1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #define BXE_DRIVER_VERSION "1.78.91" 31 32 #include "bxe.h" 33 #include "ecore_sp.h" 34 #include "ecore_init.h" 35 #include "ecore_init_ops.h" 36 37 #include "57710_int_offsets.h" 38 #include "57711_int_offsets.h" 39 #include "57712_int_offsets.h" 40 41 /* 42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 43 * explicitly here for older kernels that don't include this changeset. 44 */ 45 #ifndef CTLTYPE_U64 46 #define CTLTYPE_U64 CTLTYPE_QUAD 47 #define sysctl_handle_64 sysctl_handle_quad 48 #endif 49 50 /* 51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 52 * here as zero(0) for older kernels that don't include this changeset 53 * thereby masking the functionality. 54 */ 55 #ifndef CSUM_TCP_IPV6 56 #define CSUM_TCP_IPV6 0 57 #define CSUM_UDP_IPV6 0 58 #endif 59 60 #define BXE_DEF_SB_ATT_IDX 0x0001 61 #define BXE_DEF_SB_IDX 0x0002 62 63 /* 64 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 65 * function HW initialization. 66 */ 67 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 68 #define FLR_WAIT_INTERVAL 50 /* usecs */ 69 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 70 71 struct pbf_pN_buf_regs { 72 int pN; 73 uint32_t init_crd; 74 uint32_t crd; 75 uint32_t crd_freed; 76 }; 77 78 struct pbf_pN_cmd_regs { 79 int pN; 80 uint32_t lines_occup; 81 uint32_t lines_freed; 82 }; 83 84 /* 85 * PCI Device ID Table used by bxe_probe(). 86 */ 87 #define BXE_DEVDESC_MAX 64 88 static struct bxe_device_type bxe_devs[] = { 89 { 90 BRCM_VENDORID, 91 CHIP_NUM_57710, 92 PCI_ANY_ID, PCI_ANY_ID, 93 "QLogic NetXtreme II BCM57710 10GbE" 94 }, 95 { 96 BRCM_VENDORID, 97 CHIP_NUM_57711, 98 PCI_ANY_ID, PCI_ANY_ID, 99 "QLogic NetXtreme II BCM57711 10GbE" 100 }, 101 { 102 BRCM_VENDORID, 103 CHIP_NUM_57711E, 104 PCI_ANY_ID, PCI_ANY_ID, 105 "QLogic NetXtreme II BCM57711E 10GbE" 106 }, 107 { 108 BRCM_VENDORID, 109 CHIP_NUM_57712, 110 PCI_ANY_ID, PCI_ANY_ID, 111 "QLogic NetXtreme II BCM57712 10GbE" 112 }, 113 { 114 BRCM_VENDORID, 115 CHIP_NUM_57712_MF, 116 PCI_ANY_ID, PCI_ANY_ID, 117 "QLogic NetXtreme II BCM57712 MF 10GbE" 118 }, 119 { 120 BRCM_VENDORID, 121 CHIP_NUM_57800, 122 PCI_ANY_ID, PCI_ANY_ID, 123 "QLogic NetXtreme II BCM57800 10GbE" 124 }, 125 { 126 BRCM_VENDORID, 127 CHIP_NUM_57800_MF, 128 PCI_ANY_ID, PCI_ANY_ID, 129 "QLogic NetXtreme II BCM57800 MF 10GbE" 130 }, 131 { 132 BRCM_VENDORID, 133 CHIP_NUM_57810, 134 PCI_ANY_ID, PCI_ANY_ID, 135 "QLogic NetXtreme II BCM57810 10GbE" 136 }, 137 { 138 BRCM_VENDORID, 139 CHIP_NUM_57810_MF, 140 PCI_ANY_ID, PCI_ANY_ID, 141 "QLogic NetXtreme II BCM57810 MF 10GbE" 142 }, 143 { 144 BRCM_VENDORID, 145 CHIP_NUM_57811, 146 PCI_ANY_ID, PCI_ANY_ID, 147 "QLogic NetXtreme II BCM57811 10GbE" 148 }, 149 { 150 BRCM_VENDORID, 151 CHIP_NUM_57811_MF, 152 PCI_ANY_ID, PCI_ANY_ID, 153 "QLogic NetXtreme II BCM57811 MF 10GbE" 154 }, 155 { 156 BRCM_VENDORID, 157 CHIP_NUM_57840_4_10, 158 PCI_ANY_ID, PCI_ANY_ID, 159 "QLogic NetXtreme II BCM57840 4x10GbE" 160 }, 161 { 162 QLOGIC_VENDORID, 163 CHIP_NUM_57840_4_10, 164 PCI_ANY_ID, PCI_ANY_ID, 165 "QLogic NetXtreme II BCM57840 4x10GbE" 166 }, 167 { 168 BRCM_VENDORID, 169 CHIP_NUM_57840_2_20, 170 PCI_ANY_ID, PCI_ANY_ID, 171 "QLogic NetXtreme II BCM57840 2x20GbE" 172 }, 173 { 174 BRCM_VENDORID, 175 CHIP_NUM_57840_MF, 176 PCI_ANY_ID, PCI_ANY_ID, 177 "QLogic NetXtreme II BCM57840 MF 10GbE" 178 }, 179 { 180 0, 0, 0, 0, NULL 181 } 182 }; 183 184 MALLOC_DECLARE(M_BXE_ILT); 185 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 186 187 /* 188 * FreeBSD device entry points. 189 */ 190 static int bxe_probe(device_t); 191 static int bxe_attach(device_t); 192 static int bxe_detach(device_t); 193 static int bxe_shutdown(device_t); 194 195 196 /* 197 * FreeBSD KLD module/device interface event handler method. 198 */ 199 static device_method_t bxe_methods[] = { 200 /* Device interface (device_if.h) */ 201 DEVMETHOD(device_probe, bxe_probe), 202 DEVMETHOD(device_attach, bxe_attach), 203 DEVMETHOD(device_detach, bxe_detach), 204 DEVMETHOD(device_shutdown, bxe_shutdown), 205 /* Bus interface (bus_if.h) */ 206 DEVMETHOD(bus_print_child, bus_generic_print_child), 207 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 208 KOBJMETHOD_END 209 }; 210 211 /* 212 * FreeBSD KLD Module data declaration 213 */ 214 static driver_t bxe_driver = { 215 "bxe", /* module name */ 216 bxe_methods, /* event handler */ 217 sizeof(struct bxe_softc) /* extra data */ 218 }; 219 220 MODULE_DEPEND(bxe, pci, 1, 1, 1); 221 MODULE_DEPEND(bxe, ether, 1, 1, 1); 222 DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0); 223 224 DEBUGNET_DEFINE(bxe); 225 226 /* resources needed for unloading a previously loaded device */ 227 228 #define BXE_PREV_WAIT_NEEDED 1 229 struct mtx bxe_prev_mtx; 230 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 231 struct bxe_prev_list_node { 232 LIST_ENTRY(bxe_prev_list_node) node; 233 uint8_t bus; 234 uint8_t slot; 235 uint8_t path; 236 uint8_t aer; /* XXX automatic error recovery */ 237 uint8_t undi; 238 }; 239 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 240 241 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 242 243 /* Tunable device values... */ 244 245 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 246 "bxe driver parameters"); 247 248 /* Debug */ 249 unsigned long bxe_debug = 0; 250 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 251 &bxe_debug, 0, "Debug logging mode"); 252 253 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 254 static int bxe_interrupt_mode = INTR_MODE_MSIX; 255 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 256 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 257 258 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 259 static int bxe_queue_count = 4; 260 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 261 &bxe_queue_count, 0, "Multi-Queue queue count"); 262 263 /* max number of buffers per queue (default RX_BD_USABLE) */ 264 static int bxe_max_rx_bufs = 0; 265 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 266 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 267 268 /* Host interrupt coalescing RX tick timer (usecs) */ 269 static int bxe_hc_rx_ticks = 25; 270 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 271 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 272 273 /* Host interrupt coalescing TX tick timer (usecs) */ 274 static int bxe_hc_tx_ticks = 50; 275 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 276 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 277 278 /* Maximum number of Rx packets to process at a time */ 279 static int bxe_rx_budget = 0xffffffff; 280 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_RDTUN, 281 &bxe_rx_budget, 0, "Rx processing budget"); 282 283 /* Maximum LRO aggregation size */ 284 static int bxe_max_aggregation_size = 0; 285 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_RDTUN, 286 &bxe_max_aggregation_size, 0, "max aggregation size"); 287 288 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 289 static int bxe_mrrs = -1; 290 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 291 &bxe_mrrs, 0, "PCIe maximum read request size"); 292 293 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 294 static int bxe_autogreeen = 0; 295 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 296 &bxe_autogreeen, 0, "AutoGrEEEn support"); 297 298 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 299 static int bxe_udp_rss = 0; 300 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 301 &bxe_udp_rss, 0, "UDP RSS support"); 302 303 304 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 305 306 #define STATS_OFFSET32(stat_name) \ 307 (offsetof(struct bxe_eth_stats, stat_name) / 4) 308 309 #define Q_STATS_OFFSET32(stat_name) \ 310 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 311 312 static const struct { 313 uint32_t offset; 314 uint32_t size; 315 uint32_t flags; 316 #define STATS_FLAGS_PORT 1 317 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 318 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 319 char string[STAT_NAME_LEN]; 320 } bxe_eth_stats_arr[] = { 321 { STATS_OFFSET32(total_bytes_received_hi), 322 8, STATS_FLAGS_BOTH, "rx_bytes" }, 323 { STATS_OFFSET32(error_bytes_received_hi), 324 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 325 { STATS_OFFSET32(total_unicast_packets_received_hi), 326 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 327 { STATS_OFFSET32(total_multicast_packets_received_hi), 328 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 329 { STATS_OFFSET32(total_broadcast_packets_received_hi), 330 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 331 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 332 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 333 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 334 8, STATS_FLAGS_PORT, "rx_align_errors" }, 335 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 336 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 337 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 338 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 339 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 340 8, STATS_FLAGS_PORT, "rx_fragments" }, 341 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 342 8, STATS_FLAGS_PORT, "rx_jabbers" }, 343 { STATS_OFFSET32(no_buff_discard_hi), 344 8, STATS_FLAGS_BOTH, "rx_discards" }, 345 { STATS_OFFSET32(mac_filter_discard), 346 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 347 { STATS_OFFSET32(mf_tag_discard), 348 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 349 { STATS_OFFSET32(pfc_frames_received_hi), 350 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 351 { STATS_OFFSET32(pfc_frames_sent_hi), 352 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 353 { STATS_OFFSET32(brb_drop_hi), 354 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 355 { STATS_OFFSET32(brb_truncate_hi), 356 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 357 { STATS_OFFSET32(pause_frames_received_hi), 358 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 359 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 360 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 361 { STATS_OFFSET32(nig_timer_max), 362 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 363 { STATS_OFFSET32(total_bytes_transmitted_hi), 364 8, STATS_FLAGS_BOTH, "tx_bytes" }, 365 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 366 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 367 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 368 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 369 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 370 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 371 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 372 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 373 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 374 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 375 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 376 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 377 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 378 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 379 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 380 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 381 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 382 8, STATS_FLAGS_PORT, "tx_deferred" }, 383 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 384 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 385 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 386 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 387 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 388 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 389 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 390 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 391 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 392 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 393 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 394 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 395 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 396 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 397 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 398 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 399 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 400 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 401 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 402 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 403 { STATS_OFFSET32(pause_frames_sent_hi), 404 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 405 { STATS_OFFSET32(total_tpa_aggregations_hi), 406 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 407 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 408 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 409 { STATS_OFFSET32(total_tpa_bytes_hi), 410 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 411 { STATS_OFFSET32(eee_tx_lpi), 412 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 413 { STATS_OFFSET32(rx_calls), 414 4, STATS_FLAGS_FUNC, "rx_calls"}, 415 { STATS_OFFSET32(rx_pkts), 416 4, STATS_FLAGS_FUNC, "rx_pkts"}, 417 { STATS_OFFSET32(rx_tpa_pkts), 418 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 419 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 420 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 421 { STATS_OFFSET32(rx_bxe_service_rxsgl), 422 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 423 { STATS_OFFSET32(rx_jumbo_sge_pkts), 424 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 425 { STATS_OFFSET32(rx_soft_errors), 426 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 427 { STATS_OFFSET32(rx_hw_csum_errors), 428 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 429 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 430 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 431 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 432 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 433 { STATS_OFFSET32(rx_budget_reached), 434 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 435 { STATS_OFFSET32(tx_pkts), 436 4, STATS_FLAGS_FUNC, "tx_pkts"}, 437 { STATS_OFFSET32(tx_soft_errors), 438 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 439 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 440 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 441 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 442 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 443 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 444 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 445 { STATS_OFFSET32(tx_ofld_frames_lso), 446 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 447 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 448 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 449 { STATS_OFFSET32(tx_encap_failures), 450 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 451 { STATS_OFFSET32(tx_hw_queue_full), 452 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 453 { STATS_OFFSET32(tx_hw_max_queue_depth), 454 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 455 { STATS_OFFSET32(tx_dma_mapping_failure), 456 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 457 { STATS_OFFSET32(tx_max_drbr_queue_depth), 458 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 459 { STATS_OFFSET32(tx_window_violation_std), 460 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 461 { STATS_OFFSET32(tx_window_violation_tso), 462 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 463 { STATS_OFFSET32(tx_chain_lost_mbuf), 464 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 465 { STATS_OFFSET32(tx_frames_deferred), 466 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 467 { STATS_OFFSET32(tx_queue_xoff), 468 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 469 { STATS_OFFSET32(mbuf_defrag_attempts), 470 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 471 { STATS_OFFSET32(mbuf_defrag_failures), 472 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 473 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 474 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 475 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 476 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 477 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 478 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 479 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 480 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 481 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 483 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 484 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 485 { STATS_OFFSET32(mbuf_alloc_tx), 486 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 487 { STATS_OFFSET32(mbuf_alloc_rx), 488 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 489 { STATS_OFFSET32(mbuf_alloc_sge), 490 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 491 { STATS_OFFSET32(mbuf_alloc_tpa), 492 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 493 { STATS_OFFSET32(tx_queue_full_return), 494 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 495 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 496 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 497 { STATS_OFFSET32(tx_request_link_down_failures), 498 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 499 { STATS_OFFSET32(bd_avail_too_less_failures), 500 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 501 { STATS_OFFSET32(tx_mq_not_empty), 502 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 503 { STATS_OFFSET32(nsegs_path1_errors), 504 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 505 { STATS_OFFSET32(nsegs_path2_errors), 506 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 507 508 509 }; 510 511 static const struct { 512 uint32_t offset; 513 uint32_t size; 514 char string[STAT_NAME_LEN]; 515 } bxe_eth_q_stats_arr[] = { 516 { Q_STATS_OFFSET32(total_bytes_received_hi), 517 8, "rx_bytes" }, 518 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 519 8, "rx_ucast_packets" }, 520 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 521 8, "rx_mcast_packets" }, 522 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 523 8, "rx_bcast_packets" }, 524 { Q_STATS_OFFSET32(no_buff_discard_hi), 525 8, "rx_discards" }, 526 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 527 8, "tx_bytes" }, 528 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 529 8, "tx_ucast_packets" }, 530 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 531 8, "tx_mcast_packets" }, 532 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 533 8, "tx_bcast_packets" }, 534 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 535 8, "tpa_aggregations" }, 536 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 537 8, "tpa_aggregated_frames"}, 538 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 539 8, "tpa_bytes"}, 540 { Q_STATS_OFFSET32(rx_calls), 541 4, "rx_calls"}, 542 { Q_STATS_OFFSET32(rx_pkts), 543 4, "rx_pkts"}, 544 { Q_STATS_OFFSET32(rx_tpa_pkts), 545 4, "rx_tpa_pkts"}, 546 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 547 4, "rx_erroneous_jumbo_sge_pkts"}, 548 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 549 4, "rx_bxe_service_rxsgl"}, 550 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 551 4, "rx_jumbo_sge_pkts"}, 552 { Q_STATS_OFFSET32(rx_soft_errors), 553 4, "rx_soft_errors"}, 554 { Q_STATS_OFFSET32(rx_hw_csum_errors), 555 4, "rx_hw_csum_errors"}, 556 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 557 4, "rx_ofld_frames_csum_ip"}, 558 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 559 4, "rx_ofld_frames_csum_tcp_udp"}, 560 { Q_STATS_OFFSET32(rx_budget_reached), 561 4, "rx_budget_reached"}, 562 { Q_STATS_OFFSET32(tx_pkts), 563 4, "tx_pkts"}, 564 { Q_STATS_OFFSET32(tx_soft_errors), 565 4, "tx_soft_errors"}, 566 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 567 4, "tx_ofld_frames_csum_ip"}, 568 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 569 4, "tx_ofld_frames_csum_tcp"}, 570 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 571 4, "tx_ofld_frames_csum_udp"}, 572 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 573 4, "tx_ofld_frames_lso"}, 574 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 575 4, "tx_ofld_frames_lso_hdr_splits"}, 576 { Q_STATS_OFFSET32(tx_encap_failures), 577 4, "tx_encap_failures"}, 578 { Q_STATS_OFFSET32(tx_hw_queue_full), 579 4, "tx_hw_queue_full"}, 580 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 581 4, "tx_hw_max_queue_depth"}, 582 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 583 4, "tx_dma_mapping_failure"}, 584 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 585 4, "tx_max_drbr_queue_depth"}, 586 { Q_STATS_OFFSET32(tx_window_violation_std), 587 4, "tx_window_violation_std"}, 588 { Q_STATS_OFFSET32(tx_window_violation_tso), 589 4, "tx_window_violation_tso"}, 590 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 591 4, "tx_chain_lost_mbuf"}, 592 { Q_STATS_OFFSET32(tx_frames_deferred), 593 4, "tx_frames_deferred"}, 594 { Q_STATS_OFFSET32(tx_queue_xoff), 595 4, "tx_queue_xoff"}, 596 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 597 4, "mbuf_defrag_attempts"}, 598 { Q_STATS_OFFSET32(mbuf_defrag_failures), 599 4, "mbuf_defrag_failures"}, 600 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 601 4, "mbuf_rx_bd_alloc_failed"}, 602 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 603 4, "mbuf_rx_bd_mapping_failed"}, 604 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 605 4, "mbuf_rx_tpa_alloc_failed"}, 606 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 607 4, "mbuf_rx_tpa_mapping_failed"}, 608 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 609 4, "mbuf_rx_sge_alloc_failed"}, 610 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 611 4, "mbuf_rx_sge_mapping_failed"}, 612 { Q_STATS_OFFSET32(mbuf_alloc_tx), 613 4, "mbuf_alloc_tx"}, 614 { Q_STATS_OFFSET32(mbuf_alloc_rx), 615 4, "mbuf_alloc_rx"}, 616 { Q_STATS_OFFSET32(mbuf_alloc_sge), 617 4, "mbuf_alloc_sge"}, 618 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 619 4, "mbuf_alloc_tpa"}, 620 { Q_STATS_OFFSET32(tx_queue_full_return), 621 4, "tx_queue_full_return"}, 622 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 623 4, "bxe_tx_mq_sc_state_failures"}, 624 { Q_STATS_OFFSET32(tx_request_link_down_failures), 625 4, "tx_request_link_down_failures"}, 626 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 627 4, "bd_avail_too_less_failures"}, 628 { Q_STATS_OFFSET32(tx_mq_not_empty), 629 4, "tx_mq_not_empty"}, 630 { Q_STATS_OFFSET32(nsegs_path1_errors), 631 4, "nsegs_path1_errors"}, 632 { Q_STATS_OFFSET32(nsegs_path2_errors), 633 4, "nsegs_path2_errors"} 634 635 636 }; 637 638 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 639 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 640 641 642 static void bxe_cmng_fns_init(struct bxe_softc *sc, 643 uint8_t read_cfg, 644 uint8_t cmng_type); 645 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 646 static void storm_memset_cmng(struct bxe_softc *sc, 647 struct cmng_init *cmng, 648 uint8_t port); 649 static void bxe_set_reset_global(struct bxe_softc *sc); 650 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 651 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 652 int engine); 653 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 654 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 655 uint8_t *global, 656 uint8_t print); 657 static void bxe_int_disable(struct bxe_softc *sc); 658 static int bxe_release_leader_lock(struct bxe_softc *sc); 659 static void bxe_pf_disable(struct bxe_softc *sc); 660 static void bxe_free_fp_buffers(struct bxe_softc *sc); 661 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 662 struct bxe_fastpath *fp, 663 uint16_t rx_bd_prod, 664 uint16_t rx_cq_prod, 665 uint16_t rx_sge_prod); 666 static void bxe_link_report_locked(struct bxe_softc *sc); 667 static void bxe_link_report(struct bxe_softc *sc); 668 static void bxe_link_status_update(struct bxe_softc *sc); 669 static void bxe_periodic_callout_func(void *xsc); 670 static void bxe_periodic_start(struct bxe_softc *sc); 671 static void bxe_periodic_stop(struct bxe_softc *sc); 672 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 673 uint16_t prev_index, 674 uint16_t index); 675 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 676 int queue); 677 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 678 uint16_t index); 679 static uint8_t bxe_txeof(struct bxe_softc *sc, 680 struct bxe_fastpath *fp); 681 static void bxe_task_fp(struct bxe_fastpath *fp); 682 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 683 struct mbuf *m, 684 uint8_t contents); 685 static int bxe_alloc_mem(struct bxe_softc *sc); 686 static void bxe_free_mem(struct bxe_softc *sc); 687 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 688 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 689 static int bxe_interrupt_attach(struct bxe_softc *sc); 690 static void bxe_interrupt_detach(struct bxe_softc *sc); 691 static void bxe_set_rx_mode(struct bxe_softc *sc); 692 static int bxe_init_locked(struct bxe_softc *sc); 693 static int bxe_stop_locked(struct bxe_softc *sc); 694 static void bxe_sp_err_timeout_task(void *arg, int pending); 695 void bxe_parity_recover(struct bxe_softc *sc); 696 void bxe_handle_error(struct bxe_softc *sc); 697 static __noinline int bxe_nic_load(struct bxe_softc *sc, 698 int load_mode); 699 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 700 uint32_t unload_mode, 701 uint8_t keep_link); 702 703 static void bxe_handle_sp_tq(void *context, int pending); 704 static void bxe_handle_fp_tq(void *context, int pending); 705 706 static int bxe_add_cdev(struct bxe_softc *sc); 707 static void bxe_del_cdev(struct bxe_softc *sc); 708 int bxe_grc_dump(struct bxe_softc *sc); 709 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 710 static void bxe_free_buf_rings(struct bxe_softc *sc); 711 712 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 713 uint32_t 714 calc_crc32(uint8_t *crc32_packet, 715 uint32_t crc32_length, 716 uint32_t crc32_seed, 717 uint8_t complement) 718 { 719 uint32_t byte = 0; 720 uint32_t bit = 0; 721 uint8_t msb = 0; 722 uint32_t temp = 0; 723 uint32_t shft = 0; 724 uint8_t current_byte = 0; 725 uint32_t crc32_result = crc32_seed; 726 const uint32_t CRC32_POLY = 0x1edc6f41; 727 728 if ((crc32_packet == NULL) || 729 (crc32_length == 0) || 730 ((crc32_length % 8) != 0)) 731 { 732 return (crc32_result); 733 } 734 735 for (byte = 0; byte < crc32_length; byte = byte + 1) 736 { 737 current_byte = crc32_packet[byte]; 738 for (bit = 0; bit < 8; bit = bit + 1) 739 { 740 /* msb = crc32_result[31]; */ 741 msb = (uint8_t)(crc32_result >> 31); 742 743 crc32_result = crc32_result << 1; 744 745 /* it (msb != current_byte[bit]) */ 746 if (msb != (0x1 & (current_byte >> bit))) 747 { 748 crc32_result = crc32_result ^ CRC32_POLY; 749 /* crc32_result[0] = 1 */ 750 crc32_result |= 1; 751 } 752 } 753 } 754 755 /* Last step is to: 756 * 1. "mirror" every bit 757 * 2. swap the 4 bytes 758 * 3. complement each bit 759 */ 760 761 /* Mirror */ 762 temp = crc32_result; 763 shft = sizeof(crc32_result) * 8 - 1; 764 765 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 766 { 767 temp <<= 1; 768 temp |= crc32_result & 1; 769 shft-- ; 770 } 771 772 /* temp[31-bit] = crc32_result[bit] */ 773 temp <<= shft; 774 775 /* Swap */ 776 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 777 { 778 uint32_t t0, t1, t2, t3; 779 t0 = (0x000000ff & (temp >> 24)); 780 t1 = (0x0000ff00 & (temp >> 8)); 781 t2 = (0x00ff0000 & (temp << 8)); 782 t3 = (0xff000000 & (temp << 24)); 783 crc32_result = t0 | t1 | t2 | t3; 784 } 785 786 /* Complement */ 787 if (complement) 788 { 789 crc32_result = ~crc32_result; 790 } 791 792 return (crc32_result); 793 } 794 795 int 796 bxe_test_bit(int nr, 797 volatile unsigned long *addr) 798 { 799 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 800 } 801 802 void 803 bxe_set_bit(unsigned int nr, 804 volatile unsigned long *addr) 805 { 806 atomic_set_acq_long(addr, (1 << nr)); 807 } 808 809 void 810 bxe_clear_bit(int nr, 811 volatile unsigned long *addr) 812 { 813 atomic_clear_acq_long(addr, (1 << nr)); 814 } 815 816 int 817 bxe_test_and_set_bit(int nr, 818 volatile unsigned long *addr) 819 { 820 unsigned long x; 821 nr = (1 << nr); 822 do { 823 x = *addr; 824 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 825 // if (x & nr) bit_was_set; else bit_was_not_set; 826 return (x & nr); 827 } 828 829 int 830 bxe_test_and_clear_bit(int nr, 831 volatile unsigned long *addr) 832 { 833 unsigned long x; 834 nr = (1 << nr); 835 do { 836 x = *addr; 837 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 838 // if (x & nr) bit_was_set; else bit_was_not_set; 839 return (x & nr); 840 } 841 842 int 843 bxe_cmpxchg(volatile int *addr, 844 int old, 845 int new) 846 { 847 int x; 848 do { 849 x = *addr; 850 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 851 return (x); 852 } 853 854 /* 855 * Get DMA memory from the OS. 856 * 857 * Validates that the OS has provided DMA buffers in response to a 858 * bus_dmamap_load call and saves the physical address of those buffers. 859 * When the callback is used the OS will return 0 for the mapping function 860 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 861 * failures back to the caller. 862 * 863 * Returns: 864 * Nothing. 865 */ 866 static void 867 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 868 { 869 struct bxe_dma *dma = arg; 870 871 if (error) { 872 dma->paddr = 0; 873 dma->nseg = 0; 874 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 875 } else { 876 dma->paddr = segs->ds_addr; 877 dma->nseg = nseg; 878 } 879 } 880 881 /* 882 * Allocate a block of memory and map it for DMA. No partial completions 883 * allowed and release any resources acquired if we can't acquire all 884 * resources. 885 * 886 * Returns: 887 * 0 = Success, !0 = Failure 888 */ 889 int 890 bxe_dma_alloc(struct bxe_softc *sc, 891 bus_size_t size, 892 struct bxe_dma *dma, 893 const char *msg) 894 { 895 int rc; 896 897 if (dma->size > 0) { 898 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 899 (unsigned long)dma->size); 900 return (1); 901 } 902 903 memset(dma, 0, sizeof(*dma)); /* sanity */ 904 dma->sc = sc; 905 dma->size = size; 906 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 907 908 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 909 BCM_PAGE_SIZE, /* alignment */ 910 0, /* boundary limit */ 911 BUS_SPACE_MAXADDR, /* restricted low */ 912 BUS_SPACE_MAXADDR, /* restricted hi */ 913 NULL, /* addr filter() */ 914 NULL, /* addr filter() arg */ 915 size, /* max map size */ 916 1, /* num discontinuous */ 917 size, /* max seg size */ 918 BUS_DMA_ALLOCNOW, /* flags */ 919 NULL, /* lock() */ 920 NULL, /* lock() arg */ 921 &dma->tag); /* returned dma tag */ 922 if (rc != 0) { 923 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 924 memset(dma, 0, sizeof(*dma)); 925 return (1); 926 } 927 928 rc = bus_dmamem_alloc(dma->tag, 929 (void **)&dma->vaddr, 930 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 931 &dma->map); 932 if (rc != 0) { 933 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 934 bus_dma_tag_destroy(dma->tag); 935 memset(dma, 0, sizeof(*dma)); 936 return (1); 937 } 938 939 rc = bus_dmamap_load(dma->tag, 940 dma->map, 941 dma->vaddr, 942 size, 943 bxe_dma_map_addr, /* BLOGD in here */ 944 dma, 945 BUS_DMA_NOWAIT); 946 if (rc != 0) { 947 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 948 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 949 bus_dma_tag_destroy(dma->tag); 950 memset(dma, 0, sizeof(*dma)); 951 return (1); 952 } 953 954 return (0); 955 } 956 957 void 958 bxe_dma_free(struct bxe_softc *sc, 959 struct bxe_dma *dma) 960 { 961 if (dma->size > 0) { 962 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 963 964 bus_dmamap_sync(dma->tag, dma->map, 965 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 966 bus_dmamap_unload(dma->tag, dma->map); 967 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 968 bus_dma_tag_destroy(dma->tag); 969 } 970 971 memset(dma, 0, sizeof(*dma)); 972 } 973 974 /* 975 * These indirect read and write routines are only during init. 976 * The locking is handled by the MCP. 977 */ 978 979 void 980 bxe_reg_wr_ind(struct bxe_softc *sc, 981 uint32_t addr, 982 uint32_t val) 983 { 984 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 985 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 986 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 987 } 988 989 uint32_t 990 bxe_reg_rd_ind(struct bxe_softc *sc, 991 uint32_t addr) 992 { 993 uint32_t val; 994 995 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 996 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 997 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 998 999 return (val); 1000 } 1001 1002 static int 1003 bxe_acquire_hw_lock(struct bxe_softc *sc, 1004 uint32_t resource) 1005 { 1006 uint32_t lock_status; 1007 uint32_t resource_bit = (1 << resource); 1008 int func = SC_FUNC(sc); 1009 uint32_t hw_lock_control_reg; 1010 int cnt; 1011 1012 /* validate the resource is within range */ 1013 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1014 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1015 " resource_bit 0x%x\n", resource, resource_bit); 1016 return (-1); 1017 } 1018 1019 if (func <= 5) { 1020 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1021 } else { 1022 hw_lock_control_reg = 1023 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1024 } 1025 1026 /* validate the resource is not already taken */ 1027 lock_status = REG_RD(sc, hw_lock_control_reg); 1028 if (lock_status & resource_bit) { 1029 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1030 resource, lock_status, resource_bit); 1031 return (-1); 1032 } 1033 1034 /* try every 5ms for 5 seconds */ 1035 for (cnt = 0; cnt < 1000; cnt++) { 1036 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1037 lock_status = REG_RD(sc, hw_lock_control_reg); 1038 if (lock_status & resource_bit) { 1039 return (0); 1040 } 1041 DELAY(5000); 1042 } 1043 1044 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1045 resource, resource_bit); 1046 return (-1); 1047 } 1048 1049 static int 1050 bxe_release_hw_lock(struct bxe_softc *sc, 1051 uint32_t resource) 1052 { 1053 uint32_t lock_status; 1054 uint32_t resource_bit = (1 << resource); 1055 int func = SC_FUNC(sc); 1056 uint32_t hw_lock_control_reg; 1057 1058 /* validate the resource is within range */ 1059 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1060 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1061 " resource_bit 0x%x\n", resource, resource_bit); 1062 return (-1); 1063 } 1064 1065 if (func <= 5) { 1066 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1067 } else { 1068 hw_lock_control_reg = 1069 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1070 } 1071 1072 /* validate the resource is currently taken */ 1073 lock_status = REG_RD(sc, hw_lock_control_reg); 1074 if (!(lock_status & resource_bit)) { 1075 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1076 resource, lock_status, resource_bit); 1077 return (-1); 1078 } 1079 1080 REG_WR(sc, hw_lock_control_reg, resource_bit); 1081 return (0); 1082 } 1083 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1084 { 1085 BXE_PHY_LOCK(sc); 1086 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1087 } 1088 1089 static void bxe_release_phy_lock(struct bxe_softc *sc) 1090 { 1091 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1092 BXE_PHY_UNLOCK(sc); 1093 } 1094 /* 1095 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1096 * had we done things the other way around, if two pfs from the same port 1097 * would attempt to access nvram at the same time, we could run into a 1098 * scenario such as: 1099 * pf A takes the port lock. 1100 * pf B succeeds in taking the same lock since they are from the same port. 1101 * pf A takes the per pf misc lock. Performs eeprom access. 1102 * pf A finishes. Unlocks the per pf misc lock. 1103 * Pf B takes the lock and proceeds to perform it's own access. 1104 * pf A unlocks the per port lock, while pf B is still working (!). 1105 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1106 * access corrupted by pf B).* 1107 */ 1108 static int 1109 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1110 { 1111 int port = SC_PORT(sc); 1112 int count, i; 1113 uint32_t val = 0; 1114 1115 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1116 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1117 1118 /* adjust timeout for emulation/FPGA */ 1119 count = NVRAM_TIMEOUT_COUNT; 1120 if (CHIP_REV_IS_SLOW(sc)) { 1121 count *= 100; 1122 } 1123 1124 /* request access to nvram interface */ 1125 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1126 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1127 1128 for (i = 0; i < count*10; i++) { 1129 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1130 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1131 break; 1132 } 1133 1134 DELAY(5); 1135 } 1136 1137 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1138 BLOGE(sc, "Cannot get access to nvram interface " 1139 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1140 port, val); 1141 return (-1); 1142 } 1143 1144 return (0); 1145 } 1146 1147 static int 1148 bxe_release_nvram_lock(struct bxe_softc *sc) 1149 { 1150 int port = SC_PORT(sc); 1151 int count, i; 1152 uint32_t val = 0; 1153 1154 /* adjust timeout for emulation/FPGA */ 1155 count = NVRAM_TIMEOUT_COUNT; 1156 if (CHIP_REV_IS_SLOW(sc)) { 1157 count *= 100; 1158 } 1159 1160 /* relinquish nvram interface */ 1161 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1162 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1163 1164 for (i = 0; i < count*10; i++) { 1165 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1166 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1167 break; 1168 } 1169 1170 DELAY(5); 1171 } 1172 1173 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1174 BLOGE(sc, "Cannot free access to nvram interface " 1175 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1176 port, val); 1177 return (-1); 1178 } 1179 1180 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1181 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1182 1183 return (0); 1184 } 1185 1186 static void 1187 bxe_enable_nvram_access(struct bxe_softc *sc) 1188 { 1189 uint32_t val; 1190 1191 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1192 1193 /* enable both bits, even on read */ 1194 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1195 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1196 } 1197 1198 static void 1199 bxe_disable_nvram_access(struct bxe_softc *sc) 1200 { 1201 uint32_t val; 1202 1203 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1204 1205 /* disable both bits, even after read */ 1206 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1207 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1208 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1209 } 1210 1211 static int 1212 bxe_nvram_read_dword(struct bxe_softc *sc, 1213 uint32_t offset, 1214 uint32_t *ret_val, 1215 uint32_t cmd_flags) 1216 { 1217 int count, i, rc; 1218 uint32_t val; 1219 1220 /* build the command word */ 1221 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1222 1223 /* need to clear DONE bit separately */ 1224 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1225 1226 /* address of the NVRAM to read from */ 1227 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1228 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1229 1230 /* issue a read command */ 1231 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1232 1233 /* adjust timeout for emulation/FPGA */ 1234 count = NVRAM_TIMEOUT_COUNT; 1235 if (CHIP_REV_IS_SLOW(sc)) { 1236 count *= 100; 1237 } 1238 1239 /* wait for completion */ 1240 *ret_val = 0; 1241 rc = -1; 1242 for (i = 0; i < count; i++) { 1243 DELAY(5); 1244 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1245 1246 if (val & MCPR_NVM_COMMAND_DONE) { 1247 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1248 /* we read nvram data in cpu order 1249 * but ethtool sees it as an array of bytes 1250 * converting to big-endian will do the work 1251 */ 1252 *ret_val = htobe32(val); 1253 rc = 0; 1254 break; 1255 } 1256 } 1257 1258 if (rc == -1) { 1259 BLOGE(sc, "nvram read timeout expired " 1260 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1261 offset, cmd_flags, val); 1262 } 1263 1264 return (rc); 1265 } 1266 1267 static int 1268 bxe_nvram_read(struct bxe_softc *sc, 1269 uint32_t offset, 1270 uint8_t *ret_buf, 1271 int buf_size) 1272 { 1273 uint32_t cmd_flags; 1274 uint32_t val; 1275 int rc; 1276 1277 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1278 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1279 offset, buf_size); 1280 return (-1); 1281 } 1282 1283 if ((offset + buf_size) > sc->devinfo.flash_size) { 1284 BLOGE(sc, "Invalid parameter, " 1285 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1286 offset, buf_size, sc->devinfo.flash_size); 1287 return (-1); 1288 } 1289 1290 /* request access to nvram interface */ 1291 rc = bxe_acquire_nvram_lock(sc); 1292 if (rc) { 1293 return (rc); 1294 } 1295 1296 /* enable access to nvram interface */ 1297 bxe_enable_nvram_access(sc); 1298 1299 /* read the first word(s) */ 1300 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1301 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1302 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1303 memcpy(ret_buf, &val, 4); 1304 1305 /* advance to the next dword */ 1306 offset += sizeof(uint32_t); 1307 ret_buf += sizeof(uint32_t); 1308 buf_size -= sizeof(uint32_t); 1309 cmd_flags = 0; 1310 } 1311 1312 if (rc == 0) { 1313 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1314 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1315 memcpy(ret_buf, &val, 4); 1316 } 1317 1318 /* disable access to nvram interface */ 1319 bxe_disable_nvram_access(sc); 1320 bxe_release_nvram_lock(sc); 1321 1322 return (rc); 1323 } 1324 1325 static int 1326 bxe_nvram_write_dword(struct bxe_softc *sc, 1327 uint32_t offset, 1328 uint32_t val, 1329 uint32_t cmd_flags) 1330 { 1331 int count, i, rc; 1332 1333 /* build the command word */ 1334 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1335 1336 /* need to clear DONE bit separately */ 1337 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1338 1339 /* write the data */ 1340 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1341 1342 /* address of the NVRAM to write to */ 1343 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1344 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1345 1346 /* issue the write command */ 1347 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1348 1349 /* adjust timeout for emulation/FPGA */ 1350 count = NVRAM_TIMEOUT_COUNT; 1351 if (CHIP_REV_IS_SLOW(sc)) { 1352 count *= 100; 1353 } 1354 1355 /* wait for completion */ 1356 rc = -1; 1357 for (i = 0; i < count; i++) { 1358 DELAY(5); 1359 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1360 if (val & MCPR_NVM_COMMAND_DONE) { 1361 rc = 0; 1362 break; 1363 } 1364 } 1365 1366 if (rc == -1) { 1367 BLOGE(sc, "nvram write timeout expired " 1368 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1369 offset, cmd_flags, val); 1370 } 1371 1372 return (rc); 1373 } 1374 1375 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1376 1377 static int 1378 bxe_nvram_write1(struct bxe_softc *sc, 1379 uint32_t offset, 1380 uint8_t *data_buf, 1381 int buf_size) 1382 { 1383 uint32_t cmd_flags; 1384 uint32_t align_offset; 1385 uint32_t val; 1386 int rc; 1387 1388 if ((offset + buf_size) > sc->devinfo.flash_size) { 1389 BLOGE(sc, "Invalid parameter, " 1390 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1391 offset, buf_size, sc->devinfo.flash_size); 1392 return (-1); 1393 } 1394 1395 /* request access to nvram interface */ 1396 rc = bxe_acquire_nvram_lock(sc); 1397 if (rc) { 1398 return (rc); 1399 } 1400 1401 /* enable access to nvram interface */ 1402 bxe_enable_nvram_access(sc); 1403 1404 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1405 align_offset = (offset & ~0x03); 1406 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1407 1408 if (rc == 0) { 1409 val &= ~(0xff << BYTE_OFFSET(offset)); 1410 val |= (*data_buf << BYTE_OFFSET(offset)); 1411 1412 /* nvram data is returned as an array of bytes 1413 * convert it back to cpu order 1414 */ 1415 val = be32toh(val); 1416 1417 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1418 } 1419 1420 /* disable access to nvram interface */ 1421 bxe_disable_nvram_access(sc); 1422 bxe_release_nvram_lock(sc); 1423 1424 return (rc); 1425 } 1426 1427 static int 1428 bxe_nvram_write(struct bxe_softc *sc, 1429 uint32_t offset, 1430 uint8_t *data_buf, 1431 int buf_size) 1432 { 1433 uint32_t cmd_flags; 1434 uint32_t val; 1435 uint32_t written_so_far; 1436 int rc; 1437 1438 if (buf_size == 1) { 1439 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1440 } 1441 1442 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1443 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1444 offset, buf_size); 1445 return (-1); 1446 } 1447 1448 if (buf_size == 0) { 1449 return (0); /* nothing to do */ 1450 } 1451 1452 if ((offset + buf_size) > sc->devinfo.flash_size) { 1453 BLOGE(sc, "Invalid parameter, " 1454 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1455 offset, buf_size, sc->devinfo.flash_size); 1456 return (-1); 1457 } 1458 1459 /* request access to nvram interface */ 1460 rc = bxe_acquire_nvram_lock(sc); 1461 if (rc) { 1462 return (rc); 1463 } 1464 1465 /* enable access to nvram interface */ 1466 bxe_enable_nvram_access(sc); 1467 1468 written_so_far = 0; 1469 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1470 while ((written_so_far < buf_size) && (rc == 0)) { 1471 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1472 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1473 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1474 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1475 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1476 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1477 } 1478 1479 memcpy(&val, data_buf, 4); 1480 1481 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1482 1483 /* advance to the next dword */ 1484 offset += sizeof(uint32_t); 1485 data_buf += sizeof(uint32_t); 1486 written_so_far += sizeof(uint32_t); 1487 cmd_flags = 0; 1488 } 1489 1490 /* disable access to nvram interface */ 1491 bxe_disable_nvram_access(sc); 1492 bxe_release_nvram_lock(sc); 1493 1494 return (rc); 1495 } 1496 1497 /* copy command into DMAE command memory and set DMAE command Go */ 1498 void 1499 bxe_post_dmae(struct bxe_softc *sc, 1500 struct dmae_cmd *dmae, 1501 int idx) 1502 { 1503 uint32_t cmd_offset; 1504 int i; 1505 1506 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1507 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1508 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1509 } 1510 1511 REG_WR(sc, dmae_reg_go_c[idx], 1); 1512 } 1513 1514 uint32_t 1515 bxe_dmae_opcode_add_comp(uint32_t opcode, 1516 uint8_t comp_type) 1517 { 1518 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1519 DMAE_CMD_C_TYPE_ENABLE)); 1520 } 1521 1522 uint32_t 1523 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1524 { 1525 return (opcode & ~DMAE_CMD_SRC_RESET); 1526 } 1527 1528 uint32_t 1529 bxe_dmae_opcode(struct bxe_softc *sc, 1530 uint8_t src_type, 1531 uint8_t dst_type, 1532 uint8_t with_comp, 1533 uint8_t comp_type) 1534 { 1535 uint32_t opcode = 0; 1536 1537 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1538 (dst_type << DMAE_CMD_DST_SHIFT)); 1539 1540 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1541 1542 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1543 1544 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1545 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1546 1547 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1548 1549 #ifdef __BIG_ENDIAN 1550 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1551 #else 1552 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1553 #endif 1554 1555 if (with_comp) { 1556 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1557 } 1558 1559 return (opcode); 1560 } 1561 1562 static void 1563 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1564 struct dmae_cmd *dmae, 1565 uint8_t src_type, 1566 uint8_t dst_type) 1567 { 1568 memset(dmae, 0, sizeof(struct dmae_cmd)); 1569 1570 /* set the opcode */ 1571 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1572 TRUE, DMAE_COMP_PCI); 1573 1574 /* fill in the completion parameters */ 1575 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1576 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1577 dmae->comp_val = DMAE_COMP_VAL; 1578 } 1579 1580 /* issue a DMAE command over the init channel and wait for completion */ 1581 static int 1582 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1583 struct dmae_cmd *dmae) 1584 { 1585 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1586 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1587 1588 BXE_DMAE_LOCK(sc); 1589 1590 /* reset completion */ 1591 *wb_comp = 0; 1592 1593 /* post the command on the channel used for initializations */ 1594 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1595 1596 /* wait for completion */ 1597 DELAY(5); 1598 1599 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1600 if (!timeout || 1601 (sc->recovery_state != BXE_RECOVERY_DONE && 1602 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1603 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1604 *wb_comp, sc->recovery_state); 1605 BXE_DMAE_UNLOCK(sc); 1606 return (DMAE_TIMEOUT); 1607 } 1608 1609 timeout--; 1610 DELAY(50); 1611 } 1612 1613 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1614 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1615 *wb_comp, sc->recovery_state); 1616 BXE_DMAE_UNLOCK(sc); 1617 return (DMAE_PCI_ERROR); 1618 } 1619 1620 BXE_DMAE_UNLOCK(sc); 1621 return (0); 1622 } 1623 1624 void 1625 bxe_read_dmae(struct bxe_softc *sc, 1626 uint32_t src_addr, 1627 uint32_t len32) 1628 { 1629 struct dmae_cmd dmae; 1630 uint32_t *data; 1631 int i, rc; 1632 1633 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1634 1635 if (!sc->dmae_ready) { 1636 data = BXE_SP(sc, wb_data[0]); 1637 1638 for (i = 0; i < len32; i++) { 1639 data[i] = (CHIP_IS_E1(sc)) ? 1640 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1641 REG_RD(sc, (src_addr + (i * 4))); 1642 } 1643 1644 return; 1645 } 1646 1647 /* set opcode and fixed command fields */ 1648 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1649 1650 /* fill in addresses and len */ 1651 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1652 dmae.src_addr_hi = 0; 1653 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1654 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1655 dmae.len = len32; 1656 1657 /* issue the command and wait for completion */ 1658 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1659 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1660 } 1661 } 1662 1663 void 1664 bxe_write_dmae(struct bxe_softc *sc, 1665 bus_addr_t dma_addr, 1666 uint32_t dst_addr, 1667 uint32_t len32) 1668 { 1669 struct dmae_cmd dmae; 1670 int rc; 1671 1672 if (!sc->dmae_ready) { 1673 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1674 1675 if (CHIP_IS_E1(sc)) { 1676 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1677 } else { 1678 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1679 } 1680 1681 return; 1682 } 1683 1684 /* set opcode and fixed command fields */ 1685 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1686 1687 /* fill in addresses and len */ 1688 dmae.src_addr_lo = U64_LO(dma_addr); 1689 dmae.src_addr_hi = U64_HI(dma_addr); 1690 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1691 dmae.dst_addr_hi = 0; 1692 dmae.len = len32; 1693 1694 /* issue the command and wait for completion */ 1695 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1696 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1697 } 1698 } 1699 1700 void 1701 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1702 bus_addr_t phys_addr, 1703 uint32_t addr, 1704 uint32_t len) 1705 { 1706 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1707 int offset = 0; 1708 1709 while (len > dmae_wr_max) { 1710 bxe_write_dmae(sc, 1711 (phys_addr + offset), /* src DMA address */ 1712 (addr + offset), /* dst GRC address */ 1713 dmae_wr_max); 1714 offset += (dmae_wr_max * 4); 1715 len -= dmae_wr_max; 1716 } 1717 1718 bxe_write_dmae(sc, 1719 (phys_addr + offset), /* src DMA address */ 1720 (addr + offset), /* dst GRC address */ 1721 len); 1722 } 1723 1724 void 1725 bxe_set_ctx_validation(struct bxe_softc *sc, 1726 struct eth_context *cxt, 1727 uint32_t cid) 1728 { 1729 /* ustorm cxt validation */ 1730 cxt->ustorm_ag_context.cdu_usage = 1731 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1732 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1733 /* xcontext validation */ 1734 cxt->xstorm_ag_context.cdu_reserved = 1735 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1736 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1737 } 1738 1739 static void 1740 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1741 uint8_t port, 1742 uint8_t fw_sb_id, 1743 uint8_t sb_index, 1744 uint8_t ticks) 1745 { 1746 uint32_t addr = 1747 (BAR_CSTRORM_INTMEM + 1748 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1749 1750 REG_WR8(sc, addr, ticks); 1751 1752 BLOGD(sc, DBG_LOAD, 1753 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1754 port, fw_sb_id, sb_index, ticks); 1755 } 1756 1757 static void 1758 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1759 uint8_t port, 1760 uint16_t fw_sb_id, 1761 uint8_t sb_index, 1762 uint8_t disable) 1763 { 1764 uint32_t enable_flag = 1765 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1766 uint32_t addr = 1767 (BAR_CSTRORM_INTMEM + 1768 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1769 uint8_t flags; 1770 1771 /* clear and set */ 1772 flags = REG_RD8(sc, addr); 1773 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1774 flags |= enable_flag; 1775 REG_WR8(sc, addr, flags); 1776 1777 BLOGD(sc, DBG_LOAD, 1778 "port %d fw_sb_id %d sb_index %d disable %d\n", 1779 port, fw_sb_id, sb_index, disable); 1780 } 1781 1782 void 1783 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1784 uint8_t fw_sb_id, 1785 uint8_t sb_index, 1786 uint8_t disable, 1787 uint16_t usec) 1788 { 1789 int port = SC_PORT(sc); 1790 uint8_t ticks = (usec / 4); /* XXX ??? */ 1791 1792 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1793 1794 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1795 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1796 } 1797 1798 void 1799 elink_cb_udelay(struct bxe_softc *sc, 1800 uint32_t usecs) 1801 { 1802 DELAY(usecs); 1803 } 1804 1805 uint32_t 1806 elink_cb_reg_read(struct bxe_softc *sc, 1807 uint32_t reg_addr) 1808 { 1809 return (REG_RD(sc, reg_addr)); 1810 } 1811 1812 void 1813 elink_cb_reg_write(struct bxe_softc *sc, 1814 uint32_t reg_addr, 1815 uint32_t val) 1816 { 1817 REG_WR(sc, reg_addr, val); 1818 } 1819 1820 void 1821 elink_cb_reg_wb_write(struct bxe_softc *sc, 1822 uint32_t offset, 1823 uint32_t *wb_write, 1824 uint16_t len) 1825 { 1826 REG_WR_DMAE(sc, offset, wb_write, len); 1827 } 1828 1829 void 1830 elink_cb_reg_wb_read(struct bxe_softc *sc, 1831 uint32_t offset, 1832 uint32_t *wb_write, 1833 uint16_t len) 1834 { 1835 REG_RD_DMAE(sc, offset, wb_write, len); 1836 } 1837 1838 uint8_t 1839 elink_cb_path_id(struct bxe_softc *sc) 1840 { 1841 return (SC_PATH(sc)); 1842 } 1843 1844 void 1845 elink_cb_event_log(struct bxe_softc *sc, 1846 const elink_log_id_t elink_log_id, 1847 ...) 1848 { 1849 /* XXX */ 1850 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1851 } 1852 1853 static int 1854 bxe_set_spio(struct bxe_softc *sc, 1855 int spio, 1856 uint32_t mode) 1857 { 1858 uint32_t spio_reg; 1859 1860 /* Only 2 SPIOs are configurable */ 1861 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1862 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1863 return (-1); 1864 } 1865 1866 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1867 1868 /* read SPIO and mask except the float bits */ 1869 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1870 1871 switch (mode) { 1872 case MISC_SPIO_OUTPUT_LOW: 1873 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1874 /* clear FLOAT and set CLR */ 1875 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1876 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1877 break; 1878 1879 case MISC_SPIO_OUTPUT_HIGH: 1880 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1881 /* clear FLOAT and set SET */ 1882 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1883 spio_reg |= (spio << MISC_SPIO_SET_POS); 1884 break; 1885 1886 case MISC_SPIO_INPUT_HI_Z: 1887 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1888 /* set FLOAT */ 1889 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1890 break; 1891 1892 default: 1893 break; 1894 } 1895 1896 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1897 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1898 1899 return (0); 1900 } 1901 1902 static int 1903 bxe_gpio_read(struct bxe_softc *sc, 1904 int gpio_num, 1905 uint8_t port) 1906 { 1907 /* The GPIO should be swapped if swap register is set and active */ 1908 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1909 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1910 int gpio_shift = (gpio_num + 1911 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1912 uint32_t gpio_mask = (1 << gpio_shift); 1913 uint32_t gpio_reg; 1914 1915 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1916 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1917 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1918 gpio_mask); 1919 return (-1); 1920 } 1921 1922 /* read GPIO value */ 1923 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1924 1925 /* get the requested pin value */ 1926 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1927 } 1928 1929 static int 1930 bxe_gpio_write(struct bxe_softc *sc, 1931 int gpio_num, 1932 uint32_t mode, 1933 uint8_t port) 1934 { 1935 /* The GPIO should be swapped if swap register is set and active */ 1936 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1937 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1938 int gpio_shift = (gpio_num + 1939 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1940 uint32_t gpio_mask = (1 << gpio_shift); 1941 uint32_t gpio_reg; 1942 1943 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1944 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1945 " gpio_shift %d gpio_mask 0x%x\n", 1946 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1947 return (-1); 1948 } 1949 1950 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1951 1952 /* read GPIO and mask except the float bits */ 1953 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1954 1955 switch (mode) { 1956 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1957 BLOGD(sc, DBG_PHY, 1958 "Set GPIO %d (shift %d) -> output low\n", 1959 gpio_num, gpio_shift); 1960 /* clear FLOAT and set CLR */ 1961 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1962 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1963 break; 1964 1965 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1966 BLOGD(sc, DBG_PHY, 1967 "Set GPIO %d (shift %d) -> output high\n", 1968 gpio_num, gpio_shift); 1969 /* clear FLOAT and set SET */ 1970 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1971 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1972 break; 1973 1974 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1975 BLOGD(sc, DBG_PHY, 1976 "Set GPIO %d (shift %d) -> input\n", 1977 gpio_num, gpio_shift); 1978 /* set FLOAT */ 1979 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1980 break; 1981 1982 default: 1983 break; 1984 } 1985 1986 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1987 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1988 1989 return (0); 1990 } 1991 1992 static int 1993 bxe_gpio_mult_write(struct bxe_softc *sc, 1994 uint8_t pins, 1995 uint32_t mode) 1996 { 1997 uint32_t gpio_reg; 1998 1999 /* any port swapping should be handled by caller */ 2000 2001 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2002 2003 /* read GPIO and mask except the float bits */ 2004 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2005 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2006 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2007 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2008 2009 switch (mode) { 2010 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2011 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2012 /* set CLR */ 2013 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2014 break; 2015 2016 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2017 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2018 /* set SET */ 2019 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2020 break; 2021 2022 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2023 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2024 /* set FLOAT */ 2025 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2026 break; 2027 2028 default: 2029 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2030 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2031 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2032 return (-1); 2033 } 2034 2035 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2036 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2037 2038 return (0); 2039 } 2040 2041 static int 2042 bxe_gpio_int_write(struct bxe_softc *sc, 2043 int gpio_num, 2044 uint32_t mode, 2045 uint8_t port) 2046 { 2047 /* The GPIO should be swapped if swap register is set and active */ 2048 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2049 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2050 int gpio_shift = (gpio_num + 2051 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2052 uint32_t gpio_mask = (1 << gpio_shift); 2053 uint32_t gpio_reg; 2054 2055 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2056 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2057 " gpio_shift %d gpio_mask 0x%x\n", 2058 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2059 return (-1); 2060 } 2061 2062 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2063 2064 /* read GPIO int */ 2065 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2066 2067 switch (mode) { 2068 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2069 BLOGD(sc, DBG_PHY, 2070 "Clear GPIO INT %d (shift %d) -> output low\n", 2071 gpio_num, gpio_shift); 2072 /* clear SET and set CLR */ 2073 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2074 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2075 break; 2076 2077 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2078 BLOGD(sc, DBG_PHY, 2079 "Set GPIO INT %d (shift %d) -> output high\n", 2080 gpio_num, gpio_shift); 2081 /* clear CLR and set SET */ 2082 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2083 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2084 break; 2085 2086 default: 2087 break; 2088 } 2089 2090 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2091 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2092 2093 return (0); 2094 } 2095 2096 uint32_t 2097 elink_cb_gpio_read(struct bxe_softc *sc, 2098 uint16_t gpio_num, 2099 uint8_t port) 2100 { 2101 return (bxe_gpio_read(sc, gpio_num, port)); 2102 } 2103 2104 uint8_t 2105 elink_cb_gpio_write(struct bxe_softc *sc, 2106 uint16_t gpio_num, 2107 uint8_t mode, /* 0=low 1=high */ 2108 uint8_t port) 2109 { 2110 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2111 } 2112 2113 uint8_t 2114 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2115 uint8_t pins, 2116 uint8_t mode) /* 0=low 1=high */ 2117 { 2118 return (bxe_gpio_mult_write(sc, pins, mode)); 2119 } 2120 2121 uint8_t 2122 elink_cb_gpio_int_write(struct bxe_softc *sc, 2123 uint16_t gpio_num, 2124 uint8_t mode, /* 0=low 1=high */ 2125 uint8_t port) 2126 { 2127 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2128 } 2129 2130 void 2131 elink_cb_notify_link_changed(struct bxe_softc *sc) 2132 { 2133 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2134 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2135 } 2136 2137 /* send the MCP a request, block until there is a reply */ 2138 uint32_t 2139 elink_cb_fw_command(struct bxe_softc *sc, 2140 uint32_t command, 2141 uint32_t param) 2142 { 2143 int mb_idx = SC_FW_MB_IDX(sc); 2144 uint32_t seq; 2145 uint32_t rc = 0; 2146 uint32_t cnt = 1; 2147 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2148 2149 BXE_FWMB_LOCK(sc); 2150 2151 seq = ++sc->fw_seq; 2152 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2153 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2154 2155 BLOGD(sc, DBG_PHY, 2156 "wrote command 0x%08x to FW MB param 0x%08x\n", 2157 (command | seq), param); 2158 2159 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2160 do { 2161 DELAY(delay * 1000); 2162 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2163 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2164 2165 BLOGD(sc, DBG_PHY, 2166 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2167 cnt*delay, rc, seq); 2168 2169 /* is this a reply to our command? */ 2170 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2171 rc &= FW_MSG_CODE_MASK; 2172 } else { 2173 /* Ruh-roh! */ 2174 BLOGE(sc, "FW failed to respond!\n"); 2175 // XXX bxe_fw_dump(sc); 2176 rc = 0; 2177 } 2178 2179 BXE_FWMB_UNLOCK(sc); 2180 return (rc); 2181 } 2182 2183 static uint32_t 2184 bxe_fw_command(struct bxe_softc *sc, 2185 uint32_t command, 2186 uint32_t param) 2187 { 2188 return (elink_cb_fw_command(sc, command, param)); 2189 } 2190 2191 static void 2192 __storm_memset_dma_mapping(struct bxe_softc *sc, 2193 uint32_t addr, 2194 bus_addr_t mapping) 2195 { 2196 REG_WR(sc, addr, U64_LO(mapping)); 2197 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2198 } 2199 2200 static void 2201 storm_memset_spq_addr(struct bxe_softc *sc, 2202 bus_addr_t mapping, 2203 uint16_t abs_fid) 2204 { 2205 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2206 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2207 __storm_memset_dma_mapping(sc, addr, mapping); 2208 } 2209 2210 static void 2211 storm_memset_vf_to_pf(struct bxe_softc *sc, 2212 uint16_t abs_fid, 2213 uint16_t pf_id) 2214 { 2215 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2216 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2217 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2218 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2219 } 2220 2221 static void 2222 storm_memset_func_en(struct bxe_softc *sc, 2223 uint16_t abs_fid, 2224 uint8_t enable) 2225 { 2226 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2227 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2228 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2229 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2230 } 2231 2232 static void 2233 storm_memset_eq_data(struct bxe_softc *sc, 2234 struct event_ring_data *eq_data, 2235 uint16_t pfid) 2236 { 2237 uint32_t addr; 2238 size_t size; 2239 2240 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2241 size = sizeof(struct event_ring_data); 2242 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2243 } 2244 2245 static void 2246 storm_memset_eq_prod(struct bxe_softc *sc, 2247 uint16_t eq_prod, 2248 uint16_t pfid) 2249 { 2250 uint32_t addr = (BAR_CSTRORM_INTMEM + 2251 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2252 REG_WR16(sc, addr, eq_prod); 2253 } 2254 2255 /* 2256 * Post a slowpath command. 2257 * 2258 * A slowpath command is used to propagate a configuration change through 2259 * the controller in a controlled manner, allowing each STORM processor and 2260 * other H/W blocks to phase in the change. The commands sent on the 2261 * slowpath are referred to as ramrods. Depending on the ramrod used the 2262 * completion of the ramrod will occur in different ways. Here's a 2263 * breakdown of ramrods and how they complete: 2264 * 2265 * RAMROD_CMD_ID_ETH_PORT_SETUP 2266 * Used to setup the leading connection on a port. Completes on the 2267 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2268 * 2269 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2270 * Used to setup an additional connection on a port. Completes on the 2271 * RCQ of the multi-queue/RSS connection being initialized. 2272 * 2273 * RAMROD_CMD_ID_ETH_STAT_QUERY 2274 * Used to force the storm processors to update the statistics database 2275 * in host memory. This ramrod is send on the leading connection CID and 2276 * completes as an index increment of the CSTORM on the default status 2277 * block. 2278 * 2279 * RAMROD_CMD_ID_ETH_UPDATE 2280 * Used to update the state of the leading connection, usually to udpate 2281 * the RSS indirection table. Completes on the RCQ of the leading 2282 * connection. (Not currently used under FreeBSD until OS support becomes 2283 * available.) 2284 * 2285 * RAMROD_CMD_ID_ETH_HALT 2286 * Used when tearing down a connection prior to driver unload. Completes 2287 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2288 * use this on the leading connection. 2289 * 2290 * RAMROD_CMD_ID_ETH_SET_MAC 2291 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2292 * the RCQ of the leading connection. 2293 * 2294 * RAMROD_CMD_ID_ETH_CFC_DEL 2295 * Used when tearing down a conneciton prior to driver unload. Completes 2296 * on the RCQ of the leading connection (since the current connection 2297 * has been completely removed from controller memory). 2298 * 2299 * RAMROD_CMD_ID_ETH_PORT_DEL 2300 * Used to tear down the leading connection prior to driver unload, 2301 * typically fp[0]. Completes as an index increment of the CSTORM on the 2302 * default status block. 2303 * 2304 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2305 * Used for connection offload. Completes on the RCQ of the multi-queue 2306 * RSS connection that is being offloaded. (Not currently used under 2307 * FreeBSD.) 2308 * 2309 * There can only be one command pending per function. 2310 * 2311 * Returns: 2312 * 0 = Success, !0 = Failure. 2313 */ 2314 2315 /* must be called under the spq lock */ 2316 static inline 2317 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2318 { 2319 struct eth_spe *next_spe = sc->spq_prod_bd; 2320 2321 if (sc->spq_prod_bd == sc->spq_last_bd) { 2322 /* wrap back to the first eth_spq */ 2323 sc->spq_prod_bd = sc->spq; 2324 sc->spq_prod_idx = 0; 2325 } else { 2326 sc->spq_prod_bd++; 2327 sc->spq_prod_idx++; 2328 } 2329 2330 return (next_spe); 2331 } 2332 2333 /* must be called under the spq lock */ 2334 static inline 2335 void bxe_sp_prod_update(struct bxe_softc *sc) 2336 { 2337 int func = SC_FUNC(sc); 2338 2339 /* 2340 * Make sure that BD data is updated before writing the producer. 2341 * BD data is written to the memory, the producer is read from the 2342 * memory, thus we need a full memory barrier to ensure the ordering. 2343 */ 2344 mb(); 2345 2346 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2347 sc->spq_prod_idx); 2348 2349 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2350 BUS_SPACE_BARRIER_WRITE); 2351 } 2352 2353 /** 2354 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2355 * 2356 * @cmd: command to check 2357 * @cmd_type: command type 2358 */ 2359 static inline 2360 int bxe_is_contextless_ramrod(int cmd, 2361 int cmd_type) 2362 { 2363 if ((cmd_type == NONE_CONNECTION_TYPE) || 2364 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2365 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2366 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2367 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2368 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2369 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2370 return (TRUE); 2371 } else { 2372 return (FALSE); 2373 } 2374 } 2375 2376 /** 2377 * bxe_sp_post - place a single command on an SP ring 2378 * 2379 * @sc: driver handle 2380 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2381 * @cid: SW CID the command is related to 2382 * @data_hi: command private data address (high 32 bits) 2383 * @data_lo: command private data address (low 32 bits) 2384 * @cmd_type: command type (e.g. NONE, ETH) 2385 * 2386 * SP data is handled as if it's always an address pair, thus data fields are 2387 * not swapped to little endian in upper functions. Instead this function swaps 2388 * data as if it's two uint32 fields. 