->flags = 0;
5885         ilt_client->start = line;
5886         line += SRC_ILT_LINES;
5887         ilt_client->end = (line - 1);
5888 
5889         BLOGD(sc, DBG_LOAD,
5890               "ilt client[SRC]: start %d, end %d, "
5891               "psz 0x%x, flags 0x%x, hw psz %d\n",
5892               ilt_client->start, ilt_client->end,
5893               ilt_client->page_size, ilt_client->flags,
5894               ilog2(ilt_client->page_size >> 12));
5895 
5896         /* TM */
5897         ilt_client = &ilt->clients[ILT_CLIENT_TM];
5898         ilt_client->client_num = ILT_CLIENT_TM;
5899         ilt_client->page_size = TM_ILT_PAGE_SZ;
5900         ilt_client->flags = 0;
5901         ilt_client->start = line;
5902         line += TM_ILT_LINES;
5903         ilt_client->end = (line - 1);
5904 
5905         BLOGD(sc, DBG_LOAD,
5906               "ilt client[TM]: start %d, end %d, "
5907               "psz 0x%x, flags 0x%x, hw psz %d\n",
5908               ilt_client->start, ilt_client->end,
5909               ilt_client->page_size, ilt_client->flags,
5910               ilog2(ilt_client->page_size >> 12));
5911     }
5912 
5913     KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5914 }
5915 
5916 static void
5917 bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5918 {
5919     int i;
5920     uint32_t rx_buf_size;
5921 
5922     rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5923 
5924     for (i = 0; i < sc->num_queues; i++) {
5925         if(rx_buf_size <= MCLBYTES){
5926             sc->fp[i].rx_buf_size = rx_buf_size;
5927             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5928         }else if (rx_buf_size <= MJUMPAGESIZE){
5929             sc->fp[i].rx_buf_size = rx_buf_size;
5930             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5931         }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5932             sc->fp[i].rx_buf_size = MCLBYTES;
5933             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5934         }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5935             sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5936             sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5937         }else {
5938             sc->fp[i].rx_buf_size = MCLBYTES;
5939             sc->fp[i].mbuf_alloc_size = MCLBYTES;
5940         }
5941     }
5942 }
5943 
5944 static int
5945 bxe_alloc_ilt_mem(struct bxe_softc *sc)
5946 {
5947     int rc = 0;
5948 
5949     if ((sc->ilt =
5950          (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5951                                     M_BXE_ILT,
5952                                     (M_NOWAIT | M_ZERO))) == NULL) {
5953         rc = 1;
5954     }
5955 
5956     return (rc);
5957 }
5958 
5959 static int
5960 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5961 {
5962     int rc = 0;
5963 
5964     if ((sc->ilt->lines =
5965          (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5966                                     M_BXE_ILT,
5967                                     (M_NOWAIT | M_ZERO))) == NULL) {
5968         rc = 1;
5969     }
5970 
5971     return (rc);
5972 }
5973 
5974 static void
5975 bxe_free_ilt_mem(struct bxe_softc *sc)
5976 {
5977     if (sc->ilt != NULL) {
5978         free(sc->ilt, M_BXE_ILT);
5979         sc->ilt = NULL;
5980     }
5981 }
5982 
5983 static void
5984 bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5985 {
5986     if (sc->ilt->lines != NULL) {
5987         free(sc->ilt->lines, M_BXE_ILT);
5988         sc->ilt->lines = NULL;
5989     }
5990 }
5991 
5992 static void
5993 bxe_free_mem(struct bxe_softc *sc)
5994 {
5995     int i;
5996 
5997     for (i = 0; i < L2_ILT_LINES(sc); i++) {
5998         bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5999         sc->context[i].vcxt = NULL;
6000         sc->context[i].size = 0;
6001     }
6002 
6003     ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6004 
6005     bxe_free_ilt_lines_mem(sc);
6006 
6007 }
6008 
6009 static int
6010 bxe_alloc_mem(struct bxe_softc *sc)
6011 {
6012 
6013     int context_size;
6014     int allocated;
6015     int i;
6016 
6017     /*
6018      * Allocate memory for CDU context:
6019      * This memory is allocated separately and not in the generic ILT
6020      * functions because CDU differs in few aspects:
6021      * 1. There can be multiple entities allocating memory for context -
6022      * regular L2, CNIC, and SRIOV drivers. Each separately controls
6023      * its own ILT lines.
6024      * 2. Since CDU page-size is not a single 4KB page (which is the case
6025      * for the other ILT clients), to be efficient we want to support
6026      * allocation of sub-page-size in the last entry.
6027      * 3. Context pointers are used by the driver to pass to FW / update
6028      * the context (for the other ILT clients the pointers are used just to
6029      * free the memory during unload).
6030      */
6031     context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6032     for (i = 0, allocated = 0; allocated < context_size; i++) {
6033         sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6034                                   (context_size - allocated));
6035 
6036         if (bxe_dma_alloc(sc, sc->context[i].size,
6037                           &sc->context[i].vcxt_dma,
6038                           "cdu context") != 0) {
6039             bxe_free_mem(sc);
6040             return (-1);
6041         }
6042 
6043         sc->context[i].vcxt =
6044             (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6045 
6046         allocated += sc->context[i].size;
6047     }
6048 
6049     bxe_alloc_ilt_lines_mem(sc);
6050 
6051     BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6052           sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6053     {
6054         for (i = 0; i < 4; i++) {
6055             BLOGD(sc, DBG_LOAD,
6056                   "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6057                   i,
6058                   sc->ilt->clients[i].page_size,
6059                   sc->ilt->clients[i].start,
6060                   sc->ilt->clients[i].end,
6061                   sc->ilt->clients[i].client_num,
6062                   sc->ilt->clients[i].flags);
6063         }
6064     }
6065     if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6066         BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6067         bxe_free_mem(sc);
6068         return (-1);
6069     }
6070 
6071     return (0);
6072 }
6073 
6074 static void
6075 bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6076 {
6077     int i;
6078 
6079     if (fp->rx_mbuf_tag == NULL) {
6080         return;
6081     }
6082 
6083     /* free all mbufs and unload all maps */
6084     for (i = 0; i < RX_BD_TOTAL; i++) {
6085         if (fp->rx_mbuf_chain[i].m_map != NULL) {
6086             bus_dmamap_sync(fp->rx_mbuf_tag,
6087                             fp->rx_mbuf_chain[i].m_map,
6088                             BUS_DMASYNC_POSTREAD);
6089             bus_dmamap_unload(fp->rx_mbuf_tag,
6090                               fp->rx_mbuf_chain[i].m_map);
6091         }
6092 
6093         if (fp->rx_mbuf_chain[i].m != NULL) {
6094             m_freem(fp->rx_mbuf_chain[i].m);
6095             fp->rx_mbuf_chain[i].m = NULL;
6096             fp->eth_q_stats.mbuf_alloc_rx--;
6097         }
6098     }
6099 }
6100 
6101 static void
6102 bxe_free_tpa_pool(struct bxe_fastpath *fp)
6103 {
6104     struct bxe_softc *sc;
6105     int i, max_agg_queues;
6106 
6107     sc = fp->sc;
6108 
6109     if (fp->rx_mbuf_tag == NULL) {
6110         return;
6111     }
6112 
6113     max_agg_queues = MAX_AGG_QS(sc);
6114 
6115     /* release all mbufs and unload all DMA maps in the TPA pool */
6116     for (i = 0; i < max_agg_queues; i++) {
6117         if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6118             bus_dmamap_sync(fp->rx_mbuf_tag,
6119                             fp->rx_tpa_info[i].bd.m_map,
6120                             BUS_DMASYNC_POSTREAD);
6121             bus_dmamap_unload(fp->rx_mbuf_tag,
6122                               fp->rx_tpa_info[i].bd.m_map);
6123         }
6124 
6125         if (fp->rx_tpa_info[i].bd.m != NULL) {
6126             m_freem(fp->rx_tpa_info[i].bd.m);
6127             fp->rx_tpa_info[i].bd.m = NULL;
6128             fp->eth_q_stats.mbuf_alloc_tpa--;
6129         }
6130     }
6131 }
6132 
6133 static void
6134 bxe_free_sge_chain(struct bxe_fastpath *fp)
6135 {
6136     int i;
6137 
6138     if (fp->rx_sge_mbuf_tag == NULL) {
6139         return;
6140     }
6141 
6142     /* rree all mbufs and unload all maps */
6143     for (i = 0; i < RX_SGE_TOTAL; i++) {
6144         if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6145             bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6146                             fp->rx_sge_mbuf_chain[i].m_map,
6147                             BUS_DMASYNC_POSTREAD);
6148             bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6149                               fp->rx_sge_mbuf_chain[i].m_map);
6150         }
6151 
6152         if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6153             m_freem(fp->rx_sge_mbuf_chain[i].m);
6154             fp->rx_sge_mbuf_chain[i].m = NULL;
6155             fp->eth_q_stats.mbuf_alloc_sge--;
6156         }
6157     }
6158 }
6159 
6160 static void
6161 bxe_free_fp_buffers(struct bxe_softc *sc)
6162 {
6163     struct bxe_fastpath *fp;
6164     int i;
6165 
6166     for (i = 0; i < sc->num_queues; i++) {
6167         fp = &sc->fp[i];
6168 
6169         if (fp->tx_br != NULL) {
6170             /* just in case bxe_mq_flush() wasn't called */
6171             if (mtx_initialized(&fp->tx_mtx)) {
6172                 struct mbuf *m;
6173 
6174                 BXE_FP_TX_LOCK(fp);
6175                 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6176                     m_freem(m);
6177                 BXE_FP_TX_UNLOCK(fp);
6178             }
6179         }
6180 
6181         /* free all RX buffers */
6182         bxe_free_rx_bd_chain(fp);
6183         bxe_free_tpa_pool(fp);
6184         bxe_free_sge_chain(fp);
6185 
6186         if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6187             BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6188                   fp->eth_q_stats.mbuf_alloc_rx);
6189         }
6190 
6191         if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6192             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6193                   fp->eth_q_stats.mbuf_alloc_sge);
6194         }
6195 
6196         if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6197             BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6198                   fp->eth_q_stats.mbuf_alloc_tpa);
6199         }
6200 
6201         if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6202             BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6203                   fp->eth_q_stats.mbuf_alloc_tx);
6204         }
6205 
6206         /* XXX verify all mbufs were reclaimed */
6207     }
6208 }
6209 
6210 static int
6211 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6212                      uint16_t            prev_index,
6213                      uint16_t            index)
6214 {
6215     struct bxe_sw_rx_bd *rx_buf;
6216     struct eth_rx_bd *rx_bd;
6217     bus_dma_segment_t segs[1];
6218     bus_dmamap_t map;
6219     struct mbuf *m;
6220     int nsegs, rc;
6221 
6222     rc = 0;
6223 
6224     /* allocate the new RX BD mbuf */
6225     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6226     if (__predict_false(m == NULL)) {
6227         fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6228         return (ENOBUFS);
6229     }
6230 
6231     fp->eth_q_stats.mbuf_alloc_rx++;
6232 
6233     /* initialize the mbuf buffer length */
6234     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6235 
6236     /* map the mbuf into non-paged pool */
6237     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6238                                  fp->rx_mbuf_spare_map,
6239                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6240     if (__predict_false(rc != 0)) {
6241         fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6242         m_freem(m);
6243         fp->eth_q_stats.mbuf_alloc_rx--;
6244         return (rc);
6245     }
6246 
6247     /* all mbufs must map to a single segment */
6248     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6249 
6250     /* release any existing RX BD mbuf mappings */
6251 
6252     if (prev_index != index) {
6253         rx_buf = &fp->rx_mbuf_chain[prev_index];
6254 
6255         if (rx_buf->m_map != NULL) {
6256             bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6257                             BUS_DMASYNC_POSTREAD);
6258             bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6259         }
6260 
6261         /*
6262          * We only get here from bxe_rxeof() when the maximum number
6263          * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6264          * holds the mbuf in the prev_index so it's OK to NULL it out
6265          * here without concern of a memory leak.
6266          */
6267         fp->rx_mbuf_chain[prev_index].m = NULL;
6268     }
6269 
6270     rx_buf = &fp->rx_mbuf_chain[index];
6271 
6272     if (rx_buf->m_map != NULL) {
6273         bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6274                         BUS_DMASYNC_POSTREAD);
6275         bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6276     }
6277 
6278     /* save the mbuf and mapping info for a future packet */
6279     map = (prev_index != index) ?
6280               fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6281     rx_buf->m_map = fp->rx_mbuf_spare_map;
6282     fp->rx_mbuf_spare_map = map;
6283     bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6284                     BUS_DMASYNC_PREREAD);
6285     rx_buf->m = m;
6286 
6287     rx_bd = &fp->rx_chain[index];
6288     rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6289     rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6290 
6291     return (rc);
6292 }
6293 
6294 static int
6295 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6296                       int                 queue)
6297 {
6298     struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6299     bus_dma_segment_t segs[1];
6300     bus_dmamap_t map;
6301     struct mbuf *m;
6302     int nsegs;
6303     int rc = 0;
6304 
6305     /* allocate the new TPA mbuf */
6306     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6307     if (__predict_false(m == NULL)) {
6308         fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6309         return (ENOBUFS);
6310     }
6311 
6312     fp->eth_q_stats.mbuf_alloc_tpa++;
6313 
6314     /* initialize the mbuf buffer length */
6315     m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6316 
6317     /* map the mbuf into non-paged pool */
6318     rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6319                                  fp->rx_tpa_info_mbuf_spare_map,
6320                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6321     if (__predict_false(rc != 0)) {
6322         fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6323         m_free(m);
6324         fp->eth_q_stats.mbuf_alloc_tpa--;
6325         return (rc);
6326     }
6327 
6328     /* all mbufs must map to a single segment */
6329     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6330 
6331     /* release any existing TPA mbuf mapping */
6332     if (tpa_info->bd.m_map != NULL) {
6333         bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6334                         BUS_DMASYNC_POSTREAD);
6335         bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6336     }
6337 
6338     /* save the mbuf and mapping info for the TPA mbuf */
6339     map = tpa_info->bd.m_map;
6340     tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6341     fp->rx_tpa_info_mbuf_spare_map = map;
6342     bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6343                     BUS_DMASYNC_PREREAD);
6344     tpa_info->bd.m = m;
6345     tpa_info->seg = segs[0];
6346 
6347     return (rc);
6348 }
6349 
6350 /*
6351  * Allocate an mbuf and assign it to the receive scatter gather chain. The
6352  * caller must take care to save a copy of the existing mbuf in the SG mbuf
6353  * chain.
6354  */
6355 static int
6356 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6357                       uint16_t            index)
6358 {
6359     struct bxe_sw_rx_bd *sge_buf;
6360     struct eth_rx_sge *sge;
6361     bus_dma_segment_t segs[1];
6362     bus_dmamap_t map;
6363     struct mbuf *m;
6364     int nsegs;
6365     int rc = 0;
6366 
6367     /* allocate a new SGE mbuf */
6368     m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6369     if (__predict_false(m == NULL)) {
6370         fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6371         return (ENOMEM);
6372     }
6373 
6374     fp->eth_q_stats.mbuf_alloc_sge++;
6375 
6376     /* initialize the mbuf buffer length */
6377     m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6378 
6379     /* map the SGE mbuf into non-paged pool */
6380     rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6381                                  fp->rx_sge_mbuf_spare_map,
6382                                  m, segs, &nsegs, BUS_DMA_NOWAIT);
6383     if (__predict_false(rc != 0)) {
6384         fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6385         m_freem(m);
6386         fp->eth_q_stats.mbuf_alloc_sge--;
6387         return (rc);
6388     }
6389 
6390     /* all mbufs must map to a single segment */
6391     KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6392 
6393     sge_buf = &fp->rx_sge_mbuf_chain[index];
6394 
6395     /* release any existing SGE mbuf mapping */
6396     if (sge_buf->m_map != NULL) {
6397         bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6398                         BUS_DMASYNC_POSTREAD);
6399         bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6400     }
6401 
6402     /* save the mbuf and mapping info for a future packet */
6403     map = sge_buf->m_map;
6404     sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6405     fp->rx_sge_mbuf_spare_map = map;
6406     bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6407                     BUS_DMASYNC_PREREAD);
6408     sge_buf->m = m;
6409 
6410     sge = &fp->rx_sge_chain[index];
6411     sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6412     sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6413 
6414     return (rc);
6415 }
6416 
6417 static __noinline int
6418 bxe_alloc_fp_buffers(struct bxe_softc *sc)
6419 {
6420     struct bxe_fastpath *fp;
6421     int i, j, rc = 0;
6422     int ring_prod, cqe_ring_prod;
6423     int max_agg_queues;
6424 
6425     for (i = 0; i < sc->num_queues; i++) {
6426         fp = &sc->fp[i];
6427 
6428         ring_prod = cqe_ring_prod = 0;
6429         fp->rx_bd_cons = 0;
6430         fp->rx_cq_cons = 0;
6431 
6432         /* allocate buffers for the RX BDs in RX BD chain */
6433         for (j = 0; j < sc->max_rx_bufs; j++) {
6434             rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6435             if (rc != 0) {
6436                 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6437                       i, rc);
6438                 goto bxe_alloc_fp_buffers_error;
6439             }
6440 
6441             ring_prod     = RX_BD_NEXT(ring_prod);
6442             cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6443         }
6444 
6445         fp->rx_bd_prod = ring_prod;
6446         fp->rx_cq_prod = cqe_ring_prod;
6447         fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6448 
6449         max_agg_queues = MAX_AGG_QS(sc);
6450 
6451         fp->tpa_enable = TRUE;
6452 
6453         /* fill the TPA pool */
6454         for (j = 0; j < max_agg_queues; j++) {
6455             rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6456             if (rc != 0) {
6457                 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6458                           i, j);
6459                 fp->tpa_enable = FALSE;
6460                 goto bxe_alloc_fp_buffers_error;
6461             }
6462 
6463             fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6464         }
6465 
6466         if (fp->tpa_enable) {
6467             /* fill the RX SGE chain */
6468             ring_prod = 0;
6469             for (j = 0; j < RX_SGE_USABLE; j++) {
6470                 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6471                 if (rc != 0) {
6472                     BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6473                               i, ring_prod);
6474                     fp->tpa_enable = FALSE;
6475                     ring_prod = 0;
6476                     goto bxe_alloc_fp_buffers_error;
6477                 }
6478 
6479                 ring_prod = RX_SGE_NEXT(ring_prod);
6480             }
6481 
6482             fp->rx_sge_prod = ring_prod;
6483         }
6484     }
6485 
6486     return (0);
6487 
6488 bxe_alloc_fp_buffers_error:
6489 
6490     /* unwind what was already allocated */
6491     bxe_free_rx_bd_chain(fp);
6492     bxe_free_tpa_pool(fp);
6493     bxe_free_sge_chain(fp);
6494 
6495     return (ENOBUFS);
6496 }
6497 
6498 static void
6499 bxe_free_fw_stats_mem(struct bxe_softc *sc)
6500 {
6501     bxe_dma_free(sc, &sc->fw_stats_dma);
6502 
6503     sc->fw_stats_num = 0;
6504 
6505     sc->fw_stats_req_size = 0;
6506     sc->fw_stats_req = NULL;
6507     sc->fw_stats_req_mapping = 0;
6508 
6509     sc->fw_stats_data_size = 0;
6510     sc->fw_stats_data = NULL;
6511     sc->fw_stats_data_mapping = 0;
6512 }
6513 
6514 static int
6515 bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6516 {
6517     uint8_t num_queue_stats;
6518     int num_groups;
6519 
6520     /* number of queues for statistics is number of eth queues */
6521     num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6522 
6523     /*
6524      * Total number of FW statistics requests =
6525      *   1 for port stats + 1 for PF stats + num of queues
6526      */
6527     sc->fw_stats_num = (2 + num_queue_stats);
6528 
6529     /*
6530      * Request is built from stats_query_header and an array of
6531      * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6532      * rules. The real number or requests is configured in the
6533      * stats_query_header.
6534      */
6535     num_groups =
6536         ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6537          ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6538 
6539     BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6540           sc->fw_stats_num, num_groups);
6541 
6542     sc->fw_stats_req_size =
6543         (sizeof(struct stats_query_header) +
6544          (num_groups * sizeof(struct stats_query_cmd_group)));
6545 
6546     /*
6547      * Data for statistics requests + stats_counter.
6548      * stats_counter holds per-STORM counters that are incremented when
6549      * STORM has finished with the current request. Memory for FCoE
6550      * offloaded statistics are counted anyway, even if they will not be sent.
6551      * VF stats are not accounted for here as the data of VF stats is stored
6552      * in memory allocated by the VF, not here.
6553      */
6554     sc->fw_stats_data_size =
6555         (sizeof(struct stats_counter) +
6556          sizeof(struct per_port_stats) +
6557          sizeof(struct per_pf_stats) +
6558          /* sizeof(struct fcoe_statistics_params) + */
6559          (sizeof(struct per_queue_stats) * num_queue_stats));
6560 
6561     if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6562                       &sc->fw_stats_dma, "fw stats") != 0) {
6563         bxe_free_fw_stats_mem(sc);
6564         return (-1);
6565     }
6566 
6567     /* set up the shortcuts */
6568 
6569     sc->fw_stats_req =
6570         (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6571     sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6572 
6573     sc->fw_stats_data =
6574         (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6575                                      sc->fw_stats_req_size);
6576     sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6577                                  sc->fw_stats_req_size);
6578 
6579     BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6580           (uintmax_t)sc->fw_stats_req_mapping);
6581 
6582     BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6583           (uintmax_t)sc->fw_stats_data_mapping);
6584 
6585     return (0);
6586 }
6587 
6588 /*
6589  * Bits map:
6590  * 0-7  - Engine0 load counter.
6591  * 8-15 - Engine1 load counter.
6592  * 16   - Engine0 RESET_IN_PROGRESS bit.
6593  * 17   - Engine1 RESET_IN_PROGRESS bit.
6594  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6595  *        function on the engine
6596  * 19   - Engine1 ONE_IS_LOADED.
6597  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6598  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6599  *        for just the one belonging to its engine).
6600  */
6601 #define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6602 #define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6603 #define BXE_PATH0_LOAD_CNT_SHIFT  0
6604 #define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6605 #define BXE_PATH1_LOAD_CNT_SHIFT  8
6606 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6607 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6608 #define BXE_GLOBAL_RESET_BIT      0x00040000
6609 
6610 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
6611 static void
6612 bxe_set_reset_global(struct bxe_softc *sc)
6613 {
6614     uint32_t val;
6615     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6616     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6617     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6618     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6619 }
6620 
6621 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6622 static void
6623 bxe_clear_reset_global(struct bxe_softc *sc)
6624 {
6625     uint32_t val;
6626     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6627     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6628     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6629     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6630 }
6631 
6632 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6633 static uint8_t
6634 bxe_reset_is_global(struct bxe_softc *sc)
6635 {
6636     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6637     BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6638     return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6639 }
6640 
6641 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6642 static void
6643 bxe_set_reset_done(struct bxe_softc *sc)
6644 {
6645     uint32_t val;
6646     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6647                                  BXE_PATH0_RST_IN_PROG_BIT;
6648 
6649     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6650 
6651     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6652     /* Clear the bit */
6653     val &= ~bit;
6654     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6655 
6656     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6657 }
6658 
6659 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6660 static void
6661 bxe_set_reset_in_progress(struct bxe_softc *sc)
6662 {
6663     uint32_t val;
6664     uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6665                                  BXE_PATH0_RST_IN_PROG_BIT;
6666 
6667     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6668 
6669     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6670     /* Set the bit */
6671     val |= bit;
6672     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6673 
6674     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6675 }
6676 
6677 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6678 static uint8_t
6679 bxe_reset_is_done(struct bxe_softc *sc,
6680                   int              engine)
6681 {
6682     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6683     uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6684                             BXE_PATH0_RST_IN_PROG_BIT;
6685 
6686     /* return false if bit is set */
6687     return (val & bit) ? FALSE : TRUE;
6688 }
6689 
6690 /* get the load status for an engine, should be run under rtnl lock */
6691 static uint8_t
6692 bxe_get_load_status(struct bxe_softc *sc,
6693                     int              engine)
6694 {
6695     uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6696                              BXE_PATH0_LOAD_CNT_MASK;
6697     uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6698                               BXE_PATH0_LOAD_CNT_SHIFT;
6699     uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6700 
6701     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6702 
6703     val = ((val & mask) >> shift);
6704 
6705     BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6706 
6707     return (val != 0);
6708 }
6709 
6710 /* set pf load mark */
6711 /* XXX needs to be under rtnl lock */
6712 static void
6713 bxe_set_pf_load(struct bxe_softc *sc)
6714 {
6715     uint32_t val;
6716     uint32_t val1;
6717     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6718                                   BXE_PATH0_LOAD_CNT_MASK;
6719     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6720                                    BXE_PATH0_LOAD_CNT_SHIFT;
6721 
6722     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6723 
6724     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6725     BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6726 
6727     /* get the current counter value */
6728     val1 = ((val & mask) >> shift);
6729 
6730     /* set bit of this PF */
6731     val1 |= (1 << SC_ABS_FUNC(sc));
6732 
6733     /* clear the old value */
6734     val &= ~mask;
6735 
6736     /* set the new one */
6737     val |= ((val1 << shift) & mask);
6738 
6739     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6740 
6741     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6742 }
6743 
6744 /* clear pf load mark */
6745 /* XXX needs to be under rtnl lock */
6746 static uint8_t
6747 bxe_clear_pf_load(struct bxe_softc *sc)
6748 {
6749     uint32_t val1, val;
6750     uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6751                                   BXE_PATH0_LOAD_CNT_MASK;
6752     uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6753                                    BXE_PATH0_LOAD_CNT_SHIFT;
6754 
6755     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6756     val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6757     BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6758 
6759     /* get the current counter value */
6760     val1 = (val & mask) >> shift;
6761 
6762     /* clear bit of that PF */
6763     val1 &= ~(1 << SC_ABS_FUNC(sc));
6764 
6765     /* clear the old value */
6766     val &= ~mask;
6767 
6768     /* set the new one */
6769     val |= ((val1 << shift) & mask);
6770 
6771     REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6772     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6773     return (val1 != 0);
6774 }
6775 
6776 /* send load requrest to mcp and analyze response */
6777 static int
6778 bxe_nic_load_request(struct bxe_softc *sc,
6779                      uint32_t         *load_code)
6780 {
6781     /* init fw_seq */
6782     sc->fw_seq =
6783         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6784          DRV_MSG_SEQ_NUMBER_MASK);
6785 
6786     BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6787 
6788     /* get the current FW pulse sequence */
6789     sc->fw_drv_pulse_wr_seq =
6790         (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6791          DRV_PULSE_SEQ_MASK);
6792 
6793     BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6794           sc->fw_drv_pulse_wr_seq);
6795 
6796     /* load request */
6797     (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6798                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6799 
6800     /* if the MCP fails to respond we must abort */
6801     if (!(*load_code)) {
6802         BLOGE(sc, "MCP response failure!\n");
6803         return (-1);
6804     }
6805 
6806     /* if MCP refused then must abort */
6807     if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6808         BLOGE(sc, "MCP refused load request\n");
6809         return (-1);
6810     }
6811 
6812     return (0);
6813 }
6814 
6815 /*
6816  * Check whether another PF has already loaded FW to chip. In virtualized
6817  * environments a pf from anoth VM may have already initialized the device
6818  * including loading FW.
6819  */
6820 static int
6821 bxe_nic_load_analyze_req(struct bxe_softc *sc,
6822                          uint32_t         load_code)
6823 {
6824     uint32_t my_fw, loaded_fw;
6825 
6826     /* is another pf loaded on this engine? */
6827     if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6828         (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6829         /* build my FW version dword */
6830         my_fw = (BCM_5710_FW_MAJOR_VERSION +
6831                  (BCM_5710_FW_MINOR_VERSION << 8 ) +
6832                  (BCM_5710_FW_REVISION_VERSION << 16) +
6833                  (BCM_5710_FW_ENGINEERING_VERSION << 24));
6834 
6835         /* read loaded FW from chip */
6836         loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6837         BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6838               loaded_fw, my_fw);
6839 
6840         /* abort nic load if version mismatch */
6841         if (my_fw != loaded_fw) {
6842             BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6843                   loaded_fw, my_fw);
6844             return (-1);
6845         }
6846     }
6847 
6848     return (0);
6849 }
6850 
6851 /* mark PMF if applicable */
6852 static void
6853 bxe_nic_load_pmf(struct bxe_softc *sc,
6854                  uint32_t         load_code)
6855 {
6856     uint32_t ncsi_oem_data_addr;
6857 
6858     if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6859         (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6860         (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6861         /*
6862          * Barrier here for ordering between the writing to sc->port.pmf here
6863          * and reading it from the periodic task.
6864          */
6865         sc->port.pmf = 1;
6866         mb();
6867     } else {
6868         sc->port.pmf = 0;
6869     }
6870 
6871     BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6872 
6873     /* XXX needed? */
6874     if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6875         if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6876             ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6877             if (ncsi_oem_data_addr) {
6878                 REG_WR(sc,
6879                        (ncsi_oem_data_addr +
6880                         offsetof(struct glob_ncsi_oem_data, driver_version)),
6881                        0);
6882             }
6883         }
6884     }
6885 }
6886 
6887 static void
6888 bxe_read_mf_cfg(struct bxe_softc *sc)
6889 {
6890     int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6891     int abs_func;
6892     int vn;
6893 
6894     if (BXE_NOMCP(sc)) {
6895         return; /* what should be the default bvalue in this case */
6896     }
6897 
6898     /*
6899      * The formula for computing the absolute function number is...
6900      * For 2 port configuration (4 functions per port):
6901      *   abs_func = 2 * vn + SC_PORT + SC_PATH
6902      * For 4 port configuration (2 functions per port):
6903      *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6904      */
6905     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6906         abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6907         if (abs_func >= E1H_FUNC_MAX) {
6908             break;
6909         }
6910         sc->devinfo.mf_info.mf_config[vn] =
6911             MFCFG_RD(sc, func_mf_config[abs_func].config);
6912     }
6913 
6914     if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6915         FUNC_MF_CFG_FUNC_DISABLED) {
6916         BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6917         sc->flags |= BXE_MF_FUNC_DIS;
6918     } else {
6919         BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6920         sc->flags &= ~BXE_MF_FUNC_DIS;
6921     }
6922 }
6923 
6924 /* acquire split MCP access lock register */
6925 static int bxe_acquire_alr(struct bxe_softc *sc)
6926 {
6927     uint32_t j, val;
6928 
6929     for (j = 0; j < 1000; j++) {
6930         val = (1UL << 31);
6931         REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6932         val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6933         if (val & (1L << 31))
6934             break;
6935 
6936         DELAY(5000);
6937     }
6938 
6939     if (!(val & (1L << 31))) {
6940         BLOGE(sc, "Cannot acquire MCP access lock register\n");
6941         return (-1);
6942     }
6943 
6944     return (0);
6945 }
6946 
6947 /* release split MCP access lock register */
6948 static void bxe_release_alr(struct bxe_softc *sc)
6949 {
6950     REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6951 }
6952 
6953 static void
6954 bxe_fan_failure(struct bxe_softc *sc)
6955 {
6956     int port = SC_PORT(sc);
6957     uint32_t ext_phy_config;
6958 
6959     /* mark the failure */
6960     ext_phy_config =
6961         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6962 
6963     ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6964     ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6965     SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6966              ext_phy_config);
6967 
6968     /* log the failure */
6969     BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6970               "the card to prevent permanent damage. "
6971               "Please contact OEM Support for assistance\n");
6972 
6973     /* XXX */
6974 #if 1
6975     bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6976 #else
6977     /*
6978      * Schedule device reset (unload)
6979      * This is due to some boards consuming sufficient power when driver is
6980      * up to overheat if fan fails.
6981      */
6982     bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6983     schedule_delayed_work(&sc->sp_rtnl_task, 0);
6984 #endif
6985 }
6986 
6987 /* this function is called upon a link interrupt */
6988 static void
6989 bxe_link_attn(struct bxe_softc *sc)
6990 {
6991     uint32_t pause_enabled = 0;
6992     struct host_port_stats *pstats;
6993     int cmng_fns;
6994     struct bxe_fastpath *fp;
6995     int i;
6996 
6997     /* Make sure that we are synced with the current statistics */
6998     bxe_stats_handle(sc, STATS_EVENT_STOP);
6999     BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
7000     elink_link_update(&sc->link_params, &sc->link_vars);
7001 
7002     if (sc->link_vars.link_up) {
7003 
7004         /* dropless flow control */
7005         if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7006             pause_enabled = 0;
7007 
7008             if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7009                 pause_enabled = 1;
7010             }
7011 
7012             REG_WR(sc,
7013                    (BAR_USTRORM_INTMEM +
7014                     USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7015                    pause_enabled);
7016         }
7017 
7018         if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7019             pstats = BXE_SP(sc, port_stats);
7020             /* reset old mac stats */
7021             memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7022         }
7023 
7024         if (sc->state == BXE_STATE_OPEN) {
7025             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7026 	    /* Restart tx when the link comes back. */
7027 	    FOR_EACH_ETH_QUEUE(sc, i) {
7028 		fp = &sc->fp[i];
7029 		taskqueue_enqueue(fp->tq, &fp->tx_task);
7030 	    }
7031         }
7032 
7033     }
7034 
7035     if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7036         cmng_fns = bxe_get_cmng_fns_mode(sc);
7037 
7038         if (cmng_fns != CMNG_FNS_NONE) {
7039             bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7040             storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7041         } else {
7042             /* rate shaping and fairness are disabled */
7043             BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7044         }
7045     }
7046 
7047     bxe_link_report_locked(sc);
7048 
7049     if (IS_MF(sc)) {
7050         ; // XXX bxe_link_sync_notify(sc);
7051     }
7052 }
7053 
7054 static void
7055 bxe_attn_int_asserted(struct bxe_softc *sc,
7056                       uint32_t         asserted)
7057 {
7058     int port = SC_PORT(sc);
7059     uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7060                                MISC_REG_AEU_MASK_ATTN_FUNC_0;
7061     uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7062                                         NIG_REG_MASK_INTERRUPT_PORT0;
7063     uint32_t aeu_mask;
7064     uint32_t nig_mask = 0;
7065     uint32_t reg_addr;
7066     uint32_t igu_acked;
7067     uint32_t cnt;
7068 
7069     if (sc->attn_state & asserted) {
7070         BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7071     }
7072 
7073     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7074 
7075     aeu_mask = REG_RD(sc, aeu_addr);
7076 
7077     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7078           aeu_mask, asserted);
7079 
7080     aeu_mask &= ~(asserted & 0x3ff);
7081 
7082     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7083 
7084     REG_WR(sc, aeu_addr, aeu_mask);
7085 
7086     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7087 
7088     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7089     sc->attn_state |= asserted;
7090     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7091 
7092     if (asserted & ATTN_HARD_WIRED_MASK) {
7093         if (asserted & ATTN_NIG_FOR_FUNC) {
7094 
7095 	    bxe_acquire_phy_lock(sc);
7096             /* save nig interrupt mask */
7097             nig_mask = REG_RD(sc, nig_int_mask_addr);
7098 
7099             /* If nig_mask is not set, no need to call the update function */
7100             if (nig_mask) {
7101                 REG_WR(sc, nig_int_mask_addr, 0);
7102 
7103                 bxe_link_attn(sc);
7104             }
7105 
7106             /* handle unicore attn? */
7107         }
7108 
7109         if (asserted & ATTN_SW_TIMER_4_FUNC) {
7110             BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7111         }
7112 
7113         if (asserted & GPIO_2_FUNC) {
7114             BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7115         }
7116 
7117         if (asserted & GPIO_3_FUNC) {
7118             BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7119         }
7120 
7121         if (asserted & GPIO_4_FUNC) {
7122             BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7123         }
7124 
7125         if (port == 0) {
7126             if (asserted & ATTN_GENERAL_ATTN_1) {
7127                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7128                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7129             }
7130             if (asserted & ATTN_GENERAL_ATTN_2) {
7131                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7132                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7133             }
7134             if (asserted & ATTN_GENERAL_ATTN_3) {
7135                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7136                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7137             }
7138         } else {
7139             if (asserted & ATTN_GENERAL_ATTN_4) {
7140                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7141                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7142             }
7143             if (asserted & ATTN_GENERAL_ATTN_5) {
7144                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7145                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7146             }
7147             if (asserted & ATTN_GENERAL_ATTN_6) {
7148                 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7149                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7150             }
7151         }
7152     } /* hardwired */
7153 
7154     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7155         reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7156     } else {
7157         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7158     }
7159 
7160     BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7161           asserted,
7162           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7163     REG_WR(sc, reg_addr, asserted);
7164 
7165     /* now set back the mask */
7166     if (asserted & ATTN_NIG_FOR_FUNC) {
7167         /*
7168          * Verify that IGU ack through BAR was written before restoring
7169          * NIG mask. This loop should exit after 2-3 iterations max.
7170          */
7171         if (sc->devinfo.int_block != INT_BLOCK_HC) {
7172             cnt = 0;
7173 
7174             do {
7175                 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7176             } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7177                      (++cnt < MAX_IGU_ATTN_ACK_TO));
7178 
7179             if (!igu_acked) {
7180                 BLOGE(sc, "Failed to verify IGU ack on time\n");
7181             }
7182 
7183             mb();
7184         }
7185 
7186         REG_WR(sc, nig_int_mask_addr, nig_mask);
7187 
7188 	bxe_release_phy_lock(sc);
7189     }
7190 }
7191 
7192 static void
7193 bxe_print_next_block(struct bxe_softc *sc,
7194                      int              idx,
7195                      const char       *blk)
7196 {
7197     BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7198 }
7199 
7200 static int
7201 bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7202                               uint32_t         sig,
7203                               int              par_num,
7204                               uint8_t          print)
7205 {
7206     uint32_t cur_bit = 0;
7207     int i = 0;
7208 
7209     for (i = 0; sig; i++) {
7210         cur_bit = ((uint32_t)0x1 << i);
7211         if (sig & cur_bit) {
7212             switch (cur_bit) {
7213             case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7214                 if (print)
7215                     bxe_print_next_block(sc, par_num++, "BRB");
7216                 break;
7217             case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7218                 if (print)
7219                     bxe_print_next_block(sc, par_num++, "PARSER");
7220                 break;
7221             case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7222                 if (print)
7223                     bxe_print_next_block(sc, par_num++, "TSDM");
7224                 break;
7225             case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7226                 if (print)
7227                     bxe_print_next_block(sc, par_num++, "SEARCHER");
7228                 break;
7229             case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7230                 if (print)
7231                     bxe_print_next_block(sc, par_num++, "TCM");
7232                 break;
7233             case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7234                 if (print)
7235                     bxe_print_next_block(sc, par_num++, "TSEMI");
7236                 break;
7237             case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7238                 if (print)
7239                     bxe_print_next_block(sc, par_num++, "XPB");
7240                 break;
7241             }
7242 
7243             /* Clear the bit */
7244             sig &= ~cur_bit;
7245         }
7246     }
7247 
7248     return (par_num);
7249 }
7250 
7251 static int
7252 bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7253                               uint32_t         sig,
7254                               int              par_num,
7255                               uint8_t          *global,
7256                               uint8_t          print)
7257 {
7258     int i = 0;
7259     uint32_t cur_bit = 0;
7260     for (i = 0; sig; i++) {
7261         cur_bit = ((uint32_t)0x1 << i);
7262         if (sig & cur_bit) {
7263             switch (cur_bit) {
7264             case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7265                 if (print)
7266                     bxe_print_next_block(sc, par_num++, "PBF");
7267                 break;
7268             case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7269                 if (print)
7270                     bxe_print_next_block(sc, par_num++, "QM");
7271                 break;
7272             case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7273                 if (print)
7274                     bxe_print_next_block(sc, par_num++, "TM");
7275                 break;
7276             case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7277                 if (print)
7278                     bxe_print_next_block(sc, par_num++, "XSDM");
7279                 break;
7280             case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7281                 if (print)
7282                     bxe_print_next_block(sc, par_num++, "XCM");
7283                 break;
7284             case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7285                 if (print)
7286                     bxe_print_next_block(sc, par_num++, "XSEMI");
7287                 break;
7288             case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7289                 if (print)
7290                     bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7291                 break;
7292             case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7293                 if (print)
7294                     bxe_print_next_block(sc, par_num++, "NIG");
7295                 break;
7296             case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7297                 if (print)
7298                     bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7299                 *global = TRUE;
7300                 break;
7301             case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7302                 if (print)
7303                     bxe_print_next_block(sc, par_num++, "DEBUG");
7304                 break;
7305             case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7306                 if (print)
7307                     bxe_print_next_block(sc, par_num++, "USDM");
7308                 break;
7309             case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7310                 if (print)
7311                     bxe_print_next_block(sc, par_num++, "UCM");
7312                 break;
7313             case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7314                 if (print)
7315                     bxe_print_next_block(sc, par_num++, "USEMI");
7316                 break;
7317             case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7318                 if (print)
7319                     bxe_print_next_block(sc, par_num++, "UPB");
7320                 break;
7321             case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7322                 if (print)
7323                     bxe_print_next_block(sc, par_num++, "CSDM");
7324                 break;
7325             case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7326                 if (print)
7327                     bxe_print_next_block(sc, par_num++, "CCM");
7328                 break;
7329             }
7330 
7331             /* Clear the bit */
7332             sig &= ~cur_bit;
7333         }
7334     }
7335 
7336     return (par_num);
7337 }
7338 
7339 static int
7340 bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7341                               uint32_t         sig,
7342                               int              par_num,
7343                               uint8_t          print)
7344 {
7345     uint32_t cur_bit = 0;
7346     int i = 0;
7347 
7348     for (i = 0; sig; i++) {
7349         cur_bit = ((uint32_t)0x1 << i);
7350         if (sig & cur_bit) {
7351             switch (cur_bit) {
7352             case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7353                 if (print)
7354                     bxe_print_next_block(sc, par_num++, "CSEMI");
7355                 break;
7356             case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7357                 if (print)
7358                     bxe_print_next_block(sc, par_num++, "PXP");
7359                 break;
7360             case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7361                 if (print)
7362                     bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7363                 break;
7364             case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7365                 if (print)
7366                     bxe_print_next_block(sc, par_num++, "CFC");
7367                 break;
7368             case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7369                 if (print)
7370                     bxe_print_next_block(sc, par_num++, "CDU");
7371                 break;
7372             case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7373                 if (print)
7374                     bxe_print_next_block(sc, par_num++, "DMAE");
7375                 break;
7376             case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7377                 if (print)
7378                     bxe_print_next_block(sc, par_num++, "IGU");
7379                 break;
7380             case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7381                 if (print)
7382                     bxe_print_next_block(sc, par_num++, "MISC");
7383                 break;
7384             }
7385 
7386             /* Clear the bit */
7387             sig &= ~cur_bit;
7388         }
7389     }
7390 
7391     return (par_num);
7392 }
7393 
7394 static int
7395 bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7396                               uint32_t         sig,
7397                               int              par_num,
7398                               uint8_t          *global,
7399                               uint8_t          print)
7400 {
7401     uint32_t cur_bit = 0;
7402     int i = 0;
7403 
7404     for (i = 0; sig; i++) {
7405         cur_bit = ((uint32_t)0x1 << i);
7406         if (sig & cur_bit) {
7407             switch (cur_bit) {
7408             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7409                 if (print)
7410                     bxe_print_next_block(sc, par_num++, "MCP ROM");
7411                 *global = TRUE;
7412                 break;
7413             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7414                 if (print)
7415                     bxe_print_next_block(sc, par_num++,
7416                               "MCP UMP RX");
7417                 *global = TRUE;
7418                 break;
7419             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7420                 if (print)
7421                     bxe_print_next_block(sc, par_num++,
7422                               "MCP UMP TX");
7423                 *global = TRUE;
7424                 break;
7425             case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7426                 if (print)
7427                     bxe_print_next_block(sc, par_num++,
7428                               "MCP SCPAD");
7429                 *global = TRUE;
7430                 break;
7431             }
7432 
7433             /* Clear the bit */
7434             sig &= ~cur_bit;
7435         }
7436     }
7437 
7438     return (par_num);
7439 }
7440 
7441 static int
7442 bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7443                               uint32_t         sig,
7444                               int              par_num,
7445                               uint8_t          print)
7446 {
7447     uint32_t cur_bit = 0;
7448     int i = 0;
7449 
7450     for (i = 0; sig; i++) {
7451         cur_bit = ((uint32_t)0x1 << i);
7452         if (sig & cur_bit) {
7453             switch (cur_bit) {
7454             case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7455                 if (print)
7456                     bxe_print_next_block(sc, par_num++, "PGLUE_B");
7457                 break;
7458             case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7459                 if (print)
7460                     bxe_print_next_block(sc, par_num++, "ATC");
7461                 break;
7462             }
7463 
7464             /* Clear the bit */
7465             sig &= ~cur_bit;
7466         }
7467     }
7468 
7469     return (par_num);
7470 }
7471 
7472 static uint8_t
7473 bxe_parity_attn(struct bxe_softc *sc,
7474                 uint8_t          *global,
7475                 uint8_t          print,
7476                 uint32_t         *sig)
7477 {
7478     int par_num = 0;
7479 
7480     if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7481         (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7482         (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7483         (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7484         (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7485         BLOGE(sc, "Parity error: HW block parity attention:\n"
7486                   "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7487               (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7488               (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7489               (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7490               (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7491               (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7492 
7493         if (print)
7494             BLOGI(sc, "Parity errors detected in blocks: ");
7495 
7496         par_num =
7497             bxe_check_blocks_with_parity0(sc, sig[0] &
7498                                           HW_PRTY_ASSERT_SET_0,
7499                                           par_num, print);
7500         par_num =
7501             bxe_check_blocks_with_parity1(sc, sig[1] &
7502                                           HW_PRTY_ASSERT_SET_1,
7503                                           par_num, global, print);
7504         par_num =
7505             bxe_check_blocks_with_parity2(sc, sig[2] &
7506                                           HW_PRTY_ASSERT_SET_2,
7507                                           par_num, print);
7508         par_num =
7509             bxe_check_blocks_with_parity3(sc, sig[3] &
7510                                           HW_PRTY_ASSERT_SET_3,
7511                                           par_num, global, print);
7512         par_num =
7513             bxe_check_blocks_with_parity4(sc, sig[4] &
7514                                           HW_PRTY_ASSERT_SET_4,
7515                                           par_num, print);
7516 
7517         if (print)
7518             BLOGI(sc, "\n");
7519 
7520 	if( *global == TRUE ) {
7521                 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
7522         }
7523 
7524         return (TRUE);
7525     }
7526 
7527     return (FALSE);
7528 }
7529 
7530 static uint8_t
7531 bxe_chk_parity_attn(struct bxe_softc *sc,
7532                     uint8_t          *global,
7533                     uint8_t          print)
7534 {
7535     struct attn_route attn = { {0} };
7536     int port = SC_PORT(sc);
7537 
7538     if(sc->state != BXE_STATE_OPEN)
7539         return FALSE;
7540 
7541     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7542     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7543     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7544     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7545 
7546     /*
7547      * Since MCP attentions can't be disabled inside the block, we need to
7548      * read AEU registers to see whether they're currently disabled
7549      */
7550     attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7551                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7552                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7553                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7554 
7555 
7556     if (!CHIP_IS_E1x(sc))
7557         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7558 
7559     return (bxe_parity_attn(sc, global, print, attn.sig));
7560 }
7561 
7562 static void
7563 bxe_attn_int_deasserted4(struct bxe_softc *sc,
7564                          uint32_t         attn)
7565 {
7566     uint32_t val;
7567     bool err_flg = false;
7568 
7569     if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7570         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7571         BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7572         err_flg = true;
7573         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7574             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7575         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7576             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7577         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7578             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7579         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7580             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7581         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7582             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7583         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7584             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7585         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7586             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7587         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7588             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7589         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7590             BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7591     }
7592 
7593     if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7594         val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7595         BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7596 	err_flg = true;
7597         if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7598             BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7599         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7600             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7601         if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7602             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7603         if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7604             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7605         if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7606             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7607         if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7608             BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7609     }
7610 
7611     if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7612                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7613         BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7614               (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7615                                  AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7616 	err_flg = true;
7617     }
7618     if (err_flg) {
7619 	BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
7620 	taskqueue_enqueue_timeout(taskqueue_thread,
7621 	    &sc->sp_err_timeout_task, hz/10);
7622     }
7623 
7624 }
7625 
7626 static void
7627 bxe_e1h_disable(struct bxe_softc *sc)
7628 {
7629     int port = SC_PORT(sc);
7630 
7631     bxe_tx_disable(sc);
7632 
7633     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7634 }
7635 
7636 static void
7637 bxe_e1h_enable(struct bxe_softc *sc)
7638 {
7639     int port = SC_PORT(sc);
7640 
7641     REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7642 
7643     // XXX bxe_tx_enable(sc);
7644 }
7645 
7646 /*
7647  * called due to MCP event (on pmf):
7648  *   reread new bandwidth configuration
7649  *   configure FW
7650  *   notify others function about the change
7651  */
7652 static void
7653 bxe_config_mf_bw(struct bxe_softc *sc)
7654 {
7655     if (sc->link_vars.link_up) {
7656         bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7657         // XXX bxe_link_sync_notify(sc);
7658     }
7659 
7660     storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7661 }
7662 
7663 static void
7664 bxe_set_mf_bw(struct bxe_softc *sc)
7665 {
7666     bxe_config_mf_bw(sc);
7667     bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7668 }
7669 
7670 static void
7671 bxe_handle_eee_event(struct bxe_softc *sc)
7672 {
7673     BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7674     bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7675 }
7676 
7677 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7678 
7679 static void
7680 bxe_drv_info_ether_stat(struct bxe_softc *sc)
7681 {
7682     struct eth_stats_info *ether_stat =
7683         &sc->sp->drv_info_to_mcp.ether_stat;
7684 
7685     strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7686             ETH_STAT_INFO_VERSION_LEN);
7687 
7688     /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7689     sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7690                                           DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7691                                           ether_stat->mac_local + MAC_PAD,
7692                                           MAC_PAD, ETH_ALEN);
7693 
7694     ether_stat->mtu_size = sc->mtu;
7695 
7696     ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7697     if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7698         ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7699     }
7700 
7701     // XXX ether_stat->feature_flags |= ???;
7702 
7703     ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7704 
7705     ether_stat->txq_size = sc->tx_ring_size;
7706     ether_stat->rxq_size = sc->rx_ring_size;
7707 }
7708 
7709 static void
7710 bxe_handle_drv_info_req(struct bxe_softc *sc)
7711 {
7712     enum drv_info_opcode op_code;
7713     uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7714 
7715     /* if drv_info version supported by MFW doesn't match - send NACK */
7716     if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7717         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7718         return;
7719     }
7720 
7721     op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7722                DRV_INFO_CONTROL_OP_CODE_SHIFT);
7723 
7724     memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7725 
7726     switch (op_code) {
7727     case ETH_STATS_OPCODE:
7728         bxe_drv_info_ether_stat(sc);
7729         break;
7730     case FCOE_STATS_OPCODE:
7731     case ISCSI_STATS_OPCODE:
7732     default:
7733         /* if op code isn't supported - send NACK */
7734         bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7735         return;
7736     }
7737 
7738     /*
7739      * If we got drv_info attn from MFW then these fields are defined in
7740      * shmem2 for sure
7741      */
7742     SHMEM2_WR(sc, drv_info_host_addr_lo,
7743               U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7744     SHMEM2_WR(sc, drv_info_host_addr_hi,
7745               U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7746 
7747     bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7748 }
7749 
7750 static void
7751 bxe_dcc_event(struct bxe_softc *sc,
7752               uint32_t         dcc_event)
7753 {
7754     BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7755 
7756     if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7757         /*
7758          * This is the only place besides the function initialization
7759          * where the sc->flags can change so it is done without any
7760          * locks
7761          */
7762         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7763             BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7764             sc->flags |= BXE_MF_FUNC_DIS;
7765             bxe_e1h_disable(sc);
7766         } else {
7767             BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7768             sc->flags &= ~BXE_MF_FUNC_DIS;
7769             bxe_e1h_enable(sc);
7770         }
7771         dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7772     }
7773 
7774     if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7775         bxe_config_mf_bw(sc);
7776         dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7777     }
7778 
7779     /* Report results to MCP */
7780     if (dcc_event)
7781         bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7782     else
7783         bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7784 }
7785 
7786 static void
7787 bxe_pmf_update(struct bxe_softc *sc)
7788 {
7789     int port = SC_PORT(sc);
7790     uint32_t val;
7791 
7792     sc->port.pmf = 1;
7793     BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7794 
7795     /*
7796      * We need the mb() to ensure the ordering between the writing to
7797      * sc->port.pmf here and reading it from the bxe_periodic_task().