2389 */ 2390 int 2391 bxe_sp_post(struct bxe_softc *sc, 2392 int command, 2393 int cid, 2394 uint32_t data_hi, 2395 uint32_t data_lo, 2396 int cmd_type) 2397 { 2398 struct eth_spe *spe; 2399 uint16_t type; 2400 int common; 2401 2402 common = bxe_is_contextless_ramrod(command, cmd_type); 2403 2404 BXE_SP_LOCK(sc); 2405 2406 if (common) { 2407 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2408 BLOGE(sc, "EQ ring is full!\n"); 2409 BXE_SP_UNLOCK(sc); 2410 return (-1); 2411 } 2412 } else { 2413 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2414 BLOGE(sc, "SPQ ring is full!\n"); 2415 BXE_SP_UNLOCK(sc); 2416 return (-1); 2417 } 2418 } 2419 2420 spe = bxe_sp_get_next(sc); 2421 2422 /* CID needs port number to be encoded int it */ 2423 spe->hdr.conn_and_cmd_data = 2424 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2425 2426 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2427 2428 /* TBD: Check if it works for VFs */ 2429 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2430 SPE_HDR_T_FUNCTION_ID); 2431 2432 spe->hdr.type = htole16(type); 2433 2434 spe->data.update_data_addr.hi = htole32(data_hi); 2435 spe->data.update_data_addr.lo = htole32(data_lo); 2436 2437 /* 2438 * It's ok if the actual decrement is issued towards the memory 2439 * somewhere between the lock and unlock. Thus no more explict 2440 * memory barrier is needed. 2441 */ 2442 if (common) { 2443 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2444 } else { 2445 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2446 } 2447 2448 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2449 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2450 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2451 BLOGD(sc, DBG_SP, 2452 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2453 sc->spq_prod_idx, 2454 (uint32_t)U64_HI(sc->spq_dma.paddr), 2455 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2456 command, 2457 common, 2458 HW_CID(sc, cid), 2459 data_hi, 2460 data_lo, 2461 type, 2462 atomic_load_acq_long(&sc->cq_spq_left), 2463 atomic_load_acq_long(&sc->eq_spq_left)); 2464 2465 bxe_sp_prod_update(sc); 2466 2467 BXE_SP_UNLOCK(sc); 2468 return (0); 2469 } 2470 2471 /** 2472 * bxe_debug_print_ind_table - prints the indirection table configuration. 2473 * 2474 * @sc: driver hanlde 2475 * @p: pointer to rss configuration 2476 */ 2477 2478 /* 2479 * FreeBSD Device probe function. 2480 * 2481 * Compares the device found to the driver's list of supported devices and 2482 * reports back to the bsd loader whether this is the right driver for the device. 2483 * This is the driver entry function called from the "kldload" command. 2484 * 2485 * Returns: 2486 * BUS_PROBE_DEFAULT on success, positive value on failure. 2487 */ 2488 static int 2489 bxe_probe(device_t dev) 2490 { 2491 struct bxe_device_type *t; 2492 char *descbuf; 2493 uint16_t did, sdid, svid, vid; 2494 2495 /* Find our device structure */ 2496 t = bxe_devs; 2497 2498 /* Get the data for the device to be probed. */ 2499 vid = pci_get_vendor(dev); 2500 did = pci_get_device(dev); 2501 svid = pci_get_subvendor(dev); 2502 sdid = pci_get_subdevice(dev); 2503 2504 /* Look through the list of known devices for a match. */ 2505 while (t->bxe_name != NULL) { 2506 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2507 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2508 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2509 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2510 if (descbuf == NULL) 2511 return (ENOMEM); 2512 2513 /* Print out the device identity. */ 2514 snprintf(descbuf, BXE_DEVDESC_MAX, 2515 "%s (%c%d) BXE v:%s", t->bxe_name, 2516 (((pci_read_config(dev, PCIR_REVID, 4) & 2517 0xf0) >> 4) + 'A'), 2518 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2519 BXE_DRIVER_VERSION); 2520 2521 device_set_desc_copy(dev, descbuf); 2522 free(descbuf, M_TEMP); 2523 return (BUS_PROBE_DEFAULT); 2524 } 2525 t++; 2526 } 2527 2528 return (ENXIO); 2529 } 2530 2531 static void 2532 bxe_init_mutexes(struct bxe_softc *sc) 2533 { 2534 #ifdef BXE_CORE_LOCK_SX 2535 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2536 "bxe%d_core_lock", sc->unit); 2537 sx_init(&sc->core_sx, sc->core_sx_name); 2538 #else 2539 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2540 "bxe%d_core_lock", sc->unit); 2541 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2542 #endif 2543 2544 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2545 "bxe%d_sp_lock", sc->unit); 2546 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2547 2548 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2549 "bxe%d_dmae_lock", sc->unit); 2550 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2551 2552 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2553 "bxe%d_phy_lock", sc->unit); 2554 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2555 2556 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2557 "bxe%d_fwmb_lock", sc->unit); 2558 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2559 2560 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2561 "bxe%d_print_lock", sc->unit); 2562 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2563 2564 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2565 "bxe%d_stats_lock", sc->unit); 2566 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2567 2568 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2569 "bxe%d_mcast_lock", sc->unit); 2570 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2571 } 2572 2573 static void 2574 bxe_release_mutexes(struct bxe_softc *sc) 2575 { 2576 #ifdef BXE_CORE_LOCK_SX 2577 sx_destroy(&sc->core_sx); 2578 #else 2579 if (mtx_initialized(&sc->core_mtx)) { 2580 mtx_destroy(&sc->core_mtx); 2581 } 2582 #endif 2583 2584 if (mtx_initialized(&sc->sp_mtx)) { 2585 mtx_destroy(&sc->sp_mtx); 2586 } 2587 2588 if (mtx_initialized(&sc->dmae_mtx)) { 2589 mtx_destroy(&sc->dmae_mtx); 2590 } 2591 2592 if (mtx_initialized(&sc->port.phy_mtx)) { 2593 mtx_destroy(&sc->port.phy_mtx); 2594 } 2595 2596 if (mtx_initialized(&sc->fwmb_mtx)) { 2597 mtx_destroy(&sc->fwmb_mtx); 2598 } 2599 2600 if (mtx_initialized(&sc->print_mtx)) { 2601 mtx_destroy(&sc->print_mtx); 2602 } 2603 2604 if (mtx_initialized(&sc->stats_mtx)) { 2605 mtx_destroy(&sc->stats_mtx); 2606 } 2607 2608 if (mtx_initialized(&sc->mcast_mtx)) { 2609 mtx_destroy(&sc->mcast_mtx); 2610 } 2611 } 2612 2613 static void 2614 bxe_tx_disable(struct bxe_softc* sc) 2615 { 2616 if_t ifp = sc->ifp; 2617 2618 /* tell the stack the driver is stopped and TX queue is full */ 2619 if (ifp != NULL) { 2620 if_setdrvflags(ifp, 0); 2621 } 2622 } 2623 2624 static void 2625 bxe_drv_pulse(struct bxe_softc *sc) 2626 { 2627 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2628 sc->fw_drv_pulse_wr_seq); 2629 } 2630 2631 static inline uint16_t 2632 bxe_tx_avail(struct bxe_softc *sc, 2633 struct bxe_fastpath *fp) 2634 { 2635 int16_t used; 2636 uint16_t prod; 2637 uint16_t cons; 2638 2639 prod = fp->tx_bd_prod; 2640 cons = fp->tx_bd_cons; 2641 2642 used = SUB_S16(prod, cons); 2643 2644 return (int16_t)(sc->tx_ring_size) - used; 2645 } 2646 2647 static inline int 2648 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2649 { 2650 uint16_t hw_cons; 2651 2652 mb(); /* status block fields can change */ 2653 hw_cons = le16toh(*fp->tx_cons_sb); 2654 return (hw_cons != fp->tx_pkt_cons); 2655 } 2656 2657 static inline uint8_t 2658 bxe_has_tx_work(struct bxe_fastpath *fp) 2659 { 2660 /* expand this for multi-cos if ever supported */ 2661 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2662 } 2663 2664 static inline int 2665 bxe_has_rx_work(struct bxe_fastpath *fp) 2666 { 2667 uint16_t rx_cq_cons_sb; 2668 2669 mb(); /* status block fields can change */ 2670 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2671 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2672 rx_cq_cons_sb++; 2673 return (fp->rx_cq_cons != rx_cq_cons_sb); 2674 } 2675 2676 static void 2677 bxe_sp_event(struct bxe_softc *sc, 2678 struct bxe_fastpath *fp, 2679 union eth_rx_cqe *rr_cqe) 2680 { 2681 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2682 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2683 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2684 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2685 2686 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2687 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2688 2689 switch (command) { 2690 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2691 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2692 drv_cmd = ECORE_Q_CMD_UPDATE; 2693 break; 2694 2695 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2696 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2697 drv_cmd = ECORE_Q_CMD_SETUP; 2698 break; 2699 2700 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2701 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2702 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2703 break; 2704 2705 case (RAMROD_CMD_ID_ETH_HALT): 2706 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2707 drv_cmd = ECORE_Q_CMD_HALT; 2708 break; 2709 2710 case (RAMROD_CMD_ID_ETH_TERMINATE): 2711 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2712 drv_cmd = ECORE_Q_CMD_TERMINATE; 2713 break; 2714 2715 case (RAMROD_CMD_ID_ETH_EMPTY): 2716 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2717 drv_cmd = ECORE_Q_CMD_EMPTY; 2718 break; 2719 2720 default: 2721 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2722 command, fp->index); 2723 return; 2724 } 2725 2726 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2727 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2728 /* 2729 * q_obj->complete_cmd() failure means that this was 2730 * an unexpected completion. 2731 * 2732 * In this case we don't want to increase the sc->spq_left 2733 * because apparently we haven't sent this command the first 2734 * place. 2735 */ 2736 // bxe_panic(sc, ("Unexpected SP completion\n")); 2737 return; 2738 } 2739 2740 atomic_add_acq_long(&sc->cq_spq_left, 1); 2741 2742 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2743 atomic_load_acq_long(&sc->cq_spq_left)); 2744 } 2745 2746 /* 2747 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2748 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2749 * the current aggregation queue as in-progress. 2750 */ 2751 static void 2752 bxe_tpa_start(struct bxe_softc *sc, 2753 struct bxe_fastpath *fp, 2754 uint16_t queue, 2755 uint16_t cons, 2756 uint16_t prod, 2757 struct eth_fast_path_rx_cqe *cqe) 2758 { 2759 struct bxe_sw_rx_bd tmp_bd; 2760 struct bxe_sw_rx_bd *rx_buf; 2761 struct eth_rx_bd *rx_bd; 2762 int max_agg_queues __diagused; 2763 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2764 uint16_t index; 2765 2766 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2767 "cons=%d prod=%d\n", 2768 fp->index, queue, cons, prod); 2769 2770 max_agg_queues = MAX_AGG_QS(sc); 2771 2772 KASSERT((queue < max_agg_queues), 2773 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2774 fp->index, queue, max_agg_queues)); 2775 2776 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2777 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2778 fp->index, queue)); 2779 2780 /* copy the existing mbuf and mapping from the TPA pool */ 2781 tmp_bd = tpa_info->bd; 2782 2783 if (tmp_bd.m == NULL) { 2784 uint32_t *tmp; 2785 2786 tmp = (uint32_t *)cqe; 2787 2788 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2789 fp->index, queue, cons, prod); 2790 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2791 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2792 2793 /* XXX Error handling? */ 2794 return; 2795 } 2796 2797 /* change the TPA queue to the start state */ 2798 tpa_info->state = BXE_TPA_STATE_START; 2799 tpa_info->placement_offset = cqe->placement_offset; 2800 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2801 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2802 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2803 2804 fp->rx_tpa_queue_used |= (1 << queue); 2805 2806 /* 2807 * If all the buffer descriptors are filled with mbufs then fill in 2808 * the current consumer index with a new BD. Else if a maximum Rx 2809 * buffer limit is imposed then fill in the next producer index. 2810 */ 2811 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2812 prod : cons; 2813 2814 /* move the received mbuf and mapping to TPA pool */ 2815 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2816 2817 /* release any existing RX BD mbuf mappings */ 2818 if (cons != index) { 2819 rx_buf = &fp->rx_mbuf_chain[cons]; 2820 2821 if (rx_buf->m_map != NULL) { 2822 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2823 BUS_DMASYNC_POSTREAD); 2824 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2825 } 2826 2827 /* 2828 * We get here when the maximum number of rx buffers is less than 2829 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2830 * it out here without concern of a memory leak. 2831 */ 2832 fp->rx_mbuf_chain[cons].m = NULL; 2833 } 2834 2835 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2836 fp->rx_mbuf_chain[index] = tmp_bd; 2837 2838 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2839 rx_bd = &fp->rx_chain[index]; 2840 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2841 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2842 } 2843 2844 /* 2845 * When a TPA aggregation is completed, loop through the individual mbufs 2846 * of the aggregation, combining them into a single mbuf which will be sent 2847 * up the stack. Refill all freed SGEs with mbufs as we go along. 2848 */ 2849 static int 2850 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2851 struct bxe_fastpath *fp, 2852 struct bxe_sw_tpa_info *tpa_info, 2853 uint16_t queue, 2854 uint16_t pages, 2855 struct mbuf *m, 2856 struct eth_end_agg_rx_cqe *cqe, 2857 uint16_t cqe_idx) 2858 { 2859 struct mbuf *m_frag; 2860 uint32_t frag_len, frag_size, i; 2861 uint16_t sge_idx; 2862 int rc = 0; 2863 int j; 2864 2865 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2866 2867 BLOGD(sc, DBG_LRO, 2868 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2869 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2870 2871 /* make sure the aggregated frame is not too big to handle */ 2872 if (pages > 8 * PAGES_PER_SGE) { 2873 2874 uint32_t *tmp = (uint32_t *)cqe; 2875 2876 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2877 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2878 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2879 tpa_info->len_on_bd, frag_size); 2880 2881 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2882 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2883 2884 bxe_panic(sc, ("sge page count error\n")); 2885 return (EINVAL); 2886 } 2887 2888 /* 2889 * Scan through the scatter gather list pulling individual mbufs into a 2890 * single mbuf for the host stack. 2891 */ 2892 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2893 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2894 2895 /* 2896 * Firmware gives the indices of the SGE as if the ring is an array 2897 * (meaning that the "next" element will consume 2 indices). 2898 */ 2899 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2900 2901 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2902 "sge_idx=%d frag_size=%d frag_len=%d\n", 2903 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2904 2905 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2906 2907 /* allocate a new mbuf for the SGE */ 2908 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2909 if (rc) { 2910 /* Leave all remaining SGEs in the ring! */ 2911 return (rc); 2912 } 2913 2914 /* update the fragment length */ 2915 m_frag->m_len = frag_len; 2916 2917 /* concatenate the fragment to the head mbuf */ 2918 m_cat(m, m_frag); 2919 fp->eth_q_stats.mbuf_alloc_sge--; 2920 2921 /* update the TPA mbuf size and remaining fragment size */ 2922 m->m_pkthdr.len += frag_len; 2923 frag_size -= frag_len; 2924 } 2925 2926 BLOGD(sc, DBG_LRO, 2927 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2928 fp->index, queue, frag_size); 2929 2930 return (rc); 2931 } 2932 2933 static inline void 2934 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2935 { 2936 int i, j; 2937 2938 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2939 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2940 2941 for (j = 0; j < 2; j++) { 2942 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2943 idx--; 2944 } 2945 } 2946 } 2947 2948 static inline void 2949 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2950 { 2951 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2952 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2953 2954 /* 2955 * Clear the two last indices in the page to 1. These are the indices that 2956 * correspond to the "next" element, hence will never be indicated and 2957 * should be removed from the calculations. 2958 */ 2959 bxe_clear_sge_mask_next_elems(fp); 2960 } 2961 2962 static inline void 2963 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2964 uint16_t idx) 2965 { 2966 uint16_t last_max = fp->last_max_sge; 2967 2968 if (SUB_S16(idx, last_max) > 0) { 2969 fp->last_max_sge = idx; 2970 } 2971 } 2972 2973 static inline void 2974 bxe_update_sge_prod(struct bxe_softc *sc, 2975 struct bxe_fastpath *fp, 2976 uint16_t sge_len, 2977 union eth_sgl_or_raw_data *cqe) 2978 { 2979 uint16_t last_max, last_elem, first_elem; 2980 uint16_t delta = 0; 2981 uint16_t i; 2982 2983 if (!sge_len) { 2984 return; 2985 } 2986 2987 /* first mark all used pages */ 2988 for (i = 0; i < sge_len; i++) { 2989 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2990 RX_SGE(le16toh(cqe->sgl[i]))); 2991 } 2992 2993 BLOGD(sc, DBG_LRO, 2994 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 2995 fp->index, sge_len - 1, 2996 le16toh(cqe->sgl[sge_len - 1])); 2997 2998 /* assume that the last SGE index is the biggest */ 2999 bxe_update_last_max_sge(fp, 3000 le16toh(cqe->sgl[sge_len - 1])); 3001 3002 last_max = RX_SGE(fp->last_max_sge); 3003 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3004 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3005 3006 /* if ring is not full */ 3007 if (last_elem + 1 != first_elem) { 3008 last_elem++; 3009 } 3010 3011 /* now update the prod */ 3012 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3013 if (__predict_true(fp->sge_mask[i])) { 3014 break; 3015 } 3016 3017 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3018 delta += BIT_VEC64_ELEM_SZ; 3019 } 3020 3021 if (delta > 0) { 3022 fp->rx_sge_prod += delta; 3023 /* clear page-end entries */ 3024 bxe_clear_sge_mask_next_elems(fp); 3025 } 3026 3027 BLOGD(sc, DBG_LRO, 3028 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3029 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3030 } 3031 3032 /* 3033 * The aggregation on the current TPA queue has completed. Pull the individual 3034 * mbuf fragments together into a single mbuf, perform all necessary checksum 3035 * calculations, and send the resuting mbuf to the stack. 3036 */ 3037 static void 3038 bxe_tpa_stop(struct bxe_softc *sc, 3039 struct bxe_fastpath *fp, 3040 struct bxe_sw_tpa_info *tpa_info, 3041 uint16_t queue, 3042 uint16_t pages, 3043 struct eth_end_agg_rx_cqe *cqe, 3044 uint16_t cqe_idx) 3045 { 3046 if_t ifp = sc->ifp; 3047 struct mbuf *m; 3048 int rc = 0; 3049 3050 BLOGD(sc, DBG_LRO, 3051 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3052 fp->index, queue, tpa_info->placement_offset, 3053 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3054 3055 m = tpa_info->bd.m; 3056 3057 /* allocate a replacement before modifying existing mbuf */ 3058 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3059 if (rc) { 3060 /* drop the frame and log an error */ 3061 fp->eth_q_stats.rx_soft_errors++; 3062 goto bxe_tpa_stop_exit; 3063 } 3064 3065 /* we have a replacement, fixup the current mbuf */ 3066 m_adj(m, tpa_info->placement_offset); 3067 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3068 3069 /* mark the checksums valid (taken care of by the firmware) */ 3070 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3071 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3072 m->m_pkthdr.csum_data = 0xffff; 3073 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3074 CSUM_IP_VALID | 3075 CSUM_DATA_VALID | 3076 CSUM_PSEUDO_HDR); 3077 3078 /* aggregate all of the SGEs into a single mbuf */ 3079 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3080 if (rc) { 3081 /* drop the packet and log an error */ 3082 fp->eth_q_stats.rx_soft_errors++; 3083 m_freem(m); 3084 } else { 3085 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3086 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3087 m->m_flags |= M_VLANTAG; 3088 } 3089 3090 /* assign packet to this interface interface */ 3091 if_setrcvif(m, ifp); 3092 3093 /* specify what RSS queue was used for this flow */ 3094 m->m_pkthdr.flowid = fp->index; 3095 BXE_SET_FLOWID(m); 3096 3097 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3098 fp->eth_q_stats.rx_tpa_pkts++; 3099 3100 /* pass the frame to the stack */ 3101 if_input(ifp, m); 3102 } 3103 3104 /* we passed an mbuf up the stack or dropped the frame */ 3105 fp->eth_q_stats.mbuf_alloc_tpa--; 3106 3107 bxe_tpa_stop_exit: 3108 3109 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3110 fp->rx_tpa_queue_used &= ~(1 << queue); 3111 } 3112 3113 static uint8_t 3114 bxe_service_rxsgl( 3115 struct bxe_fastpath *fp, 3116 uint16_t len, 3117 uint16_t lenonbd, 3118 struct mbuf *m, 3119 struct eth_fast_path_rx_cqe *cqe_fp) 3120 { 3121 struct mbuf *m_frag; 3122 uint16_t frags, frag_len; 3123 uint16_t sge_idx = 0; 3124 uint16_t j; 3125 uint8_t i, rc = 0; 3126 uint32_t frag_size; 3127 3128 /* adjust the mbuf */ 3129 m->m_len = lenonbd; 3130 3131 frag_size = len - lenonbd; 3132 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3133 3134 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3135 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3136 3137 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3138 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3139 m_frag->m_len = frag_len; 3140 3141 /* allocate a new mbuf for the SGE */ 3142 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3143 if (rc) { 3144 /* Leave all remaining SGEs in the ring! */ 3145 return (rc); 3146 } 3147 fp->eth_q_stats.mbuf_alloc_sge--; 3148 3149 /* concatenate the fragment to the head mbuf */ 3150 m_cat(m, m_frag); 3151 3152 frag_size -= frag_len; 3153 } 3154 3155 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3156 3157 return rc; 3158 } 3159 3160 static uint8_t 3161 bxe_rxeof(struct bxe_softc *sc, 3162 struct bxe_fastpath *fp) 3163 { 3164 if_t ifp = sc->ifp; 3165 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3166 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3167 int rx_pkts = 0; 3168 int rc = 0; 3169 3170 BXE_FP_RX_LOCK(fp); 3171 3172 /* CQ "next element" is of the size of the regular element */ 3173 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3174 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3175 hw_cq_cons++; 3176 } 3177 3178 bd_cons = fp->rx_bd_cons; 3179 bd_prod = fp->rx_bd_prod; 3180 bd_prod_fw = bd_prod; 3181 sw_cq_cons = fp->rx_cq_cons; 3182 sw_cq_prod = fp->rx_cq_prod; 3183 3184 /* 3185 * Memory barrier necessary as speculative reads of the rx 3186 * buffer can be ahead of the index in the status block 3187 */ 3188 rmb(); 3189 3190 BLOGD(sc, DBG_RX, 3191 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3192 fp->index, hw_cq_cons, sw_cq_cons); 3193 3194 while (sw_cq_cons != hw_cq_cons) { 3195 struct bxe_sw_rx_bd *rx_buf = NULL; 3196 union eth_rx_cqe *cqe; 3197 struct eth_fast_path_rx_cqe *cqe_fp; 3198 uint8_t cqe_fp_flags; 3199 enum eth_rx_cqe_type cqe_fp_type; 3200 uint16_t len, lenonbd, pad; 3201 struct mbuf *m = NULL; 3202 3203 comp_ring_cons = RCQ(sw_cq_cons); 3204 bd_prod = RX_BD(bd_prod); 3205 bd_cons = RX_BD(bd_cons); 3206 3207 cqe = &fp->rcq_chain[comp_ring_cons]; 3208 cqe_fp = &cqe->fast_path_cqe; 3209 cqe_fp_flags = cqe_fp->type_error_flags; 3210 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3211 3212 BLOGD(sc, DBG_RX, 3213 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3214 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3215 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3216 fp->index, 3217 hw_cq_cons, 3218 sw_cq_cons, 3219 bd_prod, 3220 bd_cons, 3221 CQE_TYPE(cqe_fp_flags), 3222 cqe_fp_flags, 3223 cqe_fp->status_flags, 3224 le32toh(cqe_fp->rss_hash_result), 3225 le16toh(cqe_fp->vlan_tag), 3226 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3227 le16toh(cqe_fp->len_on_bd)); 3228 3229 /* is this a slowpath msg? */ 3230 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3231 bxe_sp_event(sc, fp, cqe); 3232 goto next_cqe; 3233 } 3234 3235 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3236 3237 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3238 struct bxe_sw_tpa_info *tpa_info; 3239 uint16_t frag_size, pages; 3240 uint8_t queue; 3241 3242 if (CQE_TYPE_START(cqe_fp_type)) { 3243 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3244 bd_cons, bd_prod, cqe_fp); 3245 m = NULL; /* packet not ready yet */ 3246 goto next_rx; 3247 } 3248 3249 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3250 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3251 3252 queue = cqe->end_agg_cqe.queue_index; 3253 tpa_info = &fp->rx_tpa_info[queue]; 3254 3255 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3256 fp->index, queue); 3257 3258 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3259 tpa_info->len_on_bd); 3260 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3261 3262 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3263 &cqe->end_agg_cqe, comp_ring_cons); 3264 3265 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3266 3267 goto next_cqe; 3268 } 3269 3270 /* non TPA */ 3271 3272 /* is this an error packet? */ 3273 if (__predict_false(cqe_fp_flags & 3274 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3275 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3276 fp->eth_q_stats.rx_soft_errors++; 3277 goto next_rx; 3278 } 3279 3280 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3281 lenonbd = le16toh(cqe_fp->len_on_bd); 3282 pad = cqe_fp->placement_offset; 3283 3284 m = rx_buf->m; 3285 3286 if (__predict_false(m == NULL)) { 3287 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3288 bd_cons, fp->index); 3289 goto next_rx; 3290 } 3291 3292 /* XXX double copy if packet length under a threshold */ 3293 3294 /* 3295 * If all the buffer descriptors are filled with mbufs then fill in 3296 * the current consumer index with a new BD. Else if a maximum Rx 3297 * buffer limit is imposed then fill in the next producer index. 3298 */ 3299 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3300 (sc->max_rx_bufs != RX_BD_USABLE) ? 3301 bd_prod : bd_cons); 3302 if (rc != 0) { 3303 3304 /* we simply reuse the received mbuf and don't post it to the stack */ 3305 m = NULL; 3306 3307 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3308 fp->index, rc); 3309 fp->eth_q_stats.rx_soft_errors++; 3310 3311 if (sc->max_rx_bufs != RX_BD_USABLE) { 3312 /* copy this consumer index to the producer index */ 3313 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3314 sizeof(struct bxe_sw_rx_bd)); 3315 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3316 } 3317 3318 goto next_rx; 3319 } 3320 3321 /* current mbuf was detached from the bd */ 3322 fp->eth_q_stats.mbuf_alloc_rx--; 3323 3324 /* we allocated a replacement mbuf, fixup the current one */ 3325 m_adj(m, pad); 3326 m->m_pkthdr.len = m->m_len = len; 3327 3328 if ((len > 60) && (len > lenonbd)) { 3329 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3330 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3331 if (rc) 3332 break; 3333 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3334 } else if (lenonbd < len) { 3335 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3336 } 3337 3338 /* assign packet to this interface interface */ 3339 if_setrcvif(m, ifp); 3340 3341 /* assume no hardware checksum has complated */ 3342 m->m_pkthdr.csum_flags = 0; 3343 3344 /* validate checksum if offload enabled */ 3345 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3346 /* check for a valid IP frame */ 3347 if (!(cqe->fast_path_cqe.status_flags & 3348 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3349 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3350 if (__predict_false(cqe_fp_flags & 3351 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3352 fp->eth_q_stats.rx_hw_csum_errors++; 3353 } else { 3354 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3355 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3356 } 3357 } 3358 3359 /* check for a valid TCP/UDP frame */ 3360 if (!(cqe->fast_path_cqe.status_flags & 3361 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3362 if (__predict_false(cqe_fp_flags & 3363 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3364 fp->eth_q_stats.rx_hw_csum_errors++; 3365 } else { 3366 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3367 m->m_pkthdr.csum_data = 0xFFFF; 3368 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3369 CSUM_PSEUDO_HDR); 3370 } 3371 } 3372 } 3373 3374 /* if there is a VLAN tag then flag that info */ 3375 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3376 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3377 m->m_flags |= M_VLANTAG; 3378 } 3379 3380 /* specify what RSS queue was used for this flow */ 3381 m->m_pkthdr.flowid = fp->index; 3382 BXE_SET_FLOWID(m); 3383 3384 next_rx: 3385 3386 bd_cons = RX_BD_NEXT(bd_cons); 3387 bd_prod = RX_BD_NEXT(bd_prod); 3388 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3389 3390 /* pass the frame to the stack */ 3391 if (__predict_true(m != NULL)) { 3392 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3393 rx_pkts++; 3394 if_input(ifp, m); 3395 } 3396 3397 next_cqe: 3398 3399 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3400 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3401 3402 /* limit spinning on the queue */ 3403 if (rc != 0) 3404 break; 3405 3406 if (rx_pkts == sc->rx_budget) { 3407 fp->eth_q_stats.rx_budget_reached++; 3408 break; 3409 } 3410 } /* while work to do */ 3411 3412 fp->rx_bd_cons = bd_cons; 3413 fp->rx_bd_prod = bd_prod_fw; 3414 fp->rx_cq_cons = sw_cq_cons; 3415 fp->rx_cq_prod = sw_cq_prod; 3416 3417 /* Update producers */ 3418 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3419 3420 fp->eth_q_stats.rx_pkts += rx_pkts; 3421 fp->eth_q_stats.rx_calls++; 3422 3423 BXE_FP_RX_UNLOCK(fp); 3424 3425 return (sw_cq_cons != hw_cq_cons); 3426 } 3427 3428 static uint16_t 3429 bxe_free_tx_pkt(struct bxe_softc *sc, 3430 struct bxe_fastpath *fp, 3431 uint16_t idx) 3432 { 3433 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3434 struct eth_tx_start_bd *tx_start_bd; 3435 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3436 uint16_t new_cons; 3437 int nbd; 3438 3439 /* unmap the mbuf from non-paged memory */ 3440 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3441 3442 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3443 nbd = le16toh(tx_start_bd->nbd) - 1; 3444 3445 new_cons = (tx_buf->first_bd + nbd); 3446 3447 /* free the mbuf */ 3448 if (__predict_true(tx_buf->m != NULL)) { 3449 m_freem(tx_buf->m); 3450 fp->eth_q_stats.mbuf_alloc_tx--; 3451 } else { 3452 fp->eth_q_stats.tx_chain_lost_mbuf++; 3453 } 3454 3455 tx_buf->m = NULL; 3456 tx_buf->first_bd = 0; 3457 3458 return (new_cons); 3459 } 3460 3461 /* transmit timeout watchdog */ 3462 static int 3463 bxe_watchdog(struct bxe_softc *sc, 3464 struct bxe_fastpath *fp) 3465 { 3466 BXE_FP_TX_LOCK(fp); 3467 3468 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3469 BXE_FP_TX_UNLOCK(fp); 3470 return (0); 3471 } 3472 3473 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3474 3475 BXE_FP_TX_UNLOCK(fp); 3476 BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK); 3477 taskqueue_enqueue_timeout(taskqueue_thread, 3478 &sc->sp_err_timeout_task, hz/10); 3479 3480 return (-1); 3481 } 3482 3483 /* processes transmit completions */ 3484 static uint8_t 3485 bxe_txeof(struct bxe_softc *sc, 3486 struct bxe_fastpath *fp) 3487 { 3488 if_t ifp = sc->ifp; 3489 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3490 uint16_t tx_bd_avail; 3491 3492 BXE_FP_TX_LOCK_ASSERT(fp); 3493 3494 bd_cons = fp->tx_bd_cons; 3495 hw_cons = le16toh(*fp->tx_cons_sb); 3496 sw_cons = fp->tx_pkt_cons; 3497 3498 while (sw_cons != hw_cons) { 3499 pkt_cons = TX_BD(sw_cons); 3500 3501 BLOGD(sc, DBG_TX, 3502 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3503 fp->index, hw_cons, sw_cons, pkt_cons); 3504 3505 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3506 3507 sw_cons++; 3508 } 3509 3510 fp->tx_pkt_cons = sw_cons; 3511 fp->tx_bd_cons = bd_cons; 3512 3513 BLOGD(sc, DBG_TX, 3514 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3515 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3516 3517 mb(); 3518 3519 tx_bd_avail = bxe_tx_avail(sc, fp); 3520 3521 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3522 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3523 } else { 3524 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3525 } 3526 3527 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3528 /* reset the watchdog timer if there are pending transmits */ 3529 fp->watchdog_timer = BXE_TX_TIMEOUT; 3530 return (TRUE); 3531 } else { 3532 /* clear watchdog when there are no pending transmits */ 3533 fp->watchdog_timer = 0; 3534 return (FALSE); 3535 } 3536 } 3537 3538 static void 3539 bxe_drain_tx_queues(struct bxe_softc *sc) 3540 { 3541 struct bxe_fastpath *fp; 3542 int i, count; 3543 3544 /* wait until all TX fastpath tasks have completed */ 3545 for (i = 0; i < sc->num_queues; i++) { 3546 fp = &sc->fp[i]; 3547 3548 count = 1000; 3549 3550 while (bxe_has_tx_work(fp)) { 3551 3552 BXE_FP_TX_LOCK(fp); 3553 bxe_txeof(sc, fp); 3554 BXE_FP_TX_UNLOCK(fp); 3555 3556 if (count == 0) { 3557 BLOGE(sc, "Timeout waiting for fp[%d] " 3558 "transmits to complete!\n", i); 3559 bxe_panic(sc, ("tx drain failure\n")); 3560 return; 3561 } 3562 3563 count--; 3564 DELAY(1000); 3565 rmb(); 3566 } 3567 } 3568 3569 return; 3570 } 3571 3572 static int 3573 bxe_del_all_macs(struct bxe_softc *sc, 3574 struct ecore_vlan_mac_obj *mac_obj, 3575 int mac_type, 3576 uint8_t wait_for_comp) 3577 { 3578 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3579 int rc; 3580 3581 /* wait for completion of requested */ 3582 if (wait_for_comp) { 3583 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3584 } 3585 3586 /* Set the mac type of addresses we want to clear */ 3587 bxe_set_bit(mac_type, &vlan_mac_flags); 3588 3589 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3590 if (rc < 0) { 3591 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3592 rc, mac_type, wait_for_comp); 3593 } 3594 3595 return (rc); 3596 } 3597 3598 static int 3599 bxe_fill_accept_flags(struct bxe_softc *sc, 3600 uint32_t rx_mode, 3601 unsigned long *rx_accept_flags, 3602 unsigned long *tx_accept_flags) 3603 { 3604 /* Clear the flags first */ 3605 *rx_accept_flags = 0; 3606 *tx_accept_flags = 0; 3607 3608 switch (rx_mode) { 3609 case BXE_RX_MODE_NONE: 3610 /* 3611 * 'drop all' supersedes any accept flags that may have been 3612 * passed to the function. 3613 */ 3614 break; 3615 3616 case BXE_RX_MODE_NORMAL: 3617 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3618 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3619 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3620 3621 /* internal switching mode */ 3622 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3623 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3624 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3625 3626 break; 3627 3628 case BXE_RX_MODE_ALLMULTI: 3629 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3630 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3631 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3632 3633 /* internal switching mode */ 3634 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3635 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3636 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3637 3638 break; 3639 3640 case BXE_RX_MODE_PROMISC: 3641 /* 3642 * According to deffinition of SI mode, iface in promisc mode 3643 * should receive matched and unmatched (in resolution of port) 3644 * unicast packets. 3645 */ 3646 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3647 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3648 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3649 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3650 3651 /* internal switching mode */ 3652 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3653 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3654 3655 if (IS_MF_SI(sc)) { 3656 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3657 } else { 3658 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3659 } 3660 3661 break; 3662 3663 default: 3664 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3665 return (-1); 3666 } 3667 3668 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3669 if (rx_mode != BXE_RX_MODE_NONE) { 3670 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3671 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3672 } 3673 3674 return (0); 3675 } 3676 3677 static int 3678 bxe_set_q_rx_mode(struct bxe_softc *sc, 3679 uint8_t cl_id, 3680 unsigned long rx_mode_flags, 3681 unsigned long rx_accept_flags, 3682 unsigned long tx_accept_flags, 3683 unsigned long ramrod_flags) 3684 { 3685 struct ecore_rx_mode_ramrod_params ramrod_param; 3686 int rc; 3687 3688 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3689 3690 /* Prepare ramrod parameters */ 3691 ramrod_param.cid = 0; 3692 ramrod_param.cl_id = cl_id; 3693 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3694 ramrod_param.func_id = SC_FUNC(sc); 3695 3696 ramrod_param.pstate = &sc->sp_state; 3697 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3698 3699 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3700 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3701 3702 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3703 3704 ramrod_param.ramrod_flags = ramrod_flags; 3705 ramrod_param.rx_mode_flags = rx_mode_flags; 3706 3707 ramrod_param.rx_accept_flags = rx_accept_flags; 3708 ramrod_param.tx_accept_flags = tx_accept_flags; 3709 3710 rc = ecore_config_rx_mode(sc, &ramrod_param); 3711 if (rc < 0) { 3712 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3713 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3714 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3715 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3716 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3717 return (rc); 3718 } 3719 3720 return (0); 3721 } 3722 3723 static int 3724 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3725 { 3726 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3727 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3728 int rc; 3729 3730 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3731 &tx_accept_flags); 3732 if (rc) { 3733 return (rc); 3734 } 3735 3736 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3737 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3738 3739 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3740 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3741 rx_accept_flags, tx_accept_flags, 3742 ramrod_flags)); 3743 } 3744 3745 /* returns the "mcp load_code" according to global load_count array */ 3746 static int 3747 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3748 { 3749 int path = SC_PATH(sc); 3750 int port = SC_PORT(sc); 3751 3752 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3753 path, load_count[path][0], load_count[path][1], 3754 load_count[path][2]); 3755 load_count[path][0]++; 3756 load_count[path][1 + port]++; 3757 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3758 path, load_count[path][0], load_count[path][1], 3759 load_count[path][2]); 3760 if (load_count[path][0] == 1) { 3761 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3762 } else if (load_count[path][1 + port] == 1) { 3763 return (FW_MSG_CODE_DRV_LOAD_PORT); 3764 } else { 3765 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3766 } 3767 } 3768 3769 /* returns the "mcp load_code" according to global load_count array */ 3770 static int 3771 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3772 { 3773 int port = SC_PORT(sc); 3774 int path = SC_PATH(sc); 3775 3776 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3777 path, load_count[path][0], load_count[path][1], 3778 load_count[path][2]); 3779 load_count[path][0]--; 3780 load_count[path][1 + port]--; 3781 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3782 path, load_count[path][0], load_count[path][1], 3783 load_count[path][2]); 3784 if (load_count[path][0] == 0) { 3785 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3786 } else if (load_count[path][1 + port] == 0) { 3787 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3788 } else { 3789 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3790 } 3791 } 3792 3793 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3794 static uint32_t 3795 bxe_send_unload_req(struct bxe_softc *sc, 3796 int unload_mode) 3797 { 3798 uint32_t reset_code = 0; 3799 3800 /* Select the UNLOAD request mode */ 3801 if (unload_mode == UNLOAD_NORMAL) { 3802 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3803 } else { 3804 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3805 } 3806 3807 /* Send the request to the MCP */ 3808 if (!BXE_NOMCP(sc)) { 3809 reset_code = bxe_fw_command(sc, reset_code, 0); 3810 } else { 3811 reset_code = bxe_nic_unload_no_mcp(sc); 3812 } 3813 3814 return (reset_code); 3815 } 3816 3817 /* send UNLOAD_DONE command to the MCP */ 3818 static void 3819 bxe_send_unload_done(struct bxe_softc *sc, 3820 uint8_t keep_link) 3821 { 3822 uint32_t reset_param = 3823 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3824 3825 /* Report UNLOAD_DONE to MCP */ 3826 if (!BXE_NOMCP(sc)) { 3827 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3828 } 3829 } 3830 3831 static int 3832 bxe_func_wait_started(struct bxe_softc *sc) 3833 { 3834 int tout = 50; 3835 3836 if (!sc->port.pmf) { 3837 return (0); 3838 } 3839 3840 /* 3841 * (assumption: No Attention from MCP at this stage) 3842 * PMF probably in the middle of TX disable/enable transaction 3843 * 1. Sync IRS for default SB 3844 * 2. Sync SP queue - this guarantees us that attention handling started 3845 * 3. Wait, that TX disable/enable transaction completes 3846 * 3847 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3848 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3849 * received completion for the transaction the state is TX_STOPPED. 3850 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3851 * transaction. 3852 */ 3853 3854 /* XXX make sure default SB ISR is done */ 3855 /* need a way to synchronize an irq (intr_mtx?) */ 3856 3857 /* XXX flush any work queues */ 3858 3859 while (ecore_func_get_state(sc, &sc->func_obj) != 3860 ECORE_F_STATE_STARTED && tout--) { 3861 DELAY(20000); 3862 } 3863 3864 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3865 /* 3866 * Failed to complete the transaction in a "good way" 3867 * Force both transactions with CLR bit. 3868 */ 3869 struct ecore_func_state_params func_params = { NULL }; 3870 3871 BLOGE(sc, "Unexpected function state! " 3872 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3873 3874 func_params.f_obj = &sc->func_obj; 3875 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3876 3877 /* STARTED-->TX_STOPPED */ 3878 func_params.cmd = ECORE_F_CMD_TX_STOP; 3879 ecore_func_state_change(sc, &func_params); 3880 3881 /* TX_STOPPED-->STARTED */ 3882 func_params.cmd = ECORE_F_CMD_TX_START; 3883 return (ecore_func_state_change(sc, &func_params)); 3884 } 3885 3886 return (0); 3887 } 3888 3889 static int 3890 bxe_stop_queue(struct bxe_softc *sc, 3891 int index) 3892 { 3893 struct bxe_fastpath *fp = &sc->fp[index]; 3894 struct ecore_queue_state_params q_params = { NULL }; 3895 int rc; 3896 3897 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3898 3899 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3900 /* We want to wait for completion in this context */ 3901 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3902 3903 /* Stop the primary connection: */ 3904 3905 /* ...halt the connection */ 3906 q_params.cmd = ECORE_Q_CMD_HALT; 3907 rc = ecore_queue_state_change(sc, &q_params); 3908 if (rc) { 3909 return (rc); 3910 } 3911 3912 /* ...terminate the connection */ 3913 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3914 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3915 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3916 rc = ecore_queue_state_change(sc, &q_params); 3917 if (rc) { 3918 return (rc); 3919 } 3920 3921 /* ...delete cfc entry */ 3922 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3923 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3924 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3925 return (ecore_queue_state_change(sc, &q_params)); 3926 } 3927 3928 /* wait for the outstanding SP commands */ 3929 static inline uint8_t 3930 bxe_wait_sp_comp(struct bxe_softc *sc, 3931 unsigned long mask) 3932 { 3933 unsigned long tmp; 3934 int tout = 5000; /* wait for 5 secs tops */ 3935 3936 while (tout--) { 3937 mb(); 3938 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3939 return (TRUE); 3940 } 3941 3942 DELAY(1000); 3943 } 3944 3945 mb(); 3946 3947 tmp = atomic_load_acq_long(&sc->sp_state); 3948 if (tmp & mask) { 3949 BLOGE(sc, "Filtering completion timed out: " 3950 "sp_state 0x%lx, mask 0x%lx\n", 3951 tmp, mask); 3952 return (FALSE); 3953 } 3954 3955 return (FALSE); 3956 } 3957 3958 static int 3959 bxe_func_stop(struct bxe_softc *sc) 3960 { 3961 struct ecore_func_state_params func_params = { NULL }; 3962 int rc; 3963 3964 /* prepare parameters for function state transitions */ 3965 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3966 func_params.f_obj = &sc->func_obj; 3967 func_params.cmd = ECORE_F_CMD_STOP; 3968 3969 /* 3970 * Try to stop the function the 'good way'. If it fails (in case 3971 * of a parity error during bxe_chip_cleanup()) and we are 3972 * not in a debug mode, perform a state transaction in order to 3973 * enable further HW_RESET transaction. 3974 */ 3975 rc = ecore_func_state_change(sc, &func_params); 3976 if (rc) { 3977 BLOGE(sc, "FUNC_STOP ramrod failed. " 3978 "Running a dry transaction (%d)\n", rc); 3979 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3980 return (ecore_func_state_change(sc, &func_params)); 3981 } 3982 3983 return (0); 3984 } 3985 3986 static int 3987 bxe_reset_hw(struct bxe_softc *sc, 3988 uint32_t load_code) 3989 { 3990 struct ecore_func_state_params func_params = { NULL }; 3991 3992 /* Prepare parameters for function state transitions */ 3993 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3994 3995 func_params.f_obj = &sc->func_obj; 3996 func_params.cmd = ECORE_F_CMD_HW_RESET; 3997 3998 func_params.params.hw_init.load_phase = load_code; 3999 4000 return (ecore_func_state_change(sc, &func_params)); 4001 } 4002 4003 static void 4004 bxe_int_disable_sync(struct bxe_softc *sc, 4005 int disable_hw) 4006 { 4007 if (disable_hw) { 4008 /* prevent the HW from sending interrupts */ 4009 bxe_int_disable(sc); 4010 } 4011 4012 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4013 /* make sure all ISRs are done */ 4014 4015 /* XXX make sure sp_task is not running */ 4016 /* cancel and flush work queues */ 4017 } 4018 4019 static void 4020 bxe_chip_cleanup(struct bxe_softc *sc, 4021 uint32_t unload_mode, 4022 uint8_t keep_link) 4023 { 4024 int port = SC_PORT(sc); 4025 struct ecore_mcast_ramrod_params rparam = { NULL }; 4026 uint32_t reset_code; 4027 int i, rc = 0; 4028 4029 bxe_drain_tx_queues(sc); 4030 4031 /* give HW time to discard old tx messages */ 4032 DELAY(1000); 4033 4034 /* Clean all ETH MACs */ 4035 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4036 if (rc < 0) { 4037 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4038 } 4039 4040 /* Clean up UC list */ 4041 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4042 if (rc < 0) { 4043 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4044 } 4045 4046 /* Disable LLH */ 4047 if (!CHIP_IS_E1(sc)) { 4048 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4049 } 4050 4051 /* Set "drop all" to stop Rx */ 4052 4053 /* 4054 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4055 * a race between the completion code and this code. 4056 */ 4057 BXE_MCAST_LOCK(sc); 4058 4059 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4060 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4061 } else { 4062 bxe_set_storm_rx_mode(sc); 4063 } 4064 4065 /* Clean up multicast configuration */ 4066 rparam.mcast_obj = &sc->mcast_obj; 4067 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4068 if (rc < 0) { 4069 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4070 } 4071 4072 BXE_MCAST_UNLOCK(sc); 4073 4074 // XXX bxe_iov_chip_cleanup(sc); 4075 4076 /* 4077 * Send the UNLOAD_REQUEST to the MCP. This will return if 4078 * this function should perform FUNCTION, PORT, or COMMON HW 4079 * reset. 4080 */ 4081 reset_code = bxe_send_unload_req(sc, unload_mode); 4082 4083 /* 4084 * (assumption: No Attention from MCP at this stage) 4085 * PMF probably in the middle of TX disable/enable transaction 4086 */ 4087 rc = bxe_func_wait_started(sc); 4088 if (rc) { 4089 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4090 } 4091 4092 /* 4093 * Close multi and leading connections 4094 * Completions for ramrods are collected in a synchronous way 4095 */ 4096 for (i = 0; i < sc->num_queues; i++) { 4097 if (bxe_stop_queue(sc, i)) { 4098 goto unload_error; 4099 } 4100 } 4101 4102 /* 4103 * If SP settings didn't get completed so far - something 4104 * very wrong has happen. 4105 */ 4106 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4107 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4108 } 4109 4110 unload_error: 4111 4112 rc = bxe_func_stop(sc); 4113 if (rc) { 4114 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4115 } 4116 4117 /* disable HW interrupts */ 4118 bxe_int_disable_sync(sc, TRUE); 4119 4120 /* detach interrupts */ 4121 bxe_interrupt_detach(sc); 4122 4123 /* Reset the chip */ 4124 rc = bxe_reset_hw(sc, reset_code); 4125 if (rc) { 4126 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4127 } 4128 4129 /* Report UNLOAD_DONE to MCP */ 4130 bxe_send_unload_done(sc, keep_link); 4131 } 4132 4133 static void 4134 bxe_disable_close_the_gate(struct bxe_softc *sc) 4135 { 4136 uint32_t val; 4137 int port = SC_PORT(sc); 4138 4139 BLOGD(sc, DBG_LOAD, 4140 "Disabling 'close the gates'\n"); 4141 4142 if (CHIP_IS_E1(sc)) { 4143 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4144 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4145 val = REG_RD(sc, addr); 4146 val &= ~(0x300); 4147 REG_WR(sc, addr, val); 4148 } else { 4149 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4150 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4151 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4152 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4153 } 4154 } 4155 4156 /* 4157 * Cleans the object that have internal lists without sending 4158 * ramrods. Should be run when interrupts are disabled. 4159 */ 4160 static void 4161 bxe_squeeze_objects(struct bxe_softc *sc) 4162 { 4163 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4164 struct ecore_mcast_ramrod_params rparam = { NULL }; 4165 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4166 int rc; 4167 4168 /* Cleanup MACs' object first... */ 4169 4170 /* Wait for completion of requested */ 4171 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4172 /* Perform a dry cleanup */ 4173 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4174 4175 /* Clean ETH primary MAC */ 4176 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4177 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4178 &ramrod_flags); 4179 if (rc != 0) { 4180 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4181 } 4182 4183 /* Cleanup UC list */ 4184 vlan_mac_flags = 0; 4185 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4186 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4187 &ramrod_flags); 4188 if (rc != 0) { 4189 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4190 } 4191 4192 /* Now clean mcast object... */ 4193 4194 rparam.mcast_obj = &sc->mcast_obj; 4195 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4196 4197 /* Add a DEL command... */ 4198 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4199 if (rc < 0) { 4200 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4201 } 4202 4203 /* now wait until all pending commands are cleared */ 4204 4205 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4206 while (rc != 0) { 4207 if (rc < 0) { 4208 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4209 return; 4210 } 4211 4212 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4213 } 4214 } 4215 4216 /* stop the controller */ 4217 static __noinline int 4218 bxe_nic_unload(struct bxe_softc *sc, 4219 uint32_t unload_mode, 4220 uint8_t keep_link) 4221 { 4222 uint8_t global = FALSE; 4223 uint32_t val; 4224 int i; 4225 4226 BXE_CORE_LOCK_ASSERT(sc); 4227 4228 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4229 4230 for (i = 0; i < sc->num_queues; i++) { 4231 struct bxe_fastpath *fp; 4232 4233 fp = &sc->fp[i]; 4234 fp->watchdog_timer = 0; 4235 BXE_FP_TX_LOCK(fp); 4236 BXE_FP_TX_UNLOCK(fp); 4237 } 4238 4239 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4240 4241 /* mark driver as unloaded in shmem2 */ 4242 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4243 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4244 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4245 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4246 } 4247 4248 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4249 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4250 4251 if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 4252 /* 4253 * We can get here if the driver has been unloaded 4254 * during parity error recovery and is either waiting for a 4255 * leader to complete or for other functions to unload and 4256 * then ifconfig down has been issued. In this case we want to 4257 * unload and let other functions to complete a recovery 4258 * process. 4259 */ 4260 sc->recovery_state = BXE_RECOVERY_DONE; 4261 sc->is_leader = 0; 4262 bxe_release_leader_lock(sc); 4263 mb(); 4264 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4265 } 4266 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4267 " state = 0x%x\n", sc->recovery_state, sc->state); 4268 return (-1); 4269 } 4270 4271 /* 4272 * Nothing to do during unload if previous bxe_nic_load() 4273 * did not completed successfully - all resourses are released. 4274 */ 4275 if ((sc->state == BXE_STATE_CLOSED) || 4276 (sc->state == BXE_STATE_ERROR)) { 4277 return (0); 4278 } 4279 4280 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4281 mb(); 4282 4283 /* stop tx */ 4284 bxe_tx_disable(sc); 4285 4286 sc->rx_mode = BXE_RX_MODE_NONE; 4287 /* XXX set rx mode ??? */ 4288 4289 if (IS_PF(sc) && !sc->grcdump_done) { 4290 /* set ALWAYS_ALIVE bit in shmem */ 4291 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4292 4293 bxe_drv_pulse(sc); 4294 4295 bxe_stats_handle(sc, STATS_EVENT_STOP); 4296 bxe_save_statistics(sc); 4297 } 4298 4299 /* wait till consumers catch up with producers in all queues */ 4300 bxe_drain_tx_queues(sc); 4301 4302 /* if VF indicate to PF this function is going down (PF will delete sp 4303 * elements and clear initializations 4304 */ 4305 if (IS_VF(sc)) { 4306 ; /* bxe_vfpf_close_vf(sc); */ 4307 } else if (unload_mode != UNLOAD_RECOVERY) { 4308 /* if this is a normal/close unload need to clean up chip */ 4309 if (!sc->grcdump_done) 4310 bxe_chip_cleanup(sc, unload_mode, keep_link); 4311 } else { 4312 /* Send the UNLOAD_REQUEST to the MCP */ 4313 bxe_send_unload_req(sc, unload_mode); 4314 4315 /* 4316 * Prevent transactions to host from the functions on the 4317 * engine that doesn't reset global blocks in case of global 4318 * attention once gloabl blocks are reset and gates are opened 4319 * (the engine which leader will perform the recovery 4320 * last). 4321 */ 4322 if (!CHIP_IS_E1x(sc)) { 4323 bxe_pf_disable(sc); 4324 } 4325 4326 /* disable HW interrupts */ 4327 bxe_int_disable_sync(sc, TRUE); 4328 4329 /* detach interrupts */ 4330 bxe_interrupt_detach(sc); 4331 4332 /* Report UNLOAD_DONE to MCP */ 4333 bxe_send_unload_done(sc, FALSE); 4334 } 4335 4336 /* 4337 * At this stage no more interrupts will arrive so we may safely clean 4338 * the queue'able objects here in case they failed to get cleaned so far. 4339 */ 4340 if (IS_PF(sc)) { 4341 bxe_squeeze_objects(sc); 4342 } 4343 4344 /* There should be no more pending SP commands at this stage */ 4345 sc->sp_state = 0; 4346 4347 sc->port.pmf = 0; 4348 4349 bxe_free_fp_buffers(sc); 4350 4351 if (IS_PF(sc)) { 4352 bxe_free_mem(sc); 4353 } 4354 4355 bxe_free_fw_stats_mem(sc); 4356 4357 sc->state = BXE_STATE_CLOSED; 4358 4359 /* 4360 * Check if there are pending parity attentions. If there are - set 4361 * RECOVERY_IN_PROGRESS. 4362 */ 4363 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4364 bxe_set_reset_in_progress(sc); 4365 4366 /* Set RESET_IS_GLOBAL if needed */ 4367 if (global) { 4368 bxe_set_reset_global(sc); 4369 } 4370 } 4371 4372 /* 4373 * The last driver must disable a "close the gate" if there is no 4374 * parity attention or "process kill" pending. 4375 */ 4376 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4377 bxe_reset_is_done(sc, SC_PATH(sc))) { 4378 bxe_disable_close_the_gate(sc); 4379 } 4380 4381 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4382 4383 bxe_link_report(sc); 4384 4385 return (0); 4386 } 4387 4388 /* 4389 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4390 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4391 */ 4392 static int 4393 bxe_ifmedia_update(if_t ifp) 4394 { 4395 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4396 struct ifmedia *ifm; 4397 4398 ifm = &sc->ifmedia; 4399 4400 /* We only support Ethernet media type. */ 4401 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4402 return (EINVAL); 4403 } 4404 4405 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4406 case IFM_AUTO: 4407 break; 4408 case IFM_10G_CX4: 4409 case IFM_10G_SR: 4410 case IFM_10G_T: 4411 case IFM_10G_TWINAX: 4412 default: 4413 /* We don't support changing the media type. */ 4414 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4415 IFM_SUBTYPE(ifm->ifm_media)); 4416 return (EINVAL); 4417 } 4418 4419 return (0); 4420 } 4421 4422 /* 4423 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4424 */ 4425 static void 4426 bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr) 4427 { 4428 struct bxe_softc *sc = if_getsoftc(ifp); 4429 4430 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..." 4431 line if the IFM_AVALID flag is *NOT* set. So we need to set this 4432 flag unconditionally (irrespective of the admininistrative 4433 'up/down' state of the interface) to ensure that the line is always 4434 displayed. 4435 */ 4436 ifmr->ifm_status = IFM_AVALID; 4437 4438 /* Setup the default interface info. */ 4439 ifmr->ifm_active = IFM_ETHER; 4440 4441 /* Report link down if the driver isn't running. */ 4442 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4443 ifmr->ifm_active |= IFM_NONE; 4444 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__); 4445 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n", 4446 __func__, sc->link_vars.link_up); 4447 return; 4448 } 4449 4450 4451 if (sc->link_vars.link_up) { 4452 ifmr->ifm_status |= IFM_ACTIVE; 4453 ifmr->ifm_active |= IFM_FDX; 4454 } else { 4455 ifmr->ifm_active |= IFM_NONE; 4456 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n", 4457 __func__); 4458 return; 4459 } 4460 4461 ifmr->ifm_active |= sc->media; 4462 return; 4463 } 4464 4465 static void 4466 bxe_handle_chip_tq(void *context, 4467 int pending) 4468 { 4469 struct bxe_softc *sc = (struct bxe_softc *)context; 4470 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4471 4472 switch (work) 4473 { 4474 4475 case CHIP_TQ_REINIT: 4476 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4477 /* restart the interface */ 4478 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4479 bxe_periodic_stop(sc); 4480 BXE_CORE_LOCK(sc); 4481 bxe_stop_locked(sc); 4482 bxe_init_locked(sc); 4483 BXE_CORE_UNLOCK(sc); 4484 } 4485 break; 4486 4487 default: 4488 break; 4489 } 4490 } 4491 4492 /* 4493 * Handles any IOCTL calls from the operating system. 4494 * 4495 * Returns: 4496 * 0 = Success, >0 Failure 4497 */ 4498 static int 4499 bxe_ioctl(if_t ifp, 4500 u_long command, 4501 caddr_t data) 4502 { 4503 struct bxe_softc *sc = if_getsoftc(ifp); 4504 struct ifreq *ifr = (struct ifreq *)data; 4505 int mask = 0; 4506 int reinit = 0; 4507 int error = 0; 4508 4509 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4510 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4511 4512 switch (command) 4513 { 4514 case SIOCSIFMTU: 4515 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4516 ifr->ifr_mtu); 4517 4518 if (sc->mtu == ifr->ifr_mtu) { 4519 /* nothing to change */ 4520 break; 4521 } 4522 4523 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4524 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4525 ifr->ifr_mtu, mtu_min, mtu_max); 4526 error = EINVAL; 4527 break; 4528 } 4529 4530 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4531 (unsigned long)ifr->ifr_mtu); 4532 /* 4533 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4534 (unsigned long)ifr->ifr_mtu); 4535 XXX - Not sure why it needs to be atomic 4536 */ 4537 if_setmtu(ifp, ifr->ifr_mtu); 4538 reinit = 1; 4539 break; 4540 4541 case SIOCSIFFLAGS: 4542 /* toggle the interface state up or down */ 4543 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4544 4545 BXE_CORE_LOCK(sc); 4546 /* check if the interface is up */ 4547 if (if_getflags(ifp) & IFF_UP) { 4548 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4549 /* set the receive mode flags */ 4550 bxe_set_rx_mode(sc); 4551 } else if(sc->state != BXE_STATE_DISABLED) { 4552 bxe_init_locked(sc); 4553 } 4554 } else { 4555 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4556 bxe_periodic_stop(sc); 4557 bxe_stop_locked(sc); 4558 } 4559 } 4560 BXE_CORE_UNLOCK(sc); 4561 4562 break; 4563 4564 case SIOCADDMULTI: 4565 case SIOCDELMULTI: 4566 /* add/delete multicast addresses */ 4567 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4568 4569 /* check if the interface is up */ 4570 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4571 /* set the receive mode flags */ 4572 BXE_CORE_LOCK(sc); 4573 bxe_set_rx_mode(sc); 4574 BXE_CORE_UNLOCK(sc); 4575 } 4576 4577 break; 4578 4579 case SIOCSIFCAP: 4580 /* find out which capabilities have changed */ 4581 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4582 4583 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4584 mask); 4585 4586 /* toggle the LRO capabilites enable flag */ 4587 if (mask & IFCAP_LRO) { 4588 if_togglecapenable(ifp, IFCAP_LRO); 4589 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4590 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4591 reinit = 1; 4592 } 4593 4594 /* toggle the TXCSUM checksum capabilites enable flag */ 4595 if (mask & IFCAP_TXCSUM) { 4596 if_togglecapenable(ifp, IFCAP_TXCSUM); 4597 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4598 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4599 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4600 if_sethwassistbits(ifp, (CSUM_IP | 4601 CSUM_TCP | 4602 CSUM_UDP | 4603 CSUM_TSO | 4604 CSUM_TCP_IPV6 | 4605 CSUM_UDP_IPV6), 0); 4606 } else { 4607 if_clearhwassist(ifp); /* XXX */ 4608 } 4609 } 4610 4611 /* toggle the RXCSUM checksum capabilities enable flag */ 4612 if (mask & IFCAP_RXCSUM) { 4613 if_togglecapenable(ifp, IFCAP_RXCSUM); 4614 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4615 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4616 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4617 if_sethwassistbits(ifp, (CSUM_IP | 4618 CSUM_TCP | 4619 CSUM_UDP | 4620 CSUM_TSO | 4621 CSUM_TCP_IPV6 | 4622 CSUM_UDP_IPV6), 0); 4623 } else { 4624 if_clearhwassist(ifp); /* XXX */ 4625 } 4626 } 4627 4628 /* toggle TSO4 capabilities enabled flag */ 4629 if (mask & IFCAP_TSO4) { 4630 if_togglecapenable(ifp, IFCAP_TSO4); 4631 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4632 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4633 } 4634 4635 /* toggle TSO6 capabilities enabled flag */ 4636 if (mask & IFCAP_TSO6) { 4637 if_togglecapenable(ifp, IFCAP_TSO6); 4638 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4639 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4640 } 4641 4642 /* toggle VLAN_HWTSO capabilities enabled flag */ 4643 if (mask & IFCAP_VLAN_HWTSO) { 4644 4645 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4646 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4647 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4648 } 4649 4650 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4651 if (mask & IFCAP_VLAN_HWCSUM) { 4652 /* XXX investigate this... */ 4653 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4654 error = EINVAL; 4655 } 4656 4657 /* toggle VLAN_MTU capabilities enable flag */ 4658 if (mask & IFCAP_VLAN_MTU) { 4659 /* XXX investigate this... */ 4660 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4661 error = EINVAL; 4662 } 4663 4664 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4665 if (mask & IFCAP_VLAN_HWTAGGING) { 4666 /* XXX investigate this... */ 4667 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4668 error = EINVAL; 4669 } 4670 4671 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4672 if (mask & IFCAP_VLAN_HWFILTER) { 4673 /* XXX investigate this... */ 4674 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4675 error = EINVAL; 4676 } 4677 4678 /* XXX not yet... 4679 * IFCAP_WOL_MAGIC 4680 */ 4681 4682 break; 4683 4684 case SIOCSIFMEDIA: 4685 case SIOCGIFMEDIA: 4686 /* set/get interface media */ 4687 BLOGD(sc, DBG_IOCTL, 4688 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4689 (command & 0xff)); 4690 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4691 break; 4692 4693 default: 4694 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4695 (command & 0xff)); 4696 error = ether_ioctl(ifp, command, data); 4697 break; 4698 } 4699 4700 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4701 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4702 "Re-initializing hardware from IOCTL change\n"); 4703 bxe_periodic_stop(sc); 4704 BXE_CORE_LOCK(sc); 4705 bxe_stop_locked(sc); 4706 bxe_init_locked(sc); 4707 BXE_CORE_UNLOCK(sc); 4708 } 4709 4710 return (error); 4711 } 4712 4713 static __noinline void 4714 bxe_dump_mbuf(struct bxe_softc *sc, 4715 struct mbuf *m, 4716 uint8_t contents) 4717 { 4718 char * type; 4719 int i = 0; 4720 4721 if (!(sc->debug & DBG_MBUF)) { 4722 return; 4723 } 4724 4725 if (m == NULL) { 4726 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4727 return; 4728 } 4729 4730 while (m) { 4731 4732 BLOGD(sc, DBG_MBUF, 4733 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4734 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4735 4736 if (m->m_flags & M_PKTHDR) { 4737 BLOGD(sc, DBG_MBUF, 4738 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4739 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4740 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4741 } 4742 4743 if (m->m_flags & M_EXT) { 4744 switch (m->m_ext.ext_type) { 4745 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4746 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4747 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4748 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4749 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4750 case EXT_PACKET: type = "EXT_PACKET"; break; 4751 case EXT_MBUF: type = "EXT_MBUF"; break; 4752 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4753 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4754 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4755 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4756 default: type = "UNKNOWN"; break; 4757 } 4758 4759 BLOGD(sc, DBG_MBUF, 4760 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4761 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4762 } 4763 4764 if (contents) { 4765 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4766 } 4767 4768 m = m->m_next; 4769 i++; 4770 } 4771 } 4772 4773 /* 4774 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4775 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4776 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4777 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4778 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4779 */ 4780 static int 4781 bxe_chktso_window(struct bxe_softc *sc, 4782 int nsegs, 4783 bus_dma_segment_t *segs, 4784 struct mbuf *m) 4785 { 4786 uint32_t num_wnds, wnd_size, wnd_sum; 4787 int32_t frag_idx, wnd_idx; 4788 unsigned short lso_mss; 4789 4790 wnd_sum = 0; 4791 wnd_size = 10; 4792 num_wnds = nsegs - wnd_size; 4793 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4794 4795 /* 4796 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4797 * first window sum of data while skipping the first assuming it is the 4798 * header in FreeBSD. 4799 */ 4800 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4801 wnd_sum += htole16(segs[frag_idx].ds_len); 4802 } 4803 4804 /* check the first 10 bd window size */ 4805 if (wnd_sum < lso_mss) { 4806 return (1); 4807 } 4808 4809 /* run through the windows */ 4810 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4811 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4812 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4813 /* add the next mbuf len to the len of our new window */ 4814 wnd_sum += htole16(segs[frag_idx].ds_len); 4815 if (wnd_sum < lso_mss) { 4816 return (1); 4817 } 4818 } 4819 4820 return (0); 4821 } 4822 4823 static uint8_t 4824 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4825 struct mbuf *m, 4826 uint32_t *parsing_data) 4827 { 4828 struct ether_vlan_header *eh = NULL; 4829 struct ip *ip4 = NULL; 4830 struct ip6_hdr *ip6 = NULL; 4831 caddr_t ip = NULL; 4832 struct tcphdr *th = NULL; 4833 int e_hlen, ip_hlen, l4_off; 4834 uint16_t proto; 4835 4836 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4837 /* no L4 checksum offload needed */ 4838 return (0); 4839 } 4840 4841 /* get the Ethernet header */ 4842 eh = mtod(m, struct ether_vlan_header *); 4843 4844 /* handle VLAN encapsulation if present */ 4845 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4846 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4847 proto = ntohs(eh->evl_proto); 4848 } else { 4849 e_hlen = ETHER_HDR_LEN; 4850 proto = ntohs(eh->evl_encap_proto); 4851 } 4852 4853 switch (proto) { 4854 case ETHERTYPE_IP: 4855 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4856 ip4 = (m->m_len < sizeof(struct ip)) ? 4857 (struct ip *)m->m_next->m_data : 4858 (struct ip *)(m->m_data + e_hlen); 4859 /* ip_hl is number of 32-bit words */ 4860 ip_hlen = (ip4->ip_hl << 2); 4861 ip = (caddr_t)ip4; 4862 break; 4863 case ETHERTYPE_IPV6: 4864 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4865 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4866 (struct ip6_hdr *)m->m_next->m_data : 4867 (struct ip6_hdr *)(m->m_data + e_hlen); 4868 /* XXX cannot support offload with IPv6 extensions */ 4869 ip_hlen = sizeof(struct ip6_hdr); 4870 ip = (caddr_t)ip6; 4871 break; 4872 default: 4873 /* We can't offload in this case... */ 4874 /* XXX error stat ??? */ 4875 return (0); 4876 } 4877 4878 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4879 l4_off = (e_hlen + ip_hlen); 4880 4881 *parsing_data |= 4882 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4883 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4884 4885 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4886 CSUM_TSO | 4887 CSUM_TCP_IPV6)) { 4888 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4889 th = (struct tcphdr *)(ip + ip_hlen); 4890 /* th_off is number of 32-bit words */ 4891 *parsing_data |= ((th->th_off << 4892 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4893 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4894 return (l4_off + (th->th_off << 2)); /* entire header length */ 4895 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4896 CSUM_UDP_IPV6)) { 4897 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4898 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4899 } else { 4900 /* XXX error stat ??? */ 4901 return (0); 4902 } 4903 } 4904 4905 static uint8_t 4906 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4907 struct mbuf *m, 4908 struct eth_tx_parse_bd_e1x *pbd) 4909 { 4910 struct ether_vlan_header *eh = NULL; 4911 struct ip *ip4 = NULL; 4912 struct ip6_hdr *ip6 = NULL; 4913 caddr_t ip = NULL; 4914 struct tcphdr *th = NULL; 4915 struct udphdr *uh = NULL; 4916 int e_hlen, ip_hlen; 4917 uint16_t proto; 4918 uint8_t hlen; 4919 uint16_t tmp_csum; 4920 uint32_t *tmp_uh; 4921 4922 /* get the Ethernet header */ 4923 eh = mtod(m, struct ether_vlan_header *); 4924 4925 /* handle VLAN encapsulation if present */ 4926 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4927 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4928 proto = ntohs(eh->evl_proto); 4929 } else { 4930 e_hlen = ETHER_HDR_LEN; 4931 proto = ntohs(eh->evl_encap_proto); 4932 } 4933 4934 switch (proto) { 4935 case ETHERTYPE_IP: 4936 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4937 ip4 = (m->m_len < sizeof(struct ip)) ? 4938 (struct ip *)m->m_next->m_data : 4939 (struct ip *)(m->m_data + e_hlen); 4940 /* ip_hl is number of 32-bit words */ 4941 ip_hlen = (ip4->ip_hl << 1); 4942 ip = (caddr_t)ip4; 4943 break; 4944 case ETHERTYPE_IPV6: 4945 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4946 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4947 (struct ip6_hdr *)m->m_next->m_data : 4948 (struct ip6_hdr *)(m->m_data + e_hlen); 4949 /* XXX cannot support offload with IPv6 extensions */ 4950 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4951 ip = (caddr_t)ip6; 4952 break; 4953 default: 4954 /* We can't offload in this case... */ 4955 /* XXX error stat ??? */ 4956 return (0); 4957 } 4958 4959 hlen = (e_hlen >> 1); 4960 4961 /* note that rest of global_data is indirectly zeroed here */ 4962 if (m->m_flags & M_VLANTAG) { 4963 pbd->global_data = 4964 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4965 } else { 4966 pbd->global_data = htole16(hlen); 4967 } 4968 4969 pbd->ip_hlen_w = ip_hlen; 4970 4971 hlen += pbd->ip_hlen_w; 4972 4973 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4974 4975 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4976 CSUM_TSO | 4977 CSUM_TCP_IPV6)) { 4978 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4979 /* th_off is number of 32-bit words */ 4980 hlen += (uint16_t)(th->th_off << 1); 4981 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4982 CSUM_UDP_IPV6)) { 4983 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4984 hlen += (sizeof(struct udphdr) / 2); 4985 } else { 4986 /* valid case as only CSUM_IP was set */ 4987 return (0); 4988 } 4989 4990 pbd->total_hlen_w = htole16(hlen); 4991 4992 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4993 CSUM_TSO | 4994 CSUM_TCP_IPV6)) { 4995 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4996 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 4997 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4998 CSUM_UDP_IPV6)) { 4999 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5000 5001 /* 5002 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5003 * checksums and does not know anything about the UDP header and where 5004 * the checksum field is located. It only knows about TCP. Therefore 5005 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5006 * offload. Since the checksum field offset for TCP is 16 bytes and 5007 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5008 * bytes less than the start of the UDP header. This allows the 5009 * hardware to write the checksum in the correct spot. But the 5010 * hardware will compute a checksum which includes the last 10 bytes 5011 * of the IP header. To correct this we tweak the stack computed 5012 * pseudo checksum by folding in the calculation of the inverse 5013 * checksum for those final 10 bytes of the IP header. This allows 5014 * the correct checksum to be computed by the hardware. 5015 */ 5016 5017 /* set pointer 10 bytes before UDP header */ 5018 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5019 5020 /* calculate a pseudo header checksum over the first 10 bytes */ 5021 tmp_csum = in_pseudo(*tmp_uh, 5022 *(tmp_uh + 1), 5023 *(uint16_t *)(tmp_uh + 2)); 5024 5025 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5026 } 5027 5028 return (hlen * 2); /* entire header length, number of bytes */ 5029 } 5030 5031 static void 5032 bxe_set_pbd_lso_e2(struct mbuf *m, 5033 uint32_t *parsing_data) 5034 { 5035 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5036 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5037 ETH_TX_PARSE_BD_E2_LSO_MSS); 5038 5039 /* XXX test for IPv6 with extension header... */ 5040 } 5041 5042 static void 5043 bxe_set_pbd_lso(struct mbuf *m, 5044 struct eth_tx_parse_bd_e1x *pbd) 5045 { 5046 struct ether_vlan_header *eh = NULL; 5047 struct ip *ip = NULL; 5048 struct tcphdr *th = NULL; 5049 int e_hlen; 5050 5051 /* get the Ethernet header */ 5052 eh = mtod(m, struct ether_vlan_header *); 5053 5054 /* handle VLAN encapsulation if present */ 5055 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5056 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5057 5058 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5059 /* XXX assuming IPv4 */ 5060 ip = (struct ip *)(m->m_data + e_hlen); 5061 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5062 5063 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5064 pbd->tcp_send_seq = ntohl(th->th_seq); 5065 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5066 5067 #if 1 5068 /* XXX IPv4 */ 5069 pbd->ip_id = ntohs(ip->ip_id); 5070 pbd->tcp_pseudo_csum = 5071 ntohs(in_pseudo(ip->ip_src.s_addr, 5072 ip->ip_dst.s_addr, 5073 htons(IPPROTO_TCP))); 5074 #else 5075 /* XXX IPv6 */ 5076 pbd->tcp_pseudo_csum = 5077 ntohs(in_pseudo(&ip6->ip6_src, 5078 &ip6->ip6_dst, 5079 htons(IPPROTO_TCP))); 5080 #endif 5081 5082 pbd->global_data |= 5083 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5084 } 5085 5086 /* 5087 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5088 * visible to the controller. 5089 * 5090 * If an mbuf is submitted to this routine and cannot be given to the 5091 * controller (e.g. it has too many fragments) then the function may free 5092 * the mbuf and return to the caller. 5093 * 5094 * Returns: 5095 * 0 = Success, !0 = Failure 5096 * Note the side effect that an mbuf may be freed if it causes a problem. 5097 */ 5098 static int 5099 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5100 { 5101 bus_dma_segment_t segs[32]; 5102 struct mbuf *m0; 5103 struct bxe_sw_tx_bd *tx_buf; 5104 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5105 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5106 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5107 struct eth_tx_bd *tx_data_bd; 5108 struct eth_tx_bd *tx_total_pkt_size_bd; 5109 struct eth_tx_start_bd *tx_start_bd; 5110 uint16_t bd_prod, pkt_prod, total_pkt_size; 5111 uint8_t mac_type; 5112 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5113 struct bxe_softc *sc; 5114 uint16_t tx_bd_avail; 5115 struct ether_vlan_header *eh; 5116 uint32_t pbd_e2_parsing_data = 0; 5117 uint8_t hlen = 0; 5118 int tmp_bd; 5119 int i; 5120 5121 sc = fp->sc; 5122 5123 M_ASSERTPKTHDR(*m_head); 5124 5125 m0 = *m_head; 5126 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5127 tx_start_bd = NULL; 5128 tx_data_bd = NULL; 5129 tx_total_pkt_size_bd = NULL; 5130 5131 /* get the H/W pointer for packets and BDs */ 5132 pkt_prod = fp->tx_pkt_prod; 5133 bd_prod = fp->tx_bd_prod; 5134 5135 mac_type = UNICAST_ADDRESS; 5136 5137 /* map the mbuf into the next open DMAable memory */ 5138 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5139 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5140 tx_buf->m_map, m0, 5141 segs, &nsegs, BUS_DMA_NOWAIT); 5142 5143 /* mapping errors */ 5144 if(__predict_false(error != 0)) { 5145 fp->eth_q_stats.tx_dma_mapping_failure++; 5146 if (error == ENOMEM) { 5147 /* resource issue, try again later */ 5148 rc = ENOMEM; 5149 } else if (error == EFBIG) { 5150 /* possibly recoverable with defragmentation */ 5151 fp->eth_q_stats.mbuf_defrag_attempts++; 5152 m0 = m_defrag(*m_head, M_NOWAIT); 5153 if (m0 == NULL) { 5154 fp->eth_q_stats.mbuf_defrag_failures++; 5155 rc = ENOBUFS; 5156 } else { 5157 /* defrag successful, try mapping again */ 5158 *m_head = m0; 5159 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5160 tx_buf->m_map, m0, 5161 segs, &nsegs, BUS_DMA_NOWAIT); 5162 if (error) { 5163 fp->eth_q_stats.tx_dma_mapping_failure++; 5164 rc = error; 5165 } 5166 } 5167 } else { 5168 /* unknown, unrecoverable mapping error */ 5169 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5170 bxe_dump_mbuf(sc, m0, FALSE); 5171 rc = error; 5172 } 5173 5174 goto bxe_tx_encap_continue; 5175 } 5176 5177 tx_bd_avail = bxe_tx_avail(sc, fp); 5178 5179 /* make sure there is enough room in the send queue */ 5180 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5181 /* Recoverable, try again later. */ 5182 fp->eth_q_stats.tx_hw_queue_full++; 5183 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5184 rc = ENOMEM; 5185 goto bxe_tx_encap_continue; 5186 } 5187 5188 /* capture the current H/W TX chain high watermark */ 5189 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5190 (TX_BD_USABLE - tx_bd_avail))) { 5191 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5192 } 5193 5194 /* make sure it fits in the packet window */ 5195 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5196 /* 5197 * The mbuf may be to big for the controller to handle. If the frame 5198 * is a TSO frame we'll need to do an additional check. 5199 */ 5200 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5201 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5202 goto bxe_tx_encap_continue; /* OK to send */ 5203 } else { 5204 fp->eth_q_stats.tx_window_violation_tso++; 5205 } 5206 } else { 5207 fp->eth_q_stats.tx_window_violation_std++; 5208 } 5209 5210 /* lets try to defragment this mbuf and remap it */ 5211 fp->eth_q_stats.mbuf_defrag_attempts++; 5212 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5213 5214 m0 = m_defrag(*m_head, M_NOWAIT); 5215 if (m0 == NULL) { 5216 fp->eth_q_stats.mbuf_defrag_failures++; 5217 /* Ugh, just drop the frame... :( */ 5218 rc = ENOBUFS; 5219 } else { 5220 /* defrag successful, try mapping again */ 5221 *m_head = m0; 5222 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5223 tx_buf->m_map, m0, 5224 segs, &nsegs, BUS_DMA_NOWAIT); 5225 if (error) { 5226 fp->eth_q_stats.tx_dma_mapping_failure++; 5227 /* No sense in trying to defrag/copy chain, drop it. :( */ 5228 rc = error; 5229 } else { 5230 /* if the chain is still too long then drop it */ 5231 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5232 /* 5233 * in case TSO is enabled nsegs should be checked against 5234 * BXE_TSO_MAX_SEGMENTS 5235 */ 5236 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5237 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5238 fp->eth_q_stats.nsegs_path1_errors++; 5239 rc = ENODEV; 5240 } 5241 } else { 5242 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5243 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5244 fp->eth_q_stats.nsegs_path2_errors++; 5245 rc = ENODEV; 5246 } 5247 } 5248 } 5249 } 5250 } 5251 5252 bxe_tx_encap_continue: 5253 5254 /* Check for errors */ 5255 if (rc) { 5256 if (rc == ENOMEM) { 5257 /* recoverable try again later */ 5258 } else { 5259 fp->eth_q_stats.tx_soft_errors++; 5260 fp->eth_q_stats.mbuf_alloc_tx--; 5261 m_freem(*m_head); 5262 *m_head = NULL; 5263 } 5264 5265 return (rc); 5266 } 5267 5268 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5269 if (m0->m_flags & M_BCAST) { 5270 mac_type = BROADCAST_ADDRESS; 5271 } else if (m0->m_flags & M_MCAST) { 5272 mac_type = MULTICAST_ADDRESS; 5273 } 5274 5275 /* store the mbuf into the mbuf ring */ 5276 tx_buf->m = m0; 5277 tx_buf->first_bd = fp->tx_bd_prod; 5278 tx_buf->flags = 0; 5279 5280 /* prepare the first transmit (start) BD for the mbuf */ 5281 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5282 5283 BLOGD(sc, DBG_TX, 5284 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5285 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5286 5287 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5288 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5289 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5290 total_pkt_size += tx_start_bd->nbytes; 5291 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5292 5293 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5294 5295 /* all frames have at least Start BD + Parsing BD */ 5296 nbds = nsegs + 1; 5297 tx_start_bd->nbd = htole16(nbds); 5298 5299 if (m0->m_flags & M_VLANTAG) { 5300 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5301 tx_start_bd->bd_flags.as_bitfield |= 5302 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5303 } else { 5304 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5305 if (IS_VF(sc)) { 5306 /* map ethernet header to find type and header length */ 5307 eh = mtod(m0, struct ether_vlan_header *); 5308 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5309 } else { 5310 /* used by FW for packet accounting */ 5311 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5312 } 5313 } 5314 5315 /* 5316 * add a parsing BD from the chain. The parsing BD is always added 5317 * though it is only used for TSO and chksum 5318 */ 5319 bd_prod = TX_BD_NEXT(bd_prod); 5320 5321 if (m0->m_pkthdr.csum_flags) { 5322 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5323 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5324 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5325 } 5326 5327 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5328 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5329 ETH_TX_BD_FLAGS_L4_CSUM); 5330 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5331 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5332 ETH_TX_BD_FLAGS_IS_UDP | 5333 ETH_TX_BD_FLAGS_L4_CSUM); 5334 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5335 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5336 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5337 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5338 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5339 ETH_TX_BD_FLAGS_IS_UDP); 5340 } 5341 } 5342 5343 if (!CHIP_IS_E1x(sc)) { 5344 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5345 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5346 5347 if (m0->m_pkthdr.csum_flags) { 5348 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5349 } 5350 5351 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5352 mac_type); 5353 } else { 5354 uint16_t global_data = 0; 5355 5356 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5357 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5358 5359 if (m0->m_pkthdr.csum_flags) { 5360 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5361 } 5362 5363 SET_FLAG(global_data, 5364 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5365 pbd_e1x->global_data |= htole16(global_data); 5366 } 5367 5368 /* setup the parsing BD with TSO specific info */ 5369 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5370 fp->eth_q_stats.tx_ofld_frames_lso++; 5371 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5372 5373 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5374 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5375 5376 /* split the first BD into header/data making the fw job easy */ 5377 nbds++; 5378 tx_start_bd->nbd = htole16(nbds); 5379 tx_start_bd->nbytes = htole16(hlen); 5380 5381 bd_prod = TX_BD_NEXT(bd_prod); 5382 5383 /* new transmit BD after the tx_parse_bd */ 5384 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5385 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5386 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5387 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5388 if (tx_total_pkt_size_bd == NULL) { 5389 tx_total_pkt_size_bd = tx_data_bd; 5390 } 5391 5392 BLOGD(sc, DBG_TX, 5393 "TSO split header size is %d (%x:%x) nbds %d\n", 5394 le16toh(tx_start_bd->nbytes), 5395 le32toh(tx_start_bd->addr_hi), 5396 le32toh(tx_start_bd->addr_lo), 5397 nbds); 5398 } 5399 5400 if (!CHIP_IS_E1x(sc)) { 5401 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5402 } else { 5403 bxe_set_pbd_lso(m0, pbd_e1x); 5404 } 5405 } 5406 5407 if (pbd_e2_parsing_data) { 5408 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5409 } 5410 5411 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5412 for (i = 1; i < nsegs ; i++) { 5413 bd_prod = TX_BD_NEXT(bd_prod); 5414 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5415 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5416 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5417 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5418 if (tx_total_pkt_size_bd == NULL) { 5419 tx_total_pkt_size_bd = tx_data_bd; 5420 } 5421 total_pkt_size += tx_data_bd->nbytes; 5422 } 5423 5424 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5425 5426 if (tx_total_pkt_size_bd != NULL) { 5427 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5428 } 5429 5430 if (__predict_false(sc->debug & DBG_TX)) { 5431 tmp_bd = tx_buf->first_bd; 5432 for (i = 0; i < nbds; i++) 5433 { 5434 if (i == 0) { 5435 BLOGD(sc, DBG_TX, 5436 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5437 "bd_flags=0x%x hdr_nbds=%d\n", 5438 tx_start_bd, 5439 tmp_bd, 5440 le16toh(tx_start_bd->nbd), 5441 le16toh(tx_start_bd->vlan_or_ethertype), 5442 tx_start_bd->bd_flags.as_bitfield, 5443 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5444 } else if (i == 1) { 5445 if (pbd_e1x) { 5446 BLOGD(sc, DBG_TX, 5447 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5448 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5449 "tcp_seq=%u total_hlen_w=%u\n", 5450 pbd_e1x, 5451 tmp_bd, 5452 pbd_e1x->global_data, 5453 pbd_e1x->ip_hlen_w, 5454 pbd_e1x->ip_id, 5455 pbd_e1x->lso_mss, 5456 pbd_e1x->tcp_flags, 5457 pbd_e1x->tcp_pseudo_csum, 5458 pbd_e1x->tcp_send_seq, 5459 le16toh(pbd_e1x->total_hlen_w)); 5460 } else { /* if (pbd_e2) */ 5461 BLOGD(sc, DBG_TX, 5462 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5463 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5464 pbd_e2, 5465 tmp_bd, 5466 pbd_e2->data.mac_addr.dst_hi, 5467 pbd_e2->data.mac_addr.dst_mid, 5468 pbd_e2->data.mac_addr.dst_lo, 5469 pbd_e2->data.mac_addr.src_hi, 5470 pbd_e2->data.mac_addr.src_mid, 5471 pbd_e2->data.mac_addr.src_lo, 5472 pbd_e2->parsing_data); 5473 } 5474 } 5475 5476 if (i != 1) { /* skip parse db as it doesn't hold data */ 5477 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5478 BLOGD(sc, DBG_TX, 5479 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5480 tx_data_bd, 5481 tmp_bd, 5482 le16toh(tx_data_bd->nbytes), 5483 le32toh(tx_data_bd->addr_hi), 5484 le32toh(tx_data_bd->addr_lo)); 5485 } 5486 5487 tmp_bd = TX_BD_NEXT(tmp_bd); 5488 } 5489 } 5490 5491 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5492 5493 /* update TX BD producer index value for next TX */ 5494 bd_prod = TX_BD_NEXT(bd_prod); 5495 5496 /* 5497 * If the chain of tx_bd's describing this frame is adjacent to or spans 5498 * an eth_tx_next_bd element then we need to increment the nbds value. 5499 */ 5500 if (TX_BD_IDX(bd_prod) < nbds) { 5501 nbds++; 5502 } 5503 5504 /* don't allow reordering of writes for nbd and packets */ 5505 mb(); 5506 5507 fp->tx_db.data.prod += nbds; 5508 5509 /* producer points to the next free tx_bd at this point */ 5510 fp->tx_pkt_prod++; 5511 fp->tx_bd_prod = bd_prod; 5512 5513 DOORBELL(sc, fp->index, fp->tx_db.raw); 5514 5515 fp->eth_q_stats.tx_pkts++; 5516 5517 /* Prevent speculative reads from getting ahead of the status block. */ 5518 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5519 0, 0, BUS_SPACE_BARRIER_READ); 5520 5521 /* Prevent speculative reads from getting ahead of the doorbell. */ 5522 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5523 0, 0, BUS_SPACE_BARRIER_READ); 5524 5525 return (0); 5526 } 5527 5528 static void 5529 bxe_tx_start_locked(struct bxe_softc *sc, 5530 if_t ifp, 5531 struct bxe_fastpath *fp) 5532 { 5533 struct mbuf *m = NULL; 5534 int tx_count = 0; 5535 uint16_t tx_bd_avail; 5536 5537 BXE_FP_TX_LOCK_ASSERT(fp); 5538 5539 /* keep adding entries while there are frames to send */ 5540 while (!if_sendq_empty(ifp)) { 5541 5542 /* 5543 * check for any frames to send 5544 * dequeue can still be NULL even if queue is not empty 5545 */ 5546 m = if_dequeue(ifp); 5547 if (__predict_false(m == NULL)) { 5548 break; 5549 } 5550 5551 /* the mbuf now belongs to us */ 5552 fp->eth_q_stats.mbuf_alloc_tx++; 5553 5554 /* 5555 * Put the frame into the transmit ring. If we don't have room, 5556 * place the mbuf back at the head of the TX queue, set the 5557 * OACTIVE flag, and wait for the NIC to drain the chain. 5558 */ 5559 if (__predict_false(bxe_tx_encap(fp, &m))) { 5560 fp->eth_q_stats.tx_encap_failures++; 5561 if (m != NULL) { 5562 /* mark the TX queue as full and return the frame */ 5563 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5564 if_sendq_prepend(ifp, m); 5565 fp->eth_q_stats.mbuf_alloc_tx--; 5566 fp->eth_q_stats.tx_queue_xoff++; 5567 } 5568 5569 /* stop looking for more work */ 5570 break; 5571 } 5572 5573 /* the frame was enqueued successfully */ 5574 tx_count++; 5575 5576 /* send a copy of the frame to any BPF listeners. */ 5577 ether_bpf_mtap_if(ifp, m); 5578 5579 tx_bd_avail = bxe_tx_avail(sc, fp); 5580 5581 /* handle any completions if we're running low */ 5582 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5583 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5584 bxe_txeof(sc, fp); 5585 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5586 break; 5587 } 5588 } 5589 } 5590 5591 /* all TX packets were dequeued and/or the tx ring is full */ 5592 if (tx_count > 0) { 5593 /* reset the TX watchdog timeout timer */ 5594 fp->watchdog_timer = BXE_TX_TIMEOUT; 5595 } 5596 } 5597 5598 /* Legacy (non-RSS) dispatch routine */ 5599 static void 5600 bxe_tx_start(if_t ifp) 5601 { 5602 struct bxe_softc *sc; 5603 struct bxe_fastpath *fp; 5604 5605 sc = if_getsoftc(ifp); 5606 5607 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5608 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5609 return; 5610 } 5611 5612 if (!sc->link_vars.link_up) { 5613 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5614 return; 5615 } 5616 5617 fp = &sc->fp[0]; 5618 5619 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5620 fp->eth_q_stats.tx_queue_full_return++; 5621 return; 5622 } 5623 5624 BXE_FP_TX_LOCK(fp); 5625 bxe_tx_start_locked(sc, ifp, fp); 5626 BXE_FP_TX_UNLOCK(fp); 5627 } 5628 5629 static int 5630 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5631 if_t ifp, 5632 struct bxe_fastpath *fp, 5633 struct mbuf *m) 5634 { 5635 struct buf_ring *tx_br = fp->tx_br; 5636 struct mbuf *next; 5637 int depth, rc, tx_count; 5638 uint16_t tx_bd_avail; 5639 5640 rc = tx_count = 0; 5641 5642 BXE_FP_TX_LOCK_ASSERT(fp); 5643 5644 if (sc->state != BXE_STATE_OPEN) { 5645 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5646 return ENETDOWN; 5647 } 5648 5649 if (!tx_br) { 5650 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5651 return (EINVAL); 5652 } 5653 5654 if (m != NULL) { 5655 rc = drbr_enqueue(ifp, tx_br, m); 5656 if (rc != 0) { 5657 fp->eth_q_stats.tx_soft_errors++; 5658 goto bxe_tx_mq_start_locked_exit; 5659 } 5660 } 5661 5662 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5663 fp->eth_q_stats.tx_request_link_down_failures++; 5664 goto bxe_tx_mq_start_locked_exit; 5665 } 5666 5667 /* fetch the depth of the driver queue */ 5668 depth = drbr_inuse(ifp, tx_br); 5669 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5670 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5671 } 5672 5673 /* keep adding entries while there are frames to send */ 5674 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5675 /* handle any completions if we're running low */ 5676 tx_bd_avail = bxe_tx_avail(sc, fp); 5677 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5678 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5679 bxe_txeof(sc, fp); 5680 tx_bd_avail = bxe_tx_avail(sc, fp); 5681 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5682 fp->eth_q_stats.bd_avail_too_less_failures++; 5683 m_freem(next); 5684 drbr_advance(ifp, tx_br); 5685 rc = ENOBUFS; 5686 break; 5687 } 5688 } 5689 5690 /* the mbuf now belongs to us */ 5691 fp->eth_q_stats.mbuf_alloc_tx++; 5692 5693 /* 5694 * Put the frame into the transmit ring. If we don't have room, 5695 * place the mbuf back at the head of the TX queue, set the 5696 * OACTIVE flag, and wait for the NIC to drain the chain. 5697 */ 5698 rc = bxe_tx_encap(fp, &next); 5699 if (__predict_false(rc != 0)) { 5700 fp->eth_q_stats.tx_encap_failures++; 5701 if (next != NULL) { 5702 /* mark the TX queue as full and save the frame */ 5703 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5704 drbr_putback(ifp, tx_br, next); 5705 fp->eth_q_stats.mbuf_alloc_tx--; 5706 fp->eth_q_stats.tx_frames_deferred++; 5707 } else 5708 drbr_advance(ifp, tx_br); 5709 5710 /* stop looking for more work */ 5711 break; 5712 } 5713 5714 /* the transmit frame was enqueued successfully */ 5715 tx_count++; 5716 5717 /* send a copy of the frame to any BPF listeners */ 5718 ether_bpf_mtap_if(ifp, next); 5719 5720 drbr_advance(ifp, tx_br); 5721 } 5722 5723 /* all TX packets were dequeued and/or the tx ring is full */ 5724 if (tx_count > 0) { 5725 /* reset the TX watchdog timeout timer */ 5726 fp->watchdog_timer = BXE_TX_TIMEOUT; 5727 } 5728 5729 bxe_tx_mq_start_locked_exit: 5730 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5731 if (!drbr_empty(ifp, tx_br)) { 5732 fp->eth_q_stats.tx_mq_not_empty++; 5733 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5734 } 5735 5736 return (rc); 5737 } 5738 5739 static void 5740 bxe_tx_mq_start_deferred(void *arg, 5741 int pending) 5742 { 5743 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5744 struct bxe_softc *sc = fp->sc; 5745 if_t ifp = sc->ifp; 5746 5747 BXE_FP_TX_LOCK(fp); 5748 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5749 BXE_FP_TX_UNLOCK(fp); 5750 } 5751 5752 /* Multiqueue (TSS) dispatch routine. */ 5753 static int 5754 bxe_tx_mq_start(if_t ifp, 5755 struct mbuf *m) 5756 { 5757 struct bxe_softc *sc = if_getsoftc(ifp); 5758 struct bxe_fastpath *fp; 5759 int fp_index, rc; 5760 5761 fp_index = 0; /* default is the first queue */ 5762 5763 /* check if flowid is set */ 5764 5765 if (BXE_VALID_FLOWID(m)) 5766 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5767 5768 fp = &sc->fp[fp_index]; 5769 5770 if (sc->state != BXE_STATE_OPEN) { 5771 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5772 return ENETDOWN; 5773 } 5774 5775 if (BXE_FP_TX_TRYLOCK(fp)) { 5776 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5777 BXE_FP_TX_UNLOCK(fp); 5778 } else { 5779 rc = drbr_enqueue(ifp, fp->tx_br, m); 5780 taskqueue_enqueue(fp->tq, &fp->tx_task); 5781 } 5782 5783 return (rc); 5784 } 5785 5786 static void 5787 bxe_mq_flush(if_t ifp) 5788 { 5789 struct bxe_softc *sc = if_getsoftc(ifp); 5790 struct bxe_fastpath *fp; 5791 struct mbuf *m; 5792 int i; 5793 5794 for (i = 0; i < sc->num_queues; i++) { 5795 fp = &sc->fp[i]; 5796 5797 if (fp->state != BXE_FP_STATE_IRQ) { 5798 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5799 fp->index, fp->state); 5800 continue; 5801 } 5802 5803 if (fp->tx_br != NULL) { 5804 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5805 BXE_FP_TX_LOCK(fp); 5806 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5807 m_freem(m); 5808 } 5809 BXE_FP_TX_UNLOCK(fp); 5810 } 5811 } 5812 5813 if_qflush(ifp); 5814 } 5815 5816 static uint16_t 5817 bxe_cid_ilt_lines(struct bxe_softc *sc) 5818 { 5819 if (IS_SRIOV(sc)) { 5820 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5821 } 5822 return (L2_ILT_LINES(sc)); 5823 } 5824 5825 static void 5826 bxe_ilt_set_info(struct bxe_softc *sc) 5827 { 5828 struct ilt_client_info *ilt_client; 5829 struct ecore_ilt *ilt = sc->ilt; 5830 uint16_t line = 0; 5831 5832 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5833 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5834 5835 /* CDU */ 5836 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5837 ilt_client->client_num = ILT_CLIENT_CDU; 5838 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5839 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5840 ilt_client->start = line; 5841 line += bxe_cid_ilt_lines(sc); 5842 5843 if (CNIC_SUPPORT(sc)) { 5844 line += CNIC_ILT_LINES; 5845 } 5846 5847 ilt_client->end = (line - 1); 5848 5849 BLOGD(sc, DBG_LOAD, 5850 "ilt client[CDU]: start %d, end %d, " 5851 "psz 0x%x, flags 0x%x, hw psz %d\n", 5852 ilt_client->start, ilt_client->end, 5853 ilt_client->page_size, 5854 ilt_client->flags, 5855 ilog2(ilt_client->page_size >> 12)); 5856 5857 /* QM */ 5858 if (QM_INIT(sc->qm_cid_count)) { 5859 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5860 ilt_client->client_num = ILT_CLIENT_QM; 5861 ilt_client->page_size = QM_ILT_PAGE_SZ; 5862 ilt_client->flags = 0; 5863 ilt_client->start = line; 5864 5865 /* 4 bytes for each cid */ 5866 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5867 QM_ILT_PAGE_SZ); 5868 5869 ilt_client->end = (line - 1); 5870 5871 BLOGD(sc, DBG_LOAD, 5872 "ilt client[QM]: start %d, end %d, " 5873 "psz 0x%x, flags 0x%x, hw psz %d\n", 5874 ilt_client->start, ilt_client->end, 5875 ilt_client->page_size, ilt_client->flags, 5876 ilog2(ilt_client->page_size >> 12)); 5877 } 5878 5879 if (CNIC_SUPPORT(sc)) { 5880 /* SRC */ 5881 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5882 ilt_client->client_num = ILT_CLIENT_SRC; 5883 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5884 ilt_client->flags = 0; 5885 ilt_client->start = line; 5886 line += SRC_ILT_LINES; 5887 ilt_client->end = (line - 1); 5888 5889 BLOGD(sc, DBG_LOAD, 5890 "ilt client[SRC]: start %d, end %d, " 5891 "psz 0x%x, flags 0x%x, hw psz %d\n", 5892 ilt_client->start, ilt_client->end, 5893 ilt_client->page_size, ilt_client->flags, 5894 ilog2(ilt_client->page_size >> 12)); 5895 5896 /* TM */ 5897 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5898 ilt_client->client_num = ILT_CLIENT_TM; 5899 ilt_client->page_size = TM_ILT_PAGE_SZ; 5900 ilt_client->flags = 0; 5901 ilt_client->start = line; 5902 line += TM_ILT_LINES; 5903 ilt_client->end = (line - 1); 5904 5905 BLOGD(sc, DBG_LOAD, 5906 "ilt client[TM]: start %d, end %d, " 5907 "psz 0x%x, flags 0x%x, hw psz %d\n", 5908 ilt_client->start, ilt_client->end, 5909 ilt_client->page_size, ilt_client->flags, 5910 ilog2(ilt_client->page_size >> 12)); 5911 } 5912 5913 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5914 } 5915 5916 static void 5917 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5918 { 5919 int i; 5920 uint32_t rx_buf_size; 5921 5922 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5923 5924 for (i = 0; i < sc->num_queues; i++) { 5925 if(rx_buf_size <= MCLBYTES){ 5926 sc->fp[i].rx_buf_size = rx_buf_size; 5927 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5928 }else if (rx_buf_size <= MJUMPAGESIZE){ 5929 sc->fp[i].rx_buf_size = rx_buf_size; 5930 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5931 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5932 sc->fp[i].rx_buf_size = MCLBYTES; 5933 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5934 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5935 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5936 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5937 }else { 5938 sc->fp[i].rx_buf_size = MCLBYTES; 5939 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5940 } 5941 } 5942 } 5943 5944 static int 5945 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5946 { 5947 int rc = 0; 5948 5949 if ((sc->ilt = 5950 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5951 M_BXE_ILT, 5952 (M_NOWAIT | M_ZERO))) == NULL) { 5953 rc = 1; 5954 } 5955 5956 return (rc); 5957 } 5958 5959 static int 5960 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5961 { 5962 int rc = 0; 5963 5964 if ((sc->ilt->lines = 5965 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5966 M_BXE_ILT, 5967 (M_NOWAIT | M_ZERO))) == NULL) { 5968 rc = 1; 5969 } 5970 5971 return (rc); 5972 } 5973 5974 static void 5975 bxe_free_ilt_mem(struct bxe_softc *sc) 5976 { 5977 if (sc->ilt != NULL) { 5978 free(sc->ilt, M_BXE_ILT); 5979 sc->ilt = NULL; 5980 } 5981 } 5982 5983 static void 5984 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5985 { 5986 if (sc->ilt->lines != NULL) { 5987 free(sc->ilt->lines, M_BXE_ILT); 5988 sc->ilt->lines = NULL; 5989 } 5990 } 5991 5992 static void 5993 bxe_free_mem(struct bxe_softc *sc) 5994 { 5995 int i; 5996 5997 for (i = 0; i < L2_ILT_LINES(sc); i++) { 5998 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 5999 sc->context[i].vcxt = NULL; 6000 sc->context[i].size = 0; 6001 } 6002 6003 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6004 6005 bxe_free_ilt_lines_mem(sc); 6006 6007 } 6008 6009 static int 6010 bxe_alloc_mem(struct bxe_softc *sc) 6011 { 6012 6013 int context_size; 6014 int allocated; 6015 int i; 6016 6017 /* 6018 * Allocate memory for CDU context: 6019 * This memory is allocated separately and not in the generic ILT 6020 * functions because CDU differs in few aspects: 6021 * 1. There can be multiple entities allocating memory for context - 6022 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6023 * its own ILT lines. 6024 * 2. Since CDU page-size is not a single 4KB page (which is the case 6025 * for the other ILT clients), to be efficient we want to support 6026 * allocation of sub-page-size in the last entry. 6027 * 3. Context pointers are used by the driver to pass to FW / update 6028 * the context (for the other ILT clients the pointers are used just to 6029 * free the memory during unload). 6030 */ 6031 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6032 for (i = 0, allocated = 0; allocated < context_size; i++) { 6033 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6034 (context_size - allocated)); 6035 6036 if (bxe_dma_alloc(sc, sc->context[i].size, 6037 &sc->context[i].vcxt_dma, 6038 "cdu context") != 0) { 6039 bxe_free_mem(sc); 6040 return (-1); 6041 } 6042 6043 sc->context[i].vcxt = 6044 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6045 6046 allocated += sc->context[i].size; 6047 } 6048 6049 bxe_alloc_ilt_lines_mem(sc); 6050 6051 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6052 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6053 { 6054 for (i = 0; i < 4; i++) { 6055 BLOGD(sc, DBG_LOAD, 6056 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6057 i, 6058 sc->ilt->clients[i].page_size, 6059 sc->ilt->clients[i].start, 6060 sc->ilt->clients[i].end, 6061 sc->ilt->clients[i].client_num, 6062 sc->ilt->clients[i].flags); 6063 } 6064 } 6065 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6066 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6067 bxe_free_mem(sc); 6068 return (-1); 6069 } 6070 6071 return (0); 6072 } 6073 6074 static void 6075 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6076 { 6077 int i; 6078 6079 if (fp->rx_mbuf_tag == NULL) { 6080 return; 6081 } 6082 6083 /* free all mbufs and unload all maps */ 6084 for (i = 0; i < RX_BD_TOTAL; i++) { 6085 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6086 bus_dmamap_sync(fp->rx_mbuf_tag, 6087 fp->rx_mbuf_chain[i].m_map, 6088 BUS_DMASYNC_POSTREAD); 6089 bus_dmamap_unload(fp->rx_mbuf_tag, 6090 fp->rx_mbuf_chain[i].m_map); 6091 } 6092 6093 if (fp->rx_mbuf_chain[i].m != NULL) { 6094 m_freem(fp->rx_mbuf_chain[i].m); 6095 fp->rx_mbuf_chain[i].m = NULL; 6096 fp->eth_q_stats.mbuf_alloc_rx--; 6097 } 6098 } 6099 } 6100 6101 static void 6102 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6103 { 6104 struct bxe_softc *sc; 6105 int i, max_agg_queues; 6106 6107 sc = fp->sc; 6108 6109 if (fp->rx_mbuf_tag == NULL) { 6110 return; 6111 } 6112 6113 max_agg_queues = MAX_AGG_QS(sc); 6114 6115 /* release all mbufs and unload all DMA maps in the TPA pool */ 6116 for (i = 0; i < max_agg_queues; i++) { 6117 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6118 bus_dmamap_sync(fp->rx_mbuf_tag, 6119 fp->rx_tpa_info[i].bd.m_map, 6120 BUS_DMASYNC_POSTREAD); 6121 bus_dmamap_unload(fp->rx_mbuf_tag, 6122 fp->rx_tpa_info[i].bd.m_map); 6123 } 6124 6125 if (fp->rx_tpa_info[i].bd.m != NULL) { 6126 m_freem(fp->rx_tpa_info[i].bd.m); 6127 fp->rx_tpa_info[i].bd.m = NULL; 6128 fp->eth_q_stats.mbuf_alloc_tpa--; 6129 } 6130 } 6131 } 6132 6133 static void 6134 bxe_free_sge_chain(struct bxe_fastpath *fp) 6135 { 6136 int i; 6137 6138 if (fp->rx_sge_mbuf_tag == NULL) { 6139 return; 6140 } 6141 6142 /* rree all mbufs and unload all maps */ 6143 for (i = 0; i < RX_SGE_TOTAL; i++) { 6144 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6145 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6146 fp->rx_sge_mbuf_chain[i].m_map, 6147 BUS_DMASYNC_POSTREAD); 6148 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6149 fp->rx_sge_mbuf_chain[i].m_map); 6150 } 6151 6152 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6153 m_freem(fp->rx_sge_mbuf_chain[i].m); 6154 fp->rx_sge_mbuf_chain[i].m = NULL; 6155 fp->eth_q_stats.mbuf_alloc_sge--; 6156 } 6157 } 6158 } 6159 6160 static void 6161 bxe_free_fp_buffers(struct bxe_softc *sc) 6162 { 6163 struct bxe_fastpath *fp; 6164 int i; 6165 6166 for (i = 0; i < sc->num_queues; i++) { 6167 fp = &sc->fp[i]; 6168 6169 if (fp->tx_br != NULL) { 6170 /* just in case bxe_mq_flush() wasn't called */ 6171 if (mtx_initialized(&fp->tx_mtx)) { 6172 struct mbuf *m; 6173 6174 BXE_FP_TX_LOCK(fp); 6175 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6176 m_freem(m); 6177 BXE_FP_TX_UNLOCK(fp); 6178 } 6179 } 6180 6181 /* free all RX buffers */ 6182 bxe_free_rx_bd_chain(fp); 6183 bxe_free_tpa_pool(fp); 6184 bxe_free_sge_chain(fp); 6185 6186 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6187 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6188 fp->eth_q_stats.mbuf_alloc_rx); 6189 } 6190 6191 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6192 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6193 fp->eth_q_stats.mbuf_alloc_sge); 6194 } 6195 6196 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6197 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6198 fp->eth_q_stats.mbuf_alloc_tpa); 6199 } 6200 6201 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6202 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6203 fp->eth_q_stats.mbuf_alloc_tx); 6204 } 6205 6206 /* XXX verify all mbufs were reclaimed */ 6207 } 6208 } 6209 6210 static int 6211 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6212 uint16_t prev_index, 6213 uint16_t index) 6214 { 6215 struct bxe_sw_rx_bd *rx_buf; 6216 struct eth_rx_bd *rx_bd; 6217 bus_dma_segment_t segs[1]; 6218 bus_dmamap_t map; 6219 struct mbuf *m; 6220 int nsegs, rc; 6221 6222 rc = 0; 6223 6224 /* allocate the new RX BD mbuf */ 6225 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6226 if (__predict_false(m == NULL)) { 6227 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6228 return (ENOBUFS); 6229 } 6230 6231 fp->eth_q_stats.mbuf_alloc_rx++; 6232 6233 /* initialize the mbuf buffer length */ 6234 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6235 6236 /* map the mbuf into non-paged pool */ 6237 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6238 fp->rx_mbuf_spare_map, 6239 m, segs, &nsegs, BUS_DMA_NOWAIT); 6240 if (__predict_false(rc != 0)) { 6241 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6242 m_freem(m); 6243 fp->eth_q_stats.mbuf_alloc_rx--; 6244 return (rc); 6245 } 6246 6247 /* all mbufs must map to a single segment */ 6248 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6249 6250 /* release any existing RX BD mbuf mappings */ 6251 6252 if (prev_index != index) { 6253 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6254 6255 if (rx_buf->m_map != NULL) { 6256 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6257 BUS_DMASYNC_POSTREAD); 6258 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6259 } 6260 6261 /* 6262 * We only get here from bxe_rxeof() when the maximum number 6263 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6264 * holds the mbuf in the prev_index so it's OK to NULL it out 6265 * here without concern of a memory leak. 6266 */ 6267 fp->rx_mbuf_chain[prev_index].m = NULL; 6268 } 6269 6270 rx_buf = &fp->rx_mbuf_chain[index]; 6271 6272 if (rx_buf->m_map != NULL) { 6273 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6274 BUS_DMASYNC_POSTREAD); 6275 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6276 } 6277 6278 /* save the mbuf and mapping info for a future packet */ 6279 map = (prev_index != index) ? 6280 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6281 rx_buf->m_map = fp->rx_mbuf_spare_map; 6282 fp->rx_mbuf_spare_map = map; 6283 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6284 BUS_DMASYNC_PREREAD); 6285 rx_buf->m = m; 6286 6287 rx_bd = &fp->rx_chain[index]; 6288 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6289 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6290 6291 return (rc); 6292 } 6293 6294 static int 6295 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6296 int queue) 6297 { 6298 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6299 bus_dma_segment_t segs[1]; 6300 bus_dmamap_t map; 6301 struct mbuf *m; 6302 int nsegs; 6303 int rc = 0; 6304 6305 /* allocate the new TPA mbuf */ 6306 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6307 if (__predict_false(m == NULL)) { 6308 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6309 return (ENOBUFS); 6310 } 6311 6312 fp->eth_q_stats.mbuf_alloc_tpa++; 6313 6314 /* initialize the mbuf buffer length */ 6315 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6316 6317 /* map the mbuf into non-paged pool */ 6318 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6319 fp->rx_tpa_info_mbuf_spare_map, 6320 m, segs, &nsegs, BUS_DMA_NOWAIT); 6321 if (__predict_false(rc != 0)) { 6322 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6323 m_free(m); 6324 fp->eth_q_stats.mbuf_alloc_tpa--; 6325 return (rc); 6326 } 6327 6328 /* all mbufs must map to a single segment */ 6329 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6330 6331 /* release any existing TPA mbuf mapping */ 6332 if (tpa_info->bd.m_map != NULL) { 6333 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6334 BUS_DMASYNC_POSTREAD); 6335 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6336 } 6337 6338 /* save the mbuf and mapping info for the TPA mbuf */ 6339 map = tpa_info->bd.m_map; 6340 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6341 fp->rx_tpa_info_mbuf_spare_map = map; 6342 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6343 BUS_DMASYNC_PREREAD); 6344 tpa_info->bd.m = m; 6345 tpa_info->seg = segs[0]; 6346 6347 return (rc); 6348 } 6349 6350 /* 6351 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6352 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6353 * chain. 6354 */ 6355 static int 6356 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6357 uint16_t index) 6358 { 6359 struct bxe_sw_rx_bd *sge_buf; 6360 struct eth_rx_sge *sge; 6361 bus_dma_segment_t segs[1]; 6362 bus_dmamap_t map; 6363 struct mbuf *m; 6364 int nsegs; 6365 int rc = 0; 6366 6367 /* allocate a new SGE mbuf */ 6368 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6369 if (__predict_false(m == NULL)) { 6370 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6371 return (ENOMEM); 6372 } 6373 6374 fp->eth_q_stats.mbuf_alloc_sge++; 6375 6376 /* initialize the mbuf buffer length */ 6377 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6378 6379 /* map the SGE mbuf into non-paged pool */ 6380 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6381 fp->rx_sge_mbuf_spare_map, 6382 m, segs, &nsegs, BUS_DMA_NOWAIT); 6383 if (__predict_false(rc != 0)) { 6384 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6385 m_freem(m); 6386 fp->eth_q_stats.mbuf_alloc_sge--; 6387 return (rc); 6388 } 6389 6390 /* all mbufs must map to a single segment */ 6391 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6392 6393 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6394 6395 /* release any existing SGE mbuf mapping */ 6396 if (sge_buf->m_map != NULL) { 6397 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6398 BUS_DMASYNC_POSTREAD); 6399 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6400 } 6401 6402 /* save the mbuf and mapping info for a future packet */ 6403 map = sge_buf->m_map; 6404 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6405 fp->rx_sge_mbuf_spare_map = map; 6406 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6407 BUS_DMASYNC_PREREAD); 6408 sge_buf->m = m; 6409 6410 sge = &fp->rx_sge_chain[index]; 6411 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6412 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6413 6414 return (rc); 6415 } 6416 6417 static __noinline int 6418 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6419 { 6420 struct bxe_fastpath *fp; 6421 int i, j, rc = 0; 6422 int ring_prod, cqe_ring_prod; 6423 int max_agg_queues; 6424 6425 for (i = 0; i < sc->num_queues; i++) { 6426 fp = &sc->fp[i]; 6427 6428 ring_prod = cqe_ring_prod = 0; 6429 fp->rx_bd_cons = 0; 6430 fp->rx_cq_cons = 0; 6431 6432 /* allocate buffers for the RX BDs in RX BD chain */ 6433 for (j = 0; j < sc->max_rx_bufs; j++) { 6434 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6435 if (rc != 0) { 6436 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6437 i, rc); 6438 goto bxe_alloc_fp_buffers_error; 6439 } 6440 6441 ring_prod = RX_BD_NEXT(ring_prod); 6442 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6443 } 6444 6445 fp->rx_bd_prod = ring_prod; 6446 fp->rx_cq_prod = cqe_ring_prod; 6447 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6448 6449 max_agg_queues = MAX_AGG_QS(sc); 6450 6451 fp->tpa_enable = TRUE; 6452 6453 /* fill the TPA pool */ 6454 for (j = 0; j < max_agg_queues; j++) { 6455 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6456 if (rc != 0) { 6457 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6458 i, j); 6459 fp->tpa_enable = FALSE; 6460 goto bxe_alloc_fp_buffers_error; 6461 } 6462 6463 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6464 } 6465 6466 if (fp->tpa_enable) { 6467 /* fill the RX SGE chain */ 6468 ring_prod = 0; 6469 for (j = 0; j < RX_SGE_USABLE; j++) { 6470 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6471 if (rc != 0) { 6472 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6473 i, ring_prod); 6474 fp->tpa_enable = FALSE; 6475 ring_prod = 0; 6476 goto bxe_alloc_fp_buffers_error; 6477 } 6478 6479 ring_prod = RX_SGE_NEXT(ring_prod); 6480 } 6481 6482 fp->rx_sge_prod = ring_prod; 6483 } 6484 } 6485 6486 return (0); 6487 6488 bxe_alloc_fp_buffers_error: 6489 6490 /* unwind what was already allocated */ 6491 bxe_free_rx_bd_chain(fp); 6492 bxe_free_tpa_pool(fp); 6493 bxe_free_sge_chain(fp); 6494 6495 return (ENOBUFS); 6496 } 6497 6498 static void 6499 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6500 { 6501 bxe_dma_free(sc, &sc->fw_stats_dma); 6502 6503 sc->fw_stats_num = 0; 6504 6505 sc->fw_stats_req_size = 0; 6506 sc->fw_stats_req = NULL; 6507 sc->fw_stats_req_mapping = 0; 6508 6509 sc->fw_stats_data_size = 0; 6510 sc->fw_stats_data = NULL; 6511 sc->fw_stats_data_mapping = 0; 6512 } 6513 6514 static int 6515 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6516 { 6517 uint8_t num_queue_stats; 6518 int num_groups; 6519 6520 /* number of queues for statistics is number of eth queues */ 6521 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6522 6523 /* 6524 * Total number of FW statistics requests = 6525 * 1 for port stats + 1 for PF stats + num of queues 6526 */ 6527 sc->fw_stats_num = (2 + num_queue_stats); 6528 6529 /* 6530 * Request is built from stats_query_header and an array of 6531 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6532 * rules. The real number or requests is configured in the 6533 * stats_query_header. 6534 */ 6535 num_groups = 6536 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6537 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6538 6539 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6540 sc->fw_stats_num, num_groups); 6541 6542 sc->fw_stats_req_size = 6543 (sizeof(struct stats_query_header) + 6544 (num_groups * sizeof(struct stats_query_cmd_group))); 6545 6546 /* 6547 * Data for statistics requests + stats_counter. 6548 * stats_counter holds per-STORM counters that are incremented when 6549 * STORM has finished with the current request. Memory for FCoE 6550 * offloaded statistics are counted anyway, even if they will not be sent. 6551 * VF stats are not accounted for here as the data of VF stats is stored 6552 * in memory allocated by the VF, not here. 6553 */ 6554 sc->fw_stats_data_size = 6555 (sizeof(struct stats_counter) + 6556 sizeof(struct per_port_stats) + 6557 sizeof(struct per_pf_stats) + 6558 /* sizeof(struct fcoe_statistics_params) + */ 6559 (sizeof(struct per_queue_stats) * num_queue_stats)); 6560 6561 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6562 &sc->fw_stats_dma, "fw stats") != 0) { 6563 bxe_free_fw_stats_mem(sc); 6564 return (-1); 6565 } 6566 6567 /* set up the shortcuts */ 6568 6569 sc->fw_stats_req = 6570 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6571 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6572 6573 sc->fw_stats_data = 6574 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6575 sc->fw_stats_req_size); 6576 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6577 sc->fw_stats_req_size); 6578 6579 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6580 (uintmax_t)sc->fw_stats_req_mapping); 6581 6582 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6583 (uintmax_t)sc->fw_stats_data_mapping); 6584 6585 return (0); 6586 } 6587 6588 /* 6589 * Bits map: 6590 * 0-7 - Engine0 load counter. 6591 * 8-15 - Engine1 load counter. 6592 * 16 - Engine0 RESET_IN_PROGRESS bit. 6593 * 17 - Engine1 RESET_IN_PROGRESS bit. 6594 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6595 * function on the engine 6596 * 19 - Engine1 ONE_IS_LOADED. 6597 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6598 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6599 * for just the one belonging to its engine). 6600 */ 6601 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6602 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6603 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6604 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6605 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6606 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6607 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6608 #define BXE_GLOBAL_RESET_BIT 0x00040000 6609 6610 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6611 static void 6612 bxe_set_reset_global(struct bxe_softc *sc) 6613 { 6614 uint32_t val; 6615 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6616 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6617 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6618 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6619 } 6620 6621 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6622 static void 6623 bxe_clear_reset_global(struct bxe_softc *sc) 6624 { 6625 uint32_t val; 6626 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6627 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6628 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6629 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6630 } 6631 6632 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6633 static uint8_t 6634 bxe_reset_is_global(struct bxe_softc *sc) 6635 { 6636 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6637 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6638 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6639 } 6640 6641 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6642 static void 6643 bxe_set_reset_done(struct bxe_softc *sc) 6644 { 6645 uint32_t val; 6646 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6647 BXE_PATH0_RST_IN_PROG_BIT; 6648 6649 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6650 6651 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6652 /* Clear the bit */ 6653 val &= ~bit; 6654 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6655 6656 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6657 } 6658 6659 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6660 static void 6661 bxe_set_reset_in_progress(struct bxe_softc *sc) 6662 { 6663 uint32_t val; 6664 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6665 BXE_PATH0_RST_IN_PROG_BIT; 6666 6667 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6668 6669 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6670 /* Set the bit */ 6671 val |= bit; 6672 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6673 6674 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6675 } 6676 6677 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6678 static uint8_t 6679 bxe_reset_is_done(struct bxe_softc *sc, 6680 int engine) 6681 { 6682 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6683 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6684 BXE_PATH0_RST_IN_PROG_BIT; 6685 6686 /* return false if bit is set */ 6687 return (val & bit) ? FALSE : TRUE; 6688 } 6689 6690 /* get the load status for an engine, should be run under rtnl lock */ 6691 static uint8_t 6692 bxe_get_load_status(struct bxe_softc *sc, 6693 int engine) 6694 { 6695 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6696 BXE_PATH0_LOAD_CNT_MASK; 6697 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6698 BXE_PATH0_LOAD_CNT_SHIFT; 6699 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6700 6701 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6702 6703 val = ((val & mask) >> shift); 6704 6705 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6706 6707 return (val != 0); 6708 } 6709 6710 /* set pf load mark */ 6711 /* XXX needs to be under rtnl lock */ 6712 static void 6713 bxe_set_pf_load(struct bxe_softc *sc) 6714 { 6715 uint32_t val; 6716 uint32_t val1; 6717 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6718 BXE_PATH0_LOAD_CNT_MASK; 6719 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6720 BXE_PATH0_LOAD_CNT_SHIFT; 6721 6722 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6723 6724 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6725 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6726 6727 /* get the current counter value */ 6728 val1 = ((val & mask) >> shift); 6729 6730 /* set bit of this PF */ 6731 val1 |= (1 << SC_ABS_FUNC(sc)); 6732 6733 /* clear the old value */ 6734 val &= ~mask; 6735 6736 /* set the new one */ 6737 val |= ((val1 << shift) & mask); 6738 6739 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6740 6741 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6742 } 6743 6744 /* clear pf load mark */ 6745 /* XXX needs to be under rtnl lock */ 6746 static uint8_t 6747 bxe_clear_pf_load(struct bxe_softc *sc) 6748 { 6749 uint32_t val1, val; 6750 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6751 BXE_PATH0_LOAD_CNT_MASK; 6752 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6753 BXE_PATH0_LOAD_CNT_SHIFT; 6754 6755 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6756 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6757 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6758 6759 /* get the current counter value */ 6760 val1 = (val & mask) >> shift; 6761 6762 /* clear bit of that PF */ 6763 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6764 6765 /* clear the old value */ 6766 val &= ~mask; 6767 6768 /* set the new one */ 6769 val |= ((val1 << shift) & mask); 6770 6771 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6772 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6773 return (val1 != 0); 6774 } 6775 6776 /* send load requrest to mcp and analyze response */ 6777 static int 6778 bxe_nic_load_request(struct bxe_softc *sc, 6779 uint32_t *load_code) 6780 { 6781 /* init fw_seq */ 6782 sc->fw_seq = 6783 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6784 DRV_MSG_SEQ_NUMBER_MASK); 6785 6786 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6787 6788 /* get the current FW pulse sequence */ 6789 sc->fw_drv_pulse_wr_seq = 6790 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6791 DRV_PULSE_SEQ_MASK); 6792 6793 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6794 sc->fw_drv_pulse_wr_seq); 6795 6796 /* load request */ 6797 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6798 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6799 6800 /* if the MCP fails to respond we must abort */ 6801 if (!(*load_code)) { 6802 BLOGE(sc, "MCP response failure!\n"); 6803 return (-1); 6804 } 6805 6806 /* if MCP refused then must abort */ 6807 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6808 BLOGE(sc, "MCP refused load request\n"); 6809 return (-1); 6810 } 6811 6812 return (0); 6813 } 6814 6815 /* 6816 * Check whether another PF has already loaded FW to chip. In virtualized 6817 * environments a pf from anoth VM may have already initialized the device 6818 * including loading FW. 6819 */ 6820 static int 6821 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6822 uint32_t load_code) 6823 { 6824 uint32_t my_fw, loaded_fw; 6825 6826 /* is another pf loaded on this engine? */ 6827 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6828 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6829 /* build my FW version dword */ 6830 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6831 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6832 (BCM_5710_FW_REVISION_VERSION << 16) + 6833 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6834 6835 /* read loaded FW from chip */ 6836 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6837 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6838 loaded_fw, my_fw); 6839 6840 /* abort nic load if version mismatch */ 6841 if (my_fw != loaded_fw) { 6842 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6843 loaded_fw, my_fw); 6844 return (-1); 6845 } 6846 } 6847 6848 return (0); 6849 } 6850 6851 /* mark PMF if applicable */ 6852 static void 6853 bxe_nic_load_pmf(struct bxe_softc *sc, 6854 uint32_t load_code) 6855 { 6856 uint32_t ncsi_oem_data_addr; 6857 6858 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6859 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6860 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6861 /* 6862 * Barrier here for ordering between the writing to sc->port.pmf here 6863 * and reading it from the periodic task. 6864 */ 6865 sc->port.pmf = 1; 6866 mb(); 6867 } else { 6868 sc->port.pmf = 0; 6869 } 6870 6871 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6872 6873 /* XXX needed? */ 6874 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6875 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6876 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6877 if (ncsi_oem_data_addr) { 6878 REG_WR(sc, 6879 (ncsi_oem_data_addr + 6880 offsetof(struct glob_ncsi_oem_data, driver_version)), 6881 0); 6882 } 6883 } 6884 } 6885 } 6886 6887 static void 6888 bxe_read_mf_cfg(struct bxe_softc *sc) 6889 { 6890 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6891 int abs_func; 6892 int vn; 6893 6894 if (BXE_NOMCP(sc)) { 6895 return; /* what should be the default bvalue in this case */ 6896 } 6897 6898 /* 6899 * The formula for computing the absolute function number is... 6900 * For 2 port configuration (4 functions per port): 6901 * abs_func = 2 * vn + SC_PORT + SC_PATH 6902 * For 4 port configuration (2 functions per port): 6903 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6904 */ 6905 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6906 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6907 if (abs_func >= E1H_FUNC_MAX) { 6908 break; 6909 } 6910 sc->devinfo.mf_info.mf_config[vn] = 6911 MFCFG_RD(sc, func_mf_config[abs_func].config); 6912 } 6913 6914 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6915 FUNC_MF_CFG_FUNC_DISABLED) { 6916 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6917 sc->flags |= BXE_MF_FUNC_DIS; 6918 } else { 6919 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6920 sc->flags &= ~BXE_MF_FUNC_DIS; 6921 } 6922 } 6923 6924 /* acquire split MCP access lock register */ 6925 static int bxe_acquire_alr(struct bxe_softc *sc) 6926 { 6927 uint32_t j, val; 6928 6929 for (j = 0; j < 1000; j++) { 6930 val = (1UL << 31); 6931 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6932 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6933 if (val & (1L << 31)) 6934 break; 6935 6936 DELAY(5000); 6937 } 6938 6939 if (!(val & (1L << 31))) { 6940 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6941 return (-1); 6942 } 6943 6944 return (0); 6945 } 6946 6947 /* release split MCP access lock register */ 6948 static void bxe_release_alr(struct bxe_softc *sc) 6949 { 6950 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6951 } 6952 6953 static void 6954 bxe_fan_failure(struct bxe_softc *sc) 6955 { 6956 int port = SC_PORT(sc); 6957 uint32_t ext_phy_config; 6958 6959 /* mark the failure */ 6960 ext_phy_config = 6961 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6962 6963 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6964 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6965 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6966 ext_phy_config); 6967 6968 /* log the failure */ 6969 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6970 "the card to prevent permanent damage. " 6971 "Please contact OEM Support for assistance\n"); 6972 6973 /* XXX */ 6974 #if 1 6975 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6976 #else 6977 /* 6978 * Schedule device reset (unload) 6979 * This is due to some boards consuming sufficient power when driver is 6980 * up to overheat if fan fails. 