7798      */
7799     mb();
7800 
7801     /* queue a periodic task */
7802     // XXX schedule task...
7803 
7804     // XXX bxe_dcbx_pmf_update(sc);
7805 
7806     /* enable nig attention */
7807     val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7808     if (sc->devinfo.int_block == INT_BLOCK_HC) {
7809         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7810         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7811     } else if (!CHIP_IS_E1x(sc)) {
7812         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7813         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7814     }
7815 
7816     bxe_stats_handle(sc, STATS_EVENT_PMF);
7817 }
7818 
7819 static int
7820 bxe_mc_assert(struct bxe_softc *sc)
7821 {
7822     char last_idx;
7823     int i, rc = 0;
7824     uint32_t row0, row1, row2, row3;
7825 
7826     /* XSTORM */
7827     last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7828     if (last_idx)
7829         BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7830 
7831     /* print the asserts */
7832     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7833 
7834         row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7835         row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7836         row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7837         row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7838 
7839         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7840             BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7841                   i, row3, row2, row1, row0);
7842             rc++;
7843         } else {
7844             break;
7845         }
7846     }
7847 
7848     /* TSTORM */
7849     last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7850     if (last_idx) {
7851         BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7852     }
7853 
7854     /* print the asserts */
7855     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7856 
7857         row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7858         row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7859         row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7860         row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7861 
7862         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7863             BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7864                   i, row3, row2, row1, row0);
7865             rc++;
7866         } else {
7867             break;
7868         }
7869     }
7870 
7871     /* CSTORM */
7872     last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7873     if (last_idx) {
7874         BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7875     }
7876 
7877     /* print the asserts */
7878     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7879 
7880         row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7881         row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7882         row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7883         row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7884 
7885         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7886             BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7887                   i, row3, row2, row1, row0);
7888             rc++;
7889         } else {
7890             break;
7891         }
7892     }
7893 
7894     /* USTORM */
7895     last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7896     if (last_idx) {
7897         BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7898     }
7899 
7900     /* print the asserts */
7901     for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7902 
7903         row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7904         row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7905         row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7906         row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7907 
7908         if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7909             BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7910                   i, row3, row2, row1, row0);
7911             rc++;
7912         } else {
7913             break;
7914         }
7915     }
7916 
7917     return (rc);
7918 }
7919 
7920 static void
7921 bxe_attn_int_deasserted3(struct bxe_softc *sc,
7922                          uint32_t         attn)
7923 {
7924     int func = SC_FUNC(sc);
7925     uint32_t val;
7926 
7927     if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7928 
7929         if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7930 
7931             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7932             bxe_read_mf_cfg(sc);
7933             sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7934                 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7935             val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7936 
7937             if (val & DRV_STATUS_DCC_EVENT_MASK)
7938                 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7939 
7940             if (val & DRV_STATUS_SET_MF_BW)
7941                 bxe_set_mf_bw(sc);
7942 
7943             if (val & DRV_STATUS_DRV_INFO_REQ)
7944                 bxe_handle_drv_info_req(sc);
7945 
7946             if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7947                 bxe_pmf_update(sc);
7948 
7949             if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7950                 bxe_handle_eee_event(sc);
7951 
7952             if (sc->link_vars.periodic_flags &
7953                 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7954                 /* sync with link */
7955 		bxe_acquire_phy_lock(sc);
7956                 sc->link_vars.periodic_flags &=
7957                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7958 		bxe_release_phy_lock(sc);
7959                 if (IS_MF(sc))
7960                     ; // XXX bxe_link_sync_notify(sc);
7961                 bxe_link_report(sc);
7962             }
7963 
7964             /*
7965              * Always call it here: bxe_link_report() will
7966              * prevent the link indication duplication.
7967              */
7968             bxe_link_status_update(sc);
7969 
7970         } else if (attn & BXE_MC_ASSERT_BITS) {
7971 
7972             BLOGE(sc, "MC assert!\n");
7973             bxe_mc_assert(sc);
7974             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7975             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7976             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7977             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7978             bxe_int_disable(sc);
7979             BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
7980             taskqueue_enqueue_timeout(taskqueue_thread,
7981                 &sc->sp_err_timeout_task, hz/10);
7982 
7983         } else if (attn & BXE_MCP_ASSERT) {
7984 
7985             BLOGE(sc, "MCP assert!\n");
7986             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7987             BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
7988             taskqueue_enqueue_timeout(taskqueue_thread,
7989                 &sc->sp_err_timeout_task, hz/10);
7990             bxe_int_disable(sc);  /*avoid repetive assert alert */
7991 
7992 
7993         } else {
7994             BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7995         }
7996     }
7997 
7998     if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7999         BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8000         if (attn & BXE_GRC_TIMEOUT) {
8001             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8002             BLOGE(sc, "GRC time-out 0x%08x\n", val);
8003         }
8004         if (attn & BXE_GRC_RSV) {
8005             val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8006             BLOGE(sc, "GRC reserved 0x%08x\n", val);
8007         }
8008         REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8009     }
8010 }
8011 
8012 static void
8013 bxe_attn_int_deasserted2(struct bxe_softc *sc,
8014                          uint32_t         attn)
8015 {
8016     int port = SC_PORT(sc);
8017     int reg_offset;
8018     uint32_t val0, mask0, val1, mask1;
8019     uint32_t val;
8020     bool err_flg = false;
8021 
8022     if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8023         val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8024         BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8025         /* CFC error attention */
8026         if (val & 0x2) {
8027             BLOGE(sc, "FATAL error from CFC\n");
8028 	    err_flg = true;
8029         }
8030     }
8031 
8032     if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8033         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8034         BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8035         /* RQ_USDMDP_FIFO_OVERFLOW */
8036         if (val & 0x18000) {
8037             BLOGE(sc, "FATAL error from PXP\n");
8038 	    err_flg = true;
8039         }
8040 
8041         if (!CHIP_IS_E1x(sc)) {
8042             val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8043             BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8044 	    err_flg = true;
8045         }
8046     }
8047 
8048 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8049 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8050 
8051     if (attn & AEU_PXP2_HW_INT_BIT) {
8052         /*  CQ47854 workaround do not panic on
8053          *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8054          */
8055         if (!CHIP_IS_E1x(sc)) {
8056             mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8057             val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8058             mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8059             val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8060             /*
8061              * If the only PXP2_EOP_ERROR_BIT is set in
8062              * STS0 and STS1 - clear it
8063              *
8064              * probably we lose additional attentions between
8065              * STS0 and STS_CLR0, in this case user will not
8066              * be notified about them
8067              */
8068             if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8069                 !(val1 & mask1))
8070                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8071 
8072             /* print the register, since no one can restore it */
8073             BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8074 
8075             /*
8076              * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8077              * then notify
8078              */
8079             if (val0 & PXP2_EOP_ERROR_BIT) {
8080                 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8081 		err_flg = true;
8082 
8083                 /*
8084                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8085                  * set then clear attention from PXP2 block without panic
8086                  */
8087                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8088                     ((val1 & mask1) == 0))
8089                     attn &= ~AEU_PXP2_HW_INT_BIT;
8090             }
8091         }
8092     }
8093 
8094     if (attn & HW_INTERRUT_ASSERT_SET_2) {
8095         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8096                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8097 
8098         val = REG_RD(sc, reg_offset);
8099         val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8100         REG_WR(sc, reg_offset, val);
8101 
8102         BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8103               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8104 	err_flg = true;
8105         bxe_panic(sc, ("HW block attention set2\n"));
8106     }
8107     if(err_flg) {
8108         BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
8109         taskqueue_enqueue_timeout(taskqueue_thread,
8110            &sc->sp_err_timeout_task, hz/10);
8111     }
8112 
8113 }
8114 
8115 static void
8116 bxe_attn_int_deasserted1(struct bxe_softc *sc,
8117                          uint32_t         attn)
8118 {
8119     int port = SC_PORT(sc);
8120     int reg_offset;
8121     uint32_t val;
8122     bool err_flg = false;
8123 
8124     if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8125         val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8126         BLOGE(sc, "DB hw attention 0x%08x\n", val);
8127         /* DORQ discard attention */
8128         if (val & 0x2) {
8129             BLOGE(sc, "FATAL error from DORQ\n");
8130 	    err_flg = true;
8131         }
8132     }
8133 
8134     if (attn & HW_INTERRUT_ASSERT_SET_1) {
8135         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8136                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8137 
8138         val = REG_RD(sc, reg_offset);
8139         val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8140         REG_WR(sc, reg_offset, val);
8141 
8142         BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8143               (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8144         err_flg = true;
8145         bxe_panic(sc, ("HW block attention set1\n"));
8146     }
8147     if(err_flg) {
8148         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8149         taskqueue_enqueue_timeout(taskqueue_thread,
8150            &sc->sp_err_timeout_task, hz/10);
8151     }
8152 
8153 }
8154 
8155 static void
8156 bxe_attn_int_deasserted0(struct bxe_softc *sc,
8157                          uint32_t         attn)
8158 {
8159     int port = SC_PORT(sc);
8160     int reg_offset;
8161     uint32_t val;
8162 
8163     reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8164                           MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8165 
8166     if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8167         val = REG_RD(sc, reg_offset);
8168         val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8169         REG_WR(sc, reg_offset, val);
8170 
8171         BLOGW(sc, "SPIO5 hw attention\n");
8172 
8173         /* Fan failure attention */
8174         elink_hw_reset_phy(&sc->link_params);
8175         bxe_fan_failure(sc);
8176     }
8177 
8178     if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8179 	bxe_acquire_phy_lock(sc);
8180         elink_handle_module_detect_int(&sc->link_params);
8181 	bxe_release_phy_lock(sc);
8182     }
8183 
8184     if (attn & HW_INTERRUT_ASSERT_SET_0) {
8185         val = REG_RD(sc, reg_offset);
8186         val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8187         REG_WR(sc, reg_offset, val);
8188 
8189 
8190         BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8191         taskqueue_enqueue_timeout(taskqueue_thread,
8192            &sc->sp_err_timeout_task, hz/10);
8193 
8194         bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8195                        (attn & HW_INTERRUT_ASSERT_SET_0)));
8196     }
8197 }
8198 
8199 static void
8200 bxe_attn_int_deasserted(struct bxe_softc *sc,
8201                         uint32_t         deasserted)
8202 {
8203     struct attn_route attn;
8204     struct attn_route *group_mask;
8205     int port = SC_PORT(sc);
8206     int index;
8207     uint32_t reg_addr;
8208     uint32_t val;
8209     uint32_t aeu_mask;
8210     uint8_t global = FALSE;
8211 
8212     /*
8213      * Need to take HW lock because MCP or other port might also
8214      * try to handle this event.
8215      */
8216     bxe_acquire_alr(sc);
8217 
8218     if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8219         /* XXX
8220          * In case of parity errors don't handle attentions so that
8221          * other function would "see" parity errors.
8222          */
8223         // XXX schedule a recovery task...
8224         /* disable HW interrupts */
8225         bxe_int_disable(sc);
8226         BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
8227         taskqueue_enqueue_timeout(taskqueue_thread,
8228            &sc->sp_err_timeout_task, hz/10);
8229         bxe_release_alr(sc);
8230         return;
8231     }
8232 
8233     attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8234     attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8235     attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8236     attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8237     if (!CHIP_IS_E1x(sc)) {
8238         attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8239     } else {
8240         attn.sig[4] = 0;
8241     }
8242 
8243     BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8244           attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8245 
8246     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8247         if (deasserted & (1 << index)) {
8248             group_mask = &sc->attn_group[index];
8249 
8250             BLOGD(sc, DBG_INTR,
8251                   "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8252                   group_mask->sig[0], group_mask->sig[1],
8253                   group_mask->sig[2], group_mask->sig[3],
8254                   group_mask->sig[4]);
8255 
8256             bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8257             bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8258             bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8259             bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8260             bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8261         }
8262     }
8263 
8264     bxe_release_alr(sc);
8265 
8266     if (sc->devinfo.int_block == INT_BLOCK_HC) {
8267         reg_addr = (HC_REG_COMMAND_REG + port*32 +
8268                     COMMAND_REG_ATTN_BITS_CLR);
8269     } else {
8270         reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8271     }
8272 
8273     val = ~deasserted;
8274     BLOGD(sc, DBG_INTR,
8275           "about to mask 0x%08x at %s addr 0x%08x\n", val,
8276           (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8277     REG_WR(sc, reg_addr, val);
8278 
8279     if (~sc->attn_state & deasserted) {
8280         BLOGE(sc, "IGU error\n");
8281     }
8282 
8283     reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8284                       MISC_REG_AEU_MASK_ATTN_FUNC_0;
8285 
8286     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8287 
8288     aeu_mask = REG_RD(sc, reg_addr);
8289 
8290     BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8291           aeu_mask, deasserted);
8292     aeu_mask |= (deasserted & 0x3ff);
8293     BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8294 
8295     REG_WR(sc, reg_addr, aeu_mask);
8296     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8297 
8298     BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8299     sc->attn_state &= ~deasserted;
8300     BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8301 }
8302 
8303 static void
8304 bxe_attn_int(struct bxe_softc *sc)
8305 {
8306     /* read local copy of bits */
8307     uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8308     uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8309     uint32_t attn_state = sc->attn_state;
8310 
8311     /* look for changed bits */
8312     uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8313     uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8314 
8315     BLOGD(sc, DBG_INTR,
8316           "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8317           attn_bits, attn_ack, asserted, deasserted);
8318 
8319     if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8320         BLOGE(sc, "BAD attention state\n");
8321     }
8322 
8323     /* handle bits that were raised */
8324     if (asserted) {
8325         bxe_attn_int_asserted(sc, asserted);
8326     }
8327 
8328     if (deasserted) {
8329         bxe_attn_int_deasserted(sc, deasserted);
8330     }
8331 }
8332 
8333 static uint16_t
8334 bxe_update_dsb_idx(struct bxe_softc *sc)
8335 {
8336     struct host_sp_status_block *def_sb = sc->def_sb;
8337     uint16_t rc = 0;
8338 
8339     mb(); /* status block is written to by the chip */
8340 
8341     if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8342         sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8343         rc |= BXE_DEF_SB_ATT_IDX;
8344     }
8345 
8346     if (sc->def_idx != def_sb->sp_sb.running_index) {
8347         sc->def_idx = def_sb->sp_sb.running_index;
8348         rc |= BXE_DEF_SB_IDX;
8349     }
8350 
8351     mb();
8352 
8353     return (rc);
8354 }
8355 
8356 static inline struct ecore_queue_sp_obj *
8357 bxe_cid_to_q_obj(struct bxe_softc *sc,
8358                  uint32_t         cid)
8359 {
8360     BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8361     return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8362 }
8363 
8364 static void
8365 bxe_handle_mcast_eqe(struct bxe_softc *sc)
8366 {
8367     struct ecore_mcast_ramrod_params rparam;
8368     int rc;
8369 
8370     memset(&rparam, 0, sizeof(rparam));
8371 
8372     rparam.mcast_obj = &sc->mcast_obj;
8373 
8374     BXE_MCAST_LOCK(sc);
8375 
8376     /* clear pending state for the last command */
8377     sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8378 
8379     /* if there are pending mcast commands - send them */
8380     if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8381         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8382         if (rc < 0) {
8383             BLOGD(sc, DBG_SP,
8384                 "ERROR: Failed to send pending mcast commands (%d)\n", rc);
8385         }
8386     }
8387 
8388     BXE_MCAST_UNLOCK(sc);
8389 }
8390 
8391 static void
8392 bxe_handle_classification_eqe(struct bxe_softc      *sc,
8393                               union event_ring_elem *elem)
8394 {
8395     unsigned long ramrod_flags = 0;
8396     int rc = 0;
8397     uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8398     struct ecore_vlan_mac_obj *vlan_mac_obj;
8399 
8400     /* always push next commands out, don't wait here */
8401     bit_set(&ramrod_flags, RAMROD_CONT);
8402 
8403     switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8404     case ECORE_FILTER_MAC_PENDING:
8405         BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8406         vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8407         break;
8408 
8409     case ECORE_FILTER_MCAST_PENDING:
8410         BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8411         /*
8412          * This is only relevant for 57710 where multicast MACs are
8413          * configured as unicast MACs using the same ramrod.
8414          */
8415         bxe_handle_mcast_eqe(sc);
8416         return;
8417 
8418     default:
8419         BLOGE(sc, "Unsupported classification command: %d\n",
8420               elem->message.data.eth_event.echo);
8421         return;
8422     }
8423 
8424     rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8425 
8426     if (rc < 0) {
8427         BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8428     } else if (rc > 0) {
8429         BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8430     }
8431 }
8432 
8433 static void
8434 bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8435                        union event_ring_elem *elem)
8436 {
8437     bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8438 
8439     /* send rx_mode command again if was requested */
8440     if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8441                                &sc->sp_state)) {
8442         bxe_set_storm_rx_mode(sc);
8443     }
8444 }
8445 
8446 static void
8447 bxe_update_eq_prod(struct bxe_softc *sc,
8448                    uint16_t         prod)
8449 {
8450     storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8451     wmb(); /* keep prod updates ordered */
8452 }
8453 
8454 static void
8455 bxe_eq_int(struct bxe_softc *sc)
8456 {
8457     uint16_t hw_cons, sw_cons, sw_prod;
8458     union event_ring_elem *elem;
8459     uint8_t echo;
8460     uint32_t cid;
8461     uint8_t opcode;
8462     int spqe_cnt = 0;
8463     struct ecore_queue_sp_obj *q_obj;
8464     struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8465     struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8466 
8467     hw_cons = le16toh(*sc->eq_cons_sb);
8468 
8469     /*
8470      * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8471      * when we get to the next-page we need to adjust so the loop
8472      * condition below will be met. The next element is the size of a
8473      * regular element and hence incrementing by 1
8474      */
8475     if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8476         hw_cons++;
8477     }
8478 
8479     /*
8480      * This function may never run in parallel with itself for a
8481      * specific sc and no need for a read memory barrier here.
8482      */
8483     sw_cons = sc->eq_cons;
8484     sw_prod = sc->eq_prod;
8485 
8486     BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8487           hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8488 
8489     for (;
8490          sw_cons != hw_cons;
8491          sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8492 
8493         elem = &sc->eq[EQ_DESC(sw_cons)];
8494 
8495         /* elem CID originates from FW, actually LE */
8496         cid = SW_CID(elem->message.data.cfc_del_event.cid);
8497         opcode = elem->message.opcode;
8498 
8499         /* handle eq element */
8500         switch (opcode) {
8501 
8502         case EVENT_RING_OPCODE_STAT_QUERY:
8503             BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8504                   sc->stats_comp++);
8505             /* nothing to do with stats comp */
8506             goto next_spqe;
8507 
8508         case EVENT_RING_OPCODE_CFC_DEL:
8509             /* handle according to cid range */
8510             /* we may want to verify here that the sc state is HALTING */
8511             BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8512             q_obj = bxe_cid_to_q_obj(sc, cid);
8513             if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8514                 break;
8515             }
8516             goto next_spqe;
8517 
8518         case EVENT_RING_OPCODE_STOP_TRAFFIC:
8519             BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8520             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8521                 break;
8522             }
8523             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8524             goto next_spqe;
8525 
8526         case EVENT_RING_OPCODE_START_TRAFFIC:
8527             BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8528             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8529                 break;
8530             }
8531             // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8532             goto next_spqe;
8533 
8534         case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8535             echo = elem->message.data.function_update_event.echo;
8536             if (echo == SWITCH_UPDATE) {
8537                 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8538                 if (f_obj->complete_cmd(sc, f_obj,
8539                                         ECORE_F_CMD_SWITCH_UPDATE)) {
8540                     break;
8541                 }
8542             }
8543             else {
8544                 BLOGD(sc, DBG_SP,
8545                       "AFEX: ramrod completed FUNCTION_UPDATE\n");
8546             }
8547             goto next_spqe;
8548 
8549         case EVENT_RING_OPCODE_FORWARD_SETUP:
8550             q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8551             if (q_obj->complete_cmd(sc, q_obj,
8552                                     ECORE_Q_CMD_SETUP_TX_ONLY)) {
8553                 break;
8554             }
8555             goto next_spqe;
8556 
8557         case EVENT_RING_OPCODE_FUNCTION_START:
8558             BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8559             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8560                 break;
8561             }
8562             goto next_spqe;
8563 
8564         case EVENT_RING_OPCODE_FUNCTION_STOP:
8565             BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8566             if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8567                 break;
8568             }
8569             goto next_spqe;
8570         }
8571 
8572         switch (opcode | sc->state) {
8573         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8574         case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8575             cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8576             BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8577             rss_raw->clear_pending(rss_raw);
8578             break;
8579 
8580         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8581         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8582         case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8583         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8584         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8585         case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8586             BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8587             bxe_handle_classification_eqe(sc, elem);
8588             break;
8589 
8590         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8591         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8592         case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8593             BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8594             bxe_handle_mcast_eqe(sc);
8595             break;
8596 
8597         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8598         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8599         case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8600             BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8601             bxe_handle_rx_mode_eqe(sc, elem);
8602             break;
8603 
8604         default:
8605             /* unknown event log error and continue */
8606             BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8607                   elem->message.opcode, sc->state);
8608         }
8609 
8610 next_spqe:
8611         spqe_cnt++;
8612     } /* for */
8613 
8614     mb();
8615     atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8616 
8617     sc->eq_cons = sw_cons;
8618     sc->eq_prod = sw_prod;
8619 
8620     /* make sure that above mem writes were issued towards the memory */
8621     wmb();
8622 
8623     /* update producer */
8624     bxe_update_eq_prod(sc, sc->eq_prod);
8625 }
8626 
8627 static void
8628 bxe_handle_sp_tq(void *context,
8629                  int  pending)
8630 {
8631     struct bxe_softc *sc = (struct bxe_softc *)context;
8632     uint16_t status;
8633 
8634     BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8635 
8636     /* what work needs to be performed? */
8637     status = bxe_update_dsb_idx(sc);
8638 
8639     BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8640 
8641     /* HW attentions */
8642     if (status & BXE_DEF_SB_ATT_IDX) {
8643         BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8644         bxe_attn_int(sc);
8645         status &= ~BXE_DEF_SB_ATT_IDX;
8646     }
8647 
8648     /* SP events: STAT_QUERY and others */
8649     if (status & BXE_DEF_SB_IDX) {
8650         /* handle EQ completions */
8651         BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8652         bxe_eq_int(sc);
8653         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8654                    le16toh(sc->def_idx), IGU_INT_NOP, 1);
8655         status &= ~BXE_DEF_SB_IDX;
8656     }
8657 
8658     /* if status is non zero then something went wrong */
8659     if (__predict_false(status)) {
8660         BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8661     }
8662 
8663     /* ack status block only if something was actually handled */
8664     bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8665                le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8666 
8667     /*
8668      * Must be called after the EQ processing (since eq leads to sriov
8669      * ramrod completion flows).
8670      * This flow may have been scheduled by the arrival of a ramrod
8671      * completion, or by the sriov code rescheduling itself.
8672      */
8673     // XXX bxe_iov_sp_task(sc);
8674 
8675 }
8676 
8677 static void
8678 bxe_handle_fp_tq(void *context,
8679                  int  pending)
8680 {
8681     struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8682     struct bxe_softc *sc = fp->sc;
8683     /* uint8_t more_tx = FALSE; */
8684     uint8_t more_rx = FALSE;
8685 
8686     BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8687 
8688     /* XXX
8689      * IFF_DRV_RUNNING state can't be checked here since we process
8690      * slowpath events on a client queue during setup. Instead
8691      * we need to add a "process/continue" flag here that the driver
8692      * can use to tell the task here not to do anything.
8693      */
8694 #if 0
8695     if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8696         return;
8697     }
8698 #endif
8699 
8700     /* update the fastpath index */
8701     bxe_update_fp_sb_idx(fp);
8702 
8703     /* XXX add loop here if ever support multiple tx CoS */
8704     /* fp->txdata[cos] */
8705     if (bxe_has_tx_work(fp)) {
8706         BXE_FP_TX_LOCK(fp);
8707         /* more_tx = */ bxe_txeof(sc, fp);
8708         BXE_FP_TX_UNLOCK(fp);
8709     }
8710 
8711     if (bxe_has_rx_work(fp)) {
8712         more_rx = bxe_rxeof(sc, fp);
8713     }
8714 
8715     if (more_rx /*|| more_tx*/) {
8716         /* still more work to do */
8717         taskqueue_enqueue(fp->tq, &fp->tq_task);
8718         return;
8719     }
8720 
8721     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8722                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8723 }
8724 
8725 static void
8726 bxe_task_fp(struct bxe_fastpath *fp)
8727 {
8728     struct bxe_softc *sc = fp->sc;
8729     /* uint8_t more_tx = FALSE; */
8730     uint8_t more_rx = FALSE;
8731 
8732     BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8733 
8734     /* update the fastpath index */
8735     bxe_update_fp_sb_idx(fp);
8736 
8737     /* XXX add loop here if ever support multiple tx CoS */
8738     /* fp->txdata[cos] */
8739     if (bxe_has_tx_work(fp)) {
8740         BXE_FP_TX_LOCK(fp);
8741         /* more_tx = */ bxe_txeof(sc, fp);
8742         BXE_FP_TX_UNLOCK(fp);
8743     }
8744 
8745     if (bxe_has_rx_work(fp)) {
8746         more_rx = bxe_rxeof(sc, fp);
8747     }
8748 
8749     if (more_rx /*|| more_tx*/) {
8750         /* still more work to do, bail out if this ISR and process later */
8751         taskqueue_enqueue(fp->tq, &fp->tq_task);
8752         return;
8753     }
8754 
8755     /*
8756      * Here we write the fastpath index taken before doing any tx or rx work.
8757      * It is very well possible other hw events occurred up to this point and
8758      * they were actually processed accordingly above. Since we're going to
8759      * write an older fastpath index, an interrupt is coming which we might
8760      * not do any work in.
8761      */
8762     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8763                le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8764 }
8765 
8766 /*
8767  * Legacy interrupt entry point.
8768  *
8769  * Verifies that the controller generated the interrupt and
8770  * then calls a separate routine to handle the various
8771  * interrupt causes: link, RX, and TX.
8772  */
8773 static void
8774 bxe_intr_legacy(void *xsc)
8775 {
8776     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8777     struct bxe_fastpath *fp;
8778     uint16_t status, mask;
8779     int i;
8780 
8781     BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8782 
8783     /*
8784      * 0 for ustorm, 1 for cstorm
8785      * the bits returned from ack_int() are 0-15
8786      * bit 0 = attention status block
8787      * bit 1 = fast path status block
8788      * a mask of 0x2 or more = tx/rx event
8789      * a mask of 1 = slow path event
8790      */
8791 
8792     status = bxe_ack_int(sc);
8793 
8794     /* the interrupt is not for us */
8795     if (__predict_false(status == 0)) {
8796         BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8797         return;
8798     }
8799 
8800     BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8801 
8802     FOR_EACH_ETH_QUEUE(sc, i) {
8803         fp = &sc->fp[i];
8804         mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8805         if (status & mask) {
8806             /* acknowledge and disable further fastpath interrupts */
8807             bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8808             bxe_task_fp(fp);
8809             status &= ~mask;
8810         }
8811     }
8812 
8813     if (__predict_false(status & 0x1)) {
8814         /* acknowledge and disable further slowpath interrupts */
8815         bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8816 
8817         /* schedule slowpath handler */
8818         taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8819 
8820         status &= ~0x1;
8821     }
8822 
8823     if (__predict_false(status)) {
8824         BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8825     }
8826 }
8827 
8828 /* slowpath interrupt entry point */
8829 static void
8830 bxe_intr_sp(void *xsc)
8831 {
8832     struct bxe_softc *sc = (struct bxe_softc *)xsc;
8833 
8834     BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8835 
8836     /* acknowledge and disable further slowpath interrupts */
8837     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8838 
8839     /* schedule slowpath handler */
8840     taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8841 }
8842 
8843 /* fastpath interrupt entry point */
8844 static void
8845 bxe_intr_fp(void *xfp)
8846 {
8847     struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8848     struct bxe_softc *sc = fp->sc;
8849 
8850     BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8851 
8852     BLOGD(sc, DBG_INTR,
8853           "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8854           curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8855 
8856     /* acknowledge and disable further fastpath interrupts */
8857     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8858 
8859     bxe_task_fp(fp);
8860 }
8861 
8862 /* Release all interrupts allocated by the driver. */
8863 static void
8864 bxe_interrupt_free(struct bxe_softc *sc)
8865 {
8866     int i;
8867 
8868     switch (sc->interrupt_mode) {
8869     case INTR_MODE_INTX:
8870         BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8871         if (sc->intr[0].resource != NULL) {
8872             bus_release_resource(sc->dev,
8873                                  SYS_RES_IRQ,
8874                                  sc->intr[0].rid,
8875                                  sc->intr[0].resource);
8876         }
8877         break;
8878     case INTR_MODE_MSI:
8879         for (i = 0; i < sc->intr_count; i++) {
8880             BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8881             if (sc->intr[i].resource && sc->intr[i].rid) {
8882                 bus_release_resource(sc->dev,
8883                                      SYS_RES_IRQ,
8884                                      sc->intr[i].rid,
8885                                      sc->intr[i].resource);
8886             }
8887         }
8888         pci_release_msi(sc->dev);
8889         break;
8890     case INTR_MODE_MSIX:
8891         for (i = 0; i < sc->intr_count; i++) {
8892             BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8893             if (sc->intr[i].resource && sc->intr[i].rid) {
8894                 bus_release_resource(sc->dev,
8895                                      SYS_RES_IRQ,
8896                                      sc->intr[i].rid,
8897                                      sc->intr[i].resource);
8898             }
8899         }
8900         pci_release_msi(sc->dev);
8901         break;
8902     default:
8903         /* nothing to do as initial allocation failed */
8904         break;
8905     }
8906 }
8907 
8908 /*
8909  * This function determines and allocates the appropriate
8910  * interrupt based on system capabilites and user request.
8911  *
8912  * The user may force a particular interrupt mode, specify
8913  * the number of receive queues, specify the method for
8914  * distribuitng received frames to receive queues, or use
8915  * the default settings which will automatically select the
8916  * best supported combination.  In addition, the OS may or
8917  * may not support certain combinations of these settings.
8918  * This routine attempts to reconcile the settings requested
8919  * by the user with the capabilites available from the system
8920  * to select the optimal combination of features.
8921  *
8922  * Returns:
8923  *   0 = Success, !0 = Failure.
8924  */
8925 static int
8926 bxe_interrupt_alloc(struct bxe_softc *sc)
8927 {
8928     int msix_count = 0;
8929     int msi_count = 0;
8930     int num_requested = 0;
8931     int num_allocated = 0;
8932     int rid, i, j;
8933     int rc;
8934 
8935     /* get the number of available MSI/MSI-X interrupts from the OS */
8936     if (sc->interrupt_mode > 0) {
8937         if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8938             msix_count = pci_msix_count(sc->dev);
8939         }
8940 
8941         if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8942             msi_count = pci_msi_count(sc->dev);
8943         }
8944 
8945         BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8946               msi_count, msix_count);
8947     }
8948 
8949     do { /* try allocating MSI-X interrupt resources (at least 2) */
8950         if (sc->interrupt_mode != INTR_MODE_MSIX) {
8951             break;
8952         }
8953 
8954         if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8955             (msix_count < 2)) {
8956             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8957             break;
8958         }
8959 
8960         /* ask for the necessary number of MSI-X vectors */
8961         num_requested = min((sc->num_queues + 1), msix_count);
8962 
8963         BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8964 
8965         num_allocated = num_requested;
8966         if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8967             BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8968             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8969             break;
8970         }
8971 
8972         if (num_allocated < 2) { /* possible? */
8973             BLOGE(sc, "MSI-X allocation less than 2!\n");
8974             sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8975             pci_release_msi(sc->dev);
8976             break;
8977         }
8978 
8979         BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8980               num_requested, num_allocated);
8981 
8982         /* best effort so use the number of vectors allocated to us */
8983         sc->intr_count = num_allocated;
8984         sc->num_queues = num_allocated - 1;
8985 
8986         rid = 1; /* initial resource identifier */
8987 
8988         /* allocate the MSI-X vectors */
8989         for (i = 0; i < num_allocated; i++) {
8990             sc->intr[i].rid = (rid + i);
8991 
8992             if ((sc->intr[i].resource =
8993                  bus_alloc_resource_any(sc->dev,
8994                                         SYS_RES_IRQ,
8995                                         &sc->intr[i].rid,
8996                                         RF_ACTIVE)) == NULL) {
8997                 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8998                       i, (rid + i));
8999 
9000                 for (j = (i - 1); j >= 0; j--) {
9001                     bus_release_resource(sc->dev,
9002                                          SYS_RES_IRQ,
9003                                          sc->intr[j].rid,
9004                                          sc->intr[j].resource);
9005                 }
9006 
9007                 sc->intr_count = 0;
9008                 sc->num_queues = 0;
9009                 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9010                 pci_release_msi(sc->dev);
9011                 break;
9012             }
9013 
9014             BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9015         }
9016     } while (0);
9017 
9018     do { /* try allocating MSI vector resources (at least 2) */
9019         if (sc->interrupt_mode != INTR_MODE_MSI) {
9020             break;
9021         }
9022 
9023         if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9024             (msi_count < 1)) {
9025             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9026             break;
9027         }
9028 
9029         /* ask for a single MSI vector */
9030         num_requested = 1;
9031 
9032         BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9033 
9034         num_allocated = num_requested;
9035         if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9036             BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9037             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9038             break;
9039         }
9040 
9041         if (num_allocated != 1) { /* possible? */
9042             BLOGE(sc, "MSI allocation is not 1!\n");
9043             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9044             pci_release_msi(sc->dev);
9045             break;
9046         }
9047 
9048         BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9049               num_requested, num_allocated);
9050 
9051         /* best effort so use the number of vectors allocated to us */
9052         sc->intr_count = num_allocated;
9053         sc->num_queues = num_allocated;
9054 
9055         rid = 1; /* initial resource identifier */
9056 
9057         sc->intr[0].rid = rid;
9058 
9059         if ((sc->intr[0].resource =
9060              bus_alloc_resource_any(sc->dev,
9061                                     SYS_RES_IRQ,
9062                                     &sc->intr[0].rid,
9063                                     RF_ACTIVE)) == NULL) {
9064             BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9065             sc->intr_count = 0;
9066             sc->num_queues = 0;
9067             sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9068             pci_release_msi(sc->dev);
9069             break;
9070         }
9071 
9072         BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9073     } while (0);
9074 
9075     do { /* try allocating INTx vector resources */
9076         if (sc->interrupt_mode != INTR_MODE_INTX) {
9077             break;
9078         }
9079 
9080         BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9081 
9082         /* only one vector for INTx */
9083         sc->intr_count = 1;
9084         sc->num_queues = 1;
9085 
9086         rid = 0; /* initial resource identifier */
9087 
9088         sc->intr[0].rid = rid;
9089 
9090         if ((sc->intr[0].resource =
9091              bus_alloc_resource_any(sc->dev,
9092                                     SYS_RES_IRQ,
9093                                     &sc->intr[0].rid,
9094                                     (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9095             BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9096             sc->intr_count = 0;
9097             sc->num_queues = 0;
9098             sc->interrupt_mode = -1; /* Failed! */
9099             break;
9100         }
9101 
9102         BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9103     } while (0);
9104 
9105     if (sc->interrupt_mode == -1) {
9106         BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9107         rc = 1;
9108     } else {
9109         BLOGD(sc, DBG_LOAD,
9110               "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9111               sc->interrupt_mode, sc->num_queues);
9112         rc = 0;
9113     }
9114 
9115     return (rc);
9116 }
9117 
9118 static void
9119 bxe_interrupt_detach(struct bxe_softc *sc)
9120 {
9121     struct bxe_fastpath *fp;
9122     int i;
9123 
9124     /* release interrupt resources */
9125     for (i = 0; i < sc->intr_count; i++) {
9126         if (sc->intr[i].resource && sc->intr[i].tag) {
9127             BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9128             bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9129         }
9130     }
9131 
9132     for (i = 0; i < sc->num_queues; i++) {
9133         fp = &sc->fp[i];
9134         if (fp->tq) {
9135             taskqueue_drain(fp->tq, &fp->tq_task);
9136             taskqueue_drain(fp->tq, &fp->tx_task);
9137             while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9138                 NULL))
9139                 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9140         }
9141 
9142         for (i = 0; i < sc->num_queues; i++) {
9143             fp = &sc->fp[i];
9144             if (fp->tq != NULL) {
9145                 taskqueue_free(fp->tq);
9146                 fp->tq = NULL;
9147             }
9148         }
9149     }
9150 
9151     if (sc->sp_tq) {
9152         taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9153         taskqueue_free(sc->sp_tq);
9154         sc->sp_tq = NULL;
9155     }
9156 }
9157 
9158 /*
9159  * Enables interrupts and attach to the ISR.
9160  *
9161  * When using multiple MSI/MSI-X vectors the first vector
9162  * is used for slowpath operations while all remaining
9163  * vectors are used for fastpath operations.  If only a
9164  * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9165  * ISR must look for both slowpath and fastpath completions.
9166  */
9167 static int
9168 bxe_interrupt_attach(struct bxe_softc *sc)
9169 {
9170     struct bxe_fastpath *fp;
9171     int rc = 0;
9172     int i;
9173 
9174     snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9175              "bxe%d_sp_tq", sc->unit);
9176     TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9177     sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9178                                  taskqueue_thread_enqueue,
9179                                  &sc->sp_tq);
9180     taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9181                             "%s", sc->sp_tq_name);
9182 
9183 
9184     for (i = 0; i < sc->num_queues; i++) {
9185         fp = &sc->fp[i];
9186         snprintf(fp->tq_name, sizeof(fp->tq_name),
9187                  "bxe%d_fp%d_tq", sc->unit, i);
9188         NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9189         TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9190         fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9191                                   taskqueue_thread_enqueue,
9192                                   &fp->tq);
9193         TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9194                           bxe_tx_mq_start_deferred, fp);
9195         taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9196                                 "%s", fp->tq_name);
9197     }
9198 
9199     /* setup interrupt handlers */
9200     if (sc->interrupt_mode == INTR_MODE_MSIX) {
9201         BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9202 
9203         /*
9204          * Setup the interrupt handler. Note that we pass the driver instance
9205          * to the interrupt handler for the slowpath.
9206          */
9207         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9208                                  (INTR_TYPE_NET | INTR_MPSAFE),
9209                                  NULL, bxe_intr_sp, sc,
9210                                  &sc->intr[0].tag)) != 0) {
9211             BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9212             goto bxe_interrupt_attach_exit;
9213         }
9214 
9215         bus_describe_intr(sc->dev, sc->intr[0].resource,
9216                           sc->intr[0].tag, "sp");
9217 
9218         /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9219 
9220         /* initialize the fastpath vectors (note the first was used for sp) */
9221         for (i = 0; i < sc->num_queues; i++) {
9222             fp = &sc->fp[i];
9223             BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9224 
9225             /*
9226              * Setup the interrupt handler. Note that we pass the
9227              * fastpath context to the interrupt handler in this
9228              * case.
9229              */
9230             if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9231                                      (INTR_TYPE_NET | INTR_MPSAFE),
9232                                      NULL, bxe_intr_fp, fp,
9233                                      &sc->intr[i + 1].tag)) != 0) {
9234                 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9235                       (i + 1), rc);
9236                 goto bxe_interrupt_attach_exit;
9237             }
9238 
9239             bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9240                               sc->intr[i + 1].tag, "fp%02d", i);
9241 
9242             /* bind the fastpath instance to a cpu */
9243             if (sc->num_queues > 1) {
9244                 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9245             }
9246 
9247             fp->state = BXE_FP_STATE_IRQ;
9248         }
9249     } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9250         BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9251 
9252         /*
9253          * Setup the interrupt handler. Note that we pass the
9254          * driver instance to the interrupt handler which
9255          * will handle both the slowpath and fastpath.
9256          */
9257         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9258                                  (INTR_TYPE_NET | INTR_MPSAFE),
9259                                  NULL, bxe_intr_legacy, sc,
9260                                  &sc->intr[0].tag)) != 0) {
9261             BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9262             goto bxe_interrupt_attach_exit;
9263         }
9264 
9265     } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9266         BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9267 
9268         /*
9269          * Setup the interrupt handler. Note that we pass the
9270          * driver instance to the interrupt handler which
9271          * will handle both the slowpath and fastpath.