6981 */ 6982 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6983 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6984 #endif 6985 } 6986 6987 /* this function is called upon a link interrupt */ 6988 static void 6989 bxe_link_attn(struct bxe_softc *sc) 6990 { 6991 uint32_t pause_enabled = 0; 6992 struct host_port_stats *pstats; 6993 int cmng_fns; 6994 struct bxe_fastpath *fp; 6995 int i; 6996 6997 /* Make sure that we are synced with the current statistics */ 6998 bxe_stats_handle(sc, STATS_EVENT_STOP); 6999 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 7000 elink_link_update(&sc->link_params, &sc->link_vars); 7001 7002 if (sc->link_vars.link_up) { 7003 7004 /* dropless flow control */ 7005 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7006 pause_enabled = 0; 7007 7008 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7009 pause_enabled = 1; 7010 } 7011 7012 REG_WR(sc, 7013 (BAR_USTRORM_INTMEM + 7014 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7015 pause_enabled); 7016 } 7017 7018 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7019 pstats = BXE_SP(sc, port_stats); 7020 /* reset old mac stats */ 7021 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7022 } 7023 7024 if (sc->state == BXE_STATE_OPEN) { 7025 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7026 /* Restart tx when the link comes back. */ 7027 FOR_EACH_ETH_QUEUE(sc, i) { 7028 fp = &sc->fp[i]; 7029 taskqueue_enqueue(fp->tq, &fp->tx_task); 7030 } 7031 } 7032 7033 } 7034 7035 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7036 cmng_fns = bxe_get_cmng_fns_mode(sc); 7037 7038 if (cmng_fns != CMNG_FNS_NONE) { 7039 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7040 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7041 } else { 7042 /* rate shaping and fairness are disabled */ 7043 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7044 } 7045 } 7046 7047 bxe_link_report_locked(sc); 7048 7049 if (IS_MF(sc)) { 7050 ; // XXX bxe_link_sync_notify(sc); 7051 } 7052 } 7053 7054 static void 7055 bxe_attn_int_asserted(struct bxe_softc *sc, 7056 uint32_t asserted) 7057 { 7058 int port = SC_PORT(sc); 7059 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7060 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7061 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7062 NIG_REG_MASK_INTERRUPT_PORT0; 7063 uint32_t aeu_mask; 7064 uint32_t nig_mask = 0; 7065 uint32_t reg_addr; 7066 uint32_t igu_acked; 7067 uint32_t cnt; 7068 7069 if (sc->attn_state & asserted) { 7070 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7071 } 7072 7073 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7074 7075 aeu_mask = REG_RD(sc, aeu_addr); 7076 7077 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7078 aeu_mask, asserted); 7079 7080 aeu_mask &= ~(asserted & 0x3ff); 7081 7082 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7083 7084 REG_WR(sc, aeu_addr, aeu_mask); 7085 7086 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7087 7088 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7089 sc->attn_state |= asserted; 7090 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7091 7092 if (asserted & ATTN_HARD_WIRED_MASK) { 7093 if (asserted & ATTN_NIG_FOR_FUNC) { 7094 7095 bxe_acquire_phy_lock(sc); 7096 /* save nig interrupt mask */ 7097 nig_mask = REG_RD(sc, nig_int_mask_addr); 7098 7099 /* If nig_mask is not set, no need to call the update function */ 7100 if (nig_mask) { 7101 REG_WR(sc, nig_int_mask_addr, 0); 7102 7103 bxe_link_attn(sc); 7104 } 7105 7106 /* handle unicore attn? */ 7107 } 7108 7109 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7110 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7111 } 7112 7113 if (asserted & GPIO_2_FUNC) { 7114 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7115 } 7116 7117 if (asserted & GPIO_3_FUNC) { 7118 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7119 } 7120 7121 if (asserted & GPIO_4_FUNC) { 7122 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7123 } 7124 7125 if (port == 0) { 7126 if (asserted & ATTN_GENERAL_ATTN_1) { 7127 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7128 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7129 } 7130 if (asserted & ATTN_GENERAL_ATTN_2) { 7131 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7132 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7133 } 7134 if (asserted & ATTN_GENERAL_ATTN_3) { 7135 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7136 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7137 } 7138 } else { 7139 if (asserted & ATTN_GENERAL_ATTN_4) { 7140 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7141 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7142 } 7143 if (asserted & ATTN_GENERAL_ATTN_5) { 7144 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7145 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7146 } 7147 if (asserted & ATTN_GENERAL_ATTN_6) { 7148 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7149 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7150 } 7151 } 7152 } /* hardwired */ 7153 7154 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7155 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7156 } else { 7157 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7158 } 7159 7160 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7161 asserted, 7162 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7163 REG_WR(sc, reg_addr, asserted); 7164 7165 /* now set back the mask */ 7166 if (asserted & ATTN_NIG_FOR_FUNC) { 7167 /* 7168 * Verify that IGU ack through BAR was written before restoring 7169 * NIG mask. This loop should exit after 2-3 iterations max. 7170 */ 7171 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7172 cnt = 0; 7173 7174 do { 7175 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7176 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7177 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7178 7179 if (!igu_acked) { 7180 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7181 } 7182 7183 mb(); 7184 } 7185 7186 REG_WR(sc, nig_int_mask_addr, nig_mask); 7187 7188 bxe_release_phy_lock(sc); 7189 } 7190 } 7191 7192 static void 7193 bxe_print_next_block(struct bxe_softc *sc, 7194 int idx, 7195 const char *blk) 7196 { 7197 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7198 } 7199 7200 static int 7201 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7202 uint32_t sig, 7203 int par_num, 7204 uint8_t print) 7205 { 7206 uint32_t cur_bit = 0; 7207 int i = 0; 7208 7209 for (i = 0; sig; i++) { 7210 cur_bit = ((uint32_t)0x1 << i); 7211 if (sig & cur_bit) { 7212 switch (cur_bit) { 7213 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7214 if (print) 7215 bxe_print_next_block(sc, par_num++, "BRB"); 7216 break; 7217 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7218 if (print) 7219 bxe_print_next_block(sc, par_num++, "PARSER"); 7220 break; 7221 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7222 if (print) 7223 bxe_print_next_block(sc, par_num++, "TSDM"); 7224 break; 7225 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7226 if (print) 7227 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7228 break; 7229 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7230 if (print) 7231 bxe_print_next_block(sc, par_num++, "TCM"); 7232 break; 7233 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7234 if (print) 7235 bxe_print_next_block(sc, par_num++, "TSEMI"); 7236 break; 7237 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7238 if (print) 7239 bxe_print_next_block(sc, par_num++, "XPB"); 7240 break; 7241 } 7242 7243 /* Clear the bit */ 7244 sig &= ~cur_bit; 7245 } 7246 } 7247 7248 return (par_num); 7249 } 7250 7251 static int 7252 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7253 uint32_t sig, 7254 int par_num, 7255 uint8_t *global, 7256 uint8_t print) 7257 { 7258 int i = 0; 7259 uint32_t cur_bit = 0; 7260 for (i = 0; sig; i++) { 7261 cur_bit = ((uint32_t)0x1 << i); 7262 if (sig & cur_bit) { 7263 switch (cur_bit) { 7264 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7265 if (print) 7266 bxe_print_next_block(sc, par_num++, "PBF"); 7267 break; 7268 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7269 if (print) 7270 bxe_print_next_block(sc, par_num++, "QM"); 7271 break; 7272 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7273 if (print) 7274 bxe_print_next_block(sc, par_num++, "TM"); 7275 break; 7276 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7277 if (print) 7278 bxe_print_next_block(sc, par_num++, "XSDM"); 7279 break; 7280 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7281 if (print) 7282 bxe_print_next_block(sc, par_num++, "XCM"); 7283 break; 7284 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7285 if (print) 7286 bxe_print_next_block(sc, par_num++, "XSEMI"); 7287 break; 7288 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7289 if (print) 7290 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7291 break; 7292 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7293 if (print) 7294 bxe_print_next_block(sc, par_num++, "NIG"); 7295 break; 7296 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7297 if (print) 7298 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7299 *global = TRUE; 7300 break; 7301 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7302 if (print) 7303 bxe_print_next_block(sc, par_num++, "DEBUG"); 7304 break; 7305 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7306 if (print) 7307 bxe_print_next_block(sc, par_num++, "USDM"); 7308 break; 7309 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7310 if (print) 7311 bxe_print_next_block(sc, par_num++, "UCM"); 7312 break; 7313 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7314 if (print) 7315 bxe_print_next_block(sc, par_num++, "USEMI"); 7316 break; 7317 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7318 if (print) 7319 bxe_print_next_block(sc, par_num++, "UPB"); 7320 break; 7321 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7322 if (print) 7323 bxe_print_next_block(sc, par_num++, "CSDM"); 7324 break; 7325 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7326 if (print) 7327 bxe_print_next_block(sc, par_num++, "CCM"); 7328 break; 7329 } 7330 7331 /* Clear the bit */ 7332 sig &= ~cur_bit; 7333 } 7334 } 7335 7336 return (par_num); 7337 } 7338 7339 static int 7340 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7341 uint32_t sig, 7342 int par_num, 7343 uint8_t print) 7344 { 7345 uint32_t cur_bit = 0; 7346 int i = 0; 7347 7348 for (i = 0; sig; i++) { 7349 cur_bit = ((uint32_t)0x1 << i); 7350 if (sig & cur_bit) { 7351 switch (cur_bit) { 7352 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7353 if (print) 7354 bxe_print_next_block(sc, par_num++, "CSEMI"); 7355 break; 7356 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7357 if (print) 7358 bxe_print_next_block(sc, par_num++, "PXP"); 7359 break; 7360 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7361 if (print) 7362 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7363 break; 7364 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7365 if (print) 7366 bxe_print_next_block(sc, par_num++, "CFC"); 7367 break; 7368 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7369 if (print) 7370 bxe_print_next_block(sc, par_num++, "CDU"); 7371 break; 7372 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7373 if (print) 7374 bxe_print_next_block(sc, par_num++, "DMAE"); 7375 break; 7376 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7377 if (print) 7378 bxe_print_next_block(sc, par_num++, "IGU"); 7379 break; 7380 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7381 if (print) 7382 bxe_print_next_block(sc, par_num++, "MISC"); 7383 break; 7384 } 7385 7386 /* Clear the bit */ 7387 sig &= ~cur_bit; 7388 } 7389 } 7390 7391 return (par_num); 7392 } 7393 7394 static int 7395 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7396 uint32_t sig, 7397 int par_num, 7398 uint8_t *global, 7399 uint8_t print) 7400 { 7401 uint32_t cur_bit = 0; 7402 int i = 0; 7403 7404 for (i = 0; sig; i++) { 7405 cur_bit = ((uint32_t)0x1 << i); 7406 if (sig & cur_bit) { 7407 switch (cur_bit) { 7408 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7409 if (print) 7410 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7411 *global = TRUE; 7412 break; 7413 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7414 if (print) 7415 bxe_print_next_block(sc, par_num++, 7416 "MCP UMP RX"); 7417 *global = TRUE; 7418 break; 7419 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7420 if (print) 7421 bxe_print_next_block(sc, par_num++, 7422 "MCP UMP TX"); 7423 *global = TRUE; 7424 break; 7425 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7426 if (print) 7427 bxe_print_next_block(sc, par_num++, 7428 "MCP SCPAD"); 7429 *global = TRUE; 7430 break; 7431 } 7432 7433 /* Clear the bit */ 7434 sig &= ~cur_bit; 7435 } 7436 } 7437 7438 return (par_num); 7439 } 7440 7441 static int 7442 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7443 uint32_t sig, 7444 int par_num, 7445 uint8_t print) 7446 { 7447 uint32_t cur_bit = 0; 7448 int i = 0; 7449 7450 for (i = 0; sig; i++) { 7451 cur_bit = ((uint32_t)0x1 << i); 7452 if (sig & cur_bit) { 7453 switch (cur_bit) { 7454 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7455 if (print) 7456 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7457 break; 7458 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7459 if (print) 7460 bxe_print_next_block(sc, par_num++, "ATC"); 7461 break; 7462 } 7463 7464 /* Clear the bit */ 7465 sig &= ~cur_bit; 7466 } 7467 } 7468 7469 return (par_num); 7470 } 7471 7472 static uint8_t 7473 bxe_parity_attn(struct bxe_softc *sc, 7474 uint8_t *global, 7475 uint8_t print, 7476 uint32_t *sig) 7477 { 7478 int par_num = 0; 7479 7480 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7481 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7482 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7483 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7484 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7485 BLOGE(sc, "Parity error: HW block parity attention:\n" 7486 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7487 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7488 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7489 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7490 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7491 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7492 7493 if (print) 7494 BLOGI(sc, "Parity errors detected in blocks: "); 7495 7496 par_num = 7497 bxe_check_blocks_with_parity0(sc, sig[0] & 7498 HW_PRTY_ASSERT_SET_0, 7499 par_num, print); 7500 par_num = 7501 bxe_check_blocks_with_parity1(sc, sig[1] & 7502 HW_PRTY_ASSERT_SET_1, 7503 par_num, global, print); 7504 par_num = 7505 bxe_check_blocks_with_parity2(sc, sig[2] & 7506 HW_PRTY_ASSERT_SET_2, 7507 par_num, print); 7508 par_num = 7509 bxe_check_blocks_with_parity3(sc, sig[3] & 7510 HW_PRTY_ASSERT_SET_3, 7511 par_num, global, print); 7512 par_num = 7513 bxe_check_blocks_with_parity4(sc, sig[4] & 7514 HW_PRTY_ASSERT_SET_4, 7515 par_num, print); 7516 7517 if (print) 7518 BLOGI(sc, "\n"); 7519 7520 if( *global == TRUE ) { 7521 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 7522 } 7523 7524 return (TRUE); 7525 } 7526 7527 return (FALSE); 7528 } 7529 7530 static uint8_t 7531 bxe_chk_parity_attn(struct bxe_softc *sc, 7532 uint8_t *global, 7533 uint8_t print) 7534 { 7535 struct attn_route attn = { {0} }; 7536 int port = SC_PORT(sc); 7537 7538 if(sc->state != BXE_STATE_OPEN) 7539 return FALSE; 7540 7541 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7542 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7543 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7544 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7545 7546 /* 7547 * Since MCP attentions can't be disabled inside the block, we need to 7548 * read AEU registers to see whether they're currently disabled 7549 */ 7550 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7551 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7552 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7553 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7554 7555 7556 if (!CHIP_IS_E1x(sc)) 7557 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7558 7559 return (bxe_parity_attn(sc, global, print, attn.sig)); 7560 } 7561 7562 static void 7563 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7564 uint32_t attn) 7565 { 7566 uint32_t val; 7567 bool err_flg = false; 7568 7569 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7570 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7571 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7572 err_flg = true; 7573 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7574 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7575 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7576 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7577 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7578 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7579 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7580 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7581 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7582 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7583 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7584 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7585 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7586 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7587 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7588 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7589 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7590 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7591 } 7592 7593 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7594 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7595 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7596 err_flg = true; 7597 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7598 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7599 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7600 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7601 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7602 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7603 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7604 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7605 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7606 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7607 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7608 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7609 } 7610 7611 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7612 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7613 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7614 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7615 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7616 err_flg = true; 7617 } 7618 if (err_flg) { 7619 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 7620 taskqueue_enqueue_timeout(taskqueue_thread, 7621 &sc->sp_err_timeout_task, hz/10); 7622 } 7623 7624 } 7625 7626 static void 7627 bxe_e1h_disable(struct bxe_softc *sc) 7628 { 7629 int port = SC_PORT(sc); 7630 7631 bxe_tx_disable(sc); 7632 7633 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7634 } 7635 7636 static void 7637 bxe_e1h_enable(struct bxe_softc *sc) 7638 { 7639 int port = SC_PORT(sc); 7640 7641 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7642 7643 // XXX bxe_tx_enable(sc); 7644 } 7645 7646 /* 7647 * called due to MCP event (on pmf): 7648 * reread new bandwidth configuration 7649 * configure FW 7650 * notify others function about the change 7651 */ 7652 static void 7653 bxe_config_mf_bw(struct bxe_softc *sc) 7654 { 7655 if (sc->link_vars.link_up) { 7656 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7657 // XXX bxe_link_sync_notify(sc); 7658 } 7659 7660 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7661 } 7662 7663 static void 7664 bxe_set_mf_bw(struct bxe_softc *sc) 7665 { 7666 bxe_config_mf_bw(sc); 7667 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7668 } 7669 7670 static void 7671 bxe_handle_eee_event(struct bxe_softc *sc) 7672 { 7673 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7674 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7675 } 7676 7677 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7678 7679 static void 7680 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7681 { 7682 struct eth_stats_info *ether_stat = 7683 &sc->sp->drv_info_to_mcp.ether_stat; 7684 7685 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7686 ETH_STAT_INFO_VERSION_LEN); 7687 7688 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7689 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7690 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7691 ether_stat->mac_local + MAC_PAD, 7692 MAC_PAD, ETH_ALEN); 7693 7694 ether_stat->mtu_size = sc->mtu; 7695 7696 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7697 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7698 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7699 } 7700 7701 // XXX ether_stat->feature_flags |= ???; 7702 7703 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7704 7705 ether_stat->txq_size = sc->tx_ring_size; 7706 ether_stat->rxq_size = sc->rx_ring_size; 7707 } 7708 7709 static void 7710 bxe_handle_drv_info_req(struct bxe_softc *sc) 7711 { 7712 enum drv_info_opcode op_code; 7713 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7714 7715 /* if drv_info version supported by MFW doesn't match - send NACK */ 7716 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7717 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7718 return; 7719 } 7720 7721 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7722 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7723 7724 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7725 7726 switch (op_code) { 7727 case ETH_STATS_OPCODE: 7728 bxe_drv_info_ether_stat(sc); 7729 break; 7730 case FCOE_STATS_OPCODE: 7731 case ISCSI_STATS_OPCODE: 7732 default: 7733 /* if op code isn't supported - send NACK */ 7734 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7735 return; 7736 } 7737 7738 /* 7739 * If we got drv_info attn from MFW then these fields are defined in 7740 * shmem2 for sure 7741 */ 7742 SHMEM2_WR(sc, drv_info_host_addr_lo, 7743 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7744 SHMEM2_WR(sc, drv_info_host_addr_hi, 7745 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7746 7747 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7748 } 7749 7750 static void 7751 bxe_dcc_event(struct bxe_softc *sc, 7752 uint32_t dcc_event) 7753 { 7754 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7755 7756 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7757 /* 7758 * This is the only place besides the function initialization 7759 * where the sc->flags can change so it is done without any 7760 * locks 7761 */ 7762 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7763 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7764 sc->flags |= BXE_MF_FUNC_DIS; 7765 bxe_e1h_disable(sc); 7766 } else { 7767 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7768 sc->flags &= ~BXE_MF_FUNC_DIS; 7769 bxe_e1h_enable(sc); 7770 } 7771 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7772 } 7773 7774 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7775 bxe_config_mf_bw(sc); 7776 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7777 } 7778 7779 /* Report results to MCP */ 7780 if (dcc_event) 7781 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7782 else 7783 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7784 } 7785 7786 static void 7787 bxe_pmf_update(struct bxe_softc *sc) 7788 { 7789 int port = SC_PORT(sc); 7790 uint32_t val; 7791 7792 sc->port.pmf = 1; 7793 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7794 7795 /* 7796 * We need the mb() to ensure the ordering between the writing to 7797 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7798 */ 7799 mb(); 7800 7801 /* queue a periodic task */ 7802 // XXX schedule task... 7803 7804 // XXX bxe_dcbx_pmf_update(sc); 7805 7806 /* enable nig attention */ 7807 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7808 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7809 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7810 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7811 } else if (!CHIP_IS_E1x(sc)) { 7812 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7813 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7814 } 7815 7816 bxe_stats_handle(sc, STATS_EVENT_PMF); 7817 } 7818 7819 static int 7820 bxe_mc_assert(struct bxe_softc *sc) 7821 { 7822 char last_idx; 7823 int i, rc = 0; 7824 uint32_t row0, row1, row2, row3; 7825 7826 /* XSTORM */ 7827 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7828 if (last_idx) 7829 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7830 7831 /* print the asserts */ 7832 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7833 7834 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7835 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7836 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7837 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7838 7839 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7840 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7841 i, row3, row2, row1, row0); 7842 rc++; 7843 } else { 7844 break; 7845 } 7846 } 7847 7848 /* TSTORM */ 7849 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7850 if (last_idx) { 7851 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7852 } 7853 7854 /* print the asserts */ 7855 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7856 7857 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7858 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7859 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7860 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7861 7862 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7863 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7864 i, row3, row2, row1, row0); 7865 rc++; 7866 } else { 7867 break; 7868 } 7869 } 7870 7871 /* CSTORM */ 7872 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7873 if (last_idx) { 7874 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7875 } 7876 7877 /* print the asserts */ 7878 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7879 7880 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7881 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7882 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7883 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7884 7885 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7886 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7887 i, row3, row2, row1, row0); 7888 rc++; 7889 } else { 7890 break; 7891 } 7892 } 7893 7894 /* USTORM */ 7895 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7896 if (last_idx) { 7897 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7898 } 7899 7900 /* print the asserts */ 7901 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7902 7903 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7904 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7905 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7906 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7907 7908 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7909 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7910 i, row3, row2, row1, row0); 7911 rc++; 7912 } else { 7913 break; 7914 } 7915 } 7916 7917 return (rc); 7918 } 7919 7920 static void 7921 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7922 uint32_t attn) 7923 { 7924 int func = SC_FUNC(sc); 7925 uint32_t val; 7926 7927 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7928 7929 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7930 7931 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7932 bxe_read_mf_cfg(sc); 7933 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7934 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7935 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7936 7937 if (val & DRV_STATUS_DCC_EVENT_MASK) 7938 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7939 7940 if (val & DRV_STATUS_SET_MF_BW) 7941 bxe_set_mf_bw(sc); 7942 7943 if (val & DRV_STATUS_DRV_INFO_REQ) 7944 bxe_handle_drv_info_req(sc); 7945 7946 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7947 bxe_pmf_update(sc); 7948 7949 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7950 bxe_handle_eee_event(sc); 7951 7952 if (sc->link_vars.periodic_flags & 7953 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7954 /* sync with link */ 7955 bxe_acquire_phy_lock(sc); 7956 sc->link_vars.periodic_flags &= 7957 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7958 bxe_release_phy_lock(sc); 7959 if (IS_MF(sc)) 7960 ; // XXX bxe_link_sync_notify(sc); 7961 bxe_link_report(sc); 7962 } 7963 7964 /* 7965 * Always call it here: bxe_link_report() will 7966 * prevent the link indication duplication. 7967 */ 7968 bxe_link_status_update(sc); 7969 7970 } else if (attn & BXE_MC_ASSERT_BITS) { 7971 7972 BLOGE(sc, "MC assert!\n"); 7973 bxe_mc_assert(sc); 7974 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7975 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7976 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7977 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7978 bxe_int_disable(sc); 7979 BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT); 7980 taskqueue_enqueue_timeout(taskqueue_thread, 7981 &sc->sp_err_timeout_task, hz/10); 7982 7983 } else if (attn & BXE_MCP_ASSERT) { 7984 7985 BLOGE(sc, "MCP assert!\n"); 7986 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7987 BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT); 7988 taskqueue_enqueue_timeout(taskqueue_thread, 7989 &sc->sp_err_timeout_task, hz/10); 7990 bxe_int_disable(sc); /*avoid repetive assert alert */ 7991 7992 7993 } else { 7994 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 7995 } 7996 } 7997 7998 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 7999 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8000 if (attn & BXE_GRC_TIMEOUT) { 8001 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8002 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8003 } 8004 if (attn & BXE_GRC_RSV) { 8005 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8006 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8007 } 8008 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8009 } 8010 } 8011 8012 static void 8013 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8014 uint32_t attn) 8015 { 8016 int port = SC_PORT(sc); 8017 int reg_offset; 8018 uint32_t val0, mask0, val1, mask1; 8019 uint32_t val; 8020 bool err_flg = false; 8021 8022 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8023 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8024 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8025 /* CFC error attention */ 8026 if (val & 0x2) { 8027 BLOGE(sc, "FATAL error from CFC\n"); 8028 err_flg = true; 8029 } 8030 } 8031 8032 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8033 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8034 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8035 /* RQ_USDMDP_FIFO_OVERFLOW */ 8036 if (val & 0x18000) { 8037 BLOGE(sc, "FATAL error from PXP\n"); 8038 err_flg = true; 8039 } 8040 8041 if (!CHIP_IS_E1x(sc)) { 8042 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8043 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8044 err_flg = true; 8045 } 8046 } 8047 8048 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8049 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8050 8051 if (attn & AEU_PXP2_HW_INT_BIT) { 8052 /* CQ47854 workaround do not panic on 8053 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8054 */ 8055 if (!CHIP_IS_E1x(sc)) { 8056 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8057 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8058 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8059 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8060 /* 8061 * If the only PXP2_EOP_ERROR_BIT is set in 8062 * STS0 and STS1 - clear it 8063 * 8064 * probably we lose additional attentions between 8065 * STS0 and STS_CLR0, in this case user will not 8066 * be notified about them 8067 */ 8068 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8069 !(val1 & mask1)) 8070 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8071 8072 /* print the register, since no one can restore it */ 8073 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8074 8075 /* 8076 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8077 * then notify 8078 */ 8079 if (val0 & PXP2_EOP_ERROR_BIT) { 8080 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8081 err_flg = true; 8082 8083 /* 8084 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8085 * set then clear attention from PXP2 block without panic 8086 */ 8087 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8088 ((val1 & mask1) == 0)) 8089 attn &= ~AEU_PXP2_HW_INT_BIT; 8090 } 8091 } 8092 } 8093 8094 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8095 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8096 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8097 8098 val = REG_RD(sc, reg_offset); 8099 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8100 REG_WR(sc, reg_offset, val); 8101 8102 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8103 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8104 err_flg = true; 8105 bxe_panic(sc, ("HW block attention set2\n")); 8106 } 8107 if(err_flg) { 8108 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 8109 taskqueue_enqueue_timeout(taskqueue_thread, 8110 &sc->sp_err_timeout_task, hz/10); 8111 } 8112 8113 } 8114 8115 static void 8116 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8117 uint32_t attn) 8118 { 8119 int port = SC_PORT(sc); 8120 int reg_offset; 8121 uint32_t val; 8122 bool err_flg = false; 8123 8124 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8125 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8126 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8127 /* DORQ discard attention */ 8128 if (val & 0x2) { 8129 BLOGE(sc, "FATAL error from DORQ\n"); 8130 err_flg = true; 8131 } 8132 } 8133 8134 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8135 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8136 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8137 8138 val = REG_RD(sc, reg_offset); 8139 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8140 REG_WR(sc, reg_offset, val); 8141 8142 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8143 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8144 err_flg = true; 8145 bxe_panic(sc, ("HW block attention set1\n")); 8146 } 8147 if(err_flg) { 8148 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8149 taskqueue_enqueue_timeout(taskqueue_thread, 8150 &sc->sp_err_timeout_task, hz/10); 8151 } 8152 8153 } 8154 8155 static void 8156 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8157 uint32_t attn) 8158 { 8159 int port = SC_PORT(sc); 8160 int reg_offset; 8161 uint32_t val; 8162 8163 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8164 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8165 8166 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8167 val = REG_RD(sc, reg_offset); 8168 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8169 REG_WR(sc, reg_offset, val); 8170 8171 BLOGW(sc, "SPIO5 hw attention\n"); 8172 8173 /* Fan failure attention */ 8174 elink_hw_reset_phy(&sc->link_params); 8175 bxe_fan_failure(sc); 8176 } 8177 8178 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8179 bxe_acquire_phy_lock(sc); 8180 elink_handle_module_detect_int(&sc->link_params); 8181 bxe_release_phy_lock(sc); 8182 } 8183 8184 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8185 val = REG_RD(sc, reg_offset); 8186 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8187 REG_WR(sc, reg_offset, val); 8188 8189 8190 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8191 taskqueue_enqueue_timeout(taskqueue_thread, 8192 &sc->sp_err_timeout_task, hz/10); 8193 8194 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8195 (attn & HW_INTERRUT_ASSERT_SET_0))); 8196 } 8197 } 8198 8199 static void 8200 bxe_attn_int_deasserted(struct bxe_softc *sc, 8201 uint32_t deasserted) 8202 { 8203 struct attn_route attn; 8204 struct attn_route *group_mask; 8205 int port = SC_PORT(sc); 8206 int index; 8207 uint32_t reg_addr; 8208 uint32_t val; 8209 uint32_t aeu_mask; 8210 uint8_t global = FALSE; 8211 8212 /* 8213 * Need to take HW lock because MCP or other port might also 8214 * try to handle this event. 8215 */ 8216 bxe_acquire_alr(sc); 8217 8218 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8219 /* XXX 8220 * In case of parity errors don't handle attentions so that 8221 * other function would "see" parity errors. 8222 */ 8223 // XXX schedule a recovery task... 8224 /* disable HW interrupts */ 8225 bxe_int_disable(sc); 8226 BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY); 8227 taskqueue_enqueue_timeout(taskqueue_thread, 8228 &sc->sp_err_timeout_task, hz/10); 8229 bxe_release_alr(sc); 8230 return; 8231 } 8232 8233 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8234 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8235 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8236 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8237 if (!CHIP_IS_E1x(sc)) { 8238 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8239 } else { 8240 attn.sig[4] = 0; 8241 } 8242 8243 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8244 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8245 8246 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8247 if (deasserted & (1 << index)) { 8248 group_mask = &sc->attn_group[index]; 8249 8250 BLOGD(sc, DBG_INTR, 8251 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8252 group_mask->sig[0], group_mask->sig[1], 8253 group_mask->sig[2], group_mask->sig[3], 8254 group_mask->sig[4]); 8255 8256 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8257 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8258 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8259 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8260 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8261 } 8262 } 8263 8264 bxe_release_alr(sc); 8265 8266 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8267 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8268 COMMAND_REG_ATTN_BITS_CLR); 8269 } else { 8270 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8271 } 8272 8273 val = ~deasserted; 8274 BLOGD(sc, DBG_INTR, 8275 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8276 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8277 REG_WR(sc, reg_addr, val); 8278 8279 if (~sc->attn_state & deasserted) { 8280 BLOGE(sc, "IGU error\n"); 8281 } 8282 8283 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8284 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8285 8286 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8287 8288 aeu_mask = REG_RD(sc, reg_addr); 8289 8290 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8291 aeu_mask, deasserted); 8292 aeu_mask |= (deasserted & 0x3ff); 8293 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8294 8295 REG_WR(sc, reg_addr, aeu_mask); 8296 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8297 8298 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8299 sc->attn_state &= ~deasserted; 8300 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8301 } 8302 8303 static void 8304 bxe_attn_int(struct bxe_softc *sc) 8305 { 8306 /* read local copy of bits */ 8307 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8308 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8309 uint32_t attn_state = sc->attn_state; 8310 8311 /* look for changed bits */ 8312 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8313 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8314 8315 BLOGD(sc, DBG_INTR, 8316 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8317 attn_bits, attn_ack, asserted, deasserted); 8318 8319 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8320 BLOGE(sc, "BAD attention state\n"); 8321 } 8322 8323 /* handle bits that were raised */ 8324 if (asserted) { 8325 bxe_attn_int_asserted(sc, asserted); 8326 } 8327 8328 if (deasserted) { 8329 bxe_attn_int_deasserted(sc, deasserted); 8330 } 8331 } 8332 8333 static uint16_t 8334 bxe_update_dsb_idx(struct bxe_softc *sc) 8335 { 8336 struct host_sp_status_block *def_sb = sc->def_sb; 8337 uint16_t rc = 0; 8338 8339 mb(); /* status block is written to by the chip */ 8340 8341 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8342 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8343 rc |= BXE_DEF_SB_ATT_IDX; 8344 } 8345 8346 if (sc->def_idx != def_sb->sp_sb.running_index) { 8347 sc->def_idx = def_sb->sp_sb.running_index; 8348 rc |= BXE_DEF_SB_IDX; 8349 } 8350 8351 mb(); 8352 8353 return (rc); 8354 } 8355 8356 static inline struct ecore_queue_sp_obj * 8357 bxe_cid_to_q_obj(struct bxe_softc *sc, 8358 uint32_t cid) 8359 { 8360 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8361 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8362 } 8363 8364 static void 8365 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8366 { 8367 struct ecore_mcast_ramrod_params rparam; 8368 int rc; 8369 8370 memset(&rparam, 0, sizeof(rparam)); 8371 8372 rparam.mcast_obj = &sc->mcast_obj; 8373 8374 BXE_MCAST_LOCK(sc); 8375 8376 /* clear pending state for the last command */ 8377 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8378 8379 /* if there are pending mcast commands - send them */ 8380 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8381 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8382 if (rc < 0) { 8383 BLOGD(sc, DBG_SP, 8384 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8385 } 8386 } 8387 8388 BXE_MCAST_UNLOCK(sc); 8389 } 8390 8391 static void 8392 bxe_handle_classification_eqe(struct bxe_softc *sc, 8393 union event_ring_elem *elem) 8394 { 8395 unsigned long ramrod_flags = 0; 8396 int rc = 0; 8397 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8398 struct ecore_vlan_mac_obj *vlan_mac_obj; 8399 8400 /* always push next commands out, don't wait here */ 8401 bit_set(&ramrod_flags, RAMROD_CONT); 8402 8403 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8404 case ECORE_FILTER_MAC_PENDING: 8405 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8406 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8407 break; 8408 8409 case ECORE_FILTER_MCAST_PENDING: 8410 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8411 /* 8412 * This is only relevant for 57710 where multicast MACs are 8413 * configured as unicast MACs using the same ramrod. 8414 */ 8415 bxe_handle_mcast_eqe(sc); 8416 return; 8417 8418 default: 8419 BLOGE(sc, "Unsupported classification command: %d\n", 8420 elem->message.data.eth_event.echo); 8421 return; 8422 } 8423 8424 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8425 8426 if (rc < 0) { 8427 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8428 } else if (rc > 0) { 8429 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8430 } 8431 } 8432 8433 static void 8434 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8435 union event_ring_elem *elem) 8436 { 8437 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8438 8439 /* send rx_mode command again if was requested */ 8440 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8441 &sc->sp_state)) { 8442 bxe_set_storm_rx_mode(sc); 8443 } 8444 } 8445 8446 static void 8447 bxe_update_eq_prod(struct bxe_softc *sc, 8448 uint16_t prod) 8449 { 8450 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8451 wmb(); /* keep prod updates ordered */ 8452 } 8453 8454 static void 8455 bxe_eq_int(struct bxe_softc *sc) 8456 { 8457 uint16_t hw_cons, sw_cons, sw_prod; 8458 union event_ring_elem *elem; 8459 uint8_t echo; 8460 uint32_t cid; 8461 uint8_t opcode; 8462 int spqe_cnt = 0; 8463 struct ecore_queue_sp_obj *q_obj; 8464 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8465 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8466 8467 hw_cons = le16toh(*sc->eq_cons_sb); 8468 8469 /* 8470 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8471 * when we get to the next-page we need to adjust so the loop 8472 * condition below will be met. The next element is the size of a 8473 * regular element and hence incrementing by 1 8474 */ 8475 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8476 hw_cons++; 8477 } 8478 8479 /* 8480 * This function may never run in parallel with itself for a 8481 * specific sc and no need for a read memory barrier here. 8482 */ 8483 sw_cons = sc->eq_cons; 8484 sw_prod = sc->eq_prod; 8485 8486 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8487 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8488 8489 for (; 8490 sw_cons != hw_cons; 8491 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8492 8493 elem = &sc->eq[EQ_DESC(sw_cons)]; 8494 8495 /* elem CID originates from FW, actually LE */ 8496 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8497 opcode = elem->message.opcode; 8498 8499 /* handle eq element */ 8500 switch (opcode) { 8501 8502 case EVENT_RING_OPCODE_STAT_QUERY: 8503 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8504 sc->stats_comp++); 8505 /* nothing to do with stats comp */ 8506 goto next_spqe; 8507 8508 case EVENT_RING_OPCODE_CFC_DEL: 8509 /* handle according to cid range */ 8510 /* we may want to verify here that the sc state is HALTING */ 8511 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8512 q_obj = bxe_cid_to_q_obj(sc, cid); 8513 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8514 break; 8515 } 8516 goto next_spqe; 8517 8518 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8519 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8520 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8521 break; 8522 } 8523 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8524 goto next_spqe; 8525 8526 case EVENT_RING_OPCODE_START_TRAFFIC: 8527 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8528 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8529 break; 8530 } 8531 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8532 goto next_spqe; 8533 8534 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8535 echo = elem->message.data.function_update_event.echo; 8536 if (echo == SWITCH_UPDATE) { 8537 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8538 if (f_obj->complete_cmd(sc, f_obj, 8539 ECORE_F_CMD_SWITCH_UPDATE)) { 8540 break; 8541 } 8542 } 8543 else { 8544 BLOGD(sc, DBG_SP, 8545 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8546 } 8547 goto next_spqe; 8548 8549 case EVENT_RING_OPCODE_FORWARD_SETUP: 8550 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8551 if (q_obj->complete_cmd(sc, q_obj, 8552 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8553 break; 8554 } 8555 goto next_spqe; 8556 8557 case EVENT_RING_OPCODE_FUNCTION_START: 8558 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8559 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8560 break; 8561 } 8562 goto next_spqe; 8563 8564 case EVENT_RING_OPCODE_FUNCTION_STOP: 8565 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8566 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8567 break; 8568 } 8569 goto next_spqe; 8570 } 8571 8572 switch (opcode | sc->state) { 8573 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8574 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8575 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8576 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8577 rss_raw->clear_pending(rss_raw); 8578 break; 8579 8580 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8581 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8582 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8583 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8584 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8585 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8586 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8587 bxe_handle_classification_eqe(sc, elem); 8588 break; 8589 8590 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8591 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8592 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8593 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8594 bxe_handle_mcast_eqe(sc); 8595 break; 8596 8597 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8598 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8599 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8600 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8601 bxe_handle_rx_mode_eqe(sc, elem); 8602 break; 8603 8604 default: 8605 /* unknown event log error and continue */ 8606 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8607 elem->message.opcode, sc->state); 8608 } 8609 8610 next_spqe: 8611 spqe_cnt++; 8612 } /* for */ 8613 8614 mb(); 8615 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8616 8617 sc->eq_cons = sw_cons; 8618 sc->eq_prod = sw_prod; 8619 8620 /* make sure that above mem writes were issued towards the memory */ 8621 wmb(); 8622 8623 /* update producer */ 8624 bxe_update_eq_prod(sc, sc->eq_prod); 8625 } 8626 8627 static void 8628 bxe_handle_sp_tq(void *context, 8629 int pending) 8630 { 8631 struct bxe_softc *sc = (struct bxe_softc *)context; 8632 uint16_t status; 8633 8634 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8635 8636 /* what work needs to be performed? */ 8637 status = bxe_update_dsb_idx(sc); 8638 8639 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8640 8641 /* HW attentions */ 8642 if (status & BXE_DEF_SB_ATT_IDX) { 8643 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8644 bxe_attn_int(sc); 8645 status &= ~BXE_DEF_SB_ATT_IDX; 8646 } 8647 8648 /* SP events: STAT_QUERY and others */ 8649 if (status & BXE_DEF_SB_IDX) { 8650 /* handle EQ completions */ 8651 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8652 bxe_eq_int(sc); 8653 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8654 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8655 status &= ~BXE_DEF_SB_IDX; 8656 } 8657 8658 /* if status is non zero then something went wrong */ 8659 if (__predict_false(status)) { 8660 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8661 } 8662 8663 /* ack status block only if something was actually handled */ 8664 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8665 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8666 8667 /* 8668 * Must be called after the EQ processing (since eq leads to sriov 8669 * ramrod completion flows). 8670 * This flow may have been scheduled by the arrival of a ramrod 8671 * completion, or by the sriov code rescheduling itself. 8672 */ 8673 // XXX bxe_iov_sp_task(sc); 8674 8675 } 8676 8677 static void 8678 bxe_handle_fp_tq(void *context, 8679 int pending) 8680 { 8681 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8682 struct bxe_softc *sc = fp->sc; 8683 /* uint8_t more_tx = FALSE; */ 8684 uint8_t more_rx = FALSE; 8685 8686 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8687 8688 /* XXX 8689 * IFF_DRV_RUNNING state can't be checked here since we process 8690 * slowpath events on a client queue during setup. Instead 8691 * we need to add a "process/continue" flag here that the driver 8692 * can use to tell the task here not to do anything. 8693 */ 8694 #if 0 8695 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8696 return; 8697 } 8698 #endif 8699 8700 /* update the fastpath index */ 8701 bxe_update_fp_sb_idx(fp); 8702 8703 /* XXX add loop here if ever support multiple tx CoS */ 8704 /* fp->txdata[cos] */ 8705 if (bxe_has_tx_work(fp)) { 8706 BXE_FP_TX_LOCK(fp); 8707 /* more_tx = */ bxe_txeof(sc, fp); 8708 BXE_FP_TX_UNLOCK(fp); 8709 } 8710 8711 if (bxe_has_rx_work(fp)) { 8712 more_rx = bxe_rxeof(sc, fp); 8713 } 8714 8715 if (more_rx /*|| more_tx*/) { 8716 /* still more work to do */ 8717 taskqueue_enqueue(fp->tq, &fp->tq_task); 8718 return; 8719 } 8720 8721 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8722 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8723 } 8724 8725 static void 8726 bxe_task_fp(struct bxe_fastpath *fp) 8727 { 8728 struct bxe_softc *sc = fp->sc; 8729 /* uint8_t more_tx = FALSE; */ 8730 uint8_t more_rx = FALSE; 8731 8732 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8733 8734 /* update the fastpath index */ 8735 bxe_update_fp_sb_idx(fp); 8736 8737 /* XXX add loop here if ever support multiple tx CoS */ 8738 /* fp->txdata[cos] */ 8739 if (bxe_has_tx_work(fp)) { 8740 BXE_FP_TX_LOCK(fp); 8741 /* more_tx = */ bxe_txeof(sc, fp); 8742 BXE_FP_TX_UNLOCK(fp); 8743 } 8744 8745 if (bxe_has_rx_work(fp)) { 8746 more_rx = bxe_rxeof(sc, fp); 8747 } 8748 8749 if (more_rx /*|| more_tx*/) { 8750 /* still more work to do, bail out if this ISR and process later */ 8751 taskqueue_enqueue(fp->tq, &fp->tq_task); 8752 return; 8753 } 8754 8755 /* 8756 * Here we write the fastpath index taken before doing any tx or rx work. 8757 * It is very well possible other hw events occurred up to this point and 8758 * they were actually processed accordingly above. Since we're going to 8759 * write an older fastpath index, an interrupt is coming which we might 8760 * not do any work in. 8761 */ 8762 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8763 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8764 } 8765 8766 /* 8767 * Legacy interrupt entry point. 8768 * 8769 * Verifies that the controller generated the interrupt and 8770 * then calls a separate routine to handle the various 8771 * interrupt causes: link, RX, and TX. 8772 */ 8773 static void 8774 bxe_intr_legacy(void *xsc) 8775 { 8776 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8777 struct bxe_fastpath *fp; 8778 uint16_t status, mask; 8779 int i; 8780 8781 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8782 8783 /* 8784 * 0 for ustorm, 1 for cstorm 8785 * the bits returned from ack_int() are 0-15 8786 * bit 0 = attention status block 8787 * bit 1 = fast path status block 8788 * a mask of 0x2 or more = tx/rx event 8789 * a mask of 1 = slow path event 8790 */ 8791 8792 status = bxe_ack_int(sc); 8793 8794 /* the interrupt is not for us */ 8795 if (__predict_false(status == 0)) { 8796 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8797 return; 8798 } 8799 8800 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8801 8802 FOR_EACH_ETH_QUEUE(sc, i) { 8803 fp = &sc->fp[i]; 8804 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8805 if (status & mask) { 8806 /* acknowledge and disable further fastpath interrupts */ 8807 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8808 bxe_task_fp(fp); 8809 status &= ~mask; 8810 } 8811 } 8812 8813 if (__predict_false(status & 0x1)) { 8814 /* acknowledge and disable further slowpath interrupts */ 8815 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8816 8817 /* schedule slowpath handler */ 8818 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8819 8820 status &= ~0x1; 8821 } 8822 8823 if (__predict_false(status)) { 8824 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8825 } 8826 } 8827 8828 /* slowpath interrupt entry point */ 8829 static void 8830 bxe_intr_sp(void *xsc) 8831 { 8832 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8833 8834 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8835 8836 /* acknowledge and disable further slowpath interrupts */ 8837 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8838 8839 /* schedule slowpath handler */ 8840 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8841 } 8842 8843 /* fastpath interrupt entry point */ 8844 static void 8845 bxe_intr_fp(void *xfp) 8846 { 8847 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8848 struct bxe_softc *sc = fp->sc; 8849 8850 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8851 8852 BLOGD(sc, DBG_INTR, 8853 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8854 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8855 8856 /* acknowledge and disable further fastpath interrupts */ 8857 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8858 8859 bxe_task_fp(fp); 8860 } 8861 8862 /* Release all interrupts allocated by the driver. */ 8863 static void 8864 bxe_interrupt_free(struct bxe_softc *sc) 8865 { 8866 int i; 8867 8868 switch (sc->interrupt_mode) { 8869 case INTR_MODE_INTX: 8870 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8871 if (sc->intr[0].resource != NULL) { 8872 bus_release_resource(sc->dev, 8873 SYS_RES_IRQ, 8874 sc->intr[0].rid, 8875 sc->intr[0].resource); 8876 } 8877 break; 8878 case INTR_MODE_MSI: 8879 for (i = 0; i < sc->intr_count; i++) { 8880 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8881 if (sc->intr[i].resource && sc->intr[i].rid) { 8882 bus_release_resource(sc->dev, 8883 SYS_RES_IRQ, 8884 sc->intr[i].rid, 8885 sc->intr[i].resource); 8886 } 8887 } 8888 pci_release_msi(sc->dev); 8889 break; 8890 case INTR_MODE_MSIX: 8891 for (i = 0; i < sc->intr_count; i++) { 8892 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8893 if (sc->intr[i].resource && sc->intr[i].rid) { 8894 bus_release_resource(sc->dev, 8895 SYS_RES_IRQ, 8896 sc->intr[i].rid, 8897 sc->intr[i].resource); 8898 } 8899 } 8900 pci_release_msi(sc->dev); 8901 break; 8902 default: 8903 /* nothing to do as initial allocation failed */ 8904 break; 8905 } 8906 } 8907 8908 /* 8909 * This function determines and allocates the appropriate 8910 * interrupt based on system capabilites and user request. 8911 * 8912 * The user may force a particular interrupt mode, specify 8913 * the number of receive queues, specify the method for 8914 * distribuitng received frames to receive queues, or use 8915 * the default settings which will automatically select the 8916 * best supported combination. In addition, the OS may or 8917 * may not support certain combinations of these settings. 8918 * This routine attempts to reconcile the settings requested 8919 * by the user with the capabilites available from the system 8920 * to select the optimal combination of features. 8921 * 8922 * Returns: 8923 * 0 = Success, !0 = Failure. 8924 */ 8925 static int 8926 bxe_interrupt_alloc(struct bxe_softc *sc) 8927 { 8928 int msix_count = 0; 8929 int msi_count = 0; 8930 int num_requested = 0; 8931 int num_allocated = 0; 8932 int rid, i, j; 8933 int rc; 8934 8935 /* get the number of available MSI/MSI-X interrupts from the OS */ 8936 if (sc->interrupt_mode > 0) { 8937 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8938 msix_count = pci_msix_count(sc->dev); 8939 } 8940 8941 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8942 msi_count = pci_msi_count(sc->dev); 8943 } 8944 8945 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8946 msi_count, msix_count); 8947 } 8948 8949 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8950 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8951 break; 8952 } 8953 8954 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8955 (msix_count < 2)) { 8956 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8957 break; 8958 } 8959 8960 /* ask for the necessary number of MSI-X vectors */ 8961 num_requested = min((sc->num_queues + 1), msix_count); 8962 8963 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8964 8965 num_allocated = num_requested; 8966 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8967 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8968 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8969 break; 8970 } 8971 8972 if (num_allocated < 2) { /* possible? */ 8973 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8974 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8975 pci_release_msi(sc->dev); 8976 break; 8977 } 8978 8979 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8980 num_requested, num_allocated); 8981 8982 /* best effort so use the number of vectors allocated to us */ 8983 sc->intr_count = num_allocated; 8984 sc->num_queues = num_allocated - 1; 8985 8986 rid = 1; /* initial resource identifier */ 8987 8988 /* allocate the MSI-X vectors */ 8989 for (i = 0; i < num_allocated; i++) { 8990 sc->intr[i].rid = (rid + i); 8991 8992 if ((sc->intr[i].resource = 8993 bus_alloc_resource_any(sc->dev, 8994 SYS_RES_IRQ, 8995 &sc->intr[i].rid, 8996 RF_ACTIVE)) == NULL) { 8997 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 8998 i, (rid + i)); 8999 9000 for (j = (i - 1); j >= 0; j--) { 9001 bus_release_resource(sc->dev, 9002 SYS_RES_IRQ, 9003 sc->intr[j].rid, 9004 sc->intr[j].resource); 9005 } 9006 9007 sc->intr_count = 0; 9008 sc->num_queues = 0; 9009 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9010 pci_release_msi(sc->dev); 9011 break; 9012 } 9013 9014 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9015 } 9016 } while (0); 9017 9018 do { /* try allocating MSI vector resources (at least 2) */ 9019 if (sc->interrupt_mode != INTR_MODE_MSI) { 9020 break; 9021 } 9022 9023 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9024 (msi_count < 1)) { 9025 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9026 break; 9027 } 9028 9029 /* ask for a single MSI vector */ 9030 num_requested = 1; 9031 9032 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9033 9034 num_allocated = num_requested; 9035 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9036 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9037 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9038 break; 9039 } 9040 9041 if (num_allocated != 1) { /* possible? */ 9042 BLOGE(sc, "MSI allocation is not 1!\n"); 9043 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9044 pci_release_msi(sc->dev); 9045 break; 9046 } 9047 9048 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9049 num_requested, num_allocated); 9050 9051 /* best effort so use the number of vectors allocated to us */ 9052 sc->intr_count = num_allocated; 9053 sc->num_queues = num_allocated; 9054 9055 rid = 1; /* initial resource identifier */ 9056 9057 sc->intr[0].rid = rid; 9058 9059 if ((sc->intr[0].resource = 9060 bus_alloc_resource_any(sc->dev, 9061 SYS_RES_IRQ, 9062 &sc->intr[0].rid, 9063 RF_ACTIVE)) == NULL) { 9064 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9065 sc->intr_count = 0; 9066 sc->num_queues = 0; 9067 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9068 pci_release_msi(sc->dev); 9069 break; 9070 } 9071 9072 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9073 } while (0); 9074 9075 do { /* try allocating INTx vector resources */ 9076 if (sc->interrupt_mode != INTR_MODE_INTX) { 9077 break; 9078 } 9079 9080 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9081 9082 /* only one vector for INTx */ 9083 sc->intr_count = 1; 9084 sc->num_queues = 1; 9085 9086 rid = 0; /* initial resource identifier */ 9087 9088 sc->intr[0].rid = rid; 9089 9090 if ((sc->intr[0].resource = 9091 bus_alloc_resource_any(sc->dev, 9092 SYS_RES_IRQ, 9093 &sc->intr[0].rid, 9094 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9095 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9096 sc->intr_count = 0; 9097 sc->num_queues = 0; 9098 sc->interrupt_mode = -1; /* Failed! */ 9099 break; 9100 } 9101 9102 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9103 } while (0); 9104 9105 if (sc->interrupt_mode == -1) { 9106 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9107 rc = 1; 9108 } else { 9109 BLOGD(sc, DBG_LOAD, 9110 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9111 sc->interrupt_mode, sc->num_queues); 9112 rc = 0; 9113 } 9114 9115 return (rc); 9116 } 9117 9118 static void 9119 bxe_interrupt_detach(struct bxe_softc *sc) 9120 { 9121 struct bxe_fastpath *fp; 9122 int i; 9123 9124 /* release interrupt resources */ 9125 for (i = 0; i < sc->intr_count; i++) { 9126 if (sc->intr[i].resource && sc->intr[i].tag) { 9127 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9128 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9129 } 9130 } 9131 9132 for (i = 0; i < sc->num_queues; i++) { 9133 fp = &sc->fp[i]; 9134 if (fp->tq) { 9135 taskqueue_drain(fp->tq, &fp->tq_task); 9136 taskqueue_drain(fp->tq, &fp->tx_task); 9137 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9138 NULL)) 9139 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9140 } 9141 9142 for (i = 0; i < sc->num_queues; i++) { 9143 fp = &sc->fp[i]; 9144 if (fp->tq != NULL) { 9145 taskqueue_free(fp->tq); 9146 fp->tq = NULL; 9147 } 9148 } 9149 } 9150 9151 if (sc->sp_tq) { 9152 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9153 taskqueue_free(sc->sp_tq); 9154 sc->sp_tq = NULL; 9155 } 9156 } 9157 9158 /* 9159 * Enables interrupts and attach to the ISR. 9160 * 9161 * When using multiple MSI/MSI-X vectors the first vector 9162 * is used for slowpath operations while all remaining 9163 * vectors are used for fastpath operations. If only a 9164 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9165 * ISR must look for both slowpath and fastpath completions. 9166 */ 9167 static int 9168 bxe_interrupt_attach(struct bxe_softc *sc) 9169 { 9170 struct bxe_fastpath *fp; 9171 int rc = 0; 9172 int i; 9173 9174 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9175 "bxe%d_sp_tq", sc->unit); 9176 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9177 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9178 taskqueue_thread_enqueue, 9179 &sc->sp_tq); 9180 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9181 "%s", sc->sp_tq_name); 9182 9183 9184 for (i = 0; i < sc->num_queues; i++) { 9185 fp = &sc->fp[i]; 9186 snprintf(fp->tq_name, sizeof(fp->tq_name), 9187 "bxe%d_fp%d_tq", sc->unit, i); 9188 NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9189 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9190 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9191 taskqueue_thread_enqueue, 9192 &fp->tq); 9193 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9194 bxe_tx_mq_start_deferred, fp); 9195 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9196 "%s", fp->tq_name); 9197 } 9198 9199 /* setup interrupt handlers */ 9200 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9201 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9202 9203 /* 9204 * Setup the interrupt handler. Note that we pass the driver instance 9205 * to the interrupt handler for the slowpath. 9206 */ 9207 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9208 (INTR_TYPE_NET | INTR_MPSAFE), 9209 NULL, bxe_intr_sp, sc, 9210 &sc->intr[0].tag)) != 0) { 9211 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9212 goto bxe_interrupt_attach_exit; 9213 } 9214 9215 bus_describe_intr(sc->dev, sc->intr[0].resource, 9216 sc->intr[0].tag, "sp"); 9217 9218 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9219 9220 /* initialize the fastpath vectors (note the first was used for sp) */ 9221 for (i = 0; i < sc->num_queues; i++) { 9222 fp = &sc->fp[i]; 9223 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9224 9225 /* 9226 * Setup the interrupt handler. Note that we pass the 9227 * fastpath context to the interrupt handler in this 9228 * case. 9229 */ 9230 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9231 (INTR_TYPE_NET | INTR_MPSAFE), 9232 NULL, bxe_intr_fp, fp, 9233 &sc->intr[i + 1].tag)) != 0) { 9234 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9235 (i + 1), rc); 9236 goto bxe_interrupt_attach_exit; 9237 } 9238 9239 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9240 sc->intr[i + 1].tag, "fp%02d", i); 9241 9242 /* bind the fastpath instance to a cpu */ 9243 if (sc->num_queues > 1) { 9244 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9245 } 9246 9247 fp->state = BXE_FP_STATE_IRQ; 9248 } 9249 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9250 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9251 9252 /* 9253 * Setup the interrupt handler. Note that we pass the 9254 * driver instance to the interrupt handler which 9255 * will handle both the slowpath and fastpath. 9256 */ 9257 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9258 (INTR_TYPE_NET | INTR_MPSAFE), 9259 NULL, bxe_intr_legacy, sc, 9260 &sc->intr[0].tag)) != 0) { 9261 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9262 goto bxe_interrupt_attach_exit; 9263 } 9264 9265 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9266 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9267 9268 /* 9269 * Setup the interrupt handler. Note that we pass the 9270 * driver instance to the interrupt handler which 9271 * will handle both the slowpath and fastpath. 9272 */ 9273 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9274 (INTR_TYPE_NET | INTR_MPSAFE), 9275 NULL, bxe_intr_legacy, sc, 9276 &sc->intr[0].tag)) != 0) { 9277 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9278 goto bxe_interrupt_attach_exit; 9279 } 9280 } 9281 9282 bxe_interrupt_attach_exit: 9283 9284 return (rc); 9285 } 9286 9287 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9288 static int bxe_init_hw_common(struct bxe_softc *sc); 9289 static int bxe_init_hw_port(struct bxe_softc *sc); 9290 static int bxe_init_hw_func(struct bxe_softc *sc); 9291 static void bxe_reset_common(struct bxe_softc *sc); 9292 static void bxe_reset_port(struct bxe_softc *sc); 9293 static void bxe_reset_func(struct bxe_softc *sc); 9294 static int bxe_gunzip_init(struct bxe_softc *sc); 9295 static void bxe_gunzip_end(struct bxe_softc *sc); 9296 static int bxe_init_firmware(struct bxe_softc *sc); 9297 static void bxe_release_firmware(struct bxe_softc *sc); 9298 9299 static struct 9300 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9301 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9302 .init_hw_cmn = bxe_init_hw_common, 9303 .init_hw_port = bxe_init_hw_port, 9304 .init_hw_func = bxe_init_hw_func, 9305 9306 .reset_hw_cmn = bxe_reset_common, 9307 .reset_hw_port = bxe_reset_port, 9308 .reset_hw_func = bxe_reset_func, 9309 9310 .gunzip_init = bxe_gunzip_init, 9311 .gunzip_end = bxe_gunzip_end, 9312 9313 .init_fw = bxe_init_firmware, 9314 .release_fw = bxe_release_firmware, 9315 }; 9316 9317 static void 9318 bxe_init_func_obj(struct bxe_softc *sc) 9319 { 9320 sc->dmae_ready = 0; 9321 9322 ecore_init_func_obj(sc, 9323 &sc->func_obj, 9324 BXE_SP(sc, func_rdata), 9325 BXE_SP_MAPPING(sc, func_rdata), 9326 BXE_SP(sc, func_afex_rdata), 9327 BXE_SP_MAPPING(sc, func_afex_rdata), 9328 &bxe_func_sp_drv); 9329 } 9330 9331 static int 9332 bxe_init_hw(struct bxe_softc *sc, 9333 uint32_t load_code) 9334 { 9335 struct ecore_func_state_params func_params = { NULL }; 9336 int rc; 9337 9338 /* prepare the parameters for function state transitions */ 9339 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9340 9341 func_params.f_obj = &sc->func_obj; 9342 func_params.cmd = ECORE_F_CMD_HW_INIT; 9343 9344 func_params.params.hw_init.load_phase = load_code; 9345 9346 /* 9347 * Via a plethora of function pointers, we will eventually reach 9348 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9349 */ 9350 rc = ecore_func_state_change(sc, &func_params); 9351 9352 return (rc); 9353 } 9354 9355 static void 9356 bxe_fill(struct bxe_softc *sc, 9357 uint32_t addr, 9358 int fill, 9359 uint32_t len) 9360 { 9361 uint32_t i; 9362 9363 if (!(len % 4) && !(addr % 4)) { 9364 for (i = 0; i < len; i += 4) { 9365 REG_WR(sc, (addr + i), fill); 9366 } 9367 } else { 9368 for (i = 0; i < len; i++) { 9369 REG_WR8(sc, (addr + i), fill); 9370 } 9371 } 9372 } 9373 9374 /* writes FP SP data to FW - data_size in dwords */ 9375 static void 9376 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9377 int fw_sb_id, 9378 uint32_t *sb_data_p, 9379 uint32_t data_size) 9380 { 9381 int index; 9382 9383 for (index = 0; index < data_size; index++) { 9384 REG_WR(sc, 9385 (BAR_CSTRORM_INTMEM + 9386 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9387 (sizeof(uint32_t) * index)), 9388 *(sb_data_p + index)); 9389 } 9390 } 9391 9392 static void 9393 bxe_zero_fp_sb(struct bxe_softc *sc, 9394 int fw_sb_id) 9395 { 9396 struct hc_status_block_data_e2 sb_data_e2; 9397 struct hc_status_block_data_e1x sb_data_e1x; 9398 uint32_t *sb_data_p; 9399 uint32_t data_size = 0; 9400 9401 if (!CHIP_IS_E1x(sc)) { 9402 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9403 sb_data_e2.common.state = SB_DISABLED; 9404 sb_data_e2.common.p_func.vf_valid = FALSE; 9405 sb_data_p = (uint32_t *)&sb_data_e2; 9406 data_size = (sizeof(struct hc_status_block_data_e2) / 9407 sizeof(uint32_t)); 9408 } else { 9409 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9410 sb_data_e1x.common.state = SB_DISABLED; 9411 sb_data_e1x.common.p_func.vf_valid = FALSE; 9412 sb_data_p = (uint32_t *)&sb_data_e1x; 9413 data_size = (sizeof(struct hc_status_block_data_e1x) / 9414 sizeof(uint32_t)); 9415 } 9416 9417 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9418 9419 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9420 0, CSTORM_STATUS_BLOCK_SIZE); 9421 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9422 0, CSTORM_SYNC_BLOCK_SIZE); 9423 } 9424 9425 static void 9426 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9427 struct hc_sp_status_block_data *sp_sb_data) 9428 { 9429 int i; 9430 9431 for (i = 0; 9432 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9433 i++) { 9434 REG_WR(sc, 9435 (BAR_CSTRORM_INTMEM + 9436 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9437 (i * sizeof(uint32_t))), 9438 *((uint32_t *)sp_sb_data + i)); 9439 } 9440 } 9441 9442 static void 9443 bxe_zero_sp_sb(struct bxe_softc *sc) 9444 { 9445 struct hc_sp_status_block_data sp_sb_data; 9446 9447 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9448 9449 sp_sb_data.state = SB_DISABLED; 9450 sp_sb_data.p_func.vf_valid = FALSE; 9451 9452 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9453 9454 bxe_fill(sc, 9455 (BAR_CSTRORM_INTMEM + 9456 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9457 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9458 bxe_fill(sc, 9459 (BAR_CSTRORM_INTMEM + 9460 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9461 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9462 } 9463 9464 static void 9465 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9466 int igu_sb_id, 9467 int igu_seg_id) 9468 { 9469 hc_sm->igu_sb_id = igu_sb_id; 9470 hc_sm->igu_seg_id = igu_seg_id; 9471 hc_sm->timer_value = 0xFF; 9472 hc_sm->time_to_expire = 0xFFFFFFFF; 9473 } 9474 9475 static void 9476 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9477 { 9478 /* zero out state machine indices */ 9479 9480 /* rx indices */ 9481 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9482 9483 /* tx indices */ 9484 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9485 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9486 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9487 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9488 9489 /* map indices */ 9490 9491 /* rx indices */ 9492 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9493 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9494 9495 /* tx indices */ 9496 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9497 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9498 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9499 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9500 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9501 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9502 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9503 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9504 } 9505 9506 static void 9507 bxe_init_sb(struct bxe_softc *sc, 9508 bus_addr_t busaddr, 9509 int vfid, 9510 uint8_t vf_valid, 9511 int fw_sb_id, 9512 int igu_sb_id) 9513 { 9514 struct hc_status_block_data_e2 sb_data_e2; 9515 struct hc_status_block_data_e1x sb_data_e1x; 9516 struct hc_status_block_sm *hc_sm_p; 9517 uint32_t *sb_data_p; 9518 int igu_seg_id; 9519 int data_size; 9520 9521 if (CHIP_INT_MODE_IS_BC(sc)) { 9522 igu_seg_id = HC_SEG_ACCESS_NORM; 9523 } else { 9524 igu_seg_id = IGU_SEG_ACCESS_NORM; 9525 } 9526 9527 bxe_zero_fp_sb(sc, fw_sb_id); 9528 9529 if (!CHIP_IS_E1x(sc)) { 9530 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9531 sb_data_e2.common.state = SB_ENABLED; 9532 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9533 sb_data_e2.common.p_func.vf_id = vfid; 9534 sb_data_e2.common.p_func.vf_valid = vf_valid; 9535 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9536 sb_data_e2.common.same_igu_sb_1b = TRUE; 9537 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9538 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9539 hc_sm_p = sb_data_e2.common.state_machine; 9540 sb_data_p = (uint32_t *)&sb_data_e2; 9541 data_size = (sizeof(struct hc_status_block_data_e2) / 9542 sizeof(uint32_t)); 9543 bxe_map_sb_state_machines(sb_data_e2.index_data); 9544 } else { 9545 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9546 sb_data_e1x.common.state = SB_ENABLED; 9547 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9548 sb_data_e1x.common.p_func.vf_id = 0xff; 9549 sb_data_e1x.common.p_func.vf_valid = FALSE; 9550 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9551 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9552 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9553 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9554 hc_sm_p = sb_data_e1x.common.state_machine; 9555 sb_data_p = (uint32_t *)&sb_data_e1x; 9556 data_size = (sizeof(struct hc_status_block_data_e1x) / 9557 sizeof(uint32_t)); 9558 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9559 } 9560 9561 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9562 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9563 9564 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9565 9566 /* write indices to HW - PCI guarantees endianity of regpairs */ 9567 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9568 } 9569 9570 static inline uint8_t 9571 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9572 { 9573 if (CHIP_IS_E1x(fp->sc)) { 9574 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9575 } else { 9576 return (fp->cl_id); 9577 } 9578 } 9579 9580 static inline uint32_t 9581 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9582 struct bxe_fastpath *fp) 9583 { 9584 uint32_t offset = BAR_USTRORM_INTMEM; 9585 9586 if (!CHIP_IS_E1x(sc)) { 9587 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9588 } else { 9589 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9590 } 9591 9592 return (offset); 9593 } 9594 9595 static void 9596 bxe_init_eth_fp(struct bxe_softc *sc, 9597 int idx) 9598 { 9599 struct bxe_fastpath *fp = &sc->fp[idx]; 9600 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9601 unsigned long q_type = 0; 9602 int cos; 9603 9604 fp->sc = sc; 9605 fp->index = idx; 9606 9607 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9608 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9609 9610 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9611 (SC_L_ID(sc) + idx) : 9612 /* want client ID same as IGU SB ID for non-E1 */ 9613 fp->igu_sb_id; 9614 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9615 9616 /* setup sb indices */ 9617 if (!CHIP_IS_E1x(sc)) { 9618 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9619 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9620 } else { 9621 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9622 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9623 } 9624 9625 /* init shortcut */ 9626 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9627 9628 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9629 9630 /* 9631 * XXX If multiple CoS is ever supported then each fastpath structure 9632 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9633 */ 9634 for (cos = 0; cos < sc->max_cos; cos++) { 9635 cids[cos] = idx; 9636 } 9637 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9638 9639 /* nothing more for a VF to do */ 9640 if (IS_VF(sc)) { 9641 return; 9642 } 9643 9644 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9645 fp->fw_sb_id, fp->igu_sb_id); 9646 9647 bxe_update_fp_sb_idx(fp); 9648 9649 /* Configure Queue State object */ 9650 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9651 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9652 9653 ecore_init_queue_obj(sc, 9654 &sc->sp_objs[idx].q_obj, 9655 fp->cl_id, 9656 cids, 9657 sc->max_cos, 9658 SC_FUNC(sc), 9659 BXE_SP(sc, q_rdata), 9660 BXE_SP_MAPPING(sc, q_rdata), 9661 q_type); 9662 9663 /* configure classification DBs */ 9664 ecore_init_mac_obj(sc, 9665 &sc->sp_objs[idx].mac_obj, 9666 fp->cl_id, 9667 idx, 9668 SC_FUNC(sc), 9669 BXE_SP(sc, mac_rdata), 9670 BXE_SP_MAPPING(sc, mac_rdata), 9671 ECORE_FILTER_MAC_PENDING, 9672 &sc->sp_state, 9673 ECORE_OBJ_TYPE_RX_TX, 9674 &sc->macs_pool); 9675 9676 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9677 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9678 } 9679 9680 static inline void 9681 bxe_update_rx_prod(struct bxe_softc *sc, 9682 struct bxe_fastpath *fp, 9683 uint16_t rx_bd_prod, 9684 uint16_t rx_cq_prod, 9685 uint16_t rx_sge_prod) 9686 { 9687 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9688 uint32_t i; 9689 9690 /* update producers */ 9691 rx_prods.bd_prod = rx_bd_prod; 9692 rx_prods.cqe_prod = rx_cq_prod; 9693 rx_prods.sge_prod = rx_sge_prod; 9694 9695 /* 9696 * Make sure that the BD and SGE data is updated before updating the 9697 * producers since FW might read the BD/SGE right after the producer 9698 * is updated. 9699 * This is only applicable for weak-ordered memory model archs such 9700 * as IA-64. The following barrier is also mandatory since FW will 9701 * assumes BDs must have buffers. 9702 */ 9703 wmb(); 9704 9705 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9706 REG_WR(sc, 9707 (fp->ustorm_rx_prods_offset + (i * 4)), 9708 ((uint32_t *)&rx_prods)[i]); 9709 } 9710 9711 wmb(); /* keep prod updates ordered */ 9712 9713 BLOGD(sc, DBG_RX, 9714 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9715 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9716 } 9717 9718 static void 9719 bxe_init_rx_rings(struct bxe_softc *sc) 9720 { 9721 struct bxe_fastpath *fp; 9722 int i; 9723 9724 for (i = 0; i < sc->num_queues; i++) { 9725 fp = &sc->fp[i]; 9726 9727 fp->rx_bd_cons = 0; 9728 9729 /* 9730 * Activate the BD ring... 9731 * Warning, this will generate an interrupt (to the TSTORM) 9732 * so this can only be done after the chip is initialized 9733 */ 9734 bxe_update_rx_prod(sc, fp, 9735 fp->rx_bd_prod, 9736 fp->rx_cq_prod, 9737 fp->rx_sge_prod); 9738 9739 if (i != 0) { 9740 continue; 9741 } 9742 9743 if (CHIP_IS_E1(sc)) { 9744 REG_WR(sc, 9745 (BAR_USTRORM_INTMEM + 9746 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9747 U64_LO(fp->rcq_dma.paddr)); 9748 REG_WR(sc, 9749 (BAR_USTRORM_INTMEM + 9750 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9751 U64_HI(fp->rcq_dma.paddr)); 9752 } 9753 } 9754 } 9755 9756 static void 9757 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9758 { 9759 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9760 fp->tx_db.data.zero_fill1 = 0; 9761 fp->tx_db.data.prod = 0; 9762 9763 fp->tx_pkt_prod = 0; 9764 fp->tx_pkt_cons = 0; 9765 fp->tx_bd_prod = 0; 9766 fp->tx_bd_cons = 0; 9767 fp->eth_q_stats.tx_pkts = 0; 9768 } 9769 9770 static inline void 9771 bxe_init_tx_rings(struct bxe_softc *sc) 9772 { 9773 int i; 9774 9775 for (i = 0; i < sc->num_queues; i++) { 9776 bxe_init_tx_ring_one(&sc->fp[i]); 9777 } 9778 } 9779 9780 static void 9781 bxe_init_def_sb(struct bxe_softc *sc) 9782 { 9783 struct host_sp_status_block *def_sb = sc->def_sb; 9784 bus_addr_t mapping = sc->def_sb_dma.paddr; 9785 int igu_sp_sb_index; 9786 int igu_seg_id; 9787 int port = SC_PORT(sc); 9788 int func = SC_FUNC(sc); 9789 int reg_offset, reg_offset_en5; 9790 uint64_t section; 9791 int index, sindex; 9792 struct hc_sp_status_block_data sp_sb_data; 9793 9794 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9795 9796 if (CHIP_INT_MODE_IS_BC(sc)) { 9797 igu_sp_sb_index = DEF_SB_IGU_ID; 9798 igu_seg_id = HC_SEG_ACCESS_DEF; 9799 } else { 9800 igu_sp_sb_index = sc->igu_dsb_id; 9801 igu_seg_id = IGU_SEG_ACCESS_DEF; 9802 } 9803 9804 /* attentions */ 9805 section = ((uint64_t)mapping + 9806 offsetof(struct host_sp_status_block, atten_status_block)); 9807 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9808 sc->attn_state = 0; 9809 9810 reg_offset = (port) ? 9811 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9812 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9813 reg_offset_en5 = (port) ? 9814 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9815 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9816 9817 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9818 /* take care of sig[0]..sig[4] */ 9819 for (sindex = 0; sindex < 4; sindex++) { 9820 sc->attn_group[index].sig[sindex] = 9821 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9822 } 9823 9824 if (!CHIP_IS_E1x(sc)) { 9825 /* 9826 * enable5 is separate from the rest of the registers, 9827 * and the address skip is 4 and not 16 between the 9828 * different groups 9829 */ 9830 sc->attn_group[index].sig[4] = 9831 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9832 } else { 9833 sc->attn_group[index].sig[4] = 0; 9834 } 9835 } 9836 9837 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9838 reg_offset = (port) ? 9839 HC_REG_ATTN_MSG1_ADDR_L : 9840 HC_REG_ATTN_MSG0_ADDR_L; 9841 REG_WR(sc, reg_offset, U64_LO(section)); 9842 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9843 } else if (!CHIP_IS_E1x(sc)) { 9844 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9845 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9846 } 9847 9848 section = ((uint64_t)mapping + 9849 offsetof(struct host_sp_status_block, sp_sb)); 9850 9851 bxe_zero_sp_sb(sc); 9852 9853 /* PCI guarantees endianity of regpair */ 9854 sp_sb_data.state = SB_ENABLED; 9855 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9856 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9857 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9858 sp_sb_data.igu_seg_id = igu_seg_id; 9859 sp_sb_data.p_func.pf_id = func; 9860 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9861 sp_sb_data.p_func.vf_id = 0xff; 9862 9863 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9864 9865 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9866 } 9867 9868 static void 9869 bxe_init_sp_ring(struct bxe_softc *sc) 9870 { 9871 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9872 sc->spq_prod_idx = 0; 9873 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9874 sc->spq_prod_bd = sc->spq; 9875 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9876 } 9877 9878 static void 9879 bxe_init_eq_ring(struct bxe_softc *sc) 9880 { 9881 union event_ring_elem *elem; 9882 int i; 9883 9884 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9885 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9886 9887 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9888 BCM_PAGE_SIZE * 9889 (i % NUM_EQ_PAGES))); 9890 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9891 BCM_PAGE_SIZE * 9892 (i % NUM_EQ_PAGES))); 9893 } 9894 9895 sc->eq_cons = 0; 9896 sc->eq_prod = NUM_EQ_DESC; 9897 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9898 9899 atomic_store_rel_long(&sc->eq_spq_left, 9900 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9901 NUM_EQ_DESC) - 1)); 9902 } 9903 9904 static void 9905 bxe_init_internal_common(struct bxe_softc *sc) 9906 { 9907 int i; 9908 9909 /* 9910 * Zero this manually as its initialization is currently missing 9911 * in the initTool. 9912 */ 9913 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9914 REG_WR(sc, 9915 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9916 0); 9917 } 9918 9919 if (!CHIP_IS_E1x(sc)) { 9920 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9921 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9922 } 9923 } 9924 9925 static void 9926 bxe_init_internal(struct bxe_softc *sc, 9927 uint32_t load_code) 9928 { 9929 switch (load_code) { 9930 case FW_MSG_CODE_DRV_LOAD_COMMON: 9931 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9932 bxe_init_internal_common(sc); 9933 /* no break */ 9934 9935 case FW_MSG_CODE_DRV_LOAD_PORT: 9936 /* nothing to do */ 9937 /* no break */ 9938 9939 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9940 /* internal memory per function is initialized inside bxe_pf_init */ 9941 break; 9942 9943 default: 9944 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9945 break; 9946 } 9947 } 9948 9949 static void 9950 storm_memset_func_cfg(struct bxe_softc *sc, 9951 struct tstorm_eth_function_common_config *tcfg, 9952 uint16_t abs_fid) 9953 { 9954 uint32_t addr; 9955 size_t size; 9956 9957 addr = (BAR_TSTRORM_INTMEM + 9958 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9959 size = sizeof(struct tstorm_eth_function_common_config); 9960 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9961 } 9962 9963 static void 9964 bxe_func_init(struct bxe_softc *sc, 9965 struct bxe_func_init_params *p) 9966 { 9967 struct tstorm_eth_function_common_config tcfg = { 0 }; 9968 9969 if (CHIP_IS_E1x(sc)) { 9970 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9971 } 9972 9973 /* Enable the function in the FW */ 9974 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9975 storm_memset_func_en(sc, p->func_id, 1); 9976 9977 /* spq */ 9978 if (p->func_flgs & FUNC_FLG_SPQ) { 9979 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9980 REG_WR(sc, 9981 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9982 p->spq_prod); 9983 } 9984 } 9985 9986 /* 9987 * Calculates the sum of vn_min_rates. 9988 * It's needed for further normalizing of the min_rates. 9989 * Returns: 9990 * sum of vn_min_rates. 9991 * or 9992 * 0 - if all the min_rates are 0. 9993 * In the later case fainess algorithm should be deactivated. 9994 * If all min rates are not zero then those that are zeroes will be set to 1. 9995 */ 9996 static void 9997 bxe_calc_vn_min(struct bxe_softc *sc, 9998 struct cmng_init_input *input) 9999 { 10000 uint32_t vn_cfg; 10001 uint32_t vn_min_rate; 10002 int all_zero = 1; 10003 int vn; 10004 10005 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10006 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10007 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10008 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10009 10010 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10011 /* skip hidden VNs */ 10012 vn_min_rate = 0; 10013 } else if (!vn_min_rate) { 10014 /* If min rate is zero - set it to 100 */ 10015 vn_min_rate = DEF_MIN_RATE; 10016 } else { 10017 all_zero = 0; 10018 } 10019 10020 input->vnic_min_rate[vn] = vn_min_rate; 10021 } 10022 10023 /* if ETS or all min rates are zeros - disable fairness */ 10024 if (BXE_IS_ETS_ENABLED(sc)) { 10025 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10026 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10027 } else if (all_zero) { 10028 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10029 BLOGD(sc, DBG_LOAD, 10030 "Fariness disabled (all MIN values are zeroes)\n"); 10031 } else { 10032 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10033 } 10034 } 10035 10036 static inline uint16_t 10037 bxe_extract_max_cfg(struct bxe_softc *sc, 10038 uint32_t mf_cfg) 10039 { 10040 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10041 FUNC_MF_CFG_MAX_BW_SHIFT); 10042 10043 if (!max_cfg) { 10044 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10045 max_cfg = 100; 10046 } 10047 10048 return (max_cfg); 10049 } 10050 10051 static void 10052 bxe_calc_vn_max(struct bxe_softc *sc, 10053 int vn, 10054 struct cmng_init_input *input) 10055 { 10056 uint16_t vn_max_rate; 10057 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10058 uint32_t max_cfg; 10059 10060 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10061 vn_max_rate = 0; 10062 } else { 10063 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10064 10065 if (IS_MF_SI(sc)) { 10066 /* max_cfg in percents of linkspeed */ 10067 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10068 } else { /* SD modes */ 10069 /* max_cfg is absolute in 100Mb units */ 10070 vn_max_rate = (max_cfg * 100); 10071 } 10072 } 10073 10074 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10075 10076 input->vnic_max_rate[vn] = vn_max_rate; 10077 } 10078 10079 static void 10080 bxe_cmng_fns_init(struct bxe_softc *sc, 10081 uint8_t read_cfg, 10082 uint8_t cmng_type) 10083 { 10084 struct cmng_init_input input; 10085 int vn; 10086 10087 memset(&input, 0, sizeof(struct cmng_init_input)); 10088 10089 input.port_rate = sc->link_vars.line_speed; 10090 10091 if (cmng_type == CMNG_FNS_MINMAX) { 10092 /* read mf conf from shmem */ 10093 if (read_cfg) { 10094 bxe_read_mf_cfg(sc); 10095 } 10096 10097 /* get VN min rate and enable fairness if not 0 */ 10098 bxe_calc_vn_min(sc, &input); 10099 10100 /* get VN max rate */ 10101 if (sc->port.pmf) { 10102 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10103 bxe_calc_vn_max(sc, vn, &input); 10104 } 10105 } 10106 10107 /* always enable rate shaping and fairness */ 10108 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10109 10110 ecore_init_cmng(&input, &sc->cmng); 10111 return; 10112 } 10113 10114 /* rate shaping and fairness are disabled */ 10115 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10116 } 10117 10118 static int 10119 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10120 { 10121 if (CHIP_REV_IS_SLOW(sc)) { 10122 return (CMNG_FNS_NONE); 10123 } 10124 10125 if (IS_MF(sc)) { 10126 return (CMNG_FNS_MINMAX); 10127 } 10128 10129 return (CMNG_FNS_NONE); 10130 } 10131 10132 static void 10133 storm_memset_cmng(struct bxe_softc *sc, 10134 struct cmng_init *cmng, 10135 uint8_t port) 10136 { 10137 int vn; 10138 int func; 10139 uint32_t addr; 10140 size_t size; 10141 10142 addr = (BAR_XSTRORM_INTMEM + 10143 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10144 size = sizeof(struct cmng_struct_per_port); 10145 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10146 10147 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10148 func = func_by_vn(sc, vn); 10149 10150 addr = (BAR_XSTRORM_INTMEM + 10151 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10152 size = sizeof(struct rate_shaping_vars_per_vn); 10153 ecore_storm_memset_struct(sc, addr, size, 10154 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10155 10156 addr = (BAR_XSTRORM_INTMEM + 10157 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10158 size = sizeof(struct fairness_vars_per_vn); 10159 ecore_storm_memset_struct(sc, addr, size, 10160 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10161 } 10162 } 10163 10164 static void 10165 bxe_pf_init(struct bxe_softc *sc) 10166 { 10167 struct bxe_func_init_params func_init = { 0 }; 10168 struct event_ring_data eq_data = { { 0 } }; 10169 uint16_t flags; 10170 10171 if (!CHIP_IS_E1x(sc)) { 10172 /* reset IGU PF statistics: MSIX + ATTN */ 10173 /* PF */ 10174 REG_WR(sc, 10175 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10176 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10177 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10178 0); 10179 /* ATTN */ 10180 REG_WR(sc, 10181 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10182 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10183 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10184 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10185 0); 10186 } 10187 10188 /* function setup flags */ 10189 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10190 10191 /* 10192 * This flag is relevant for E1x only. 10193 * E2 doesn't have a TPA configuration in a function level. 10194 */ 10195 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10196 10197 func_init.func_flgs = flags; 10198 func_init.pf_id = SC_FUNC(sc); 10199 func_init.func_id = SC_FUNC(sc); 10200 func_init.spq_map = sc->spq_dma.paddr; 10201 func_init.spq_prod = sc->spq_prod_idx; 10202 10203 bxe_func_init(sc, &func_init); 10204 10205 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10206 10207 /* 10208 * Congestion management values depend on the link rate. 10209 * There is no active link so initial link rate is set to 10Gbps. 10210 * When the link comes up the congestion management values are 10211 * re-calculated according to the actual link rate. 10212 */ 10213 sc->link_vars.line_speed = SPEED_10000; 10214 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10215 10216 /* Only the PMF sets the HW */ 10217 if (sc->port.pmf) { 10218 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10219 } 10220 10221 /* init Event Queue - PCI bus guarantees correct endainity */ 10222 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10223 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10224 eq_data.producer = sc->eq_prod; 10225 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10226 eq_data.sb_id = DEF_SB_ID; 10227 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10228 } 10229 10230 static void 10231 bxe_hc_int_enable(struct bxe_softc *sc) 10232 { 10233 int port = SC_PORT(sc); 10234 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10235 uint32_t val = REG_RD(sc, addr); 10236 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10237 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10238 (sc->intr_count == 1)) ? TRUE : FALSE; 10239 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10240 10241 if (msix) { 10242 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10243 HC_CONFIG_0_REG_INT_LINE_EN_0); 10244 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10245 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10246 if (single_msix) { 10247 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10248 } 10249 } else if (msi) { 10250 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10251 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10252 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10253 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10254 } else { 10255 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10256 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10257 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10258 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10259 10260 if (!CHIP_IS_E1(sc)) { 10261 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10262 val, port, addr); 10263 10264 REG_WR(sc, addr, val); 10265 10266 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10267 } 10268 } 10269 10270 if (CHIP_IS_E1(sc)) { 10271 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10272 } 10273 10274 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10275 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10276 10277 REG_WR(sc, addr, val); 10278 10279 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10280 mb(); 10281 10282 if (!CHIP_IS_E1(sc)) { 10283 /* init leading/trailing edge */ 10284 if (IS_MF(sc)) { 10285 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10286 if (sc->port.pmf) { 10287 /* enable nig and gpio3 attention */ 10288 val |= 0x1100; 10289 } 10290 } else { 10291 val = 0xffff; 10292 } 10293 10294 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10295 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10296 } 10297 10298 /* make sure that interrupts are indeed enabled from here on */ 10299 mb(); 10300 } 10301 10302 static void 10303 bxe_igu_int_enable(struct bxe_softc *sc) 10304 { 10305 uint32_t val; 10306 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10307 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10308 (sc->intr_count == 1)) ? TRUE : FALSE; 10309 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10310 10311 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10312 10313 if (msix) { 10314 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10315 IGU_PF_CONF_SINGLE_ISR_EN); 10316 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10317 IGU_PF_CONF_ATTN_BIT_EN); 10318 if (single_msix) { 10319 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10320 } 10321 } else if (msi) { 10322 val &= ~IGU_PF_CONF_INT_LINE_EN; 10323 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10324 IGU_PF_CONF_ATTN_BIT_EN | 10325 IGU_PF_CONF_SINGLE_ISR_EN); 10326 } else { 10327 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10328 val |= (IGU_PF_CONF_INT_LINE_EN | 10329 IGU_PF_CONF_ATTN_BIT_EN | 10330 IGU_PF_CONF_SINGLE_ISR_EN); 10331 } 10332 10333 /* clean previous status - need to configure igu prior to ack*/ 10334 if ((!msix) || single_msix) { 10335 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10336 bxe_ack_int(sc); 10337 } 10338 10339 val |= IGU_PF_CONF_FUNC_EN; 10340 10341 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10342 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10343 10344 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10345 10346 mb(); 10347 10348 /* init leading/trailing edge */ 10349 if (IS_MF(sc)) { 10350 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10351 if (sc->port.pmf) { 10352 /* enable nig and gpio3 attention */ 10353 val |= 0x1100; 10354 } 10355 } else { 10356 val = 0xffff; 10357 } 10358 10359 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10360 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10361 10362 /* make sure that interrupts are indeed enabled from here on */ 10363 mb(); 10364 } 10365 10366 static void 10367 bxe_int_enable(struct bxe_softc *sc) 10368 { 10369 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10370 bxe_hc_int_enable(sc); 10371 } else { 10372 bxe_igu_int_enable(sc); 10373 } 10374 } 10375 10376 static void 10377 bxe_hc_int_disable(struct bxe_softc *sc) 10378 { 10379 int port = SC_PORT(sc); 10380 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10381 uint32_t val = REG_RD(sc, addr); 10382 10383 /* 10384 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10385 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10386 * block 10387 */ 10388 if (CHIP_IS_E1(sc)) { 10389 /* 10390 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10391 * to prevent from HC sending interrupts after we exit the function 10392 */ 10393 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10394 10395 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10396 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10397 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10398 } else { 10399 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10400 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10401 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10402 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10403 } 10404 10405 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10406 10407 /* flush all outstanding writes */ 10408 mb(); 10409 10410 REG_WR(sc, addr, val); 10411 if (REG_RD(sc, addr) != val) { 10412 BLOGE(sc, "proper val not read from HC IGU!\n"); 10413 } 10414 } 10415 10416 static void 10417 bxe_igu_int_disable(struct bxe_softc *sc) 10418 { 10419 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10420 10421 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10422 IGU_PF_CONF_INT_LINE_EN | 10423 IGU_PF_CONF_ATTN_BIT_EN); 10424 10425 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10426 10427 /* flush all outstanding writes */ 10428 mb(); 10429 10430 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10431 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10432 BLOGE(sc, "proper val not read from IGU!\n"); 10433 } 10434 } 10435 10436 static void 10437 bxe_int_disable(struct bxe_softc *sc) 10438 { 10439 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10440 bxe_hc_int_disable(sc); 10441 } else { 10442 bxe_igu_int_disable(sc); 10443 } 10444 } 10445 10446 static void 10447 bxe_nic_init(struct bxe_softc *sc, 10448 int load_code) 10449 { 10450 int i; 10451 10452 for (i = 0; i < sc->num_queues; i++) { 10453 bxe_init_eth_fp(sc, i); 10454 } 10455 10456 rmb(); /* ensure status block indices were read */ 10457 10458 bxe_init_rx_rings(sc); 10459 bxe_init_tx_rings(sc); 10460 10461 if (IS_VF(sc)) { 10462 return; 10463 } 10464 10465 /* initialize MOD_ABS interrupts */ 10466 elink_init_mod_abs_int(sc, &sc->link_vars, 10467 sc->devinfo.chip_id, 10468 sc->devinfo.shmem_base, 10469 sc->devinfo.shmem2_base, 10470 SC_PORT(sc)); 10471 10472 bxe_init_def_sb(sc); 10473 bxe_update_dsb_idx(sc); 10474 bxe_init_sp_ring(sc); 10475 bxe_init_eq_ring(sc); 10476 bxe_init_internal(sc, load_code); 10477 bxe_pf_init(sc); 10478 bxe_stats_init(sc); 10479 10480 /* flush all before enabling interrupts */ 10481 mb(); 10482 10483 bxe_int_enable(sc); 10484 10485 /* check for SPIO5 */ 10486 bxe_attn_int_deasserted0(sc, 10487 REG_RD(sc, 10488 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10489 SC_PORT(sc)*4)) & 10490 AEU_INPUTS_ATTN_BITS_SPIO5); 10491 } 10492 10493 static inline void 10494 bxe_init_objs(struct bxe_softc *sc) 10495 { 10496 /* mcast rules must be added to tx if tx switching is enabled */ 10497 ecore_obj_type o_type = 10498 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10499 ECORE_OBJ_TYPE_RX; 10500 10501 /* RX_MODE controlling object */ 10502 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10503 10504 /* multicast configuration controlling object */ 10505 ecore_init_mcast_obj(sc, 10506 &sc->mcast_obj, 10507 sc->fp[0].cl_id, 10508 sc->fp[0].index, 10509 SC_FUNC(sc), 10510 SC_FUNC(sc), 10511 BXE_SP(sc, mcast_rdata), 10512 BXE_SP_MAPPING(sc, mcast_rdata), 10513 ECORE_FILTER_MCAST_PENDING, 10514 &sc->sp_state, 10515 o_type); 10516 10517 /* Setup CAM credit pools */ 10518 ecore_init_mac_credit_pool(sc, 10519 &sc->macs_pool, 10520 SC_FUNC(sc), 10521 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10522 VNICS_PER_PATH(sc)); 10523 10524 ecore_init_vlan_credit_pool(sc, 10525 &sc->vlans_pool, 10526 SC_ABS_FUNC(sc) >> 1, 10527 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10528 VNICS_PER_PATH(sc)); 10529 10530 /* RSS configuration object */ 10531 ecore_init_rss_config_obj(sc, 10532 &sc->rss_conf_obj, 10533 sc->fp[0].cl_id, 10534 sc->fp[0].index, 10535 SC_FUNC(sc), 10536 SC_FUNC(sc), 10537 BXE_SP(sc, rss_rdata), 10538 BXE_SP_MAPPING(sc, rss_rdata), 10539 ECORE_FILTER_RSS_CONF_PENDING, 10540 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10541 } 10542 10543 /* 10544 * Initialize the function. This must be called before sending CLIENT_SETUP 10545 * for the first client. 10546 */ 10547 static inline int 10548 bxe_func_start(struct bxe_softc *sc) 10549 { 10550 struct ecore_func_state_params func_params = { NULL }; 10551 struct ecore_func_start_params *start_params = &func_params.params.start; 10552 10553 /* Prepare parameters for function state transitions */ 10554 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10555 10556 func_params.f_obj = &sc->func_obj; 10557 func_params.cmd = ECORE_F_CMD_START; 10558 10559 /* Function parameters */ 10560 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10561 start_params->sd_vlan_tag = OVLAN(sc); 10562 10563 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10564 start_params->network_cos_mode = STATIC_COS; 10565 } else { /* CHIP_IS_E1X */ 10566 start_params->network_cos_mode = FW_WRR; 10567 } 10568 10569 //start_params->gre_tunnel_mode = 0; 10570 //start_params->gre_tunnel_rss = 0; 10571 10572 return (ecore_func_state_change(sc, &func_params)); 10573 } 10574 10575 static int 10576 bxe_set_power_state(struct bxe_softc *sc, 10577 uint8_t state) 10578 { 10579 uint16_t pmcsr; 10580 10581 /* If there is no power capability, silently succeed */ 10582 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10583 BLOGW(sc, "No power capability\n"); 10584 return (0); 10585 } 10586 10587 pmcsr = pci_read_config(sc->dev, 10588 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10589 2); 10590 10591 switch (state) { 10592 case PCI_PM_D0: 10593 pci_write_config(sc->dev, 10594 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10595 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10596 10597 if (pmcsr & PCIM_PSTAT_DMASK) { 10598 /* delay required during transition out of D3hot */ 10599 DELAY(20000); 10600 } 10601 10602 break; 10603 10604 case PCI_PM_D3hot: 10605 /* XXX if there are other clients above don't shut down the power */ 10606 10607 /* don't shut down the power for emulation and FPGA */ 10608 if (CHIP_REV_IS_SLOW(sc)) { 10609 return (0); 10610 } 10611 10612 pmcsr &= ~PCIM_PSTAT_DMASK; 10613 pmcsr |= PCIM_PSTAT_D3; 10614 10615 if (sc->wol) { 10616 pmcsr |= PCIM_PSTAT_PMEENABLE; 10617 } 10618 10619 pci_write_config(sc->dev, 10620 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10621 pmcsr, 4); 10622 10623 /* 10624 * No more memory access after this point until device is brought back 10625 * to D0 state. 10626 */ 10627 break; 10628 10629 default: 10630 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10631 state, pmcsr); 10632 return (-1); 10633 } 10634 10635 return (0); 10636 } 10637 10638 10639 /* return true if succeeded to acquire the lock */ 10640 static uint8_t 10641 bxe_trylock_hw_lock(struct bxe_softc *sc, 10642 uint32_t resource) 10643 { 10644 uint32_t lock_status; 10645 uint32_t resource_bit = (1 << resource); 10646 int func = SC_FUNC(sc); 10647 uint32_t hw_lock_control_reg; 10648 10649 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10650 10651 /* Validating that the resource is within range */ 10652 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10653 BLOGD(sc, DBG_LOAD, 10654 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10655 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10656 return (FALSE); 10657 } 10658 10659 if (func <= 5) { 10660 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10661 } else { 10662 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10663 } 10664 10665 /* try to acquire the lock */ 10666 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10667 lock_status = REG_RD(sc, hw_lock_control_reg); 10668 if (lock_status & resource_bit) { 10669 return (TRUE); 10670 } 10671 10672 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10673 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10674 lock_status, resource_bit); 10675 10676 return (FALSE); 10677 } 10678 10679 /* 10680 * Get the recovery leader resource id according to the engine this function 10681 * belongs to. Currently only only 2 engines is supported. 10682 */ 10683 static int 10684 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10685 { 10686 if (SC_PATH(sc)) { 10687 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10688 } else { 10689 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10690 } 10691 } 10692 10693 /* try to acquire a leader lock for current engine */ 10694 static uint8_t 10695 bxe_trylock_leader_lock(struct bxe_softc *sc) 10696 { 10697 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10698 } 10699 10700 static int 10701 bxe_release_leader_lock(struct bxe_softc *sc) 10702 { 10703 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10704 } 10705 10706 /* close gates #2, #3 and #4 */ 10707 static void 10708 bxe_set_234_gates(struct bxe_softc *sc, 10709 uint8_t close) 10710 { 10711 uint32_t val; 10712 10713 /* gates #2 and #4a are closed/opened for "not E1" only */ 10714 if (!CHIP_IS_E1(sc)) { 10715 /* #4 */ 10716 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10717 /* #2 */ 10718 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10719 } 10720 10721 /* #3 */ 10722 if (CHIP_IS_E1x(sc)) { 10723 /* prevent interrupts from HC on both ports */ 10724 val = REG_RD(sc, HC_REG_CONFIG_1); 10725 REG_WR(sc, HC_REG_CONFIG_1, 10726 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10727 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10728 10729 val = REG_RD(sc, HC_REG_CONFIG_0); 10730 REG_WR(sc, HC_REG_CONFIG_0, 10731 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10732 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10733 } else { 10734 /* Prevent incoming interrupts in IGU */ 10735 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10736 10737 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10738 (!close) ? 10739 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10740 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10741 } 10742 10743 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10744 close ? "closing" : "opening"); 10745 10746 wmb(); 10747 } 10748 10749 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10750 static int 10751 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10752 { 10753 uint32_t cnt = 1000; 10754 uint32_t pend_bits = 0; 10755 10756 do { 10757 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10758 10759 if (pend_bits == 0) { 10760 break; 10761 } 10762 10763 DELAY(1000); 10764 } while (--cnt > 0); 10765 10766 if (cnt == 0) { 10767 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10768 return (-1); 10769 } 10770 10771 return (0); 10772 } 10773 10774 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10775 10776 static void 10777 bxe_clp_reset_prep(struct bxe_softc *sc, 10778 uint32_t *magic_val) 10779 { 10780 /* Do some magic... */ 10781 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10782 *magic_val = val & SHARED_MF_CLP_MAGIC; 10783 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10784 } 10785 10786 /* restore the value of the 'magic' bit */ 10787 static void 10788 bxe_clp_reset_done(struct bxe_softc *sc, 10789 uint32_t magic_val) 10790 { 10791 /* Restore the 'magic' bit value... */ 10792 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10793 MFCFG_WR(sc, shared_mf_config.clp_mb, 10794 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10795 } 10796 10797 /* prepare for MCP reset, takes care of CLP configurations */ 10798 static void 10799 bxe_reset_mcp_prep(struct bxe_softc *sc, 10800 uint32_t *magic_val) 10801 { 10802 uint32_t shmem; 10803 uint32_t validity_offset; 10804 10805 /* set `magic' bit in order to save MF config */ 10806 if (!CHIP_IS_E1(sc)) { 10807 bxe_clp_reset_prep(sc, magic_val); 10808 } 10809 10810 /* get shmem offset */ 10811 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10812 validity_offset = 10813 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10814 10815 /* Clear validity map flags */ 10816 if (shmem > 0) { 10817 REG_WR(sc, shmem + validity_offset, 0); 10818 } 10819 } 10820 10821 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10822 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10823 10824 static void 10825 bxe_mcp_wait_one(struct bxe_softc *sc) 10826 { 10827 /* special handling for emulation and FPGA (10 times longer) */ 10828 if (CHIP_REV_IS_SLOW(sc)) { 10829 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10830 } else { 10831 DELAY((MCP_ONE_TIMEOUT) * 1000); 10832 } 10833 } 10834 10835 /* initialize shmem_base and waits for validity signature to appear */ 10836 static int 10837 bxe_init_shmem(struct bxe_softc *sc) 10838 { 10839 int cnt = 0; 10840 uint32_t val = 0; 10841 10842 do { 10843 sc->devinfo.shmem_base = 10844 sc->link_params.shmem_base = 10845 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10846 10847 if (sc->devinfo.shmem_base) { 10848 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10849 if (val & SHR_MEM_VALIDITY_MB) 10850 return (0); 10851 } 10852 10853 bxe_mcp_wait_one(sc); 10854 10855 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10856 10857 BLOGE(sc, "BAD MCP validity signature\n"); 10858 10859 return (-1); 10860 } 10861 10862 static int 10863 bxe_reset_mcp_comp(struct bxe_softc *sc, 10864 uint32_t magic_val) 10865 { 10866 int rc = bxe_init_shmem(sc); 10867 10868 /* Restore the `magic' bit value */ 10869 if (!CHIP_IS_E1(sc)) { 10870 bxe_clp_reset_done(sc, magic_val); 10871 } 10872 10873 return (rc); 10874 } 10875 10876 static void 10877 bxe_pxp_prep(struct bxe_softc *sc) 10878 { 10879 if (!CHIP_IS_E1(sc)) { 10880 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10881 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10882 wmb(); 10883 } 10884 } 10885 10886 /* 10887 * Reset the whole chip except for: 10888 * - PCIE core 10889 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10890 * - IGU 10891 * - MISC (including AEU) 10892 * - GRC 10893 * - RBCN, RBCP 10894 */ 10895 static void 10896 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10897 uint8_t global) 10898 { 10899 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10900 uint32_t global_bits2, stay_reset2; 10901 10902 /* 10903 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10904 * (per chip) blocks. 10905 */ 10906 global_bits2 = 10907 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10908 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10909 10910 /* 10911 * Don't reset the following blocks. 10912 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10913 * reset, as in 4 port device they might still be owned 10914 * by the MCP (there is only one leader per path). 10915 */ 10916 not_reset_mask1 = 10917 MISC_REGISTERS_RESET_REG_1_RST_HC | 10918 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10919 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10920 10921 not_reset_mask2 = 10922 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10923 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10924 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10925 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10926 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10927 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10928 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10929 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10930 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10931 MISC_REGISTERS_RESET_REG_2_PGLC | 10932 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10933 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10934 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10935 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10936 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10937 MISC_REGISTERS_RESET_REG_2_UMAC1; 10938 10939 /* 10940 * Keep the following blocks in reset: 10941 * - all xxMACs are handled by the elink code. 10942 */ 10943 stay_reset2 = 10944 MISC_REGISTERS_RESET_REG_2_XMAC | 10945 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10946 10947 /* Full reset masks according to the chip */ 10948 reset_mask1 = 0xffffffff; 10949 10950 if (CHIP_IS_E1(sc)) 10951 reset_mask2 = 0xffff; 10952 else if (CHIP_IS_E1H(sc)) 10953 reset_mask2 = 0x1ffff; 10954 else if (CHIP_IS_E2(sc)) 10955 reset_mask2 = 0xfffff; 10956 else /* CHIP_IS_E3 */ 10957 reset_mask2 = 0x3ffffff; 10958 10959 /* Don't reset global blocks unless we need to */ 10960 if (!global) 10961 reset_mask2 &= ~global_bits2; 10962 10963 /* 10964 * In case of attention in the QM, we need to reset PXP 10965 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10966 * because otherwise QM reset would release 'close the gates' shortly 10967 * before resetting the PXP, then the PSWRQ would send a write 10968 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10969 * read the payload data from PSWWR, but PSWWR would not 10970 * respond. The write queue in PGLUE would stuck, dmae commands 10971 * would not return. Therefore it's important to reset the second 10972 * reset register (containing the 10973 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10974 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10975 * bit). 10976 */ 10977 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10978 reset_mask2 & (~not_reset_mask2)); 10979 10980 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10981 reset_mask1 & (~not_reset_mask1)); 10982 10983 mb(); 10984 wmb(); 10985 10986 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10987 reset_mask2 & (~stay_reset2)); 10988 10989 mb(); 10990 wmb(); 10991 10992 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 10993 wmb(); 10994 } 10995 10996 static int 10997 bxe_process_kill(struct bxe_softc *sc, 10998 uint8_t global) 10999 { 11000 int cnt = 1000; 11001 uint32_t val = 0; 11002 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11003 uint32_t tags_63_32 = 0; 11004 11005 /* Empty the Tetris buffer, wait for 1s */ 11006 do { 11007 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11008 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11009 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11010 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11011 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11012 if (CHIP_IS_E3(sc)) { 11013 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11014 } 11015 11016 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11017 ((port_is_idle_0 & 0x1) == 0x1) && 11018 ((port_is_idle_1 & 0x1) == 0x1) && 11019 (pgl_exp_rom2 == 0xffffffff) && 11020 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11021 break; 11022 DELAY(1000); 11023 } while (cnt-- > 0); 11024 11025 if (cnt <= 0) { 11026 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11027 "are still outstanding read requests after 1s! " 11028 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11029 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11030 sr_cnt, blk_cnt, port_is_idle_0, 11031 port_is_idle_1, pgl_exp_rom2); 11032 return (-1); 11033 } 11034 11035 mb(); 11036 11037 /* Close gates #2, #3 and #4 */ 11038 bxe_set_234_gates(sc, TRUE); 11039 11040 /* Poll for IGU VQs for 57712 and newer chips */ 11041 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11042 return (-1); 11043 } 11044 11045 /* XXX indicate that "process kill" is in progress to MCP */ 11046 11047 /* clear "unprepared" bit */ 11048 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11049 mb(); 11050 11051 /* Make sure all is written to the chip before the reset */ 11052 wmb(); 11053 11054 /* 11055 * Wait for 1ms to empty GLUE and PCI-E core queues, 11056 * PSWHST, GRC and PSWRD Tetris buffer. 11057 */ 11058 DELAY(1000); 11059 11060 /* Prepare to chip reset: */ 11061 /* MCP */ 11062 if (global) { 11063 bxe_reset_mcp_prep(sc, &val); 11064 } 11065 11066 /* PXP */ 11067 bxe_pxp_prep(sc); 11068 mb(); 11069 11070 /* reset the chip */ 11071 bxe_process_kill_chip_reset(sc, global); 11072 mb(); 11073 11074 /* clear errors in PGB */ 11075 if (!CHIP_IS_E1(sc)) 11076 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11077 11078 /* Recover after reset: */ 11079 /* MCP */ 11080 if (global && bxe_reset_mcp_comp(sc, val)) { 11081 return (-1); 11082 } 11083 11084 /* XXX add resetting the NO_MCP mode DB here */ 11085 11086 /* Open the gates #2, #3 and #4 */ 11087 bxe_set_234_gates(sc, FALSE); 11088 11089 /* XXX 11090 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11091 * re-enable attentions 11092 */ 11093 11094 return (0); 11095 } 11096 11097 static int 11098 bxe_leader_reset(struct bxe_softc *sc) 11099 { 11100 int rc = 0; 11101 uint8_t global = bxe_reset_is_global(sc); 11102 uint32_t load_code; 11103 11104 /* 11105 * If not going to reset MCP, load "fake" driver to reset HW while 11106 * driver is owner of the HW. 11107 */ 11108 if (!global && !BXE_NOMCP(sc)) { 11109 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11110 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11111 if (!load_code) { 11112 BLOGE(sc, "MCP response failure, aborting\n"); 11113 rc = -1; 11114 goto exit_leader_reset; 11115 } 11116 11117 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11118 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11119 BLOGE(sc, "MCP unexpected response, aborting\n"); 11120 rc = -1; 11121 goto exit_leader_reset2; 11122 } 11123 11124 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11125 if (!load_code) { 11126 BLOGE(sc, "MCP response failure, aborting\n"); 11127 rc = -1; 11128 goto exit_leader_reset2; 11129 } 11130 } 11131 11132 /* try to recover after the failure */ 11133 if (bxe_process_kill(sc, global)) { 11134 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11135 rc = -1; 11136 goto exit_leader_reset2; 11137 } 11138 11139 /* 11140 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11141 * state. 11142 */ 11143 bxe_set_reset_done(sc); 11144 if (global) { 11145 bxe_clear_reset_global(sc); 11146 } 11147 11148 exit_leader_reset2: 11149 11150 /* unload "fake driver" if it was loaded */ 11151 if (!global && !BXE_NOMCP(sc)) { 11152 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11153 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11154 } 11155 11156 exit_leader_reset: 11157 11158 sc->is_leader = 0; 11159 bxe_release_leader_lock(sc); 11160 11161 mb(); 11162 return (rc); 11163 } 11164 11165 /* 11166 * prepare INIT transition, parameters configured: 11167 * - HC configuration 11168 * - Queue's CDU context 11169 */ 11170 static void 11171 bxe_pf_q_prep_init(struct bxe_softc *sc, 11172 struct bxe_fastpath *fp, 11173 struct ecore_queue_init_params *init_params) 11174 { 11175 uint8_t cos; 11176 int cxt_index, cxt_offset; 11177 11178 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11179 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11180 11181 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11182 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11183 11184 /* HC rate */ 11185 init_params->rx.hc_rate = 11186 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11187 init_params->tx.hc_rate = 11188 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11189 11190 /* FW SB ID */ 11191 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11192 11193 /* CQ index among the SB indices */ 11194 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11195 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11196 11197 /* set maximum number of COSs supported by this queue */ 11198 init_params->max_cos = sc->max_cos; 11199 11200 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11201 fp->index, init_params->max_cos); 11202 11203 /* set the context pointers queue object */ 11204 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11205 /* XXX change index/cid here if ever support multiple tx CoS */ 11206 /* fp->txdata[cos]->cid */ 11207 cxt_index = fp->index / ILT_PAGE_CIDS; 11208 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11209 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11210 } 11211 } 11212 11213 /* set flags that are common for the Tx-only and not normal connections */ 11214 static unsigned long 11215 bxe_get_common_flags(struct bxe_softc *sc, 11216 struct bxe_fastpath *fp, 11217 uint8_t zero_stats) 11218 { 11219 unsigned long flags = 0; 11220 11221 /* PF driver will always initialize the Queue to an ACTIVE state */ 11222 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11223 11224 /* 11225 * tx only connections collect statistics (on the same index as the 11226 * parent connection). The statistics are zeroed when the parent 11227 * connection is initialized. 11228 */ 11229 11230 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11231 if (zero_stats) { 11232 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11233 } 11234 11235 /* 11236 * tx only connections can support tx-switching, though their 11237 * CoS-ness doesn't survive the loopback 11238 */ 11239 if (sc->flags & BXE_TX_SWITCHING) { 11240 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11241 } 11242 11243 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11244 11245 return (flags); 11246 } 11247 11248 static unsigned long 11249 bxe_get_q_flags(struct bxe_softc *sc, 11250 struct bxe_fastpath *fp, 11251 uint8_t leading) 11252 { 11253 unsigned long flags = 0; 11254 11255 if (IS_MF_SD(sc)) { 11256 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11257 } 11258 11259 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11260 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11261 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11262 } 11263 11264 if (leading) { 11265 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11266 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11267 } 11268 11269 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11270 11271 /* merge with common flags */ 11272 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11273 } 11274 11275 static void 11276 bxe_pf_q_prep_general(struct bxe_softc *sc, 11277 struct bxe_fastpath *fp, 11278 struct ecore_general_setup_params *gen_init, 11279 uint8_t cos) 11280 { 11281 gen_init->stat_id = bxe_stats_id(fp); 11282 gen_init->spcl_id = fp->cl_id; 11283 gen_init->mtu = sc->mtu; 11284 gen_init->cos = cos; 11285 } 11286 11287 static void 11288 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11289 struct bxe_fastpath *fp, 11290 struct rxq_pause_params *pause, 11291 struct ecore_rxq_setup_params *rxq_init) 11292 { 11293 uint8_t max_sge = 0; 11294 uint16_t sge_sz = 0; 11295 uint16_t tpa_agg_size = 0; 11296 11297 pause->sge_th_lo = SGE_TH_LO(sc); 11298 pause->sge_th_hi = SGE_TH_HI(sc); 11299 11300 /* validate SGE ring has enough to cross high threshold */ 11301 if (sc->dropless_fc && 11302 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11303 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11304 BLOGW(sc, "sge ring threshold limit\n"); 11305 } 11306 11307 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11308 tpa_agg_size = (2 * sc->mtu); 11309 if (tpa_agg_size < sc->max_aggregation_size) { 11310 tpa_agg_size = sc->max_aggregation_size; 11311 } 11312 11313 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11314 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11315 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11316 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11317 11318 /* pause - not for e1 */ 11319 if (!CHIP_IS_E1(sc)) { 11320 pause->bd_th_lo = BD_TH_LO(sc); 11321 pause->bd_th_hi = BD_TH_HI(sc); 11322 11323 pause->rcq_th_lo = RCQ_TH_LO(sc); 11324 pause->rcq_th_hi = RCQ_TH_HI(sc); 11325 11326 /* validate rings have enough entries to cross high thresholds */ 11327 if (sc->dropless_fc && 11328 pause->bd_th_hi + FW_PREFETCH_CNT > 11329 sc->rx_ring_size) { 11330 BLOGW(sc, "rx bd ring threshold limit\n"); 11331 } 11332 11333 if (sc->dropless_fc && 11334 pause->rcq_th_hi + FW_PREFETCH_CNT > 11335 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11336 BLOGW(sc, "rcq ring threshold limit\n"); 11337 } 11338 11339 pause->pri_map = 1; 11340 } 11341 11342 /* rxq setup */ 11343 rxq_init->dscr_map = fp->rx_dma.paddr; 11344 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11345 rxq_init->rcq_map = fp->rcq_dma.paddr; 11346 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11347 11348 /* 11349 * This should be a maximum number of data bytes that may be 11350 * placed on the BD (not including paddings). 11351 */ 11352 rxq_init->buf_sz = (fp->rx_buf_size - 11353 IP_HEADER_ALIGNMENT_PADDING); 11354 11355 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11356 rxq_init->tpa_agg_sz = tpa_agg_size; 11357 rxq_init->sge_buf_sz = sge_sz; 11358 rxq_init->max_sges_pkt = max_sge; 11359 rxq_init->rss_engine_id = SC_FUNC(sc); 11360 rxq_init->mcast_engine_id = SC_FUNC(sc); 11361 11362 /* 11363 * Maximum number or simultaneous TPA aggregation for this Queue. 11364 * For PF Clients it should be the maximum available number. 11365 * VF driver(s) may want to define it to a smaller value. 11366 */ 11367 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11368 11369 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11370 rxq_init->fw_sb_id = fp->fw_sb_id; 11371 11372 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11373 11374 /* 11375 * configure silent vlan removal 11376 * if multi function mode is afex, then mask default vlan 11377 */ 11378 if (IS_MF_AFEX(sc)) { 11379 rxq_init->silent_removal_value = 11380 sc->devinfo.mf_info.afex_def_vlan_tag; 11381 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11382 } 11383 } 11384 11385 static void 11386 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11387 struct bxe_fastpath *fp, 11388 struct ecore_txq_setup_params *txq_init, 11389 uint8_t cos) 11390 { 11391 /* 11392 * XXX If multiple CoS is ever supported then each fastpath structure 11393 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11394 * fp->txdata[cos]->tx_dma.paddr; 11395 */ 11396 txq_init->dscr_map = fp->tx_dma.paddr; 11397 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11398 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11399 txq_init->fw_sb_id = fp->fw_sb_id; 11400 11401 /* 11402 * set the TSS leading client id for TX classfication to the 11403 * leading RSS client id 11404 */ 11405 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11406 } 11407 11408 /* 11409 * This function performs 2 steps in a queue state machine: 11410 * 1) RESET->INIT 11411 * 2) INIT->SETUP 11412 */ 11413 static int 11414 bxe_setup_queue(struct bxe_softc *sc, 11415 struct bxe_fastpath *fp, 11416 uint8_t leading) 11417 { 11418 struct ecore_queue_state_params q_params = { NULL }; 11419 struct ecore_queue_setup_params *setup_params = 11420 &q_params.params.setup; 11421 int rc; 11422 11423 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11424 11425 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11426 11427 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11428 11429 /* we want to wait for completion in this context */ 11430 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11431 11432 /* prepare the INIT parameters */ 11433 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11434 11435 /* Set the command */ 11436 q_params.cmd = ECORE_Q_CMD_INIT; 11437 11438 /* Change the state to INIT */ 11439 rc = ecore_queue_state_change(sc, &q_params); 11440 if (rc) { 11441 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11442 return (rc); 11443 } 11444 11445 BLOGD(sc, DBG_LOAD, "init complete\n"); 11446 11447 /* now move the Queue to the SETUP state */ 11448 memset(setup_params, 0, sizeof(*setup_params)); 11449 11450 /* set Queue flags */ 11451 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11452 11453 /* set general SETUP parameters */ 11454 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11455 FIRST_TX_COS_INDEX); 11456 11457 bxe_pf_rx_q_prep(sc, fp, 11458 &setup_params->pause_params, 11459 &setup_params->rxq_params); 11460 11461 bxe_pf_tx_q_prep(sc, fp, 11462 &setup_params->txq_params, 11463 FIRST_TX_COS_INDEX); 11464 11465 /* Set the command */ 11466 q_params.cmd = ECORE_Q_CMD_SETUP; 11467 11468 /* change the state to SETUP */ 11469 rc = ecore_queue_state_change(sc, &q_params); 11470 if (rc) { 11471 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11472 return (rc); 11473 } 11474 11475 return (rc); 11476 } 11477 11478 static int 11479 bxe_setup_leading(struct bxe_softc *sc) 11480 { 11481 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11482 } 11483 11484 static int 11485 bxe_config_rss_pf(struct bxe_softc *sc, 11486 struct ecore_rss_config_obj *rss_obj, 11487 uint8_t config_hash) 11488 { 11489 struct ecore_config_rss_params params = { NULL }; 11490 int i; 11491 11492 /* 11493 * Although RSS is meaningless when there is a single HW queue we 11494 * still need it enabled in order to have HW Rx hash generated. 11495 */ 11496 11497 params.rss_obj = rss_obj; 11498 11499 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11500 11501 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11502 11503 /* RSS configuration */ 11504 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11505 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11506 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11507 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11508 if (rss_obj->udp_rss_v4) { 11509 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11510 } 11511 if (rss_obj->udp_rss_v6) { 11512 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11513 } 11514 11515 /* Hash bits */ 11516 params.rss_result_mask = MULTI_MASK; 11517 11518 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11519 11520 if (config_hash) { 11521 /* RSS keys */ 11522 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11523 params.rss_key[i] = arc4random(); 11524 } 11525 11526 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11527 } 11528 11529 return (ecore_config_rss(sc, ¶ms)); 11530 } 11531 11532 static int 11533 bxe_config_rss_eth(struct bxe_softc *sc, 11534 uint8_t config_hash) 11535 { 11536 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11537 } 11538 11539 static int 11540 bxe_init_rss_pf(struct bxe_softc *sc) 11541 { 11542 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11543 int i; 11544 11545 /* 11546 * Prepare the initial contents of the indirection table if 11547 * RSS is enabled 11548 */ 11549 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11550 sc->rss_conf_obj.ind_table[i] = 11551 (sc->fp->cl_id + (i % num_eth_queues)); 11552 } 11553 11554 if (sc->udp_rss) { 11555 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11556 } 11557 11558 /* 11559 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11560 * per-port, so if explicit configuration is needed, do it only 11561 * for a PMF. 11562 * 11563 * For 57712 and newer it's a per-function configuration. 11564 */ 11565 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11566 } 11567 11568 static int 11569 bxe_set_mac_one(struct bxe_softc *sc, 11570 uint8_t *mac, 11571 struct ecore_vlan_mac_obj *obj, 11572 uint8_t set, 11573 int mac_type, 11574 unsigned long *ramrod_flags) 11575 { 11576 struct ecore_vlan_mac_ramrod_params ramrod_param; 11577 int rc; 11578 11579 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11580 11581 /* fill in general parameters */ 11582 ramrod_param.vlan_mac_obj = obj; 11583 ramrod_param.ramrod_flags = *ramrod_flags; 11584 11585 /* fill a user request section if needed */ 11586 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11587 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11588 11589 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11590 11591 /* Set the command: ADD or DEL */ 11592 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11593 ECORE_VLAN_MAC_DEL; 11594 } 11595 11596 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11597 11598 if (rc == ECORE_EXISTS) { 11599 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11600 /* do not treat adding same MAC as error */ 11601 rc = 0; 11602 } else if (rc < 0) { 11603 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11604 } 11605 11606 return (rc); 11607 } 11608 11609 static int 11610 bxe_set_eth_mac(struct bxe_softc *sc, 11611 uint8_t set) 11612 { 11613 unsigned long ramrod_flags = 0; 11614 11615 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11616 11617 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11618 11619 /* Eth MAC is set on RSS leading client (fp[0]) */ 11620 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11621 &sc->sp_objs->mac_obj, 11622 set, ECORE_ETH_MAC, &ramrod_flags)); 11623 } 11624 11625 static int 11626 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11627 { 11628 uint32_t sel_phy_idx = 0; 11629 11630 if (sc->link_params.num_phys <= 1) { 11631 return (ELINK_INT_PHY); 11632 } 11633 11634 if (sc->link_vars.link_up) { 11635 sel_phy_idx = ELINK_EXT_PHY1; 11636 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11637 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11638 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11639 ELINK_SUPPORTED_FIBRE)) 11640 sel_phy_idx = ELINK_EXT_PHY2; 11641 } else { 11642 switch (elink_phy_selection(&sc->link_params)) { 11643 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11644 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11645 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11646 sel_phy_idx = ELINK_EXT_PHY1; 11647 break; 11648 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11649 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11650 sel_phy_idx = ELINK_EXT_PHY2; 11651 break; 11652 } 11653 } 11654 11655 return (sel_phy_idx); 11656 } 11657 11658 static int 11659 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11660 { 11661 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11662 11663 /* 11664 * The selected activated PHY is always after swapping (in case PHY 11665 * swapping is enabled). So when swapping is enabled, we need to reverse 11666 * the configuration 11667 */ 11668 11669 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11670 if (sel_phy_idx == ELINK_EXT_PHY1) 11671 sel_phy_idx = ELINK_EXT_PHY2; 11672 else if (sel_phy_idx == ELINK_EXT_PHY2) 11673 sel_phy_idx = ELINK_EXT_PHY1; 11674 } 11675 11676 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11677 } 11678 11679 static void 11680 bxe_set_requested_fc(struct bxe_softc *sc) 11681 { 11682 /* 11683 * Initialize link parameters structure variables 11684 * It is recommended to turn off RX FC for jumbo frames 11685 * for better performance 11686 */ 11687 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11688 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11689 } else { 11690 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11691 } 11692 } 11693 11694 static void 11695 bxe_calc_fc_adv(struct bxe_softc *sc) 11696 { 11697 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11698 11699 11700 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11701 ADVERTISED_Pause); 11702 11703 switch (sc->link_vars.ieee_fc & 11704 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11705 11706 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11707 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11708 ADVERTISED_Pause); 11709 break; 11710 11711 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11712 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11713 break; 11714 11715 default: 11716 break; 11717 11718 } 11719 } 11720 11721 static uint16_t 11722 bxe_get_mf_speed(struct bxe_softc *sc) 11723 { 11724 uint16_t line_speed = sc->link_vars.line_speed; 11725 if (IS_MF(sc)) { 11726 uint16_t maxCfg = 11727 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11728 11729 /* calculate the current MAX line speed limit for the MF devices */ 11730 if (IS_MF_SI(sc)) { 11731 line_speed = (line_speed * maxCfg) / 100; 11732 } else { /* SD mode */ 11733 uint16_t vn_max_rate = maxCfg * 100; 11734 11735 if (vn_max_rate < line_speed) { 11736 line_speed = vn_max_rate; 11737 } 11738 } 11739 } 11740 11741 return (line_speed); 11742 } 11743 11744 static void 11745 bxe_fill_report_data(struct bxe_softc *sc, 11746 struct bxe_link_report_data *data) 11747 { 11748 uint16_t line_speed = bxe_get_mf_speed(sc); 11749 11750 memset(data, 0, sizeof(*data)); 11751 11752 /* fill the report data with the effective line speed */ 11753 data->line_speed = line_speed; 11754 11755 /* Link is down */ 11756 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11757 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11758 } 11759 11760 /* Full DUPLEX */ 11761 if (sc->link_vars.duplex == DUPLEX_FULL) { 11762 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11763 } 11764 11765 /* Rx Flow Control is ON */ 11766 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11767 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11768 } 11769 11770 /* Tx Flow Control is ON */ 11771 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11772 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11773 } 11774 } 11775 11776 /* report link status to OS, should be called under phy_lock */ 11777 static void 11778 bxe_link_report_locked(struct bxe_softc *sc) 11779 { 11780 struct bxe_link_report_data cur_data; 11781 11782 /* reread mf_cfg */ 11783 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11784 bxe_read_mf_cfg(sc); 11785 } 11786 11787 /* Read the current link report info */ 11788 bxe_fill_report_data(sc, &cur_data); 11789 11790 /* Don't report link down or exactly the same link status twice */ 11791 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11792 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11793 &sc->last_reported_link.link_report_flags) && 11794 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11795 &cur_data.link_report_flags))) { 11796 return; 11797 } 11798 11799 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11800 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11801 sc->link_cnt++; 11802 11803 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11804 /* report new link params and remember the state for the next time */ 11805 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11806 11807 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11808 &cur_data.link_report_flags)) { 11809 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11810 } else { 11811 const char *duplex; 11812 const char *flow; 11813 11814 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11815 &cur_data.link_report_flags)) { 11816 duplex = "full"; 11817 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11818 } else { 11819 duplex = "half"; 11820 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11821 } 11822 11823 /* 11824 * Handle the FC at the end so that only these flags would be 11825 * possibly set. This way we may easily check if there is no FC 11826 * enabled. 11827 */ 11828 if (cur_data.link_report_flags) { 11829 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11830 &cur_data.link_report_flags) && 11831 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11832 &cur_data.link_report_flags)) { 11833 flow = "ON - receive & transmit"; 11834 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11835 &cur_data.link_report_flags) && 11836 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11837 &cur_data.link_report_flags)) { 11838 flow = "ON - receive"; 11839 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11840 &cur_data.link_report_flags) && 11841 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11842 &cur_data.link_report_flags)) { 11843 flow = "ON - transmit"; 11844 } else { 11845 flow = "none"; /* possible? */ 11846 } 11847 } else { 11848 flow = "none"; 11849 } 11850 11851 if_link_state_change(sc->ifp, LINK_STATE_UP); 11852 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11853 cur_data.line_speed, duplex, flow); 11854 } 11855 } 11856 11857 static void 11858 bxe_link_report(struct bxe_softc *sc) 11859 { 11860 bxe_acquire_phy_lock(sc); 11861 bxe_link_report_locked(sc); 11862 bxe_release_phy_lock(sc); 11863 } 11864 11865 static void 11866 bxe_link_status_update(struct bxe_softc *sc) 11867 { 11868 if (sc->state != BXE_STATE_OPEN) { 11869 return; 11870 } 11871 11872 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11873 elink_link_status_update(&sc->link_params, &sc->link_vars); 11874 } else { 11875 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11876 ELINK_SUPPORTED_10baseT_Full | 11877 ELINK_SUPPORTED_100baseT_Half | 11878 ELINK_SUPPORTED_100baseT_Full | 11879 ELINK_SUPPORTED_1000baseT_Full | 11880 ELINK_SUPPORTED_2500baseX_Full | 11881 ELINK_SUPPORTED_10000baseT_Full | 11882 ELINK_SUPPORTED_TP | 11883 ELINK_SUPPORTED_FIBRE | 11884 ELINK_SUPPORTED_Autoneg | 11885 ELINK_SUPPORTED_Pause | 11886 ELINK_SUPPORTED_Asym_Pause); 11887 sc->port.advertising[0] = sc->port.supported[0]; 11888 11889 sc->link_params.sc = sc; 11890 sc->link_params.port = SC_PORT(sc); 11891 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11892 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11893 sc->link_params.req_line_speed[0] = SPEED_10000; 11894 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11895 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11896 11897 if (CHIP_REV_IS_FPGA(sc)) { 11898 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11899 sc->link_vars.line_speed = ELINK_SPEED_1000; 11900 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11901 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11902 } else { 11903 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11904 sc->link_vars.line_speed = ELINK_SPEED_10000; 11905 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11906 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11907 } 11908 11909 sc->link_vars.link_up = 1; 11910 11911 sc->link_vars.duplex = DUPLEX_FULL; 11912 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11913 11914 if (IS_PF(sc)) { 11915 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11916 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11917 bxe_link_report(sc); 11918 } 11919 } 11920 11921 if (IS_PF(sc)) { 11922 if (sc->link_vars.link_up) { 11923 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11924 } else { 11925 bxe_stats_handle(sc, STATS_EVENT_STOP); 11926 } 11927 bxe_link_report(sc); 11928 } else { 11929 bxe_link_report(sc); 11930 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11931 } 11932 } 11933 11934 static int 11935 bxe_initial_phy_init(struct bxe_softc *sc, 11936 int load_mode) 11937 { 11938 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11939 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11940 struct elink_params *lp = &sc->link_params; 11941 11942 bxe_set_requested_fc(sc); 11943 11944 if (CHIP_REV_IS_SLOW(sc)) { 11945 uint32_t bond = CHIP_BOND_ID(sc); 11946 uint32_t feat = 0; 11947 11948 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11949 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11950 } else if (bond & 0x4) { 11951 if (CHIP_IS_E3(sc)) { 11952 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11953 } else { 11954 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11955 } 11956 } else if (bond & 0x8) { 11957 if (CHIP_IS_E3(sc)) { 11958 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11959 } else { 11960 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11961 } 11962 } 11963 11964 /* disable EMAC for E3 and above */ 11965 if (bond & 0x2) { 11966 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11967 } 11968 11969 sc->link_params.feature_config_flags |= feat; 11970 } 11971 11972 bxe_acquire_phy_lock(sc); 11973 11974 if (load_mode == LOAD_DIAG) { 11975 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11976 /* Prefer doing PHY loopback at 10G speed, if possible */ 11977 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11978 if (lp->speed_cap_mask[cfg_idx] & 11979 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11980 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11981 } else { 11982 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11983 } 11984 } 11985 } 11986 11987 if (load_mode == LOAD_LOOPBACK_EXT) { 11988 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11989 } 11990 11991 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 11992 11993 bxe_release_phy_lock(sc); 11994 11995 bxe_calc_fc_adv(sc); 11996 11997 if (sc->link_vars.link_up) { 11998 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11999 bxe_link_report(sc); 12000 } 12001 12002 if (!CHIP_REV_IS_SLOW(sc)) { 12003 bxe_periodic_start(sc); 12004 } 12005 12006 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12007 return (rc); 12008 } 12009 12010 static u_int 12011 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12012 { 12013 struct ecore_mcast_list_elem *mc_mac = arg; 12014 12015 mc_mac += cnt; 12016 mc_mac->mac = (uint8_t *)LLADDR(sdl); 12017 12018 return (1); 12019 } 12020 12021 static int 12022 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12023 struct ecore_mcast_ramrod_params *p) 12024 { 12025 if_t ifp = sc->ifp; 12026 int mc_count; 12027 struct ecore_mcast_list_elem *mc_mac; 12028 12029 ECORE_LIST_INIT(&p->mcast_list); 12030 p->mcast_list_len = 0; 12031 12032 /* XXXGL: multicast count may change later */ 12033 mc_count = if_llmaddr_count(ifp); 12034 12035 if (!mc_count) { 12036 return (0); 12037 } 12038 12039 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12040 (M_NOWAIT | M_ZERO)); 12041 if (!mc_mac) { 12042 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12043 return (-1); 12044 } 12045 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12046 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac); 12047 12048 for (int i = 0; i < mc_count; i ++) { 12049 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list); 12050 BLOGD(sc, DBG_LOAD, 12051 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n", 12052 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2], 12053 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5], 12054 mc_count); 12055 } 12056 12057 p->mcast_list_len = mc_count; 12058 12059 return (0); 12060 } 12061 12062 static void 12063 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12064 { 12065 struct ecore_mcast_list_elem *mc_mac = 12066 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12067 struct ecore_mcast_list_elem, 12068 link); 12069 12070 if (mc_mac) { 12071 /* only a single free as all mc_macs are in the same heap array */ 12072 free(mc_mac, M_DEVBUF); 12073 } 12074 } 12075 static int 12076 bxe_set_mc_list(struct bxe_softc *sc) 12077 { 12078 struct ecore_mcast_ramrod_params rparam = { NULL }; 12079 int rc = 0; 12080 12081 rparam.mcast_obj = &sc->mcast_obj; 12082 12083 BXE_MCAST_LOCK(sc); 12084 12085 /* first, clear all configured multicast MACs */ 12086 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12087 if (rc < 0) { 12088 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12089 /* Manual backport parts of FreeBSD upstream r284470. */ 12090 BXE_MCAST_UNLOCK(sc); 12091 return (rc); 12092 } 12093 12094 /* configure a new MACs list */ 12095 rc = bxe_init_mcast_macs_list(sc, &rparam); 12096 if (rc) { 12097 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12098 BXE_MCAST_UNLOCK(sc); 12099 return (rc); 12100 } 12101 12102 /* Now add the new MACs */ 12103 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12104 if (rc < 0) { 12105 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12106 } 12107 12108 bxe_free_mcast_macs_list(&rparam); 12109 12110 BXE_MCAST_UNLOCK(sc); 12111 12112 return (rc); 12113 } 12114 12115 struct bxe_set_addr_ctx { 12116 struct bxe_softc *sc; 12117 unsigned long ramrod_flags; 12118 int rc; 12119 }; 12120 12121 static u_int 12122 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12123 { 12124 struct bxe_set_addr_ctx *ctx = arg; 12125 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj; 12126 int rc; 12127 12128 if (ctx->rc < 0) 12129 return (0); 12130 12131 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE, 12132 ECORE_UC_LIST_MAC, &ctx->ramrod_flags); 12133 12134 /* do not treat adding same MAC as an error */ 12135 if (rc == -EEXIST) 12136 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12137 else if (rc < 0) { 12138 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc); 12139 ctx->rc = rc; 12140 } 12141 12142 return (1); 12143 } 12144 12145 static int 12146 bxe_set_uc_list(struct bxe_softc *sc) 12147 { 12148 if_t ifp = sc->ifp; 12149 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12150 struct bxe_set_addr_ctx ctx = { sc, 0, 0 }; 12151 int rc; 12152 12153 /* first schedule a cleanup up of old configuration */ 12154 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12155 if (rc < 0) { 12156 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12157 return (rc); 12158 } 12159 12160 if_foreach_lladdr(ifp, bxe_set_addr, &ctx); 12161 if (ctx.rc < 0) 12162 return (ctx.rc); 12163 12164 /* Execute the pending commands */ 12165 bit_set(&ctx.ramrod_flags, RAMROD_CONT); 12166 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12167 ECORE_UC_LIST_MAC, &ctx.ramrod_flags)); 12168 } 12169 12170 static void 12171 bxe_set_rx_mode(struct bxe_softc *sc) 12172 { 12173 if_t ifp = sc->ifp; 12174 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12175 12176 if (sc->state != BXE_STATE_OPEN) { 12177 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12178 return; 12179 } 12180 12181 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12182 12183 if (if_getflags(ifp) & IFF_PROMISC) { 12184 rx_mode = BXE_RX_MODE_PROMISC; 12185 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12186 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12187 CHIP_IS_E1(sc))) { 12188 rx_mode = BXE_RX_MODE_ALLMULTI; 12189 } else { 12190 if (IS_PF(sc)) { 12191 /* some multicasts */ 12192 if (bxe_set_mc_list(sc) < 0) { 12193 rx_mode = BXE_RX_MODE_ALLMULTI; 12194 } 12195 if (bxe_set_uc_list(sc) < 0) { 12196 rx_mode = BXE_RX_MODE_PROMISC; 12197 } 12198 } 12199 } 12200 12201 sc->rx_mode = rx_mode; 12202 12203 /* schedule the rx_mode command */ 12204 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12205 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12206 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12207 return; 12208 } 12209 12210 if (IS_PF(sc)) { 12211 bxe_set_storm_rx_mode(sc); 12212 } 12213 } 12214 12215 12216 /* update flags in shmem */ 12217 static void 12218 bxe_update_drv_flags(struct bxe_softc *sc, 12219 uint32_t flags, 12220 uint32_t set) 12221 { 12222 uint32_t drv_flags; 12223 12224 if (SHMEM2_HAS(sc, drv_flags)) { 12225 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12226 drv_flags = SHMEM2_RD(sc, drv_flags); 12227 12228 if (set) { 12229 SET_FLAGS(drv_flags, flags); 12230 } else { 12231 RESET_FLAGS(drv_flags, flags); 12232 } 12233 12234 SHMEM2_WR(sc, drv_flags, drv_flags); 12235 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12236 12237 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12238 } 12239 } 12240 12241 /* periodic timer callout routine, only runs when the interface is up */ 12242 12243 static void 12244 bxe_periodic_callout_func(void *xsc) 12245 { 12246 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12247 int i; 12248 12249 if (!BXE_CORE_TRYLOCK(sc)) { 12250 /* just bail and try again next time */ 12251 12252 if ((sc->state == BXE_STATE_OPEN) && 12253 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12254 /* schedule the next periodic callout */ 12255 callout_reset(&sc->periodic_callout, hz, 12256 bxe_periodic_callout_func, sc); 12257 } 12258 12259 return; 12260 } 12261 12262 if ((sc->state != BXE_STATE_OPEN) || 12263 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12264 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12265 BXE_CORE_UNLOCK(sc); 12266 return; 12267 } 12268 12269 12270 /* Check for TX timeouts on any fastpath. */ 12271 FOR_EACH_QUEUE(sc, i) { 12272 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12273 /* Ruh-Roh, chip was reset! */ 12274 break; 12275 } 12276 } 12277 12278 if (!CHIP_REV_IS_SLOW(sc)) { 12279 /* 12280 * This barrier is needed to ensure the ordering between the writing 12281 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12282 * the reading here. 12283 */ 12284 mb(); 12285 if (sc->port.pmf) { 12286 bxe_acquire_phy_lock(sc); 12287 elink_period_func(&sc->link_params, &sc->link_vars); 12288 bxe_release_phy_lock(sc); 12289 } 12290 } 12291 12292 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12293 int mb_idx = SC_FW_MB_IDX(sc); 12294 uint32_t drv_pulse; 12295 uint32_t mcp_pulse; 12296 12297 ++sc->fw_drv_pulse_wr_seq; 12298 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12299 12300 drv_pulse = sc->fw_drv_pulse_wr_seq; 12301 bxe_drv_pulse(sc); 12302 12303 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12304 MCP_PULSE_SEQ_MASK); 12305 12306 /* 12307 * The delta between driver pulse and mcp response should 12308 * be 1 (before mcp response) or 0 (after mcp response). 