9272          */
9273         if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9274                                  (INTR_TYPE_NET | INTR_MPSAFE),
9275                                  NULL, bxe_intr_legacy, sc,
9276                                  &sc->intr[0].tag)) != 0) {
9277             BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9278             goto bxe_interrupt_attach_exit;
9279         }
9280     }
9281 
9282 bxe_interrupt_attach_exit:
9283 
9284     return (rc);
9285 }
9286 
9287 static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9288 static int  bxe_init_hw_common(struct bxe_softc *sc);
9289 static int  bxe_init_hw_port(struct bxe_softc *sc);
9290 static int  bxe_init_hw_func(struct bxe_softc *sc);
9291 static void bxe_reset_common(struct bxe_softc *sc);
9292 static void bxe_reset_port(struct bxe_softc *sc);
9293 static void bxe_reset_func(struct bxe_softc *sc);
9294 static int  bxe_gunzip_init(struct bxe_softc *sc);
9295 static void bxe_gunzip_end(struct bxe_softc *sc);
9296 static int  bxe_init_firmware(struct bxe_softc *sc);
9297 static void bxe_release_firmware(struct bxe_softc *sc);
9298 
9299 static struct
9300 ecore_func_sp_drv_ops bxe_func_sp_drv = {
9301     .init_hw_cmn_chip = bxe_init_hw_common_chip,
9302     .init_hw_cmn      = bxe_init_hw_common,
9303     .init_hw_port     = bxe_init_hw_port,
9304     .init_hw_func     = bxe_init_hw_func,
9305 
9306     .reset_hw_cmn     = bxe_reset_common,
9307     .reset_hw_port    = bxe_reset_port,
9308     .reset_hw_func    = bxe_reset_func,
9309 
9310     .gunzip_init      = bxe_gunzip_init,
9311     .gunzip_end       = bxe_gunzip_end,
9312 
9313     .init_fw          = bxe_init_firmware,
9314     .release_fw       = bxe_release_firmware,
9315 };
9316 
9317 static void
9318 bxe_init_func_obj(struct bxe_softc *sc)
9319 {
9320     sc->dmae_ready = 0;
9321 
9322     ecore_init_func_obj(sc,
9323                         &sc->func_obj,
9324                         BXE_SP(sc, func_rdata),
9325                         BXE_SP_MAPPING(sc, func_rdata),
9326                         BXE_SP(sc, func_afex_rdata),
9327                         BXE_SP_MAPPING(sc, func_afex_rdata),
9328                         &bxe_func_sp_drv);
9329 }
9330 
9331 static int
9332 bxe_init_hw(struct bxe_softc *sc,
9333             uint32_t         load_code)
9334 {
9335     struct ecore_func_state_params func_params = { NULL };
9336     int rc;
9337 
9338     /* prepare the parameters for function state transitions */
9339     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9340 
9341     func_params.f_obj = &sc->func_obj;
9342     func_params.cmd = ECORE_F_CMD_HW_INIT;
9343 
9344     func_params.params.hw_init.load_phase = load_code;
9345 
9346     /*
9347      * Via a plethora of function pointers, we will eventually reach
9348      * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9349      */
9350     rc = ecore_func_state_change(sc, &func_params);
9351 
9352     return (rc);
9353 }
9354 
9355 static void
9356 bxe_fill(struct bxe_softc *sc,
9357          uint32_t         addr,
9358          int              fill,
9359          uint32_t         len)
9360 {
9361     uint32_t i;
9362 
9363     if (!(len % 4) && !(addr % 4)) {
9364         for (i = 0; i < len; i += 4) {
9365             REG_WR(sc, (addr + i), fill);
9366         }
9367     } else {
9368         for (i = 0; i < len; i++) {
9369             REG_WR8(sc, (addr + i), fill);
9370         }
9371     }
9372 }
9373 
9374 /* writes FP SP data to FW - data_size in dwords */
9375 static void
9376 bxe_wr_fp_sb_data(struct bxe_softc *sc,
9377                   int              fw_sb_id,
9378                   uint32_t         *sb_data_p,
9379                   uint32_t         data_size)
9380 {
9381     int index;
9382 
9383     for (index = 0; index < data_size; index++) {
9384         REG_WR(sc,
9385                (BAR_CSTRORM_INTMEM +
9386                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9387                 (sizeof(uint32_t) * index)),
9388                *(sb_data_p + index));
9389     }
9390 }
9391 
9392 static void
9393 bxe_zero_fp_sb(struct bxe_softc *sc,
9394                int              fw_sb_id)
9395 {
9396     struct hc_status_block_data_e2 sb_data_e2;
9397     struct hc_status_block_data_e1x sb_data_e1x;
9398     uint32_t *sb_data_p;
9399     uint32_t data_size = 0;
9400 
9401     if (!CHIP_IS_E1x(sc)) {
9402         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9403         sb_data_e2.common.state = SB_DISABLED;
9404         sb_data_e2.common.p_func.vf_valid = FALSE;
9405         sb_data_p = (uint32_t *)&sb_data_e2;
9406         data_size = (sizeof(struct hc_status_block_data_e2) /
9407                      sizeof(uint32_t));
9408     } else {
9409         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9410         sb_data_e1x.common.state = SB_DISABLED;
9411         sb_data_e1x.common.p_func.vf_valid = FALSE;
9412         sb_data_p = (uint32_t *)&sb_data_e1x;
9413         data_size = (sizeof(struct hc_status_block_data_e1x) /
9414                      sizeof(uint32_t));
9415     }
9416 
9417     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9418 
9419     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9420              0, CSTORM_STATUS_BLOCK_SIZE);
9421     bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9422              0, CSTORM_SYNC_BLOCK_SIZE);
9423 }
9424 
9425 static void
9426 bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9427                   struct hc_sp_status_block_data *sp_sb_data)
9428 {
9429     int i;
9430 
9431     for (i = 0;
9432          i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9433          i++) {
9434         REG_WR(sc,
9435                (BAR_CSTRORM_INTMEM +
9436                 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9437                 (i * sizeof(uint32_t))),
9438                *((uint32_t *)sp_sb_data + i));
9439     }
9440 }
9441 
9442 static void
9443 bxe_zero_sp_sb(struct bxe_softc *sc)
9444 {
9445     struct hc_sp_status_block_data sp_sb_data;
9446 
9447     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9448 
9449     sp_sb_data.state           = SB_DISABLED;
9450     sp_sb_data.p_func.vf_valid = FALSE;
9451 
9452     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9453 
9454     bxe_fill(sc,
9455              (BAR_CSTRORM_INTMEM +
9456               CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9457               0, CSTORM_SP_STATUS_BLOCK_SIZE);
9458     bxe_fill(sc,
9459              (BAR_CSTRORM_INTMEM +
9460               CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9461               0, CSTORM_SP_SYNC_BLOCK_SIZE);
9462 }
9463 
9464 static void
9465 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9466                              int                       igu_sb_id,
9467                              int                       igu_seg_id)
9468 {
9469     hc_sm->igu_sb_id      = igu_sb_id;
9470     hc_sm->igu_seg_id     = igu_seg_id;
9471     hc_sm->timer_value    = 0xFF;
9472     hc_sm->time_to_expire = 0xFFFFFFFF;
9473 }
9474 
9475 static void
9476 bxe_map_sb_state_machines(struct hc_index_data *index_data)
9477 {
9478     /* zero out state machine indices */
9479 
9480     /* rx indices */
9481     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9482 
9483     /* tx indices */
9484     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9485     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9486     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9487     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9488 
9489     /* map indices */
9490 
9491     /* rx indices */
9492     index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9493         (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9494 
9495     /* tx indices */
9496     index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9497         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9498     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9499         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9500     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9501         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9502     index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9503         (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9504 }
9505 
9506 static void
9507 bxe_init_sb(struct bxe_softc *sc,
9508             bus_addr_t       busaddr,
9509             int              vfid,
9510             uint8_t          vf_valid,
9511             int              fw_sb_id,
9512             int              igu_sb_id)
9513 {
9514     struct hc_status_block_data_e2  sb_data_e2;
9515     struct hc_status_block_data_e1x sb_data_e1x;
9516     struct hc_status_block_sm       *hc_sm_p;
9517     uint32_t *sb_data_p;
9518     int igu_seg_id;
9519     int data_size;
9520 
9521     if (CHIP_INT_MODE_IS_BC(sc)) {
9522         igu_seg_id = HC_SEG_ACCESS_NORM;
9523     } else {
9524         igu_seg_id = IGU_SEG_ACCESS_NORM;
9525     }
9526 
9527     bxe_zero_fp_sb(sc, fw_sb_id);
9528 
9529     if (!CHIP_IS_E1x(sc)) {
9530         memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9531         sb_data_e2.common.state = SB_ENABLED;
9532         sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9533         sb_data_e2.common.p_func.vf_id = vfid;
9534         sb_data_e2.common.p_func.vf_valid = vf_valid;
9535         sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9536         sb_data_e2.common.same_igu_sb_1b = TRUE;
9537         sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9538         sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9539         hc_sm_p = sb_data_e2.common.state_machine;
9540         sb_data_p = (uint32_t *)&sb_data_e2;
9541         data_size = (sizeof(struct hc_status_block_data_e2) /
9542                      sizeof(uint32_t));
9543         bxe_map_sb_state_machines(sb_data_e2.index_data);
9544     } else {
9545         memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9546         sb_data_e1x.common.state = SB_ENABLED;
9547         sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9548         sb_data_e1x.common.p_func.vf_id = 0xff;
9549         sb_data_e1x.common.p_func.vf_valid = FALSE;
9550         sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9551         sb_data_e1x.common.same_igu_sb_1b = TRUE;
9552         sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9553         sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9554         hc_sm_p = sb_data_e1x.common.state_machine;
9555         sb_data_p = (uint32_t *)&sb_data_e1x;
9556         data_size = (sizeof(struct hc_status_block_data_e1x) /
9557                      sizeof(uint32_t));
9558         bxe_map_sb_state_machines(sb_data_e1x.index_data);
9559     }
9560 
9561     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9562     bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9563 
9564     BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9565 
9566     /* write indices to HW - PCI guarantees endianity of regpairs */
9567     bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9568 }
9569 
9570 static inline uint8_t
9571 bxe_fp_qzone_id(struct bxe_fastpath *fp)
9572 {
9573     if (CHIP_IS_E1x(fp->sc)) {
9574         return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9575     } else {
9576         return (fp->cl_id);
9577     }
9578 }
9579 
9580 static inline uint32_t
9581 bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9582                            struct bxe_fastpath *fp)
9583 {
9584     uint32_t offset = BAR_USTRORM_INTMEM;
9585 
9586     if (!CHIP_IS_E1x(sc)) {
9587         offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9588     } else {
9589         offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9590     }
9591 
9592     return (offset);
9593 }
9594 
9595 static void
9596 bxe_init_eth_fp(struct bxe_softc *sc,
9597                 int              idx)
9598 {
9599     struct bxe_fastpath *fp = &sc->fp[idx];
9600     uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9601     unsigned long q_type = 0;
9602     int cos;
9603 
9604     fp->sc    = sc;
9605     fp->index = idx;
9606 
9607     fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9608     fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9609 
9610     fp->cl_id = (CHIP_IS_E1x(sc)) ?
9611                     (SC_L_ID(sc) + idx) :
9612                     /* want client ID same as IGU SB ID for non-E1 */
9613                     fp->igu_sb_id;
9614     fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9615 
9616     /* setup sb indices */
9617     if (!CHIP_IS_E1x(sc)) {
9618         fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
9619         fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9620     } else {
9621         fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
9622         fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9623     }
9624 
9625     /* init shortcut */
9626     fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9627 
9628     fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9629 
9630     /*
9631      * XXX If multiple CoS is ever supported then each fastpath structure
9632      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9633      */
9634     for (cos = 0; cos < sc->max_cos; cos++) {
9635         cids[cos] = idx;
9636     }
9637     fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9638 
9639     /* nothing more for a VF to do */
9640     if (IS_VF(sc)) {
9641         return;
9642     }
9643 
9644     bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9645                 fp->fw_sb_id, fp->igu_sb_id);
9646 
9647     bxe_update_fp_sb_idx(fp);
9648 
9649     /* Configure Queue State object */
9650     bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9651     bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9652 
9653     ecore_init_queue_obj(sc,
9654                          &sc->sp_objs[idx].q_obj,
9655                          fp->cl_id,
9656                          cids,
9657                          sc->max_cos,
9658                          SC_FUNC(sc),
9659                          BXE_SP(sc, q_rdata),
9660                          BXE_SP_MAPPING(sc, q_rdata),
9661                          q_type);
9662 
9663     /* configure classification DBs */
9664     ecore_init_mac_obj(sc,
9665                        &sc->sp_objs[idx].mac_obj,
9666                        fp->cl_id,
9667                        idx,
9668                        SC_FUNC(sc),
9669                        BXE_SP(sc, mac_rdata),
9670                        BXE_SP_MAPPING(sc, mac_rdata),
9671                        ECORE_FILTER_MAC_PENDING,
9672                        &sc->sp_state,
9673                        ECORE_OBJ_TYPE_RX_TX,
9674                        &sc->macs_pool);
9675 
9676     BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9677           idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9678 }
9679 
9680 static inline void
9681 bxe_update_rx_prod(struct bxe_softc    *sc,
9682                    struct bxe_fastpath *fp,
9683                    uint16_t            rx_bd_prod,
9684                    uint16_t            rx_cq_prod,
9685                    uint16_t            rx_sge_prod)
9686 {
9687     struct ustorm_eth_rx_producers rx_prods = { 0 };
9688     uint32_t i;
9689 
9690     /* update producers */
9691     rx_prods.bd_prod  = rx_bd_prod;
9692     rx_prods.cqe_prod = rx_cq_prod;
9693     rx_prods.sge_prod = rx_sge_prod;
9694 
9695     /*
9696      * Make sure that the BD and SGE data is updated before updating the
9697      * producers since FW might read the BD/SGE right after the producer
9698      * is updated.
9699      * This is only applicable for weak-ordered memory model archs such
9700      * as IA-64. The following barrier is also mandatory since FW will
9701      * assumes BDs must have buffers.
9702      */
9703     wmb();
9704 
9705     for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9706         REG_WR(sc,
9707                (fp->ustorm_rx_prods_offset + (i * 4)),
9708                ((uint32_t *)&rx_prods)[i]);
9709     }
9710 
9711     wmb(); /* keep prod updates ordered */
9712 
9713     BLOGD(sc, DBG_RX,
9714           "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9715           fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9716 }
9717 
9718 static void
9719 bxe_init_rx_rings(struct bxe_softc *sc)
9720 {
9721     struct bxe_fastpath *fp;
9722     int i;
9723 
9724     for (i = 0; i < sc->num_queues; i++) {
9725         fp = &sc->fp[i];
9726 
9727         fp->rx_bd_cons = 0;
9728 
9729         /*
9730          * Activate the BD ring...
9731          * Warning, this will generate an interrupt (to the TSTORM)
9732          * so this can only be done after the chip is initialized
9733          */
9734         bxe_update_rx_prod(sc, fp,
9735                            fp->rx_bd_prod,
9736                            fp->rx_cq_prod,
9737                            fp->rx_sge_prod);
9738 
9739         if (i != 0) {
9740             continue;
9741         }
9742 
9743         if (CHIP_IS_E1(sc)) {
9744             REG_WR(sc,
9745                    (BAR_USTRORM_INTMEM +
9746                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9747                    U64_LO(fp->rcq_dma.paddr));
9748             REG_WR(sc,
9749                    (BAR_USTRORM_INTMEM +
9750                     USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9751                    U64_HI(fp->rcq_dma.paddr));
9752         }
9753     }
9754 }
9755 
9756 static void
9757 bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9758 {
9759     SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9760     fp->tx_db.data.zero_fill1 = 0;
9761     fp->tx_db.data.prod = 0;
9762 
9763     fp->tx_pkt_prod = 0;
9764     fp->tx_pkt_cons = 0;
9765     fp->tx_bd_prod = 0;
9766     fp->tx_bd_cons = 0;
9767     fp->eth_q_stats.tx_pkts = 0;
9768 }
9769 
9770 static inline void
9771 bxe_init_tx_rings(struct bxe_softc *sc)
9772 {
9773     int i;
9774 
9775     for (i = 0; i < sc->num_queues; i++) {
9776         bxe_init_tx_ring_one(&sc->fp[i]);
9777     }
9778 }
9779 
9780 static void
9781 bxe_init_def_sb(struct bxe_softc *sc)
9782 {
9783     struct host_sp_status_block *def_sb = sc->def_sb;
9784     bus_addr_t mapping = sc->def_sb_dma.paddr;
9785     int igu_sp_sb_index;
9786     int igu_seg_id;
9787     int port = SC_PORT(sc);
9788     int func = SC_FUNC(sc);
9789     int reg_offset, reg_offset_en5;
9790     uint64_t section;
9791     int index, sindex;
9792     struct hc_sp_status_block_data sp_sb_data;
9793 
9794     memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9795 
9796     if (CHIP_INT_MODE_IS_BC(sc)) {
9797         igu_sp_sb_index = DEF_SB_IGU_ID;
9798         igu_seg_id = HC_SEG_ACCESS_DEF;
9799     } else {
9800         igu_sp_sb_index = sc->igu_dsb_id;
9801         igu_seg_id = IGU_SEG_ACCESS_DEF;
9802     }
9803 
9804     /* attentions */
9805     section = ((uint64_t)mapping +
9806                offsetof(struct host_sp_status_block, atten_status_block));
9807     def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9808     sc->attn_state = 0;
9809 
9810     reg_offset = (port) ?
9811                      MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9812                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9813     reg_offset_en5 = (port) ?
9814                          MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9815                          MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9816 
9817     for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9818         /* take care of sig[0]..sig[4] */
9819         for (sindex = 0; sindex < 4; sindex++) {
9820             sc->attn_group[index].sig[sindex] =
9821                 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9822         }
9823 
9824         if (!CHIP_IS_E1x(sc)) {
9825             /*
9826              * enable5 is separate from the rest of the registers,
9827              * and the address skip is 4 and not 16 between the
9828              * different groups
9829              */
9830             sc->attn_group[index].sig[4] =
9831                 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9832         } else {
9833             sc->attn_group[index].sig[4] = 0;
9834         }
9835     }
9836 
9837     if (sc->devinfo.int_block == INT_BLOCK_HC) {
9838         reg_offset = (port) ?
9839                          HC_REG_ATTN_MSG1_ADDR_L :
9840                          HC_REG_ATTN_MSG0_ADDR_L;
9841         REG_WR(sc, reg_offset, U64_LO(section));
9842         REG_WR(sc, (reg_offset + 4), U64_HI(section));
9843     } else if (!CHIP_IS_E1x(sc)) {
9844         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9845         REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9846     }
9847 
9848     section = ((uint64_t)mapping +
9849                offsetof(struct host_sp_status_block, sp_sb));
9850 
9851     bxe_zero_sp_sb(sc);
9852 
9853     /* PCI guarantees endianity of regpair */
9854     sp_sb_data.state           = SB_ENABLED;
9855     sp_sb_data.host_sb_addr.lo = U64_LO(section);
9856     sp_sb_data.host_sb_addr.hi = U64_HI(section);
9857     sp_sb_data.igu_sb_id       = igu_sp_sb_index;
9858     sp_sb_data.igu_seg_id      = igu_seg_id;
9859     sp_sb_data.p_func.pf_id    = func;
9860     sp_sb_data.p_func.vnic_id  = SC_VN(sc);
9861     sp_sb_data.p_func.vf_id    = 0xff;
9862 
9863     bxe_wr_sp_sb_data(sc, &sp_sb_data);
9864 
9865     bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9866 }
9867 
9868 static void
9869 bxe_init_sp_ring(struct bxe_softc *sc)
9870 {
9871     atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9872     sc->spq_prod_idx = 0;
9873     sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9874     sc->spq_prod_bd = sc->spq;
9875     sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9876 }
9877 
9878 static void
9879 bxe_init_eq_ring(struct bxe_softc *sc)
9880 {
9881     union event_ring_elem *elem;
9882     int i;
9883 
9884     for (i = 1; i <= NUM_EQ_PAGES; i++) {
9885         elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9886 
9887         elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9888                                                  BCM_PAGE_SIZE *
9889                                                  (i % NUM_EQ_PAGES)));
9890         elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9891                                                  BCM_PAGE_SIZE *
9892                                                  (i % NUM_EQ_PAGES)));
9893     }
9894 
9895     sc->eq_cons    = 0;
9896     sc->eq_prod    = NUM_EQ_DESC;
9897     sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9898 
9899     atomic_store_rel_long(&sc->eq_spq_left,
9900                           (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9901                                NUM_EQ_DESC) - 1));
9902 }
9903 
9904 static void
9905 bxe_init_internal_common(struct bxe_softc *sc)
9906 {
9907     int i;
9908 
9909     /*
9910      * Zero this manually as its initialization is currently missing
9911      * in the initTool.
9912      */
9913     for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9914         REG_WR(sc,
9915                (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9916                0);
9917     }
9918 
9919     if (!CHIP_IS_E1x(sc)) {
9920         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9921                 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9922     }
9923 }
9924 
9925 static void
9926 bxe_init_internal(struct bxe_softc *sc,
9927                   uint32_t         load_code)
9928 {
9929     switch (load_code) {
9930     case FW_MSG_CODE_DRV_LOAD_COMMON:
9931     case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9932         bxe_init_internal_common(sc);
9933         /* no break */
9934 
9935     case FW_MSG_CODE_DRV_LOAD_PORT:
9936         /* nothing to do */
9937         /* no break */
9938 
9939     case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9940         /* internal memory per function is initialized inside bxe_pf_init */
9941         break;
9942 
9943     default:
9944         BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9945         break;
9946     }
9947 }
9948 
9949 static void
9950 storm_memset_func_cfg(struct bxe_softc                         *sc,
9951                       struct tstorm_eth_function_common_config *tcfg,
9952                       uint16_t                                  abs_fid)
9953 {
9954     uint32_t addr;
9955     size_t size;
9956 
9957     addr = (BAR_TSTRORM_INTMEM +
9958             TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9959     size = sizeof(struct tstorm_eth_function_common_config);
9960     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9961 }
9962 
9963 static void
9964 bxe_func_init(struct bxe_softc            *sc,
9965               struct bxe_func_init_params *p)
9966 {
9967     struct tstorm_eth_function_common_config tcfg = { 0 };
9968 
9969     if (CHIP_IS_E1x(sc)) {
9970         storm_memset_func_cfg(sc, &tcfg, p->func_id);
9971     }
9972 
9973     /* Enable the function in the FW */
9974     storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9975     storm_memset_func_en(sc, p->func_id, 1);
9976 
9977     /* spq */
9978     if (p->func_flgs & FUNC_FLG_SPQ) {
9979         storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9980         REG_WR(sc,
9981                (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9982                p->spq_prod);
9983     }
9984 }
9985 
9986 /*
9987  * Calculates the sum of vn_min_rates.
9988  * It's needed for further normalizing of the min_rates.
9989  * Returns:
9990  *   sum of vn_min_rates.
9991  *     or
9992  *   0 - if all the min_rates are 0.
9993  * In the later case fainess algorithm should be deactivated.
9994  * If all min rates are not zero then those that are zeroes will be set to 1.
9995  */
9996 static void
9997 bxe_calc_vn_min(struct bxe_softc       *sc,
9998                 struct cmng_init_input *input)
9999 {
10000     uint32_t vn_cfg;
10001     uint32_t vn_min_rate;
10002     int all_zero = 1;
10003     int vn;
10004 
10005     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10006         vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10007         vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10008                         FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10009 
10010         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10011             /* skip hidden VNs */
10012             vn_min_rate = 0;
10013         } else if (!vn_min_rate) {
10014             /* If min rate is zero - set it to 100 */
10015             vn_min_rate = DEF_MIN_RATE;
10016         } else {
10017             all_zero = 0;
10018         }
10019 
10020         input->vnic_min_rate[vn] = vn_min_rate;
10021     }
10022 
10023     /* if ETS or all min rates are zeros - disable fairness */
10024     if (BXE_IS_ETS_ENABLED(sc)) {
10025         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10026         BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10027     } else if (all_zero) {
10028         input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10029         BLOGD(sc, DBG_LOAD,
10030               "Fariness disabled (all MIN values are zeroes)\n");
10031     } else {
10032         input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10033     }
10034 }
10035 
10036 static inline uint16_t
10037 bxe_extract_max_cfg(struct bxe_softc *sc,
10038                     uint32_t         mf_cfg)
10039 {
10040     uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10041                         FUNC_MF_CFG_MAX_BW_SHIFT);
10042 
10043     if (!max_cfg) {
10044         BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10045         max_cfg = 100;
10046     }
10047 
10048     return (max_cfg);
10049 }
10050 
10051 static void
10052 bxe_calc_vn_max(struct bxe_softc       *sc,
10053                 int                    vn,
10054                 struct cmng_init_input *input)
10055 {
10056     uint16_t vn_max_rate;
10057     uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10058     uint32_t max_cfg;
10059 
10060     if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10061         vn_max_rate = 0;
10062     } else {
10063         max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10064 
10065         if (IS_MF_SI(sc)) {
10066             /* max_cfg in percents of linkspeed */
10067             vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10068         } else { /* SD modes */
10069             /* max_cfg is absolute in 100Mb units */
10070             vn_max_rate = (max_cfg * 100);
10071         }
10072     }
10073 
10074     BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10075 
10076     input->vnic_max_rate[vn] = vn_max_rate;
10077 }
10078 
10079 static void
10080 bxe_cmng_fns_init(struct bxe_softc *sc,
10081                   uint8_t          read_cfg,
10082                   uint8_t          cmng_type)
10083 {
10084     struct cmng_init_input input;
10085     int vn;
10086 
10087     memset(&input, 0, sizeof(struct cmng_init_input));
10088 
10089     input.port_rate = sc->link_vars.line_speed;
10090 
10091     if (cmng_type == CMNG_FNS_MINMAX) {
10092         /* read mf conf from shmem */
10093         if (read_cfg) {
10094             bxe_read_mf_cfg(sc);
10095         }
10096 
10097         /* get VN min rate and enable fairness if not 0 */
10098         bxe_calc_vn_min(sc, &input);
10099 
10100         /* get VN max rate */
10101         if (sc->port.pmf) {
10102             for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10103                 bxe_calc_vn_max(sc, vn, &input);
10104             }
10105         }
10106 
10107         /* always enable rate shaping and fairness */
10108         input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10109 
10110         ecore_init_cmng(&input, &sc->cmng);
10111         return;
10112     }
10113 
10114     /* rate shaping and fairness are disabled */
10115     BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10116 }
10117 
10118 static int
10119 bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10120 {
10121     if (CHIP_REV_IS_SLOW(sc)) {
10122         return (CMNG_FNS_NONE);
10123     }
10124 
10125     if (IS_MF(sc)) {
10126         return (CMNG_FNS_MINMAX);
10127     }
10128 
10129     return (CMNG_FNS_NONE);
10130 }
10131 
10132 static void
10133 storm_memset_cmng(struct bxe_softc *sc,
10134                   struct cmng_init *cmng,
10135                   uint8_t          port)
10136 {
10137     int vn;
10138     int func;
10139     uint32_t addr;
10140     size_t size;
10141 
10142     addr = (BAR_XSTRORM_INTMEM +
10143             XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10144     size = sizeof(struct cmng_struct_per_port);
10145     ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10146 
10147     for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10148         func = func_by_vn(sc, vn);
10149 
10150         addr = (BAR_XSTRORM_INTMEM +
10151                 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10152         size = sizeof(struct rate_shaping_vars_per_vn);
10153         ecore_storm_memset_struct(sc, addr, size,
10154                                   (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10155 
10156         addr = (BAR_XSTRORM_INTMEM +
10157                 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10158         size = sizeof(struct fairness_vars_per_vn);
10159         ecore_storm_memset_struct(sc, addr, size,
10160                                   (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10161     }
10162 }
10163 
10164 static void
10165 bxe_pf_init(struct bxe_softc *sc)
10166 {
10167     struct bxe_func_init_params func_init = { 0 };
10168     struct event_ring_data eq_data = { { 0 } };
10169     uint16_t flags;
10170 
10171     if (!CHIP_IS_E1x(sc)) {
10172         /* reset IGU PF statistics: MSIX + ATTN */
10173         /* PF */
10174         REG_WR(sc,
10175                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10176                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10177                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10178                0);
10179         /* ATTN */
10180         REG_WR(sc,
10181                (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10182                 (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10183                 (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10184                 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10185                0);
10186     }
10187 
10188     /* function setup flags */
10189     flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10190 
10191     /*
10192      * This flag is relevant for E1x only.
10193      * E2 doesn't have a TPA configuration in a function level.
10194      */
10195     flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10196 
10197     func_init.func_flgs = flags;
10198     func_init.pf_id     = SC_FUNC(sc);
10199     func_init.func_id   = SC_FUNC(sc);
10200     func_init.spq_map   = sc->spq_dma.paddr;
10201     func_init.spq_prod  = sc->spq_prod_idx;
10202 
10203     bxe_func_init(sc, &func_init);
10204 
10205     memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10206 
10207     /*
10208      * Congestion management values depend on the link rate.
10209      * There is no active link so initial link rate is set to 10Gbps.
10210      * When the link comes up the congestion management values are
10211      * re-calculated according to the actual link rate.
10212      */
10213     sc->link_vars.line_speed = SPEED_10000;
10214     bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10215 
10216     /* Only the PMF sets the HW */
10217     if (sc->port.pmf) {
10218         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10219     }
10220 
10221     /* init Event Queue - PCI bus guarantees correct endainity */
10222     eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10223     eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10224     eq_data.producer     = sc->eq_prod;
10225     eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10226     eq_data.sb_id        = DEF_SB_ID;
10227     storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10228 }
10229 
10230 static void
10231 bxe_hc_int_enable(struct bxe_softc *sc)
10232 {
10233     int port = SC_PORT(sc);
10234     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10235     uint32_t val = REG_RD(sc, addr);
10236     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10237     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10238                            (sc->intr_count == 1)) ? TRUE : FALSE;
10239     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10240 
10241     if (msix) {
10242         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10243                  HC_CONFIG_0_REG_INT_LINE_EN_0);
10244         val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10245                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10246         if (single_msix) {
10247             val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10248         }
10249     } else if (msi) {
10250         val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10251         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10252                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10253                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10254     } else {
10255         val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10256                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10257                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10258                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10259 
10260         if (!CHIP_IS_E1(sc)) {
10261             BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10262                   val, port, addr);
10263 
10264             REG_WR(sc, addr, val);
10265 
10266             val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10267         }
10268     }
10269 
10270     if (CHIP_IS_E1(sc)) {
10271         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10272     }
10273 
10274     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10275           val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10276 
10277     REG_WR(sc, addr, val);
10278 
10279     /* ensure that HC_CONFIG is written before leading/trailing edge config */
10280     mb();
10281 
10282     if (!CHIP_IS_E1(sc)) {
10283         /* init leading/trailing edge */
10284         if (IS_MF(sc)) {
10285             val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10286             if (sc->port.pmf) {
10287                 /* enable nig and gpio3 attention */
10288                 val |= 0x1100;
10289             }
10290         } else {
10291             val = 0xffff;
10292         }
10293 
10294         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10295         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10296     }
10297 
10298     /* make sure that interrupts are indeed enabled from here on */
10299     mb();
10300 }
10301 
10302 static void
10303 bxe_igu_int_enable(struct bxe_softc *sc)
10304 {
10305     uint32_t val;
10306     uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10307     uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10308                            (sc->intr_count == 1)) ? TRUE : FALSE;
10309     uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10310 
10311     val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10312 
10313     if (msix) {
10314         val &= ~(IGU_PF_CONF_INT_LINE_EN |
10315                  IGU_PF_CONF_SINGLE_ISR_EN);
10316         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10317                 IGU_PF_CONF_ATTN_BIT_EN);
10318         if (single_msix) {
10319             val |= IGU_PF_CONF_SINGLE_ISR_EN;
10320         }
10321     } else if (msi) {
10322         val &= ~IGU_PF_CONF_INT_LINE_EN;
10323         val |= (IGU_PF_CONF_MSI_MSIX_EN |
10324                 IGU_PF_CONF_ATTN_BIT_EN |
10325                 IGU_PF_CONF_SINGLE_ISR_EN);
10326     } else {
10327         val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10328         val |= (IGU_PF_CONF_INT_LINE_EN |
10329                 IGU_PF_CONF_ATTN_BIT_EN |
10330                 IGU_PF_CONF_SINGLE_ISR_EN);
10331     }
10332 
10333     /* clean previous status - need to configure igu prior to ack*/
10334     if ((!msix) || single_msix) {
10335         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10336         bxe_ack_int(sc);
10337     }
10338 
10339     val |= IGU_PF_CONF_FUNC_EN;
10340 
10341     BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10342           val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10343 
10344     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10345 
10346     mb();
10347 
10348     /* init leading/trailing edge */
10349     if (IS_MF(sc)) {
10350         val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10351         if (sc->port.pmf) {
10352             /* enable nig and gpio3 attention */
10353             val |= 0x1100;
10354         }
10355     } else {
10356         val = 0xffff;
10357     }
10358 
10359     REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10360     REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10361 
10362     /* make sure that interrupts are indeed enabled from here on */
10363     mb();
10364 }
10365 
10366 static void
10367 bxe_int_enable(struct bxe_softc *sc)
10368 {
10369     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10370         bxe_hc_int_enable(sc);
10371     } else {
10372         bxe_igu_int_enable(sc);
10373     }
10374 }
10375 
10376 static void
10377 bxe_hc_int_disable(struct bxe_softc *sc)
10378 {
10379     int port = SC_PORT(sc);
10380     uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10381     uint32_t val = REG_RD(sc, addr);
10382 
10383     /*
10384      * In E1 we must use only PCI configuration space to disable MSI/MSIX
10385      * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10386      * block
10387      */
10388     if (CHIP_IS_E1(sc)) {
10389         /*
10390          * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10391          * to prevent from HC sending interrupts after we exit the function
10392          */
10393         REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10394 
10395         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10396                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10397                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10398     } else {
10399         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10400                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10401                  HC_CONFIG_0_REG_INT_LINE_EN_0 |
10402                  HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10403     }
10404 
10405     BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10406 
10407     /* flush all outstanding writes */
10408     mb();
10409 
10410     REG_WR(sc, addr, val);
10411     if (REG_RD(sc, addr) != val) {
10412         BLOGE(sc, "proper val not read from HC IGU!\n");
10413     }
10414 }
10415 
10416 static void
10417 bxe_igu_int_disable(struct bxe_softc *sc)
10418 {
10419     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10420 
10421     val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10422              IGU_PF_CONF_INT_LINE_EN |
10423              IGU_PF_CONF_ATTN_BIT_EN);
10424 
10425     BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10426 
10427     /* flush all outstanding writes */
10428     mb();
10429 
10430     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10431     if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10432         BLOGE(sc, "proper val not read from IGU!\n");
10433     }
10434 }
10435 
10436 static void
10437 bxe_int_disable(struct bxe_softc *sc)
10438 {
10439     if (sc->devinfo.int_block == INT_BLOCK_HC) {
10440         bxe_hc_int_disable(sc);
10441     } else {
10442         bxe_igu_int_disable(sc);
10443     }
10444 }
10445 
10446 static void
10447 bxe_nic_init(struct bxe_softc *sc,
10448              int              load_code)
10449 {
10450     int i;
10451 
10452     for (i = 0; i < sc->num_queues; i++) {
10453         bxe_init_eth_fp(sc, i);
10454     }
10455 
10456     rmb(); /* ensure status block indices were read */
10457 
10458     bxe_init_rx_rings(sc);
10459     bxe_init_tx_rings(sc);
10460 
10461     if (IS_VF(sc)) {
10462         return;
10463     }
10464 
10465     /* initialize MOD_ABS interrupts */
10466     elink_init_mod_abs_int(sc, &sc->link_vars,
10467                            sc->devinfo.chip_id,
10468                            sc->devinfo.shmem_base,
10469                            sc->devinfo.shmem2_base,
10470                            SC_PORT(sc));
10471 
10472     bxe_init_def_sb(sc);
10473     bxe_update_dsb_idx(sc);
10474     bxe_init_sp_ring(sc);
10475     bxe_init_eq_ring(sc);
10476     bxe_init_internal(sc, load_code);
10477     bxe_pf_init(sc);
10478     bxe_stats_init(sc);
10479 
10480     /* flush all before enabling interrupts */
10481     mb();
10482 
10483     bxe_int_enable(sc);
10484 
10485     /* check for SPIO5 */
10486     bxe_attn_int_deasserted0(sc,
10487                              REG_RD(sc,
10488                                     (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10489                                      SC_PORT(sc)*4)) &
10490                              AEU_INPUTS_ATTN_BITS_SPIO5);
10491 }
10492 
10493 static inline void
10494 bxe_init_objs(struct bxe_softc *sc)
10495 {
10496     /* mcast rules must be added to tx if tx switching is enabled */
10497     ecore_obj_type o_type =
10498         (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10499                                          ECORE_OBJ_TYPE_RX;
10500 
10501     /* RX_MODE controlling object */
10502     ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10503 
10504     /* multicast configuration controlling object */
10505     ecore_init_mcast_obj(sc,
10506                          &sc->mcast_obj,
10507                          sc->fp[0].cl_id,
10508                          sc->fp[0].index,
10509                          SC_FUNC(sc),
10510                          SC_FUNC(sc),
10511                          BXE_SP(sc, mcast_rdata),
10512                          BXE_SP_MAPPING(sc, mcast_rdata),
10513                          ECORE_FILTER_MCAST_PENDING,
10514                          &sc->sp_state,
10515                          o_type);
10516 
10517     /* Setup CAM credit pools */
10518     ecore_init_mac_credit_pool(sc,
10519                                &sc->macs_pool,
10520                                SC_FUNC(sc),
10521                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10522                                                  VNICS_PER_PATH(sc));
10523 
10524     ecore_init_vlan_credit_pool(sc,
10525                                 &sc->vlans_pool,
10526                                 SC_ABS_FUNC(sc) >> 1,
10527                                 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10528                                                   VNICS_PER_PATH(sc));
10529 
10530     /* RSS configuration object */
10531     ecore_init_rss_config_obj(sc,
10532                               &sc->rss_conf_obj,
10533                               sc->fp[0].cl_id,
10534                               sc->fp[0].index,
10535                               SC_FUNC(sc),
10536                               SC_FUNC(sc),
10537                               BXE_SP(sc, rss_rdata),
10538                               BXE_SP_MAPPING(sc, rss_rdata),
10539                               ECORE_FILTER_RSS_CONF_PENDING,
10540                               &sc->sp_state, ECORE_OBJ_TYPE_RX);
10541 }
10542 
10543 /*
10544  * Initialize the function. This must be called before sending CLIENT_SETUP
10545  * for the first client.
10546  */
10547 static inline int
10548 bxe_func_start(struct bxe_softc *sc)
10549 {
10550     struct ecore_func_state_params func_params = { NULL };
10551     struct ecore_func_start_params *start_params = &func_params.params.start;
10552 
10553     /* Prepare parameters for function state transitions */
10554     bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10555 
10556     func_params.f_obj = &sc->func_obj;
10557     func_params.cmd = ECORE_F_CMD_START;
10558 
10559     /* Function parameters */
10560     start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10561     start_params->sd_vlan_tag = OVLAN(sc);
10562 
10563     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10564         start_params->network_cos_mode = STATIC_COS;
10565     } else { /* CHIP_IS_E1X */
10566         start_params->network_cos_mode = FW_WRR;
10567     }
10568 
10569     //start_params->gre_tunnel_mode = 0;
10570     //start_params->gre_tunnel_rss  = 0;
10571 
10572     return (ecore_func_state_change(sc, &func_params));
10573 }
10574 
10575 static int
10576 bxe_set_power_state(struct bxe_softc *sc,
10577                     uint8_t          state)
10578 {
10579     uint16_t pmcsr;
10580 
10581     /* If there is no power capability, silently succeed */
10582     if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10583         BLOGW(sc, "No power capability\n");
10584         return (0);
10585     }
10586 
10587     pmcsr = pci_read_config(sc->dev,
10588                             (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10589                             2);
10590 
10591     switch (state) {
10592     case PCI_PM_D0:
10593         pci_write_config(sc->dev,
10594                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10595                          ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10596 
10597         if (pmcsr & PCIM_PSTAT_DMASK) {
10598             /* delay required during transition out of D3hot */
10599             DELAY(20000);
10600         }
10601 
10602         break;
10603 
10604     case PCI_PM_D3hot:
10605         /* XXX if there are other clients above don't shut down the power */
10606 
10607         /* don't shut down the power for emulation and FPGA */
10608         if (CHIP_REV_IS_SLOW(sc)) {
10609             return (0);
10610         }
10611 
10612         pmcsr &= ~PCIM_PSTAT_DMASK;
10613         pmcsr |= PCIM_PSTAT_D3;
10614 
10615         if (sc->wol) {
10616             pmcsr |= PCIM_PSTAT_PMEENABLE;
10617         }
10618 
10619         pci_write_config(sc->dev,
10620                          (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10621                          pmcsr, 4);
10622 
10623         /*
10624          * No more memory access after this point until device is brought back
10625          * to D0 state.
10626          */
10627         break;
10628 
10629     default:
10630         BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10631             state, pmcsr);
10632         return (-1);
10633     }
10634 
10635     return (0);
10636 }
10637 
10638 
10639 /* return true if succeeded to acquire the lock */
10640 static uint8_t
10641 bxe_trylock_hw_lock(struct bxe_softc *sc,
10642                     uint32_t         resource)
10643 {
10644     uint32_t lock_status;
10645     uint32_t resource_bit = (1 << resource);
10646     int func = SC_FUNC(sc);
10647     uint32_t hw_lock_control_reg;
10648 
10649     BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10650 
10651     /* Validating that the resource is within range */
10652     if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10653         BLOGD(sc, DBG_LOAD,
10654               "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10655               resource, HW_LOCK_MAX_RESOURCE_VALUE);
10656         return (FALSE);
10657     }
10658 
10659     if (func <= 5) {
10660         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10661     } else {
10662         hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10663     }
10664 
10665     /* try to acquire the lock */
10666     REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10667     lock_status = REG_RD(sc, hw_lock_control_reg);
10668     if (lock_status & resource_bit) {
10669         return (TRUE);
10670     }
10671 
10672     BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10673         "lock_status 0x%x resource_bit 0x%x\n", resource, func,
10674         lock_status, resource_bit);
10675 
10676     return (FALSE);
10677 }
10678 
10679 /*
10680  * Get the recovery leader resource id according to the engine this function
10681  * belongs to. Currently only only 2 engines is supported.
10682  */
10683 static int
10684 bxe_get_leader_lock_resource(struct bxe_softc *sc)
10685 {
10686     if (SC_PATH(sc)) {
10687         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10688     } else {
10689         return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10690     }
10691 }
10692 
10693 /* try to acquire a leader lock for current engine */
10694 static uint8_t
10695 bxe_trylock_leader_lock(struct bxe_softc *sc)
10696 {
10697     return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10698 }
10699 
10700 static int
10701 bxe_release_leader_lock(struct bxe_softc *sc)
10702 {
10703     return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10704 }
10705 
10706 /* close gates #2, #3 and #4 */
10707 static void
10708 bxe_set_234_gates(struct bxe_softc *sc,
10709                   uint8_t          close)
10710 {
10711     uint32_t val;
10712 
10713     /* gates #2 and #4a are closed/opened for "not E1" only */
10714     if (!CHIP_IS_E1(sc)) {
10715         /* #4 */
10716         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10717         /* #2 */
10718         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10719     }
10720 
10721     /* #3 */
10722     if (CHIP_IS_E1x(sc)) {
10723         /* prevent interrupts from HC on both ports */
10724         val = REG_RD(sc, HC_REG_CONFIG_1);
10725         REG_WR(sc, HC_REG_CONFIG_1,
10726                (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10727                (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10728 
10729         val = REG_RD(sc, HC_REG_CONFIG_0);
10730         REG_WR(sc, HC_REG_CONFIG_0,
10731                (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10732                (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10733     } else {
10734         /* Prevent incoming interrupts in IGU */
10735         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10736 
10737         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10738                (!close) ?
10739                (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10740                (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10741     }
10742 
10743     BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10744           close ? "closing" : "opening");
10745 
10746     wmb();
10747 }
10748 
10749 /* poll for pending writes bit, it should get cleared in no more than 1s */
10750 static int
10751 bxe_er_poll_igu_vq(struct bxe_softc *sc)
10752 {
10753     uint32_t cnt = 1000;
10754     uint32_t pend_bits = 0;
10755 
10756     do {
10757         pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10758 
10759         if (pend_bits == 0) {
10760             break;
10761         }
10762 
10763         DELAY(1000);
10764     } while (--cnt > 0);
10765 
10766     if (cnt == 0) {
10767         BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10768         return (-1);
10769     }
10770 
10771     return (0);
10772 }
10773 
10774 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
10775 
10776 static void
10777 bxe_clp_reset_prep(struct bxe_softc *sc,
10778                    uint32_t         *magic_val)
10779 {
10780     /* Do some magic... */
10781     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10782     *magic_val = val & SHARED_MF_CLP_MAGIC;
10783     MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10784 }
10785 
10786 /* restore the value of the 'magic' bit */
10787 static void
10788 bxe_clp_reset_done(struct bxe_softc *sc,
10789                    uint32_t         magic_val)
10790 {
10791     /* Restore the 'magic' bit value... */
10792     uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10793     MFCFG_WR(sc, shared_mf_config.clp_mb,
10794               (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10795 }
10796 
10797 /* prepare for MCP reset, takes care of CLP configurations */
10798 static void
10799 bxe_reset_mcp_prep(struct bxe_softc *sc,
10800                    uint32_t         *magic_val)
10801 {
10802     uint32_t shmem;
10803     uint32_t validity_offset;
10804 
10805     /* set `magic' bit in order to save MF config */
10806     if (!CHIP_IS_E1(sc)) {
10807         bxe_clp_reset_prep(sc, magic_val);
10808     }
10809 
10810     /* get shmem offset */
10811     shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10812     validity_offset =
10813         offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10814 
10815     /* Clear validity map flags */
10816     if (shmem > 0) {
10817         REG_WR(sc, shmem + validity_offset, 0);
10818     }
10819 }
10820 
10821 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
10822 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
10823 
10824 static void
10825 bxe_mcp_wait_one(struct bxe_softc *sc)
10826 {
10827     /* special handling for emulation and FPGA (10 times longer) */
10828     if (CHIP_REV_IS_SLOW(sc)) {
10829         DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10830     } else {
10831         DELAY((MCP_ONE_TIMEOUT) * 1000);
10832     }
10833 }
10834 
10835 /* initialize shmem_base and waits for validity signature to appear */
10836 static int
10837 bxe_init_shmem(struct bxe_softc *sc)
10838 {
10839     int cnt = 0;
10840     uint32_t val = 0;
10841 
10842     do {
10843         sc->devinfo.shmem_base     =
10844         sc->link_params.shmem_base =
10845             REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10846 
10847         if (sc->devinfo.shmem_base) {
10848             val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10849             if (val & SHR_MEM_VALIDITY_MB)
10850                 return (0);
10851         }
10852 
10853         bxe_mcp_wait_one(sc);
10854 
10855     } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10856 
10857     BLOGE(sc, "BAD MCP validity signature\n");
10858 
10859     return (-1);
10860 }
10861 
10862 static int
10863 bxe_reset_mcp_comp(struct bxe_softc *sc,
10864                    uint32_t         magic_val)
10865 {
10866     int rc = bxe_init_shmem(sc);
10867 
10868     /* Restore the `magic' bit value */
10869     if (!CHIP_IS_E1(sc)) {
10870         bxe_clp_reset_done(sc, magic_val);
10871     }
10872 
10873     return (rc);
10874 }
10875 
10876 static void
10877 bxe_pxp_prep(struct bxe_softc *sc)
10878 {
10879     if (!CHIP_IS_E1(sc)) {
10880         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10881         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10882         wmb();
10883     }
10884 }
10885 
10886 /*
10887  * Reset the whole chip except for:
10888  *      - PCIE core
10889  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10890  *      - IGU
10891  *      - MISC (including AEU)
10892  *      - GRC
10893  *      - RBCN, RBCP
10894  */
10895 static void
10896 bxe_process_kill_chip_reset(struct bxe_softc *sc,
10897                             uint8_t          global)
10898 {
10899     uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10900     uint32_t global_bits2, stay_reset2;
10901 
10902     /*
10903      * Bits that have to be set in reset_mask2 if we want to reset 'global'
10904      * (per chip) blocks.
10905      */
10906     global_bits2 =
10907         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10908         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10909 
10910     /*
10911      * Don't reset the following blocks.
10912      * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10913      *            reset, as in 4 port device they might still be owned
10914      *            by the MCP (there is only one leader per path).
10915      */
10916     not_reset_mask1 =
10917         MISC_REGISTERS_RESET_REG_1_RST_HC |
10918         MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10919         MISC_REGISTERS_RESET_REG_1_RST_PXP;
10920 
10921     not_reset_mask2 =
10922         MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10923         MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10924         MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10925         MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10926         MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10927         MISC_REGISTERS_RESET_REG_2_RST_GRC  |
10928         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10929         MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10930         MISC_REGISTERS_RESET_REG_2_RST_ATC |
10931         MISC_REGISTERS_RESET_REG_2_PGLC |
10932         MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10933         MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10934         MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10935         MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10936         MISC_REGISTERS_RESET_REG_2_UMAC0 |
10937         MISC_REGISTERS_RESET_REG_2_UMAC1;
10938 
10939     /*
10940      * Keep the following blocks in reset:
10941      *  - all xxMACs are handled by the elink code.
10942      */
10943     stay_reset2 =
10944         MISC_REGISTERS_RESET_REG_2_XMAC |
10945         MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10946 
10947     /* Full reset masks according to the chip */
10948     reset_mask1 = 0xffffffff;
10949 
10950     if (CHIP_IS_E1(sc))
10951         reset_mask2 = 0xffff;
10952     else if (CHIP_IS_E1H(sc))
10953         reset_mask2 = 0x1ffff;
10954     else if (CHIP_IS_E2(sc))
10955         reset_mask2 = 0xfffff;
10956     else /* CHIP_IS_E3 */
10957         reset_mask2 = 0x3ffffff;
10958 
10959     /* Don't reset global blocks unless we need to */
10960     if (!global)
10961         reset_mask2 &= ~global_bits2;
10962 
10963     /*
10964      * In case of attention in the QM, we need to reset PXP
10965      * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10966      * because otherwise QM reset would release 'close the gates' shortly
10967      * before resetting the PXP, then the PSWRQ would send a write
10968      * request to PGLUE. Then when PXP is reset, PGLUE would try to
10969      * read the payload data from PSWWR, but PSWWR would not
10970      * respond. The write queue in PGLUE would stuck, dmae commands
10971      * would not return. Therefore it's important to reset the second
10972      * reset register (containing the
10973      * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10974      * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10975      * bit).
10976      */
10977     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10978            reset_mask2 & (~not_reset_mask2));
10979 
10980     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10981            reset_mask1 & (~not_reset_mask1));
10982 
10983     mb();
10984     wmb();
10985 
10986     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10987            reset_mask2 & (~stay_reset2));
10988 
10989     mb();
10990     wmb();
10991 
10992     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10993     wmb();
10994 }
10995 
10996 static int
10997 bxe_process_kill(struct bxe_softc *sc,
10998                  uint8_t          global)
10999 {
11000     int cnt = 1000;
11001     uint32_t val = 0;
11002     uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11003     uint32_t tags_63_32 = 0;
11004 
11005     /* Empty the Tetris buffer, wait for 1s */
11006     do {
11007         sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11008         blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11009         port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11010         port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11011         pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11012         if (CHIP_IS_E3(sc)) {
11013             tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11014         }
11015 
11016         if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11017             ((port_is_idle_0 & 0x1) == 0x1) &&
11018             ((port_is_idle_1 & 0x1) == 0x1) &&
11019             (pgl_exp_rom2 == 0xffffffff) &&
11020             (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11021             break;
11022         DELAY(1000);
11023     } while (cnt-- > 0);
11024 
11025     if (cnt <= 0) {
11026         BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11027                   "are still outstanding read requests after 1s! "
11028                   "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11029                   "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11030               sr_cnt, blk_cnt, port_is_idle_0,
11031               port_is_idle_1, pgl_exp_rom2);
11032         return (-1);
11033     }
11034 
11035     mb();
11036 
11037     /* Close gates #2, #3 and #4 */
11038     bxe_set_234_gates(sc, TRUE);
11039 
11040     /* Poll for IGU VQs for 57712 and newer chips */
11041     if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11042         return (-1);
11043     }
11044 
11045     /* XXX indicate that "process kill" is in progress to MCP */
11046 
11047     /* clear "unprepared" bit */
11048     REG_WR(sc, MISC_REG_UNPREPARED, 0);
11049     mb();
11050 
11051     /* Make sure all is written to the chip before the reset */
11052     wmb();
11053 
11054     /*
11055      * Wait for 1ms to empty GLUE and PCI-E core queues,
11056      * PSWHST, GRC and PSWRD Tetris buffer.