12309 */ 12310 if ((drv_pulse != mcp_pulse) && 12311 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12312 /* someone lost a heartbeat... */ 12313 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12314 drv_pulse, mcp_pulse); 12315 } 12316 } 12317 12318 /* state is BXE_STATE_OPEN */ 12319 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12320 12321 BXE_CORE_UNLOCK(sc); 12322 12323 if ((sc->state == BXE_STATE_OPEN) && 12324 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12325 /* schedule the next periodic callout */ 12326 callout_reset(&sc->periodic_callout, hz, 12327 bxe_periodic_callout_func, sc); 12328 } 12329 } 12330 12331 static void 12332 bxe_periodic_start(struct bxe_softc *sc) 12333 { 12334 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12335 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12336 } 12337 12338 static void 12339 bxe_periodic_stop(struct bxe_softc *sc) 12340 { 12341 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12342 callout_drain(&sc->periodic_callout); 12343 } 12344 12345 void 12346 bxe_parity_recover(struct bxe_softc *sc) 12347 { 12348 uint8_t global = FALSE; 12349 uint32_t error_recovered, error_unrecovered; 12350 12351 12352 if ((sc->recovery_state == BXE_RECOVERY_FAILED) && 12353 (sc->state == BXE_STATE_ERROR)) { 12354 BLOGE(sc, "RECOVERY failed, " 12355 "stack notified driver is NOT running! " 12356 "Please reboot/power cycle the system.\n"); 12357 return; 12358 } 12359 12360 while (1) { 12361 BLOGD(sc, DBG_SP, 12362 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n", 12363 __func__, sc, sc->state, sc->recovery_state, sc->error_status); 12364 12365 switch(sc->recovery_state) { 12366 12367 case BXE_RECOVERY_INIT: 12368 bxe_chk_parity_attn(sc, &global, FALSE); 12369 12370 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) || 12371 (sc->error_status & BXE_ERR_MCP_ASSERT) || 12372 (sc->error_status & BXE_ERR_GLOBAL)) { 12373 12374 BXE_CORE_LOCK(sc); 12375 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12376 bxe_periodic_stop(sc); 12377 } 12378 bxe_nic_unload(sc, UNLOAD_RECOVERY, false); 12379 sc->state = BXE_STATE_ERROR; 12380 sc->recovery_state = BXE_RECOVERY_FAILED; 12381 BLOGE(sc, " No Recovery tried for error 0x%x" 12382 " stack notified driver is NOT running!" 12383 " Please reboot/power cycle the system.\n", 12384 sc->error_status); 12385 BXE_CORE_UNLOCK(sc); 12386 return; 12387 } 12388 12389 12390 /* Try to get a LEADER_LOCK HW lock */ 12391 if (bxe_trylock_leader_lock(sc)) { 12392 12393 bxe_set_reset_in_progress(sc); 12394 /* 12395 * Check if there is a global attention and if 12396 * there was a global attention, set the global 12397 * reset bit. 12398 */ 12399 if (global) { 12400 bxe_set_reset_global(sc); 12401 } 12402 sc->is_leader = 1; 12403 } 12404 12405 /* If interface has been removed - break */ 12406 12407 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12408 bxe_periodic_stop(sc); 12409 } 12410 12411 BXE_CORE_LOCK(sc); 12412 bxe_nic_unload(sc,UNLOAD_RECOVERY, false); 12413 sc->recovery_state = BXE_RECOVERY_WAIT; 12414 BXE_CORE_UNLOCK(sc); 12415 12416 /* 12417 * Ensure "is_leader", MCP command sequence and 12418 * "recovery_state" update values are seen on other 12419 * CPUs. 12420 */ 12421 mb(); 12422 break; 12423 case BXE_RECOVERY_WAIT: 12424 12425 if (sc->is_leader) { 12426 int other_engine = SC_PATH(sc) ? 0 : 1; 12427 bool other_load_status = 12428 bxe_get_load_status(sc, other_engine); 12429 bool load_status = 12430 bxe_get_load_status(sc, SC_PATH(sc)); 12431 global = bxe_reset_is_global(sc); 12432 12433 /* 12434 * In case of a parity in a global block, let 12435 * the first leader that performs a 12436 * leader_reset() reset the global blocks in 12437 * order to clear global attentions. Otherwise 12438 * the gates will remain closed for that 12439 * engine. 12440 */ 12441 if (load_status || 12442 (global && other_load_status)) { 12443 /* 12444 * Wait until all other functions get 12445 * down. 12446 */ 12447 taskqueue_enqueue_timeout(taskqueue_thread, 12448 &sc->sp_err_timeout_task, hz/10); 12449 return; 12450 } else { 12451 /* 12452 * If all other functions got down 12453 * try to bring the chip back to 12454 * normal. In any case it's an exit 12455 * point for a leader. 12456 */ 12457 if (bxe_leader_reset(sc)) { 12458 BLOGE(sc, "RECOVERY failed, " 12459 "stack notified driver is NOT running!\n"); 12460 sc->recovery_state = BXE_RECOVERY_FAILED; 12461 sc->state = BXE_STATE_ERROR; 12462 mb(); 12463 return; 12464 } 12465 12466 /* 12467 * If we are here, means that the 12468 * leader has succeeded and doesn't 12469 * want to be a leader any more. Try 12470 * to continue as a none-leader. 12471 */ 12472 break; 12473 } 12474 12475 } else { /* non-leader */ 12476 if (!bxe_reset_is_done(sc, SC_PATH(sc))) { 12477 /* 12478 * Try to get a LEADER_LOCK HW lock as 12479 * long as a former leader may have 12480 * been unloaded by the user or 12481 * released a leadership by another 12482 * reason. 12483 */ 12484 if (bxe_trylock_leader_lock(sc)) { 12485 /* 12486 * I'm a leader now! Restart a 12487 * switch case. 12488 */ 12489 sc->is_leader = 1; 12490 break; 12491 } 12492 12493 taskqueue_enqueue_timeout(taskqueue_thread, 12494 &sc->sp_err_timeout_task, hz/10); 12495 return; 12496 12497 } else { 12498 /* 12499 * If there was a global attention, wait 12500 * for it to be cleared. 12501 */ 12502 if (bxe_reset_is_global(sc)) { 12503 taskqueue_enqueue_timeout(taskqueue_thread, 12504 &sc->sp_err_timeout_task, hz/10); 12505 return; 12506 } 12507 12508 error_recovered = 12509 sc->eth_stats.recoverable_error; 12510 error_unrecovered = 12511 sc->eth_stats.unrecoverable_error; 12512 BXE_CORE_LOCK(sc); 12513 sc->recovery_state = 12514 BXE_RECOVERY_NIC_LOADING; 12515 if (bxe_nic_load(sc, LOAD_NORMAL)) { 12516 error_unrecovered++; 12517 sc->recovery_state = BXE_RECOVERY_FAILED; 12518 sc->state = BXE_STATE_ERROR; 12519 BLOGE(sc, "Recovery is NOT successful, " 12520 " state=0x%x recovery_state=0x%x error=%x\n", 12521 sc->state, sc->recovery_state, sc->error_status); 12522 sc->error_status = 0; 12523 } else { 12524 sc->recovery_state = 12525 BXE_RECOVERY_DONE; 12526 error_recovered++; 12527 BLOGI(sc, "Recovery is successful from errors %x," 12528 " state=0x%x" 12529 " recovery_state=0x%x \n", sc->error_status, 12530 sc->state, sc->recovery_state); 12531 mb(); 12532 } 12533 sc->error_status = 0; 12534 BXE_CORE_UNLOCK(sc); 12535 sc->eth_stats.recoverable_error = 12536 error_recovered; 12537 sc->eth_stats.unrecoverable_error = 12538 error_unrecovered; 12539 12540 return; 12541 } 12542 } 12543 default: 12544 return; 12545 } 12546 } 12547 } 12548 void 12549 bxe_handle_error(struct bxe_softc * sc) 12550 { 12551 12552 if(sc->recovery_state == BXE_RECOVERY_WAIT) { 12553 return; 12554 } 12555 if(sc->error_status) { 12556 if (sc->state == BXE_STATE_OPEN) { 12557 bxe_int_disable(sc); 12558 } 12559 if (sc->link_vars.link_up) { 12560 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12561 } 12562 sc->recovery_state = BXE_RECOVERY_INIT; 12563 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n", 12564 sc->unit, sc->error_status, sc->recovery_state); 12565 bxe_parity_recover(sc); 12566 } 12567 } 12568 12569 static void 12570 bxe_sp_err_timeout_task(void *arg, int pending) 12571 { 12572 12573 struct bxe_softc *sc = (struct bxe_softc *)arg; 12574 12575 BLOGD(sc, DBG_SP, 12576 "%s state = 0x%x rec state=0x%x error_status=%x\n", 12577 __func__, sc->state, sc->recovery_state, sc->error_status); 12578 12579 if((sc->recovery_state == BXE_RECOVERY_FAILED) && 12580 (sc->state == BXE_STATE_ERROR)) { 12581 return; 12582 } 12583 /* if can be taken */ 12584 if ((sc->error_status) && (sc->trigger_grcdump)) { 12585 bxe_grc_dump(sc); 12586 } 12587 if (sc->recovery_state != BXE_RECOVERY_DONE) { 12588 bxe_handle_error(sc); 12589 bxe_parity_recover(sc); 12590 } else if (sc->error_status) { 12591 bxe_handle_error(sc); 12592 } 12593 12594 return; 12595 } 12596 12597 /* start the controller */ 12598 static __noinline int 12599 bxe_nic_load(struct bxe_softc *sc, 12600 int load_mode) 12601 { 12602 uint32_t val; 12603 int load_code = 0; 12604 int i, rc = 0; 12605 12606 BXE_CORE_LOCK_ASSERT(sc); 12607 12608 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12609 12610 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12611 12612 if (IS_PF(sc)) { 12613 /* must be called before memory allocation and HW init */ 12614 bxe_ilt_set_info(sc); 12615 } 12616 12617 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12618 12619 bxe_set_fp_rx_buf_size(sc); 12620 12621 if (bxe_alloc_fp_buffers(sc) != 0) { 12622 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12623 sc->state = BXE_STATE_CLOSED; 12624 rc = ENOMEM; 12625 goto bxe_nic_load_error0; 12626 } 12627 12628 if (bxe_alloc_mem(sc) != 0) { 12629 sc->state = BXE_STATE_CLOSED; 12630 rc = ENOMEM; 12631 goto bxe_nic_load_error0; 12632 } 12633 12634 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12635 sc->state = BXE_STATE_CLOSED; 12636 rc = ENOMEM; 12637 goto bxe_nic_load_error0; 12638 } 12639 12640 if (IS_PF(sc)) { 12641 /* set pf load just before approaching the MCP */ 12642 bxe_set_pf_load(sc); 12643 12644 /* if MCP exists send load request and analyze response */ 12645 if (!BXE_NOMCP(sc)) { 12646 /* attempt to load pf */ 12647 if (bxe_nic_load_request(sc, &load_code) != 0) { 12648 sc->state = BXE_STATE_CLOSED; 12649 rc = ENXIO; 12650 goto bxe_nic_load_error1; 12651 } 12652 12653 /* what did the MCP say? */ 12654 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12655 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12656 sc->state = BXE_STATE_CLOSED; 12657 rc = ENXIO; 12658 goto bxe_nic_load_error2; 12659 } 12660 } else { 12661 BLOGI(sc, "Device has no MCP!\n"); 12662 load_code = bxe_nic_load_no_mcp(sc); 12663 } 12664 12665 /* mark PMF if applicable */ 12666 bxe_nic_load_pmf(sc, load_code); 12667 12668 /* Init Function state controlling object */ 12669 bxe_init_func_obj(sc); 12670 12671 /* Initialize HW */ 12672 if (bxe_init_hw(sc, load_code) != 0) { 12673 BLOGE(sc, "HW init failed\n"); 12674 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12675 sc->state = BXE_STATE_CLOSED; 12676 rc = ENXIO; 12677 goto bxe_nic_load_error2; 12678 } 12679 } 12680 12681 /* set ALWAYS_ALIVE bit in shmem */ 12682 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12683 bxe_drv_pulse(sc); 12684 sc->flags |= BXE_NO_PULSE; 12685 12686 /* attach interrupts */ 12687 if (bxe_interrupt_attach(sc) != 0) { 12688 sc->state = BXE_STATE_CLOSED; 12689 rc = ENXIO; 12690 goto bxe_nic_load_error2; 12691 } 12692 12693 bxe_nic_init(sc, load_code); 12694 12695 /* Init per-function objects */ 12696 if (IS_PF(sc)) { 12697 bxe_init_objs(sc); 12698 // XXX bxe_iov_nic_init(sc); 12699 12700 /* set AFEX default VLAN tag to an invalid value */ 12701 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12702 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12703 12704 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12705 rc = bxe_func_start(sc); 12706 if (rc) { 12707 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12708 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12709 sc->state = BXE_STATE_ERROR; 12710 goto bxe_nic_load_error3; 12711 } 12712 12713 /* send LOAD_DONE command to MCP */ 12714 if (!BXE_NOMCP(sc)) { 12715 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12716 if (!load_code) { 12717 BLOGE(sc, "MCP response failure, aborting\n"); 12718 sc->state = BXE_STATE_ERROR; 12719 rc = ENXIO; 12720 goto bxe_nic_load_error3; 12721 } 12722 } 12723 12724 rc = bxe_setup_leading(sc); 12725 if (rc) { 12726 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12727 sc->state = BXE_STATE_ERROR; 12728 goto bxe_nic_load_error3; 12729 } 12730 12731 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12732 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12733 if (rc) { 12734 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12735 sc->state = BXE_STATE_ERROR; 12736 goto bxe_nic_load_error3; 12737 } 12738 } 12739 12740 rc = bxe_init_rss_pf(sc); 12741 if (rc) { 12742 BLOGE(sc, "PF RSS init failed\n"); 12743 sc->state = BXE_STATE_ERROR; 12744 goto bxe_nic_load_error3; 12745 } 12746 } 12747 /* XXX VF */ 12748 12749 /* now when Clients are configured we are ready to work */ 12750 sc->state = BXE_STATE_OPEN; 12751 12752 /* Configure a ucast MAC */ 12753 if (IS_PF(sc)) { 12754 rc = bxe_set_eth_mac(sc, TRUE); 12755 } 12756 if (rc) { 12757 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12758 sc->state = BXE_STATE_ERROR; 12759 goto bxe_nic_load_error3; 12760 } 12761 12762 if (sc->port.pmf) { 12763 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12764 if (rc) { 12765 sc->state = BXE_STATE_ERROR; 12766 goto bxe_nic_load_error3; 12767 } 12768 } 12769 12770 sc->link_params.feature_config_flags &= 12771 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12772 12773 /* start fast path */ 12774 12775 /* Initialize Rx filter */ 12776 bxe_set_rx_mode(sc); 12777 12778 /* start the Tx */ 12779 switch (/* XXX load_mode */LOAD_OPEN) { 12780 case LOAD_NORMAL: 12781 case LOAD_OPEN: 12782 break; 12783 12784 case LOAD_DIAG: 12785 case LOAD_LOOPBACK_EXT: 12786 sc->state = BXE_STATE_DIAG; 12787 break; 12788 12789 default: 12790 break; 12791 } 12792 12793 if (sc->port.pmf) { 12794 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12795 } else { 12796 bxe_link_status_update(sc); 12797 } 12798 12799 /* start the periodic timer callout */ 12800 bxe_periodic_start(sc); 12801 12802 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12803 /* mark driver is loaded in shmem2 */ 12804 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12805 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12806 (val | 12807 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12808 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12809 } 12810 12811 /* wait for all pending SP commands to complete */ 12812 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12813 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12814 bxe_periodic_stop(sc); 12815 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12816 return (ENXIO); 12817 } 12818 12819 /* Tell the stack the driver is running! */ 12820 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12821 12822 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12823 12824 return (0); 12825 12826 bxe_nic_load_error3: 12827 12828 if (IS_PF(sc)) { 12829 bxe_int_disable_sync(sc, 1); 12830 12831 /* clean out queued objects */ 12832 bxe_squeeze_objects(sc); 12833 } 12834 12835 bxe_interrupt_detach(sc); 12836 12837 bxe_nic_load_error2: 12838 12839 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12840 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12841 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12842 } 12843 12844 sc->port.pmf = 0; 12845 12846 bxe_nic_load_error1: 12847 12848 /* clear pf_load status, as it was already set */ 12849 if (IS_PF(sc)) { 12850 bxe_clear_pf_load(sc); 12851 } 12852 12853 bxe_nic_load_error0: 12854 12855 bxe_free_fw_stats_mem(sc); 12856 bxe_free_fp_buffers(sc); 12857 bxe_free_mem(sc); 12858 12859 return (rc); 12860 } 12861 12862 static int 12863 bxe_init_locked(struct bxe_softc *sc) 12864 { 12865 int other_engine = SC_PATH(sc) ? 0 : 1; 12866 uint8_t other_load_status, load_status; 12867 uint8_t global = FALSE; 12868 int rc; 12869 12870 BXE_CORE_LOCK_ASSERT(sc); 12871 12872 /* check if the driver is already running */ 12873 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12874 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12875 return (0); 12876 } 12877 12878 if((sc->state == BXE_STATE_ERROR) && 12879 (sc->recovery_state == BXE_RECOVERY_FAILED)) { 12880 BLOGE(sc, "Initialization not done, " 12881 "as previous recovery failed." 12882 "Reboot/Power-cycle the system\n" ); 12883 return (ENXIO); 12884 } 12885 12886 12887 bxe_set_power_state(sc, PCI_PM_D0); 12888 12889 /* 12890 * If parity occurred during the unload, then attentions and/or 12891 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12892 * loaded on the current engine to complete the recovery. Parity recovery 12893 * is only relevant for PF driver. 12894 */ 12895 if (IS_PF(sc)) { 12896 other_load_status = bxe_get_load_status(sc, other_engine); 12897 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12898 12899 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12900 bxe_chk_parity_attn(sc, &global, TRUE)) { 12901 do { 12902 /* 12903 * If there are attentions and they are in global blocks, set 12904 * the GLOBAL_RESET bit regardless whether it will be this 12905 * function that will complete the recovery or not. 12906 */ 12907 if (global) { 12908 bxe_set_reset_global(sc); 12909 } 12910 12911 /* 12912 * Only the first function on the current engine should try 12913 * to recover in open. In case of attentions in global blocks 12914 * only the first in the chip should try to recover. 12915 */ 12916 if ((!load_status && (!global || !other_load_status)) && 12917 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12918 BLOGI(sc, "Recovered during init\n"); 12919 break; 12920 } 12921 12922 /* recovery has failed... */ 12923 bxe_set_power_state(sc, PCI_PM_D3hot); 12924 sc->recovery_state = BXE_RECOVERY_FAILED; 12925 12926 BLOGE(sc, "Recovery flow hasn't properly " 12927 "completed yet, try again later. " 12928 "If you still see this message after a " 12929 "few retries then power cycle is required.\n"); 12930 12931 rc = ENXIO; 12932 goto bxe_init_locked_done; 12933 } while (0); 12934 } 12935 } 12936 12937 sc->recovery_state = BXE_RECOVERY_DONE; 12938 12939 rc = bxe_nic_load(sc, LOAD_OPEN); 12940 12941 bxe_init_locked_done: 12942 12943 if (rc) { 12944 /* Tell the stack the driver is NOT running! */ 12945 BLOGE(sc, "Initialization failed, " 12946 "stack notified driver is NOT running!\n"); 12947 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12948 } 12949 12950 return (rc); 12951 } 12952 12953 static int 12954 bxe_stop_locked(struct bxe_softc *sc) 12955 { 12956 BXE_CORE_LOCK_ASSERT(sc); 12957 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12958 } 12959 12960 /* 12961 * Handles controller initialization when called from an unlocked routine. 12962 * ifconfig calls this function. 12963 * 12964 * Returns: 12965 * void 12966 */ 12967 static void 12968 bxe_init(void *xsc) 12969 { 12970 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12971 12972 BXE_CORE_LOCK(sc); 12973 bxe_init_locked(sc); 12974 BXE_CORE_UNLOCK(sc); 12975 } 12976 12977 static int 12978 bxe_init_ifnet(struct bxe_softc *sc) 12979 { 12980 if_t ifp; 12981 int capabilities; 12982 12983 /* ifconfig entrypoint for media type/status reporting */ 12984 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12985 bxe_ifmedia_update, 12986 bxe_ifmedia_status); 12987 12988 /* set the default interface values */ 12989 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12990 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 12991 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 12992 12993 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 12994 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 12995 12996 /* allocate the ifnet structure */ 12997 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 12998 BLOGE(sc, "Interface allocation failed!\n"); 12999 return (ENXIO); 13000 } 13001 13002 if_setsoftc(ifp, sc); 13003 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13004 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13005 if_setioctlfn(ifp, bxe_ioctl); 13006 if_setstartfn(ifp, bxe_tx_start); 13007 if_setgetcounterfn(ifp, bxe_get_counter); 13008 if_settransmitfn(ifp, bxe_tx_mq_start); 13009 if_setqflushfn(ifp, bxe_mq_flush); 13010 if_setinitfn(ifp, bxe_init); 13011 if_setmtu(ifp, sc->mtu); 13012 if_sethwassist(ifp, (CSUM_IP | 13013 CSUM_TCP | 13014 CSUM_UDP | 13015 CSUM_TSO | 13016 CSUM_TCP_IPV6 | 13017 CSUM_UDP_IPV6)); 13018 13019 capabilities = 13020 (IFCAP_VLAN_MTU | 13021 IFCAP_VLAN_HWTAGGING | 13022 IFCAP_VLAN_HWTSO | 13023 IFCAP_VLAN_HWFILTER | 13024 IFCAP_VLAN_HWCSUM | 13025 IFCAP_HWCSUM | 13026 IFCAP_JUMBO_MTU | 13027 IFCAP_LRO | 13028 IFCAP_TSO4 | 13029 IFCAP_TSO6 | 13030 IFCAP_WOL_MAGIC); 13031 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13032 if_setcapenable(ifp, if_getcapabilities(ifp)); 13033 if_setbaudrate(ifp, IF_Gbps(10)); 13034 /* XXX */ 13035 if_setsendqlen(ifp, sc->tx_ring_size); 13036 if_setsendqready(ifp); 13037 /* XXX */ 13038 13039 sc->ifp = ifp; 13040 13041 /* attach to the Ethernet interface list */ 13042 ether_ifattach(ifp, sc->link_params.mac_addr); 13043 13044 /* Attach driver debugnet methods. */ 13045 DEBUGNET_SET(ifp, bxe); 13046 13047 return (0); 13048 } 13049 13050 static void 13051 bxe_deallocate_bars(struct bxe_softc *sc) 13052 { 13053 int i; 13054 13055 for (i = 0; i < MAX_BARS; i++) { 13056 if (sc->bar[i].resource != NULL) { 13057 bus_release_resource(sc->dev, 13058 SYS_RES_MEMORY, 13059 sc->bar[i].rid, 13060 sc->bar[i].resource); 13061 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13062 i, PCIR_BAR(i)); 13063 } 13064 } 13065 } 13066 13067 static int 13068 bxe_allocate_bars(struct bxe_softc *sc) 13069 { 13070 u_int flags; 13071 int i; 13072 13073 memset(sc->bar, 0, sizeof(sc->bar)); 13074 13075 for (i = 0; i < MAX_BARS; i++) { 13076 13077 /* memory resources reside at BARs 0, 2, 4 */ 13078 /* Run `pciconf -lb` to see mappings */ 13079 if ((i != 0) && (i != 2) && (i != 4)) { 13080 continue; 13081 } 13082 13083 sc->bar[i].rid = PCIR_BAR(i); 13084 13085 flags = RF_ACTIVE; 13086 if (i == 0) { 13087 flags |= RF_SHAREABLE; 13088 } 13089 13090 if ((sc->bar[i].resource = 13091 bus_alloc_resource_any(sc->dev, 13092 SYS_RES_MEMORY, 13093 &sc->bar[i].rid, 13094 flags)) == NULL) { 13095 return (0); 13096 } 13097 13098 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13099 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13100 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13101 13102 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n", 13103 i, PCIR_BAR(i), 13104 rman_get_start(sc->bar[i].resource), 13105 rman_get_end(sc->bar[i].resource), 13106 rman_get_size(sc->bar[i].resource), 13107 (uintmax_t)sc->bar[i].kva); 13108 } 13109 13110 return (0); 13111 } 13112 13113 static void 13114 bxe_get_function_num(struct bxe_softc *sc) 13115 { 13116 uint32_t val = 0; 13117 13118 /* 13119 * Read the ME register to get the function number. The ME register 13120 * holds the relative-function number and absolute-function number. The 13121 * absolute-function number appears only in E2 and above. Before that 13122 * these bits always contained zero, therefore we cannot blindly use them. 13123 */ 13124 13125 val = REG_RD(sc, BAR_ME_REGISTER); 13126 13127 sc->pfunc_rel = 13128 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13129 sc->path_id = 13130 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13131 13132 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13133 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13134 } else { 13135 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13136 } 13137 13138 BLOGD(sc, DBG_LOAD, 13139 "Relative function %d, Absolute function %d, Path %d\n", 13140 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13141 } 13142 13143 static uint32_t 13144 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13145 { 13146 uint32_t shmem2_size; 13147 uint32_t offset; 13148 uint32_t mf_cfg_offset_value; 13149 13150 /* Non 57712 */ 13151 offset = (SHMEM_RD(sc, func_mb) + 13152 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13153 13154 /* 57712 plus */ 13155 if (sc->devinfo.shmem2_base != 0) { 13156 shmem2_size = SHMEM2_RD(sc, size); 13157 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13158 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13159 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13160 offset = mf_cfg_offset_value; 13161 } 13162 } 13163 } 13164 13165 return (offset); 13166 } 13167 13168 static uint32_t 13169 bxe_pcie_capability_read(struct bxe_softc *sc, 13170 int reg, 13171 int width) 13172 { 13173 int pcie_reg; 13174 13175 /* ensure PCIe capability is enabled */ 13176 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13177 if (pcie_reg != 0) { 13178 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13179 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13180 } 13181 } 13182 13183 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13184 13185 return (0); 13186 } 13187 13188 static uint8_t 13189 bxe_is_pcie_pending(struct bxe_softc *sc) 13190 { 13191 return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) & 13192 PCIEM_STA_TRANSACTION_PND); 13193 } 13194 13195 /* 13196 * Walk the PCI capabiites list for the device to find what features are 13197 * supported. These capabilites may be enabled/disabled by firmware so it's 13198 * best to walk the list rather than make assumptions. 13199 */ 13200 static void 13201 bxe_probe_pci_caps(struct bxe_softc *sc) 13202 { 13203 uint16_t link_status; 13204 int reg; 13205 13206 /* check if PCI Power Management is enabled */ 13207 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13208 if (reg != 0) { 13209 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13210 13211 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13212 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13213 } 13214 } 13215 13216 link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2); 13217 13218 /* handle PCIe 2.0 workarounds for 57710 */ 13219 if (CHIP_IS_E1(sc)) { 13220 /* workaround for 57710 errata E4_57710_27462 */ 13221 sc->devinfo.pcie_link_speed = 13222 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13223 13224 /* workaround for 57710 errata E4_57710_27488 */ 13225 sc->devinfo.pcie_link_width = 13226 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13227 if (sc->devinfo.pcie_link_speed > 1) { 13228 sc->devinfo.pcie_link_width = 13229 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1; 13230 } 13231 } else { 13232 sc->devinfo.pcie_link_speed = 13233 (link_status & PCIEM_LINK_STA_SPEED); 13234 sc->devinfo.pcie_link_width = 13235 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13236 } 13237 13238 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13239 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13240 13241 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13242 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13243 13244 /* check if MSI capability is enabled */ 13245 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13246 if (reg != 0) { 13247 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13248 13249 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13250 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13251 } 13252 } 13253 13254 /* check if MSI-X capability is enabled */ 13255 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13256 if (reg != 0) { 13257 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13258 13259 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13260 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13261 } 13262 } 13263 } 13264 13265 static int 13266 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13267 { 13268 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13269 uint32_t val; 13270 13271 /* get the outer vlan if we're in switch-dependent mode */ 13272 13273 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13274 mf_info->ext_id = (uint16_t)val; 13275 13276 mf_info->multi_vnics_mode = 1; 13277 13278 if (!VALID_OVLAN(mf_info->ext_id)) { 13279 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13280 return (1); 13281 } 13282 13283 /* get the capabilities */ 13284 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13285 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13286 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13287 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13288 FUNC_MF_CFG_PROTOCOL_FCOE) { 13289 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13290 } else { 13291 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13292 } 13293 13294 mf_info->vnics_per_port = 13295 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13296 13297 return (0); 13298 } 13299 13300 static uint32_t 13301 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13302 { 13303 uint32_t retval = 0; 13304 uint32_t val; 13305 13306 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13307 13308 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13309 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13310 retval |= MF_PROTO_SUPPORT_ETHERNET; 13311 } 13312 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13313 retval |= MF_PROTO_SUPPORT_ISCSI; 13314 } 13315 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13316 retval |= MF_PROTO_SUPPORT_FCOE; 13317 } 13318 } 13319 13320 return (retval); 13321 } 13322 13323 static int 13324 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13325 { 13326 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13327 uint32_t val; 13328 13329 /* 13330 * There is no outer vlan if we're in switch-independent mode. 13331 * If the mac is valid then assume multi-function. 13332 */ 13333 13334 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13335 13336 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13337 13338 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13339 13340 mf_info->vnics_per_port = 13341 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13342 13343 return (0); 13344 } 13345 13346 static int 13347 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13348 { 13349 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13350 uint32_t e1hov_tag; 13351 uint32_t func_config; 13352 uint32_t niv_config; 13353 13354 mf_info->multi_vnics_mode = 1; 13355 13356 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13357 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13358 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13359 13360 mf_info->ext_id = 13361 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13362 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13363 13364 mf_info->default_vlan = 13365 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13366 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13367 13368 mf_info->niv_allowed_priorities = 13369 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13370 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13371 13372 mf_info->niv_default_cos = 13373 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13374 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13375 13376 mf_info->afex_vlan_mode = 13377 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13378 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13379 13380 mf_info->niv_mba_enabled = 13381 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13382 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13383 13384 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13385 13386 mf_info->vnics_per_port = 13387 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13388 13389 return (0); 13390 } 13391 13392 static int 13393 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13394 { 13395 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13396 uint32_t mf_cfg1; 13397 uint32_t mf_cfg2; 13398 uint32_t ovlan1; 13399 uint32_t ovlan2; 13400 uint8_t i, j; 13401 13402 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13403 SC_PORT(sc)); 13404 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13405 mf_info->mf_config[SC_VN(sc)]); 13406 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13407 mf_info->multi_vnics_mode); 13408 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13409 mf_info->vnics_per_port); 13410 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13411 mf_info->ext_id); 13412 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13413 mf_info->min_bw[0], mf_info->min_bw[1], 13414 mf_info->min_bw[2], mf_info->min_bw[3]); 13415 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13416 mf_info->max_bw[0], mf_info->max_bw[1], 13417 mf_info->max_bw[2], mf_info->max_bw[3]); 13418 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13419 sc->mac_addr_str); 13420 13421 /* various MF mode sanity checks... */ 13422 13423 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13424 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13425 SC_PORT(sc)); 13426 return (1); 13427 } 13428 13429 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13430 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13431 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13432 return (1); 13433 } 13434 13435 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13436 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13437 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13438 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13439 SC_VN(sc), OVLAN(sc)); 13440 return (1); 13441 } 13442 13443 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13444 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13445 mf_info->multi_vnics_mode, OVLAN(sc)); 13446 return (1); 13447 } 13448 13449 /* 13450 * Verify all functions are either MF or SF mode. If MF, make sure 13451 * sure that all non-hidden functions have a valid ovlan. If SF, 13452 * make sure that all non-hidden functions have an invalid ovlan. 13453 */ 13454 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13455 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13456 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13457 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13458 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13459 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13460 BLOGE(sc, "mf_mode=SD function %d MF config " 13461 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13462 i, mf_info->multi_vnics_mode, ovlan1); 13463 return (1); 13464 } 13465 } 13466 13467 /* Verify all funcs on the same port each have a different ovlan. */ 13468 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13469 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13470 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13471 /* iterate from the next function on the port to the max func */ 13472 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13473 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13474 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13475 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13476 VALID_OVLAN(ovlan1) && 13477 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13478 VALID_OVLAN(ovlan2) && 13479 (ovlan1 == ovlan2)) { 13480 BLOGE(sc, "mf_mode=SD functions %d and %d " 13481 "have the same ovlan (%d)\n", 13482 i, j, ovlan1); 13483 return (1); 13484 } 13485 } 13486 } 13487 } /* MULTI_FUNCTION_SD */ 13488 13489 return (0); 13490 } 13491 13492 static int 13493 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13494 { 13495 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13496 uint32_t val, mac_upper; 13497 uint8_t i, vnic; 13498 13499 /* initialize mf_info defaults */ 13500 mf_info->vnics_per_port = 1; 13501 mf_info->multi_vnics_mode = FALSE; 13502 mf_info->path_has_ovlan = FALSE; 13503 mf_info->mf_mode = SINGLE_FUNCTION; 13504 13505 if (!CHIP_IS_MF_CAP(sc)) { 13506 return (0); 13507 } 13508 13509 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13510 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13511 return (1); 13512 } 13513 13514 /* get the MF mode (switch dependent / independent / single-function) */ 13515 13516 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13517 13518 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13519 { 13520 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13521 13522 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13523 13524 /* check for legal upper mac bytes */ 13525 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13526 mf_info->mf_mode = MULTI_FUNCTION_SI; 13527 } else { 13528 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13529 } 13530 13531 break; 13532 13533 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13534 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13535 13536 /* get outer vlan configuration */ 13537 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13538 13539 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13540 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13541 mf_info->mf_mode = MULTI_FUNCTION_SD; 13542 } else { 13543 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13544 } 13545 13546 break; 13547 13548 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13549 13550 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13551 return (0); 13552 13553 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13554 13555 /* 13556 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13557 * and the MAC address is valid. 13558 */ 13559 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13560 13561 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13562 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13563 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13564 } else { 13565 BLOGE(sc, "Invalid config for AFEX mode\n"); 13566 } 13567 13568 break; 13569 13570 default: 13571 13572 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13573 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13574 13575 return (1); 13576 } 13577 13578 /* set path mf_mode (which could be different than function mf_mode) */ 13579 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13580 mf_info->path_has_ovlan = TRUE; 13581 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13582 /* 13583 * Decide on path multi vnics mode. If we're not in MF mode and in 13584 * 4-port mode, this is good enough to check vnic-0 of the other port 13585 * on the same path 13586 */ 13587 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13588 uint8_t other_port = !(PORT_ID(sc) & 1); 13589 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13590 13591 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13592 13593 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13594 } 13595 } 13596 13597 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13598 /* invalid MF config */ 13599 if (SC_VN(sc) >= 1) { 13600 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13601 return (1); 13602 } 13603 13604 return (0); 13605 } 13606 13607 /* get the MF configuration */ 13608 mf_info->mf_config[SC_VN(sc)] = 13609 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13610 13611 switch(mf_info->mf_mode) 13612 { 13613 case MULTI_FUNCTION_SD: 13614 13615 bxe_get_shmem_mf_cfg_info_sd(sc); 13616 break; 13617 13618 case MULTI_FUNCTION_SI: 13619 13620 bxe_get_shmem_mf_cfg_info_si(sc); 13621 break; 13622 13623 case MULTI_FUNCTION_AFEX: 13624 13625 bxe_get_shmem_mf_cfg_info_niv(sc); 13626 break; 13627 13628 default: 13629 13630 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13631 mf_info->mf_mode); 13632 return (1); 13633 } 13634 13635 /* get the congestion management parameters */ 13636 13637 vnic = 0; 13638 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13639 /* get min/max bw */ 13640 val = MFCFG_RD(sc, func_mf_config[i].config); 13641 mf_info->min_bw[vnic] = 13642 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13643 mf_info->max_bw[vnic] = 13644 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13645 vnic++; 13646 } 13647 13648 return (bxe_check_valid_mf_cfg(sc)); 13649 } 13650 13651 static int 13652 bxe_get_shmem_info(struct bxe_softc *sc) 13653 { 13654 int port; 13655 uint32_t mac_hi, mac_lo, val; 13656 13657 port = SC_PORT(sc); 13658 mac_hi = mac_lo = 0; 13659 13660 sc->link_params.sc = sc; 13661 sc->link_params.port = port; 13662 13663 /* get the hardware config info */ 13664 sc->devinfo.hw_config = 13665 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13666 sc->devinfo.hw_config2 = 13667 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13668 13669 sc->link_params.hw_led_mode = 13670 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13671 SHARED_HW_CFG_LED_MODE_SHIFT); 13672 13673 /* get the port feature config */ 13674 sc->port.config = 13675 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13676 13677 /* get the link params */ 13678 sc->link_params.speed_cap_mask[0] = 13679 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13680 sc->link_params.speed_cap_mask[1] = 13681 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13682 13683 /* get the lane config */ 13684 sc->link_params.lane_config = 13685 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13686 13687 /* get the link config */ 13688 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13689 sc->port.link_config[ELINK_INT_PHY] = val; 13690 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13691 sc->port.link_config[ELINK_EXT_PHY1] = 13692 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13693 13694 /* get the override preemphasis flag and enable it or turn it off */ 13695 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13696 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13697 sc->link_params.feature_config_flags |= 13698 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13699 } else { 13700 sc->link_params.feature_config_flags &= 13701 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13702 } 13703 13704 /* get the initial value of the link params */ 13705 sc->link_params.multi_phy_config = 13706 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13707 13708 /* get external phy info */ 13709 sc->port.ext_phy_config = 13710 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13711 13712 /* get the multifunction configuration */ 13713 bxe_get_mf_cfg_info(sc); 13714 13715 /* get the mac address */ 13716 if (IS_MF(sc)) { 13717 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13718 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13719 } else { 13720 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13721 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13722 } 13723 13724 if ((mac_lo == 0) && (mac_hi == 0)) { 13725 *sc->mac_addr_str = 0; 13726 BLOGE(sc, "No Ethernet address programmed!\n"); 13727 } else { 13728 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13729 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13730 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13731 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13732 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13733 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13734 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13735 "%02x:%02x:%02x:%02x:%02x:%02x", 13736 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13737 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13738 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13739 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13740 } 13741 13742 return (0); 13743 } 13744 13745 static void 13746 bxe_get_tunable_params(struct bxe_softc *sc) 13747 { 13748 /* sanity checks */ 13749 13750 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13751 (bxe_interrupt_mode != INTR_MODE_MSI) && 13752 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13753 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13754 bxe_interrupt_mode = INTR_MODE_MSIX; 13755 } 13756 13757 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13758 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13759 bxe_queue_count = 0; 13760 } 13761 13762 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13763 if (bxe_max_rx_bufs == 0) { 13764 bxe_max_rx_bufs = RX_BD_USABLE; 13765 } else { 13766 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13767 bxe_max_rx_bufs = 2048; 13768 } 13769 } 13770 13771 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13772 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13773 bxe_hc_rx_ticks = 25; 13774 } 13775 13776 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13777 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13778 bxe_hc_tx_ticks = 50; 13779 } 13780 13781 if (bxe_max_aggregation_size == 0) { 13782 bxe_max_aggregation_size = TPA_AGG_SIZE; 13783 } 13784 13785 if (bxe_max_aggregation_size > 0xffff) { 13786 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13787 bxe_max_aggregation_size); 13788 bxe_max_aggregation_size = TPA_AGG_SIZE; 13789 } 13790 13791 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13792 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13793 bxe_mrrs = -1; 13794 } 13795 13796 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13797 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13798 bxe_autogreeen = 0; 13799 } 13800 13801 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13802 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13803 bxe_udp_rss = 0; 13804 } 13805 13806 /* pull in user settings */ 13807 13808 sc->interrupt_mode = bxe_interrupt_mode; 13809 sc->max_rx_bufs = bxe_max_rx_bufs; 13810 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13811 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13812 sc->max_aggregation_size = bxe_max_aggregation_size; 13813 sc->mrrs = bxe_mrrs; 13814 sc->autogreeen = bxe_autogreeen; 13815 sc->udp_rss = bxe_udp_rss; 13816 13817 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13818 sc->num_queues = 1; 13819 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13820 sc->num_queues = 13821 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13822 MAX_RSS_CHAINS); 13823 if (sc->num_queues > mp_ncpus) { 13824 sc->num_queues = mp_ncpus; 13825 } 13826 } 13827 13828 BLOGD(sc, DBG_LOAD, 13829 "User Config: " 13830 "debug=0x%lx " 13831 "interrupt_mode=%d " 13832 "queue_count=%d " 13833 "hc_rx_ticks=%d " 13834 "hc_tx_ticks=%d " 13835 "rx_budget=%d " 13836 "max_aggregation_size=%d " 13837 "mrrs=%d " 13838 "autogreeen=%d " 13839 "udp_rss=%d\n", 13840 bxe_debug, 13841 sc->interrupt_mode, 13842 sc->num_queues, 13843 sc->hc_rx_ticks, 13844 sc->hc_tx_ticks, 13845 bxe_rx_budget, 13846 sc->max_aggregation_size, 13847 sc->mrrs, 13848 sc->autogreeen, 13849 sc->udp_rss); 13850 } 13851 13852 static int 13853 bxe_media_detect(struct bxe_softc *sc) 13854 { 13855 int port_type; 13856 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13857 13858 switch (sc->link_params.phy[phy_idx].media_type) { 13859 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13860 case ELINK_ETH_PHY_XFP_FIBER: 13861 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13862 sc->media = IFM_10G_SR; 13863 port_type = PORT_FIBRE; 13864 break; 13865 case ELINK_ETH_PHY_SFP_1G_FIBER: 13866 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13867 sc->media = IFM_1000_SX; 13868 port_type = PORT_FIBRE; 13869 break; 13870 case ELINK_ETH_PHY_KR: 13871 case ELINK_ETH_PHY_CX4: 13872 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13873 sc->media = IFM_10G_CX4; 13874 port_type = PORT_FIBRE; 13875 break; 13876 case ELINK_ETH_PHY_DA_TWINAX: 13877 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13878 sc->media = IFM_10G_TWINAX; 13879 port_type = PORT_DA; 13880 break; 13881 case ELINK_ETH_PHY_BASE_T: 13882 if (sc->link_params.speed_cap_mask[0] & 13883 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13884 BLOGI(sc, "Found 10GBase-T media.\n"); 13885 sc->media = IFM_10G_T; 13886 port_type = PORT_TP; 13887 } else { 13888 BLOGI(sc, "Found 1000Base-T media.\n"); 13889 sc->media = IFM_1000_T; 13890 port_type = PORT_TP; 13891 } 13892 break; 13893 case ELINK_ETH_PHY_NOT_PRESENT: 13894 BLOGI(sc, "Media not present.\n"); 13895 sc->media = 0; 13896 port_type = PORT_OTHER; 13897 break; 13898 case ELINK_ETH_PHY_UNSPECIFIED: 13899 default: 13900 BLOGI(sc, "Unknown media!\n"); 13901 sc->media = 0; 13902 port_type = PORT_OTHER; 13903 break; 13904 } 13905 return port_type; 13906 } 13907 13908 #define GET_FIELD(value, fname) \ 13909 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13910 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13911 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13912 13913 static int 13914 bxe_get_igu_cam_info(struct bxe_softc *sc) 13915 { 13916 int pfid = SC_FUNC(sc); 13917 int igu_sb_id; 13918 uint32_t val; 13919 uint8_t fid, igu_sb_cnt = 0; 13920 13921 sc->igu_base_sb = 0xff; 13922 13923 if (CHIP_INT_MODE_IS_BC(sc)) { 13924 int vn = SC_VN(sc); 13925 igu_sb_cnt = sc->igu_sb_cnt; 13926 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13927 FP_SB_MAX_E1x); 13928 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13929 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13930 return (0); 13931 } 13932 13933 /* IGU in normal mode - read CAM */ 13934 for (igu_sb_id = 0; 13935 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13936 igu_sb_id++) { 13937 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13938 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13939 continue; 13940 } 13941 fid = IGU_FID(val); 13942 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13943 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13944 continue; 13945 } 13946 if (IGU_VEC(val) == 0) { 13947 /* default status block */ 13948 sc->igu_dsb_id = igu_sb_id; 13949 } else { 13950 if (sc->igu_base_sb == 0xff) { 13951 sc->igu_base_sb = igu_sb_id; 13952 } 13953 igu_sb_cnt++; 13954 } 13955 } 13956 } 13957 13958 /* 13959 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13960 * that number of CAM entries will not be equal to the value advertised in 13961 * PCI. Driver should use the minimal value of both as the actual status 13962 * block count 13963 */ 13964 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13965 13966 if (igu_sb_cnt == 0) { 13967 BLOGE(sc, "CAM configuration error\n"); 13968 return (-1); 13969 } 13970 13971 return (0); 13972 } 13973 13974 /* 13975 * Gather various information from the device config space, the device itself, 13976 * shmem, and the user input. 13977 */ 13978 static int 13979 bxe_get_device_info(struct bxe_softc *sc) 13980 { 13981 uint32_t val; 13982 int rc; 13983 13984 /* Get the data for the device */ 13985 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13986 sc->devinfo.device_id = pci_get_device(sc->dev); 13987 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13988 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13989 13990 /* get the chip revision (chip metal comes from pci config space) */ 13991 sc->devinfo.chip_id = 13992 sc->link_params.chip_id = 13993 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 13994 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 13995 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 13996 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 13997 13998 /* force 57811 according to MISC register */ 13999 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14000 if (CHIP_IS_57810(sc)) { 14001 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14002 (sc->devinfo.chip_id & 0x0000ffff)); 14003 } else if (CHIP_IS_57810_MF(sc)) { 14004 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14005 (sc->devinfo.chip_id & 0x0000ffff)); 14006 } 14007 sc->devinfo.chip_id |= 0x1; 14008 } 14009 14010 BLOGD(sc, DBG_LOAD, 14011 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14012 sc->devinfo.chip_id, 14013 ((sc->devinfo.chip_id >> 16) & 0xffff), 14014 ((sc->devinfo.chip_id >> 12) & 0xf), 14015 ((sc->devinfo.chip_id >> 4) & 0xff), 14016 ((sc->devinfo.chip_id >> 0) & 0xf)); 14017 14018 val = (REG_RD(sc, 0x2874) & 0x55); 14019 if ((sc->devinfo.chip_id & 0x1) || 14020 (CHIP_IS_E1(sc) && val) || 14021 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14022 sc->flags |= BXE_ONE_PORT_FLAG; 14023 BLOGD(sc, DBG_LOAD, "single port device\n"); 14024 } 14025 14026 /* set the doorbell size */ 14027 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14028 14029 /* determine whether the device is in 2 port or 4 port mode */ 14030 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14031 if (CHIP_IS_E2E3(sc)) { 14032 /* 14033 * Read port4mode_en_ovwr[0]: 14034 * If 1, four port mode is in port4mode_en_ovwr[1]. 14035 * If 0, four port mode is in port4mode_en[0]. 14036 */ 14037 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14038 if (val & 1) { 14039 val = ((val >> 1) & 1); 14040 } else { 14041 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14042 } 14043 14044 sc->devinfo.chip_port_mode = 14045 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14046 14047 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14048 } 14049 14050 /* get the function and path info for the device */ 14051 bxe_get_function_num(sc); 14052 14053 /* get the shared memory base address */ 14054 sc->devinfo.shmem_base = 14055 sc->link_params.shmem_base = 14056 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14057 sc->devinfo.shmem2_base = 14058 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14059 MISC_REG_GENERIC_CR_0)); 14060 14061 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14062 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14063 14064 if (!sc->devinfo.shmem_base) { 14065 /* this should ONLY prevent upcoming shmem reads */ 14066 BLOGI(sc, "MCP not active\n"); 14067 sc->flags |= BXE_NO_MCP_FLAG; 14068 return (0); 14069 } 14070 14071 /* make sure the shared memory contents are valid */ 14072 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14073 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14074 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14075 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14076 return (0); 14077 } 14078 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14079 14080 /* get the bootcode version */ 14081 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14082 snprintf(sc->devinfo.bc_ver_str, 14083 sizeof(sc->devinfo.bc_ver_str), 14084 "%d.%d.%d", 14085 ((sc->devinfo.bc_ver >> 24) & 0xff), 14086 ((sc->devinfo.bc_ver >> 16) & 0xff), 14087 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14088 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14089 14090 /* get the bootcode shmem address */ 14091 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14092 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14093 14094 /* clean indirect addresses as they're not used */ 14095 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14096 if (IS_PF(sc)) { 14097 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14098 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14099 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14100 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14101 if (CHIP_IS_E1x(sc)) { 14102 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14103 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14104 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14105 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14106 } 14107 14108 /* 14109 * Enable internal target-read (in case we are probed after PF 14110 * FLR). Must be done prior to any BAR read access. Only for 14111 * 57712 and up 14112 */ 14113 if (!CHIP_IS_E1x(sc)) { 14114 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14115 } 14116 } 14117 14118 /* get the nvram size */ 14119 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14120 sc->devinfo.flash_size = 14121 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14122 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14123 14124 /* get PCI capabilites */ 14125 bxe_probe_pci_caps(sc); 14126 14127 bxe_set_power_state(sc, PCI_PM_D0); 14128 14129 /* get various configuration parameters from shmem */ 14130 bxe_get_shmem_info(sc); 14131 14132 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14133 val = pci_read_config(sc->dev, 14134 (sc->devinfo.pcie_msix_cap_reg + 14135 PCIR_MSIX_CTRL), 14136 2); 14137 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14138 } else { 14139 sc->igu_sb_cnt = 1; 14140 } 14141 14142 sc->igu_base_addr = BAR_IGU_INTMEM; 14143 14144 /* initialize IGU parameters */ 14145 if (CHIP_IS_E1x(sc)) { 14146 sc->devinfo.int_block = INT_BLOCK_HC; 14147 sc->igu_dsb_id = DEF_SB_IGU_ID; 14148 sc->igu_base_sb = 0; 14149 } else { 14150 sc->devinfo.int_block = INT_BLOCK_IGU; 14151 14152 /* do not allow device reset during IGU info preocessing */ 14153 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14154 14155 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14156 14157 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14158 int tout = 5000; 14159 14160 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14161 14162 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14163 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14164 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14165 14166 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14167 tout--; 14168 DELAY(1000); 14169 } 14170 14171 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14172 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14173 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14174 return (-1); 14175 } 14176 } 14177 14178 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14179 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14180 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14181 } else { 14182 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14183 } 14184 14185 rc = bxe_get_igu_cam_info(sc); 14186 14187 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14188 14189 if (rc) { 14190 return (rc); 14191 } 14192 } 14193 14194 /* 14195 * Get base FW non-default (fast path) status block ID. This value is 14196 * used to initialize the fw_sb_id saved on the fp/queue structure to 14197 * determine the id used by the FW. 14198 */ 14199 if (CHIP_IS_E1x(sc)) { 14200 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14201 } else { 14202 /* 14203 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14204 * the same queue are indicated on the same IGU SB). So we prefer 14205 * FW and IGU SBs to be the same value. 14206 */ 14207 sc->base_fw_ndsb = sc->igu_base_sb; 14208 } 14209 14210 BLOGD(sc, DBG_LOAD, 14211 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14212 sc->igu_dsb_id, sc->igu_base_sb, 14213 sc->igu_sb_cnt, sc->base_fw_ndsb); 14214 14215 elink_phy_probe(&sc->link_params); 14216 14217 return (0); 14218 } 14219 14220 static void 14221 bxe_link_settings_supported(struct bxe_softc *sc, 14222 uint32_t switch_cfg) 14223 { 14224 uint32_t cfg_size = 0; 14225 uint32_t idx; 14226 uint8_t port = SC_PORT(sc); 14227 14228 /* aggregation of supported attributes of all external phys */ 14229 sc->port.supported[0] = 0; 14230 sc->port.supported[1] = 0; 14231 14232 switch (sc->link_params.num_phys) { 14233 case 1: 14234 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14235 cfg_size = 1; 14236 break; 14237 case 2: 14238 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14239 cfg_size = 1; 14240 break; 14241 case 3: 14242 if (sc->link_params.multi_phy_config & 14243 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14244 sc->port.supported[1] = 14245 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14246 sc->port.supported[0] = 14247 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14248 } else { 14249 sc->port.supported[0] = 14250 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14251 sc->port.supported[1] = 14252 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14253 } 14254 cfg_size = 2; 14255 break; 14256 } 14257 14258 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14259 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14260 SHMEM_RD(sc, 14261 dev_info.port_hw_config[port].external_phy_config), 14262 SHMEM_RD(sc, 14263 dev_info.port_hw_config[port].external_phy_config2)); 14264 return; 14265 } 14266 14267 if (CHIP_IS_E3(sc)) 14268 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14269 else { 14270 switch (switch_cfg) { 14271 case ELINK_SWITCH_CFG_1G: 14272 sc->port.phy_addr = 14273 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14274 break; 14275 case ELINK_SWITCH_CFG_10G: 14276 sc->port.phy_addr = 14277 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14278 break; 14279 default: 14280 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14281 sc->port.link_config[0]); 14282 return; 14283 } 14284 } 14285 14286 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14287 14288 /* mask what we support according to speed_cap_mask per configuration */ 14289 for (idx = 0; idx < cfg_size; idx++) { 14290 if (!(sc->link_params.speed_cap_mask[idx] & 14291 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14292 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14293 } 14294 14295 if (!(sc->link_params.speed_cap_mask[idx] & 14296 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14297 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14298 } 14299 14300 if (!(sc->link_params.speed_cap_mask[idx] & 14301 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14302 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14303 } 14304 14305 if (!(sc->link_params.speed_cap_mask[idx] & 14306 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14307 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14308 } 14309 14310 if (!(sc->link_params.speed_cap_mask[idx] & 14311 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14312 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14313 } 14314 14315 if (!(sc->link_params.speed_cap_mask[idx] & 14316 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14317 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14318 } 14319 14320 if (!(sc->link_params.speed_cap_mask[idx] & 14321 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14322 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14323 } 14324 14325 if (!(sc->link_params.speed_cap_mask[idx] & 14326 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14327 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14328 } 14329 } 14330 14331 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14332 sc->port.supported[0], sc->port.supported[1]); 14333 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14334 sc->port.supported[0], sc->port.supported[1]); 14335 } 14336 14337 static void 14338 bxe_link_settings_requested(struct bxe_softc *sc) 14339 { 14340 uint32_t link_config; 14341 uint32_t idx; 14342 uint32_t cfg_size = 0; 14343 14344 sc->port.advertising[0] = 0; 14345 sc->port.advertising[1] = 0; 14346 14347 switch (sc->link_params.num_phys) { 14348 case 1: 14349 case 2: 14350 cfg_size = 1; 14351 break; 14352 case 3: 14353 cfg_size = 2; 14354 break; 14355 } 14356 14357 for (idx = 0; idx < cfg_size; idx++) { 14358 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14359 link_config = sc->port.link_config[idx]; 14360 14361 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14362 case PORT_FEATURE_LINK_SPEED_AUTO: 14363 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14364 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14365 sc->port.advertising[idx] |= sc->port.supported[idx]; 14366 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14367 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14368 sc->port.advertising[idx] |= 14369 (ELINK_SUPPORTED_100baseT_Half | 14370 ELINK_SUPPORTED_100baseT_Full); 14371 } else { 14372 /* force 10G, no AN */ 14373 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14374 sc->port.advertising[idx] |= 14375 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14376 continue; 14377 } 14378 break; 14379 14380 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14381 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14382 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14383 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14384 ADVERTISED_TP); 14385 } else { 14386 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14387 "speed_cap_mask=0x%08x\n", 14388 link_config, sc->link_params.speed_cap_mask[idx]); 14389 return; 14390 } 14391 break; 14392 14393 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14394 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14395 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14396 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14397 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14398 ADVERTISED_TP); 14399 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14400 sc->link_params.req_duplex[idx]); 14401 } else { 14402 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14403 "speed_cap_mask=0x%08x\n", 14404 link_config, sc->link_params.speed_cap_mask[idx]); 14405 return; 14406 } 14407 break; 14408 14409 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14410 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14411 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14412 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14413 ADVERTISED_TP); 14414 } else { 14415 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14416 "speed_cap_mask=0x%08x\n", 14417 link_config, sc->link_params.speed_cap_mask[idx]); 14418 return; 14419 } 14420 break; 14421 14422 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14423 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14424 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14425 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14426 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14427 ADVERTISED_TP); 14428 } else { 14429 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14430 "speed_cap_mask=0x%08x\n", 14431 link_config, sc->link_params.speed_cap_mask[idx]); 14432 return; 14433 } 14434 break; 14435 14436 case PORT_FEATURE_LINK_SPEED_1G: 14437 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14438 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14439 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14440 ADVERTISED_TP); 14441 } else { 14442 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14443 "speed_cap_mask=0x%08x\n", 14444 link_config, sc->link_params.speed_cap_mask[idx]); 14445 return; 14446 } 14447 break; 14448 14449 case PORT_FEATURE_LINK_SPEED_2_5G: 14450 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14451 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14452 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14453 ADVERTISED_TP); 14454 } else { 14455 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14456 "speed_cap_mask=0x%08x\n", 14457 link_config, sc->link_params.speed_cap_mask[idx]); 14458 return; 14459 } 14460 break; 14461 14462 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14463 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14464 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14465 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14466 ADVERTISED_FIBRE); 14467 } else { 14468 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14469 "speed_cap_mask=0x%08x\n", 14470 link_config, sc->link_params.speed_cap_mask[idx]); 14471 return; 14472 } 14473 break; 14474 14475 case PORT_FEATURE_LINK_SPEED_20G: 14476 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14477 break; 14478 14479 default: 14480 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14481 "speed_cap_mask=0x%08x\n", 14482 link_config, sc->link_params.speed_cap_mask[idx]); 14483 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14484 sc->port.advertising[idx] = sc->port.supported[idx]; 14485 break; 14486 } 14487 14488 sc->link_params.req_flow_ctrl[idx] = 14489 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14490 14491 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14492 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14493 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14494 } else { 14495 bxe_set_requested_fc(sc); 14496 } 14497 } 14498 14499 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14500 "req_flow_ctrl=0x%x advertising=0x%x\n", 14501 sc->link_params.req_line_speed[idx], 14502 sc->link_params.req_duplex[idx], 14503 sc->link_params.req_flow_ctrl[idx], 14504 sc->port.advertising[idx]); 14505 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14506 "advertising=0x%x\n", 14507 sc->link_params.req_line_speed[idx], 14508 sc->link_params.req_duplex[idx], 14509 sc->port.advertising[idx]); 14510 } 14511 } 14512 14513 static void 14514 bxe_get_phy_info(struct bxe_softc *sc) 14515 { 14516 uint8_t port = SC_PORT(sc); 14517 uint32_t config = sc->port.config; 14518 uint32_t eee_mode; 14519 14520 /* shmem data already read in bxe_get_shmem_info() */ 14521 14522 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14523 "link_config0=0x%08x\n", 14524 sc->link_params.lane_config, 14525 sc->link_params.speed_cap_mask[0], 14526 sc->port.link_config[0]); 14527 14528 14529 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14530 bxe_link_settings_requested(sc); 14531 14532 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14533 sc->link_params.feature_config_flags |= 14534 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14535 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14536 sc->link_params.feature_config_flags &= 14537 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14538 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14539 sc->link_params.feature_config_flags |= 14540 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14541 } 14542 14543 /* configure link feature according to nvram value */ 14544 eee_mode = 14545 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14546 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14547 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14548 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14549 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14550 ELINK_EEE_MODE_ENABLE_LPI | 14551 ELINK_EEE_MODE_OUTPUT_TIME); 14552 } else { 14553 sc->link_params.eee_mode = 0; 14554 } 14555 14556 /* get the media type */ 14557 bxe_media_detect(sc); 14558 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14559 } 14560 14561 static void 14562 bxe_get_params(struct bxe_softc *sc) 14563 { 14564 /* get user tunable params */ 14565 bxe_get_tunable_params(sc); 14566 14567 /* select the RX and TX ring sizes */ 14568 sc->tx_ring_size = TX_BD_USABLE; 14569 sc->rx_ring_size = RX_BD_USABLE; 14570 14571 /* XXX disable WoL */ 14572 sc->wol = 0; 14573 } 14574 14575 static void 14576 bxe_set_modes_bitmap(struct bxe_softc *sc) 14577 { 14578 uint32_t flags = 0; 14579 14580 if (CHIP_REV_IS_FPGA(sc)) { 14581 SET_FLAGS(flags, MODE_FPGA); 14582 } else if (CHIP_REV_IS_EMUL(sc)) { 14583 SET_FLAGS(flags, MODE_EMUL); 14584 } else { 14585 SET_FLAGS(flags, MODE_ASIC); 14586 } 14587 14588 if (CHIP_IS_MODE_4_PORT(sc)) { 14589 SET_FLAGS(flags, MODE_PORT4); 14590 } else { 14591 SET_FLAGS(flags, MODE_PORT2); 14592 } 14593 14594 if (CHIP_IS_E2(sc)) { 14595 SET_FLAGS(flags, MODE_E2); 14596 } else if (CHIP_IS_E3(sc)) { 14597 SET_FLAGS(flags, MODE_E3); 14598 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14599 SET_FLAGS(flags, MODE_E3_A0); 14600 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14601 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14602 } 14603 } 14604 14605 if (IS_MF(sc)) { 14606 SET_FLAGS(flags, MODE_MF); 14607 switch (sc->devinfo.mf_info.mf_mode) { 14608 case MULTI_FUNCTION_SD: 14609 SET_FLAGS(flags, MODE_MF_SD); 14610 break; 14611 case MULTI_FUNCTION_SI: 14612 SET_FLAGS(flags, MODE_MF_SI); 14613 break; 14614 case MULTI_FUNCTION_AFEX: 14615 SET_FLAGS(flags, MODE_MF_AFEX); 14616 break; 14617 } 14618 } else { 14619 SET_FLAGS(flags, MODE_SF); 14620 } 14621 14622 #if defined(__LITTLE_ENDIAN) 14623 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14624 #else /* __BIG_ENDIAN */ 14625 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14626 #endif 14627 14628 INIT_MODE_FLAGS(sc) = flags; 14629 } 14630 14631 static int 14632 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14633 { 14634 struct bxe_fastpath *fp; 14635 bus_addr_t busaddr; 14636 int max_agg_queues; 14637 int max_segments; 14638 bus_size_t max_size; 14639 bus_size_t max_seg_size; 14640 char buf[32]; 14641 int rc; 14642 int i, j; 14643 14644 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14645 14646 /* allocate the parent bus DMA tag */ 14647 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14648 1, /* alignment */ 14649 0, /* boundary limit */ 14650 BUS_SPACE_MAXADDR, /* restricted low */ 14651 BUS_SPACE_MAXADDR, /* restricted hi */ 14652 NULL, /* addr filter() */ 14653 NULL, /* addr filter() arg */ 14654 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14655 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14656 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14657 0, /* flags */ 14658 NULL, /* lock() */ 14659 NULL, /* lock() arg */ 14660 &sc->parent_dma_tag); /* returned dma tag */ 14661 if (rc != 0) { 14662 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14663 return (1); 14664 } 14665 14666 /************************/ 14667 /* DEFAULT STATUS BLOCK */ 14668 /************************/ 14669 14670 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14671 &sc->def_sb_dma, "default status block") != 0) { 14672 /* XXX */ 14673 bus_dma_tag_destroy(sc->parent_dma_tag); 14674 return (1); 14675 } 14676 14677 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14678 14679 /***************/ 14680 /* EVENT QUEUE */ 14681 /***************/ 14682 14683 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14684 &sc->eq_dma, "event queue") != 0) { 14685 /* XXX */ 14686 bxe_dma_free(sc, &sc->def_sb_dma); 14687 sc->def_sb = NULL; 14688 bus_dma_tag_destroy(sc->parent_dma_tag); 14689 return (1); 14690 } 14691 14692 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14693 14694 /*************/ 14695 /* SLOW PATH */ 14696 /*************/ 14697 14698 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14699 &sc->sp_dma, "slow path") != 0) { 14700 /* XXX */ 14701 bxe_dma_free(sc, &sc->eq_dma); 14702 sc->eq = NULL; 14703 bxe_dma_free(sc, &sc->def_sb_dma); 14704 sc->def_sb = NULL; 14705 bus_dma_tag_destroy(sc->parent_dma_tag); 14706 return (1); 14707 } 14708 14709 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14710 14711 /*******************/ 14712 /* SLOW PATH QUEUE */ 14713 /*******************/ 14714 14715 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14716 &sc->spq_dma, "slow path queue") != 0) { 14717 /* XXX */ 14718 bxe_dma_free(sc, &sc->sp_dma); 14719 sc->sp = NULL; 14720 bxe_dma_free(sc, &sc->eq_dma); 14721 sc->eq = NULL; 14722 bxe_dma_free(sc, &sc->def_sb_dma); 14723 sc->def_sb = NULL; 14724 bus_dma_tag_destroy(sc->parent_dma_tag); 14725 return (1); 14726 } 14727 14728 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14729 14730 /***************************/ 14731 /* FW DECOMPRESSION BUFFER */ 14732 /***************************/ 14733 14734 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14735 "fw decompression buffer") != 0) { 14736 /* XXX */ 14737 bxe_dma_free(sc, &sc->spq_dma); 14738 sc->spq = NULL; 14739 bxe_dma_free(sc, &sc->sp_dma); 14740 sc->sp = NULL; 14741 bxe_dma_free(sc, &sc->eq_dma); 14742 sc->eq = NULL; 14743 bxe_dma_free(sc, &sc->def_sb_dma); 14744 sc->def_sb = NULL; 14745 bus_dma_tag_destroy(sc->parent_dma_tag); 14746 return (1); 14747 } 14748 14749 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14750 14751 if ((sc->gz_strm = 14752 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14753 /* XXX */ 14754 bxe_dma_free(sc, &sc->gz_buf_dma); 14755 sc->gz_buf = NULL; 14756 bxe_dma_free(sc, &sc->spq_dma); 14757 sc->spq = NULL; 14758 bxe_dma_free(sc, &sc->sp_dma); 14759 sc->sp = NULL; 14760 bxe_dma_free(sc, &sc->eq_dma); 14761 sc->eq = NULL; 14762 bxe_dma_free(sc, &sc->def_sb_dma); 14763 sc->def_sb = NULL; 14764 bus_dma_tag_destroy(sc->parent_dma_tag); 14765 return (1); 14766 } 14767 14768 /*************/ 14769 /* FASTPATHS */ 14770 /*************/ 14771 14772 /* allocate DMA memory for each fastpath structure */ 14773 for (i = 0; i < sc->num_queues; i++) { 14774 fp = &sc->fp[i]; 14775 fp->sc = sc; 14776 fp->index = i; 14777 14778 /*******************/ 14779 /* FP STATUS BLOCK */ 14780 /*******************/ 14781 14782 snprintf(buf, sizeof(buf), "fp %d status block", i); 14783 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14784 &fp->sb_dma, buf) != 0) { 14785 /* XXX unwind and free previous fastpath allocations */ 14786 BLOGE(sc, "Failed to alloc %s\n", buf); 14787 return (1); 14788 } else { 14789 if (CHIP_IS_E2E3(sc)) { 14790 fp->status_block.e2_sb = 14791 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14792 } else { 14793 fp->status_block.e1x_sb = 14794 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14795 } 14796 } 14797 14798 /******************/ 14799 /* FP TX BD CHAIN */ 14800 /******************/ 14801 14802 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14803 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14804 &fp->tx_dma, buf) != 0) { 14805 /* XXX unwind and free previous fastpath allocations */ 14806 BLOGE(sc, "Failed to alloc %s\n", buf); 14807 return (1); 14808 } else { 14809 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14810 } 14811 14812 /* link together the tx bd chain pages */ 14813 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14814 /* index into the tx bd chain array to last entry per page */ 14815 struct eth_tx_next_bd *tx_next_bd = 14816 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14817 /* point to the next page and wrap from last page */ 14818 busaddr = (fp->tx_dma.paddr + 14819 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14820 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14821 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14822 } 14823 14824 /******************/ 14825 /* FP RX BD CHAIN */ 14826 /******************/ 14827 14828 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14829 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14830 &fp->rx_dma, buf) != 0) { 14831 /* XXX unwind and free previous fastpath allocations */ 14832 BLOGE(sc, "Failed to alloc %s\n", buf); 14833 return (1); 14834 } else { 14835 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14836 } 14837 14838 /* link together the rx bd chain pages */ 14839 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14840 /* index into the rx bd chain array to last entry per page */ 14841 struct eth_rx_bd *rx_bd = 14842 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14843 /* point to the next page and wrap from last page */ 14844 busaddr = (fp->rx_dma.paddr + 14845 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14846 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14847 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14848 } 14849 14850 /*******************/ 14851 /* FP RX RCQ CHAIN */ 14852 /*******************/ 14853 14854 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14855 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14856 &fp->rcq_dma, buf) != 0) { 14857 /* XXX unwind and free previous fastpath allocations */ 14858 BLOGE(sc, "Failed to alloc %s\n", buf); 14859 return (1); 14860 } else { 14861 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14862 } 14863 14864 /* link together the rcq chain pages */ 14865 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14866 /* index into the rcq chain array to last entry per page */ 14867 struct eth_rx_cqe_next_page *rx_cqe_next = 14868 (struct eth_rx_cqe_next_page *) 14869 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14870 /* point to the next page and wrap from last page */ 14871 busaddr = (fp->rcq_dma.paddr + 14872 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14873 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14874 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14875 } 14876 14877 /*******************/ 14878 /* FP RX SGE CHAIN */ 14879 /*******************/ 14880 14881 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14882 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14883 &fp->rx_sge_dma, buf) != 0) { 14884 /* XXX unwind and free previous fastpath allocations */ 14885 BLOGE(sc, "Failed to alloc %s\n", buf); 14886 return (1); 14887 } else { 14888 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14889 } 14890 14891 /* link together the sge chain pages */ 14892 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14893 /* index into the rcq chain array to last entry per page */ 14894 struct eth_rx_sge *rx_sge = 14895 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14896 /* point to the next page and wrap from last page */ 14897 busaddr = (fp->rx_sge_dma.paddr + 14898 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14899 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14900 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14901 } 14902 14903 /***********************/ 14904 /* FP TX MBUF DMA MAPS */ 14905 /***********************/ 14906 14907 /* set required sizes before mapping to conserve resources */ 14908 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14909 max_size = BXE_TSO_MAX_SIZE; 14910 max_segments = BXE_TSO_MAX_SEGMENTS; 14911 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14912 } else { 14913 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14914 max_segments = BXE_MAX_SEGMENTS; 14915 max_seg_size = MCLBYTES; 14916 } 14917 14918 /* create a dma tag for the tx mbufs */ 14919 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14920 1, /* alignment */ 14921 0, /* boundary limit */ 14922 BUS_SPACE_MAXADDR, /* restricted low */ 14923 BUS_SPACE_MAXADDR, /* restricted hi */ 14924 NULL, /* addr filter() */ 14925 NULL, /* addr filter() arg */ 14926 max_size, /* max map size */ 14927 max_segments, /* num discontinuous */ 14928 max_seg_size, /* max seg size */ 14929 0, /* flags */ 14930 NULL, /* lock() */ 14931 NULL, /* lock() arg */ 14932 &fp->tx_mbuf_tag); /* returned dma tag */ 14933 if (rc != 0) { 14934 /* XXX unwind and free previous fastpath allocations */ 14935 BLOGE(sc, "Failed to create dma tag for " 14936 "'fp %d tx mbufs' (%d)\n", i, rc); 14937 return (1); 14938 } 14939 14940 /* create dma maps for each of the tx mbuf clusters */ 14941 for (j = 0; j < TX_BD_TOTAL; j++) { 14942 if (bus_dmamap_create(fp->tx_mbuf_tag, 14943 BUS_DMA_NOWAIT, 14944 &fp->tx_mbuf_chain[j].m_map)) { 14945 /* XXX unwind and free previous fastpath allocations */ 14946 BLOGE(sc, "Failed to create dma map for " 14947 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14948 return (1); 14949 } 14950 } 14951 14952 /***********************/ 14953 /* FP RX MBUF DMA MAPS */ 14954 /***********************/ 14955 14956 /* create a dma tag for the rx mbufs */ 14957 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14958 1, /* alignment */ 14959 0, /* boundary limit */ 14960 BUS_SPACE_MAXADDR, /* restricted low */ 14961 BUS_SPACE_MAXADDR, /* restricted hi */ 14962 NULL, /* addr filter() */ 14963 NULL, /* addr filter() arg */ 14964 MJUM9BYTES, /* max map size */ 14965 1, /* num discontinuous */ 14966 MJUM9BYTES, /* max seg size */ 14967 0, /* flags */ 14968 NULL, /* lock() */ 14969 NULL, /* lock() arg */ 14970 &fp->rx_mbuf_tag); /* returned dma tag */ 14971 if (rc != 0) { 14972 /* XXX unwind and free previous fastpath allocations */ 14973 BLOGE(sc, "Failed to create dma tag for " 14974 "'fp %d rx mbufs' (%d)\n", i, rc); 14975 return (1); 14976 } 14977 14978 /* create dma maps for each of the rx mbuf clusters */ 14979 for (j = 0; j < RX_BD_TOTAL; j++) { 14980 if (bus_dmamap_create(fp->rx_mbuf_tag, 14981 BUS_DMA_NOWAIT, 14982 &fp->rx_mbuf_chain[j].m_map)) { 14983 /* XXX unwind and free previous fastpath allocations */ 14984 BLOGE(sc, "Failed to create dma map for " 14985 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14986 return (1); 14987 } 14988 } 14989 14990 /* create dma map for the spare rx mbuf cluster */ 14991 if (bus_dmamap_create(fp->rx_mbuf_tag, 14992 BUS_DMA_NOWAIT, 14993 &fp->rx_mbuf_spare_map)) { 14994 /* XXX unwind and free previous fastpath allocations */ 14995 BLOGE(sc, "Failed to create dma map for " 14996 "'fp %d spare rx mbuf' (%d)\n", i, rc); 14997 return (1); 14998 } 14999 15000 /***************************/ 15001 /* FP RX SGE MBUF DMA MAPS */ 15002 /***************************/ 15003 15004 /* create a dma tag for the rx sge mbufs */ 15005 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15006 1, /* alignment */ 15007 0, /* boundary limit */ 15008 BUS_SPACE_MAXADDR, /* restricted low */ 15009 BUS_SPACE_MAXADDR, /* restricted hi */ 15010 NULL, /* addr filter() */ 15011 NULL, /* addr filter() arg */ 15012 BCM_PAGE_SIZE, /* max map size */ 15013 1, /* num discontinuous */ 15014 BCM_PAGE_SIZE, /* max seg size */ 15015 0, /* flags */ 15016 NULL, /* lock() */ 15017 NULL, /* lock() arg */ 15018 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15019 if (rc != 0) { 15020 /* XXX unwind and free previous fastpath allocations */ 15021 BLOGE(sc, "Failed to create dma tag for " 15022 "'fp %d rx sge mbufs' (%d)\n", i, rc); 15023 return (1); 15024 } 15025 15026 /* create dma maps for the rx sge mbuf clusters */ 15027 for (j = 0; j < RX_SGE_TOTAL; j++) { 15028 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15029 BUS_DMA_NOWAIT, 15030 &fp->rx_sge_mbuf_chain[j].m_map)) { 15031 /* XXX unwind and free previous fastpath allocations */ 15032 BLOGE(sc, "Failed to create dma map for " 15033 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 15034 return (1); 15035 } 15036 } 15037 15038 /* create dma map for the spare rx sge mbuf cluster */ 15039 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15040 BUS_DMA_NOWAIT, 15041 &fp->rx_sge_mbuf_spare_map)) { 15042 /* XXX unwind and free previous fastpath allocations */ 15043 BLOGE(sc, "Failed to create dma map for " 15044 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 15045 return (1); 15046 } 15047 15048 /***************************/ 15049 /* FP RX TPA MBUF DMA MAPS */ 15050 /***************************/ 15051 15052 /* create dma maps for the rx tpa mbuf clusters */ 15053 max_agg_queues = MAX_AGG_QS(sc); 15054 15055 for (j = 0; j < max_agg_queues; j++) { 15056 if (bus_dmamap_create(fp->rx_mbuf_tag, 15057 BUS_DMA_NOWAIT, 15058 &fp->rx_tpa_info[j].bd.m_map)) { 15059 /* XXX unwind and free previous fastpath allocations */ 15060 BLOGE(sc, "Failed to create dma map for " 15061 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 15062 return (1); 15063 } 15064 } 15065 15066 /* create dma map for the spare rx tpa mbuf cluster */ 15067 if (bus_dmamap_create(fp->rx_mbuf_tag, 15068 BUS_DMA_NOWAIT, 15069 &fp->rx_tpa_info_mbuf_spare_map)) { 15070 /* XXX unwind and free previous fastpath allocations */ 15071 BLOGE(sc, "Failed to create dma map for " 15072 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 15073 return (1); 15074 } 15075 15076 bxe_init_sge_ring_bit_mask(fp); 15077 } 15078 15079 return (0); 15080 } 15081 15082 static void 15083 bxe_free_hsi_mem(struct bxe_softc *sc) 15084 { 15085 struct bxe_fastpath *fp; 15086 int max_agg_queues; 15087 int i, j; 15088 15089 if (sc->parent_dma_tag == NULL) { 15090 return; /* assume nothing was allocated */ 15091 } 15092 15093 for (i = 0; i < sc->num_queues; i++) { 15094 fp = &sc->fp[i]; 15095 15096 /*******************/ 15097 /* FP STATUS BLOCK */ 15098 /*******************/ 15099 15100 bxe_dma_free(sc, &fp->sb_dma); 15101 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15102 15103 /******************/ 15104 /* FP TX BD CHAIN */ 15105 /******************/ 15106 15107 bxe_dma_free(sc, &fp->tx_dma); 15108 fp->tx_chain = NULL; 15109 15110 /******************/ 15111 /* FP RX BD CHAIN */ 15112 /******************/ 15113 15114 bxe_dma_free(sc, &fp->rx_dma); 15115 fp->rx_chain = NULL; 15116 15117 /*******************/ 15118 /* FP RX RCQ CHAIN */ 15119 /*******************/ 15120 15121 bxe_dma_free(sc, &fp->rcq_dma); 15122 fp->rcq_chain = NULL; 15123 15124 /*******************/ 15125 /* FP RX SGE CHAIN */ 15126 /*******************/ 15127 15128 bxe_dma_free(sc, &fp->rx_sge_dma); 15129 fp->rx_sge_chain = NULL; 15130 15131 /***********************/ 15132 /* FP TX MBUF DMA MAPS */ 15133 /***********************/ 15134 15135 if (fp->tx_mbuf_tag != NULL) { 15136 for (j = 0; j < TX_BD_TOTAL; j++) { 15137 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15138 bus_dmamap_unload(fp->tx_mbuf_tag, 15139 fp->tx_mbuf_chain[j].m_map); 15140 bus_dmamap_destroy(fp->tx_mbuf_tag, 15141 fp->tx_mbuf_chain[j].m_map); 15142 } 15143 } 15144 15145 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15146 fp->tx_mbuf_tag = NULL; 15147 } 15148 15149 /***********************/ 15150 /* FP RX MBUF DMA MAPS */ 15151 /***********************/ 15152 15153 if (fp->rx_mbuf_tag != NULL) { 15154 for (j = 0; j < RX_BD_TOTAL; j++) { 15155 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15156 bus_dmamap_unload(fp->rx_mbuf_tag, 15157 fp->rx_mbuf_chain[j].m_map); 15158 bus_dmamap_destroy(fp->rx_mbuf_tag, 15159 fp->rx_mbuf_chain[j].m_map); 15160 } 15161 } 15162 15163 if (fp->rx_mbuf_spare_map != NULL) { 15164 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15165 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15166 } 15167 15168 /***************************/ 15169 /* FP RX TPA MBUF DMA MAPS */ 15170 /***************************/ 15171 15172 max_agg_queues = MAX_AGG_QS(sc); 15173 15174 for (j = 0; j < max_agg_queues; j++) { 15175 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15176 bus_dmamap_unload(fp->rx_mbuf_tag, 15177 fp->rx_tpa_info[j].bd.m_map); 15178 bus_dmamap_destroy(fp->rx_mbuf_tag, 15179 fp->rx_tpa_info[j].bd.m_map); 15180 } 15181 } 15182 15183 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15184 bus_dmamap_unload(fp->rx_mbuf_tag, 15185 fp->rx_tpa_info_mbuf_spare_map); 15186 bus_dmamap_destroy(fp->rx_mbuf_tag, 15187 fp->rx_tpa_info_mbuf_spare_map); 15188 } 15189 15190 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15191 fp->rx_mbuf_tag = NULL; 15192 } 15193 15194 /***************************/ 15195 /* FP RX SGE MBUF DMA MAPS */ 15196 /***************************/ 15197 15198 if (fp->rx_sge_mbuf_tag != NULL) { 15199 for (j = 0; j < RX_SGE_TOTAL; j++) { 15200 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15201 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15202 fp->rx_sge_mbuf_chain[j].m_map); 15203 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15204 fp->rx_sge_mbuf_chain[j].m_map); 15205 } 15206 } 15207 15208 if (fp->rx_sge_mbuf_spare_map != NULL) { 15209 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15210 fp->rx_sge_mbuf_spare_map); 15211 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15212 fp->rx_sge_mbuf_spare_map); 15213 } 15214 15215 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15216 fp->rx_sge_mbuf_tag = NULL; 15217 } 15218 } 15219 15220 /***************************/ 15221 /* FW DECOMPRESSION BUFFER */ 15222 /***************************/ 15223 15224 bxe_dma_free(sc, &sc->gz_buf_dma); 15225 sc->gz_buf = NULL; 15226 free(sc->gz_strm, M_DEVBUF); 15227 sc->gz_strm = NULL; 15228 15229 /*******************/ 15230 /* SLOW PATH QUEUE */ 15231 /*******************/ 15232 15233 bxe_dma_free(sc, &sc->spq_dma); 15234 sc->spq = NULL; 15235 15236 /*************/ 15237 /* SLOW PATH */ 15238 /*************/ 15239 15240 bxe_dma_free(sc, &sc->sp_dma); 15241 sc->sp = NULL; 15242 15243 /***************/ 15244 /* EVENT QUEUE */ 15245 /***************/ 15246 15247 bxe_dma_free(sc, &sc->eq_dma); 15248 sc->eq = NULL; 15249 15250 /************************/ 15251 /* DEFAULT STATUS BLOCK */ 15252 /************************/ 15253 15254 bxe_dma_free(sc, &sc->def_sb_dma); 15255 sc->def_sb = NULL; 15256 15257 bus_dma_tag_destroy(sc->parent_dma_tag); 15258 sc->parent_dma_tag = NULL; 15259 } 15260 15261 /* 15262 * Previous driver DMAE transaction may have occurred when pre-boot stage 15263 * ended and boot began. This would invalidate the addresses of the 15264 * transaction, resulting in was-error bit set in the PCI causing all 15265 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15266 * the interrupt which detected this from the pglueb and the was-done bit 15267 */ 15268 static void 15269 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15270 { 15271 uint32_t val; 15272 15273 if (!CHIP_IS_E1x(sc)) { 15274 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15275 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15276 BLOGD(sc, DBG_LOAD, 15277 "Clearing 'was-error' bit that was set in pglueb"); 15278 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15279 } 15280 } 15281 } 15282 15283 static int 15284 bxe_prev_mcp_done(struct bxe_softc *sc) 15285 { 15286 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15287 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15288 if (!rc) { 15289 BLOGE(sc, "MCP response failure, aborting\n"); 15290 return (-1); 15291 } 15292 15293 return (0); 15294 } 15295 15296 static struct bxe_prev_list_node * 15297 bxe_prev_path_get_entry(struct bxe_softc *sc) 15298 { 15299 struct bxe_prev_list_node *tmp; 15300 15301 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15302 if ((sc->pcie_bus == tmp->bus) && 15303 (sc->pcie_device == tmp->slot) && 15304 (SC_PATH(sc) == tmp->path)) { 15305 return (tmp); 15306 } 15307 } 15308 15309 return (NULL); 15310 } 15311 15312 static uint8_t 15313 bxe_prev_is_path_marked(struct bxe_softc *sc) 15314 { 15315 struct bxe_prev_list_node *tmp; 15316 int rc = FALSE; 15317 15318 mtx_lock(&bxe_prev_mtx); 15319 15320 tmp = bxe_prev_path_get_entry(sc); 15321 if (tmp) { 15322 if (tmp->aer) { 15323 BLOGD(sc, DBG_LOAD, 15324 "Path %d/%d/%d was marked by AER\n", 15325 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15326 } else { 15327 rc = TRUE; 15328 BLOGD(sc, DBG_LOAD, 15329 "Path %d/%d/%d was already cleaned from previous drivers\n", 15330 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15331 } 15332 } 15333 15334 mtx_unlock(&bxe_prev_mtx); 15335 15336 return (rc); 15337 } 15338 15339 static int 15340 bxe_prev_mark_path(struct bxe_softc *sc, 15341 uint8_t after_undi) 15342 { 15343 struct bxe_prev_list_node *tmp; 15344 15345 mtx_lock(&bxe_prev_mtx); 15346 15347 /* Check whether the entry for this path already exists */ 15348 tmp = bxe_prev_path_get_entry(sc); 15349 if (tmp) { 15350 if (!tmp->aer) { 15351 BLOGD(sc, DBG_LOAD, 15352 "Re-marking AER in path %d/%d/%d\n", 15353 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15354 } else { 15355 BLOGD(sc, DBG_LOAD, 15356 "Removing AER indication from path %d/%d/%d\n", 15357 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15358 tmp->aer = 0; 15359 } 15360 15361 mtx_unlock(&bxe_prev_mtx); 15362 return (0); 15363 } 15364 15365 mtx_unlock(&bxe_prev_mtx); 15366 15367 /* Create an entry for this path and add it */ 15368 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15369 (M_NOWAIT | M_ZERO)); 15370 if (!tmp) { 15371 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15372 return (-1); 15373 } 15374 15375 tmp->bus = sc->pcie_bus; 15376 tmp->slot = sc->pcie_device; 15377 tmp->path = SC_PATH(sc); 15378 tmp->aer = 0; 15379 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15380 15381 mtx_lock(&bxe_prev_mtx); 15382 15383 BLOGD(sc, DBG_LOAD, 15384 "Marked path %d/%d/%d - finished previous unload\n", 15385 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15386 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15387 15388 mtx_unlock(&bxe_prev_mtx); 15389 15390 return (0); 15391 } 15392 15393 static int 15394 bxe_do_flr(struct bxe_softc *sc) 15395 { 15396 int i; 15397 15398 /* only E2 and onwards support FLR */ 15399 if (CHIP_IS_E1x(sc)) { 15400 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15401 return (-1); 15402 } 15403 15404 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15405 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15406 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15407 sc->devinfo.bc_ver); 15408 return (-1); 15409 } 15410 15411 /* Wait for Transaction Pending bit clean */ 15412 for (i = 0; i < 4; i++) { 15413 if (i) { 15414 DELAY(((1 << (i - 1)) * 100) * 1000); 15415 } 15416 15417 if (!bxe_is_pcie_pending(sc)) { 15418 goto clear; 15419 } 15420 } 15421 15422 BLOGE(sc, "PCIE transaction is not cleared, " 15423 "proceeding with reset anyway\n"); 15424 15425 clear: 15426 15427 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15428 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15429 15430 return (0); 15431 } 15432 15433 struct bxe_mac_vals { 15434 uint32_t xmac_addr; 15435 uint32_t xmac_val; 15436 uint32_t emac_addr; 15437 uint32_t emac_val; 15438 uint32_t umac_addr; 15439 uint32_t umac_val; 15440 uint32_t bmac_addr; 15441 uint32_t bmac_val[2]; 15442 }; 15443 15444 static void 15445 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15446 struct bxe_mac_vals *vals) 15447 { 15448 uint32_t val, base_addr, offset, mask, reset_reg; 15449 uint8_t mac_stopped = FALSE; 15450 uint8_t port = SC_PORT(sc); 15451 uint32_t wb_data[2]; 15452 15453 /* reset addresses as they also mark which values were changed */ 15454 vals->bmac_addr = 0; 15455 vals->umac_addr = 0; 15456 vals->xmac_addr = 0; 15457 vals->emac_addr = 0; 15458 15459 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15460 15461 if (!CHIP_IS_E3(sc)) { 15462 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15463 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15464 if ((mask & reset_reg) && val) { 15465 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15466 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15467 : NIG_REG_INGRESS_BMAC0_MEM; 15468 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15469 : BIGMAC_REGISTER_BMAC_CONTROL; 15470 15471 /* 15472 * use rd/wr since we cannot use dmae. This is safe 15473 * since MCP won't access the bus due to the request 15474 * to unload, and no function on the path can be 15475 * loaded at this time. 15476 */ 15477 wb_data[0] = REG_RD(sc, base_addr + offset); 15478 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15479 vals->bmac_addr = base_addr + offset; 15480 vals->bmac_val[0] = wb_data[0]; 15481 vals->bmac_val[1] = wb_data[1]; 15482 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15483 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15484 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15485 } 15486 15487 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15488 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15489 vals->emac_val = REG_RD(sc, vals->emac_addr); 15490 REG_WR(sc, vals->emac_addr, 0); 15491 mac_stopped = TRUE; 15492 } else { 15493 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15494 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15495 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15496 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15497 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15498 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15499 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15500 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15501 REG_WR(sc, vals->xmac_addr, 0); 15502 mac_stopped = TRUE; 15503 } 15504 15505 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15506 if (mask & reset_reg) { 15507 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15508 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15509 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15510 vals->umac_val = REG_RD(sc, vals->umac_addr); 15511 REG_WR(sc, vals->umac_addr, 0); 15512 mac_stopped = TRUE; 15513 } 15514 } 15515 15516 if (mac_stopped) { 15517 DELAY(20000); 15518 } 15519 } 15520 15521 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15522 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15523 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15524 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15525 15526 static void 15527 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15528 uint8_t port, 15529 uint8_t inc) 15530 { 15531 uint16_t rcq, bd; 15532 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15533 15534 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15535 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15536 15537 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15538 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15539 15540 BLOGD(sc, DBG_LOAD, 15541 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15542 port, bd, rcq); 15543 } 15544 15545 static int 15546 bxe_prev_unload_common(struct bxe_softc *sc) 15547 { 15548 uint32_t reset_reg, tmp_reg = 0, rc; 15549 uint8_t prev_undi = FALSE; 15550 struct bxe_mac_vals mac_vals; 15551 uint32_t timer_count = 1000; 15552 uint32_t prev_brb; 15553 15554 /* 15555 * It is possible a previous function received 'common' answer, 15556 * but hasn't loaded yet, therefore creating a scenario of 15557 * multiple functions receiving 'common' on the same path. 15558 */ 15559 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15560 15561 memset(&mac_vals, 0, sizeof(mac_vals)); 15562 15563 if (bxe_prev_is_path_marked(sc)) { 15564 return (bxe_prev_mcp_done(sc)); 15565 } 15566 15567 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15568 15569 /* Reset should be performed after BRB is emptied */ 15570 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15571 /* Close the MAC Rx to prevent BRB from filling up */ 15572 bxe_prev_unload_close_mac(sc, &mac_vals); 15573 15574 /* close LLH filters towards the BRB */ 15575 elink_set_rx_filter(&sc->link_params, 0); 15576 15577 /* 15578 * Check if the UNDI driver was previously loaded. 15579 * UNDI driver initializes CID offset for normal bell to 0x7 15580 */ 15581 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15582 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15583 if (tmp_reg == 0x7) { 15584 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15585 prev_undi = TRUE; 15586 /* clear the UNDI indication */ 15587 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15588 /* clear possible idle check errors */ 15589 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15590 } 15591 } 15592 15593 /* wait until BRB is empty */ 15594 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15595 while (timer_count) { 15596 prev_brb = tmp_reg; 15597 15598 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15599 if (!tmp_reg) { 15600 break; 15601 } 15602 15603 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15604 15605 /* reset timer as long as BRB actually gets emptied */ 15606 if (prev_brb > tmp_reg) { 15607 timer_count = 1000; 15608 } else { 15609 timer_count--; 15610 } 15611 15612 /* If UNDI resides in memory, manually increment it */ 15613 if (prev_undi) { 15614 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15615 } 15616 15617 DELAY(10); 15618 } 15619 15620 if (!timer_count) { 15621 BLOGE(sc, "Failed to empty BRB\n"); 15622 } 15623 } 15624 15625 /* No packets are in the pipeline, path is ready for reset */ 15626 bxe_reset_common(sc); 15627 15628 if (mac_vals.xmac_addr) { 15629 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15630 } 15631 if (mac_vals.umac_addr) { 15632 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15633 } 15634 if (mac_vals.emac_addr) { 15635 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15636 } 15637 if (mac_vals.bmac_addr) { 15638 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15639 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15640 } 15641 15642 rc = bxe_prev_mark_path(sc, prev_undi); 15643 if (rc) { 15644 bxe_prev_mcp_done(sc); 15645 return (rc); 15646 } 15647 15648 return (bxe_prev_mcp_done(sc)); 15649 } 15650 15651 static int 15652 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15653 { 15654 int rc; 15655 15656 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15657 15658 /* Test if previous unload process was already finished for this path */ 15659 if (bxe_prev_is_path_marked(sc)) { 15660 return (bxe_prev_mcp_done(sc)); 15661 } 15662 15663 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15664 15665 /* 15666 * If function has FLR capabilities, and existing FW version matches 15667 * the one required, then FLR will be sufficient to clean any residue 15668 * left by previous driver 15669 */ 15670 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15671 if (!rc) { 15672 /* fw version is good */ 15673 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15674 rc = bxe_do_flr(sc); 15675 } 15676 15677 if (!rc) { 15678 /* FLR was performed */ 15679 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15680 return (0); 15681 } 15682 15683 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15684 15685 /* Close the MCP request, return failure*/ 15686 rc = bxe_prev_mcp_done(sc); 15687 if (!rc) { 15688 rc = BXE_PREV_WAIT_NEEDED; 15689 } 15690 15691 return (rc); 15692 } 15693 15694 static int 15695 bxe_prev_unload(struct bxe_softc *sc) 15696 { 15697 int time_counter = 10; 15698 uint32_t fw, hw_lock_reg, hw_lock_val; 15699 uint32_t rc = 0; 15700 15701 /* 15702 * Clear HW from errors which may have resulted from an interrupted 15703 * DMAE transaction. 15704 */ 15705 bxe_prev_interrupted_dmae(sc); 15706 15707 /* Release previously held locks */ 15708 hw_lock_reg = 15709 (SC_FUNC(sc) <= 5) ? 15710 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15711 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15712 15713 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15714 if (hw_lock_val) { 15715 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15716 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15717 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15718 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15719 } 15720 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15721 REG_WR(sc, hw_lock_reg, 0xffffffff); 15722 } else { 15723 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15724 } 15725 15726 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15727 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15728 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15729 } 15730 15731 do { 15732 /* Lock MCP using an unload request */ 15733 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15734 if (!fw) { 15735 BLOGE(sc, "MCP response failure, aborting\n"); 15736 rc = -1; 15737 break; 15738 } 15739 15740 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15741 rc = bxe_prev_unload_common(sc); 15742 break; 15743 } 15744 15745 /* non-common reply from MCP night require looping */ 15746 rc = bxe_prev_unload_uncommon(sc); 15747 if (rc != BXE_PREV_WAIT_NEEDED) { 15748 break; 15749 } 15750 15751 DELAY(20000); 15752 } while (--time_counter); 15753 15754 if (!time_counter || rc) { 15755 BLOGE(sc, "Failed to unload previous driver!" 15756 " time_counter %d rc %d\n", time_counter, rc); 15757 rc = -1; 15758 } 15759 15760 return (rc); 15761 } 15762 15763 void 15764 bxe_dcbx_set_state(struct bxe_softc *sc, 15765 uint8_t dcb_on, 15766 uint32_t dcbx_enabled) 15767 { 15768 if (!CHIP_IS_E1x(sc)) { 15769 sc->dcb_state = dcb_on; 15770 sc->dcbx_enabled = dcbx_enabled; 15771 } else { 15772 sc->dcb_state = FALSE; 15773 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15774 } 15775 BLOGD(sc, DBG_LOAD, 15776 "DCB state [%s:%s]\n", 15777 dcb_on ? "ON" : "OFF", 15778 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15779 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15780 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15781 "on-chip with negotiation" : "invalid"); 15782 } 15783 15784 /* must be called after sriov-enable */ 15785 static int 15786 bxe_set_qm_cid_count(struct bxe_softc *sc) 15787 { 15788 int cid_count = BXE_L2_MAX_CID(sc); 15789 15790 if (IS_SRIOV(sc)) { 15791 cid_count += BXE_VF_CIDS; 15792 } 15793 15794 if (CNIC_SUPPORT(sc)) { 15795 cid_count += CNIC_CID_MAX; 15796 } 15797 15798 return (roundup(cid_count, QM_CID_ROUND)); 15799 } 15800 15801 static void 15802 bxe_init_multi_cos(struct bxe_softc *sc) 15803 { 15804 int pri, cos; 15805 15806 uint32_t pri_map = 0; /* XXX change to user config */ 15807 15808 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15809 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15810 if (cos < sc->max_cos) { 15811 sc->prio_to_cos[pri] = cos; 15812 } else { 15813 BLOGW(sc, "Invalid COS %d for priority %d " 15814 "(max COS is %d), setting to 0\n", 15815 cos, pri, (sc->max_cos - 1)); 15816 sc->prio_to_cos[pri] = 0; 15817 } 15818 } 15819 } 15820 15821 static int 15822 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15823 { 15824 struct bxe_softc *sc; 15825 int error, result; 15826 15827 result = 0; 15828 error = sysctl_handle_int(oidp, &result, 0, req); 15829 15830 if (error || !req->newptr) { 15831 return (error); 15832 } 15833 15834 if (result == 1) { 15835 uint32_t temp; 15836 sc = (struct bxe_softc *)arg1; 15837 15838 BLOGI(sc, "... dumping driver state ...\n"); 15839 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15840 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15841 } 15842 15843 return (error); 15844 } 15845 15846 static int 15847 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15848 { 15849 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15850 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15851 uint32_t *offset; 15852 uint64_t value = 0; 15853 int index = (int)arg2; 15854 15855 if (index >= BXE_NUM_ETH_STATS) { 15856 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15857 return (-1); 15858 } 15859 15860 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15861 15862 switch (bxe_eth_stats_arr[index].size) { 15863 case 4: 15864 value = (uint64_t)*offset; 15865 break; 15866 case 8: 15867 value = HILO_U64(*offset, *(offset + 1)); 15868 break; 15869 default: 15870 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15871 index, bxe_eth_stats_arr[index].size); 15872 return (-1); 15873 } 15874 15875 return (sysctl_handle_64(oidp, &value, 0, req)); 15876 } 15877 15878 static int 15879 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15880 { 15881 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15882 uint32_t *eth_stats; 15883 uint32_t *offset; 15884 uint64_t value = 0; 15885 uint32_t q_stat = (uint32_t)arg2; 15886 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15887 uint32_t index = (q_stat & 0xffff); 15888 15889 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15890 15891 if (index >= BXE_NUM_ETH_Q_STATS) { 15892 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15893 return (-1); 15894 } 15895 15896 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15897 15898 switch (bxe_eth_q_stats_arr[index].size) { 15899 case 4: 15900 value = (uint64_t)*offset; 15901 break; 15902 case 8: 15903 value = HILO_U64(*offset, *(offset + 1)); 15904 break; 15905 default: 15906 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15907 index, bxe_eth_q_stats_arr[index].size); 15908 return (-1); 15909 } 15910 15911 return (sysctl_handle_64(oidp, &value, 0, req)); 15912 } 15913 15914 static void bxe_force_link_reset(struct bxe_softc *sc) 15915 { 15916 15917 bxe_acquire_phy_lock(sc); 15918 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15919 bxe_release_phy_lock(sc); 15920 } 15921 15922 static int 15923 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15924 { 15925 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15926 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 15927 int rc = 0; 15928 int error; 15929 int result; 15930 15931 15932 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 15933 15934 if (error || !req->newptr) { 15935 return (error); 15936 } 15937 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 15938 BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param); 15939 sc->bxe_pause_param = 8; 15940 } 15941 15942 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 15943 15944 15945 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 15946 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 15947 return -EINVAL; 15948 } 15949 15950 if(IS_MF(sc)) 15951 return 0; 15952 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 15953 if(result & ELINK_FLOW_CTRL_RX) 15954 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 15955 15956 if(result & ELINK_FLOW_CTRL_TX) 15957 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 15958 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 15959 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 15960 15961 if(result & 0x400) { 15962 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 15963 sc->link_params.req_flow_ctrl[cfg_idx] = 15964 ELINK_FLOW_CTRL_AUTO; 15965 } 15966 sc->link_params.req_fc_auto_adv = 0; 15967 if (result & ELINK_FLOW_CTRL_RX) 15968 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 15969 15970 if (result & ELINK_FLOW_CTRL_TX) 15971 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 15972 if (!sc->link_params.req_fc_auto_adv) 15973 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 15974 } 15975 if (IS_PF(sc)) { 15976 if (sc->link_vars.link_up) { 15977 bxe_stats_handle(sc, STATS_EVENT_STOP); 15978 } 15979 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 15980 bxe_force_link_reset(sc); 15981 bxe_acquire_phy_lock(sc); 15982 15983 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 15984 15985 bxe_release_phy_lock(sc); 15986 15987 bxe_calc_fc_adv(sc); 15988 } 15989 } 15990 return rc; 15991 } 15992 15993 15994 static void 15995 bxe_add_sysctls(struct bxe_softc *sc) 15996 { 15997 struct sysctl_ctx_list *ctx; 15998 struct sysctl_oid_list *children; 15999 struct sysctl_oid *queue_top, *queue; 16000 struct sysctl_oid_list *queue_top_children, *queue_children; 16001 char queue_num_buf[32]; 16002 uint32_t q_stat; 16003 int i, j; 16004 16005 ctx = device_get_sysctl_ctx(sc->dev); 16006 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16007 16008 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16009 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16010 "version"); 16011 16012 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16013 BCM_5710_FW_MAJOR_VERSION, 16014 BCM_5710_FW_MINOR_VERSION, 16015 BCM_5710_FW_REVISION_VERSION, 16016 BCM_5710_FW_ENGINEERING_VERSION); 16017 16018 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16019 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16020 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16021 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16022 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16023 "Unknown")); 16024 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16025 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16026 "multifunction vnics per port"); 16027 16028 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16029 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16030 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16031 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16032 "???GT/s"), 16033 sc->devinfo.pcie_link_width); 16034 16035 sc->debug = bxe_debug; 16036 16037 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16038 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16039 "bootcode version"); 16040 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16041 CTLFLAG_RD, sc->fw_ver_str, 0, 16042 "firmware version"); 16043 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16044 CTLFLAG_RD, sc->mf_mode_str, 0, 16045 "multifunction mode"); 16046 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16047 CTLFLAG_RD, sc->mac_addr_str, 0, 16048 "mac address"); 16049 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16050 CTLFLAG_RD, sc->pci_link_str, 0, 16051 "pci link status"); 16052 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16053 CTLFLAG_RW, &sc->debug, 16054 "debug logging mode"); 16055 16056 sc->trigger_grcdump = 0; 16057 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 16058 CTLFLAG_RW, &sc->trigger_grcdump, 0, 16059 "trigger grcdump should be invoked" 16060 " before collecting grcdump"); 16061 16062 sc->grcdump_started = 0; 16063 sc->grcdump_done = 0; 16064 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 16065 CTLFLAG_RD, &sc->grcdump_done, 0, 16066 "set by driver when grcdump is done"); 16067 16068 sc->rx_budget = bxe_rx_budget; 16069 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16070 CTLFLAG_RW, &sc->rx_budget, 0, 16071 "rx processing budget"); 16072 16073 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 16074 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16075 bxe_sysctl_pauseparam, "IU", 16076 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 16077 16078 16079 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16080 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16081 bxe_sysctl_state, "IU", "dump driver state"); 16082 16083 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16084 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16085 bxe_eth_stats_arr[i].string, 16086 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 16087 bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string); 16088 } 16089 16090 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16091 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16092 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue"); 16093 queue_top_children = SYSCTL_CHILDREN(queue_top); 16094 16095 for (i = 0; i < sc->num_queues; i++) { 16096 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16097 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16098 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16099 queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue"); 16100 queue_children = SYSCTL_CHILDREN(queue); 16101 16102 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16103 q_stat = ((i << 16) | j); 16104 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16105 bxe_eth_q_stats_arr[j].string, 16106 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat, 16107 bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string); 16108 } 16109 } 16110 } 16111 16112 static int 16113 bxe_alloc_buf_rings(struct bxe_softc *sc) 16114 { 16115 int i; 16116 struct bxe_fastpath *fp; 16117 16118 for (i = 0; i < sc->num_queues; i++) { 16119 16120 fp = &sc->fp[i]; 16121 16122 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 16123 M_NOWAIT, &fp->tx_mtx); 16124 if (fp->tx_br == NULL) 16125 return (-1); 16126 } 16127 16128 return (0); 16129 } 16130 16131 static void 16132 bxe_free_buf_rings(struct bxe_softc *sc) 16133 { 16134 int i; 16135 struct bxe_fastpath *fp; 16136 16137 for (i = 0; i < sc->num_queues; i++) { 16138 16139 fp = &sc->fp[i]; 16140 16141 if (fp->tx_br) { 16142 buf_ring_free(fp->tx_br, M_DEVBUF); 16143 fp->tx_br = NULL; 16144 } 16145 } 16146 } 16147 16148 static void 16149 bxe_init_fp_mutexs(struct bxe_softc *sc) 16150 { 16151 int i; 16152 struct bxe_fastpath *fp; 16153 16154 for (i = 0; i < sc->num_queues; i++) { 16155 16156 fp = &sc->fp[i]; 16157 16158 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 16159 "bxe%d_fp%d_tx_lock", sc->unit, i); 16160 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 16161 16162 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 16163 "bxe%d_fp%d_rx_lock", sc->unit, i); 16164 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 16165 } 16166 } 16167 16168 static void 16169 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 16170 { 16171 int i; 16172 struct bxe_fastpath *fp; 16173 16174 for (i = 0; i < sc->num_queues; i++) { 16175 16176 fp = &sc->fp[i]; 16177 16178 if (mtx_initialized(&fp->tx_mtx)) { 16179 mtx_destroy(&fp->tx_mtx); 16180 } 16181 16182 if (mtx_initialized(&fp->rx_mtx)) { 16183 mtx_destroy(&fp->rx_mtx); 16184 } 16185 } 16186 } 16187 16188 16189 /* 16190 * Device attach function. 16191 * 16192 * Allocates device resources, performs secondary chip identification, and 16193 * initializes driver instance variables. This function is called from driver 16194 * load after a successful probe. 16195 * 16196 * Returns: 16197 * 0 = Success, >0 = Failure 16198 */ 16199 static int 16200 bxe_attach(device_t dev) 16201 { 16202 struct bxe_softc *sc; 16203 16204 sc = device_get_softc(dev); 16205 16206 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16207 16208 sc->state = BXE_STATE_CLOSED; 16209 16210 sc->dev = dev; 16211 sc->unit = device_get_unit(dev); 16212 16213 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16214 16215 sc->pcie_bus = pci_get_bus(dev); 16216 sc->pcie_device = pci_get_slot(dev); 16217 sc->pcie_func = pci_get_function(dev); 16218 16219 /* enable bus master capability */ 16220 pci_enable_busmaster(dev); 16221 16222 /* get the BARs */ 16223 if (bxe_allocate_bars(sc) != 0) { 16224 return (ENXIO); 16225 } 16226 16227 /* initialize the mutexes */ 16228 bxe_init_mutexes(sc); 16229 16230 /* prepare the periodic callout */ 16231 callout_init(&sc->periodic_callout, 1); 16232 16233 /* prepare the chip taskqueue */ 16234 sc->chip_tq_flags = CHIP_TQ_NONE; 16235 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16236 "bxe%d_chip_tq", sc->unit); 16237 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16238 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16239 taskqueue_thread_enqueue, 16240 &sc->chip_tq); 16241 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16242 "%s", sc->chip_tq_name); 16243 16244 TIMEOUT_TASK_INIT(taskqueue_thread, 16245 &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc); 16246 16247 16248 /* get device info and set params */ 16249 if (bxe_get_device_info(sc) != 0) { 16250 BLOGE(sc, "getting device info\n"); 16251 bxe_deallocate_bars(sc); 16252 pci_disable_busmaster(dev); 16253 return (ENXIO); 16254 } 16255 16256 /* get final misc params */ 16257 bxe_get_params(sc); 16258 16259 /* set the default MTU (changed via ifconfig) */ 16260 sc->mtu = ETHERMTU; 16261 16262 bxe_set_modes_bitmap(sc); 16263 16264 /* XXX 16265 * If in AFEX mode and the function is configured for FCoE 16266 * then bail... no L2 allowed. 16267 */ 16268 16269 /* get phy settings from shmem and 'and' against admin settings */ 16270 bxe_get_phy_info(sc); 16271 16272 /* initialize the FreeBSD ifnet interface */ 16273 if (bxe_init_ifnet(sc) != 0) { 16274 bxe_release_mutexes(sc); 16275 bxe_deallocate_bars(sc); 16276 pci_disable_busmaster(dev); 16277 return (ENXIO); 16278 } 16279 16280 if (bxe_add_cdev(sc) != 0) { 16281 if (sc->ifp != NULL) { 16282 ether_ifdetach(sc->ifp); 16283 } 16284 ifmedia_removeall(&sc->ifmedia); 16285 bxe_release_mutexes(sc); 16286 bxe_deallocate_bars(sc); 16287 pci_disable_busmaster(dev); 16288 return (ENXIO); 16289 } 16290 16291 /* allocate device interrupts */ 16292 if (bxe_interrupt_alloc(sc) != 0) { 16293 bxe_del_cdev(sc); 16294 if (sc->ifp != NULL) { 16295 ether_ifdetach(sc->ifp); 16296 } 16297 ifmedia_removeall(&sc->ifmedia); 16298 bxe_release_mutexes(sc); 16299 bxe_deallocate_bars(sc); 16300 pci_disable_busmaster(dev); 16301 return (ENXIO); 16302 } 16303 16304 bxe_init_fp_mutexs(sc); 16305 16306 if (bxe_alloc_buf_rings(sc) != 0) { 16307 bxe_free_buf_rings(sc); 16308 bxe_interrupt_free(sc); 16309 bxe_del_cdev(sc); 16310 if (sc->ifp != NULL) { 16311 ether_ifdetach(sc->ifp); 16312 } 16313 ifmedia_removeall(&sc->ifmedia); 16314 bxe_release_mutexes(sc); 16315 bxe_deallocate_bars(sc); 16316 pci_disable_busmaster(dev); 16317 return (ENXIO); 16318 } 16319 16320 /* allocate ilt */ 16321 if (bxe_alloc_ilt_mem(sc) != 0) { 16322 bxe_free_buf_rings(sc); 16323 bxe_interrupt_free(sc); 16324 bxe_del_cdev(sc); 16325 if (sc->ifp != NULL) { 16326 ether_ifdetach(sc->ifp); 16327 } 16328 ifmedia_removeall(&sc->ifmedia); 16329 bxe_release_mutexes(sc); 16330 bxe_deallocate_bars(sc); 16331 pci_disable_busmaster(dev); 16332 return (ENXIO); 16333 } 16334 16335 /* allocate the host hardware/software hsi structures */ 16336 if (bxe_alloc_hsi_mem(sc) != 0) { 16337 bxe_free_ilt_mem(sc); 16338 bxe_free_buf_rings(sc); 16339 bxe_interrupt_free(sc); 16340 bxe_del_cdev(sc); 16341 if (sc->ifp != NULL) { 16342 ether_ifdetach(sc->ifp); 16343 } 16344 ifmedia_removeall(&sc->ifmedia); 16345 bxe_release_mutexes(sc); 16346 bxe_deallocate_bars(sc); 16347 pci_disable_busmaster(dev); 16348 return (ENXIO); 16349 } 16350 16351 /* need to reset chip if UNDI was active */ 16352 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16353 /* init fw_seq */ 16354 sc->fw_seq = 16355 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16356 DRV_MSG_SEQ_NUMBER_MASK); 16357 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16358 bxe_prev_unload(sc); 16359 } 16360 16361 #if 1 16362 /* XXX */ 16363 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16364 #else 16365 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16366 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16367 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16368 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16369 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16370 bxe_dcbx_init_params(sc); 16371 } else { 16372 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16373 } 16374 #endif 16375 16376 /* calculate qm_cid_count */ 16377 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16378 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16379 16380 sc->max_cos = 1; 16381 bxe_init_multi_cos(sc); 16382 16383 bxe_add_sysctls(sc); 16384 16385 return (0); 16386 } 16387 16388 /* 16389 * Device detach function. 16390 * 16391 * Stops the controller, resets the controller, and releases resources. 16392 * 16393 * Returns: 16394 * 0 = Success, >0 = Failure 16395 */ 16396 static int 16397 bxe_detach(device_t dev) 16398 { 16399 struct bxe_softc *sc; 16400 if_t ifp; 16401 16402 sc = device_get_softc(dev); 16403 16404 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16405 16406 ifp = sc->ifp; 16407 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16408 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16409 return(EBUSY); 16410 } 16411 16412 bxe_del_cdev(sc); 16413 16414 /* stop the periodic callout */ 16415 bxe_periodic_stop(sc); 16416 16417 /* stop the chip taskqueue */ 16418 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16419 if (sc->chip_tq) { 16420 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16421 taskqueue_free(sc->chip_tq); 16422 sc->chip_tq = NULL; 16423 taskqueue_drain_timeout(taskqueue_thread, 16424 &sc->sp_err_timeout_task); 16425 } 16426 16427 /* stop and reset the controller if it was open */ 16428 if (sc->state != BXE_STATE_CLOSED) { 16429 BXE_CORE_LOCK(sc); 16430 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16431 sc->state = BXE_STATE_DISABLED; 16432 BXE_CORE_UNLOCK(sc); 16433 } 16434 16435 /* release the network interface */ 16436 if (ifp != NULL) { 16437 ether_ifdetach(ifp); 16438 } 16439 ifmedia_removeall(&sc->ifmedia); 16440 16441 /* XXX do the following based on driver state... */ 16442 16443 /* free the host hardware/software hsi structures */ 16444 bxe_free_hsi_mem(sc); 16445 16446 /* free ilt */ 16447 bxe_free_ilt_mem(sc); 16448 16449 bxe_free_buf_rings(sc); 16450 16451 /* release the interrupts */ 16452 bxe_interrupt_free(sc); 16453 16454 /* Release the mutexes*/ 16455 bxe_destroy_fp_mutexs(sc); 16456 bxe_release_mutexes(sc); 16457 16458 16459 /* Release the PCIe BAR mapped memory */ 16460 bxe_deallocate_bars(sc); 16461 16462 /* Release the FreeBSD interface. */ 16463 if (sc->ifp != NULL) { 16464 if_free(sc->ifp); 16465 } 16466 16467 pci_disable_busmaster(dev); 16468 16469 return (0); 16470 } 16471 16472 /* 16473 * Device shutdown function. 16474 * 16475 * Stops and resets the controller. 16476 * 16477 * Returns: 16478 * Nothing 16479 */ 16480 static int 16481 bxe_shutdown(device_t dev) 16482 { 16483 struct bxe_softc *sc; 16484 16485 sc = device_get_softc(dev); 16486 16487 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16488 16489 /* stop the periodic callout */ 16490 bxe_periodic_stop(sc); 16491 16492 if (sc->state != BXE_STATE_CLOSED) { 16493 BXE_CORE_LOCK(sc); 16494 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16495 BXE_CORE_UNLOCK(sc); 16496 } 16497 16498 return (0); 16499 } 16500 16501 void 16502 bxe_igu_ack_sb(struct bxe_softc *sc, 16503 uint8_t igu_sb_id, 16504 uint8_t segment, 16505 uint16_t index, 16506 uint8_t op, 16507 uint8_t update) 16508 { 16509 uint32_t igu_addr = sc->igu_base_addr; 16510 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16511 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16512 } 16513 16514 static void 16515 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16516 uint8_t func, 16517 uint8_t idu_sb_id, 16518 uint8_t is_pf) 16519 { 16520 uint32_t data, ctl, cnt = 100; 16521 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16522 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16523 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16524 uint32_t sb_bit = 1 << (idu_sb_id%32); 16525 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16526 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16527 16528 /* Not supported in BC mode */ 16529 if (CHIP_INT_MODE_IS_BC(sc)) { 16530 return; 16531 } 16532 16533 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16534 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16535 IGU_REGULAR_CLEANUP_SET | 16536 IGU_REGULAR_BCLEANUP); 16537 16538 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16539 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16540 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16541 16542 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16543 data, igu_addr_data); 16544 REG_WR(sc, igu_addr_data, data); 16545 16546 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16547 BUS_SPACE_BARRIER_WRITE); 16548 mb(); 16549 16550 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16551 ctl, igu_addr_ctl); 16552 REG_WR(sc, igu_addr_ctl, ctl); 16553 16554 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16555 BUS_SPACE_BARRIER_WRITE); 16556 mb(); 16557 16558 /* wait for clean up to finish */ 16559 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16560 DELAY(20000); 16561 } 16562 16563 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16564 BLOGD(sc, DBG_LOAD, 16565 "Unable to finish IGU cleanup: " 16566 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16567 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16568 } 16569 } 16570 16571 static void 16572 bxe_igu_clear_sb(struct bxe_softc *sc, 16573 uint8_t idu_sb_id) 16574 { 16575 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16576 } 16577 16578 16579 16580 16581 16582 16583 16584 /*******************/ 16585 /* ECORE CALLBACKS */ 16586 /*******************/ 16587 16588 static void 16589 bxe_reset_common(struct bxe_softc *sc) 16590 { 16591 uint32_t val = 0x1400; 16592 16593 /* reset_common */ 16594 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16595 16596 if (CHIP_IS_E3(sc)) { 16597 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16598 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16599 } 16600 16601 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16602 } 16603 16604 static void 16605 bxe_common_init_phy(struct bxe_softc *sc) 16606 { 16607 uint32_t shmem_base[2]; 16608 uint32_t shmem2_base[2]; 16609 16610 /* Avoid common init in case MFW supports LFA */ 16611 if (SHMEM2_RD(sc, size) > 16612 (uint32_t)offsetof(struct shmem2_region, 16613 lfa_host_addr[SC_PORT(sc)])) { 16614 return; 16615 } 16616 16617 shmem_base[0] = sc->devinfo.shmem_base; 16618 shmem2_base[0] = sc->devinfo.shmem2_base; 16619 16620 if (!CHIP_IS_E1x(sc)) { 16621 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16622 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16623 } 16624 16625 bxe_acquire_phy_lock(sc); 16626 elink_common_init_phy(sc, shmem_base, shmem2_base, 16627 sc->devinfo.chip_id, 0); 16628 bxe_release_phy_lock(sc); 16629 } 16630 16631 static void 16632 bxe_pf_disable(struct bxe_softc *sc) 16633 { 16634 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16635 16636 val &= ~IGU_PF_CONF_FUNC_EN; 16637 16638 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16639 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16640 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16641 } 16642 16643 static void 16644 bxe_init_pxp(struct bxe_softc *sc) 16645 { 16646 uint16_t devctl; 16647 int r_order, w_order; 16648 16649 devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2); 16650 16651 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16652 16653 w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5); 16654 16655 if (sc->mrrs == -1) { 16656 r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12); 16657 } else { 16658 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16659 r_order = sc->mrrs; 16660 } 16661 16662 ecore_init_pxp_arb(sc, r_order, w_order); 16663 } 16664 16665 static uint32_t 16666 bxe_get_pretend_reg(struct bxe_softc *sc) 16667 { 16668 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16669 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16670 return (base + (SC_ABS_FUNC(sc)) * stride); 16671 } 16672 16673 /* 16674 * Called only on E1H or E2. 16675 * When pretending to be PF, the pretend value is the function number 0..7. 16676 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16677 * combination. 16678 */ 16679 static int 16680 bxe_pretend_func(struct bxe_softc *sc, 16681 uint16_t pretend_func_val) 16682 { 16683 uint32_t pretend_reg; 16684 16685 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16686 return (-1); 16687 } 16688 16689 /* get my own pretend register */ 16690 pretend_reg = bxe_get_pretend_reg(sc); 16691 REG_WR(sc, pretend_reg, pretend_func_val); 16692 REG_RD(sc, pretend_reg); 16693 return (0); 16694 } 16695 16696 static void 16697 bxe_iov_init_dmae(struct bxe_softc *sc) 16698 { 16699 return; 16700 } 16701 16702 static void 16703 bxe_iov_init_dq(struct bxe_softc *sc) 16704 { 16705 return; 16706 } 16707 16708 /* send a NIG loopback debug packet */ 16709 static void 16710 bxe_lb_pckt(struct bxe_softc *sc) 16711 { 16712 uint32_t wb_write[3]; 16713 16714 /* Ethernet source and destination addresses */ 16715 wb_write[0] = 0x55555555; 16716 wb_write[1] = 0x55555555; 16717 wb_write[2] = 0x20; /* SOP */ 16718 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16719 16720 /* NON-IP protocol */ 16721 wb_write[0] = 0x09000000; 16722 wb_write[1] = 0x55555555; 16723 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16724 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16725 } 16726 16727 /* 16728 * Some of the internal memories are not directly readable from the driver. 16729 * To test them we send debug packets. 16730 */ 16731 static int 16732 bxe_int_mem_test(struct bxe_softc *sc) 16733 { 16734 int factor; 16735 int count, i; 16736 uint32_t val = 0; 16737 16738 if (CHIP_REV_IS_FPGA(sc)) { 16739 factor = 120; 16740 } else if (CHIP_REV_IS_EMUL(sc)) { 16741 factor = 200; 16742 } else { 16743 factor = 1; 16744 } 16745 16746 /* disable inputs of parser neighbor blocks */ 16747 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16748 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16749 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16750 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16751 16752 /* write 0 to parser credits for CFC search request */ 16753 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16754 16755 /* send Ethernet packet */ 16756 bxe_lb_pckt(sc); 16757 16758 /* TODO do i reset NIG statistic? */ 16759 /* Wait until NIG register shows 1 packet of size 0x10 */ 16760 count = 1000 * factor; 16761 while (count) { 16762 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16763 val = *BXE_SP(sc, wb_data[0]); 16764 if (val == 0x10) { 16765 break; 16766 } 16767 16768 DELAY(10000); 16769 count--; 16770 } 16771 16772 if (val != 0x10) { 16773 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16774 return (-1); 16775 } 16776 16777 /* wait until PRS register shows 1 packet */ 16778 count = (1000 * factor); 16779 while (count) { 16780 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16781 if (val == 1) { 16782 break; 16783 } 16784 16785 DELAY(10000); 16786 count--; 16787 } 16788 16789 if (val != 0x1) { 16790 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16791 return (-2); 16792 } 16793 16794 /* Reset and init BRB, PRS */ 16795 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16796 DELAY(50000); 16797 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16798 DELAY(50000); 16799 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16800 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16801 16802 /* Disable inputs of parser neighbor blocks */ 16803 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16804 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16805 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16806 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16807 16808 /* Write 0 to parser credits for CFC search request */ 16809 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16810 16811 /* send 10 Ethernet packets */ 16812 for (i = 0; i < 10; i++) { 16813 bxe_lb_pckt(sc); 16814 } 16815 16816 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16817 count = (1000 * factor); 16818 while (count) { 16819 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16820 val = *BXE_SP(sc, wb_data[0]); 16821 if (val == 0xb0) { 16822 break; 16823 } 16824 16825 DELAY(10000); 16826 count--; 16827 } 16828 16829 if (val != 0xb0) { 16830 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16831 return (-3); 16832 } 16833 16834 /* Wait until PRS register shows 2 packets */ 16835 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16836 if (val != 2) { 16837 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16838 } 16839 16840 /* Write 1 to parser credits for CFC search request */ 16841 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16842 16843 /* Wait until PRS register shows 3 packets */ 16844 DELAY(10000 * factor); 16845 16846 /* Wait until NIG register shows 1 packet of size 0x10 */ 16847 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16848 if (val != 3) { 16849 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16850 } 16851 16852 /* clear NIG EOP FIFO */ 16853 for (i = 0; i < 11; i++) { 16854 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16855 } 16856 16857 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16858 if (val != 1) { 16859 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16860 return (-4); 16861 } 16862 16863 /* Reset and init BRB, PRS, NIG */ 16864 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16865 DELAY(50000); 16866 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16867 DELAY(50000); 16868 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16869 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16870 if (!CNIC_SUPPORT(sc)) { 16871 /* set NIC mode */ 16872 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16873 } 16874 16875 /* Enable inputs of parser neighbor blocks */ 16876 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16877 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16878 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16879 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16880 16881 return (0); 16882 } 16883 16884 static void 16885 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16886 { 16887 int is_required; 16888 uint32_t val; 16889 int port; 16890 16891 is_required = 0; 16892 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16893 SHARED_HW_CFG_FAN_FAILURE_MASK); 16894 16895 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16896 is_required = 1; 16897 } 16898 /* 16899 * The fan failure mechanism is usually related to the PHY type since 16900 * the power consumption of the board is affected by the PHY. Currently, 16901 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16902 */ 16903 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16904 for (port = PORT_0; port < PORT_MAX; port++) { 16905 is_required |= elink_fan_failure_det_req(sc, 16906 sc->devinfo.shmem_base, 16907 sc->devinfo.shmem2_base, 16908 port); 16909 } 16910 } 16911 16912 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16913 16914 if (is_required == 0) { 16915 return; 16916 } 16917 16918 /* Fan failure is indicated by SPIO 5 */ 16919 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16920 16921 /* set to active low mode */ 16922 val = REG_RD(sc, MISC_REG_SPIO_INT); 16923 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16924 REG_WR(sc, MISC_REG_SPIO_INT, val); 16925 16926 /* enable interrupt to signal the IGU */ 16927 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16928 val |= MISC_SPIO_SPIO5; 16929 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16930 } 16931 16932 static void 16933 bxe_enable_blocks_attention(struct bxe_softc *sc) 16934 { 16935 uint32_t val; 16936 16937 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16938 if (!CHIP_IS_E1x(sc)) { 16939 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16940 } else { 16941 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16942 } 16943 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16944 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16945 /* 16946 * mask read length error interrupts in brb for parser 16947 * (parsing unit and 'checksum and crc' unit) 16948 * these errors are legal (PU reads fixed length and CAC can cause 16949 * read length error on truncated packets) 16950 */ 16951 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16952 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16953 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16954 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16955 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16956 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16957 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16958 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16959 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16960 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16961 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16962 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16963 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16964 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16965 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16966 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16967 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16968 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16969 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16970 16971 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16972 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16973 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16974 if (!CHIP_IS_E1x(sc)) { 16975 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16976 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16977 } 16978 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16979 16980 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16981 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16982 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16983 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16984 16985 if (!CHIP_IS_E1x(sc)) { 16986 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16987 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16988 } 16989 16990 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 16991 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 16992 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 16993 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 16994 } 16995 16996 /** 16997 * bxe_init_hw_common - initialize the HW at the COMMON phase. 