11057      */
11058     DELAY(1000);
11059 
11060     /* Prepare to chip reset: */
11061     /* MCP */
11062     if (global) {
11063         bxe_reset_mcp_prep(sc, &val);
11064     }
11065 
11066     /* PXP */
11067     bxe_pxp_prep(sc);
11068     mb();
11069 
11070     /* reset the chip */
11071     bxe_process_kill_chip_reset(sc, global);
11072     mb();
11073 
11074     /* clear errors in PGB */
11075     if (!CHIP_IS_E1(sc))
11076         REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11077 
11078     /* Recover after reset: */
11079     /* MCP */
11080     if (global && bxe_reset_mcp_comp(sc, val)) {
11081         return (-1);
11082     }
11083 
11084     /* XXX add resetting the NO_MCP mode DB here */
11085 
11086     /* Open the gates #2, #3 and #4 */
11087     bxe_set_234_gates(sc, FALSE);
11088 
11089     /* XXX
11090      * IGU/AEU preparation bring back the AEU/IGU to a reset state
11091      * re-enable attentions
11092      */
11093 
11094     return (0);
11095 }
11096 
11097 static int
11098 bxe_leader_reset(struct bxe_softc *sc)
11099 {
11100     int rc = 0;
11101     uint8_t global = bxe_reset_is_global(sc);
11102     uint32_t load_code;
11103 
11104     /*
11105      * If not going to reset MCP, load "fake" driver to reset HW while
11106      * driver is owner of the HW.
11107      */
11108     if (!global && !BXE_NOMCP(sc)) {
11109         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11110                                    DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11111         if (!load_code) {
11112             BLOGE(sc, "MCP response failure, aborting\n");
11113             rc = -1;
11114             goto exit_leader_reset;
11115         }
11116 
11117         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11118             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11119             BLOGE(sc, "MCP unexpected response, aborting\n");
11120             rc = -1;
11121             goto exit_leader_reset2;
11122         }
11123 
11124         load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11125         if (!load_code) {
11126             BLOGE(sc, "MCP response failure, aborting\n");
11127             rc = -1;
11128             goto exit_leader_reset2;
11129         }
11130     }
11131 
11132     /* try to recover after the failure */
11133     if (bxe_process_kill(sc, global)) {
11134         BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11135         rc = -1;
11136         goto exit_leader_reset2;
11137     }
11138 
11139     /*
11140      * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11141      * state.
11142      */
11143     bxe_set_reset_done(sc);
11144     if (global) {
11145         bxe_clear_reset_global(sc);
11146     }
11147 
11148 exit_leader_reset2:
11149 
11150     /* unload "fake driver" if it was loaded */
11151     if (!global && !BXE_NOMCP(sc)) {
11152         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11153         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11154     }
11155 
11156 exit_leader_reset:
11157 
11158     sc->is_leader = 0;
11159     bxe_release_leader_lock(sc);
11160 
11161     mb();
11162     return (rc);
11163 }
11164 
11165 /*
11166  * prepare INIT transition, parameters configured:
11167  *   - HC configuration
11168  *   - Queue's CDU context
11169  */
11170 static void
11171 bxe_pf_q_prep_init(struct bxe_softc               *sc,
11172                    struct bxe_fastpath            *fp,
11173                    struct ecore_queue_init_params *init_params)
11174 {
11175     uint8_t cos;
11176     int cxt_index, cxt_offset;
11177 
11178     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11179     bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11180 
11181     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11182     bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11183 
11184     /* HC rate */
11185     init_params->rx.hc_rate =
11186         sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11187     init_params->tx.hc_rate =
11188         sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11189 
11190     /* FW SB ID */
11191     init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11192 
11193     /* CQ index among the SB indices */
11194     init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11195     init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11196 
11197     /* set maximum number of COSs supported by this queue */
11198     init_params->max_cos = sc->max_cos;
11199 
11200     BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11201           fp->index, init_params->max_cos);
11202 
11203     /* set the context pointers queue object */
11204     for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11205         /* XXX change index/cid here if ever support multiple tx CoS */
11206         /* fp->txdata[cos]->cid */
11207         cxt_index = fp->index / ILT_PAGE_CIDS;
11208         cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11209         init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11210     }
11211 }
11212 
11213 /* set flags that are common for the Tx-only and not normal connections */
11214 static unsigned long
11215 bxe_get_common_flags(struct bxe_softc    *sc,
11216                      struct bxe_fastpath *fp,
11217                      uint8_t             zero_stats)
11218 {
11219     unsigned long flags = 0;
11220 
11221     /* PF driver will always initialize the Queue to an ACTIVE state */
11222     bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11223 
11224     /*
11225      * tx only connections collect statistics (on the same index as the
11226      * parent connection). The statistics are zeroed when the parent
11227      * connection is initialized.
11228      */
11229 
11230     bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11231     if (zero_stats) {
11232         bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11233     }
11234 
11235     /*
11236      * tx only connections can support tx-switching, though their
11237      * CoS-ness doesn't survive the loopback
11238      */
11239     if (sc->flags & BXE_TX_SWITCHING) {
11240         bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11241     }
11242 
11243     bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11244 
11245     return (flags);
11246 }
11247 
11248 static unsigned long
11249 bxe_get_q_flags(struct bxe_softc    *sc,
11250                 struct bxe_fastpath *fp,
11251                 uint8_t             leading)
11252 {
11253     unsigned long flags = 0;
11254 
11255     if (IS_MF_SD(sc)) {
11256         bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11257     }
11258 
11259     if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11260         bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11261         bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11262     }
11263 
11264     if (leading) {
11265         bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11266         bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11267     }
11268 
11269     bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11270 
11271     /* merge with common flags */
11272     return (flags | bxe_get_common_flags(sc, fp, TRUE));
11273 }
11274 
11275 static void
11276 bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11277                       struct bxe_fastpath               *fp,
11278                       struct ecore_general_setup_params *gen_init,
11279                       uint8_t                           cos)
11280 {
11281     gen_init->stat_id = bxe_stats_id(fp);
11282     gen_init->spcl_id = fp->cl_id;
11283     gen_init->mtu = sc->mtu;
11284     gen_init->cos = cos;
11285 }
11286 
11287 static void
11288 bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11289                  struct bxe_fastpath           *fp,
11290                  struct rxq_pause_params       *pause,
11291                  struct ecore_rxq_setup_params *rxq_init)
11292 {
11293     uint8_t max_sge = 0;
11294     uint16_t sge_sz = 0;
11295     uint16_t tpa_agg_size = 0;
11296 
11297     pause->sge_th_lo = SGE_TH_LO(sc);
11298     pause->sge_th_hi = SGE_TH_HI(sc);
11299 
11300     /* validate SGE ring has enough to cross high threshold */
11301     if (sc->dropless_fc &&
11302             (pause->sge_th_hi + FW_PREFETCH_CNT) >
11303             (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11304         BLOGW(sc, "sge ring threshold limit\n");
11305     }
11306 
11307     /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11308     tpa_agg_size = (2 * sc->mtu);
11309     if (tpa_agg_size < sc->max_aggregation_size) {
11310         tpa_agg_size = sc->max_aggregation_size;
11311     }
11312 
11313     max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11314     max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11315                    (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11316     sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11317 
11318     /* pause - not for e1 */
11319     if (!CHIP_IS_E1(sc)) {
11320         pause->bd_th_lo = BD_TH_LO(sc);
11321         pause->bd_th_hi = BD_TH_HI(sc);
11322 
11323         pause->rcq_th_lo = RCQ_TH_LO(sc);
11324         pause->rcq_th_hi = RCQ_TH_HI(sc);
11325 
11326         /* validate rings have enough entries to cross high thresholds */
11327         if (sc->dropless_fc &&
11328             pause->bd_th_hi + FW_PREFETCH_CNT >
11329             sc->rx_ring_size) {
11330             BLOGW(sc, "rx bd ring threshold limit\n");
11331         }
11332 
11333         if (sc->dropless_fc &&
11334             pause->rcq_th_hi + FW_PREFETCH_CNT >
11335             RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11336             BLOGW(sc, "rcq ring threshold limit\n");
11337         }
11338 
11339         pause->pri_map = 1;
11340     }
11341 
11342     /* rxq setup */
11343     rxq_init->dscr_map   = fp->rx_dma.paddr;
11344     rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11345     rxq_init->rcq_map    = fp->rcq_dma.paddr;
11346     rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11347 
11348     /*
11349      * This should be a maximum number of data bytes that may be
11350      * placed on the BD (not including paddings).
11351      */
11352     rxq_init->buf_sz = (fp->rx_buf_size -
11353                         IP_HEADER_ALIGNMENT_PADDING);
11354 
11355     rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11356     rxq_init->tpa_agg_sz      = tpa_agg_size;
11357     rxq_init->sge_buf_sz      = sge_sz;
11358     rxq_init->max_sges_pkt    = max_sge;
11359     rxq_init->rss_engine_id   = SC_FUNC(sc);
11360     rxq_init->mcast_engine_id = SC_FUNC(sc);
11361 
11362     /*
11363      * Maximum number or simultaneous TPA aggregation for this Queue.
11364      * For PF Clients it should be the maximum available number.
11365      * VF driver(s) may want to define it to a smaller value.
11366      */
11367     rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11368 
11369     rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11370     rxq_init->fw_sb_id = fp->fw_sb_id;
11371 
11372     rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11373 
11374     /*
11375      * configure silent vlan removal
11376      * if multi function mode is afex, then mask default vlan
11377      */
11378     if (IS_MF_AFEX(sc)) {
11379         rxq_init->silent_removal_value =
11380             sc->devinfo.mf_info.afex_def_vlan_tag;
11381         rxq_init->silent_removal_mask = EVL_VLID_MASK;
11382     }
11383 }
11384 
11385 static void
11386 bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11387                  struct bxe_fastpath           *fp,
11388                  struct ecore_txq_setup_params *txq_init,
11389                  uint8_t                       cos)
11390 {
11391     /*
11392      * XXX If multiple CoS is ever supported then each fastpath structure
11393      * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11394      * fp->txdata[cos]->tx_dma.paddr;
11395      */
11396     txq_init->dscr_map     = fp->tx_dma.paddr;
11397     txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11398     txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11399     txq_init->fw_sb_id     = fp->fw_sb_id;
11400 
11401     /*
11402      * set the TSS leading client id for TX classfication to the
11403      * leading RSS client id
11404      */
11405     txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11406 }
11407 
11408 /*
11409  * This function performs 2 steps in a queue state machine:
11410  *   1) RESET->INIT
11411  *   2) INIT->SETUP
11412  */
11413 static int
11414 bxe_setup_queue(struct bxe_softc    *sc,
11415                 struct bxe_fastpath *fp,
11416                 uint8_t             leading)
11417 {
11418     struct ecore_queue_state_params q_params = { NULL };
11419     struct ecore_queue_setup_params *setup_params =
11420                         &q_params.params.setup;
11421     int rc;
11422 
11423     BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11424 
11425     bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11426 
11427     q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11428 
11429     /* we want to wait for completion in this context */
11430     bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11431 
11432     /* prepare the INIT parameters */
11433     bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11434 
11435     /* Set the command */
11436     q_params.cmd = ECORE_Q_CMD_INIT;
11437 
11438     /* Change the state to INIT */
11439     rc = ecore_queue_state_change(sc, &q_params);
11440     if (rc) {
11441         BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11442         return (rc);
11443     }
11444 
11445     BLOGD(sc, DBG_LOAD, "init complete\n");
11446 
11447     /* now move the Queue to the SETUP state */
11448     memset(setup_params, 0, sizeof(*setup_params));
11449 
11450     /* set Queue flags */
11451     setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11452 
11453     /* set general SETUP parameters */
11454     bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11455                           FIRST_TX_COS_INDEX);
11456 
11457     bxe_pf_rx_q_prep(sc, fp,
11458                      &setup_params->pause_params,
11459                      &setup_params->rxq_params);
11460 
11461     bxe_pf_tx_q_prep(sc, fp,
11462                      &setup_params->txq_params,
11463                      FIRST_TX_COS_INDEX);
11464 
11465     /* Set the command */
11466     q_params.cmd = ECORE_Q_CMD_SETUP;
11467 
11468     /* change the state to SETUP */
11469     rc = ecore_queue_state_change(sc, &q_params);
11470     if (rc) {
11471         BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11472         return (rc);
11473     }
11474 
11475     return (rc);
11476 }
11477 
11478 static int
11479 bxe_setup_leading(struct bxe_softc *sc)
11480 {
11481     return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11482 }
11483 
11484 static int
11485 bxe_config_rss_pf(struct bxe_softc            *sc,
11486                   struct ecore_rss_config_obj *rss_obj,
11487                   uint8_t                     config_hash)
11488 {
11489     struct ecore_config_rss_params params = { NULL };
11490     int i;
11491 
11492     /*
11493      * Although RSS is meaningless when there is a single HW queue we
11494      * still need it enabled in order to have HW Rx hash generated.
11495      */
11496 
11497     params.rss_obj = rss_obj;
11498 
11499     bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11500 
11501     bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11502 
11503     /* RSS configuration */
11504     bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11505     bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11506     bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11507     bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11508     if (rss_obj->udp_rss_v4) {
11509         bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11510     }
11511     if (rss_obj->udp_rss_v6) {
11512         bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11513     }
11514 
11515     /* Hash bits */
11516     params.rss_result_mask = MULTI_MASK;
11517 
11518     memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11519 
11520     if (config_hash) {
11521         /* RSS keys */
11522         for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11523             params.rss_key[i] = arc4random();
11524         }
11525 
11526         bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11527     }
11528 
11529     return (ecore_config_rss(sc, &params));
11530 }
11531 
11532 static int
11533 bxe_config_rss_eth(struct bxe_softc *sc,
11534                    uint8_t          config_hash)
11535 {
11536     return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11537 }
11538 
11539 static int
11540 bxe_init_rss_pf(struct bxe_softc *sc)
11541 {
11542     uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11543     int i;
11544 
11545     /*
11546      * Prepare the initial contents of the indirection table if
11547      * RSS is enabled
11548      */
11549     for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11550         sc->rss_conf_obj.ind_table[i] =
11551             (sc->fp->cl_id + (i % num_eth_queues));
11552     }
11553 
11554     if (sc->udp_rss) {
11555         sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11556     }
11557 
11558     /*
11559      * For 57710 and 57711 SEARCHER configuration (rss_keys) is
11560      * per-port, so if explicit configuration is needed, do it only
11561      * for a PMF.
11562      *
11563      * For 57712 and newer it's a per-function configuration.
11564      */
11565     return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11566 }
11567 
11568 static int
11569 bxe_set_mac_one(struct bxe_softc          *sc,
11570                 uint8_t                   *mac,
11571                 struct ecore_vlan_mac_obj *obj,
11572                 uint8_t                   set,
11573                 int                       mac_type,
11574                 unsigned long             *ramrod_flags)
11575 {
11576     struct ecore_vlan_mac_ramrod_params ramrod_param;
11577     int rc;
11578 
11579     memset(&ramrod_param, 0, sizeof(ramrod_param));
11580 
11581     /* fill in general parameters */
11582     ramrod_param.vlan_mac_obj = obj;
11583     ramrod_param.ramrod_flags = *ramrod_flags;
11584 
11585     /* fill a user request section if needed */
11586     if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11587         memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11588 
11589         bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11590 
11591         /* Set the command: ADD or DEL */
11592         ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11593                                             ECORE_VLAN_MAC_DEL;
11594     }
11595 
11596     rc = ecore_config_vlan_mac(sc, &ramrod_param);
11597 
11598     if (rc == ECORE_EXISTS) {
11599         BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11600         /* do not treat adding same MAC as error */
11601         rc = 0;
11602     } else if (rc < 0) {
11603         BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11604     }
11605 
11606     return (rc);
11607 }
11608 
11609 static int
11610 bxe_set_eth_mac(struct bxe_softc *sc,
11611                 uint8_t          set)
11612 {
11613     unsigned long ramrod_flags = 0;
11614 
11615     BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11616 
11617     bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11618 
11619     /* Eth MAC is set on RSS leading client (fp[0]) */
11620     return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11621                             &sc->sp_objs->mac_obj,
11622                             set, ECORE_ETH_MAC, &ramrod_flags));
11623 }
11624 
11625 static int
11626 bxe_get_cur_phy_idx(struct bxe_softc *sc)
11627 {
11628     uint32_t sel_phy_idx = 0;
11629 
11630     if (sc->link_params.num_phys <= 1) {
11631         return (ELINK_INT_PHY);
11632     }
11633 
11634     if (sc->link_vars.link_up) {
11635         sel_phy_idx = ELINK_EXT_PHY1;
11636         /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11637         if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11638             (sc->link_params.phy[ELINK_EXT_PHY2].supported &
11639              ELINK_SUPPORTED_FIBRE))
11640             sel_phy_idx = ELINK_EXT_PHY2;
11641     } else {
11642         switch (elink_phy_selection(&sc->link_params)) {
11643         case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11644         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11645         case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11646                sel_phy_idx = ELINK_EXT_PHY1;
11647                break;
11648         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11649         case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11650                sel_phy_idx = ELINK_EXT_PHY2;
11651                break;
11652         }
11653     }
11654 
11655     return (sel_phy_idx);
11656 }
11657 
11658 static int
11659 bxe_get_link_cfg_idx(struct bxe_softc *sc)
11660 {
11661     uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11662 
11663     /*
11664      * The selected activated PHY is always after swapping (in case PHY
11665      * swapping is enabled). So when swapping is enabled, we need to reverse
11666      * the configuration
11667      */
11668 
11669     if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11670         if (sel_phy_idx == ELINK_EXT_PHY1)
11671             sel_phy_idx = ELINK_EXT_PHY2;
11672         else if (sel_phy_idx == ELINK_EXT_PHY2)
11673             sel_phy_idx = ELINK_EXT_PHY1;
11674     }
11675 
11676     return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11677 }
11678 
11679 static void
11680 bxe_set_requested_fc(struct bxe_softc *sc)
11681 {
11682     /*
11683      * Initialize link parameters structure variables
11684      * It is recommended to turn off RX FC for jumbo frames
11685      * for better performance
11686      */
11687     if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11688         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11689     } else {
11690         sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11691     }
11692 }
11693 
11694 static void
11695 bxe_calc_fc_adv(struct bxe_softc *sc)
11696 {
11697     uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11698 
11699 
11700     sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11701                                            ADVERTISED_Pause);
11702 
11703     switch (sc->link_vars.ieee_fc &
11704             MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11705 
11706     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11707         sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11708                                           ADVERTISED_Pause);
11709         break;
11710 
11711     case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11712         sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11713         break;
11714 
11715     default:
11716         break;
11717 
11718     }
11719 }
11720 
11721 static uint16_t
11722 bxe_get_mf_speed(struct bxe_softc *sc)
11723 {
11724     uint16_t line_speed = sc->link_vars.line_speed;
11725     if (IS_MF(sc)) {
11726         uint16_t maxCfg =
11727             bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11728 
11729         /* calculate the current MAX line speed limit for the MF devices */
11730         if (IS_MF_SI(sc)) {
11731             line_speed = (line_speed * maxCfg) / 100;
11732         } else { /* SD mode */
11733             uint16_t vn_max_rate = maxCfg * 100;
11734 
11735             if (vn_max_rate < line_speed) {
11736                 line_speed = vn_max_rate;
11737             }
11738         }
11739     }
11740 
11741     return (line_speed);
11742 }
11743 
11744 static void
11745 bxe_fill_report_data(struct bxe_softc            *sc,
11746                      struct bxe_link_report_data *data)
11747 {
11748     uint16_t line_speed = bxe_get_mf_speed(sc);
11749 
11750     memset(data, 0, sizeof(*data));
11751 
11752     /* fill the report data with the effective line speed */
11753     data->line_speed = line_speed;
11754 
11755     /* Link is down */
11756     if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11757         bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11758     }
11759 
11760     /* Full DUPLEX */
11761     if (sc->link_vars.duplex == DUPLEX_FULL) {
11762         bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11763     }
11764 
11765     /* Rx Flow Control is ON */
11766     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11767         bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11768     }
11769 
11770     /* Tx Flow Control is ON */
11771     if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11772         bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11773     }
11774 }
11775 
11776 /* report link status to OS, should be called under phy_lock */
11777 static void
11778 bxe_link_report_locked(struct bxe_softc *sc)
11779 {
11780     struct bxe_link_report_data cur_data;
11781 
11782     /* reread mf_cfg */
11783     if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11784         bxe_read_mf_cfg(sc);
11785     }
11786 
11787     /* Read the current link report info */
11788     bxe_fill_report_data(sc, &cur_data);
11789 
11790     /* Don't report link down or exactly the same link status twice */
11791     if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11792         (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11793                       &sc->last_reported_link.link_report_flags) &&
11794          bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11795                       &cur_data.link_report_flags))) {
11796         return;
11797     }
11798 
11799 	ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11800 					cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11801     sc->link_cnt++;
11802 
11803 	ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11804     /* report new link params and remember the state for the next time */
11805     memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11806 
11807     if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11808                      &cur_data.link_report_flags)) {
11809         if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11810     } else {
11811         const char *duplex;
11812         const char *flow;
11813 
11814         if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11815                                    &cur_data.link_report_flags)) {
11816             duplex = "full";
11817 			ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11818         } else {
11819             duplex = "half";
11820 			ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11821         }
11822 
11823         /*
11824          * Handle the FC at the end so that only these flags would be
11825          * possibly set. This way we may easily check if there is no FC
11826          * enabled.
11827          */
11828         if (cur_data.link_report_flags) {
11829             if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11830                              &cur_data.link_report_flags) &&
11831                 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11832                              &cur_data.link_report_flags)) {
11833                 flow = "ON - receive & transmit";
11834             } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11835                                     &cur_data.link_report_flags) &&
11836                        !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11837                                      &cur_data.link_report_flags)) {
11838                 flow = "ON - receive";
11839             } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11840                                      &cur_data.link_report_flags) &&
11841                        bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11842                                     &cur_data.link_report_flags)) {
11843                 flow = "ON - transmit";
11844             } else {
11845                 flow = "none"; /* possible? */
11846             }
11847         } else {
11848             flow = "none";
11849         }
11850 
11851         if_link_state_change(sc->ifp, LINK_STATE_UP);
11852         BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11853               cur_data.line_speed, duplex, flow);
11854     }
11855 }
11856 
11857 static void
11858 bxe_link_report(struct bxe_softc *sc)
11859 {
11860     bxe_acquire_phy_lock(sc);
11861     bxe_link_report_locked(sc);
11862     bxe_release_phy_lock(sc);
11863 }
11864 
11865 static void
11866 bxe_link_status_update(struct bxe_softc *sc)
11867 {
11868     if (sc->state != BXE_STATE_OPEN) {
11869         return;
11870     }
11871 
11872     if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11873         elink_link_status_update(&sc->link_params, &sc->link_vars);
11874     } else {
11875         sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11876                                   ELINK_SUPPORTED_10baseT_Full |
11877                                   ELINK_SUPPORTED_100baseT_Half |
11878                                   ELINK_SUPPORTED_100baseT_Full |
11879                                   ELINK_SUPPORTED_1000baseT_Full |
11880                                   ELINK_SUPPORTED_2500baseX_Full |
11881                                   ELINK_SUPPORTED_10000baseT_Full |
11882                                   ELINK_SUPPORTED_TP |
11883                                   ELINK_SUPPORTED_FIBRE |
11884                                   ELINK_SUPPORTED_Autoneg |
11885                                   ELINK_SUPPORTED_Pause |
11886                                   ELINK_SUPPORTED_Asym_Pause);
11887         sc->port.advertising[0] = sc->port.supported[0];
11888 
11889         sc->link_params.sc                = sc;
11890         sc->link_params.port              = SC_PORT(sc);
11891         sc->link_params.req_duplex[0]     = DUPLEX_FULL;
11892         sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
11893         sc->link_params.req_line_speed[0] = SPEED_10000;
11894         sc->link_params.speed_cap_mask[0] = 0x7f0000;
11895         sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
11896 
11897         if (CHIP_REV_IS_FPGA(sc)) {
11898             sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
11899             sc->link_vars.line_speed  = ELINK_SPEED_1000;
11900             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11901                                          LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11902         } else {
11903             sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
11904             sc->link_vars.line_speed  = ELINK_SPEED_10000;
11905             sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11906                                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11907         }
11908 
11909         sc->link_vars.link_up = 1;
11910 
11911         sc->link_vars.duplex    = DUPLEX_FULL;
11912         sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11913 
11914         if (IS_PF(sc)) {
11915             REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11916             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11917             bxe_link_report(sc);
11918         }
11919     }
11920 
11921     if (IS_PF(sc)) {
11922         if (sc->link_vars.link_up) {
11923             bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11924         } else {
11925             bxe_stats_handle(sc, STATS_EVENT_STOP);
11926         }
11927         bxe_link_report(sc);
11928     } else {
11929         bxe_link_report(sc);
11930         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11931     }
11932 }
11933 
11934 static int
11935 bxe_initial_phy_init(struct bxe_softc *sc,
11936                      int              load_mode)
11937 {
11938     int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11939     uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11940     struct elink_params *lp = &sc->link_params;
11941 
11942     bxe_set_requested_fc(sc);
11943 
11944     if (CHIP_REV_IS_SLOW(sc)) {
11945         uint32_t bond = CHIP_BOND_ID(sc);
11946         uint32_t feat = 0;
11947 
11948         if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11949             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11950         } else if (bond & 0x4) {
11951             if (CHIP_IS_E3(sc)) {
11952                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11953             } else {
11954                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11955             }
11956         } else if (bond & 0x8) {
11957             if (CHIP_IS_E3(sc)) {
11958                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11959             } else {
11960                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11961             }
11962         }
11963 
11964         /* disable EMAC for E3 and above */
11965         if (bond & 0x2) {
11966             feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11967         }
11968 
11969         sc->link_params.feature_config_flags |= feat;
11970     }
11971 
11972     bxe_acquire_phy_lock(sc);
11973 
11974     if (load_mode == LOAD_DIAG) {
11975         lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11976         /* Prefer doing PHY loopback at 10G speed, if possible */
11977         if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11978             if (lp->speed_cap_mask[cfg_idx] &
11979                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11980                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11981             } else {
11982                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11983             }
11984         }
11985     }
11986 
11987     if (load_mode == LOAD_LOOPBACK_EXT) {
11988         lp->loopback_mode = ELINK_LOOPBACK_EXT;
11989     }
11990 
11991     rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11992 
11993     bxe_release_phy_lock(sc);
11994 
11995     bxe_calc_fc_adv(sc);
11996 
11997     if (sc->link_vars.link_up) {
11998         bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11999         bxe_link_report(sc);
12000     }
12001 
12002     if (!CHIP_REV_IS_SLOW(sc)) {
12003         bxe_periodic_start(sc);
12004     }
12005 
12006     sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12007     return (rc);
12008 }
12009 
12010 static u_int
12011 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12012 {
12013     struct ecore_mcast_list_elem *mc_mac = arg;
12014 
12015     mc_mac += cnt;
12016     mc_mac->mac = (uint8_t *)LLADDR(sdl);
12017 
12018     return (1);
12019 }
12020 
12021 static int
12022 bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12023                          struct ecore_mcast_ramrod_params *p)
12024 {
12025     if_t ifp = sc->ifp;
12026     int mc_count;
12027     struct ecore_mcast_list_elem *mc_mac;
12028 
12029     ECORE_LIST_INIT(&p->mcast_list);
12030     p->mcast_list_len = 0;
12031 
12032     /* XXXGL: multicast count may change later */
12033     mc_count = if_llmaddr_count(ifp);
12034 
12035     if (!mc_count) {
12036         return (0);
12037     }
12038 
12039     mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12040                     (M_NOWAIT | M_ZERO));
12041     if (!mc_mac) {
12042         BLOGE(sc, "Failed to allocate temp mcast list\n");
12043         return (-1);
12044     }
12045     bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12046     if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12047 
12048     for (int i = 0; i < mc_count; i ++) {
12049         ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12050         BLOGD(sc, DBG_LOAD,
12051               "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12052               mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12053               mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12054               mc_count);
12055     }
12056 
12057     p->mcast_list_len = mc_count;
12058 
12059     return (0);
12060 }
12061 
12062 static void
12063 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12064 {
12065     struct ecore_mcast_list_elem *mc_mac =
12066         ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12067                                struct ecore_mcast_list_elem,
12068                                link);
12069 
12070     if (mc_mac) {
12071         /* only a single free as all mc_macs are in the same heap array */
12072         free(mc_mac, M_DEVBUF);
12073     }
12074 }
12075 static int
12076 bxe_set_mc_list(struct bxe_softc *sc)
12077 {
12078     struct ecore_mcast_ramrod_params rparam = { NULL };
12079     int rc = 0;
12080 
12081     rparam.mcast_obj = &sc->mcast_obj;
12082 
12083     BXE_MCAST_LOCK(sc);
12084 
12085     /* first, clear all configured multicast MACs */
12086     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12087     if (rc < 0) {
12088         BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12089         /* Manual backport parts of FreeBSD upstream r284470. */
12090         BXE_MCAST_UNLOCK(sc);
12091         return (rc);
12092     }
12093 
12094     /* configure a new MACs list */
12095     rc = bxe_init_mcast_macs_list(sc, &rparam);
12096     if (rc) {
12097         BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12098         BXE_MCAST_UNLOCK(sc);
12099         return (rc);
12100     }
12101 
12102     /* Now add the new MACs */
12103     rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12104     if (rc < 0) {
12105         BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12106     }
12107 
12108     bxe_free_mcast_macs_list(&rparam);
12109 
12110     BXE_MCAST_UNLOCK(sc);
12111 
12112     return (rc);
12113 }
12114 
12115 struct bxe_set_addr_ctx {
12116    struct bxe_softc *sc;
12117    unsigned long ramrod_flags;
12118    int rc;
12119 };
12120 
12121 static u_int
12122 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12123 {
12124     struct bxe_set_addr_ctx *ctx = arg;
12125     struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12126     int rc;
12127 
12128     if (ctx->rc < 0)
12129 	return (0);
12130 
12131     rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12132                          ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
12133 
12134     /* do not treat adding same MAC as an error */
12135     if (rc == -EEXIST)
12136 	BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12137     else if (rc < 0) {
12138             BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12139             ctx->rc = rc;
12140     }
12141 
12142     return (1);
12143 }
12144 
12145 static int
12146 bxe_set_uc_list(struct bxe_softc *sc)
12147 {
12148     if_t ifp = sc->ifp;
12149     struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12150     struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12151     int rc;
12152 
12153     /* first schedule a cleanup up of old configuration */
12154     rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12155     if (rc < 0) {
12156         BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12157         return (rc);
12158     }
12159 
12160     if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12161     if (ctx.rc < 0)
12162 	return (ctx.rc);
12163 
12164     /* Execute the pending commands */
12165     bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12166     return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12167                             ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
12168 }
12169 
12170 static void
12171 bxe_set_rx_mode(struct bxe_softc *sc)
12172 {
12173     if_t ifp = sc->ifp;
12174     uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12175 
12176     if (sc->state != BXE_STATE_OPEN) {
12177         BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12178         return;
12179     }
12180 
12181     BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12182 
12183     if (if_getflags(ifp) & IFF_PROMISC) {
12184         rx_mode = BXE_RX_MODE_PROMISC;
12185     } else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12186                ((if_getamcount(ifp) > BXE_MAX_MULTICAST) &&
12187                 CHIP_IS_E1(sc))) {
12188         rx_mode = BXE_RX_MODE_ALLMULTI;
12189     } else {
12190         if (IS_PF(sc)) {
12191             /* some multicasts */
12192             if (bxe_set_mc_list(sc) < 0) {
12193                 rx_mode = BXE_RX_MODE_ALLMULTI;
12194             }
12195             if (bxe_set_uc_list(sc) < 0) {
12196                 rx_mode = BXE_RX_MODE_PROMISC;
12197             }
12198         }
12199     }
12200 
12201     sc->rx_mode = rx_mode;
12202 
12203     /* schedule the rx_mode command */
12204     if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12205         BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12206         bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12207         return;
12208     }
12209 
12210     if (IS_PF(sc)) {
12211         bxe_set_storm_rx_mode(sc);
12212     }
12213 }
12214 
12215 
12216 /* update flags in shmem */
12217 static void
12218 bxe_update_drv_flags(struct bxe_softc *sc,
12219                      uint32_t         flags,
12220                      uint32_t         set)
12221 {
12222     uint32_t drv_flags;
12223 
12224     if (SHMEM2_HAS(sc, drv_flags)) {
12225         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12226         drv_flags = SHMEM2_RD(sc, drv_flags);
12227 
12228         if (set) {
12229             SET_FLAGS(drv_flags, flags);
12230         } else {
12231             RESET_FLAGS(drv_flags, flags);
12232         }
12233 
12234         SHMEM2_WR(sc, drv_flags, drv_flags);
12235         BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12236 
12237         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12238     }
12239 }
12240 
12241 /* periodic timer callout routine, only runs when the interface is up */
12242 
12243 static void
12244 bxe_periodic_callout_func(void *xsc)
12245 {
12246     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12247     int i;
12248 
12249     if (!BXE_CORE_TRYLOCK(sc)) {
12250         /* just bail and try again next time */
12251 
12252         if ((sc->state == BXE_STATE_OPEN) &&
12253             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12254             /* schedule the next periodic callout */
12255             callout_reset(&sc->periodic_callout, hz,
12256                           bxe_periodic_callout_func, sc);
12257         }
12258 
12259         return;
12260     }
12261 
12262     if ((sc->state != BXE_STATE_OPEN) ||
12263         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12264         BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12265         BXE_CORE_UNLOCK(sc);
12266         return;
12267         }
12268 
12269 
12270     /* Check for TX timeouts on any fastpath. */
12271     FOR_EACH_QUEUE(sc, i) {
12272         if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12273             /* Ruh-Roh, chip was reset! */
12274             break;
12275         }
12276     }
12277 
12278     if (!CHIP_REV_IS_SLOW(sc)) {
12279         /*
12280          * This barrier is needed to ensure the ordering between the writing
12281          * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12282          * the reading here.
12283          */
12284         mb();
12285         if (sc->port.pmf) {
12286 	    bxe_acquire_phy_lock(sc);
12287             elink_period_func(&sc->link_params, &sc->link_vars);
12288 	    bxe_release_phy_lock(sc);
12289         }
12290     }
12291 
12292     if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12293         int mb_idx = SC_FW_MB_IDX(sc);
12294         uint32_t drv_pulse;
12295         uint32_t mcp_pulse;
12296 
12297         ++sc->fw_drv_pulse_wr_seq;
12298         sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12299 
12300         drv_pulse = sc->fw_drv_pulse_wr_seq;
12301         bxe_drv_pulse(sc);
12302 
12303         mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12304                      MCP_PULSE_SEQ_MASK);
12305 
12306         /*
12307          * The delta between driver pulse and mcp response should
12308          * be 1 (before mcp response) or 0 (after mcp response).
12309          */
12310         if ((drv_pulse != mcp_pulse) &&
12311             (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12312             /* someone lost a heartbeat... */
12313             BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12314                   drv_pulse, mcp_pulse);
12315         }
12316     }
12317 
12318     /* state is BXE_STATE_OPEN */
12319     bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12320 
12321     BXE_CORE_UNLOCK(sc);
12322 
12323     if ((sc->state == BXE_STATE_OPEN) &&
12324         (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12325         /* schedule the next periodic callout */
12326         callout_reset(&sc->periodic_callout, hz,
12327                       bxe_periodic_callout_func, sc);
12328     }
12329 }
12330 
12331 static void
12332 bxe_periodic_start(struct bxe_softc *sc)
12333 {
12334     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12335     callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12336 }
12337 
12338 static void
12339 bxe_periodic_stop(struct bxe_softc *sc)
12340 {
12341     atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12342     callout_drain(&sc->periodic_callout);
12343 }
12344 
12345 void
12346 bxe_parity_recover(struct bxe_softc *sc)
12347 {
12348     uint8_t global = FALSE;
12349     uint32_t error_recovered, error_unrecovered;
12350 
12351 
12352     if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12353         (sc->state == BXE_STATE_ERROR)) {
12354         BLOGE(sc, "RECOVERY failed, "
12355             "stack notified driver is NOT running! "
12356             "Please reboot/power cycle the system.\n");
12357         return;
12358     }
12359 
12360     while (1) {
12361         BLOGD(sc, DBG_SP,
12362            "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12363             __func__, sc, sc->state, sc->recovery_state, sc->error_status);
12364 
12365         switch(sc->recovery_state) {
12366 
12367         case BXE_RECOVERY_INIT:
12368             bxe_chk_parity_attn(sc, &global, FALSE);
12369 
12370             if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12371                 (sc->error_status & BXE_ERR_MCP_ASSERT) ||
12372                 (sc->error_status & BXE_ERR_GLOBAL)) {
12373 
12374                 BXE_CORE_LOCK(sc);
12375                 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12376                     bxe_periodic_stop(sc);
12377                 }
12378                 bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12379                 sc->state = BXE_STATE_ERROR;
12380                 sc->recovery_state = BXE_RECOVERY_FAILED;
12381                 BLOGE(sc, " No Recovery tried for error 0x%x"
12382                     " stack notified driver is NOT running!"
12383                     " Please reboot/power cycle the system.\n",
12384                     sc->error_status);
12385                 BXE_CORE_UNLOCK(sc);
12386                 return;
12387             }
12388 
12389 
12390            /* Try to get a LEADER_LOCK HW lock */
12391             if (bxe_trylock_leader_lock(sc)) {
12392 
12393                 bxe_set_reset_in_progress(sc);
12394                 /*
12395                  * Check if there is a global attention and if
12396                  * there was a global attention, set the global
12397                  * reset bit.
12398                  */
12399                 if (global) {
12400                     bxe_set_reset_global(sc);
12401                 }
12402                 sc->is_leader = 1;
12403             }
12404 
12405             /* If interface has been removed - break */
12406 
12407             if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12408                 bxe_periodic_stop(sc);
12409             }
12410 
12411             BXE_CORE_LOCK(sc);
12412             bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
12413             sc->recovery_state = BXE_RECOVERY_WAIT;
12414             BXE_CORE_UNLOCK(sc);
12415 
12416             /*
12417              * Ensure "is_leader", MCP command sequence and
12418              * "recovery_state" update values are seen on other
12419              * CPUs.
12420              */
12421             mb();
12422             break;
12423         case BXE_RECOVERY_WAIT:
12424 
12425             if (sc->is_leader) {
12426                 int other_engine = SC_PATH(sc) ? 0 : 1;
12427                 bool other_load_status =
12428                     bxe_get_load_status(sc, other_engine);
12429                 bool load_status =
12430                     bxe_get_load_status(sc, SC_PATH(sc));
12431                 global = bxe_reset_is_global(sc);
12432 
12433                 /*
12434                  * In case of a parity in a global block, let
12435                  * the first leader that performs a
12436                  * leader_reset() reset the global blocks in
12437                  * order to clear global attentions. Otherwise
12438                  * the gates will remain closed for that
12439                  * engine.
12440                  */
12441                 if (load_status ||
12442                     (global && other_load_status)) {
12443                     /*
12444                      * Wait until all other functions get
12445                      * down.
12446                      */
12447                     taskqueue_enqueue_timeout(taskqueue_thread,
12448                         &sc->sp_err_timeout_task, hz/10);
12449                     return;
12450                 } else {
12451                     /*
12452                      * If all other functions got down
12453                      * try to bring the chip back to
12454                      * normal. In any case it's an exit
12455                      * point for a leader.
12456                      */
12457                     if (bxe_leader_reset(sc)) {
12458                         BLOGE(sc, "RECOVERY failed, "
12459                             "stack notified driver is NOT running!\n");
12460                         sc->recovery_state = BXE_RECOVERY_FAILED;
12461                         sc->state = BXE_STATE_ERROR;
12462                         mb();
12463                         return;
12464                     }
12465 
12466                     /*
12467                      * If we are here, means that the
12468                      * leader has succeeded and doesn't
12469                      * want to be a leader any more. Try
12470                      * to continue as a none-leader.
12471                      */
12472                 break;
12473                 }
12474 
12475             } else { /* non-leader */
12476                 if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12477                     /*
12478                      * Try to get a LEADER_LOCK HW lock as
12479                      * long as a former leader may have
12480                      * been unloaded by the user or
12481                      * released a leadership by another
12482                      * reason.
12483                      */
12484                     if (bxe_trylock_leader_lock(sc)) {
12485                         /*
12486                          * I'm a leader now! Restart a
12487                          * switch case.
12488                          */
12489                         sc->is_leader = 1;
12490                         break;
12491                     }
12492 
12493                     taskqueue_enqueue_timeout(taskqueue_thread,
12494                         &sc->sp_err_timeout_task, hz/10);
12495                     return;
12496 
12497                 } else {
12498                     /*
12499                      * If there was a global attention, wait
12500                      * for it to be cleared.
12501                      */
12502                     if (bxe_reset_is_global(sc)) {
12503                         taskqueue_enqueue_timeout(taskqueue_thread,
12504                             &sc->sp_err_timeout_task, hz/10);
12505                         return;
12506                      }
12507 
12508                      error_recovered =
12509                          sc->eth_stats.recoverable_error;
12510                      error_unrecovered =
12511                          sc->eth_stats.unrecoverable_error;
12512                      BXE_CORE_LOCK(sc);
12513                      sc->recovery_state =
12514                          BXE_RECOVERY_NIC_LOADING;
12515                      if (bxe_nic_load(sc, LOAD_NORMAL)) {
12516                          error_unrecovered++;
12517                          sc->recovery_state = BXE_RECOVERY_FAILED;
12518                          sc->state = BXE_STATE_ERROR;
12519                          BLOGE(sc, "Recovery is NOT successful, "
12520                             " state=0x%x recovery_state=0x%x error=%x\n",
12521                             sc->state, sc->recovery_state, sc->error_status);
12522                          sc->error_status = 0;
12523                      } else {
12524                          sc->recovery_state =
12525                              BXE_RECOVERY_DONE;
12526                          error_recovered++;
12527                          BLOGI(sc, "Recovery is successful from errors %x,"
12528                             " state=0x%x"
12529                             " recovery_state=0x%x \n", sc->error_status,
12530                             sc->state, sc->recovery_state);
12531                          mb();
12532                      }
12533                      sc->error_status = 0;
12534                      BXE_CORE_UNLOCK(sc);
12535                      sc->eth_stats.recoverable_error =
12536                          error_recovered;
12537                      sc->eth_stats.unrecoverable_error =
12538                          error_unrecovered;
12539 
12540                      return;
12541                  }
12542              }
12543          default:
12544              return;
12545          }
12546     }
12547 }
12548 void
12549 bxe_handle_error(struct bxe_softc * sc)
12550 {
12551 
12552     if(sc->recovery_state == BXE_RECOVERY_WAIT) {
12553         return;
12554     }
12555     if(sc->error_status) {
12556         if (sc->state == BXE_STATE_OPEN)  {
12557             bxe_int_disable(sc);
12558         }
12559         if (sc->link_vars.link_up) {
12560             if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12561         }
12562         sc->recovery_state = BXE_RECOVERY_INIT;
12563         BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12564             sc->unit, sc->error_status, sc->recovery_state);
12565         bxe_parity_recover(sc);
12566    }
12567 }
12568 
12569 static void
12570 bxe_sp_err_timeout_task(void *arg, int pending)
12571 {
12572 
12573     struct bxe_softc *sc = (struct bxe_softc *)arg;
12574 
12575     BLOGD(sc, DBG_SP,
12576         "%s state = 0x%x rec state=0x%x error_status=%x\n",
12577         __func__, sc->state, sc->recovery_state, sc->error_status);
12578 
12579     if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12580        (sc->state == BXE_STATE_ERROR)) {
12581         return;
12582     }
12583     /* if can be taken */
12584     if ((sc->error_status) && (sc->trigger_grcdump)) {
12585         bxe_grc_dump(sc);
12586     }
12587     if (sc->recovery_state != BXE_RECOVERY_DONE) {
12588         bxe_handle_error(sc);
12589         bxe_parity_recover(sc);
12590     } else if (sc->error_status) {
12591         bxe_handle_error(sc);
12592     }
12593 
12594     return;
12595 }
12596 
12597 /* start the controller */
12598 static __noinline int
12599 bxe_nic_load(struct bxe_softc *sc,
12600              int              load_mode)
12601 {
12602     uint32_t val;
12603     int load_code = 0;
12604     int i, rc = 0;
12605 
12606     BXE_CORE_LOCK_ASSERT(sc);
12607 
12608     BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12609 
12610     sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12611 
12612     if (IS_PF(sc)) {
12613         /* must be called before memory allocation and HW init */
12614         bxe_ilt_set_info(sc);
12615     }
12616 
12617     sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12618 
12619     bxe_set_fp_rx_buf_size(sc);
12620 
12621     if (bxe_alloc_fp_buffers(sc) != 0) {
12622         BLOGE(sc, "Failed to allocate fastpath memory\n");
12623         sc->state = BXE_STATE_CLOSED;
12624         rc = ENOMEM;
12625         goto bxe_nic_load_error0;
12626     }
12627 
12628     if (bxe_alloc_mem(sc) != 0) {
12629         sc->state = BXE_STATE_CLOSED;
12630         rc = ENOMEM;
12631         goto bxe_nic_load_error0;
12632     }
12633 
12634     if (bxe_alloc_fw_stats_mem(sc) != 0) {
12635         sc->state = BXE_STATE_CLOSED;
12636         rc = ENOMEM;
12637         goto bxe_nic_load_error0;
12638     }
12639 
12640     if (IS_PF(sc)) {
12641         /* set pf load just before approaching the MCP */
12642         bxe_set_pf_load(sc);
12643 
12644         /* if MCP exists send load request and analyze response */
12645         if (!BXE_NOMCP(sc)) {
12646             /* attempt to load pf */
12647             if (bxe_nic_load_request(sc, &load_code) != 0) {
12648                 sc->state = BXE_STATE_CLOSED;
12649                 rc = ENXIO;
12650                 goto bxe_nic_load_error1;
12651             }
12652 
12653             /* what did the MCP say? */
12654             if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12655                 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12656                 sc->state = BXE_STATE_CLOSED;
12657                 rc = ENXIO;
12658                 goto bxe_nic_load_error2;
12659             }
12660         } else {
12661             BLOGI(sc, "Device has no MCP!\n");
12662             load_code = bxe_nic_load_no_mcp(sc);
12663         }
12664 
12665         /* mark PMF if applicable */
12666         bxe_nic_load_pmf(sc, load_code);
12667 
12668         /* Init Function state controlling object */
12669         bxe_init_func_obj(sc);
12670 
12671         /* Initialize HW */
12672         if (bxe_init_hw(sc, load_code) != 0) {
12673             BLOGE(sc, "HW init failed\n");
12674             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12675             sc->state = BXE_STATE_CLOSED;
12676             rc = ENXIO;
12677             goto bxe_nic_load_error2;
12678         }
12679     }
12680 
12681     /* set ALWAYS_ALIVE bit in shmem */
12682     sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12683     bxe_drv_pulse(sc);
12684     sc->flags |= BXE_NO_PULSE;
12685 
12686     /* attach interrupts */
12687     if (bxe_interrupt_attach(sc) != 0) {
12688         sc->state = BXE_STATE_CLOSED;
12689         rc = ENXIO;
12690         goto bxe_nic_load_error2;
12691     }
12692 
12693     bxe_nic_init(sc, load_code);
12694 
12695     /* Init per-function objects */
12696     if (IS_PF(sc)) {
12697         bxe_init_objs(sc);
12698         // XXX bxe_iov_nic_init(sc);
12699 
12700         /* set AFEX default VLAN tag to an invalid value */
12701         sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12702         // XXX bxe_nic_load_afex_dcc(sc, load_code);
12703 
12704         sc->state = BXE_STATE_OPENING_WAITING_PORT;
12705         rc = bxe_func_start(sc);
12706         if (rc) {
12707             BLOGE(sc, "Function start failed! rc = %d\n", rc);
12708             bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12709             sc->state = BXE_STATE_ERROR;
12710             goto bxe_nic_load_error3;
12711         }
12712 
12713         /* send LOAD_DONE command to MCP */
12714         if (!BXE_NOMCP(sc)) {
12715             load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12716             if (!load_code) {
12717                 BLOGE(sc, "MCP response failure, aborting\n");
12718                 sc->state = BXE_STATE_ERROR;
12719                 rc = ENXIO;
12720                 goto bxe_nic_load_error3;
12721             }
12722         }
12723 
12724         rc = bxe_setup_leading(sc);
12725         if (rc) {
12726             BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12727             sc->state = BXE_STATE_ERROR;
12728             goto bxe_nic_load_error3;
12729         }
12730 
12731         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12732             rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12733             if (rc) {
12734                 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12735                 sc->state = BXE_STATE_ERROR;
12736                 goto bxe_nic_load_error3;
12737             }
12738         }
12739 
12740         rc = bxe_init_rss_pf(sc);
12741         if (rc) {
12742             BLOGE(sc, "PF RSS init failed\n");
12743             sc->state = BXE_STATE_ERROR;
12744             goto bxe_nic_load_error3;
12745         }
12746     }
12747     /* XXX VF */
12748 
12749     /* now when Clients are configured we are ready to work */
12750     sc->state = BXE_STATE_OPEN;
12751 
12752     /* Configure a ucast MAC */
12753     if (IS_PF(sc)) {
12754         rc = bxe_set_eth_mac(sc, TRUE);
12755     }
12756     if (rc) {
12757         BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12758         sc->state = BXE_STATE_ERROR;
12759         goto bxe_nic_load_error3;
12760     }
12761 
12762     if (sc->port.pmf) {
12763         rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12764         if (rc) {
12765             sc->state = BXE_STATE_ERROR;
12766             goto bxe_nic_load_error3;
12767         }
12768     }
12769 
12770     sc->link_params.feature_config_flags &=
12771         ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12772 
12773     /* start fast path */
12774 
12775     /* Initialize Rx filter */
12776     bxe_set_rx_mode(sc);
12777 
12778     /* start the Tx */
12779     switch (/* XXX load_mode */LOAD_OPEN) {
12780     case LOAD_NORMAL:
12781     case LOAD_OPEN:
12782         break;
12783 
12784     case LOAD_DIAG:
12785     case LOAD_LOOPBACK_EXT:
12786         sc->state = BXE_STATE_DIAG;
12787         break;
12788 
12789     default:
12790         break;
12791     }
12792 
12793     if (sc->port.pmf) {
12794         bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12795     } else {
12796         bxe_link_status_update(sc);
12797     }
12798 
12799     /* start the periodic timer callout */
12800     bxe_periodic_start(sc);
12801 
12802     if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12803         /* mark driver is loaded in shmem2 */
12804         val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12805         SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12806                   (val |
12807                    DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12808                    DRV_FLAGS_CAPABILITIES_LOADED_L2));
12809     }
12810 
12811     /* wait for all pending SP commands to complete */
12812     if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12813         BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12814         bxe_periodic_stop(sc);
12815         bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12816         return (ENXIO);
12817     }
12818 
12819     /* Tell the stack the driver is running! */
12820     if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12821 
12822     BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12823 
12824     return (0);
12825 
12826 bxe_nic_load_error3:
12827 
12828     if (IS_PF(sc)) {
12829         bxe_int_disable_sync(sc, 1);
12830 
12831         /* clean out queued objects */
12832         bxe_squeeze_objects(sc);
12833     }
12834 
12835     bxe_interrupt_detach(sc);
12836 
12837 bxe_nic_load_error2:
12838 
12839     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12840         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12841         bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12842     }
12843 
12844     sc->port.pmf = 0;
12845 
12846 bxe_nic_load_error1:
12847 
12848     /* clear pf_load status, as it was already set */
12849     if (IS_PF(sc)) {
12850         bxe_clear_pf_load(sc);
12851     }
12852 
12853 bxe_nic_load_error0:
12854 
12855     bxe_free_fw_stats_mem(sc);
12856     bxe_free_fp_buffers(sc);
12857     bxe_free_mem(sc);
12858 
12859     return (rc);
12860 }
12861 
12862 static int
12863 bxe_init_locked(struct bxe_softc *sc)
12864 {
12865     int other_engine = SC_PATH(sc) ? 0 : 1;
12866     uint8_t other_load_status, load_status;
12867     uint8_t global = FALSE;
12868     int rc;
12869 
12870     BXE_CORE_LOCK_ASSERT(sc);
12871 
12872     /* check if the driver is already running */
12873     if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12874         BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12875         return (0);
12876     }
12877 
12878     if((sc->state == BXE_STATE_ERROR) &&
12879         (sc->recovery_state == BXE_RECOVERY_FAILED)) {
12880         BLOGE(sc, "Initialization not done, "
12881                   "as previous recovery failed."
12882                   "Reboot/Power-cycle the system\n" );
12883         return (ENXIO);
12884     }
12885 
12886 
12887     bxe_set_power_state(sc, PCI_PM_D0);
12888 
12889     /*
12890      * If parity occurred during the unload, then attentions and/or
12891      * RECOVERY_IN_PROGRES may still be set. If so we want the first function
12892      * loaded on the current engine to complete the recovery. Parity recovery
12893      * is only relevant for PF driver.
12894      */
12895     if (IS_PF(sc)) {
12896         other_load_status = bxe_get_load_status(sc, other_engine);
12897         load_status = bxe_get_load_status(sc, SC_PATH(sc));
12898 
12899         if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12900             bxe_chk_parity_attn(sc, &global, TRUE)) {
12901             do {
12902                 /*
12903                  * If there are attentions and they are in global blocks, set
12904                  * the GLOBAL_RESET bit regardless whether it will be this
12905                  * function that will complete the recovery or not.
12906                  */
12907                 if (global) {
12908                     bxe_set_reset_global(sc);
12909                 }
12910 
12911                 /*
12912                  * Only the first function on the current engine should try
12913                  * to recover in open. In case of attentions in global blocks
12914                  * only the first in the chip should try to recover.
12915                  */
12916                 if ((!load_status && (!global || !other_load_status)) &&
12917                     bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12918                     BLOGI(sc, "Recovered during init\n");
12919                     break;
12920                 }
12921 
12922                 /* recovery has failed... */
12923                 bxe_set_power_state(sc, PCI_PM_D3hot);
12924                 sc->recovery_state = BXE_RECOVERY_FAILED;
12925 
12926                 BLOGE(sc, "Recovery flow hasn't properly "
12927                           "completed yet, try again later. "
12928                           "If you still see this message after a "
12929                           "few retries then power cycle is required.\n");
12930 
12931                 rc = ENXIO;
12932                 goto bxe_init_locked_done;
12933             } while (0);
12934         }
12935     }
12936 
12937     sc->recovery_state = BXE_RECOVERY_DONE;
12938 
12939     rc = bxe_nic_load(sc, LOAD_OPEN);
12940 
12941 bxe_init_locked_done:
12942 
12943     if (rc) {
12944         /* Tell the stack the driver is NOT running! */
12945         BLOGE(sc, "Initialization failed, "
12946                   "stack notified driver is NOT running!\n");
12947 	if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12948     }
12949 
12950     return (rc);
12951 }
12952 
12953 static int
12954 bxe_stop_locked(struct bxe_softc *sc)
12955 {
12956     BXE_CORE_LOCK_ASSERT(sc);
12957     return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12958 }
12959 
12960 /*
12961  * Handles controller initialization when called from an unlocked routine.
12962  * ifconfig calls this function.
12963  *
12964  * Returns:
12965  *   void
12966  */
12967 static void
12968 bxe_init(void *xsc)
12969 {
12970     struct bxe_softc *sc = (struct bxe_softc *)xsc;
12971 
12972     BXE_CORE_LOCK(sc);
12973     bxe_init_locked(sc);
12974     BXE_CORE_UNLOCK(sc);
12975 }
12976 
12977 static int
12978 bxe_init_ifnet(struct bxe_softc *sc)
12979 {
12980     if_t ifp;
12981     int capabilities;
12982 
12983     /* ifconfig entrypoint for media type/status reporting */
12984     ifmedia_init(&sc->ifmedia, IFM_IMASK,
12985                  bxe_ifmedia_update,
12986                  bxe_ifmedia_status);
12987 
12988     /* set the default interface values */
12989     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12990     ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12991     ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12992 
12993     sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12994 	BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12995 
12996     /* allocate the ifnet structure */
12997     if ((ifp = if_gethandle(IFT_ETHER)) == NULL) {
12998         BLOGE(sc, "Interface allocation failed!\n");
12999         return (ENXIO);
13000     }
13001 
13002     if_setsoftc(ifp, sc);
13003     if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13004     if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
13005     if_setioctlfn(ifp, bxe_ioctl);
13006     if_setstartfn(ifp, bxe_tx_start);
13007     if_setgetcounterfn(ifp, bxe_get_counter);
13008     if_settransmitfn(ifp, bxe_tx_mq_start);
13009     if_setqflushfn(ifp, bxe_mq_flush);
13010     if_setinitfn(ifp, bxe_init);
13011     if_setmtu(ifp, sc->mtu);
13012     if_sethwassist(ifp, (CSUM_IP      |
13013                         CSUM_TCP      |
13014                         CSUM_UDP      |
13015                         CSUM_TSO      |
13016                         CSUM_TCP_IPV6 |
13017                         CSUM_UDP_IPV6));
13018 
13019     capabilities =
13020         (IFCAP_VLAN_MTU       |
13021          IFCAP_VLAN_HWTAGGING |
13022          IFCAP_VLAN_HWTSO     |
13023          IFCAP_VLAN_HWFILTER  |
13024          IFCAP_VLAN_HWCSUM    |
13025          IFCAP_HWCSUM         |
13026          IFCAP_JUMBO_MTU      |
13027          IFCAP_LRO            |
13028          IFCAP_TSO4           |
13029          IFCAP_TSO6           |
13030          IFCAP_WOL_MAGIC);
13031     if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13032     if_setcapenable(ifp, if_getcapabilities(ifp));
13033     if_setbaudrate(ifp, IF_Gbps(10));
13034 /* XXX */
13035     if_setsendqlen(ifp, sc->tx_ring_size);
13036     if_setsendqready(ifp);
13037 /* XXX */
13038 
13039     sc->ifp = ifp;
13040 
13041     /* attach to the Ethernet interface list */
13042     ether_ifattach(ifp, sc->link_params.mac_addr);
13043 
13044     /* Attach driver debugnet methods. */
13045     DEBUGNET_SET(ifp, bxe);
13046 
13047     return (0);
13048 }
13049 
13050 static void
13051 bxe_deallocate_bars(struct bxe_softc *sc)
13052 {
13053     int i;
13054 
13055     for (i = 0; i < MAX_BARS; i++) {
13056         if (sc->bar[i].resource != NULL) {
13057             bus_release_resource(sc->dev,
13058                                  SYS_RES_MEMORY,
13059                                  sc->bar[i].rid,
13060                                  sc->bar[i].resource);
13061             BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13062                   i, PCIR_BAR(i));
13063         }
13064     }
13065 }
13066 
13067 static int
13068 bxe_allocate_bars(struct bxe_softc *sc)
13069 {
13070     u_int flags;
13071     int i;
13072 
13073     memset(sc->bar, 0, sizeof(sc->bar));
13074 
13075     for (i = 0; i < MAX_BARS; i++) {
13076 
13077         /* memory resources reside at BARs 0, 2, 4 */
13078         /* Run `pciconf -lb` to see mappings */
13079         if ((i != 0) && (i != 2) && (i != 4)) {
13080             continue;
13081         }
13082 
13083         sc->bar[i].rid = PCIR_BAR(i);
13084 
13085         flags = RF_ACTIVE;
13086         if (i == 0) {
13087             flags |= RF_SHAREABLE;
13088         }
13089 
13090         if ((sc->bar[i].resource =
13091              bus_alloc_resource_any(sc->dev,
13092                                     SYS_RES_MEMORY,
13093                                     &sc->bar[i].rid,
13094                                     flags)) == NULL) {
13095             return (0);
13096         }
13097 
13098         sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13099         sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13100         sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13101 
13102         BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13103               i, PCIR_BAR(i),
13104               rman_get_start(sc->bar[i].resource),
13105               rman_get_end(sc->bar[i].resource),
13106               rman_get_size(sc->bar[i].resource),
13107               (uintmax_t)sc->bar[i].kva);
13108     }
13109 
13110     return (0);
13111 }
13112 
13113 static void
13114 bxe_get_function_num(struct bxe_softc *sc)
13115 {
13116     uint32_t val = 0;
13117 
13118     /*
13119      * Read the ME register to get the function number. The ME register
13120      * holds the relative-function number and absolute-function number. The
13121      * absolute-function number appears only in E2 and above. Before that
13122      * these bits always contained zero, therefore we cannot blindly use them.
13123      */
13124 
13125     val = REG_RD(sc, BAR_ME_REGISTER);
13126 
13127     sc->pfunc_rel =
13128         (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13129     sc->path_id =
13130         (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13131 
13132     if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13133         sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13134     } else {
13135         sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13136     }
13137 
13138     BLOGD(sc, DBG_LOAD,
13139           "Relative function %d, Absolute function %d, Path %d\n",
13140           sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13141 }
13142 
13143 static uint32_t
13144 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13145 {
13146     uint32_t shmem2_size;
13147     uint32_t offset;
13148     uint32_t mf_cfg_offset_value;
13149 
13150     /* Non 57712 */
13151     offset = (SHMEM_RD(sc, func_mb) +
13152               (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13153 
13154     /* 57712 plus */
13155     if (sc->devinfo.shmem2_base != 0) {
13156         shmem2_size = SHMEM2_RD(sc, size);
13157         if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13158             mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13159             if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13160                 offset = mf_cfg_offset_value;
13161             }
13162         }
13163     }
13164 
13165     return (offset);
13166 }
13167 
13168 static uint32_t
13169 bxe_pcie_capability_read(struct bxe_softc *sc,
13170                          int    reg,
13171                          int    width)
13172 {
13173     int pcie_reg;
13174 
13175     /* ensure PCIe capability is enabled */
13176     if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13177         if (pcie_reg != 0) {
13178             BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13179             return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13180         }
13181     }
13182 
13183     BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13184 
13185     return (0);
13186 }
13187 
13188 static uint8_t
13189 bxe_is_pcie_pending(struct bxe_softc *sc)
13190 {
13191     return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13192             PCIEM_STA_TRANSACTION_PND);
13193 }
13194 
13195 /*
13196  * Walk the PCI capabiites list for the device to find what features are
13197  * supported. These capabilites may be enabled/disabled by firmware so it's
13198  * best to walk the list rather than make assumptions.
13199  */
13200 static void
13201 bxe_probe_pci_caps(struct bxe_softc *sc)
13202 {
13203     uint16_t link_status;
13204     int reg;
13205 
13206     /* check if PCI Power Management is enabled */
13207     if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13208         if (reg != 0) {
13209             BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13210 
13211             sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13212             sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13213         }
13214     }
13215 
13216     link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13217 
13218     /* handle PCIe 2.0 workarounds for 57710 */
13219     if (CHIP_IS_E1(sc)) {
13220         /* workaround for 57710 errata E4_57710_27462 */
13221         sc->devinfo.pcie_link_speed =
13222             (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13223 
13224         /* workaround for 57710 errata E4_57710_27488 */
13225         sc->devinfo.pcie_link_width =
13226             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13227         if (sc->devinfo.pcie_link_speed > 1) {
13228             sc->devinfo.pcie_link_width =
13229                 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13230         }
13231     } else {
13232         sc->devinfo.pcie_link_speed =
13233             (link_status & PCIEM_LINK_STA_SPEED);
13234         sc->devinfo.pcie_link_width =
13235             ((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13236     }
13237 
13238     BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13239           sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13240 
13241     sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13242     sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13243 
13244     /* check if MSI capability is enabled */
13245     if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13246         if (reg != 0) {
13247             BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13248 
13249             sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13250             sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13251         }
13252     }
13253 
13254     /* check if MSI-X capability is enabled */
13255     if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13256         if (reg != 0) {
13257             BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13258 
13259             sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13260             sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13261         }
13262     }
13263 }
13264 
13265 static int
13266 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13267 {
13268     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13269     uint32_t val;
13270 
13271     /* get the outer vlan if we're in switch-dependent mode */
13272 
13273     val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13274     mf_info->ext_id = (uint16_t)val;
13275 
13276     mf_info->multi_vnics_mode = 1;
13277 
13278     if (!VALID_OVLAN(mf_info->ext_id)) {
13279         BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13280         return (1);
13281     }
13282 
13283     /* get the capabilities */
13284     if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13285         FUNC_MF_CFG_PROTOCOL_ISCSI) {
13286         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13287     } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13288                FUNC_MF_CFG_PROTOCOL_FCOE) {
13289         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13290     } else {
13291         mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13292     }
13293 
13294     mf_info->vnics_per_port =
13295         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13296 
13297     return (0);
13298 }
13299 
13300 static uint32_t
13301 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13302 {
13303     uint32_t retval = 0;
13304     uint32_t val;
13305 
13306     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13307 
13308     if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13309         if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13310             retval |= MF_PROTO_SUPPORT_ETHERNET;
13311         }
13312         if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13313             retval |= MF_PROTO_SUPPORT_ISCSI;
13314         }
13315         if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13316             retval |= MF_PROTO_SUPPORT_FCOE;
13317         }
13318     }
13319 
13320     return (retval);
13321 }
13322 
13323 static int
13324 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13325 {
13326     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13327     uint32_t val;
13328 
13329     /*
13330      * There is no outer vlan if we're in switch-independent mode.
13331      * If the mac is valid then assume multi-function.
13332      */
13333 
13334     val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13335 
13336     mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13337 
13338     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13339 
13340     mf_info->vnics_per_port =
13341         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13342 
13343     return (0);
13344 }
13345 
13346 static int
13347 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13348 {
13349     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13350     uint32_t e1hov_tag;
13351     uint32_t func_config;
13352     uint32_t niv_config;
13353 
13354     mf_info->multi_vnics_mode = 1;
13355 
13356     e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13357     func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13358     niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13359 
13360     mf_info->ext_id =
13361         (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13362                    FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13363 
13364     mf_info->default_vlan =
13365         (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13366                    FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13367 
13368     mf_info->niv_allowed_priorities =
13369         (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13370                   FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13371 
13372     mf_info->niv_default_cos =
13373         (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13374                   FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13375 
13376     mf_info->afex_vlan_mode =
13377         ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13378          FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13379 
13380     mf_info->niv_mba_enabled =
13381         ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13382          FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13383 
13384     mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13385 
13386     mf_info->vnics_per_port =
13387         (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13388 
13389     return (0);
13390 }
13391 
13392 static int
13393 bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13394 {
13395     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13396     uint32_t mf_cfg1;
13397     uint32_t mf_cfg2;
13398     uint32_t ovlan1;
13399     uint32_t ovlan2;
13400     uint8_t i, j;
13401 
13402     BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13403           SC_PORT(sc));
13404     BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13405           mf_info->mf_config[SC_VN(sc)]);
13406     BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13407           mf_info->multi_vnics_mode);
13408     BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13409           mf_info->vnics_per_port);
13410     BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13411           mf_info->ext_id);
13412     BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13413           mf_info->min_bw[0], mf_info->min_bw[1],
13414           mf_info->min_bw[2], mf_info->min_bw[3]);
13415     BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13416           mf_info->max_bw[0], mf_info->max_bw[1],
13417           mf_info->max_bw[2], mf_info->max_bw[3]);
13418     BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13419           sc->mac_addr_str);
13420 
13421     /* various MF mode sanity checks... */
13422 
13423     if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13424         BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13425               SC_PORT(sc));
13426         return (1);
13427     }
13428 
13429     if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13430         BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13431               mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13432         return (1);
13433     }
13434 
13435     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13436         /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13437         if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13438             BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13439                   SC_VN(sc), OVLAN(sc));
13440             return (1);
13441         }
13442 
13443         if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13444             BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13445                   mf_info->multi_vnics_mode, OVLAN(sc));
13446             return (1);
13447         }
13448 
13449         /*
13450          * Verify all functions are either MF or SF mode. If MF, make sure
13451          * sure that all non-hidden functions have a valid ovlan. If SF,
13452          * make sure that all non-hidden functions have an invalid ovlan.
13453          */
13454         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13455             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13456             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13457             if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13458                 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13459                  ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13460                 BLOGE(sc, "mf_mode=SD function %d MF config "
13461                           "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13462                       i, mf_info->multi_vnics_mode, ovlan1);
13463                 return (1);
13464             }
13465         }
13466 
13467         /* Verify all funcs on the same port each have a different ovlan. */
13468         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13469             mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13470             ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13471             /* iterate from the next function on the port to the max func */
13472             for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13473                 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13474                 ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13475                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13476                     VALID_OVLAN(ovlan1) &&
13477                     !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13478                     VALID_OVLAN(ovlan2) &&
13479                     (ovlan1 == ovlan2)) {
13480                     BLOGE(sc, "mf_mode=SD functions %d and %d "
13481                               "have the same ovlan (%d)\n",
13482                           i, j, ovlan1);
13483                     return (1);
13484                 }
13485             }
13486         }
13487     } /* MULTI_FUNCTION_SD */
13488 
13489     return (0);
13490 }
13491 
13492 static int
13493 bxe_get_mf_cfg_info(struct bxe_softc *sc)
13494 {
13495     struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13496     uint32_t val, mac_upper;
13497     uint8_t i, vnic;
13498 
13499     /* initialize mf_info defaults */
13500     mf_info->vnics_per_port   = 1;
13501     mf_info->multi_vnics_mode = FALSE;
13502     mf_info->path_has_ovlan   = FALSE;
13503     mf_info->mf_mode          = SINGLE_FUNCTION;
13504 
13505     if (!CHIP_IS_MF_CAP(sc)) {
13506         return (0);
13507     }
13508 
13509     if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13510         BLOGE(sc, "Invalid mf_cfg_base!\n");
13511         return (1);
13512     }
13513 
13514     /* get the MF mode (switch dependent / independent / single-function) */
13515 
13516     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13517 
13518     switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13519     {
13520     case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13521 
13522         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13523 
13524         /* check for legal upper mac bytes */
13525         if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13526             mf_info->mf_mode = MULTI_FUNCTION_SI;
13527         } else {
13528             BLOGE(sc, "Invalid config for Switch Independent mode\n");
13529         }
13530 
13531         break;
13532 
13533     case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13534     case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13535 
13536         /* get outer vlan configuration */
13537         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13538 
13539         if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13540             FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13541             mf_info->mf_mode = MULTI_FUNCTION_SD;
13542         } else {
13543             BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13544         }
13545 
13546         break;
13547 
13548     case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13549 
13550         /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13551         return (0);
13552 
13553     case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13554 
13555         /*
13556          * Mark MF mode as NIV if MCP version includes NPAR-SD support
13557          * and the MAC address is valid.
13558          */
13559         mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13560 
13561         if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13562             (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13563             mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13564         } else {
13565             BLOGE(sc, "Invalid config for AFEX mode\n");
13566         }
13567 
13568         break;
13569 
13570     default:
13571 
13572         BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13573               (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13574 
13575         return (1);
13576     }
13577 
13578     /* set path mf_mode (which could be different than function mf_mode) */
13579     if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13580         mf_info->path_has_ovlan = TRUE;
13581     } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13582         /*
13583          * Decide on path multi vnics mode. If we're not in MF mode and in
13584          * 4-port mode, this is good enough to check vnic-0 of the other port
13585          * on the same path
13586          */
13587         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13588             uint8_t other_port = !(PORT_ID(sc) & 1);
13589             uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13590 
13591             val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13592 
13593             mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13594         }
13595     }
13596 
13597     if (mf_info->mf_mode == SINGLE_FUNCTION) {
13598         /* invalid MF config */
13599         if (SC_VN(sc) >= 1) {
13600             BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13601             return (1);
13602         }
13603 
13604         return (0);
13605     }
13606 
13607     /* get the MF configuration */
13608     mf_info->mf_config[SC_VN(sc)] =
13609         MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13610 
13611     switch(mf_info->mf_mode)
13612     {
13613     case MULTI_FUNCTION_SD:
13614 
13615         bxe_get_shmem_mf_cfg_info_sd(sc);
13616         break;
13617 
13618     case MULTI_FUNCTION_SI:
13619 
13620         bxe_get_shmem_mf_cfg_info_si(sc);
13621         break;
13622 
13623     case MULTI_FUNCTION_AFEX:
13624 
13625         bxe_get_shmem_mf_cfg_info_niv(sc);
13626         break;
13627 
13628     default:
13629 
13630         BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13631               mf_info->mf_mode);
13632         return (1);
13633     }
13634 
13635     /* get the congestion management parameters */
13636 
13637     vnic = 0;
13638     FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13639         /* get min/max bw */
13640         val = MFCFG_RD(sc, func_mf_config[i].config);
13641         mf_info->min_bw[vnic] =
13642             ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13643         mf_info->max_bw[vnic] =
13644             ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13645         vnic++;
13646     }
13647 
13648     return (bxe_check_valid_mf_cfg(sc));
13649 }
13650 
13651 static int
13652 bxe_get_shmem_info(struct bxe_softc *sc)
13653 {
13654     int port;
13655     uint32_t mac_hi, mac_lo, val;
13656 
13657     port = SC_PORT(sc);
13658     mac_hi = mac_lo = 0;
13659 
13660     sc->link_params.sc   = sc;
13661     sc->link_params.port = port;
13662 
13663     /* get the hardware config info */
13664     sc->devinfo.hw_config =
13665         SHMEM_RD(sc, dev_info.shared_hw_config.config);
13666     sc->devinfo.hw_config2 =
13667         SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13668 
13669     sc->link_params.hw_led_mode =
13670         ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13671          SHARED_HW_CFG_LED_MODE_SHIFT);
13672 
13673     /* get the port feature config */
13674     sc->port.config =
13675         SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13676 
13677     /* get the link params */
13678     sc->link_params.speed_cap_mask[0] =
13679         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13680     sc->link_params.speed_cap_mask[1] =
13681         SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13682 
13683     /* get the lane config */
13684     sc->link_params.lane_config =
13685         SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13686 
13687     /* get the link config */
13688     val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13689     sc->port.link_config[ELINK_INT_PHY] = val;
13690     sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13691     sc->port.link_config[ELINK_EXT_PHY1] =
13692         SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13693 
13694     /* get the override preemphasis flag and enable it or turn it off */
13695     val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13696     if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13697         sc->link_params.feature_config_flags |=
13698             ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13699     } else {
13700         sc->link_params.feature_config_flags &=
13701             ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13702     }
13703 
13704     /* get the initial value of the link params */
13705     sc->link_params.multi_phy_config =
13706         SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13707 
13708     /* get external phy info */
13709     sc->port.ext_phy_config =
13710         SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13711 
13712     /* get the multifunction configuration */
13713     bxe_get_mf_cfg_info(sc);
13714 
13715     /* get the mac address */
13716     if (IS_MF(sc)) {
13717         mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13718         mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13719     } else {
13720         mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13721         mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13722     }
13723 
13724     if ((mac_lo == 0) && (mac_hi == 0)) {
13725         *sc->mac_addr_str = 0;
13726         BLOGE(sc, "No Ethernet address programmed!\n");
13727     } else {
13728         sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13729         sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13730         sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13731         sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13732         sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13733         sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13734         snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13735                  "%02x:%02x:%02x:%02x:%02x:%02x",
13736                  sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13737                  sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13738                  sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13739         BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13740     }
13741 
13742     return (0);
13743 }
13744 
13745 static void
13746 bxe_get_tunable_params(struct bxe_softc *sc)
13747 {
13748     /* sanity checks */
13749 
13750     if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13751         (bxe_interrupt_mode != INTR_MODE_MSI)  &&
13752         (bxe_interrupt_mode != INTR_MODE_MSIX)) {
13753         BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13754         bxe_interrupt_mode = INTR_MODE_MSIX;
13755     }
13756 
13757     if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13758         BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13759         bxe_queue_count = 0;
13760     }
13761 
13762     if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13763         if (bxe_max_rx_bufs == 0) {
13764             bxe_max_rx_bufs = RX_BD_USABLE;
13765         } else {
13766             BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13767             bxe_max_rx_bufs = 2048;
13768         }
13769     }
13770 
13771     if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13772         BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13773         bxe_hc_rx_ticks = 25;
13774     }
13775 
13776     if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13777         BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13778         bxe_hc_tx_ticks = 50;
13779     }
13780 
13781     if (bxe_max_aggregation_size == 0) {
13782         bxe_max_aggregation_size = TPA_AGG_SIZE;
13783     }
13784 
13785     if (bxe_max_aggregation_size > 0xffff) {
13786         BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13787               bxe_max_aggregation_size);
13788         bxe_max_aggregation_size = TPA_AGG_SIZE;
13789     }
13790 
13791     if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13792         BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13793         bxe_mrrs = -1;
13794     }
13795 
13796     if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13797         BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13798         bxe_autogreeen = 0;
13799     }
13800 
13801     if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13802         BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13803         bxe_udp_rss = 0;
13804     }
13805 
13806     /* pull in user settings */
13807 
13808     sc->interrupt_mode       = bxe_interrupt_mode;
13809     sc->max_rx_bufs          = bxe_max_rx_bufs;
13810     sc->hc_rx_ticks          = bxe_hc_rx_ticks;
13811     sc->hc_tx_ticks          = bxe_hc_tx_ticks;
13812     sc->max_aggregation_size = bxe_max_aggregation_size;
13813     sc->mrrs                 = bxe_mrrs;
13814     sc->autogreeen           = bxe_autogreeen;
13815     sc->udp_rss              = bxe_udp_rss;
13816 
13817     if (bxe_interrupt_mode == INTR_MODE_INTX) {
13818         sc->num_queues = 1;
13819     } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13820         sc->num_queues =
13821             min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13822                 MAX_RSS_CHAINS);
13823         if (sc->num_queues > mp_ncpus) {
13824             sc->num_queues = mp_ncpus;
13825         }
13826     }
13827 
13828     BLOGD(sc, DBG_LOAD,
13829           "User Config: "
13830           "debug=0x%lx "
13831           "interrupt_mode=%d "
13832           "queue_count=%d "
13833           "hc_rx_ticks=%d "
13834           "hc_tx_ticks=%d "
13835           "rx_budget=%d "
13836           "max_aggregation_size=%d "
13837           "mrrs=%d "
13838           "autogreeen=%d "
13839           "udp_rss=%d\n",
13840           bxe_debug,
13841           sc->interrupt_mode,
13842           sc->num_queues,
13843           sc->hc_rx_ticks,
13844           sc->hc_tx_ticks,
13845           bxe_rx_budget,
13846           sc->max_aggregation_size,
13847           sc->mrrs,
13848           sc->autogreeen,
13849           sc->udp_rss);
13850 }
13851 
13852 static int
13853 bxe_media_detect(struct bxe_softc *sc)
13854 {
13855     int port_type;
13856     uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13857 
13858     switch (sc->link_params.phy[phy_idx].media_type) {
13859     case ELINK_ETH_PHY_SFPP_10G_FIBER:
13860     case ELINK_ETH_PHY_XFP_FIBER:
13861         BLOGI(sc, "Found 10Gb Fiber media.\n");
13862         sc->media = IFM_10G_SR;
13863         port_type = PORT_FIBRE;
13864         break;
13865     case ELINK_ETH_PHY_SFP_1G_FIBER:
13866         BLOGI(sc, "Found 1Gb Fiber media.\n");
13867         sc->media = IFM_1000_SX;
13868         port_type = PORT_FIBRE;
13869         break;
13870     case ELINK_ETH_PHY_KR:
13871     case ELINK_ETH_PHY_CX4:
13872         BLOGI(sc, "Found 10GBase-CX4 media.\n");
13873         sc->media = IFM_10G_CX4;
13874         port_type = PORT_FIBRE;
13875         break;
13876     case ELINK_ETH_PHY_DA_TWINAX:
13877         BLOGI(sc, "Found 10Gb Twinax media.\n");
13878         sc->media = IFM_10G_TWINAX;
13879         port_type = PORT_DA;
13880         break;
13881     case ELINK_ETH_PHY_BASE_T:
13882         if (sc->link_params.speed_cap_mask[0] &
13883             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13884             BLOGI(sc, "Found 10GBase-T media.\n");
13885             sc->media = IFM_10G_T;
13886             port_type = PORT_TP;
13887         } else {
13888             BLOGI(sc, "Found 1000Base-T media.\n");
13889             sc->media = IFM_1000_T;
13890             port_type = PORT_TP;
13891         }
13892         break;
13893     case ELINK_ETH_PHY_NOT_PRESENT:
13894         BLOGI(sc, "Media not present.\n");
13895         sc->media = 0;
13896         port_type = PORT_OTHER;
13897         break;
13898     case ELINK_ETH_PHY_UNSPECIFIED:
13899     default:
13900         BLOGI(sc, "Unknown media!\n");
13901         sc->media = 0;
13902         port_type = PORT_OTHER;
13903         break;
13904     }
13905     return port_type;
13906 }
13907 
13908 #define GET_FIELD(value, fname)                     \
13909     (((value) & (fname##_MASK)) >> (fname##_SHIFT))
13910 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13911 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13912 
13913 static int
13914 bxe_get_igu_cam_info(struct bxe_softc *sc)
13915 {
13916     int pfid = SC_FUNC(sc);
13917     int igu_sb_id;
13918     uint32_t val;
13919     uint8_t fid, igu_sb_cnt = 0;
13920 
13921     sc->igu_base_sb = 0xff;
13922 
13923     if (CHIP_INT_MODE_IS_BC(sc)) {
13924         int vn = SC_VN(sc);
13925         igu_sb_cnt = sc->igu_sb_cnt;
13926         sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13927                            FP_SB_MAX_E1x);
13928         sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13929                           (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13930         return (0);
13931     }
13932 
13933     /* IGU in normal mode - read CAM */
13934     for (igu_sb_id = 0;
13935          igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13936          igu_sb_id++) {
13937         val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13938         if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13939             continue;
13940         }
13941         fid = IGU_FID(val);
13942         if ((fid & IGU_FID_ENCODE_IS_PF)) {
13943             if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13944                 continue;
13945             }
13946             if (IGU_VEC(val) == 0) {
13947                 /* default status block */
13948                 sc->igu_dsb_id = igu_sb_id;
13949             } else {
13950                 if (sc->igu_base_sb == 0xff) {
13951                     sc->igu_base_sb = igu_sb_id;
13952                 }
13953                 igu_sb_cnt++;
13954             }
13955         }
13956     }
13957 
13958     /*
13959      * Due to new PF resource allocation by MFW T7.4 and above, it's optional
13960      * that number of CAM entries will not be equal to the value advertised in
13961      * PCI. Driver should use the minimal value of both as the actual status
13962      * block count
13963      */
13964     sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13965 
13966     if (igu_sb_cnt == 0) {
13967         BLOGE(sc, "CAM configuration error\n");
13968         return (-1);
13969     }
13970 
13971     return (0);
13972 }
13973 
13974 /*
13975  * Gather various information from the device config space, the device itself,
13976  * shmem, and the user input.
13977  */
13978 static int
13979 bxe_get_device_info(struct bxe_softc *sc)
13980 {
13981     uint32_t val;
13982     int rc;
13983 
13984     /* Get the data for the device */
13985     sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
13986     sc->devinfo.device_id    = pci_get_device(sc->dev);
13987     sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13988     sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13989 
13990     /* get the chip revision (chip metal comes from pci config space) */
13991     sc->devinfo.chip_id     =
13992     sc->link_params.chip_id =
13993         (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
13994          ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
13995          (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
13996          ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
13997 
13998     /* force 57811 according to MISC register */
13999     if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14000         if (CHIP_IS_57810(sc)) {
14001             sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14002                                    (sc->devinfo.chip_id & 0x0000ffff));
14003         } else if (CHIP_IS_57810_MF(sc)) {
14004             sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14005                                    (sc->devinfo.chip_id & 0x0000ffff));
14006         }
14007         sc->devinfo.chip_id |= 0x1;
14008     }
14009 
14010     BLOGD(sc, DBG_LOAD,
14011           "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14012           sc->devinfo.chip_id,
14013           ((sc->devinfo.chip_id >> 16) & 0xffff),
14014           ((sc->devinfo.chip_id >> 12) & 0xf),
14015           ((sc->devinfo.chip_id >>  4) & 0xff),
14016           ((sc->devinfo.chip_id >>  0) & 0xf));
14017 
14018     val = (REG_RD(sc, 0x2874) & 0x55);
14019     if ((sc->devinfo.chip_id & 0x1) ||
14020         (CHIP_IS_E1(sc) && val) ||
14021         (CHIP_IS_E1H(sc) && (val == 0x55))) {
14022         sc->flags |= BXE_ONE_PORT_FLAG;
14023         BLOGD(sc, DBG_LOAD, "single port device\n");
14024     }
14025 
14026     /* set the doorbell size */
14027     sc->doorbell_size = (1 << BXE_DB_SHIFT);
14028 
14029     /* determine whether the device is in 2 port or 4 port mode */
14030     sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14031     if (CHIP_IS_E2E3(sc)) {
14032         /*
14033          * Read port4mode_en_ovwr[0]:
14034          *   If 1, four port mode is in port4mode_en_ovwr[1].
14035          *   If 0, four port mode is in port4mode_en[0].
14036          */
14037         val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14038         if (val & 1) {
14039             val = ((val >> 1) & 1);
14040         } else {
14041             val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14042         }
14043 
14044         sc->devinfo.chip_port_mode =
14045             (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14046 
14047         BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14048     }
14049 
14050     /* get the function and path info for the device */
14051     bxe_get_function_num(sc);
14052 
14053     /* get the shared memory base address */
14054     sc->devinfo.shmem_base     =
14055     sc->link_params.shmem_base =
14056         REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14057     sc->devinfo.shmem2_base =
14058         REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14059                                   MISC_REG_GENERIC_CR_0));
14060 
14061     BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14062           sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14063 
14064     if (!sc->devinfo.shmem_base) {
14065         /* this should ONLY prevent upcoming shmem reads */
14066         BLOGI(sc, "MCP not active\n");
14067         sc->flags |= BXE_NO_MCP_FLAG;
14068         return (0);
14069     }
14070 
14071     /* make sure the shared memory contents are valid */
14072     val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14073     if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14074         (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14075         BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14076         return (0);
14077     }
14078     BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14079 
14080     /* get the bootcode version */
14081     sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14082     snprintf(sc->devinfo.bc_ver_str,
14083              sizeof(sc->devinfo.bc_ver_str),
14084              "%d.%d.%d",
14085              ((sc->devinfo.bc_ver >> 24) & 0xff),
14086              ((sc->devinfo.bc_ver >> 16) & 0xff),
14087              ((sc->devinfo.bc_ver >>  8) & 0xff));
14088     BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14089 
14090     /* get the bootcode shmem address */
14091     sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14092     BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14093 
14094     /* clean indirect addresses as they're not used */
14095     pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14096     if (IS_PF(sc)) {
14097         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14098         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14099         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14100         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14101         if (CHIP_IS_E1x(sc)) {
14102             REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14103             REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14104             REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14105             REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14106         }
14107 
14108         /*
14109          * Enable internal target-read (in case we are probed after PF
14110          * FLR). Must be done prior to any BAR read access. Only for
14111          * 57712 and up
14112          */
14113         if (!CHIP_IS_E1x(sc)) {
14114             REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14115         }
14116     }
14117 
14118     /* get the nvram size */
14119     val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14120     sc->devinfo.flash_size =
14121         (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14122     BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14123 
14124     /* get PCI capabilites */
14125     bxe_probe_pci_caps(sc);
14126 
14127     bxe_set_power_state(sc, PCI_PM_D0);
14128 
14129     /* get various configuration parameters from shmem */
14130     bxe_get_shmem_info(sc);
14131 
14132     if (sc->devinfo.pcie_msix_cap_reg != 0) {
14133         val = pci_read_config(sc->dev,
14134                               (sc->devinfo.pcie_msix_cap_reg +
14135                                PCIR_MSIX_CTRL),
14136                               2);
14137         sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14138     } else {
14139         sc->igu_sb_cnt = 1;
14140     }
14141 
14142     sc->igu_base_addr = BAR_IGU_INTMEM;
14143 
14144     /* initialize IGU parameters */
14145     if (CHIP_IS_E1x(sc)) {
14146         sc->devinfo.int_block = INT_BLOCK_HC;
14147         sc->igu_dsb_id = DEF_SB_IGU_ID;
14148         sc->igu_base_sb = 0;
14149     } else {
14150         sc->devinfo.int_block = INT_BLOCK_IGU;
14151 
14152         /* do not allow device reset during IGU info preocessing */
14153         bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14154 
14155         val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14156 
14157         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14158             int tout = 5000;
14159 
14160             BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14161 
14162             val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14163             REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14164             REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14165 
14166             while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14167                 tout--;
14168                 DELAY(1000);
14169             }
14170 
14171             if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14172                 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14173                 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14174                 return (-1);
14175             }
14176         }
14177 
14178         if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14179             BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14180             sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14181         } else {
14182             BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14183         }
14184 
14185         rc = bxe_get_igu_cam_info(sc);
14186 
14187         bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14188 
14189         if (rc) {
14190             return (rc);
14191         }
14192     }
14193 
14194     /*
14195      * Get base FW non-default (fast path) status block ID. This value is
14196      * used to initialize the fw_sb_id saved on the fp/queue structure to
14197      * determine the id used by the FW.
14198      */
14199     if (CHIP_IS_E1x(sc)) {
14200         sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14201     } else {
14202         /*
14203          * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14204          * the same queue are indicated on the same IGU SB). So we prefer
14205          * FW and IGU SBs to be the same value.
14206          */
14207         sc->base_fw_ndsb = sc->igu_base_sb;
14208     }
14209 
14210     BLOGD(sc, DBG_LOAD,
14211           "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14212           sc->igu_dsb_id, sc->igu_base_sb,
14213           sc->igu_sb_cnt, sc->base_fw_ndsb);
14214 
14215     elink_phy_probe(&sc->link_params);
14216 
14217     return (0);
14218 }
14219 
14220 static void
14221 bxe_link_settings_supported(struct bxe_softc *sc,
14222                             uint32_t         switch_cfg)
14223 {
14224     uint32_t cfg_size = 0;
14225     uint32_t idx;
14226     uint8_t port = SC_PORT(sc);
14227 
14228     /* aggregation of supported attributes of all external phys */
14229     sc->port.supported[0] = 0;
14230     sc->port.supported[1] = 0;
14231 
14232     switch (sc->link_params.num_phys) {
14233     case 1:
14234         sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14235         cfg_size = 1;
14236         break;
14237     case 2:
14238         sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14239         cfg_size = 1;
14240         break;
14241     case 3:
14242         if (sc->link_params.multi_phy_config &
14243             PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14244             sc->port.supported[1] =
14245                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14246             sc->port.supported[0] =
14247                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14248         } else {
14249             sc->port.supported[0] =
14250                 sc->link_params.phy[ELINK_EXT_PHY1].supported;
14251             sc->port.supported[1] =
14252                 sc->link_params.phy[ELINK_EXT_PHY2].supported;
14253         }
14254         cfg_size = 2;
14255         break;
14256     }
14257 
14258     if (!(sc->port.supported[0] || sc->port.supported[1])) {
14259         BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14260               SHMEM_RD(sc,
14261                        dev_info.port_hw_config[port].external_phy_config),
14262               SHMEM_RD(sc,
14263                        dev_info.port_hw_config[port].external_phy_config2));
14264         return;
14265     }
14266 
14267     if (CHIP_IS_E3(sc))
14268         sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14269     else {
14270         switch (switch_cfg) {
14271         case ELINK_SWITCH_CFG_1G:
14272             sc->port.phy_addr =
14273                 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14274             break;
14275         case ELINK_SWITCH_CFG_10G:
14276             sc->port.phy_addr =
14277                 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14278             break;
14279         default:
14280             BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14281                   sc->port.link_config[0]);
14282             return;
14283         }
14284     }
14285 
14286     BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14287 
14288     /* mask what we support according to speed_cap_mask per configuration */
14289     for (idx = 0; idx < cfg_size; idx++) {
14290         if (!(sc->link_params.speed_cap_mask[idx] &
14291               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14292             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14293         }
14294 
14295         if (!(sc->link_params.speed_cap_mask[idx] &
14296               PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14297             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14298         }
14299 
14300         if (!(sc->link_params.speed_cap_mask[idx] &
14301               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14302             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14303         }
14304 
14305         if (!(sc->link_params.speed_cap_mask[idx] &
14306               PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14307             sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14308         }
14309 
14310         if (!(sc->link_params.speed_cap_mask[idx] &
14311               PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14312             sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14313         }
14314 
14315         if (!(sc->link_params.speed_cap_mask[idx] &
14316               PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14317             sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14318         }
14319 
14320         if (!(sc->link_params.speed_cap_mask[idx] &
14321               PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14322             sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14323         }
14324 
14325         if (!(sc->link_params.speed_cap_mask[idx] &
14326               PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14327             sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14328         }
14329     }
14330 
14331     BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14332           sc->port.supported[0], sc->port.supported[1]);
14333 	ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14334 					sc->port.supported[0], sc->port.supported[1]);
14335 }
14336 
14337 static void
14338 bxe_link_settings_requested(struct bxe_softc *sc)
14339 {
14340     uint32_t link_config;
14341     uint32_t idx;
14342     uint32_t cfg_size = 0;
14343 
14344     sc->port.advertising[0] = 0;
14345     sc->port.advertising[1] = 0;
14346 
14347     switch (sc->link_params.num_phys) {
14348     case 1:
14349     case 2:
14350         cfg_size = 1;
14351         break;
14352     case 3:
14353         cfg_size = 2;
14354         break;
14355     }
14356 
14357     for (idx = 0; idx < cfg_size; idx++) {
14358         sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14359         link_config = sc->port.link_config[idx];
14360 
14361         switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14362         case PORT_FEATURE_LINK_SPEED_AUTO:
14363             if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14364                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14365                 sc->port.advertising[idx] |= sc->port.supported[idx];
14366                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14367                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14368                     sc->port.advertising[idx] |=
14369                         (ELINK_SUPPORTED_100baseT_Half |
14370                          ELINK_SUPPORTED_100baseT_Full);
14371             } else {
14372                 /* force 10G, no AN */
14373                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14374                 sc->port.advertising[idx] |=
14375                     (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14376                 continue;
14377             }
14378             break;
14379 
14380         case PORT_FEATURE_LINK_SPEED_10M_FULL:
14381             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14382                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14383                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14384                                               ADVERTISED_TP);
14385             } else {
14386                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14387                           "speed_cap_mask=0x%08x\n",
14388                       link_config, sc->link_params.speed_cap_mask[idx]);
14389                 return;
14390             }
14391             break;
14392 
14393         case PORT_FEATURE_LINK_SPEED_10M_HALF:
14394             if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14395                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14396                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14397                 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14398                                               ADVERTISED_TP);
14399 				ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14400 								sc->link_params.req_duplex[idx]);
14401             } else {
14402                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14403                           "speed_cap_mask=0x%08x\n",
14404                       link_config, sc->link_params.speed_cap_mask[idx]);
14405                 return;
14406             }
14407             break;
14408 
14409         case PORT_FEATURE_LINK_SPEED_100M_FULL:
14410             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14411                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14412                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14413                                               ADVERTISED_TP);
14414             } else {
14415                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14416                           "speed_cap_mask=0x%08x\n",
14417                       link_config, sc->link_params.speed_cap_mask[idx]);
14418                 return;
14419             }
14420             break;
14421 
14422         case PORT_FEATURE_LINK_SPEED_100M_HALF:
14423             if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14424                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14425                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14426                 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14427                                               ADVERTISED_TP);
14428             } else {
14429                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14430                           "speed_cap_mask=0x%08x\n",
14431                       link_config, sc->link_params.speed_cap_mask[idx]);
14432                 return;
14433             }
14434             break;
14435 
14436         case PORT_FEATURE_LINK_SPEED_1G:
14437             if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14438                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14439                 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14440                                               ADVERTISED_TP);
14441             } else {
14442                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14443                           "speed_cap_mask=0x%08x\n",
14444                       link_config, sc->link_params.speed_cap_mask[idx]);
14445                 return;
14446             }
14447             break;
14448 
14449         case PORT_FEATURE_LINK_SPEED_2_5G:
14450             if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14451                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14452                 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14453                                               ADVERTISED_TP);
14454             } else {
14455                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14456                           "speed_cap_mask=0x%08x\n",
14457                       link_config, sc->link_params.speed_cap_mask[idx]);
14458                 return;
14459             }
14460             break;
14461 
14462         case PORT_FEATURE_LINK_SPEED_10G_CX4:
14463             if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14464                 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14465                 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14466                                               ADVERTISED_FIBRE);
14467             } else {
14468                 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14469                           "speed_cap_mask=0x%08x\n",
14470                       link_config, sc->link_params.speed_cap_mask[idx]);
14471                 return;
14472             }
14473             break;
14474 
14475         case PORT_FEATURE_LINK_SPEED_20G:
14476             sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14477             break;
14478 
14479         default:
14480             BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14481                       "speed_cap_mask=0x%08x\n",
14482                   link_config, sc->link_params.speed_cap_mask[idx]);
14483             sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14484             sc->port.advertising[idx] = sc->port.supported[idx];
14485             break;
14486         }
14487 
14488         sc->link_params.req_flow_ctrl[idx] =
14489             (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14490 
14491         if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14492             if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14493                 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14494             } else {
14495                 bxe_set_requested_fc(sc);
14496             }
14497         }
14498 
14499         BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14500                             "req_flow_ctrl=0x%x advertising=0x%x\n",
14501               sc->link_params.req_line_speed[idx],
14502               sc->link_params.req_duplex[idx],
14503               sc->link_params.req_flow_ctrl[idx],
14504               sc->port.advertising[idx]);
14505 		ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14506 						"advertising=0x%x\n",
14507 						sc->link_params.req_line_speed[idx],
14508 						sc->link_params.req_duplex[idx],
14509 						sc->port.advertising[idx]);
14510     }
14511 }
14512 
14513 static void
14514 bxe_get_phy_info(struct bxe_softc *sc)
14515 {
14516     uint8_t port = SC_PORT(sc);
14517     uint32_t config = sc->port.config;
14518     uint32_t eee_mode;
14519 
14520     /* shmem data already read in bxe_get_shmem_info() */
14521 
14522     ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14523                         "link_config0=0x%08x\n",
14524                sc->link_params.lane_config,
14525                sc->link_params.speed_cap_mask[0],
14526                sc->port.link_config[0]);
14527 
14528 
14529     bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14530     bxe_link_settings_requested(sc);
14531 
14532     if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14533         sc->link_params.feature_config_flags |=
14534             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14535     } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14536         sc->link_params.feature_config_flags &=
14537             ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14538     } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14539         sc->link_params.feature_config_flags |=
14540             ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14541     }
14542 
14543     /* configure link feature according to nvram value */
14544     eee_mode =
14545         (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14546           PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14547          PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14548     if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14549         sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14550                                     ELINK_EEE_MODE_ENABLE_LPI |
14551                                     ELINK_EEE_MODE_OUTPUT_TIME);
14552     } else {
14553         sc->link_params.eee_mode = 0;
14554     }
14555 
14556     /* get the media type */
14557     bxe_media_detect(sc);
14558 	ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14559 }
14560 
14561 static void
14562 bxe_get_params(struct bxe_softc *sc)
14563 {
14564     /* get user tunable params */
14565     bxe_get_tunable_params(sc);
14566 
14567     /* select the RX and TX ring sizes */
14568     sc->tx_ring_size = TX_BD_USABLE;
14569     sc->rx_ring_size = RX_BD_USABLE;
14570 
14571     /* XXX disable WoL */
14572     sc->wol = 0;
14573 }
14574 
14575 static void
14576 bxe_set_modes_bitmap(struct bxe_softc *sc)
14577 {
14578     uint32_t flags = 0;
14579 
14580     if (CHIP_REV_IS_FPGA(sc)) {
14581         SET_FLAGS(flags, MODE_FPGA);
14582     } else if (CHIP_REV_IS_EMUL(sc)) {
14583         SET_FLAGS(flags, MODE_EMUL);
14584     } else {
14585         SET_FLAGS(flags, MODE_ASIC);
14586     }
14587 
14588     if (CHIP_IS_MODE_4_PORT(sc)) {
14589         SET_FLAGS(flags, MODE_PORT4);
14590     } else {
14591         SET_FLAGS(flags, MODE_PORT2);
14592     }
14593 
14594     if (CHIP_IS_E2(sc)) {
14595         SET_FLAGS(flags, MODE_E2);
14596     } else if (CHIP_IS_E3(sc)) {
14597         SET_FLAGS(flags, MODE_E3);
14598         if (CHIP_REV(sc) == CHIP_REV_Ax) {
14599             SET_FLAGS(flags, MODE_E3_A0);
14600         } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14601             SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14602         }
14603     }
14604 
14605     if (IS_MF(sc)) {
14606         SET_FLAGS(flags, MODE_MF);
14607         switch (sc->devinfo.mf_info.mf_mode) {
14608         case MULTI_FUNCTION_SD:
14609             SET_FLAGS(flags, MODE_MF_SD);
14610             break;
14611         case MULTI_FUNCTION_SI:
14612             SET_FLAGS(flags, MODE_MF_SI);
14613             break;
14614         case MULTI_FUNCTION_AFEX:
14615             SET_FLAGS(flags, MODE_MF_AFEX);
14616             break;
14617         }
14618     } else {
14619         SET_FLAGS(flags, MODE_SF);
14620     }
14621 
14622 #if defined(__LITTLE_ENDIAN)
14623     SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14624 #else /* __BIG_ENDIAN */
14625     SET_FLAGS(flags, MODE_BIG_ENDIAN);
14626 #endif
14627 
14628     INIT_MODE_FLAGS(sc) = flags;
14629 }
14630 
14631 static int
14632 bxe_alloc_hsi_mem(struct bxe_softc *sc)
14633 {
14634     struct bxe_fastpath *fp;
14635     bus_addr_t busaddr;
14636     int max_agg_queues;
14637     int max_segments;
14638     bus_size_t max_size;
14639     bus_size_t max_seg_size;
14640     char buf[32];
14641     int rc;
14642     int i, j;
14643 
14644     /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14645 
14646     /* allocate the parent bus DMA tag */
14647     rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14648                             1,                        /* alignment */
14649                             0,                        /* boundary limit */
14650                             BUS_SPACE_MAXADDR,        /* restricted low */
14651                             BUS_SPACE_MAXADDR,        /* restricted hi */
14652                             NULL,                     /* addr filter() */
14653                             NULL,                     /* addr filter() arg */
14654                             BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14655                             BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14656                             BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14657                             0,                        /* flags */
14658                             NULL,                     /* lock() */
14659                             NULL,                     /* lock() arg */
14660                             &sc->parent_dma_tag);     /* returned dma tag */
14661     if (rc != 0) {
14662         BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14663         return (1);
14664     }
14665 
14666     /************************/
14667     /* DEFAULT STATUS BLOCK */
14668     /************************/
14669 
14670     if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14671                       &sc->def_sb_dma, "default status block") != 0) {
14672         /* XXX */
14673         bus_dma_tag_destroy(sc->parent_dma_tag);
14674         return (1);
14675     }
14676 
14677     sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14678 
14679     /***************/
14680     /* EVENT QUEUE */
14681     /***************/
14682 
14683     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14684                       &sc->eq_dma, "event queue") != 0) {
14685         /* XXX */
14686         bxe_dma_free(sc, &sc->def_sb_dma);
14687         sc->def_sb = NULL;
14688         bus_dma_tag_destroy(sc->parent_dma_tag);
14689         return (1);
14690     }
14691 
14692     sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14693 
14694     /*************/
14695     /* SLOW PATH */
14696     /*************/
14697 
14698     if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14699                       &sc->sp_dma, "slow path") != 0) {
14700         /* XXX */
14701         bxe_dma_free(sc, &sc->eq_dma);
14702         sc->eq = NULL;
14703         bxe_dma_free(sc, &sc->def_sb_dma);
14704         sc->def_sb = NULL;
14705         bus_dma_tag_destroy(sc->parent_dma_tag);
14706         return (1);
14707     }
14708 
14709     sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14710 
14711     /*******************/
14712     /* SLOW PATH QUEUE */
14713     /*******************/
14714 
14715     if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14716                       &sc->spq_dma, "slow path queue") != 0) {
14717         /* XXX */
14718         bxe_dma_free(sc, &sc->sp_dma);
14719         sc->sp = NULL;
14720         bxe_dma_free(sc, &sc->eq_dma);
14721         sc->eq = NULL;
14722         bxe_dma_free(sc, &sc->def_sb_dma);
14723         sc->def_sb = NULL;
14724         bus_dma_tag_destroy(sc->parent_dma_tag);
14725         return (1);
14726     }
14727 
14728     sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14729 
14730     /***************************/
14731     /* FW DECOMPRESSION BUFFER */
14732     /***************************/
14733 
14734     if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14735                       "fw decompression buffer") != 0) {
14736         /* XXX */
14737         bxe_dma_free(sc, &sc->spq_dma);
14738         sc->spq = NULL;
14739         bxe_dma_free(sc, &sc->sp_dma);
14740         sc->sp = NULL;
14741         bxe_dma_free(sc, &sc->eq_dma);
14742         sc->eq = NULL;
14743         bxe_dma_free(sc, &sc->def_sb_dma);
14744         sc->def_sb = NULL;
14745         bus_dma_tag_destroy(sc->parent_dma_tag);
14746         return (1);
14747     }
14748 
14749     sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14750 
14751     if ((sc->gz_strm =
14752          malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14753         /* XXX */
14754         bxe_dma_free(sc, &sc->gz_buf_dma);
14755         sc->gz_buf = NULL;
14756         bxe_dma_free(sc, &sc->spq_dma);
14757         sc->spq = NULL;
14758         bxe_dma_free(sc, &sc->sp_dma);
14759         sc->sp = NULL;
14760         bxe_dma_free(sc, &sc->eq_dma);
14761         sc->eq = NULL;
14762         bxe_dma_free(sc, &sc->def_sb_dma);
14763         sc->def_sb = NULL;
14764         bus_dma_tag_destroy(sc->parent_dma_tag);
14765         return (1);
14766     }
14767 
14768     /*************/
14769     /* FASTPATHS */
14770     /*************/
14771 
14772     /* allocate DMA memory for each fastpath structure */
14773     for (i = 0; i < sc->num_queues; i++) {
14774         fp = &sc->fp[i];
14775         fp->sc    = sc;
14776         fp->index = i;
14777 
14778         /*******************/
14779         /* FP STATUS BLOCK */
14780         /*******************/
14781 
14782         snprintf(buf, sizeof(buf), "fp %d status block", i);
14783         if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14784                           &fp->sb_dma, buf) != 0) {
14785             /* XXX unwind and free previous fastpath allocations */
14786             BLOGE(sc, "Failed to alloc %s\n", buf);
14787             return (1);
14788         } else {
14789             if (CHIP_IS_E2E3(sc)) {
14790                 fp->status_block.e2_sb =
14791                     (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14792             } else {
14793                 fp->status_block.e1x_sb =
14794                     (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14795             }
14796         }
14797 
14798         /******************/
14799         /* FP TX BD CHAIN */
14800         /******************/
14801 
14802         snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14803         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14804                           &fp->tx_dma, buf) != 0) {
14805             /* XXX unwind and free previous fastpath allocations */
14806             BLOGE(sc, "Failed to alloc %s\n", buf);
14807             return (1);
14808         } else {
14809             fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14810         }
14811 
14812         /* link together the tx bd chain pages */
14813         for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14814             /* index into the tx bd chain array to last entry per page */
14815             struct eth_tx_next_bd *tx_next_bd =
14816                 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14817             /* point to the next page and wrap from last page */
14818             busaddr = (fp->tx_dma.paddr +
14819                        (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14820             tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14821             tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14822         }
14823 
14824         /******************/
14825         /* FP RX BD CHAIN */
14826         /******************/
14827 
14828         snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14829         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14830                           &fp->rx_dma, buf) != 0) {
14831             /* XXX unwind and free previous fastpath allocations */
14832             BLOGE(sc, "Failed to alloc %s\n", buf);
14833             return (1);
14834         } else {
14835             fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14836         }
14837 
14838         /* link together the rx bd chain pages */
14839         for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14840             /* index into the rx bd chain array to last entry per page */
14841             struct eth_rx_bd *rx_bd =
14842                 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14843             /* point to the next page and wrap from last page */
14844             busaddr = (fp->rx_dma.paddr +
14845                        (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14846             rx_bd->addr_hi = htole32(U64_HI(busaddr));
14847             rx_bd->addr_lo = htole32(U64_LO(busaddr));
14848         }
14849 
14850         /*******************/
14851         /* FP RX RCQ CHAIN */
14852         /*******************/
14853 
14854         snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14855         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14856                           &fp->rcq_dma, buf) != 0) {
14857             /* XXX unwind and free previous fastpath allocations */
14858             BLOGE(sc, "Failed to alloc %s\n", buf);
14859             return (1);
14860         } else {
14861             fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14862         }
14863 
14864         /* link together the rcq chain pages */
14865         for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14866             /* index into the rcq chain array to last entry per page */
14867             struct eth_rx_cqe_next_page *rx_cqe_next =
14868                 (struct eth_rx_cqe_next_page *)
14869                 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14870             /* point to the next page and wrap from last page */
14871             busaddr = (fp->rcq_dma.paddr +
14872                        (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14873             rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14874             rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14875         }
14876 
14877         /*******************/
14878         /* FP RX SGE CHAIN */
14879         /*******************/
14880 
14881         snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14882         if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14883                           &fp->rx_sge_dma, buf) != 0) {
14884             /* XXX unwind and free previous fastpath allocations */
14885             BLOGE(sc, "Failed to alloc %s\n", buf);
14886             return (1);
14887         } else {
14888             fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14889         }
14890 
14891         /* link together the sge chain pages */
14892         for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14893             /* index into the rcq chain array to last entry per page */
14894             struct eth_rx_sge *rx_sge =
14895                 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14896             /* point to the next page and wrap from last page */
14897             busaddr = (fp->rx_sge_dma.paddr +
14898                        (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14899             rx_sge->addr_hi = htole32(U64_HI(busaddr));
14900             rx_sge->addr_lo = htole32(U64_LO(busaddr));
14901         }
14902 
14903         /***********************/
14904         /* FP TX MBUF DMA MAPS */
14905         /***********************/
14906 
14907         /* set required sizes before mapping to conserve resources */
14908         if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14909             max_size     = BXE_TSO_MAX_SIZE;
14910             max_segments = BXE_TSO_MAX_SEGMENTS;
14911             max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14912         } else {
14913             max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
14914             max_segments = BXE_MAX_SEGMENTS;
14915             max_seg_size = MCLBYTES;
14916         }
14917 
14918         /* create a dma tag for the tx mbufs */
14919         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14920                                 1,                  /* alignment */
14921                                 0,                  /* boundary limit */
14922                                 BUS_SPACE_MAXADDR,  /* restricted low */
14923                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14924                                 NULL,               /* addr filter() */
14925                                 NULL,               /* addr filter() arg */
14926                                 max_size,           /* max map size */
14927                                 max_segments,       /* num discontinuous */
14928                                 max_seg_size,       /* max seg size */
14929                                 0,                  /* flags */
14930                                 NULL,               /* lock() */
14931                                 NULL,               /* lock() arg */
14932                                 &fp->tx_mbuf_tag);  /* returned dma tag */
14933         if (rc != 0) {
14934             /* XXX unwind and free previous fastpath allocations */
14935             BLOGE(sc, "Failed to create dma tag for "
14936                       "'fp %d tx mbufs' (%d)\n", i, rc);
14937             return (1);
14938         }
14939 
14940         /* create dma maps for each of the tx mbuf clusters */
14941         for (j = 0; j < TX_BD_TOTAL; j++) {
14942             if (bus_dmamap_create(fp->tx_mbuf_tag,
14943                                   BUS_DMA_NOWAIT,
14944                                   &fp->tx_mbuf_chain[j].m_map)) {
14945                 /* XXX unwind and free previous fastpath allocations */
14946                 BLOGE(sc, "Failed to create dma map for "
14947                           "'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14948                 return (1);
14949             }
14950         }
14951 
14952         /***********************/
14953         /* FP RX MBUF DMA MAPS */
14954         /***********************/
14955 
14956         /* create a dma tag for the rx mbufs */
14957         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14958                                 1,                  /* alignment */
14959                                 0,                  /* boundary limit */
14960                                 BUS_SPACE_MAXADDR,  /* restricted low */
14961                                 BUS_SPACE_MAXADDR,  /* restricted hi */
14962                                 NULL,               /* addr filter() */
14963                                 NULL,               /* addr filter() arg */
14964                                 MJUM9BYTES,         /* max map size */
14965                                 1,                  /* num discontinuous */
14966                                 MJUM9BYTES,         /* max seg size */
14967                                 0,                  /* flags */
14968                                 NULL,               /* lock() */
14969                                 NULL,               /* lock() arg */
14970                                 &fp->rx_mbuf_tag);  /* returned dma tag */
14971         if (rc != 0) {
14972             /* XXX unwind and free previous fastpath allocations */
14973             BLOGE(sc, "Failed to create dma tag for "
14974                       "'fp %d rx mbufs' (%d)\n", i, rc);
14975             return (1);
14976         }
14977 
14978         /* create dma maps for each of the rx mbuf clusters */
14979         for (j = 0; j < RX_BD_TOTAL; j++) {
14980             if (bus_dmamap_create(fp->rx_mbuf_tag,
14981                                   BUS_DMA_NOWAIT,
14982                                   &fp->rx_mbuf_chain[j].m_map)) {
14983                 /* XXX unwind and free previous fastpath allocations */
14984                 BLOGE(sc, "Failed to create dma map for "
14985                           "'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14986                 return (1);
14987             }
14988         }
14989 
14990         /* create dma map for the spare rx mbuf cluster */
14991         if (bus_dmamap_create(fp->rx_mbuf_tag,
14992                               BUS_DMA_NOWAIT,
14993                               &fp->rx_mbuf_spare_map)) {
14994             /* XXX unwind and free previous fastpath allocations */
14995             BLOGE(sc, "Failed to create dma map for "
14996                       "'fp %d spare rx mbuf' (%d)\n", i, rc);
14997             return (1);
14998         }
14999 
15000         /***************************/
15001         /* FP RX SGE MBUF DMA MAPS */
15002         /***************************/
15003 
15004         /* create a dma tag for the rx sge mbufs */
15005         rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15006                                 1,                  /* alignment */
15007                                 0,                  /* boundary limit */
15008                                 BUS_SPACE_MAXADDR,  /* restricted low */
15009                                 BUS_SPACE_MAXADDR,  /* restricted hi */
15010                                 NULL,               /* addr filter() */
15011                                 NULL,               /* addr filter() arg */
15012                                 BCM_PAGE_SIZE,      /* max map size */
15013                                 1,                  /* num discontinuous */
15014                                 BCM_PAGE_SIZE,      /* max seg size */
15015                                 0,                  /* flags */
15016                                 NULL,               /* lock() */
15017                                 NULL,               /* lock() arg */
15018                                 &fp->rx_sge_mbuf_tag); /* returned dma tag */
15019         if (rc != 0) {
15020             /* XXX unwind and free previous fastpath allocations */
15021             BLOGE(sc, "Failed to create dma tag for "
15022                       "'fp %d rx sge mbufs' (%d)\n", i, rc);
15023             return (1);
15024         }
15025 
15026         /* create dma maps for the rx sge mbuf clusters */
15027         for (j = 0; j < RX_SGE_TOTAL; j++) {
15028             if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15029                                   BUS_DMA_NOWAIT,
15030                                   &fp->rx_sge_mbuf_chain[j].m_map)) {
15031                 /* XXX unwind and free previous fastpath allocations */
15032                 BLOGE(sc, "Failed to create dma map for "
15033                           "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15034                 return (1);
15035             }
15036         }
15037 
15038         /* create dma map for the spare rx sge mbuf cluster */
15039         if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15040                               BUS_DMA_NOWAIT,
15041                               &fp->rx_sge_mbuf_spare_map)) {
15042             /* XXX unwind and free previous fastpath allocations */
15043             BLOGE(sc, "Failed to create dma map for "
15044                       "'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15045             return (1);
15046         }
15047 
15048         /***************************/
15049         /* FP RX TPA MBUF DMA MAPS */
15050         /***************************/
15051 
15052         /* create dma maps for the rx tpa mbuf clusters */
15053         max_agg_queues = MAX_AGG_QS(sc);
15054 
15055         for (j = 0; j < max_agg_queues; j++) {
15056             if (bus_dmamap_create(fp->rx_mbuf_tag,
15057                                   BUS_DMA_NOWAIT,
15058                                   &fp->rx_tpa_info[j].bd.m_map)) {
15059                 /* XXX unwind and free previous fastpath allocations */
15060                 BLOGE(sc, "Failed to create dma map for "
15061                           "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15062                 return (1);
15063             }
15064         }
15065 
15066         /* create dma map for the spare rx tpa mbuf cluster */
15067         if (bus_dmamap_create(fp->rx_mbuf_tag,
15068                               BUS_DMA_NOWAIT,
15069                               &fp->rx_tpa_info_mbuf_spare_map)) {
15070             /* XXX unwind and free previous fastpath allocations */
15071             BLOGE(sc, "Failed to create dma map for "
15072                       "'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15073             return (1);
15074         }
15075 
15076         bxe_init_sge_ring_bit_mask(fp);
15077     }
15078 
15079     return (0);
15080 }
15081 
15082 static void
15083 bxe_free_hsi_mem(struct bxe_softc *sc)
15084 {
15085     struct bxe_fastpath *fp;
15086     int max_agg_queues;
15087     int i, j;
15088 
15089     if (sc->parent_dma_tag == NULL) {
15090         return; /* assume nothing was allocated */
15091     }
15092 
15093     for (i = 0; i < sc->num_queues; i++) {
15094         fp = &sc->fp[i];
15095 
15096         /*******************/
15097         /* FP STATUS BLOCK */
15098         /*******************/
15099 
15100         bxe_dma_free(sc, &fp->sb_dma);
15101         memset(&fp->status_block, 0, sizeof(fp->status_block));
15102 
15103         /******************/
15104         /* FP TX BD CHAIN */
15105         /******************/
15106 
15107         bxe_dma_free(sc, &fp->tx_dma);
15108         fp->tx_chain = NULL;
15109 
15110         /******************/
15111         /* FP RX BD CHAIN */
15112         /******************/
15113 
15114         bxe_dma_free(sc, &fp->rx_dma);
15115         fp->rx_chain = NULL;
15116 
15117         /*******************/
15118         /* FP RX RCQ CHAIN */
15119         /*******************/
15120 
15121         bxe_dma_free(sc, &fp->rcq_dma);
15122         fp->rcq_chain = NULL;
15123 
15124         /*******************/
15125         /* FP RX SGE CHAIN */
15126         /*******************/
15127 
15128         bxe_dma_free(sc, &fp->rx_sge_dma);
15129         fp->rx_sge_chain = NULL;
15130 
15131         /***********************/
15132         /* FP TX MBUF DMA MAPS */
15133         /***********************/
15134 
15135         if (fp->tx_mbuf_tag != NULL) {
15136             for (j = 0; j < TX_BD_TOTAL; j++) {
15137                 if (fp->tx_mbuf_chain[j].m_map != NULL) {
15138                     bus_dmamap_unload(fp->tx_mbuf_tag,
15139                                       fp->tx_mbuf_chain[j].m_map);
15140                     bus_dmamap_destroy(fp->tx_mbuf_tag,
15141                                        fp->tx_mbuf_chain[j].m_map);
15142                 }
15143             }
15144 
15145             bus_dma_tag_destroy(fp->tx_mbuf_tag);
15146             fp->tx_mbuf_tag = NULL;
15147         }
15148 
15149         /***********************/
15150         /* FP RX MBUF DMA MAPS */
15151         /***********************/
15152 
15153         if (fp->rx_mbuf_tag != NULL) {
15154             for (j = 0; j < RX_BD_TOTAL; j++) {
15155                 if (fp->rx_mbuf_chain[j].m_map != NULL) {
15156                     bus_dmamap_unload(fp->rx_mbuf_tag,
15157                                       fp->rx_mbuf_chain[j].m_map);
15158                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15159                                        fp->rx_mbuf_chain[j].m_map);
15160                 }
15161             }
15162 
15163             if (fp->rx_mbuf_spare_map != NULL) {
15164                 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15165                 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15166             }
15167 
15168             /***************************/
15169             /* FP RX TPA MBUF DMA MAPS */
15170             /***************************/
15171 
15172             max_agg_queues = MAX_AGG_QS(sc);
15173 
15174             for (j = 0; j < max_agg_queues; j++) {
15175                 if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15176                     bus_dmamap_unload(fp->rx_mbuf_tag,
15177                                       fp->rx_tpa_info[j].bd.m_map);
15178                     bus_dmamap_destroy(fp->rx_mbuf_tag,
15179                                        fp->rx_tpa_info[j].bd.m_map);
15180                 }
15181             }
15182 
15183             if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15184                 bus_dmamap_unload(fp->rx_mbuf_tag,
15185                                   fp->rx_tpa_info_mbuf_spare_map);
15186                 bus_dmamap_destroy(fp->rx_mbuf_tag,
15187                                    fp->rx_tpa_info_mbuf_spare_map);
15188             }
15189 
15190             bus_dma_tag_destroy(fp->rx_mbuf_tag);
15191             fp->rx_mbuf_tag = NULL;
15192         }
15193 
15194         /***************************/
15195         /* FP RX SGE MBUF DMA MAPS */
15196         /***************************/
15197 
15198         if (fp->rx_sge_mbuf_tag != NULL) {
15199             for (j = 0; j < RX_SGE_TOTAL; j++) {
15200                 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15201                     bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15202                                       fp->rx_sge_mbuf_chain[j].m_map);
15203                     bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15204                                        fp->rx_sge_mbuf_chain[j].m_map);
15205                 }
15206             }
15207 
15208             if (fp->rx_sge_mbuf_spare_map != NULL) {
15209                 bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15210                                   fp->rx_sge_mbuf_spare_map);
15211                 bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15212                                    fp->rx_sge_mbuf_spare_map);
15213             }
15214 
15215             bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15216             fp->rx_sge_mbuf_tag = NULL;
15217         }
15218     }
15219 
15220     /***************************/
15221     /* FW DECOMPRESSION BUFFER */
15222     /***************************/
15223 
15224     bxe_dma_free(sc, &sc->gz_buf_dma);
15225     sc->gz_buf = NULL;
15226     free(sc->gz_strm, M_DEVBUF);
15227     sc->gz_strm = NULL;
15228 
15229     /*******************/
15230     /* SLOW PATH QUEUE */
15231     /*******************/
15232 
15233     bxe_dma_free(sc, &sc->spq_dma);
15234     sc->spq = NULL;
15235 
15236     /*************/
15237     /* SLOW PATH */
15238     /*************/
15239 
15240     bxe_dma_free(sc, &sc->sp_dma);
15241     sc->sp = NULL;
15242 
15243     /***************/
15244     /* EVENT QUEUE */
15245     /***************/
15246 
15247     bxe_dma_free(sc, &sc->eq_dma);
15248     sc->eq = NULL;
15249 
15250     /************************/
15251     /* DEFAULT STATUS BLOCK */
15252     /************************/
15253 
15254     bxe_dma_free(sc, &sc->def_sb_dma);
15255     sc->def_sb = NULL;
15256 
15257     bus_dma_tag_destroy(sc->parent_dma_tag);
15258     sc->parent_dma_tag = NULL;
15259 }
15260 
15261 /*
15262  * Previous driver DMAE transaction may have occurred when pre-boot stage
15263  * ended and boot began. This would invalidate the addresses of the
15264  * transaction, resulting in was-error bit set in the PCI causing all
15265  * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15266  * the interrupt which detected this from the pglueb and the was-done bit
15267  */
15268 static void
15269 bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15270 {
15271     uint32_t val;
15272 
15273     if (!CHIP_IS_E1x(sc)) {
15274         val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15275         if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15276             BLOGD(sc, DBG_LOAD,
15277                   "Clearing 'was-error' bit that was set in pglueb");
15278             REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15279         }
15280     }
15281 }
15282 
15283 static int
15284 bxe_prev_mcp_done(struct bxe_softc *sc)
15285 {
15286     uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15287                                  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15288     if (!rc) {
15289         BLOGE(sc, "MCP response failure, aborting\n");
15290         return (-1);
15291     }
15292 
15293     return (0);
15294 }
15295 
15296 static struct bxe_prev_list_node *
15297 bxe_prev_path_get_entry(struct bxe_softc *sc)
15298 {
15299     struct bxe_prev_list_node *tmp;
15300 
15301     LIST_FOREACH(tmp, &bxe_prev_list, node) {
15302         if ((sc->pcie_bus == tmp->bus) &&
15303             (sc->pcie_device == tmp->slot) &&
15304             (SC_PATH(sc) == tmp->path)) {
15305             return (tmp);
15306         }
15307     }
15308 
15309     return (NULL);
15310 }
15311 
15312 static uint8_t
15313 bxe_prev_is_path_marked(struct bxe_softc *sc)
15314 {
15315     struct bxe_prev_list_node *tmp;
15316     int rc = FALSE;
15317 
15318     mtx_lock(&bxe_prev_mtx);
15319 
15320     tmp = bxe_prev_path_get_entry(sc);
15321     if (tmp) {
15322         if (tmp->aer) {
15323             BLOGD(sc, DBG_LOAD,
15324                   "Path %d/%d/%d was marked by AER\n",
15325                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15326         } else {
15327             rc = TRUE;
15328             BLOGD(sc, DBG_LOAD,
15329                   "Path %d/%d/%d was already cleaned from previous drivers\n",
15330                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15331         }
15332     }
15333 
15334     mtx_unlock(&bxe_prev_mtx);
15335 
15336     return (rc);
15337 }
15338 
15339 static int
15340 bxe_prev_mark_path(struct bxe_softc *sc,
15341                    uint8_t          after_undi)
15342 {
15343     struct bxe_prev_list_node *tmp;
15344 
15345     mtx_lock(&bxe_prev_mtx);
15346 
15347     /* Check whether the entry for this path already exists */
15348     tmp = bxe_prev_path_get_entry(sc);
15349     if (tmp) {
15350         if (!tmp->aer) {
15351             BLOGD(sc, DBG_LOAD,
15352                   "Re-marking AER in path %d/%d/%d\n",
15353                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15354         } else {
15355             BLOGD(sc, DBG_LOAD,
15356                   "Removing AER indication from path %d/%d/%d\n",
15357                   sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15358             tmp->aer = 0;
15359         }
15360 
15361         mtx_unlock(&bxe_prev_mtx);
15362         return (0);
15363     }
15364 
15365     mtx_unlock(&bxe_prev_mtx);
15366 
15367     /* Create an entry for this path and add it */
15368     tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15369                  (M_NOWAIT | M_ZERO));
15370     if (!tmp) {
15371         BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15372         return (-1);
15373     }
15374 
15375     tmp->bus  = sc->pcie_bus;
15376     tmp->slot = sc->pcie_device;
15377     tmp->path = SC_PATH(sc);
15378     tmp->aer  = 0;
15379     tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15380 
15381     mtx_lock(&bxe_prev_mtx);
15382 
15383     BLOGD(sc, DBG_LOAD,
15384           "Marked path %d/%d/%d - finished previous unload\n",
15385           sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15386     LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15387 
15388     mtx_unlock(&bxe_prev_mtx);
15389 
15390     return (0);
15391 }
15392 
15393 static int
15394 bxe_do_flr(struct bxe_softc *sc)
15395 {
15396     int i;
15397 
15398     /* only E2 and onwards support FLR */
15399     if (CHIP_IS_E1x(sc)) {
15400         BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15401         return (-1);
15402     }
15403 
15404     /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15405     if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15406         BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15407               sc->devinfo.bc_ver);
15408         return (-1);
15409     }
15410 
15411     /* Wait for Transaction Pending bit clean */
15412     for (i = 0; i < 4; i++) {
15413         if (i) {
15414             DELAY(((1 << (i - 1)) * 100) * 1000);
15415         }
15416 
15417         if (!bxe_is_pcie_pending(sc)) {
15418             goto clear;
15419         }
15420     }
15421 
15422     BLOGE(sc, "PCIE transaction is not cleared, "
15423               "proceeding with reset anyway\n");
15424 
15425 clear:
15426 
15427     BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15428     bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15429 
15430     return (0);
15431 }
15432 
15433 struct bxe_mac_vals {
15434     uint32_t xmac_addr;
15435     uint32_t xmac_val;
15436     uint32_t emac_addr;
15437     uint32_t emac_val;
15438     uint32_t umac_addr;
15439     uint32_t umac_val;
15440     uint32_t bmac_addr;
15441     uint32_t bmac_val[2];
15442 };
15443 
15444 static void
15445 bxe_prev_unload_close_mac(struct bxe_softc *sc,
15446                           struct bxe_mac_vals *vals)
15447 {
15448     uint32_t val, base_addr, offset, mask, reset_reg;
15449     uint8_t mac_stopped = FALSE;
15450     uint8_t port = SC_PORT(sc);
15451     uint32_t wb_data[2];
15452 
15453     /* reset addresses as they also mark which values were changed */
15454     vals->bmac_addr = 0;
15455     vals->umac_addr = 0;
15456     vals->xmac_addr = 0;
15457     vals->emac_addr = 0;
15458 
15459     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15460 
15461     if (!CHIP_IS_E3(sc)) {
15462         val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15463         mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15464         if ((mask & reset_reg) && val) {
15465             BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15466             base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15467                                     : NIG_REG_INGRESS_BMAC0_MEM;
15468             offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15469                                     : BIGMAC_REGISTER_BMAC_CONTROL;
15470 
15471             /*
15472              * use rd/wr since we cannot use dmae. This is safe
15473              * since MCP won't access the bus due to the request
15474              * to unload, and no function on the path can be
15475              * loaded at this time.
15476              */
15477             wb_data[0] = REG_RD(sc, base_addr + offset);
15478             wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15479             vals->bmac_addr = base_addr + offset;
15480             vals->bmac_val[0] = wb_data[0];
15481             vals->bmac_val[1] = wb_data[1];
15482             wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15483             REG_WR(sc, vals->bmac_addr, wb_data[0]);
15484             REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15485         }
15486 
15487         BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15488         vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15489         vals->emac_val = REG_RD(sc, vals->emac_addr);
15490         REG_WR(sc, vals->emac_addr, 0);
15491         mac_stopped = TRUE;
15492     } else {
15493         if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15494             BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15495             base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15496             val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15497             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15498             REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15499             vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15500             vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15501             REG_WR(sc, vals->xmac_addr, 0);
15502             mac_stopped = TRUE;
15503         }
15504 
15505         mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15506         if (mask & reset_reg) {
15507             BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15508             base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15509             vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15510             vals->umac_val = REG_RD(sc, vals->umac_addr);
15511             REG_WR(sc, vals->umac_addr, 0);
15512             mac_stopped = TRUE;
15513         }
15514     }
15515 
15516     if (mac_stopped) {
15517         DELAY(20000);
15518     }
15519 }
15520 
15521 #define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15522 #define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15523 #define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15524 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15525 
15526 static void
15527 bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15528                          uint8_t          port,
15529                          uint8_t          inc)
15530 {
15531     uint16_t rcq, bd;
15532     uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15533 
15534     rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15535     bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15536 
15537     tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15538     REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15539 
15540     BLOGD(sc, DBG_LOAD,
15541           "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15542           port, bd, rcq);
15543 }
15544 
15545 static int
15546 bxe_prev_unload_common(struct bxe_softc *sc)
15547 {
15548     uint32_t reset_reg, tmp_reg = 0, rc;
15549     uint8_t prev_undi = FALSE;
15550     struct bxe_mac_vals mac_vals;
15551     uint32_t timer_count = 1000;
15552     uint32_t prev_brb;
15553 
15554     /*
15555      * It is possible a previous function received 'common' answer,
15556      * but hasn't loaded yet, therefore creating a scenario of
15557      * multiple functions receiving 'common' on the same path.
15558      */
15559     BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15560 
15561     memset(&mac_vals, 0, sizeof(mac_vals));
15562 
15563     if (bxe_prev_is_path_marked(sc)) {
15564         return (bxe_prev_mcp_done(sc));
15565     }
15566 
15567     reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15568 
15569     /* Reset should be performed after BRB is emptied */
15570     if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15571         /* Close the MAC Rx to prevent BRB from filling up */
15572         bxe_prev_unload_close_mac(sc, &mac_vals);
15573 
15574         /* close LLH filters towards the BRB */
15575         elink_set_rx_filter(&sc->link_params, 0);
15576 
15577         /*
15578          * Check if the UNDI driver was previously loaded.
15579          * UNDI driver initializes CID offset for normal bell to 0x7
15580          */
15581         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15582             tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15583             if (tmp_reg == 0x7) {
15584                 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15585                 prev_undi = TRUE;
15586                 /* clear the UNDI indication */
15587                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15588                 /* clear possible idle check errors */
15589                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15590             }
15591         }
15592 
15593         /* wait until BRB is empty */
15594         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15595         while (timer_count) {
15596             prev_brb = tmp_reg;
15597 
15598             tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15599             if (!tmp_reg) {
15600                 break;
15601             }
15602 
15603             BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15604 
15605             /* reset timer as long as BRB actually gets emptied */
15606             if (prev_brb > tmp_reg) {
15607                 timer_count = 1000;
15608             } else {
15609                 timer_count--;
15610             }
15611 
15612             /* If UNDI resides in memory, manually increment it */
15613             if (prev_undi) {
15614                 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15615             }
15616 
15617             DELAY(10);
15618         }
15619 
15620         if (!timer_count) {
15621             BLOGE(sc, "Failed to empty BRB\n");
15622         }
15623     }
15624 
15625     /* No packets are in the pipeline, path is ready for reset */
15626     bxe_reset_common(sc);
15627 
15628     if (mac_vals.xmac_addr) {
15629         REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15630     }
15631     if (mac_vals.umac_addr) {
15632         REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15633     }
15634     if (mac_vals.emac_addr) {
15635         REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15636     }
15637     if (mac_vals.bmac_addr) {
15638         REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15639         REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15640     }
15641 
15642     rc = bxe_prev_mark_path(sc, prev_undi);
15643     if (rc) {
15644         bxe_prev_mcp_done(sc);
15645         return (rc);
15646     }
15647 
15648     return (bxe_prev_mcp_done(sc));
15649 }
15650 
15651 static int
15652 bxe_prev_unload_uncommon(struct bxe_softc *sc)
15653 {
15654     int rc;
15655 
15656     BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15657 
15658     /* Test if previous unload process was already finished for this path */
15659     if (bxe_prev_is_path_marked(sc)) {
15660         return (bxe_prev_mcp_done(sc));
15661     }
15662 
15663     BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15664 
15665     /*
15666      * If function has FLR capabilities, and existing FW version matches
15667      * the one required, then FLR will be sufficient to clean any residue
15668      * left by previous driver
15669      */
15670     rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15671     if (!rc) {
15672         /* fw version is good */
15673         BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15674         rc = bxe_do_flr(sc);
15675     }
15676 
15677     if (!rc) {
15678         /* FLR was performed */
15679         BLOGD(sc, DBG_LOAD, "FLR successful\n");
15680         return (0);
15681     }
15682 
15683     BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15684 
15685     /* Close the MCP request, return failure*/
15686     rc = bxe_prev_mcp_done(sc);
15687     if (!rc) {
15688         rc = BXE_PREV_WAIT_NEEDED;
15689     }
15690 
15691     return (rc);
15692 }
15693 
15694 static int
15695 bxe_prev_unload(struct bxe_softc *sc)
15696 {
15697     int time_counter = 10;
15698     uint32_t fw, hw_lock_reg, hw_lock_val;
15699     uint32_t rc = 0;
15700 
15701     /*
15702      * Clear HW from errors which may have resulted from an interrupted
15703      * DMAE transaction.
15704      */
15705     bxe_prev_interrupted_dmae(sc);
15706 
15707     /* Release previously held locks */
15708     hw_lock_reg =
15709         (SC_FUNC(sc) <= 5) ?
15710             (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15711             (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15712 
15713     hw_lock_val = (REG_RD(sc, hw_lock_reg));
15714     if (hw_lock_val) {
15715         if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15716             BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15717             REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15718                    (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15719         }
15720         BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15721         REG_WR(sc, hw_lock_reg, 0xffffffff);
15722     } else {
15723         BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15724     }
15725 
15726     if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15727         BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15728         REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15729     }
15730 
15731     do {
15732         /* Lock MCP using an unload request */
15733         fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15734         if (!fw) {
15735             BLOGE(sc, "MCP response failure, aborting\n");
15736             rc = -1;
15737             break;
15738         }
15739 
15740         if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15741             rc = bxe_prev_unload_common(sc);
15742             break;
15743         }
15744 
15745         /* non-common reply from MCP night require looping */
15746         rc = bxe_prev_unload_uncommon(sc);
15747         if (rc != BXE_PREV_WAIT_NEEDED) {
15748             break;
15749         }
15750 
15751         DELAY(20000);
15752     } while (--time_counter);
15753 
15754     if (!time_counter || rc) {
15755         BLOGE(sc, "Failed to unload previous driver!"
15756             " time_counter %d rc %d\n", time_counter, rc);
15757         rc = -1;
15758     }
15759 
15760     return (rc);
15761 }
15762 
15763 void
15764 bxe_dcbx_set_state(struct bxe_softc *sc,
15765                    uint8_t          dcb_on,
15766                    uint32_t         dcbx_enabled)
15767 {
15768     if (!CHIP_IS_E1x(sc)) {
15769         sc->dcb_state = dcb_on;
15770         sc->dcbx_enabled = dcbx_enabled;
15771     } else {
15772         sc->dcb_state = FALSE;
15773         sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15774     }
15775     BLOGD(sc, DBG_LOAD,
15776           "DCB state [%s:%s]\n",
15777           dcb_on ? "ON" : "OFF",
15778           (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15779           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15780           (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15781           "on-chip with negotiation" : "invalid");
15782 }
15783 
15784 /* must be called after sriov-enable */
15785 static int
15786 bxe_set_qm_cid_count(struct bxe_softc *sc)
15787 {
15788     int cid_count = BXE_L2_MAX_CID(sc);
15789 
15790     if (IS_SRIOV(sc)) {
15791         cid_count += BXE_VF_CIDS;
15792     }
15793 
15794     if (CNIC_SUPPORT(sc)) {
15795         cid_count += CNIC_CID_MAX;
15796     }
15797 
15798     return (roundup(cid_count, QM_CID_ROUND));
15799 }
15800 
15801 static void
15802 bxe_init_multi_cos(struct bxe_softc *sc)
15803 {
15804     int pri, cos;
15805 
15806     uint32_t pri_map = 0; /* XXX change to user config */
15807 
15808     for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15809         cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15810         if (cos < sc->max_cos) {
15811             sc->prio_to_cos[pri] = cos;
15812         } else {
15813             BLOGW(sc, "Invalid COS %d for priority %d "
15814                       "(max COS is %d), setting to 0\n",
15815                   cos, pri, (sc->max_cos - 1));
15816             sc->prio_to_cos[pri] = 0;
15817         }
15818     }
15819 }
15820 
15821 static int
15822 bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15823 {
15824     struct bxe_softc *sc;
15825     int error, result;
15826 
15827     result = 0;
15828     error = sysctl_handle_int(oidp, &result, 0, req);
15829 
15830     if (error || !req->newptr) {
15831         return (error);
15832     }
15833 
15834     if (result == 1) {
15835         uint32_t  temp;
15836         sc = (struct bxe_softc *)arg1;
15837 
15838         BLOGI(sc, "... dumping driver state ...\n");
15839         temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15840         BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15841     }
15842 
15843     return (error);
15844 }
15845 
15846 static int
15847 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15848 {
15849     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15850     uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15851     uint32_t *offset;
15852     uint64_t value = 0;
15853     int index = (int)arg2;
15854 
15855     if (index >= BXE_NUM_ETH_STATS) {
15856         BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15857         return (-1);
15858     }
15859 
15860     offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15861 
15862     switch (bxe_eth_stats_arr[index].size) {
15863     case 4:
15864         value = (uint64_t)*offset;
15865         break;
15866     case 8:
15867         value = HILO_U64(*offset, *(offset + 1));
15868         break;
15869     default:
15870         BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15871               index, bxe_eth_stats_arr[index].size);
15872         return (-1);
15873     }
15874 
15875     return (sysctl_handle_64(oidp, &value, 0, req));
15876 }
15877 
15878 static int
15879 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15880 {
15881     struct bxe_softc *sc = (struct bxe_softc *)arg1;
15882     uint32_t *eth_stats;
15883     uint32_t *offset;
15884     uint64_t value = 0;
15885     uint32_t q_stat = (uint32_t)arg2;
15886     uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15887     uint32_t index = (q_stat & 0xffff);
15888 
15889     eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15890 
15891     if (index >= BXE_NUM_ETH_Q_STATS) {
15892         BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15893         return (-1);
15894     }
15895 
15896     offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15897 
15898     switch (bxe_eth_q_stats_arr[index].size) {
15899     case 4:
15900         value = (uint64_t)*offset;
15901         break;
15902     case 8:
15903         value = HILO_U64(*offset, *(offset + 1));
15904         break;
15905     default:
15906         BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15907               index, bxe_eth_q_stats_arr[index].size);
15908         return (-1);
15909     }
15910 
15911     return (sysctl_handle_64(oidp, &value, 0, req));
15912 }
15913 
15914 static void bxe_force_link_reset(struct bxe_softc *sc)
15915 {
15916 
15917         bxe_acquire_phy_lock(sc);
15918         elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15919         bxe_release_phy_lock(sc);
15920 }
15921 
15922 static int
15923 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15924 {
15925         struct bxe_softc *sc = (struct bxe_softc *)arg1;
15926         uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15927         int rc = 0;
15928         int error;
15929         int result;
15930 
15931 
15932         error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15933 
15934         if (error || !req->newptr) {
15935                 return (error);
15936         }
15937         if ((sc->bxe_pause_param < 0) ||  (sc->bxe_pause_param > 8)) {
15938                 BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param);
15939                 sc->bxe_pause_param = 8;
15940         }
15941 
15942         result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15943 
15944 
15945         if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg))  {
15946                         BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15947                         return -EINVAL;
15948         }
15949 
15950         if(IS_MF(sc))
15951                 return 0;
15952        sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15953         if(result & ELINK_FLOW_CTRL_RX)
15954                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15955 
15956         if(result & ELINK_FLOW_CTRL_TX)
15957                 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15958         if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15959                 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15960 
15961         if(result & 0x400) {
15962                 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15963                         sc->link_params.req_flow_ctrl[cfg_idx] =
15964                                 ELINK_FLOW_CTRL_AUTO;
15965                 }
15966                 sc->link_params.req_fc_auto_adv = 0;
15967                 if (result & ELINK_FLOW_CTRL_RX)
15968                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15969 
15970                 if (result & ELINK_FLOW_CTRL_TX)
15971                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15972                 if (!sc->link_params.req_fc_auto_adv)
15973                         sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15974         }
15975          if (IS_PF(sc)) {
15976                         if (sc->link_vars.link_up) {
15977                                 bxe_stats_handle(sc, STATS_EVENT_STOP);
15978                         }
15979 			if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15980                         bxe_force_link_reset(sc);
15981                         bxe_acquire_phy_lock(sc);
15982 
15983                         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15984 
15985                         bxe_release_phy_lock(sc);
15986 
15987                         bxe_calc_fc_adv(sc);
15988                         }
15989         }
15990         return rc;
15991 }
15992 
15993 
15994 static void
15995 bxe_add_sysctls(struct bxe_softc *sc)
15996 {
15997     struct sysctl_ctx_list *ctx;
15998     struct sysctl_oid_list *children;
15999     struct sysctl_oid *queue_top, *queue;
16000     struct sysctl_oid_list *queue_top_children, *queue_children;
16001     char queue_num_buf[32];
16002     uint32_t q_stat;
16003     int i, j;
16004 
16005     ctx = device_get_sysctl_ctx(sc->dev);
16006     children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16007 
16008     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16009                       CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16010                       "version");
16011 
16012     snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16013              BCM_5710_FW_MAJOR_VERSION,
16014              BCM_5710_FW_MINOR_VERSION,
16015              BCM_5710_FW_REVISION_VERSION,
16016              BCM_5710_FW_ENGINEERING_VERSION);
16017 
16018     snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16019         ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16020          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16021          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16022          (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16023                                                                 "Unknown"));
16024     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16025                     CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16026                     "multifunction vnics per port");
16027 
16028     snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16029         ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16030          (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16031          (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16032                                               "???GT/s"),
16033         sc->devinfo.pcie_link_width);
16034 
16035     sc->debug = bxe_debug;
16036 
16037     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16038                       CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16039                       "bootcode version");
16040     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16041                       CTLFLAG_RD, sc->fw_ver_str, 0,
16042                       "firmware version");
16043     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16044                       CTLFLAG_RD, sc->mf_mode_str, 0,
16045                       "multifunction mode");
16046     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16047                       CTLFLAG_RD, sc->mac_addr_str, 0,
16048                       "mac address");
16049     SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16050                       CTLFLAG_RD, sc->pci_link_str, 0,
16051                       "pci link status");
16052     SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16053                     CTLFLAG_RW, &sc->debug,
16054                     "debug logging mode");
16055 
16056     sc->trigger_grcdump = 0;
16057     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16058                    CTLFLAG_RW, &sc->trigger_grcdump, 0,
16059                    "trigger grcdump should be invoked"
16060                    "  before collecting grcdump");
16061 
16062     sc->grcdump_started = 0;
16063     sc->grcdump_done = 0;
16064     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16065                    CTLFLAG_RD, &sc->grcdump_done, 0,
16066                    "set by driver when grcdump is done");
16067 
16068     sc->rx_budget = bxe_rx_budget;
16069     SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16070                     CTLFLAG_RW, &sc->rx_budget, 0,
16071                     "rx processing budget");
16072 
16073     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16074         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16075         bxe_sysctl_pauseparam, "IU",
16076         "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16077 
16078 
16079     SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16080         CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16081         bxe_sysctl_state, "IU", "dump driver state");
16082 
16083     for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16084         SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16085             bxe_eth_stats_arr[i].string,
16086             CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
16087             bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16088     }
16089 
16090     /* add a new parent node for all queues "dev.bxe.#.queue" */
16091     queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16092         CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16093     queue_top_children = SYSCTL_CHILDREN(queue_top);
16094 
16095     for (i = 0; i < sc->num_queues; i++) {
16096         /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16097         snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16098         queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16099             queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16100         queue_children = SYSCTL_CHILDREN(queue);
16101 
16102         for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16103             q_stat = ((i << 16) | j);
16104             SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16105                  bxe_eth_q_stats_arr[j].string,
16106                  CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat,
16107                  bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string);
16108         }
16109     }
16110 }
16111 
16112 static int
16113 bxe_alloc_buf_rings(struct bxe_softc *sc)
16114 {
16115     int i;
16116     struct bxe_fastpath *fp;
16117 
16118     for (i = 0; i < sc->num_queues; i++) {
16119 
16120         fp = &sc->fp[i];
16121 
16122         fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16123                                    M_NOWAIT, &fp->tx_mtx);
16124         if (fp->tx_br == NULL)
16125             return (-1);
16126     }
16127 
16128     return (0);
16129 }
16130 
16131 static void
16132 bxe_free_buf_rings(struct bxe_softc *sc)
16133 {
16134     int i;
16135     struct bxe_fastpath *fp;
16136 
16137     for (i = 0; i < sc->num_queues; i++) {
16138 
16139         fp = &sc->fp[i];
16140 
16141         if (fp->tx_br) {
16142             buf_ring_free(fp->tx_br, M_DEVBUF);
16143             fp->tx_br = NULL;
16144         }
16145     }
16146 }
16147 
16148 static void
16149 bxe_init_fp_mutexs(struct bxe_softc *sc)
16150 {
16151     int i;
16152     struct bxe_fastpath *fp;
16153 
16154     for (i = 0; i < sc->num_queues; i++) {
16155 
16156         fp = &sc->fp[i];
16157 
16158         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16159             "bxe%d_fp%d_tx_lock", sc->unit, i);
16160         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16161 
16162         snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16163             "bxe%d_fp%d_rx_lock", sc->unit, i);
16164         mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16165     }
16166 }
16167 
16168 static void
16169 bxe_destroy_fp_mutexs(struct bxe_softc *sc)
16170 {
16171     int i;
16172     struct bxe_fastpath *fp;
16173 
16174     for (i = 0; i < sc->num_queues; i++) {
16175 
16176         fp = &sc->fp[i];
16177 
16178         if (mtx_initialized(&fp->tx_mtx)) {
16179             mtx_destroy(&fp->tx_mtx);
16180         }
16181 
16182         if (mtx_initialized(&fp->rx_mtx)) {
16183             mtx_destroy(&fp->rx_mtx);
16184         }
16185     }
16186 }
16187 
16188 
16189 /*
16190  * Device attach function.
16191  *
16192  * Allocates device resources, performs secondary chip identification, and
16193  * initializes driver instance variables. This function is called from driver
16194  * load after a successful probe.
16195  *
16196  * Returns:
16197  *   0 = Success, >0 = Failure
16198  */
16199 static int
16200 bxe_attach(device_t dev)
16201 {
16202     struct bxe_softc *sc;
16203 
16204     sc = device_get_softc(dev);
16205 
16206     BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16207 
16208     sc->state = BXE_STATE_CLOSED;
16209 
16210     sc->dev  = dev;
16211     sc->unit = device_get_unit(dev);
16212 
16213     BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16214 
16215     sc->pcie_bus    = pci_get_bus(dev);
16216     sc->pcie_device = pci_get_slot(dev);
16217     sc->pcie_func   = pci_get_function(dev);
16218 
16219     /* enable bus master capability */
16220     pci_enable_busmaster(dev);
16221 
16222     /* get the BARs */
16223     if (bxe_allocate_bars(sc) != 0) {
16224         return (ENXIO);
16225     }
16226 
16227     /* initialize the mutexes */
16228     bxe_init_mutexes(sc);
16229 
16230     /* prepare the periodic callout */
16231     callout_init(&sc->periodic_callout, 1);
16232 
16233     /* prepare the chip taskqueue */
16234     sc->chip_tq_flags = CHIP_TQ_NONE;
16235     snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16236              "bxe%d_chip_tq", sc->unit);
16237     TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16238     sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16239                                    taskqueue_thread_enqueue,
16240                                    &sc->chip_tq);
16241     taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16242                             "%s", sc->chip_tq_name);
16243 
16244     TIMEOUT_TASK_INIT(taskqueue_thread,
16245         &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task,  sc);
16246 
16247 
16248     /* get device info and set params */
16249     if (bxe_get_device_info(sc) != 0) {
16250         BLOGE(sc, "getting device info\n");
16251         bxe_deallocate_bars(sc);
16252         pci_disable_busmaster(dev);
16253         return (ENXIO);
16254     }
16255 
16256     /* get final misc params */
16257     bxe_get_params(sc);
16258 
16259     /* set the default MTU (changed via ifconfig) */
16260     sc->mtu = ETHERMTU;
16261 
16262     bxe_set_modes_bitmap(sc);
16263 
16264     /* XXX
16265      * If in AFEX mode and the function is configured for FCoE
16266      * then bail... no L2 allowed.
16267      */
16268 
16269     /* get phy settings from shmem and 'and' against admin settings */
16270     bxe_get_phy_info(sc);
16271 
16272     /* initialize the FreeBSD ifnet interface */
16273     if (bxe_init_ifnet(sc) != 0) {
16274         bxe_release_mutexes(sc);
16275         bxe_deallocate_bars(sc);
16276         pci_disable_busmaster(dev);
16277         return (ENXIO);
16278     }
16279 
16280     if (bxe_add_cdev(sc) != 0) {
16281         if (sc->ifp != NULL) {
16282             ether_ifdetach(sc->ifp);
16283         }
16284         ifmedia_removeall(&sc->ifmedia);
16285         bxe_release_mutexes(sc);
16286         bxe_deallocate_bars(sc);
16287         pci_disable_busmaster(dev);
16288         return (ENXIO);
16289     }
16290 
16291     /* allocate device interrupts */
16292     if (bxe_interrupt_alloc(sc) != 0) {
16293         bxe_del_cdev(sc);
16294         if (sc->ifp != NULL) {
16295             ether_ifdetach(sc->ifp);
16296         }
16297         ifmedia_removeall(&sc->ifmedia);
16298         bxe_release_mutexes(sc);
16299         bxe_deallocate_bars(sc);
16300         pci_disable_busmaster(dev);
16301         return (ENXIO);
16302     }
16303 
16304     bxe_init_fp_mutexs(sc);
16305 
16306     if (bxe_alloc_buf_rings(sc) != 0) {
16307 	bxe_free_buf_rings(sc);
16308         bxe_interrupt_free(sc);
16309         bxe_del_cdev(sc);
16310         if (sc->ifp != NULL) {
16311             ether_ifdetach(sc->ifp);
16312         }
16313         ifmedia_removeall(&sc->ifmedia);
16314         bxe_release_mutexes(sc);
16315         bxe_deallocate_bars(sc);
16316         pci_disable_busmaster(dev);
16317         return (ENXIO);
16318     }
16319 
16320     /* allocate ilt */
16321     if (bxe_alloc_ilt_mem(sc) != 0) {
16322 	bxe_free_buf_rings(sc);
16323         bxe_interrupt_free(sc);
16324         bxe_del_cdev(sc);
16325         if (sc->ifp != NULL) {
16326             ether_ifdetach(sc->ifp);
16327         }
16328         ifmedia_removeall(&sc->ifmedia);
16329         bxe_release_mutexes(sc);
16330         bxe_deallocate_bars(sc);
16331         pci_disable_busmaster(dev);
16332         return (ENXIO);
16333     }
16334 
16335     /* allocate the host hardware/software hsi structures */
16336     if (bxe_alloc_hsi_mem(sc) != 0) {
16337         bxe_free_ilt_mem(sc);
16338 	bxe_free_buf_rings(sc);
16339         bxe_interrupt_free(sc);
16340         bxe_del_cdev(sc);
16341         if (sc->ifp != NULL) {
16342             ether_ifdetach(sc->ifp);
16343         }
16344         ifmedia_removeall(&sc->ifmedia);
16345         bxe_release_mutexes(sc);
16346         bxe_deallocate_bars(sc);
16347         pci_disable_busmaster(dev);
16348         return (ENXIO);
16349     }
16350 
16351     /* need to reset chip if UNDI was active */
16352     if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16353         /* init fw_seq */
16354         sc->fw_seq =
16355             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16356              DRV_MSG_SEQ_NUMBER_MASK);
16357         BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16358         bxe_prev_unload(sc);
16359     }
16360 
16361 #if 1
16362     /* XXX */
16363     bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16364 #else
16365     if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16366         SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16367         SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16368         SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16369         bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16370         bxe_dcbx_init_params(sc);
16371     } else {
16372         bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16373     }
16374 #endif
16375 
16376     /* calculate qm_cid_count */
16377     sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16378     BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16379 
16380     sc->max_cos = 1;
16381     bxe_init_multi_cos(sc);
16382 
16383     bxe_add_sysctls(sc);
16384 
16385     return (0);
16386 }
16387 
16388 /*
16389  * Device detach function.
16390  *
16391  * Stops the controller, resets the controller, and releases resources.
16392  *
16393  * Returns:
16394  *   0 = Success, >0 = Failure
16395  */
16396 static int
16397 bxe_detach(device_t dev)
16398 {
16399     struct bxe_softc *sc;
16400     if_t ifp;
16401 
16402     sc = device_get_softc(dev);
16403 
16404     BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16405 
16406     ifp = sc->ifp;
16407     if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16408         BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16409         return(EBUSY);
16410     }
16411 
16412     bxe_del_cdev(sc);
16413 
16414     /* stop the periodic callout */
16415     bxe_periodic_stop(sc);
16416 
16417     /* stop the chip taskqueue */
16418     atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16419     if (sc->chip_tq) {
16420         taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16421         taskqueue_free(sc->chip_tq);
16422         sc->chip_tq = NULL;
16423         taskqueue_drain_timeout(taskqueue_thread,
16424             &sc->sp_err_timeout_task);
16425     }
16426 
16427     /* stop and reset the controller if it was open */
16428     if (sc->state != BXE_STATE_CLOSED) {
16429         BXE_CORE_LOCK(sc);
16430         bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16431         sc->state = BXE_STATE_DISABLED;
16432         BXE_CORE_UNLOCK(sc);
16433     }
16434 
16435     /* release the network interface */
16436     if (ifp != NULL) {
16437         ether_ifdetach(ifp);
16438     }
16439     ifmedia_removeall(&sc->ifmedia);
16440 
16441     /* XXX do the following based on driver state... */
16442 
16443     /* free the host hardware/software hsi structures */
16444     bxe_free_hsi_mem(sc);
16445 
16446     /* free ilt */
16447     bxe_free_ilt_mem(sc);
16448 
16449     bxe_free_buf_rings(sc);
16450 
16451     /* release the interrupts */
16452     bxe_interrupt_free(sc);
16453 
16454     /* Release the mutexes*/
16455     bxe_destroy_fp_mutexs(sc);
16456     bxe_release_mutexes(sc);
16457 
16458 
16459     /* Release the PCIe BAR mapped memory */
16460     bxe_deallocate_bars(sc);
16461 
16462     /* Release the FreeBSD interface. */
16463     if (sc->ifp != NULL) {
16464         if_free(sc->ifp);
16465     }
16466 
16467     pci_disable_busmaster(dev);
16468 
16469     return (0);
16470 }
16471 
16472 /*
16473  * Device shutdown function.
16474  *
16475  * Stops and resets the controller.
16476  *
16477  * Returns:
16478  *   Nothing
16479  */
16480 static int
16481 bxe_shutdown(device_t dev)
16482 {
16483     struct bxe_softc *sc;
16484 
16485     sc = device_get_softc(dev);
16486 
16487     BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16488 
16489     /* stop the periodic callout */
16490     bxe_periodic_stop(sc);
16491 
16492     if (sc->state != BXE_STATE_CLOSED) {
16493     	BXE_CORE_LOCK(sc);
16494     	bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16495     	BXE_CORE_UNLOCK(sc);
16496     }
16497 
16498     return (0);
16499 }
16500 
16501 void
16502 bxe_igu_ack_sb(struct bxe_softc *sc,
16503                uint8_t          igu_sb_id,
16504                uint8_t          segment,
16505                uint16_t         index,
16506                uint8_t          op,
16507                uint8_t          update)
16508 {
16509     uint32_t igu_addr = sc->igu_base_addr;
16510     igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16511     bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16512 }
16513 
16514 static void
16515 bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16516                      uint8_t          func,
16517                      uint8_t          idu_sb_id,
16518                      uint8_t          is_pf)
16519 {
16520     uint32_t data, ctl, cnt = 100;
16521     uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16522     uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16523     uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16524     uint32_t sb_bit =  1 << (idu_sb_id%32);
16525     uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16526     uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16527 
16528     /* Not supported in BC mode */
16529     if (CHIP_INT_MODE_IS_BC(sc)) {
16530         return;
16531     }
16532 
16533     data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16534              IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16535             IGU_REGULAR_CLEANUP_SET |
16536             IGU_REGULAR_BCLEANUP);
16537 
16538     ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16539            (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16540            (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16541 
16542     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16543             data, igu_addr_data);
16544     REG_WR(sc, igu_addr_data, data);
16545 
16546     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16547                       BUS_SPACE_BARRIER_WRITE);
16548     mb();
16549 
16550     BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16551             ctl, igu_addr_ctl);
16552     REG_WR(sc, igu_addr_ctl, ctl);
16553 
16554     bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16555                       BUS_SPACE_BARRIER_WRITE);
16556     mb();
16557 
16558     /* wait for clean up to finish */
16559     while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16560         DELAY(20000);
16561     }
16562 
16563     if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16564         BLOGD(sc, DBG_LOAD,
16565               "Unable to finish IGU cleanup: "
16566               "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16567               idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16568     }
16569 }
16570 
16571 static void
16572 bxe_igu_clear_sb(struct bxe_softc *sc,
16573                  uint8_t          idu_sb_id)
16574 {
16575     bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16576 }
16577 
16578 
16579 
16580 
16581 
16582 
16583 
16584 /*******************/
16585 /* ECORE CALLBACKS */
16586 /*******************/
16587 
16588 static void
16589 bxe_reset_common(struct bxe_softc *sc)
16590 {
16591     uint32_t val = 0x1400;
16592 
16593     /* reset_common */
16594     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16595 
16596     if (CHIP_IS_E3(sc)) {
16597         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16598         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16599     }
16600 
16601     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16602 }
16603 
16604 static void
16605 bxe_common_init_phy(struct bxe_softc *sc)
16606 {
16607     uint32_t shmem_base[2];
16608     uint32_t shmem2_base[2];
16609 
16610     /* Avoid common init in case MFW supports LFA */
16611     if (SHMEM2_RD(sc, size) >
16612         (uint32_t)offsetof(struct shmem2_region,
16613                            lfa_host_addr[SC_PORT(sc)])) {
16614         return;
16615     }
16616 
16617     shmem_base[0]  = sc->devinfo.shmem_base;
16618     shmem2_base[0] = sc->devinfo.shmem2_base;
16619 
16620     if (!CHIP_IS_E1x(sc)) {
16621         shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16622         shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16623     }
16624 
16625     bxe_acquire_phy_lock(sc);
16626     elink_common_init_phy(sc, shmem_base, shmem2_base,
16627                           sc->devinfo.chip_id, 0);
16628     bxe_release_phy_lock(sc);
16629 }
16630 
16631 static void
16632 bxe_pf_disable(struct bxe_softc *sc)
16633 {
16634     uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16635 
16636     val &= ~IGU_PF_CONF_FUNC_EN;
16637 
16638     REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16639     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16640     REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16641 }
16642 
16643 static void
16644 bxe_init_pxp(struct bxe_softc *sc)
16645 {
16646     uint16_t devctl;
16647     int r_order, w_order;
16648 
16649     devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16650 
16651     BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16652 
16653     w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16654 
16655     if (sc->mrrs == -1) {
16656         r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16657     } else {
16658         BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16659         r_order = sc->mrrs;
16660     }
16661 
16662     ecore_init_pxp_arb(sc, r_order, w_order);
16663 }
16664 
16665 static uint32_t
16666 bxe_get_pretend_reg(struct bxe_softc *sc)
16667 {
16668     uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16669     uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16670     return (base + (SC_ABS_FUNC(sc)) * stride);
16671 }
16672 
16673 /*
16674  * Called only on E1H or E2.
16675  * When pretending to be PF, the pretend value is the function number 0..7.
16676  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16677  * combination.
16678  */
16679 static int
16680 bxe_pretend_func(struct bxe_softc *sc,
16681                  uint16_t         pretend_func_val)
16682 {
16683     uint32_t pretend_reg;
16684 
16685     if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16686         return (-1);
16687     }
16688 
16689     /* get my own pretend register */
16690     pretend_reg = bxe_get_pretend_reg(sc);
16691     REG_WR(sc, pretend_reg, pretend_func_val);
16692     REG_RD(sc, pretend_reg);
16693     return (0);
16694 }
16695 
16696 static void
16697 bxe_iov_init_dmae(struct bxe_softc *sc)
16698 {
16699     return;
16700 }
16701 
16702 static void
16703 bxe_iov_init_dq(struct bxe_softc *sc)
16704 {
16705     return;
16706 }
16707 
16708 /* send a NIG loopback debug packet */
16709 static void
16710 bxe_lb_pckt(struct bxe_softc *sc)
16711 {
16712     uint32_t wb_write[3];
16713 
16714     /* Ethernet source and destination addresses */
16715     wb_write[0] = 0x55555555;
16716     wb_write[1] = 0x55555555;
16717     wb_write[2] = 0x20;     /* SOP */
16718     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16719 
16720     /* NON-IP protocol */
16721     wb_write[0] = 0x09000000;
16722     wb_write[1] = 0x55555555;
16723     wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16724     REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16725 }
16726 
16727 /*
16728  * Some of the internal memories are not directly readable from the driver.
16729  * To test them we send debug packets.
16730  */
16731 static int
16732 bxe_int_mem_test(struct bxe_softc *sc)
16733 {
16734     int factor;
16735     int count, i;
16736     uint32_t val = 0;
16737 
16738     if (CHIP_REV_IS_FPGA(sc)) {
16739         factor = 120;
16740     } else if (CHIP_REV_IS_EMUL(sc)) {
16741         factor = 200;
16742     } else {
16743         factor = 1;
16744     }
16745 
16746     /* disable inputs of parser neighbor blocks */
16747     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16748     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16749     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16750     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16751 
16752     /*  write 0 to parser credits for CFC search request */
16753     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16754 
16755     /* send Ethernet packet */
16756     bxe_lb_pckt(sc);
16757 
16758     /* TODO do i reset NIG statistic? */
16759     /* Wait until NIG register shows 1 packet of size 0x10 */
16760     count = 1000 * factor;
16761     while (count) {
16762         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16763         val = *BXE_SP(sc, wb_data[0]);
16764         if (val == 0x10) {
16765             break;
16766         }
16767 
16768         DELAY(10000);
16769         count--;
16770     }
16771 
16772     if (val != 0x10) {
16773         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16774         return (-1);
16775     }
16776 
16777     /* wait until PRS register shows 1 packet */
16778     count = (1000 * factor);
16779     while (count) {
16780         val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16781         if (val == 1) {
16782             break;
16783         }
16784 
16785         DELAY(10000);
16786         count--;
16787     }
16788 
16789     if (val != 0x1) {
16790         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16791         return (-2);
16792     }
16793 
16794     /* Reset and init BRB, PRS */
16795     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16796     DELAY(50000);
16797     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16798     DELAY(50000);
16799     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16800     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16801 
16802     /* Disable inputs of parser neighbor blocks */
16803     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16804     REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16805     REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16806     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16807 
16808     /* Write 0 to parser credits for CFC search request */
16809     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16810 
16811     /* send 10 Ethernet packets */
16812     for (i = 0; i < 10; i++) {
16813         bxe_lb_pckt(sc);
16814     }
16815 
16816     /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16817     count = (1000 * factor);
16818     while (count) {
16819         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16820         val = *BXE_SP(sc, wb_data[0]);
16821         if (val == 0xb0) {
16822             break;
16823         }
16824 
16825         DELAY(10000);
16826         count--;
16827     }
16828 
16829     if (val != 0xb0) {
16830         BLOGE(sc, "NIG timeout val=0x%x\n", val);
16831         return (-3);
16832     }
16833 
16834     /* Wait until PRS register shows 2 packets */
16835     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16836     if (val != 2) {
16837         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16838     }
16839 
16840     /* Write 1 to parser credits for CFC search request */
16841     REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16842 
16843     /* Wait until PRS register shows 3 packets */
16844     DELAY(10000 * factor);
16845 
16846     /* Wait until NIG register shows 1 packet of size 0x10 */
16847     val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16848     if (val != 3) {
16849         BLOGE(sc, "PRS timeout val=0x%x\n", val);
16850     }
16851 
16852     /* clear NIG EOP FIFO */
16853     for (i = 0; i < 11; i++) {
16854         REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16855     }
16856 
16857     val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16858     if (val != 1) {
16859         BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16860         return (-4);
16861     }
16862 
16863     /* Reset and init BRB, PRS, NIG */
16864     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16865     DELAY(50000);
16866     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16867     DELAY(50000);
16868     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16869     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16870     if (!CNIC_SUPPORT(sc)) {
16871         /* set NIC mode */
16872         REG_WR(sc, PRS_REG_NIC_MODE, 1);
16873     }
16874 
16875     /* Enable inputs of parser neighbor blocks */
16876     REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16877     REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16878     REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16879     REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16880 
16881     return (0);
16882 }
16883 
16884 static void
16885 bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16886 {
16887     int is_required;
16888     uint32_t val;
16889     int port;
16890 
16891     is_required = 0;
16892     val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16893            SHARED_HW_CFG_FAN_FAILURE_MASK);
16894 
16895     if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16896         is_required = 1;
16897     }
16898     /*
16899      * The fan failure mechanism is usually related to the PHY type since
16900      * the power consumption of the board is affected by the PHY. Currently,
16901      * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16902      */
16903     else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16904         for (port = PORT_0; port < PORT_MAX; port++) {
16905             is_required |= elink_fan_failure_det_req(sc,
16906                                                      sc->devinfo.shmem_base,
16907                                                      sc->devinfo.shmem2_base,
16908                                                      port);
16909         }
16910     }
16911 
16912     BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16913 
16914     if (is_required == 0) {
16915         return;
16916     }
16917 
16918     /* Fan failure is indicated by SPIO 5 */
16919     bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16920 
16921     /* set to active low mode */
16922     val = REG_RD(sc, MISC_REG_SPIO_INT);
16923     val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16924     REG_WR(sc, MISC_REG_SPIO_INT, val);
16925 
16926     /* enable interrupt to signal the IGU */
16927     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16928     val |= MISC_SPIO_SPIO5;
16929     REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16930 }
16931 
16932 static void
16933 bxe_enable_blocks_attention(struct bxe_softc *sc)
16934 {
16935     uint32_t val;
16936 
16937     REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16938     if (!CHIP_IS_E1x(sc)) {
16939         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16940     } else {
16941         REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16942     }
16943     REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16944     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16945     /*
16946      * mask read length error interrupts in brb for parser
16947      * (parsing unit and 'checksum and crc' unit)
16948      * these errors are legal (PU reads fixed length and CAC can cause
16949      * read length error on truncated packets)
16950      */
16951     REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16952     REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16953     REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16954     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16955     REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16956     REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16957 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16958 /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16959     REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16960     REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16961     REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16962 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16963 /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16964     REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16965     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16966     REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16967     REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16968 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16969 /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16970 
16971     val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16972            PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16973            PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16974     if (!CHIP_IS_E1x(sc)) {
16975         val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16976                 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16977     }
16978     REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16979 
16980     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16981     REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16982     REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16983 /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16984 
16985     if (!CHIP_IS_E1x(sc)) {
16986         /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16987         REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16988     }
16989 
16990     REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16991     REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16992 /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16993     REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
16994 }
16995 
16996 /**
16997  * bxe_init_hw_common - initialize the HW at the COMMON phase.
16998  *
16999  * @sc:     driver handle
17000  */
17001 static int
17002 bxe_init_hw_common(struct bxe_softc *sc)
17003 {
17004     uint8_t abs_func_id;
17005     uint32_t val;
17006 
17007     BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17008           SC_ABS_FUNC(sc));
17009 
17010     /*
17011      * take the RESET lock to protect undi_unload flow from accessing
17012      * registers while we are resetting the chip
17013      */
17014     bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17015 
17016     bxe_reset_common(sc);
17017 
17018     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17019 
17020     val = 0xfffc;
17021     if (CHIP_IS_E3(sc)) {
17022         val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17023         val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17024     }
17025 
17026     REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17027 
17028     bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17029 
17030     ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17031     BLOGD(sc, DBG_LOAD, "after misc block init\n");
17032 
17033     if (!CHIP_IS_E1x(sc)) {
17034         /*
17035          * 4-port mode or 2-port mode we need to turn off master-enable for
17036          * everyone. After that we turn it back on for self. So, we disregard
17037          * multi-function, and always disable all functions on the given path,
17038          * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17039          */
17040         for (abs_func_id = SC_PATH(sc);
17041              abs_func_id < (E2_FUNC_MAX * 2);
17042              abs_func_id += 2) {
17043             if (abs_func_id == SC_ABS_FUNC(sc)) {
17044                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17045                 continue;
17046             }
17047 
17048             bxe_pretend_func(sc, abs_func_id);
17049 
17050             /* clear pf enable */
17051             bxe_pf_disable(sc);
17052 
17053             bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17054         }
17055     }
17056 
17057     BLOGD(sc, DBG_LOAD, "after pf disable\n");
17058 
17059     ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17060 
17061     if (CHIP_IS_E1(sc)) {
17062         /*
17063          * enable HW interrupt from PXP on USDM overflow
17064          * bit 16 on INT_MASK_0
17065          */
17066         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17067     }
17068 
17069     ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17070     bxe_init_pxp(sc);
17071 
17072 #ifdef __BIG_ENDIAN
17073     REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17074     REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17075     REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17076     REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17077     REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17078     /* make sure this value is 0 */
17079     REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17080 
17081     //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17082     REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17083     REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17084     REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17085     REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17086 #endif
17087 
17088     ecore_ilt_init_page_size(sc, INITOP_SET);
17089 
17090     if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17091         REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17092     }
17093 
17094     /* let the HW do it's magic... */
17095     DELAY(100000);
17096 
17097     /* finish PXP init */
17098     val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17099     if (val != 1) {
17100         BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17101             val);
17102         return (-1);
17103     }
17104     val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17105     if (val != 1) {
17106         BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17107         return (-1);
17108     }
17109 
17110     BLOGD(sc, DBG_LOAD, "after pxp init\n");
17111 
17112     /*
17113      * Timer bug workaround for E2 only. We need to set the entire ILT to have
17114      * entries with value "0" and valid bit on. This needs to be done by the
17115      * first PF that is loaded in a path (i.e. common phase)
17116      */
17117     if (!CHIP_IS_E1x(sc)) {
17118 /*
17119  * In E2 there is a bug in the timers block that can cause function 6 / 7
17120  * (i.e. vnic3) to start even if it is marked as "scan-off".
17121  * This occurs when a different function (func2,3) is being marked
17122  * as "scan-off". Real-life scenario for example: if a driver is being
17123  * load-unloaded while func6,7 are down. This will cause the timer to access
17124  * the ilt, translate to a logical address and send a request to read/write.
17125  * Since the ilt for the function that is down is not valid, this will cause
17126  * a translation error which is unrecoverable.
17127  * The Workaround is intended to make sure that when this happens nothing
17128  * fatal will occur. The workaround:
17129  *  1.  First PF driver which loads on a path will:
17130  *      a.  After taking the chip out of reset, by using pretend,
17131  *          it will write "0" to the following registers of
17132  *          the other vnics.
17133  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17134  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17135  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17136  *          And for itself it will write '1' to
17137  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17138  *          dmae-operations (writing to pram for example.)
17139  *          note: can be done for only function 6,7 but cleaner this
17140  *            way.
17141  *      b.  Write zero+valid to the entire ILT.
17142  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17143  *          VNIC3 (of that port). The range allocated will be the
17144  *          entire ILT. This is needed to prevent  ILT range error.
17145  *  2.  Any PF driver load flow:
17146  *      a.  ILT update with the physical addresses of the allocated
17147  *          logical pages.
17148  *      b.  Wait 20msec. - note that this timeout is needed to make
17149  *          sure there are no requests in one of the PXP internal
17150  *          queues with "old" ILT addresses.
17151  *      c.  PF enable in the PGLC.
17152  *      d.  Clear the was_error of the PF in the PGLC. (could have
17153  *          occurred while driver was down)
17154  *      e.  PF enable in the CFC (WEAK + STRONG)
17155  *      f.  Timers scan enable
17156  *  3.  PF driver unload flow:
17157  *      a.  Clear the Timers scan_en.
17158  *      b.  Polling for scan_on=0 for that PF.
17159  *      c.  Clear the PF enable bit in the PXP.
17160  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17161  *      e.  Write zero+valid to all ILT entries (The valid bit must
17162  *          stay set)
17163  *      f.  If this is VNIC 3 of a port then also init
17164  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17165  *          to the last entry in the ILT.
17166  *
17167  *      Notes:
17168  *      Currently the PF error in the PGLC is non recoverable.
17169  *      In the future the there will be a recovery routine for this error.
17170  *      Currently attention is masked.
17171  *      Having an MCP lock on the load/unload process does not guarantee that
17172  *      there is no Timer disable during Func6/7 enable. This is because the
17173  *      Timers scan is currently being cleared by the MCP on FLR.
17174  *      Step 2.d can be done only for PF6/7 and the driver can also check if
17175  *      there is error before clearing it. But the flow above is simpler and
17176  *      more general.
17177  *      All ILT entries are written by zero+valid and not just PF6/7
17178  *      ILT entries since in the future the ILT entries allocation for
17179  *      PF-s might be dynamic.
17180  */
17181         struct ilt_client_info ilt_cli;
17182         struct ecore_ilt ilt;
17183 
17184         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17185         memset(&ilt, 0, sizeof(struct ecore_ilt));
17186 
17187         /* initialize dummy TM client */
17188         ilt_cli.start      = 0;
17189         ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17190         ilt_cli.client_num = ILT_CLIENT_TM;
17191 
17192         /*
17193          * Step 1: set zeroes to all ilt page entries with valid bit on
17194          * Step 2: set the timers first/last ilt entry to point
17195          * to the entire range to prevent ILT range error for 3rd/4th
17196          * vnic (this code assumes existence of the vnic)
17197          *
17198          * both steps performed by call to ecore_ilt_client_init_op()
17199          * with dummy TM client
17200          *
17201          * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17202          * and his brother are split registers
17203          */
17204 
17205         bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17206         ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17207         bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17208 
17209         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17210         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17211         REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17212     }
17213 
17214     REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17215     REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17216 
17217     if (!CHIP_IS_E1x(sc)) {
17218         int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17219                      (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17220 
17221         ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17222         ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17223 
17224         /* let the HW do it's magic... */
17225         do {
17226             DELAY(200000);
17227             val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17228         } while (factor-- && (val != 1));
17229 
17230         if (val != 1) {
17231             BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17232             return (-1);
17233         }
17234     }
17235 
17236     BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17237 
17238     ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17239 
17240     bxe_iov_init_dmae(sc);
17241 
17242     /* clean the DMAE memory */
17243     sc->dmae_ready = 1;
17244     ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17245 
17246     ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17247 
17248     ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17249 
17250     ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17251 
17252     ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17253 
17254     bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17255     bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17256     bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17257     bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17258 
17259     ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17260 
17261     /* QM queues pointers table */
17262     ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17263 
17264     /* soft reset pulse */
17265     REG_WR(sc, QM_REG_SOFT_RESET, 1);
17266     REG_WR(sc, QM_REG_SOFT_RESET, 0);
17267 
17268     if (CNIC_SUPPORT(sc))
17269         ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17270 
17271     ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17272     REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17273     if (!CHIP_REV_IS_SLOW(sc)) {
17274         /* enable hw interrupt from doorbell Q */
17275         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17276     }
17277 
17278     ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17279 
17280     ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17281     REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17282 
17283     if (!CHIP_IS_E1(sc)) {
17284         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17285     }
17286 
17287     if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17288         if (IS_MF_AFEX(sc)) {
17289             /*
17290              * configure that AFEX and VLAN headers must be
17291              * received in AFEX mode
17292              */
17293             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17294             REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17295             REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17296             REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17297             REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17298         } else {
17299             /*
17300              * Bit-map indicating which L2 hdrs may appear
17301              * after the basic Ethernet header
17302              */
17303             REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17304                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17305         }
17306     }
17307 
17308     ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17309     ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17310     ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17311     ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17312 
17313     if (!CHIP_IS_E1x(sc)) {
17314         /* reset VFC memories */
17315         REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17316                VFC_MEMORIES_RST_REG_CAM_RST |
17317                VFC_MEMORIES_RST_REG_RAM_RST);
17318         REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17319                VFC_MEMORIES_RST_REG_CAM_RST |
17320                VFC_MEMORIES_RST_REG_RAM_RST);
17321 
17322         DELAY(20000);
17323     }
17324 
17325     ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17326     ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17327     ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17328     ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17329 
17330     /* sync semi rtc */
17331     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17332            0x80000000);
17333     REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17334            0x80000000);
17335 
17336     ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17337     ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17338     ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17339 
17340     if (!CHIP_IS_E1x(sc)) {
17341         if (IS_MF_AFEX(sc)) {
17342             /*
17343              * configure that AFEX and VLAN headers must be
17344              * sent in AFEX mode
17345              */
17346             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17347             REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17348             REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17349             REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17350             REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17351         } else {
17352             REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17353                    sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17354         }
17355     }
17356 
17357     REG_WR(sc, SRC_REG_SOFT_RST, 1);
17358 
17359     ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17360 
17361     if (CNIC_SUPPORT(sc)) {
17362         REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17363         REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17364         REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17365         REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17366         REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17367         REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17368         REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17369         REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17370         REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17371         REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17372     }
17373     REG_WR(sc, SRC_REG_SOFT_RST, 0);
17374 
17375     if (sizeof(union cdu_context) != 1024) {
17376         /* we currently assume that a context is 1024 bytes */
17377         BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17378               (long)sizeof(union cdu_context));
17379     }
17380 
17381     ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17382     val = (4 << 24) + (0 << 12) + 1024;
17383     REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17384 
17385     ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17386 
17387     REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17388     /* enable context validation interrupt from CFC */
17389     REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17390 
17391     /* set the thresholds to prevent CFC/CDU race */
17392     REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17393     ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17394 
17395     if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17396         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17397     }
17398 
17399     ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17400     ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17401 
17402     /* Reset PCIE errors for debug */
17403     REG_WR(sc, 0x2814, 0xffffffff);
17404     REG_WR(sc, 0x3820, 0xffffffff);
17405 
17406     if (!CHIP_IS_E1x(sc)) {
17407         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17408                (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17409                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17410         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17411                (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17412                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17413                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17414         REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17415                (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17416                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17417                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17418     }
17419 
17420     ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17421 
17422     if (!CHIP_IS_E1(sc)) {
17423         /* in E3 this done in per-port section */
17424         if (!CHIP_IS_E3(sc))
17425             REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17426     }
17427 
17428     if (CHIP_IS_E1H(sc)) {
17429         /* not applicable for E2 (and above ...) */
17430         REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17431     }
17432 
17433     if (CHIP_REV_IS_SLOW(sc)) {
17434         DELAY(200000);
17435     }
17436 
17437     /* finish CFC init */
17438     val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17439     if (val != 1) {
17440         BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17441         return (-1);
17442     }
17443     val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17444     if (val != 1) {
17445         BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17446         return (-1);
17447     }
17448     val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17449     if (val != 1) {
17450         BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17451         return (-1);
17452     }
17453     REG_WR(sc, CFC_REG_DEBUG0, 0);
17454 
17455     if (CHIP_IS_E1(sc)) {
17456         /* read NIG statistic to see if this is our first up since powerup */
17457         bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17458         val = *BXE_SP(sc, wb_data[0]);
17459 
17460         /* do internal memory self test */
17461         if ((val == 0) && bxe_int_mem_test(sc)) {
17462             BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17463             return (-1);
17464         }
17465     }
17466 
17467     bxe_setup_fan_failure_detection(sc);
17468 
17469     /* clear PXP2 attentions */
17470     REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17471 
17472     bxe_enable_blocks_attention(sc);
17473 
17474     if (!CHIP_REV_IS_SLOW(sc)) {
17475         ecore_enable_blocks_parity(sc);
17476     }
17477 
17478     if (!BXE_NOMCP(sc)) {
17479         if (CHIP_IS_E1x(sc)) {
17480             bxe_common_init_phy(sc);
17481         }
17482     }
17483 
17484     return (0);
17485 }
17486 
17487 /**
17488  * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17489  *
17490  * @sc:     driver handle
17491  */
17492 static int
17493 bxe_init_hw_common_chip(struct bxe_softc *sc)
17494 {
17495     int rc = bxe_init_hw_common(sc);
17496 
17497     if (rc) {
17498         BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17499         return (rc);
17500     }
17501 
17502     /* In E2 2-PORT mode, same ext phy is used for the two paths */
17503     if (!BXE_NOMCP(sc)) {
17504         bxe_common_init_phy(sc);
17505     }
17506 
17507     return (0);
17508 }
17509 
17510 static int
17511 bxe_init_hw_port(struct bxe_softc *sc)
17512 {
17513     int port = SC_PORT(sc);
17514     int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17515     uint32_t low, high;
17516     uint32_t val;
17517 
17518     BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17519 
17520     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17521 
17522     ecore_init_block(sc, BLOCK_MISC, init_phase);
17523     ecore_init_block(sc, BLOCK_PXP, init_phase);
17524     ecore_init_block(sc, BLOCK_PXP2, init_phase);
17525 
17526     /*
17527      * Timers bug workaround: disables the pf_master bit in pglue at
17528      * common phase, we need to enable it here before any dmae access are
17529      * attempted. Therefore we manually added the enable-master to the
17530      * port phase (it also happens in the function phase)
17531      */
17532     if (!CHIP_IS_E1x(sc)) {
17533         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17534     }
17535 
17536     ecore_init_block(sc, BLOCK_ATC, init_phase);
17537     ecore_init_block(sc, BLOCK_DMAE, init_phase);
17538     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17539     ecore_init_block(sc, BLOCK_QM, init_phase);
17540 
17541     ecore_init_block(sc, BLOCK_TCM, init_phase);
17542     ecore_init_block(sc, BLOCK_UCM, init_phase);
17543     ecore_init_block(sc, BLOCK_CCM, init_phase);
17544     ecore_init_block(sc, BLOCK_XCM, init_phase);
17545 
17546     /* QM cid (connection) count */
17547     ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17548 
17549     if (CNIC_SUPPORT(sc)) {
17550         ecore_init_block(sc, BLOCK_TM, init_phase);
17551         REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17552         REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17553     }
17554 
17555     ecore_init_block(sc, BLOCK_DORQ, init_phase);
17556 
17557     ecore_init_block(sc, BLOCK_BRB1, init_phase);
17558 
17559     if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17560         if (IS_MF(sc)) {
17561             low = (BXE_ONE_PORT(sc) ? 160 : 246);
17562         } else if (sc->mtu > 4096) {
17563             if (BXE_ONE_PORT(sc)) {
17564                 low = 160;
17565             } else {
17566                 val = sc->mtu;
17567                 /* (24*1024 + val*4)/256 */
17568                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17569             }
17570         } else {
17571             low = (BXE_ONE_PORT(sc) ? 80 : 160);
17572         }
17573         high = (low + 56); /* 14*1024/256 */
17574         REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17575         REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17576     }
17577 
17578     if (CHIP_IS_MODE_4_PORT(sc)) {
17579         REG_WR(sc, SC_PORT(sc) ?
17580                BRB1_REG_MAC_GUARANTIED_1 :
17581                BRB1_REG_MAC_GUARANTIED_0, 40);
17582     }
17583 
17584     ecore_init_block(sc, BLOCK_PRS, init_phase);
17585     if (CHIP_IS_E3B0(sc)) {
17586         if (IS_MF_AFEX(sc)) {
17587             /* configure headers for AFEX mode */
17588             REG_WR(sc, SC_PORT(sc) ?
17589                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17590                    PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17591             REG_WR(sc, SC_PORT(sc) ?
17592                    PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17593                    PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17594             REG_WR(sc, SC_PORT(sc) ?
17595                    PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17596                    PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17597         } else {
17598             /* Ovlan exists only if we are in multi-function +
17599              * switch-dependent mode, in switch-independent there
17600              * is no ovlan headers
17601              */
17602             REG_WR(sc, SC_PORT(sc) ?
17603                    PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17604                    PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17605                    (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17606         }
17607     }
17608 
17609     ecore_init_block(sc, BLOCK_TSDM, init_phase);
17610     ecore_init_block(sc, BLOCK_CSDM, init_phase);
17611     ecore_init_block(sc, BLOCK_USDM, init_phase);
17612     ecore_init_block(sc, BLOCK_XSDM, init_phase);
17613 
17614     ecore_init_block(sc, BLOCK_TSEM, init_phase);
17615     ecore_init_block(sc, BLOCK_USEM, init_phase);
17616     ecore_init_block(sc, BLOCK_CSEM, init_phase);
17617     ecore_init_block(sc, BLOCK_XSEM, init_phase);
17618 
17619     ecore_init_block(sc, BLOCK_UPB, init_phase);
17620     ecore_init_block(sc, BLOCK_XPB, init_phase);
17621 
17622     ecore_init_block(sc, BLOCK_PBF, init_phase);
17623 
17624     if (CHIP_IS_E1x(sc)) {
17625         /* configure PBF to work without PAUSE mtu 9000 */
17626         REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17627 
17628         /* update threshold */
17629         REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17630         /* update init credit */
17631         REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17632 
17633         /* probe changes */
17634         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17635         DELAY(50);
17636         REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17637     }
17638 
17639     if (CNIC_SUPPORT(sc)) {
17640         ecore_init_block(sc, BLOCK_SRC, init_phase);
17641     }
17642 
17643     ecore_init_block(sc, BLOCK_CDU, init_phase);
17644     ecore_init_block(sc, BLOCK_CFC, init_phase);
17645 
17646     if (CHIP_IS_E1(sc)) {
17647         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17648         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17649     }
17650     ecore_init_block(sc, BLOCK_HC, init_phase);
17651 
17652     ecore_init_block(sc, BLOCK_IGU, init_phase);
17653 
17654     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17655     /* init aeu_mask_attn_func_0/1:
17656      *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17657      *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17658      *             bits 4-7 are used for "per vn group attention" */
17659     val = IS_MF(sc) ? 0xF7 : 0x7;
17660     /* Enable DCBX attention for all but E1 */
17661     val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17662     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17663 
17664     ecore_init_block(sc, BLOCK_NIG, init_phase);
17665 
17666     if (!CHIP_IS_E1x(sc)) {
17667         /* Bit-map indicating which L2 hdrs may appear after the
17668          * basic Ethernet header
17669          */
17670         if (IS_MF_AFEX(sc)) {
17671             REG_WR(sc, SC_PORT(sc) ?
17672                    NIG_REG_P1_HDRS_AFTER_BASIC :
17673                    NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17674         } else {
17675             REG_WR(sc, SC_PORT(sc) ?
17676                    NIG_REG_P1_HDRS_AFTER_BASIC :
17677                    NIG_REG_P0_HDRS_AFTER_BASIC,
17678                    IS_MF_SD(sc) ? 7 : 6);
17679         }
17680 
17681         if (CHIP_IS_E3(sc)) {
17682             REG_WR(sc, SC_PORT(sc) ?
17683                    NIG_REG_LLH1_MF_MODE :
17684                    NIG_REG_LLH_MF_MODE, IS_MF(sc));
17685         }
17686     }
17687     if (!CHIP_IS_E3(sc)) {
17688         REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17689     }
17690 
17691     if (!CHIP_IS_E1(sc)) {
17692         /* 0x2 disable mf_ov, 0x1 enable */
17693         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17694                (IS_MF_SD(sc) ? 0x1 : 0x2));
17695 
17696         if (!CHIP_IS_E1x(sc)) {
17697             val = 0;
17698             switch (sc->devinfo.mf_info.mf_mode) {
17699             case MULTI_FUNCTION_SD:
17700                 val = 1;
17701                 break;
17702             case MULTI_FUNCTION_SI:
17703             case MULTI_FUNCTION_AFEX:
17704                 val = 2;
17705                 break;
17706             }
17707 
17708             REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17709                         NIG_REG_LLH0_CLS_TYPE), val);
17710         }
17711         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17712         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17713         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17714     }
17715 
17716     /* If SPIO5 is set to generate interrupts, enable it for this port */
17717     val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17718     if (val & MISC_SPIO_SPIO5) {
17719         uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17720                                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17721         val = REG_RD(sc, reg_addr);
17722         val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17723         REG_WR(sc, reg_addr, val);
17724     }
17725 
17726     return (0);
17727 }
17728 
17729 static uint32_t
17730 bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17731                        uint32_t         reg,
17732                        uint32_t         expected,
17733                        uint32_t         poll_count)
17734 {
17735     uint32_t cur_cnt = poll_count;
17736     uint32_t val;
17737 
17738     while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17739         DELAY(FLR_WAIT_INTERVAL);
17740     }
17741 
17742     return (val);
17743 }
17744 
17745 static int
17746 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17747                               uint32_t         reg,
17748                               char             *msg,
17749                               uint32_t         poll_cnt)
17750 {
17751     uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17752 
17753     if (val != 0) {
17754         BLOGE(sc, "%s usage count=%d\n", msg, val);
17755         return (1);
17756     }
17757 
17758     return (0);
17759 }
17760 
17761 /* Common routines with VF FLR cleanup */
17762 static uint32_t
17763 bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17764 {
17765     /* adjust polling timeout */
17766     if (CHIP_REV_IS_EMUL(sc)) {
17767         return (FLR_POLL_CNT * 2000);
17768     }
17769 
17770     if (CHIP_REV_IS_FPGA(sc)) {
17771         return (FLR_POLL_CNT * 120);
17772     }
17773 
17774     return (FLR_POLL_CNT);
17775 }
17776 
17777 static int
17778 bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17779                            uint32_t         poll_cnt)
17780 {
17781     /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17782     if (bxe_flr_clnup_poll_hw_counter(sc,
17783                                       CFC_REG_NUM_LCIDS_INSIDE_PF,
17784                                       "CFC PF usage counter timed out",
17785                                       poll_cnt)) {
17786         return (1);
17787     }
17788 
17789     /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17790     if (bxe_flr_clnup_poll_hw_counter(sc,
17791                                       DORQ_REG_PF_USAGE_CNT,
17792                                       "DQ PF usage counter timed out",
17793                                       poll_cnt)) {
17794         return (1);
17795     }
17796 
17797     /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17798     if (bxe_flr_clnup_poll_hw_counter(sc,
17799                                       QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17800                                       "QM PF usage counter timed out",
17801                                       poll_cnt)) {
17802         return (1);
17803     }
17804 
17805     /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17806     if (bxe_flr_clnup_poll_hw_counter(sc,
17807                                       TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17808                                       "Timers VNIC usage counter timed out",
17809                                       poll_cnt)) {
17810         return (1);
17811     }
17812 
17813     if (bxe_flr_clnup_poll_hw_counter(sc,
17814                                       TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17815                                       "Timers NUM_SCANS usage counter timed out",
17816                                       poll_cnt)) {
17817         return (1);
17818     }
17819 
17820     /* Wait DMAE PF usage counter to zero */
17821     if (bxe_flr_clnup_poll_hw_counter(sc,
17822                                       dmae_reg_go_c[INIT_DMAE_C(sc)],
17823                                       "DMAE dommand register timed out",
17824                                       poll_cnt)) {
17825         return (1);
17826     }
17827 
17828     return (0);
17829 }
17830 
17831 #define OP_GEN_PARAM(param)                                            \
17832     (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17833 #define OP_GEN_TYPE(type)                                           \
17834     (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17835 #define OP_GEN_AGG_VECT(index)                                             \
17836     (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17837 
17838 static int
17839 bxe_send_final_clnup(struct bxe_softc *sc,
17840                      uint8_t          clnup_func,
17841                      uint32_t         poll_cnt)
17842 {
17843     uint32_t op_gen_command = 0;
17844     uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17845                           CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17846     int ret = 0;
17847 
17848     if (REG_RD(sc, comp_addr)) {
17849         BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17850         return (1);
17851     }
17852 
17853     op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17854     op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17855     op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17856     op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17857 
17858     BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17859     REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17860 
17861     if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17862         BLOGE(sc, "FW final cleanup did not succeed\n");
17863         BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17864               (REG_RD(sc, comp_addr)));
17865         bxe_panic(sc, ("FLR cleanup failed\n"));
17866         return (1);
17867     }
17868 
17869     /* Zero completion for nxt FLR */
17870     REG_WR(sc, comp_addr, 0);
17871 
17872     return (ret);
17873 }
17874 
17875 static void
17876 bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
17877                        struct pbf_pN_buf_regs *regs,
17878                        uint32_t               poll_count)
17879 {
17880     uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17881     uint32_t cur_cnt = poll_count;
17882 
17883     crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17884     crd = crd_start = REG_RD(sc, regs->crd);
17885     init_crd = REG_RD(sc, regs->init_crd);
17886 
17887     BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17888     BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
17889     BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17890 
17891     while ((crd != init_crd) &&
17892            ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17893             (init_crd - crd_start))) {
17894         if (cur_cnt--) {
17895             DELAY(FLR_WAIT_INTERVAL);
17896             crd = REG_RD(sc, regs->crd);
17897             crd_freed = REG_RD(sc, regs->crd_freed);
17898         } else {
17899             BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17900             BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
17901             BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17902             break;
17903         }
17904     }
17905 
17906     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17907           poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17908 }
17909 
17910 static void
17911 bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
17912                        struct pbf_pN_cmd_regs *regs,
17913                        uint32_t               poll_count)
17914 {
17915     uint32_t occup, to_free, freed, freed_start;
17916     uint32_t cur_cnt = poll_count;
17917 
17918     occup = to_free = REG_RD(sc, regs->lines_occup);
17919     freed = freed_start = REG_RD(sc, regs->lines_freed);
17920 
17921     BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17922     BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17923 
17924     while (occup &&
17925            ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17926         if (cur_cnt--) {
17927             DELAY(FLR_WAIT_INTERVAL);
17928             occup = REG_RD(sc, regs->lines_occup);
17929             freed = REG_RD(sc, regs->lines_freed);
17930         } else {
17931             BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17932             BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
17933             BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17934             break;
17935         }
17936     }
17937 
17938     BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17939           poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17940 }
17941 
17942 static void
17943 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17944 {
17945     struct pbf_pN_cmd_regs cmd_regs[] = {
17946         {0, (CHIP_IS_E3B0(sc)) ?
17947             PBF_REG_TQ_OCCUPANCY_Q0 :
17948             PBF_REG_P0_TQ_OCCUPANCY,
17949             (CHIP_IS_E3B0(sc)) ?
17950             PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17951             PBF_REG_P0_TQ_LINES_FREED_CNT},
17952         {1, (CHIP_IS_E3B0(sc)) ?
17953             PBF_REG_TQ_OCCUPANCY_Q1 :
17954             PBF_REG_P1_TQ_OCCUPANCY,
17955             (CHIP_IS_E3B0(sc)) ?
17956             PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17957             PBF_REG_P1_TQ_LINES_FREED_CNT},
17958         {4, (CHIP_IS_E3B0(sc)) ?
17959             PBF_REG_TQ_OCCUPANCY_LB_Q :
17960             PBF_REG_P4_TQ_OCCUPANCY,
17961             (CHIP_IS_E3B0(sc)) ?
17962             PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17963             PBF_REG_P4_TQ_LINES_FREED_CNT}
17964     };
17965 
17966     struct pbf_pN_buf_regs buf_regs[] = {
17967         {0, (CHIP_IS_E3B0(sc)) ?
17968             PBF_REG_INIT_CRD_Q0 :
17969             PBF_REG_P0_INIT_CRD ,
17970             (CHIP_IS_E3B0(sc)) ?
17971             PBF_REG_CREDIT_Q0 :
17972             PBF_REG_P0_CREDIT,
17973             (CHIP_IS_E3B0(sc)) ?
17974             PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17975             PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17976         {1, (CHIP_IS_E3B0(sc)) ?
17977             PBF_REG_INIT_CRD_Q1 :
17978             PBF_REG_P1_INIT_CRD,
17979             (CHIP_IS_E3B0(sc)) ?
17980             PBF_REG_CREDIT_Q1 :
17981             PBF_REG_P1_CREDIT,
17982             (CHIP_IS_E3B0(sc)) ?
17983             PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17984             PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17985         {4, (CHIP_IS_E3B0(sc)) ?
17986             PBF_REG_INIT_CRD_LB_Q :
17987             PBF_REG_P4_INIT_CRD,
17988             (CHIP_IS_E3B0(sc)) ?
17989             PBF_REG_CREDIT_LB_Q :
17990             PBF_REG_P4_CREDIT,
17991             (CHIP_IS_E3B0(sc)) ?
17992             PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17993             PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17994     };
17995 
17996     int i;
17997 
17998     /* Verify the command queues are flushed P0, P1, P4 */
17999     for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18000         bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18001     }
18002 
18003     /* Verify the transmission buffers are flushed P0, P1, P4 */
18004     for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18005         bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18006     }
18007 }
18008 
18009 static void
18010 bxe_hw_enable_status(struct bxe_softc *sc)
18011 {
18012     uint32_t val;
18013 
18014     val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18015     BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18016 
18017     val = REG_RD(sc, PBF_REG_DISABLE_PF);
18018     BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18019 
18020     val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18021     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18022 
18023     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18024     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18025 
18026     val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18027     BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18028 
18029     val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18030     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18031 
18032     val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18033     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18034 
18035     val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18036     BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18037 }
18038 
18039 static int
18040 bxe_pf_flr_clnup(struct bxe_softc *sc)
18041 {
18042     uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18043 
18044     BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18045 
18046     /* Re-enable PF target read access */
18047     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18048 
18049     /* Poll HW usage counters */
18050     BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18051     if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18052         return (-1);
18053     }
18054 
18055     /* Zero the igu 'trailing edge' and 'leading edge' */
18056 
18057     /* Send the FW cleanup command */
18058     if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18059         return (-1);
18060     }
18061 
18062     /* ATC cleanup */
18063 
18064     /* Verify TX hw is flushed */
18065     bxe_tx_hw_flushed(sc, poll_cnt);
18066 
18067     /* Wait 100ms (not adjusted according to platform) */
18068     DELAY(100000);
18069 
18070     /* Verify no pending pci transactions */
18071     if (bxe_is_pcie_pending(sc)) {
18072         BLOGE(sc, "PCIE Transactions still pending\n");
18073     }
18074 
18075     /* Debug */
18076     bxe_hw_enable_status(sc);
18077 
18078     /*
18079      * Master enable - Due to WB DMAE writes performed before this
18080      * register is re-initialized as part of the regular function init
18081      */
18082     REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18083 
18084     return (0);
18085 }
18086 
18087 static int
18088 bxe_init_hw_func(struct bxe_softc *sc)
18089 {
18090     int port = SC_PORT(sc);
18091     int func = SC_FUNC(sc);
18092     int init_phase = PHASE_PF0 + func;
18093     struct ecore_ilt *ilt = sc->ilt;
18094     uint16_t cdu_ilt_start;
18095     uint32_t addr, val;
18096     uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18097     int i, main_mem_width, rc;
18098 
18099     BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18100 
18101     /* FLR cleanup */
18102     if (!CHIP_IS_E1x(sc)) {
18103         rc = bxe_pf_flr_clnup(sc);
18104         if (rc) {
18105             BLOGE(sc, "FLR cleanup failed!\n");
18106             // XXX bxe_fw_dump(sc);
18107             // XXX bxe_idle_chk(sc);
18108             return (rc);
18109         }
18110     }
18111 
18112     /* set MSI reconfigure capability */
18113     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18114         addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18115         val = REG_RD(sc, addr);
18116         val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18117         REG_WR(sc, addr, val);
18118     }
18119 
18120     ecore_init_block(sc, BLOCK_PXP, init_phase);
18121     ecore_init_block(sc, BLOCK_PXP2, init_phase);
18122 
18123     ilt = sc->ilt;
18124     cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18125 
18126     for (i = 0; i < L2_ILT_LINES(sc); i++) {
18127         ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18128         ilt->lines[cdu_ilt_start + i].page_mapping =
18129             sc->context[i].vcxt_dma.paddr;
18130         ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18131     }
18132     ecore_ilt_init_op(sc, INITOP_SET);
18133 
18134     /* Set NIC mode */
18135     REG_WR(sc, PRS_REG_NIC_MODE, 1);
18136     BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18137 
18138     if (!CHIP_IS_E1x(sc)) {
18139         uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18140 
18141         /* Turn on a single ISR mode in IGU if driver is going to use
18142          * INT#x or MSI
18143          */
18144         if (sc->interrupt_mode != INTR_MODE_MSIX) {
18145             pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18146         }
18147 
18148         /*
18149          * Timers workaround bug: function init part.
18150          * Need to wait 20msec after initializing ILT,
18151          * needed to make sure there are no requests in
18152          * one of the PXP internal queues with "old" ILT addresses
18153          */
18154         DELAY(20000);
18155 
18156         /*
18157          * Master enable - Due to WB DMAE writes performed before this
18158          * register is re-initialized as part of the regular function
18159          * init
18160          */
18161         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18162         /* Enable the function in IGU */
18163         REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18164     }
18165 
18166     sc->dmae_ready = 1;
18167 
18168     ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18169 
18170     if (!CHIP_IS_E1x(sc))
18171         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18172 
18173     ecore_init_block(sc, BLOCK_ATC, init_phase);
18174     ecore_init_block(sc, BLOCK_DMAE, init_phase);
18175     ecore_init_block(sc, BLOCK_NIG, init_phase);
18176     ecore_init_block(sc, BLOCK_SRC, init_phase);
18177     ecore_init_block(sc, BLOCK_MISC, init_phase);
18178     ecore_init_block(sc, BLOCK_TCM, init_phase);
18179     ecore_init_block(sc, BLOCK_UCM, init_phase);
18180     ecore_init_block(sc, BLOCK_CCM, init_phase);
18181     ecore_init_block(sc, BLOCK_XCM, init_phase);
18182     ecore_init_block(sc, BLOCK_TSEM, init_phase);
18183     ecore_init_block(sc, BLOCK_USEM, init_phase);
18184     ecore_init_block(sc, BLOCK_CSEM, init_phase);
18185     ecore_init_block(sc, BLOCK_XSEM, init_phase);
18186 
18187     if (!CHIP_IS_E1x(sc))
18188         REG_WR(sc, QM_REG_PF_EN, 1);
18189 
18190     if (!CHIP_IS_E1x(sc)) {
18191         REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18192         REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18193         REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18194         REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18195     }
18196     ecore_init_block(sc, BLOCK_QM, init_phase);
18197 
18198     ecore_init_block(sc, BLOCK_TM, init_phase);
18199     ecore_init_block(sc, BLOCK_DORQ, init_phase);
18200 
18201     bxe_iov_init_dq(sc);
18202 
18203     ecore_init_block(sc, BLOCK_BRB1, init_phase);
18204     ecore_init_block(sc, BLOCK_PRS, init_phase);
18205     ecore_init_block(sc, BLOCK_TSDM, init_phase);
18206     ecore_init_block(sc, BLOCK_CSDM, init_phase);
18207     ecore_init_block(sc, BLOCK_USDM, init_phase);
18208     ecore_init_block(sc, BLOCK_XSDM, init_phase);
18209     ecore_init_block(sc, BLOCK_UPB, init_phase);
18210     ecore_init_block(sc, BLOCK_XPB, init_phase);
18211     ecore_init_block(sc, BLOCK_PBF, init_phase);
18212     if (!CHIP_IS_E1x(sc))
18213         REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18214 
18215     ecore_init_block(sc, BLOCK_CDU, init_phase);
18216 
18217     ecore_init_block(sc, BLOCK_CFC, init_phase);
18218 
18219     if (!CHIP_IS_E1x(sc))
18220         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18221 
18222     if (IS_MF(sc)) {
18223         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18224         REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18225     }
18226 
18227     ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18228 
18229     /* HC init per function */
18230     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18231         if (CHIP_IS_E1H(sc)) {
18232             REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18233 
18234             REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18235             REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18236         }
18237         ecore_init_block(sc, BLOCK_HC, init_phase);
18238 
18239     } else {
18240         int num_segs, sb_idx, prod_offset;
18241 
18242         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18243 
18244         if (!CHIP_IS_E1x(sc)) {
18245             REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18246             REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18247         }
18248 
18249         ecore_init_block(sc, BLOCK_IGU, init_phase);
18250 
18251         if (!CHIP_IS_E1x(sc)) {
18252             int dsb_idx = 0;
18253             /**
18254              * Producer memory:
18255              * E2 mode: address 0-135 match to the mapping memory;
18256              * 136 - PF0 default prod; 137 - PF1 default prod;
18257              * 138 - PF2 default prod; 139 - PF3 default prod;
18258              * 140 - PF0 attn prod;    141 - PF1 attn prod;
18259              * 142 - PF2 attn prod;    143 - PF3 attn prod;
18260              * 144-147 reserved.
18261              *
18262              * E1.5 mode - In backward compatible mode;
18263              * for non default SB; each even line in the memory
18264              * holds the U producer and each odd line hold
18265              * the C producer. The first 128 producers are for
18266              * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18267              * producers are for the DSB for each PF.
18268              * Each PF has five segments: (the order inside each
18269              * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18270              * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18271              * 144-147 attn prods;
18272              */
18273             /* non-default-status-blocks */
18274             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18275                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18276             for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18277                 prod_offset = (sc->igu_base_sb + sb_idx) *
18278                     num_segs;
18279 
18280                 for (i = 0; i < num_segs; i++) {
18281                     addr = IGU_REG_PROD_CONS_MEMORY +
18282                             (prod_offset + i) * 4;
18283                     REG_WR(sc, addr, 0);
18284                 }
18285                 /* send consumer update with value 0 */
18286                 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18287                            USTORM_ID, 0, IGU_INT_NOP, 1);
18288                 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18289             }
18290 
18291             /* default-status-blocks */
18292             num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18293                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18294 
18295             if (CHIP_IS_MODE_4_PORT(sc))
18296                 dsb_idx = SC_FUNC(sc);
18297             else
18298                 dsb_idx = SC_VN(sc);
18299 
18300             prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18301                        IGU_BC_BASE_DSB_PROD + dsb_idx :
18302                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
18303 
18304             /*
18305              * igu prods come in chunks of E1HVN_MAX (4) -
18306              * does not matters what is the current chip mode
18307              */
18308             for (i = 0; i < (num_segs * E1HVN_MAX);
18309                  i += E1HVN_MAX) {
18310                 addr = IGU_REG_PROD_CONS_MEMORY +
18311                             (prod_offset + i)*4;
18312                 REG_WR(sc, addr, 0);
18313             }
18314             /* send consumer update with 0 */
18315             if (CHIP_INT_MODE_IS_BC(sc)) {
18316                 bxe_ack_sb(sc, sc->igu_dsb_id,
18317                            USTORM_ID, 0, IGU_INT_NOP, 1);
18318                 bxe_ack_sb(sc, sc->igu_dsb_id,
18319                            CSTORM_ID, 0, IGU_INT_NOP, 1);
18320                 bxe_ack_sb(sc, sc->igu_dsb_id,
18321                            XSTORM_ID, 0, IGU_INT_NOP, 1);
18322                 bxe_ack_sb(sc, sc->igu_dsb_id,
18323                            TSTORM_ID, 0, IGU_INT_NOP, 1);
18324                 bxe_ack_sb(sc, sc->igu_dsb_id,
18325                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18326             } else {
18327                 bxe_ack_sb(sc, sc->igu_dsb_id,
18328                            USTORM_ID, 0, IGU_INT_NOP, 1);
18329                 bxe_ack_sb(sc, sc->igu_dsb_id,
18330                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
18331             }
18332             bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18333 
18334             /* !!! these should become driver const once
18335                rf-tool supports split-68 const */
18336             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18337             REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18338             REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18339             REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18340             REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18341             REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18342         }
18343     }
18344 
18345     /* Reset PCIE errors for debug */
18346     REG_WR(sc, 0x2114, 0xffffffff);
18347     REG_WR(sc, 0x2120, 0xffffffff);
18348 
18349     if (CHIP_IS_E1x(sc)) {
18350         main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18351         main_mem_base = HC_REG_MAIN_MEMORY +
18352                 SC_PORT(sc) * (main_mem_size * 4);
18353         main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18354         main_mem_width = 8;
18355 
18356         val = REG_RD(sc, main_mem_prty_clr);
18357         if (val) {
18358             BLOGD(sc, DBG_LOAD,
18359                   "Parity errors in HC block during function init (0x%x)!\n",
18360                   val);
18361         }
18362 
18363         /* Clear "false" parity errors in MSI-X table */
18364         for (i = main_mem_base;
18365              i < main_mem_base + main_mem_size * 4;
18366              i += main_mem_width) {
18367             bxe_read_dmae(sc, i, main_mem_width / 4);
18368             bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18369                            i, main_mem_width / 4);
18370         }
18371         /* Clear HC parity attention */
18372         REG_RD(sc, main_mem_prty_clr);
18373     }
18374 
18375 #if 1
18376     /* Enable STORMs SP logging */
18377     REG_WR8(sc, BAR_USTRORM_INTMEM +
18378            USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18379     REG_WR8(sc, BAR_TSTRORM_INTMEM +
18380            TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18381     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18382            CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18383     REG_WR8(sc, BAR_XSTRORM_INTMEM +
18384            XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18385 #endif
18386 
18387     elink_phy_probe(&sc->link_params);
18388 
18389     return (0);
18390 }
18391 
18392 static void
18393 bxe_link_reset(struct bxe_softc *sc)
18394 {
18395     if (!BXE_NOMCP(sc)) {
18396 	bxe_acquire_phy_lock(sc);
18397         elink_lfa_reset(&sc->link_params, &sc->link_vars);
18398 	bxe_release_phy_lock(sc);
18399     } else {
18400         if (!CHIP_REV_IS_SLOW(sc)) {
18401             BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18402         }
18403     }
18404 }
18405 
18406 static void
18407 bxe_reset_port(struct bxe_softc *sc)
18408 {
18409     int port = SC_PORT(sc);
18410     uint32_t val;
18411 
18412 	ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18413     /* reset physical Link */
18414     bxe_link_reset(sc);
18415 
18416     REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18417 
18418     /* Do not rcv packets to BRB */
18419     REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18420     /* Do not direct rcv packets that are not for MCP to the BRB */
18421     REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18422                NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18423 
18424     /* Configure AEU */
18425     REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18426 
18427     DELAY(100000);
18428 
18429     /* Check for BRB port occupancy */
18430     val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18431     if (val) {
18432         BLOGD(sc, DBG_LOAD,
18433               "BRB1 is not empty, %d blocks are occupied\n", val);
18434     }
18435 
18436     /* TODO: Close Doorbell port? */
18437 }
18438 
18439 static void
18440 bxe_ilt_wr(struct bxe_softc *sc,
18441            uint32_t         index,
18442            bus_addr_t       addr)
18443 {
18444     int reg;
18445     uint32_t wb_write[2];
18446 
18447     if (CHIP_IS_E1(sc)) {
18448         reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18449     } else {
18450         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18451     }
18452 
18453     wb_write[0] = ONCHIP_ADDR1(addr);
18454     wb_write[1] = ONCHIP_ADDR2(addr);
18455     REG_WR_DMAE(sc, reg, wb_write, 2);
18456 }
18457 
18458 static void
18459 bxe_clear_func_ilt(struct bxe_softc *sc,
18460                    uint32_t         func)
18461 {
18462     uint32_t i, base = FUNC_ILT_BASE(func);
18463     for (i = base; i < base + ILT_PER_FUNC; i++) {
18464         bxe_ilt_wr(sc, i, 0);
18465     }
18466 }
18467 
18468 static void
18469 bxe_reset_func(struct bxe_softc *sc)
18470 {
18471     struct bxe_fastpath *fp;
18472     int port = SC_PORT(sc);
18473     int func = SC_FUNC(sc);
18474     int i;
18475 
18476     /* Disable the function in the FW */
18477     REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18478     REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18479     REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18480     REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18481 
18482     /* FP SBs */
18483     FOR_EACH_ETH_QUEUE(sc, i) {
18484         fp = &sc->fp[i];
18485         REG_WR8(sc, BAR_CSTRORM_INTMEM +
18486                 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18487                 SB_DISABLED);
18488     }
18489 
18490     /* SP SB */
18491     REG_WR8(sc, BAR_CSTRORM_INTMEM +
18492             CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18493             SB_DISABLED);
18494 
18495     for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18496         REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18497     }
18498 
18499     /* Configure IGU */
18500     if (sc->devinfo.int_block == INT_BLOCK_HC) {
18501         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18502         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18503     } else {
18504         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18505         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18506     }
18507 
18508     if (CNIC_LOADED(sc)) {
18509         /* Disable Timer scan */
18510         REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18511         /*
18512          * Wait for at least 10ms and up to 2 second for the timers
18513          * scan to complete
18514          */
18515         for (i = 0; i < 200; i++) {
18516             DELAY(10000);
18517             if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18518                 break;
18519         }
18520     }
18521 
18522     /* Clear ILT */
18523     bxe_clear_func_ilt(sc, func);
18524 
18525     /*
18526      * Timers workaround bug for E2: if this is vnic-3,
18527      * we need to set the entire ilt range for this timers.
18528      */
18529     if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18530         struct ilt_client_info ilt_cli;
18531         /* use dummy TM client */
18532         memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18533         ilt_cli.start = 0;
18534         ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18535         ilt_cli.client_num = ILT_CLIENT_TM;
18536 
18537         ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18538     }
18539 
18540     /* this assumes that reset_port() called before reset_func()*/
18541     if (!CHIP_IS_E1x(sc)) {
18542         bxe_pf_disable(sc);
18543     }
18544 
18545     sc->dmae_ready = 0;
18546 }
18547 
18548 static int
18549 bxe_gunzip_init(struct bxe_softc *sc)
18550 {
18551     return (0);
18552 }
18553 
18554 static void
18555 bxe_gunzip_end(struct bxe_softc *sc)
18556 {
18557     return;
18558 }
18559 
18560 static int
18561 bxe_init_firmware(struct bxe_softc *sc)
18562 {
18563     if (CHIP_IS_E1(sc)) {
18564         ecore_init_e1_firmware(sc);
18565         sc->iro_array = e1_iro_arr;
18566     } else if (CHIP_IS_E1H(sc)) {
18567         ecore_init_e1h_firmware(sc);
18568         sc->iro_array = e1h_iro_arr;
18569     } else if (!CHIP_IS_E1x(sc)) {
18570         ecore_init_e2_firmware(sc);
18571         sc->iro_array = e2_iro_arr;
18572     } else {
18573         BLOGE(sc, "Unsupported chip revision\n");
18574         return (-1);
18575     }
18576 
18577     return (0);
18578 }
18579 
18580 static void
18581 bxe_release_firmware(struct bxe_softc *sc)
18582 {
18583     /* Do nothing */
18584     return;
18585 }
18586 
18587 static int
18588 ecore_gunzip(struct bxe_softc *sc,
18589              const uint8_t    *zbuf,
18590              int              len)
18591 {
18592     /* XXX : Implement... */
18593     BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18594     return (FALSE);
18595 }
18596 
18597 static void
18598 ecore_reg_wr_ind(struct bxe_softc *sc,
18599                  uint32_t         addr,
18600                  uint32_t         val)
18601 {
18602     bxe_reg_wr_ind(sc, addr, val);
18603 }
18604 
18605 static void
18606 ecore_write_dmae_phys_len(struct bxe_softc *sc,
18607                           bus_addr_t       phys_addr,
18608                           uint32_t         addr,
18609                           uint32_t         len)
18610 {
18611     bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18612 }
18613 
18614 void
18615 ecore_storm_memset_struct(struct bxe_softc *sc,
18616                           uint32_t         addr,
18617                           size_t           size,
18618                           uint32_t         *data)
18619 {
18620     uint8_t i;
18621     for (i = 0; i < size/4; i++) {
18622         REG_WR(sc, addr + (i * 4), data[i]);
18623     }
18624 }
18625 
18626 
18627 /*
18628  * character device - ioctl interface definitions
18629  */
18630 
18631 
18632 #include "bxe_dump.h"
18633 #include "bxe_ioctl.h"
18634 #include <sys/conf.h>
18635 
18636 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18637                 struct thread *td);
18638 
18639 static struct cdevsw bxe_cdevsw = {
18640     .d_version = D_VERSION,
18641     .d_ioctl = bxe_eioctl,
18642     .d_name = "bxecnic",
18643 };
18644 
18645 #define BXE_PATH(sc)    (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18646 
18647 
18648 #define DUMP_ALL_PRESETS        0x1FFF
18649 #define DUMP_MAX_PRESETS        13
18650 #define IS_E1_REG(chips)        ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18651 #define IS_E1H_REG(chips)       ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18652 #define IS_E2_REG(chips)        ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18653 #define IS_E3A0_REG(chips)      ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18654 #define IS_E3B0_REG(chips)      ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18655 
18656 #define IS_REG_IN_PRESET(presets, idx)  \
18657                 ((presets & (1 << (idx-1))) == (1 << (idx-1)))
18658 
18659 
18660 static int
18661 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18662 {
18663     if (CHIP_IS_E1(sc))
18664         return dump_num_registers[0][preset-1];
18665     else if (CHIP_IS_E1H(sc))
18666         return dump_num_registers[1][preset-1];
18667     else if (CHIP_IS_E2(sc))
18668         return dump_num_registers[2][preset-1];
18669     else if (CHIP_IS_E3A0(sc))
18670         return dump_num_registers[3][preset-1];
18671     else if (CHIP_IS_E3B0(sc))
18672         return dump_num_registers[4][preset-1];
18673     else
18674         return 0;
18675 }
18676 
18677 static int
18678 bxe_get_total_regs_len32(struct bxe_softc *sc)
18679 {
18680     uint32_t preset_idx;
18681     int regdump_len32 = 0;
18682 
18683 
18684     /* Calculate the total preset regs length */
18685     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18686         regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18687     }
18688 
18689     return regdump_len32;
18690 }
18691 
18692 static const uint32_t *
18693 __bxe_get_page_addr_ar(struct bxe_softc *sc)
18694 {
18695     if (CHIP_IS_E2(sc))
18696         return page_vals_e2;
18697     else if (CHIP_IS_E3(sc))
18698         return page_vals_e3;
18699     else
18700         return NULL;
18701 }
18702 
18703 static uint32_t
18704 __bxe_get_page_reg_num(struct bxe_softc *sc)
18705 {
18706     if (CHIP_IS_E2(sc))
18707         return PAGE_MODE_VALUES_E2;
18708     else if (CHIP_IS_E3(sc))
18709         return PAGE_MODE_VALUES_E3;
18710     else
18711         return 0;
18712 }
18713 
18714 static const uint32_t *
18715 __bxe_get_page_write_ar(struct bxe_softc *sc)
18716 {
18717     if (CHIP_IS_E2(sc))
18718         return page_write_regs_e2;
18719     else if (CHIP_IS_E3(sc))
18720         return page_write_regs_e3;
18721     else
18722         return NULL;
18723 }
18724 
18725 static uint32_t
18726 __bxe_get_page_write_num(struct bxe_softc *sc)
18727 {
18728     if (CHIP_IS_E2(sc))
18729         return PAGE_WRITE_REGS_E2;
18730     else if (CHIP_IS_E3(sc))
18731         return PAGE_WRITE_REGS_E3;
18732     else
18733         return 0;
18734 }
18735 
18736 static const struct reg_addr *
18737 __bxe_get_page_read_ar(struct bxe_softc *sc)
18738 {
18739     if (CHIP_IS_E2(sc))
18740         return page_read_regs_e2;
18741     else if (CHIP_IS_E3(sc))
18742         return page_read_regs_e3;
18743     else
18744         return NULL;
18745 }
18746 
18747 static uint32_t
18748 __bxe_get_page_read_num(struct bxe_softc *sc)
18749 {
18750     if (CHIP_IS_E2(sc))
18751         return PAGE_READ_REGS_E2;
18752     else if (CHIP_IS_E3(sc))
18753         return PAGE_READ_REGS_E3;
18754     else
18755         return 0;
18756 }
18757 
18758 static bool
18759 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18760 {
18761     if (CHIP_IS_E1(sc))
18762         return IS_E1_REG(reg_info->chips);
18763     else if (CHIP_IS_E1H(sc))
18764         return IS_E1H_REG(reg_info->chips);
18765     else if (CHIP_IS_E2(sc))
18766         return IS_E2_REG(reg_info->chips);
18767     else if (CHIP_IS_E3A0(sc))
18768         return IS_E3A0_REG(reg_info->chips);
18769     else if (CHIP_IS_E3B0(sc))
18770         return IS_E3B0_REG(reg_info->chips);
18771     else
18772         return 0;
18773 }
18774 
18775 static bool
18776 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18777 {
18778     if (CHIP_IS_E1(sc))
18779         return IS_E1_REG(wreg_info->chips);
18780     else if (CHIP_IS_E1H(sc))
18781         return IS_E1H_REG(wreg_info->chips);
18782     else if (CHIP_IS_E2(sc))
18783         return IS_E2_REG(wreg_info->chips);
18784     else if (CHIP_IS_E3A0(sc))
18785         return IS_E3A0_REG(wreg_info->chips);
18786     else if (CHIP_IS_E3B0(sc))
18787         return IS_E3B0_REG(wreg_info->chips);
18788     else
18789         return 0;
18790 }
18791 
18792 /**
18793  * bxe_read_pages_regs - read "paged" registers
18794  *
18795  * @bp          device handle
18796  * @p           output buffer
18797  *
18798  * Reads "paged" memories: memories that may only be read by first writing to a
18799  * specific address ("write address") and then reading from a specific address
18800  * ("read address"). There may be more than one write address per "page" and
18801  * more than one read address per write address.
18802  */
18803 static void
18804 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18805 {
18806     uint32_t i, j, k, n;
18807 
18808     /* addresses of the paged registers */
18809     const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18810     /* number of paged registers */
18811     int num_pages = __bxe_get_page_reg_num(sc);
18812     /* write addresses */
18813     const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18814     /* number of write addresses */
18815     int write_num = __bxe_get_page_write_num(sc);
18816     /* read addresses info */
18817     const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18818     /* number of read addresses */
18819     int read_num = __bxe_get_page_read_num(sc);
18820     uint32_t addr, size;
18821 
18822     for (i = 0; i < num_pages; i++) {
18823         for (j = 0; j < write_num; j++) {
18824             REG_WR(sc, write_addr[j], page_addr[i]);
18825 
18826             for (k = 0; k < read_num; k++) {
18827                 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18828                     size = read_addr[k].size;
18829                     for (n = 0; n < size; n++) {
18830                         addr = read_addr[k].addr + n*4;
18831                         *p++ = REG_RD(sc, addr);
18832                     }
18833                 }
18834             }
18835         }
18836     }
18837     return;
18838 }
18839 
18840 
18841 static int
18842 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18843 {
18844     uint32_t i, j, addr;
18845     const struct wreg_addr *wreg_addr_p = NULL;
18846 
18847     if (CHIP_IS_E1(sc))
18848         wreg_addr_p = &wreg_addr_e1;
18849     else if (CHIP_IS_E1H(sc))
18850         wreg_addr_p = &wreg_addr_e1h;
18851     else if (CHIP_IS_E2(sc))
18852         wreg_addr_p = &wreg_addr_e2;
18853     else if (CHIP_IS_E3A0(sc))
18854         wreg_addr_p = &wreg_addr_e3;
18855     else if (CHIP_IS_E3B0(sc))
18856         wreg_addr_p = &wreg_addr_e3b0;
18857     else
18858         return (-1);
18859 
18860     /* Read the idle_chk registers */
18861     for (i = 0; i < IDLE_REGS_COUNT; i++) {
18862         if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18863             IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18864             for (j = 0; j < idle_reg_addrs[i].size; j++)
18865                 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18866         }
18867     }
18868 
18869     /* Read the regular registers */
18870     for (i = 0; i < REGS_COUNT; i++) {
18871         if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18872             IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18873             for (j = 0; j < reg_addrs[i].size; j++)
18874                 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18875         }
18876     }
18877 
18878     /* Read the CAM registers */
18879     if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18880         IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18881         for (i = 0; i < wreg_addr_p->size; i++) {
18882             *p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18883 
18884             /* In case of wreg_addr register, read additional
18885                registers from read_regs array
18886              */
18887             for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18888                 addr = *(wreg_addr_p->read_regs);
18889                 *p++ = REG_RD(sc, addr + j*4);
18890             }
18891         }
18892     }
18893 
18894     /* Paged registers are supported in E2 & E3 only */
18895     if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18896         /* Read "paged" registers */
18897         bxe_read_pages_regs(sc, p, preset);
18898     }
18899 
18900     return 0;
18901 }
18902 
18903 int
18904 bxe_grc_dump(struct bxe_softc *sc)
18905 {
18906     int rval = 0;
18907     uint32_t preset_idx;
18908     uint8_t *buf;
18909     uint32_t size;
18910     struct  dump_header *d_hdr;
18911     uint32_t i;
18912     uint32_t reg_val;
18913     uint32_t reg_addr;
18914     uint32_t cmd_offset;
18915     struct ecore_ilt *ilt = SC_ILT(sc);
18916     struct bxe_fastpath *fp;
18917     struct ilt_client_info *ilt_cli;
18918     int grc_dump_size;
18919 
18920 
18921     if (sc->grcdump_done || sc->grcdump_started)
18922 	return (rval);
18923 
18924     sc->grcdump_started = 1;
18925     BLOGI(sc, "Started collecting grcdump\n");
18926 
18927     grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18928                 sizeof(struct  dump_header);
18929 
18930     sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18931 
18932     if (sc->grc_dump == NULL) {
18933         BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18934         return(ENOMEM);
18935     }
18936 
18937 
18938 
18939     /* Disable parity attentions as long as following dump may
18940      * cause false alarms by reading never written registers. We
18941      * will re-enable parity attentions right after the dump.
18942      */
18943 
18944     /* Disable parity on path 0 */
18945     bxe_pretend_func(sc, 0);
18946 
18947     ecore_disable_blocks_parity(sc);
18948 
18949     /* Disable parity on path 1 */
18950     bxe_pretend_func(sc, 1);
18951     ecore_disable_blocks_parity(sc);
18952 
18953     /* Return to current function */
18954     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18955 
18956     buf = sc->grc_dump;
18957     d_hdr = sc->grc_dump;
18958 
18959     d_hdr->header_size = (sizeof(struct  dump_header) >> 2) - 1;
18960     d_hdr->version = BNX2X_DUMP_VERSION;
18961     d_hdr->preset = DUMP_ALL_PRESETS;
18962 
18963     if (CHIP_IS_E1(sc)) {
18964         d_hdr->dump_meta_data = DUMP_CHIP_E1;
18965     } else if (CHIP_IS_E1H(sc)) {
18966         d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18967     } else if (CHIP_IS_E2(sc)) {
18968         d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18969                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18970     } else if (CHIP_IS_E3A0(sc)) {
18971         d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18972                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18973     } else if (CHIP_IS_E3B0(sc)) {
18974         d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18975                 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18976     }
18977 
18978     buf += sizeof(struct  dump_header);
18979 
18980     for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18981 
18982         /* Skip presets with IOR */
18983         if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18984             (preset_idx == 11))
18985             continue;
18986 
18987         rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18988 
18989 	if (rval)
18990             break;
18991 
18992         size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18993 
18994         buf += size;
18995     }
18996 
18997     bxe_pretend_func(sc, 0);
18998     ecore_clear_blocks_parity(sc);
18999     ecore_enable_blocks_parity(sc);
19000 
19001     bxe_pretend_func(sc, 1);
19002     ecore_clear_blocks_parity(sc);
19003     ecore_enable_blocks_parity(sc);
19004 
19005     /* Return to current function */
19006     bxe_pretend_func(sc, SC_ABS_FUNC(sc));
19007 
19008 
19009 
19010     if(sc->state == BXE_STATE_OPEN) {
19011         if(sc->fw_stats_req  != NULL) {
19012     		BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
19013         			(uintmax_t)sc->fw_stats_req_mapping,
19014         			(uintmax_t)sc->fw_stats_data_mapping,
19015         			sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
19016 		}
19017 		if(sc->def_sb != NULL) {
19018 			BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19019         			(void *)sc->def_sb_dma.paddr, sc->def_sb,
19020         			sizeof(struct host_sp_status_block));
19021 		}
19022 		if(sc->eq_dma.vaddr != NULL) {
19023     		BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19024         			(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19025 		}
19026 		if(sc->sp_dma.vaddr != NULL) {
19027     		BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19028         			(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19029         			sizeof(struct bxe_slowpath));
19030 		}
19031 		if(sc->spq_dma.vaddr != NULL) {
19032     		BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19033         			(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19034 		}
19035 		if(sc->gz_buf_dma.vaddr != NULL) {
19036     		BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19037         			(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19038         			FW_BUF_SIZE);
19039 		}
19040     	for (i = 0; i < sc->num_queues; i++) {
19041         	fp = &sc->fp[i];
19042 			if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19043                         fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19044                         fp->rx_sge_dma.vaddr != NULL) {
19045 
19046 				BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19047             			(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19048             			sizeof(union bxe_host_hc_status_block));
19049 				BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19050             			(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19051             			(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
19052         		BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19053             			(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19054             			(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
19055         		BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19056             			(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19057             			(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
19058         		BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19059             			(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19060             			(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
19061     		}
19062 		}
19063 		if(ilt != NULL ) {
19064     		ilt_cli = &ilt->clients[1];
19065 			if(ilt->lines != NULL) {
19066     		for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19067         		BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19068             			(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19069             			((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19070     		}
19071 			}
19072 		}
19073 
19074 
19075     	cmd_offset = DMAE_REG_CMD_MEM;
19076     	for (i = 0; i < 224; i++) {
19077         	reg_addr = (cmd_offset +(i * 4));
19078         	reg_val = REG_RD(sc, reg_addr);
19079         	BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19080             			reg_addr, reg_val);
19081     	}
19082 	}
19083 
19084     BLOGI(sc, "Collection of grcdump done\n");
19085     sc->grcdump_done = 1;
19086     return(rval);
19087 }
19088 
19089 static int
19090 bxe_add_cdev(struct bxe_softc *sc)
19091 {
19092     sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19093 
19094     if (sc->eeprom == NULL) {
19095         BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19096         return (-1);
19097     }
19098 
19099     sc->ioctl_dev = make_dev(&bxe_cdevsw,
19100                             if_getdunit(sc->ifp),
19101                             UID_ROOT,
19102                             GID_WHEEL,
19103                             0600,
19104                             "%s",
19105                             if_name(sc->ifp));
19106 
19107     if (sc->ioctl_dev == NULL) {
19108         free(sc->eeprom, M_DEVBUF);
19109         sc->eeprom = NULL;
19110         return (-1);
19111     }
19112 
19113     sc->ioctl_dev->si_drv1 = sc;
19114 
19115     return (0);
19116 }
19117 
19118 static void
19119 bxe_del_cdev(struct bxe_softc *sc)
19120 {
19121     if (sc->ioctl_dev != NULL)
19122         destroy_dev(sc->ioctl_dev);
19123 
19124     if (sc->eeprom != NULL) {
19125         free(sc->eeprom, M_DEVBUF);
19126         sc->eeprom = NULL;
19127     }
19128     sc->ioctl_dev = NULL;
19129 
19130     return;
19131 }
19132 
19133 static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19134 {
19135 
19136     if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19137         return FALSE;
19138 
19139     return TRUE;
19140 }
19141 
19142 
19143 static int
19144 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19145 {
19146     int rval = 0;
19147 
19148     if(!bxe_is_nvram_accessible(sc)) {
19149         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19150         return (-EAGAIN);
19151     }
19152     rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19153 
19154 
19155    return (rval);
19156 }
19157 
19158 static int
19159 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19160 {
19161     int rval = 0;
19162 
19163     if(!bxe_is_nvram_accessible(sc)) {
19164         BLOGW(sc, "Cannot access eeprom when interface is down\n");
19165         return (-EAGAIN);
19166     }
19167     rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19168 
19169    return (rval);
19170 }
19171 
19172 static int
19173 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
19174 {
19175     int rval = 0;
19176 
19177     switch (eeprom->eeprom_cmd) {
19178 
19179     case BXE_EEPROM_CMD_SET_EEPROM:
19180 
19181         rval = copyin(eeprom->eeprom_data, sc->eeprom,
19182                        eeprom->eeprom_data_len);
19183 
19184         if (rval)
19185             break;
19186 
19187         rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19188                        eeprom->eeprom_data_len);
19189         break;
19190 
19191     case BXE_EEPROM_CMD_GET_EEPROM:
19192 
19193         rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19194                        eeprom->eeprom_data_len);
19195 
19196         if (rval) {
19197             break;
19198         }
19199 
19200         rval = copyout(sc->eeprom, eeprom->eeprom_data,
19201                        eeprom->eeprom_data_len);
19202         break;
19203 
19204     default:
19205             rval = EINVAL;
19206             break;
19207     }
19208 
19209     if (rval) {
19210         BLOGW(sc, "ioctl cmd %d  failed rval %d\n", eeprom->eeprom_cmd, rval);
19211     }
19212 
19213     return (rval);
19214 }
19215 
19216 static int
19217 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
19218 {
19219     uint32_t ext_phy_config;
19220     int port = SC_PORT(sc);
19221     int cfg_idx = bxe_get_link_cfg_idx(sc);
19222 
19223     dev_p->supported = sc->port.supported[cfg_idx] |
19224             (sc->port.supported[cfg_idx ^ 1] &
19225             (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
19226     dev_p->advertising = sc->port.advertising[cfg_idx];
19227     if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
19228         ELINK_ETH_PHY_SFP_1G_FIBER) {
19229         dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
19230         dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
19231     }
19232     if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19233         !(sc->flags & BXE_MF_FUNC_DIS)) {
19234         dev_p->duplex = sc->link_vars.duplex;
19235         if (IS_MF(sc) && !BXE_NOMCP(sc))
19236             dev_p->speed = bxe_get_mf_speed(sc);
19237         else
19238             dev_p->speed = sc->link_vars.line_speed;
19239     } else {
19240         dev_p->duplex = DUPLEX_UNKNOWN;
19241         dev_p->speed = SPEED_UNKNOWN;
19242     }
19243 
19244     dev_p->port = bxe_media_detect(sc);
19245 
19246     ext_phy_config = SHMEM_RD(sc,
19247                          dev_info.port_hw_config[port].external_phy_config);
19248     if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19249         PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
19250         dev_p->phy_address =  sc->port.phy_addr;
19251     else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19252             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
19253         ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19254             PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
19255         dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19256     else
19257         dev_p->phy_address = 0;
19258 
19259     if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19260         dev_p->autoneg = AUTONEG_ENABLE;
19261     else
19262        dev_p->autoneg = AUTONEG_DISABLE;
19263 
19264 
19265     return 0;
19266 }
19267 
19268 static int
19269 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19270         struct thread *td)
19271 {
19272     struct bxe_softc    *sc;
19273     int                 rval = 0;
19274     bxe_grcdump_t       *dump = NULL;
19275     int grc_dump_size;
19276     bxe_drvinfo_t   *drv_infop = NULL;
19277     bxe_dev_setting_t  *dev_p;
19278     bxe_dev_setting_t  dev_set;
19279     bxe_get_regs_t  *reg_p;
19280     bxe_reg_rdw_t *reg_rdw_p;
19281     bxe_pcicfg_rdw_t *cfg_rdw_p;
19282     bxe_perm_mac_addr_t *mac_addr_p;
19283 
19284 
19285     if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19286         return ENXIO;
19287 
19288     dump = (bxe_grcdump_t *)data;
19289 
19290     switch(cmd) {
19291 
19292         case BXE_GRC_DUMP_SIZE:
19293             dump->pci_func = sc->pcie_func;
19294             dump->grcdump_size =
19295                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19296                      sizeof(struct  dump_header);
19297             break;
19298 
19299         case BXE_GRC_DUMP:
19300 
19301             grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19302                                 sizeof(struct  dump_header);
19303             if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19304                 (dump->grcdump_size < grc_dump_size)) {
19305                 rval = EINVAL;
19306                 break;
19307             }
19308 
19309             if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19310                 (!sc->grcdump_started)) {
19311                 rval =  bxe_grc_dump(sc);
19312             }
19313 
19314             if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19315                 (sc->grc_dump != NULL))  {
19316                 dump->grcdump_dwords = grc_dump_size >> 2;
19317                 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19318                 free(sc->grc_dump, M_DEVBUF);
19319                 sc->grc_dump = NULL;
19320                 sc->grcdump_started = 0;
19321                 sc->grcdump_done = 0;
19322             }
19323 
19324             break;
19325 
19326         case BXE_DRV_INFO:
19327             drv_infop = (bxe_drvinfo_t *)data;
19328             snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19329             snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19330                 BXE_DRIVER_VERSION);
19331             snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19332                 sc->devinfo.bc_ver_str);
19333             snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19334                 "%s", sc->fw_ver_str);
19335             drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19336             drv_infop->reg_dump_len =
19337                 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19338                     + sizeof(struct  dump_header);
19339             snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19340                 sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19341             break;
19342 
19343         case BXE_DEV_SETTING:
19344             dev_p = (bxe_dev_setting_t *)data;
19345             bxe_get_settings(sc, &dev_set);
19346             dev_p->supported = dev_set.supported;
19347             dev_p->advertising = dev_set.advertising;
19348             dev_p->speed = dev_set.speed;
19349             dev_p->duplex = dev_set.duplex;
19350             dev_p->port = dev_set.port;
19351             dev_p->phy_address = dev_set.phy_address;
19352             dev_p->autoneg = dev_set.autoneg;
19353 
19354             break;
19355 
19356         case BXE_GET_REGS:
19357 
19358             reg_p = (bxe_get_regs_t *)data;
19359             grc_dump_size = reg_p->reg_buf_len;
19360 
19361             if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19362                 bxe_grc_dump(sc);
19363             }
19364             if((sc->grcdump_done) && (sc->grcdump_started) &&
19365                 (sc->grc_dump != NULL))  {
19366                 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19367                 free(sc->grc_dump, M_DEVBUF);
19368                 sc->grc_dump = NULL;
19369                 sc->grcdump_started = 0;
19370                 sc->grcdump_done = 0;
19371             }
19372 
19373             break;
19374 
19375         case BXE_RDW_REG:
19376             reg_rdw_p = (bxe_reg_rdw_t *)data;
19377             if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19378                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19379                 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19380 
19381             if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19382                 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19383                 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19384 
19385             break;
19386 
19387         case BXE_RDW_PCICFG:
19388             cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19389             if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19390 
19391                 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19392                                          cfg_rdw_p->cfg_width);
19393 
19394             } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19395                 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19396                             cfg_rdw_p->cfg_width);
19397             } else {
19398                 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19399             }
19400             break;
19401 
19402         case BXE_MAC_ADDR:
19403             mac_addr_p = (bxe_perm_mac_addr_t *)data;
19404             snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19405                 sc->mac_addr_str);
19406             break;
19407 
19408         case BXE_EEPROM:
19409             rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19410             break;
19411 
19412 
19413         default:
19414             break;
19415     }
19416 
19417     return (rval);
19418 }
19419 
19420 #ifdef DEBUGNET
19421 static void
19422 bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
19423 {
19424 	struct bxe_softc *sc;
19425 
19426 	sc = if_getsoftc(ifp);
19427 	BXE_CORE_LOCK(sc);
19428 	*nrxr = sc->num_queues;
19429 	*ncl = DEBUGNET_MAX_IN_FLIGHT;
19430 	*clsize = sc->fp[0].mbuf_alloc_size;
19431 	BXE_CORE_UNLOCK(sc);
19432 }
19433 
19434 static void
19435 bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
19436 {
19437 }
19438 
19439 static int
19440 bxe_debugnet_transmit(if_t ifp, struct mbuf *m)
19441 {
19442 	struct bxe_softc *sc;
19443 	int error;
19444 
19445 	sc = if_getsoftc(ifp);
19446 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19447 	    IFF_DRV_RUNNING || !sc->link_vars.link_up)
19448 		return (ENOENT);
19449 
19450 	error = bxe_tx_encap(&sc->fp[0], &m);
19451 	if (error != 0 && m != NULL)
19452 		m_freem(m);
19453 	return (error);
19454 }
19455 
19456 static int
19457 bxe_debugnet_poll(if_t ifp, int count)
19458 {
19459 	struct bxe_softc *sc;
19460 	int i;
19461 
19462 	sc = if_getsoftc(ifp);
19463 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19464 	    !sc->link_vars.link_up)
19465 		return (ENOENT);
19466 
19467 	for (i = 0; i < sc->num_queues; i++)
19468 		(void)bxe_rxeof(sc, &sc->fp[i]);
19469 	(void)bxe_txeof(sc, &sc->fp[0]);
19470 	return (0);
19471 }
19472 #endif /* DEBUGNET */
19473