16998 * 16999 * @sc: driver handle 17000 */ 17001 static int 17002 bxe_init_hw_common(struct bxe_softc *sc) 17003 { 17004 uint8_t abs_func_id; 17005 uint32_t val; 17006 17007 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17008 SC_ABS_FUNC(sc)); 17009 17010 /* 17011 * take the RESET lock to protect undi_unload flow from accessing 17012 * registers while we are resetting the chip 17013 */ 17014 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17015 17016 bxe_reset_common(sc); 17017 17018 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17019 17020 val = 0xfffc; 17021 if (CHIP_IS_E3(sc)) { 17022 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17023 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17024 } 17025 17026 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17027 17028 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17029 17030 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17031 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17032 17033 if (!CHIP_IS_E1x(sc)) { 17034 /* 17035 * 4-port mode or 2-port mode we need to turn off master-enable for 17036 * everyone. After that we turn it back on for self. So, we disregard 17037 * multi-function, and always disable all functions on the given path, 17038 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17039 */ 17040 for (abs_func_id = SC_PATH(sc); 17041 abs_func_id < (E2_FUNC_MAX * 2); 17042 abs_func_id += 2) { 17043 if (abs_func_id == SC_ABS_FUNC(sc)) { 17044 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17045 continue; 17046 } 17047 17048 bxe_pretend_func(sc, abs_func_id); 17049 17050 /* clear pf enable */ 17051 bxe_pf_disable(sc); 17052 17053 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17054 } 17055 } 17056 17057 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17058 17059 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17060 17061 if (CHIP_IS_E1(sc)) { 17062 /* 17063 * enable HW interrupt from PXP on USDM overflow 17064 * bit 16 on INT_MASK_0 17065 */ 17066 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17067 } 17068 17069 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17070 bxe_init_pxp(sc); 17071 17072 #ifdef __BIG_ENDIAN 17073 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17074 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17075 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17076 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17077 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17078 /* make sure this value is 0 */ 17079 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17080 17081 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17082 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17083 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17084 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17085 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17086 #endif 17087 17088 ecore_ilt_init_page_size(sc, INITOP_SET); 17089 17090 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17091 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17092 } 17093 17094 /* let the HW do it's magic... */ 17095 DELAY(100000); 17096 17097 /* finish PXP init */ 17098 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17099 if (val != 1) { 17100 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 17101 val); 17102 return (-1); 17103 } 17104 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17105 if (val != 1) { 17106 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 17107 return (-1); 17108 } 17109 17110 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17111 17112 /* 17113 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17114 * entries with value "0" and valid bit on. This needs to be done by the 17115 * first PF that is loaded in a path (i.e. common phase) 17116 */ 17117 if (!CHIP_IS_E1x(sc)) { 17118 /* 17119 * In E2 there is a bug in the timers block that can cause function 6 / 7 17120 * (i.e. vnic3) to start even if it is marked as "scan-off". 17121 * This occurs when a different function (func2,3) is being marked 17122 * as "scan-off". Real-life scenario for example: if a driver is being 17123 * load-unloaded while func6,7 are down. This will cause the timer to access 17124 * the ilt, translate to a logical address and send a request to read/write. 17125 * Since the ilt for the function that is down is not valid, this will cause 17126 * a translation error which is unrecoverable. 17127 * The Workaround is intended to make sure that when this happens nothing 17128 * fatal will occur. The workaround: 17129 * 1. First PF driver which loads on a path will: 17130 * a. After taking the chip out of reset, by using pretend, 17131 * it will write "0" to the following registers of 17132 * the other vnics. 17133 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17134 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17135 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17136 * And for itself it will write '1' to 17137 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17138 * dmae-operations (writing to pram for example.) 17139 * note: can be done for only function 6,7 but cleaner this 17140 * way. 17141 * b. Write zero+valid to the entire ILT. 17142 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17143 * VNIC3 (of that port). The range allocated will be the 17144 * entire ILT. This is needed to prevent ILT range error. 17145 * 2. Any PF driver load flow: 17146 * a. ILT update with the physical addresses of the allocated 17147 * logical pages. 17148 * b. Wait 20msec. - note that this timeout is needed to make 17149 * sure there are no requests in one of the PXP internal 17150 * queues with "old" ILT addresses. 17151 * c. PF enable in the PGLC. 17152 * d. Clear the was_error of the PF in the PGLC. (could have 17153 * occurred while driver was down) 17154 * e. PF enable in the CFC (WEAK + STRONG) 17155 * f. Timers scan enable 17156 * 3. PF driver unload flow: 17157 * a. Clear the Timers scan_en. 17158 * b. Polling for scan_on=0 for that PF. 17159 * c. Clear the PF enable bit in the PXP. 17160 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17161 * e. Write zero+valid to all ILT entries (The valid bit must 17162 * stay set) 17163 * f. If this is VNIC 3 of a port then also init 17164 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17165 * to the last entry in the ILT. 17166 * 17167 * Notes: 17168 * Currently the PF error in the PGLC is non recoverable. 17169 * In the future the there will be a recovery routine for this error. 17170 * Currently attention is masked. 17171 * Having an MCP lock on the load/unload process does not guarantee that 17172 * there is no Timer disable during Func6/7 enable. This is because the 17173 * Timers scan is currently being cleared by the MCP on FLR. 17174 * Step 2.d can be done only for PF6/7 and the driver can also check if 17175 * there is error before clearing it. But the flow above is simpler and 17176 * more general. 17177 * All ILT entries are written by zero+valid and not just PF6/7 17178 * ILT entries since in the future the ILT entries allocation for 17179 * PF-s might be dynamic. 17180 */ 17181 struct ilt_client_info ilt_cli; 17182 struct ecore_ilt ilt; 17183 17184 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17185 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17186 17187 /* initialize dummy TM client */ 17188 ilt_cli.start = 0; 17189 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17190 ilt_cli.client_num = ILT_CLIENT_TM; 17191 17192 /* 17193 * Step 1: set zeroes to all ilt page entries with valid bit on 17194 * Step 2: set the timers first/last ilt entry to point 17195 * to the entire range to prevent ILT range error for 3rd/4th 17196 * vnic (this code assumes existence of the vnic) 17197 * 17198 * both steps performed by call to ecore_ilt_client_init_op() 17199 * with dummy TM client 17200 * 17201 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17202 * and his brother are split registers 17203 */ 17204 17205 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17206 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17207 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17208 17209 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17210 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17211 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17212 } 17213 17214 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17215 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17216 17217 if (!CHIP_IS_E1x(sc)) { 17218 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17219 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17220 17221 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17222 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17223 17224 /* let the HW do it's magic... */ 17225 do { 17226 DELAY(200000); 17227 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17228 } while (factor-- && (val != 1)); 17229 17230 if (val != 1) { 17231 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 17232 return (-1); 17233 } 17234 } 17235 17236 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17237 17238 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17239 17240 bxe_iov_init_dmae(sc); 17241 17242 /* clean the DMAE memory */ 17243 sc->dmae_ready = 1; 17244 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17245 17246 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17247 17248 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17249 17250 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17251 17252 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17253 17254 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17255 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17256 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17257 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17258 17259 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17260 17261 /* QM queues pointers table */ 17262 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17263 17264 /* soft reset pulse */ 17265 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17266 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17267 17268 if (CNIC_SUPPORT(sc)) 17269 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17270 17271 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17272 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17273 if (!CHIP_REV_IS_SLOW(sc)) { 17274 /* enable hw interrupt from doorbell Q */ 17275 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17276 } 17277 17278 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17279 17280 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17281 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17282 17283 if (!CHIP_IS_E1(sc)) { 17284 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17285 } 17286 17287 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17288 if (IS_MF_AFEX(sc)) { 17289 /* 17290 * configure that AFEX and VLAN headers must be 17291 * received in AFEX mode 17292 */ 17293 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17294 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17295 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17296 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17297 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17298 } else { 17299 /* 17300 * Bit-map indicating which L2 hdrs may appear 17301 * after the basic Ethernet header 17302 */ 17303 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17304 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17305 } 17306 } 17307 17308 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17309 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17310 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17311 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17312 17313 if (!CHIP_IS_E1x(sc)) { 17314 /* reset VFC memories */ 17315 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17316 VFC_MEMORIES_RST_REG_CAM_RST | 17317 VFC_MEMORIES_RST_REG_RAM_RST); 17318 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17319 VFC_MEMORIES_RST_REG_CAM_RST | 17320 VFC_MEMORIES_RST_REG_RAM_RST); 17321 17322 DELAY(20000); 17323 } 17324 17325 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17326 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17327 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17328 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17329 17330 /* sync semi rtc */ 17331 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17332 0x80000000); 17333 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17334 0x80000000); 17335 17336 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17337 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17338 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17339 17340 if (!CHIP_IS_E1x(sc)) { 17341 if (IS_MF_AFEX(sc)) { 17342 /* 17343 * configure that AFEX and VLAN headers must be 17344 * sent in AFEX mode 17345 */ 17346 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17347 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17348 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17349 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17350 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17351 } else { 17352 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17353 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17354 } 17355 } 17356 17357 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17358 17359 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17360 17361 if (CNIC_SUPPORT(sc)) { 17362 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17363 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17364 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17365 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17366 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17367 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17368 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17369 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17370 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17371 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17372 } 17373 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17374 17375 if (sizeof(union cdu_context) != 1024) { 17376 /* we currently assume that a context is 1024 bytes */ 17377 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17378 (long)sizeof(union cdu_context)); 17379 } 17380 17381 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17382 val = (4 << 24) + (0 << 12) + 1024; 17383 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17384 17385 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17386 17387 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17388 /* enable context validation interrupt from CFC */ 17389 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17390 17391 /* set the thresholds to prevent CFC/CDU race */ 17392 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17393 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17394 17395 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17396 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17397 } 17398 17399 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17400 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17401 17402 /* Reset PCIE errors for debug */ 17403 REG_WR(sc, 0x2814, 0xffffffff); 17404 REG_WR(sc, 0x3820, 0xffffffff); 17405 17406 if (!CHIP_IS_E1x(sc)) { 17407 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17408 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17409 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17410 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17411 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17412 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17413 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17414 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17415 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17416 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17417 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17418 } 17419 17420 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17421 17422 if (!CHIP_IS_E1(sc)) { 17423 /* in E3 this done in per-port section */ 17424 if (!CHIP_IS_E3(sc)) 17425 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17426 } 17427 17428 if (CHIP_IS_E1H(sc)) { 17429 /* not applicable for E2 (and above ...) */ 17430 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17431 } 17432 17433 if (CHIP_REV_IS_SLOW(sc)) { 17434 DELAY(200000); 17435 } 17436 17437 /* finish CFC init */ 17438 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17439 if (val != 1) { 17440 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17441 return (-1); 17442 } 17443 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17444 if (val != 1) { 17445 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17446 return (-1); 17447 } 17448 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17449 if (val != 1) { 17450 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17451 return (-1); 17452 } 17453 REG_WR(sc, CFC_REG_DEBUG0, 0); 17454 17455 if (CHIP_IS_E1(sc)) { 17456 /* read NIG statistic to see if this is our first up since powerup */ 17457 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17458 val = *BXE_SP(sc, wb_data[0]); 17459 17460 /* do internal memory self test */ 17461 if ((val == 0) && bxe_int_mem_test(sc)) { 17462 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17463 return (-1); 17464 } 17465 } 17466 17467 bxe_setup_fan_failure_detection(sc); 17468 17469 /* clear PXP2 attentions */ 17470 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17471 17472 bxe_enable_blocks_attention(sc); 17473 17474 if (!CHIP_REV_IS_SLOW(sc)) { 17475 ecore_enable_blocks_parity(sc); 17476 } 17477 17478 if (!BXE_NOMCP(sc)) { 17479 if (CHIP_IS_E1x(sc)) { 17480 bxe_common_init_phy(sc); 17481 } 17482 } 17483 17484 return (0); 17485 } 17486 17487 /** 17488 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17489 * 17490 * @sc: driver handle 17491 */ 17492 static int 17493 bxe_init_hw_common_chip(struct bxe_softc *sc) 17494 { 17495 int rc = bxe_init_hw_common(sc); 17496 17497 if (rc) { 17498 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17499 return (rc); 17500 } 17501 17502 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17503 if (!BXE_NOMCP(sc)) { 17504 bxe_common_init_phy(sc); 17505 } 17506 17507 return (0); 17508 } 17509 17510 static int 17511 bxe_init_hw_port(struct bxe_softc *sc) 17512 { 17513 int port = SC_PORT(sc); 17514 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17515 uint32_t low, high; 17516 uint32_t val; 17517 17518 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17519 17520 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17521 17522 ecore_init_block(sc, BLOCK_MISC, init_phase); 17523 ecore_init_block(sc, BLOCK_PXP, init_phase); 17524 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17525 17526 /* 17527 * Timers bug workaround: disables the pf_master bit in pglue at 17528 * common phase, we need to enable it here before any dmae access are 17529 * attempted. Therefore we manually added the enable-master to the 17530 * port phase (it also happens in the function phase) 17531 */ 17532 if (!CHIP_IS_E1x(sc)) { 17533 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17534 } 17535 17536 ecore_init_block(sc, BLOCK_ATC, init_phase); 17537 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17538 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17539 ecore_init_block(sc, BLOCK_QM, init_phase); 17540 17541 ecore_init_block(sc, BLOCK_TCM, init_phase); 17542 ecore_init_block(sc, BLOCK_UCM, init_phase); 17543 ecore_init_block(sc, BLOCK_CCM, init_phase); 17544 ecore_init_block(sc, BLOCK_XCM, init_phase); 17545 17546 /* QM cid (connection) count */ 17547 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17548 17549 if (CNIC_SUPPORT(sc)) { 17550 ecore_init_block(sc, BLOCK_TM, init_phase); 17551 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17552 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17553 } 17554 17555 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17556 17557 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17558 17559 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17560 if (IS_MF(sc)) { 17561 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17562 } else if (sc->mtu > 4096) { 17563 if (BXE_ONE_PORT(sc)) { 17564 low = 160; 17565 } else { 17566 val = sc->mtu; 17567 /* (24*1024 + val*4)/256 */ 17568 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17569 } 17570 } else { 17571 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17572 } 17573 high = (low + 56); /* 14*1024/256 */ 17574 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17575 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17576 } 17577 17578 if (CHIP_IS_MODE_4_PORT(sc)) { 17579 REG_WR(sc, SC_PORT(sc) ? 17580 BRB1_REG_MAC_GUARANTIED_1 : 17581 BRB1_REG_MAC_GUARANTIED_0, 40); 17582 } 17583 17584 ecore_init_block(sc, BLOCK_PRS, init_phase); 17585 if (CHIP_IS_E3B0(sc)) { 17586 if (IS_MF_AFEX(sc)) { 17587 /* configure headers for AFEX mode */ 17588 REG_WR(sc, SC_PORT(sc) ? 17589 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17590 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17591 REG_WR(sc, SC_PORT(sc) ? 17592 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17593 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17594 REG_WR(sc, SC_PORT(sc) ? 17595 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17596 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17597 } else { 17598 /* Ovlan exists only if we are in multi-function + 17599 * switch-dependent mode, in switch-independent there 17600 * is no ovlan headers 17601 */ 17602 REG_WR(sc, SC_PORT(sc) ? 17603 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17604 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17605 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17606 } 17607 } 17608 17609 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17610 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17611 ecore_init_block(sc, BLOCK_USDM, init_phase); 17612 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17613 17614 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17615 ecore_init_block(sc, BLOCK_USEM, init_phase); 17616 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17617 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17618 17619 ecore_init_block(sc, BLOCK_UPB, init_phase); 17620 ecore_init_block(sc, BLOCK_XPB, init_phase); 17621 17622 ecore_init_block(sc, BLOCK_PBF, init_phase); 17623 17624 if (CHIP_IS_E1x(sc)) { 17625 /* configure PBF to work without PAUSE mtu 9000 */ 17626 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17627 17628 /* update threshold */ 17629 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17630 /* update init credit */ 17631 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17632 17633 /* probe changes */ 17634 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17635 DELAY(50); 17636 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17637 } 17638 17639 if (CNIC_SUPPORT(sc)) { 17640 ecore_init_block(sc, BLOCK_SRC, init_phase); 17641 } 17642 17643 ecore_init_block(sc, BLOCK_CDU, init_phase); 17644 ecore_init_block(sc, BLOCK_CFC, init_phase); 17645 17646 if (CHIP_IS_E1(sc)) { 17647 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17648 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17649 } 17650 ecore_init_block(sc, BLOCK_HC, init_phase); 17651 17652 ecore_init_block(sc, BLOCK_IGU, init_phase); 17653 17654 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17655 /* init aeu_mask_attn_func_0/1: 17656 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17657 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17658 * bits 4-7 are used for "per vn group attention" */ 17659 val = IS_MF(sc) ? 0xF7 : 0x7; 17660 /* Enable DCBX attention for all but E1 */ 17661 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17662 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17663 17664 ecore_init_block(sc, BLOCK_NIG, init_phase); 17665 17666 if (!CHIP_IS_E1x(sc)) { 17667 /* Bit-map indicating which L2 hdrs may appear after the 17668 * basic Ethernet header 17669 */ 17670 if (IS_MF_AFEX(sc)) { 17671 REG_WR(sc, SC_PORT(sc) ? 17672 NIG_REG_P1_HDRS_AFTER_BASIC : 17673 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17674 } else { 17675 REG_WR(sc, SC_PORT(sc) ? 17676 NIG_REG_P1_HDRS_AFTER_BASIC : 17677 NIG_REG_P0_HDRS_AFTER_BASIC, 17678 IS_MF_SD(sc) ? 7 : 6); 17679 } 17680 17681 if (CHIP_IS_E3(sc)) { 17682 REG_WR(sc, SC_PORT(sc) ? 17683 NIG_REG_LLH1_MF_MODE : 17684 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17685 } 17686 } 17687 if (!CHIP_IS_E3(sc)) { 17688 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17689 } 17690 17691 if (!CHIP_IS_E1(sc)) { 17692 /* 0x2 disable mf_ov, 0x1 enable */ 17693 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17694 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17695 17696 if (!CHIP_IS_E1x(sc)) { 17697 val = 0; 17698 switch (sc->devinfo.mf_info.mf_mode) { 17699 case MULTI_FUNCTION_SD: 17700 val = 1; 17701 break; 17702 case MULTI_FUNCTION_SI: 17703 case MULTI_FUNCTION_AFEX: 17704 val = 2; 17705 break; 17706 } 17707 17708 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17709 NIG_REG_LLH0_CLS_TYPE), val); 17710 } 17711 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17712 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17713 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17714 } 17715 17716 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17717 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17718 if (val & MISC_SPIO_SPIO5) { 17719 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17720 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17721 val = REG_RD(sc, reg_addr); 17722 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17723 REG_WR(sc, reg_addr, val); 17724 } 17725 17726 return (0); 17727 } 17728 17729 static uint32_t 17730 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17731 uint32_t reg, 17732 uint32_t expected, 17733 uint32_t poll_count) 17734 { 17735 uint32_t cur_cnt = poll_count; 17736 uint32_t val; 17737 17738 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17739 DELAY(FLR_WAIT_INTERVAL); 17740 } 17741 17742 return (val); 17743 } 17744 17745 static int 17746 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17747 uint32_t reg, 17748 char *msg, 17749 uint32_t poll_cnt) 17750 { 17751 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17752 17753 if (val != 0) { 17754 BLOGE(sc, "%s usage count=%d\n", msg, val); 17755 return (1); 17756 } 17757 17758 return (0); 17759 } 17760 17761 /* Common routines with VF FLR cleanup */ 17762 static uint32_t 17763 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17764 { 17765 /* adjust polling timeout */ 17766 if (CHIP_REV_IS_EMUL(sc)) { 17767 return (FLR_POLL_CNT * 2000); 17768 } 17769 17770 if (CHIP_REV_IS_FPGA(sc)) { 17771 return (FLR_POLL_CNT * 120); 17772 } 17773 17774 return (FLR_POLL_CNT); 17775 } 17776 17777 static int 17778 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17779 uint32_t poll_cnt) 17780 { 17781 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17782 if (bxe_flr_clnup_poll_hw_counter(sc, 17783 CFC_REG_NUM_LCIDS_INSIDE_PF, 17784 "CFC PF usage counter timed out", 17785 poll_cnt)) { 17786 return (1); 17787 } 17788 17789 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17790 if (bxe_flr_clnup_poll_hw_counter(sc, 17791 DORQ_REG_PF_USAGE_CNT, 17792 "DQ PF usage counter timed out", 17793 poll_cnt)) { 17794 return (1); 17795 } 17796 17797 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17798 if (bxe_flr_clnup_poll_hw_counter(sc, 17799 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17800 "QM PF usage counter timed out", 17801 poll_cnt)) { 17802 return (1); 17803 } 17804 17805 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17806 if (bxe_flr_clnup_poll_hw_counter(sc, 17807 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17808 "Timers VNIC usage counter timed out", 17809 poll_cnt)) { 17810 return (1); 17811 } 17812 17813 if (bxe_flr_clnup_poll_hw_counter(sc, 17814 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17815 "Timers NUM_SCANS usage counter timed out", 17816 poll_cnt)) { 17817 return (1); 17818 } 17819 17820 /* Wait DMAE PF usage counter to zero */ 17821 if (bxe_flr_clnup_poll_hw_counter(sc, 17822 dmae_reg_go_c[INIT_DMAE_C(sc)], 17823 "DMAE dommand register timed out", 17824 poll_cnt)) { 17825 return (1); 17826 } 17827 17828 return (0); 17829 } 17830 17831 #define OP_GEN_PARAM(param) \ 17832 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17833 #define OP_GEN_TYPE(type) \ 17834 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17835 #define OP_GEN_AGG_VECT(index) \ 17836 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17837 17838 static int 17839 bxe_send_final_clnup(struct bxe_softc *sc, 17840 uint8_t clnup_func, 17841 uint32_t poll_cnt) 17842 { 17843 uint32_t op_gen_command = 0; 17844 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17845 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17846 int ret = 0; 17847 17848 if (REG_RD(sc, comp_addr)) { 17849 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17850 return (1); 17851 } 17852 17853 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17854 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17855 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17856 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17857 17858 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17859 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17860 17861 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17862 BLOGE(sc, "FW final cleanup did not succeed\n"); 17863 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17864 (REG_RD(sc, comp_addr))); 17865 bxe_panic(sc, ("FLR cleanup failed\n")); 17866 return (1); 17867 } 17868 17869 /* Zero completion for nxt FLR */ 17870 REG_WR(sc, comp_addr, 0); 17871 17872 return (ret); 17873 } 17874 17875 static void 17876 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17877 struct pbf_pN_buf_regs *regs, 17878 uint32_t poll_count) 17879 { 17880 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17881 uint32_t cur_cnt = poll_count; 17882 17883 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17884 crd = crd_start = REG_RD(sc, regs->crd); 17885 init_crd = REG_RD(sc, regs->init_crd); 17886 17887 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17888 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17889 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17890 17891 while ((crd != init_crd) && 17892 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17893 (init_crd - crd_start))) { 17894 if (cur_cnt--) { 17895 DELAY(FLR_WAIT_INTERVAL); 17896 crd = REG_RD(sc, regs->crd); 17897 crd_freed = REG_RD(sc, regs->crd_freed); 17898 } else { 17899 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17900 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17901 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17902 break; 17903 } 17904 } 17905 17906 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17907 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17908 } 17909 17910 static void 17911 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17912 struct pbf_pN_cmd_regs *regs, 17913 uint32_t poll_count) 17914 { 17915 uint32_t occup, to_free, freed, freed_start; 17916 uint32_t cur_cnt = poll_count; 17917 17918 occup = to_free = REG_RD(sc, regs->lines_occup); 17919 freed = freed_start = REG_RD(sc, regs->lines_freed); 17920 17921 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17922 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17923 17924 while (occup && 17925 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17926 if (cur_cnt--) { 17927 DELAY(FLR_WAIT_INTERVAL); 17928 occup = REG_RD(sc, regs->lines_occup); 17929 freed = REG_RD(sc, regs->lines_freed); 17930 } else { 17931 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17932 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17933 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17934 break; 17935 } 17936 } 17937 17938 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17939 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17940 } 17941 17942 static void 17943 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17944 { 17945 struct pbf_pN_cmd_regs cmd_regs[] = { 17946 {0, (CHIP_IS_E3B0(sc)) ? 17947 PBF_REG_TQ_OCCUPANCY_Q0 : 17948 PBF_REG_P0_TQ_OCCUPANCY, 17949 (CHIP_IS_E3B0(sc)) ? 17950 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17951 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17952 {1, (CHIP_IS_E3B0(sc)) ? 17953 PBF_REG_TQ_OCCUPANCY_Q1 : 17954 PBF_REG_P1_TQ_OCCUPANCY, 17955 (CHIP_IS_E3B0(sc)) ? 17956 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17957 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17958 {4, (CHIP_IS_E3B0(sc)) ? 17959 PBF_REG_TQ_OCCUPANCY_LB_Q : 17960 PBF_REG_P4_TQ_OCCUPANCY, 17961 (CHIP_IS_E3B0(sc)) ? 17962 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17963 PBF_REG_P4_TQ_LINES_FREED_CNT} 17964 }; 17965 17966 struct pbf_pN_buf_regs buf_regs[] = { 17967 {0, (CHIP_IS_E3B0(sc)) ? 17968 PBF_REG_INIT_CRD_Q0 : 17969 PBF_REG_P0_INIT_CRD , 17970 (CHIP_IS_E3B0(sc)) ? 17971 PBF_REG_CREDIT_Q0 : 17972 PBF_REG_P0_CREDIT, 17973 (CHIP_IS_E3B0(sc)) ? 17974 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17975 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17976 {1, (CHIP_IS_E3B0(sc)) ? 17977 PBF_REG_INIT_CRD_Q1 : 17978 PBF_REG_P1_INIT_CRD, 17979 (CHIP_IS_E3B0(sc)) ? 17980 PBF_REG_CREDIT_Q1 : 17981 PBF_REG_P1_CREDIT, 17982 (CHIP_IS_E3B0(sc)) ? 17983 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17984 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17985 {4, (CHIP_IS_E3B0(sc)) ? 17986 PBF_REG_INIT_CRD_LB_Q : 17987 PBF_REG_P4_INIT_CRD, 17988 (CHIP_IS_E3B0(sc)) ? 17989 PBF_REG_CREDIT_LB_Q : 17990 PBF_REG_P4_CREDIT, 17991 (CHIP_IS_E3B0(sc)) ? 17992 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 17993 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 17994 }; 17995 17996 int i; 17997 17998 /* Verify the command queues are flushed P0, P1, P4 */ 17999 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18000 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18001 } 18002 18003 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18004 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18005 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18006 } 18007 } 18008 18009 static void 18010 bxe_hw_enable_status(struct bxe_softc *sc) 18011 { 18012 uint32_t val; 18013 18014 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18015 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18016 18017 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18018 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18019 18020 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18021 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18022 18023 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18024 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18025 18026 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18027 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18028 18029 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18030 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18031 18032 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18033 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18034 18035 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18036 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18037 } 18038 18039 static int 18040 bxe_pf_flr_clnup(struct bxe_softc *sc) 18041 { 18042 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18043 18044 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18045 18046 /* Re-enable PF target read access */ 18047 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18048 18049 /* Poll HW usage counters */ 18050 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18051 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18052 return (-1); 18053 } 18054 18055 /* Zero the igu 'trailing edge' and 'leading edge' */ 18056 18057 /* Send the FW cleanup command */ 18058 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18059 return (-1); 18060 } 18061 18062 /* ATC cleanup */ 18063 18064 /* Verify TX hw is flushed */ 18065 bxe_tx_hw_flushed(sc, poll_cnt); 18066 18067 /* Wait 100ms (not adjusted according to platform) */ 18068 DELAY(100000); 18069 18070 /* Verify no pending pci transactions */ 18071 if (bxe_is_pcie_pending(sc)) { 18072 BLOGE(sc, "PCIE Transactions still pending\n"); 18073 } 18074 18075 /* Debug */ 18076 bxe_hw_enable_status(sc); 18077 18078 /* 18079 * Master enable - Due to WB DMAE writes performed before this 18080 * register is re-initialized as part of the regular function init 18081 */ 18082 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18083 18084 return (0); 18085 } 18086 18087 static int 18088 bxe_init_hw_func(struct bxe_softc *sc) 18089 { 18090 int port = SC_PORT(sc); 18091 int func = SC_FUNC(sc); 18092 int init_phase = PHASE_PF0 + func; 18093 struct ecore_ilt *ilt = sc->ilt; 18094 uint16_t cdu_ilt_start; 18095 uint32_t addr, val; 18096 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18097 int i, main_mem_width, rc; 18098 18099 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18100 18101 /* FLR cleanup */ 18102 if (!CHIP_IS_E1x(sc)) { 18103 rc = bxe_pf_flr_clnup(sc); 18104 if (rc) { 18105 BLOGE(sc, "FLR cleanup failed!\n"); 18106 // XXX bxe_fw_dump(sc); 18107 // XXX bxe_idle_chk(sc); 18108 return (rc); 18109 } 18110 } 18111 18112 /* set MSI reconfigure capability */ 18113 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18114 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18115 val = REG_RD(sc, addr); 18116 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18117 REG_WR(sc, addr, val); 18118 } 18119 18120 ecore_init_block(sc, BLOCK_PXP, init_phase); 18121 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18122 18123 ilt = sc->ilt; 18124 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18125 18126 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18127 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18128 ilt->lines[cdu_ilt_start + i].page_mapping = 18129 sc->context[i].vcxt_dma.paddr; 18130 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18131 } 18132 ecore_ilt_init_op(sc, INITOP_SET); 18133 18134 /* Set NIC mode */ 18135 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18136 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18137 18138 if (!CHIP_IS_E1x(sc)) { 18139 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18140 18141 /* Turn on a single ISR mode in IGU if driver is going to use 18142 * INT#x or MSI 18143 */ 18144 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18145 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18146 } 18147 18148 /* 18149 * Timers workaround bug: function init part. 18150 * Need to wait 20msec after initializing ILT, 18151 * needed to make sure there are no requests in 18152 * one of the PXP internal queues with "old" ILT addresses 18153 */ 18154 DELAY(20000); 18155 18156 /* 18157 * Master enable - Due to WB DMAE writes performed before this 18158 * register is re-initialized as part of the regular function 18159 * init 18160 */ 18161 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18162 /* Enable the function in IGU */ 18163 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18164 } 18165 18166 sc->dmae_ready = 1; 18167 18168 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18169 18170 if (!CHIP_IS_E1x(sc)) 18171 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18172 18173 ecore_init_block(sc, BLOCK_ATC, init_phase); 18174 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18175 ecore_init_block(sc, BLOCK_NIG, init_phase); 18176 ecore_init_block(sc, BLOCK_SRC, init_phase); 18177 ecore_init_block(sc, BLOCK_MISC, init_phase); 18178 ecore_init_block(sc, BLOCK_TCM, init_phase); 18179 ecore_init_block(sc, BLOCK_UCM, init_phase); 18180 ecore_init_block(sc, BLOCK_CCM, init_phase); 18181 ecore_init_block(sc, BLOCK_XCM, init_phase); 18182 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18183 ecore_init_block(sc, BLOCK_USEM, init_phase); 18184 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18185 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18186 18187 if (!CHIP_IS_E1x(sc)) 18188 REG_WR(sc, QM_REG_PF_EN, 1); 18189 18190 if (!CHIP_IS_E1x(sc)) { 18191 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18192 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18193 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18194 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18195 } 18196 ecore_init_block(sc, BLOCK_QM, init_phase); 18197 18198 ecore_init_block(sc, BLOCK_TM, init_phase); 18199 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18200 18201 bxe_iov_init_dq(sc); 18202 18203 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18204 ecore_init_block(sc, BLOCK_PRS, init_phase); 18205 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18206 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18207 ecore_init_block(sc, BLOCK_USDM, init_phase); 18208 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18209 ecore_init_block(sc, BLOCK_UPB, init_phase); 18210 ecore_init_block(sc, BLOCK_XPB, init_phase); 18211 ecore_init_block(sc, BLOCK_PBF, init_phase); 18212 if (!CHIP_IS_E1x(sc)) 18213 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18214 18215 ecore_init_block(sc, BLOCK_CDU, init_phase); 18216 18217 ecore_init_block(sc, BLOCK_CFC, init_phase); 18218 18219 if (!CHIP_IS_E1x(sc)) 18220 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18221 18222 if (IS_MF(sc)) { 18223 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18224 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18225 } 18226 18227 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18228 18229 /* HC init per function */ 18230 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18231 if (CHIP_IS_E1H(sc)) { 18232 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18233 18234 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18235 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18236 } 18237 ecore_init_block(sc, BLOCK_HC, init_phase); 18238 18239 } else { 18240 int num_segs, sb_idx, prod_offset; 18241 18242 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18243 18244 if (!CHIP_IS_E1x(sc)) { 18245 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18246 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18247 } 18248 18249 ecore_init_block(sc, BLOCK_IGU, init_phase); 18250 18251 if (!CHIP_IS_E1x(sc)) { 18252 int dsb_idx = 0; 18253 /** 18254 * Producer memory: 18255 * E2 mode: address 0-135 match to the mapping memory; 18256 * 136 - PF0 default prod; 137 - PF1 default prod; 18257 * 138 - PF2 default prod; 139 - PF3 default prod; 18258 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18259 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18260 * 144-147 reserved. 18261 * 18262 * E1.5 mode - In backward compatible mode; 18263 * for non default SB; each even line in the memory 18264 * holds the U producer and each odd line hold 18265 * the C producer. The first 128 producers are for 18266 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18267 * producers are for the DSB for each PF. 18268 * Each PF has five segments: (the order inside each 18269 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18270 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18271 * 144-147 attn prods; 18272 */ 18273 /* non-default-status-blocks */ 18274 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18275 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18276 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18277 prod_offset = (sc->igu_base_sb + sb_idx) * 18278 num_segs; 18279 18280 for (i = 0; i < num_segs; i++) { 18281 addr = IGU_REG_PROD_CONS_MEMORY + 18282 (prod_offset + i) * 4; 18283 REG_WR(sc, addr, 0); 18284 } 18285 /* send consumer update with value 0 */ 18286 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18287 USTORM_ID, 0, IGU_INT_NOP, 1); 18288 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18289 } 18290 18291 /* default-status-blocks */ 18292 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18293 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18294 18295 if (CHIP_IS_MODE_4_PORT(sc)) 18296 dsb_idx = SC_FUNC(sc); 18297 else 18298 dsb_idx = SC_VN(sc); 18299 18300 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18301 IGU_BC_BASE_DSB_PROD + dsb_idx : 18302 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18303 18304 /* 18305 * igu prods come in chunks of E1HVN_MAX (4) - 18306 * does not matters what is the current chip mode 18307 */ 18308 for (i = 0; i < (num_segs * E1HVN_MAX); 18309 i += E1HVN_MAX) { 18310 addr = IGU_REG_PROD_CONS_MEMORY + 18311 (prod_offset + i)*4; 18312 REG_WR(sc, addr, 0); 18313 } 18314 /* send consumer update with 0 */ 18315 if (CHIP_INT_MODE_IS_BC(sc)) { 18316 bxe_ack_sb(sc, sc->igu_dsb_id, 18317 USTORM_ID, 0, IGU_INT_NOP, 1); 18318 bxe_ack_sb(sc, sc->igu_dsb_id, 18319 CSTORM_ID, 0, IGU_INT_NOP, 1); 18320 bxe_ack_sb(sc, sc->igu_dsb_id, 18321 XSTORM_ID, 0, IGU_INT_NOP, 1); 18322 bxe_ack_sb(sc, sc->igu_dsb_id, 18323 TSTORM_ID, 0, IGU_INT_NOP, 1); 18324 bxe_ack_sb(sc, sc->igu_dsb_id, 18325 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18326 } else { 18327 bxe_ack_sb(sc, sc->igu_dsb_id, 18328 USTORM_ID, 0, IGU_INT_NOP, 1); 18329 bxe_ack_sb(sc, sc->igu_dsb_id, 18330 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18331 } 18332 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18333 18334 /* !!! these should become driver const once 18335 rf-tool supports split-68 const */ 18336 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18337 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18338 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18339 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18340 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18341 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18342 } 18343 } 18344 18345 /* Reset PCIE errors for debug */ 18346 REG_WR(sc, 0x2114, 0xffffffff); 18347 REG_WR(sc, 0x2120, 0xffffffff); 18348 18349 if (CHIP_IS_E1x(sc)) { 18350 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18351 main_mem_base = HC_REG_MAIN_MEMORY + 18352 SC_PORT(sc) * (main_mem_size * 4); 18353 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18354 main_mem_width = 8; 18355 18356 val = REG_RD(sc, main_mem_prty_clr); 18357 if (val) { 18358 BLOGD(sc, DBG_LOAD, 18359 "Parity errors in HC block during function init (0x%x)!\n", 18360 val); 18361 } 18362 18363 /* Clear "false" parity errors in MSI-X table */ 18364 for (i = main_mem_base; 18365 i < main_mem_base + main_mem_size * 4; 18366 i += main_mem_width) { 18367 bxe_read_dmae(sc, i, main_mem_width / 4); 18368 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18369 i, main_mem_width / 4); 18370 } 18371 /* Clear HC parity attention */ 18372 REG_RD(sc, main_mem_prty_clr); 18373 } 18374 18375 #if 1 18376 /* Enable STORMs SP logging */ 18377 REG_WR8(sc, BAR_USTRORM_INTMEM + 18378 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18379 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18380 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18381 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18382 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18383 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18384 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18385 #endif 18386 18387 elink_phy_probe(&sc->link_params); 18388 18389 return (0); 18390 } 18391 18392 static void 18393 bxe_link_reset(struct bxe_softc *sc) 18394 { 18395 if (!BXE_NOMCP(sc)) { 18396 bxe_acquire_phy_lock(sc); 18397 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18398 bxe_release_phy_lock(sc); 18399 } else { 18400 if (!CHIP_REV_IS_SLOW(sc)) { 18401 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18402 } 18403 } 18404 } 18405 18406 static void 18407 bxe_reset_port(struct bxe_softc *sc) 18408 { 18409 int port = SC_PORT(sc); 18410 uint32_t val; 18411 18412 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18413 /* reset physical Link */ 18414 bxe_link_reset(sc); 18415 18416 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18417 18418 /* Do not rcv packets to BRB */ 18419 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18420 /* Do not direct rcv packets that are not for MCP to the BRB */ 18421 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18422 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18423 18424 /* Configure AEU */ 18425 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18426 18427 DELAY(100000); 18428 18429 /* Check for BRB port occupancy */ 18430 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18431 if (val) { 18432 BLOGD(sc, DBG_LOAD, 18433 "BRB1 is not empty, %d blocks are occupied\n", val); 18434 } 18435 18436 /* TODO: Close Doorbell port? */ 18437 } 18438 18439 static void 18440 bxe_ilt_wr(struct bxe_softc *sc, 18441 uint32_t index, 18442 bus_addr_t addr) 18443 { 18444 int reg; 18445 uint32_t wb_write[2]; 18446 18447 if (CHIP_IS_E1(sc)) { 18448 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18449 } else { 18450 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18451 } 18452 18453 wb_write[0] = ONCHIP_ADDR1(addr); 18454 wb_write[1] = ONCHIP_ADDR2(addr); 18455 REG_WR_DMAE(sc, reg, wb_write, 2); 18456 } 18457 18458 static void 18459 bxe_clear_func_ilt(struct bxe_softc *sc, 18460 uint32_t func) 18461 { 18462 uint32_t i, base = FUNC_ILT_BASE(func); 18463 for (i = base; i < base + ILT_PER_FUNC; i++) { 18464 bxe_ilt_wr(sc, i, 0); 18465 } 18466 } 18467 18468 static void 18469 bxe_reset_func(struct bxe_softc *sc) 18470 { 18471 struct bxe_fastpath *fp; 18472 int port = SC_PORT(sc); 18473 int func = SC_FUNC(sc); 18474 int i; 18475 18476 /* Disable the function in the FW */ 18477 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18478 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18479 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18480 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18481 18482 /* FP SBs */ 18483 FOR_EACH_ETH_QUEUE(sc, i) { 18484 fp = &sc->fp[i]; 18485 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18486 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18487 SB_DISABLED); 18488 } 18489 18490 /* SP SB */ 18491 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18492 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18493 SB_DISABLED); 18494 18495 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18496 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18497 } 18498 18499 /* Configure IGU */ 18500 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18501 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18502 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18503 } else { 18504 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18505 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18506 } 18507 18508 if (CNIC_LOADED(sc)) { 18509 /* Disable Timer scan */ 18510 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18511 /* 18512 * Wait for at least 10ms and up to 2 second for the timers 18513 * scan to complete 18514 */ 18515 for (i = 0; i < 200; i++) { 18516 DELAY(10000); 18517 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18518 break; 18519 } 18520 } 18521 18522 /* Clear ILT */ 18523 bxe_clear_func_ilt(sc, func); 18524 18525 /* 18526 * Timers workaround bug for E2: if this is vnic-3, 18527 * we need to set the entire ilt range for this timers. 18528 */ 18529 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18530 struct ilt_client_info ilt_cli; 18531 /* use dummy TM client */ 18532 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18533 ilt_cli.start = 0; 18534 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18535 ilt_cli.client_num = ILT_CLIENT_TM; 18536 18537 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18538 } 18539 18540 /* this assumes that reset_port() called before reset_func()*/ 18541 if (!CHIP_IS_E1x(sc)) { 18542 bxe_pf_disable(sc); 18543 } 18544 18545 sc->dmae_ready = 0; 18546 } 18547 18548 static int 18549 bxe_gunzip_init(struct bxe_softc *sc) 18550 { 18551 return (0); 18552 } 18553 18554 static void 18555 bxe_gunzip_end(struct bxe_softc *sc) 18556 { 18557 return; 18558 } 18559 18560 static int 18561 bxe_init_firmware(struct bxe_softc *sc) 18562 { 18563 if (CHIP_IS_E1(sc)) { 18564 ecore_init_e1_firmware(sc); 18565 sc->iro_array = e1_iro_arr; 18566 } else if (CHIP_IS_E1H(sc)) { 18567 ecore_init_e1h_firmware(sc); 18568 sc->iro_array = e1h_iro_arr; 18569 } else if (!CHIP_IS_E1x(sc)) { 18570 ecore_init_e2_firmware(sc); 18571 sc->iro_array = e2_iro_arr; 18572 } else { 18573 BLOGE(sc, "Unsupported chip revision\n"); 18574 return (-1); 18575 } 18576 18577 return (0); 18578 } 18579 18580 static void 18581 bxe_release_firmware(struct bxe_softc *sc) 18582 { 18583 /* Do nothing */ 18584 return; 18585 } 18586 18587 static int 18588 ecore_gunzip(struct bxe_softc *sc, 18589 const uint8_t *zbuf, 18590 int len) 18591 { 18592 /* XXX : Implement... */ 18593 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18594 return (FALSE); 18595 } 18596 18597 static void 18598 ecore_reg_wr_ind(struct bxe_softc *sc, 18599 uint32_t addr, 18600 uint32_t val) 18601 { 18602 bxe_reg_wr_ind(sc, addr, val); 18603 } 18604 18605 static void 18606 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18607 bus_addr_t phys_addr, 18608 uint32_t addr, 18609 uint32_t len) 18610 { 18611 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18612 } 18613 18614 void 18615 ecore_storm_memset_struct(struct bxe_softc *sc, 18616 uint32_t addr, 18617 size_t size, 18618 uint32_t *data) 18619 { 18620 uint8_t i; 18621 for (i = 0; i < size/4; i++) { 18622 REG_WR(sc, addr + (i * 4), data[i]); 18623 } 18624 } 18625 18626 18627 /* 18628 * character device - ioctl interface definitions 18629 */ 18630 18631 18632 #include "bxe_dump.h" 18633 #include "bxe_ioctl.h" 18634 #include <sys/conf.h> 18635 18636 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18637 struct thread *td); 18638 18639 static struct cdevsw bxe_cdevsw = { 18640 .d_version = D_VERSION, 18641 .d_ioctl = bxe_eioctl, 18642 .d_name = "bxecnic", 18643 }; 18644 18645 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18646 18647 18648 #define DUMP_ALL_PRESETS 0x1FFF 18649 #define DUMP_MAX_PRESETS 13 18650 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18651 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18652 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18653 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18654 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18655 18656 #define IS_REG_IN_PRESET(presets, idx) \ 18657 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18658 18659 18660 static int 18661 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18662 { 18663 if (CHIP_IS_E1(sc)) 18664 return dump_num_registers[0][preset-1]; 18665 else if (CHIP_IS_E1H(sc)) 18666 return dump_num_registers[1][preset-1]; 18667 else if (CHIP_IS_E2(sc)) 18668 return dump_num_registers[2][preset-1]; 18669 else if (CHIP_IS_E3A0(sc)) 18670 return dump_num_registers[3][preset-1]; 18671 else if (CHIP_IS_E3B0(sc)) 18672 return dump_num_registers[4][preset-1]; 18673 else 18674 return 0; 18675 } 18676 18677 static int 18678 bxe_get_total_regs_len32(struct bxe_softc *sc) 18679 { 18680 uint32_t preset_idx; 18681 int regdump_len32 = 0; 18682 18683 18684 /* Calculate the total preset regs length */ 18685 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18686 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18687 } 18688 18689 return regdump_len32; 18690 } 18691 18692 static const uint32_t * 18693 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18694 { 18695 if (CHIP_IS_E2(sc)) 18696 return page_vals_e2; 18697 else if (CHIP_IS_E3(sc)) 18698 return page_vals_e3; 18699 else 18700 return NULL; 18701 } 18702 18703 static uint32_t 18704 __bxe_get_page_reg_num(struct bxe_softc *sc) 18705 { 18706 if (CHIP_IS_E2(sc)) 18707 return PAGE_MODE_VALUES_E2; 18708 else if (CHIP_IS_E3(sc)) 18709 return PAGE_MODE_VALUES_E3; 18710 else 18711 return 0; 18712 } 18713 18714 static const uint32_t * 18715 __bxe_get_page_write_ar(struct bxe_softc *sc) 18716 { 18717 if (CHIP_IS_E2(sc)) 18718 return page_write_regs_e2; 18719 else if (CHIP_IS_E3(sc)) 18720 return page_write_regs_e3; 18721 else 18722 return NULL; 18723 } 18724 18725 static uint32_t 18726 __bxe_get_page_write_num(struct bxe_softc *sc) 18727 { 18728 if (CHIP_IS_E2(sc)) 18729 return PAGE_WRITE_REGS_E2; 18730 else if (CHIP_IS_E3(sc)) 18731 return PAGE_WRITE_REGS_E3; 18732 else 18733 return 0; 18734 } 18735 18736 static const struct reg_addr * 18737 __bxe_get_page_read_ar(struct bxe_softc *sc) 18738 { 18739 if (CHIP_IS_E2(sc)) 18740 return page_read_regs_e2; 18741 else if (CHIP_IS_E3(sc)) 18742 return page_read_regs_e3; 18743 else 18744 return NULL; 18745 } 18746 18747 static uint32_t 18748 __bxe_get_page_read_num(struct bxe_softc *sc) 18749 { 18750 if (CHIP_IS_E2(sc)) 18751 return PAGE_READ_REGS_E2; 18752 else if (CHIP_IS_E3(sc)) 18753 return PAGE_READ_REGS_E3; 18754 else 18755 return 0; 18756 } 18757 18758 static bool 18759 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18760 { 18761 if (CHIP_IS_E1(sc)) 18762 return IS_E1_REG(reg_info->chips); 18763 else if (CHIP_IS_E1H(sc)) 18764 return IS_E1H_REG(reg_info->chips); 18765 else if (CHIP_IS_E2(sc)) 18766 return IS_E2_REG(reg_info->chips); 18767 else if (CHIP_IS_E3A0(sc)) 18768 return IS_E3A0_REG(reg_info->chips); 18769 else if (CHIP_IS_E3B0(sc)) 18770 return IS_E3B0_REG(reg_info->chips); 18771 else 18772 return 0; 18773 } 18774 18775 static bool 18776 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18777 { 18778 if (CHIP_IS_E1(sc)) 18779 return IS_E1_REG(wreg_info->chips); 18780 else if (CHIP_IS_E1H(sc)) 18781 return IS_E1H_REG(wreg_info->chips); 18782 else if (CHIP_IS_E2(sc)) 18783 return IS_E2_REG(wreg_info->chips); 18784 else if (CHIP_IS_E3A0(sc)) 18785 return IS_E3A0_REG(wreg_info->chips); 18786 else if (CHIP_IS_E3B0(sc)) 18787 return IS_E3B0_REG(wreg_info->chips); 18788 else 18789 return 0; 18790 } 18791 18792 /** 18793 * bxe_read_pages_regs - read "paged" registers 18794 * 18795 * @bp device handle 18796 * @p output buffer 18797 * 18798 * Reads "paged" memories: memories that may only be read by first writing to a 18799 * specific address ("write address") and then reading from a specific address 18800 * ("read address"). There may be more than one write address per "page" and 18801 * more than one read address per write address. 18802 */ 18803 static void 18804 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18805 { 18806 uint32_t i, j, k, n; 18807 18808 /* addresses of the paged registers */ 18809 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18810 /* number of paged registers */ 18811 int num_pages = __bxe_get_page_reg_num(sc); 18812 /* write addresses */ 18813 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18814 /* number of write addresses */ 18815 int write_num = __bxe_get_page_write_num(sc); 18816 /* read addresses info */ 18817 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18818 /* number of read addresses */ 18819 int read_num = __bxe_get_page_read_num(sc); 18820 uint32_t addr, size; 18821 18822 for (i = 0; i < num_pages; i++) { 18823 for (j = 0; j < write_num; j++) { 18824 REG_WR(sc, write_addr[j], page_addr[i]); 18825 18826 for (k = 0; k < read_num; k++) { 18827 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18828 size = read_addr[k].size; 18829 for (n = 0; n < size; n++) { 18830 addr = read_addr[k].addr + n*4; 18831 *p++ = REG_RD(sc, addr); 18832 } 18833 } 18834 } 18835 } 18836 } 18837 return; 18838 } 18839 18840 18841 static int 18842 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18843 { 18844 uint32_t i, j, addr; 18845 const struct wreg_addr *wreg_addr_p = NULL; 18846 18847 if (CHIP_IS_E1(sc)) 18848 wreg_addr_p = &wreg_addr_e1; 18849 else if (CHIP_IS_E1H(sc)) 18850 wreg_addr_p = &wreg_addr_e1h; 18851 else if (CHIP_IS_E2(sc)) 18852 wreg_addr_p = &wreg_addr_e2; 18853 else if (CHIP_IS_E3A0(sc)) 18854 wreg_addr_p = &wreg_addr_e3; 18855 else if (CHIP_IS_E3B0(sc)) 18856 wreg_addr_p = &wreg_addr_e3b0; 18857 else 18858 return (-1); 18859 18860 /* Read the idle_chk registers */ 18861 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18862 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18863 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18864 for (j = 0; j < idle_reg_addrs[i].size; j++) 18865 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18866 } 18867 } 18868 18869 /* Read the regular registers */ 18870 for (i = 0; i < REGS_COUNT; i++) { 18871 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18872 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18873 for (j = 0; j < reg_addrs[i].size; j++) 18874 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18875 } 18876 } 18877 18878 /* Read the CAM registers */ 18879 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18880 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18881 for (i = 0; i < wreg_addr_p->size; i++) { 18882 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18883 18884 /* In case of wreg_addr register, read additional 18885 registers from read_regs array 18886 */ 18887 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18888 addr = *(wreg_addr_p->read_regs); 18889 *p++ = REG_RD(sc, addr + j*4); 18890 } 18891 } 18892 } 18893 18894 /* Paged registers are supported in E2 & E3 only */ 18895 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18896 /* Read "paged" registers */ 18897 bxe_read_pages_regs(sc, p, preset); 18898 } 18899 18900 return 0; 18901 } 18902 18903 int 18904 bxe_grc_dump(struct bxe_softc *sc) 18905 { 18906 int rval = 0; 18907 uint32_t preset_idx; 18908 uint8_t *buf; 18909 uint32_t size; 18910 struct dump_header *d_hdr; 18911 uint32_t i; 18912 uint32_t reg_val; 18913 uint32_t reg_addr; 18914 uint32_t cmd_offset; 18915 struct ecore_ilt *ilt = SC_ILT(sc); 18916 struct bxe_fastpath *fp; 18917 struct ilt_client_info *ilt_cli; 18918 int grc_dump_size; 18919 18920 18921 if (sc->grcdump_done || sc->grcdump_started) 18922 return (rval); 18923 18924 sc->grcdump_started = 1; 18925 BLOGI(sc, "Started collecting grcdump\n"); 18926 18927 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18928 sizeof(struct dump_header); 18929 18930 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18931 18932 if (sc->grc_dump == NULL) { 18933 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18934 return(ENOMEM); 18935 } 18936 18937 18938 18939 /* Disable parity attentions as long as following dump may 18940 * cause false alarms by reading never written registers. We 18941 * will re-enable parity attentions right after the dump. 18942 */ 18943 18944 /* Disable parity on path 0 */ 18945 bxe_pretend_func(sc, 0); 18946 18947 ecore_disable_blocks_parity(sc); 18948 18949 /* Disable parity on path 1 */ 18950 bxe_pretend_func(sc, 1); 18951 ecore_disable_blocks_parity(sc); 18952 18953 /* Return to current function */ 18954 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18955 18956 buf = sc->grc_dump; 18957 d_hdr = sc->grc_dump; 18958 18959 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18960 d_hdr->version = BNX2X_DUMP_VERSION; 18961 d_hdr->preset = DUMP_ALL_PRESETS; 18962 18963 if (CHIP_IS_E1(sc)) { 18964 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18965 } else if (CHIP_IS_E1H(sc)) { 18966 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18967 } else if (CHIP_IS_E2(sc)) { 18968 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18969 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18970 } else if (CHIP_IS_E3A0(sc)) { 18971 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18972 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18973 } else if (CHIP_IS_E3B0(sc)) { 18974 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18975 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18976 } 18977 18978 buf += sizeof(struct dump_header); 18979 18980 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18981 18982 /* Skip presets with IOR */ 18983 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18984 (preset_idx == 11)) 18985 continue; 18986 18987 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18988 18989 if (rval) 18990 break; 18991 18992 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 18993 18994 buf += size; 18995 } 18996 18997 bxe_pretend_func(sc, 0); 18998 ecore_clear_blocks_parity(sc); 18999 ecore_enable_blocks_parity(sc); 19000 19001 bxe_pretend_func(sc, 1); 19002 ecore_clear_blocks_parity(sc); 19003 ecore_enable_blocks_parity(sc); 19004 19005 /* Return to current function */ 19006 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 19007 19008 19009 19010 if(sc->state == BXE_STATE_OPEN) { 19011 if(sc->fw_stats_req != NULL) { 19012 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 19013 (uintmax_t)sc->fw_stats_req_mapping, 19014 (uintmax_t)sc->fw_stats_data_mapping, 19015 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 19016 } 19017 if(sc->def_sb != NULL) { 19018 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 19019 (void *)sc->def_sb_dma.paddr, sc->def_sb, 19020 sizeof(struct host_sp_status_block)); 19021 } 19022 if(sc->eq_dma.vaddr != NULL) { 19023 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 19024 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 19025 } 19026 if(sc->sp_dma.vaddr != NULL) { 19027 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 19028 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 19029 sizeof(struct bxe_slowpath)); 19030 } 19031 if(sc->spq_dma.vaddr != NULL) { 19032 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 19033 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 19034 } 19035 if(sc->gz_buf_dma.vaddr != NULL) { 19036 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 19037 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 19038 FW_BUF_SIZE); 19039 } 19040 for (i = 0; i < sc->num_queues; i++) { 19041 fp = &sc->fp[i]; 19042 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 19043 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 19044 fp->rx_sge_dma.vaddr != NULL) { 19045 19046 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19047 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 19048 sizeof(union bxe_host_hc_status_block)); 19049 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19050 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 19051 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 19052 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19053 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 19054 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 19055 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19056 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 19057 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 19058 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19059 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 19060 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 19061 } 19062 } 19063 if(ilt != NULL ) { 19064 ilt_cli = &ilt->clients[1]; 19065 if(ilt->lines != NULL) { 19066 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 19067 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 19068 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 19069 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 19070 } 19071 } 19072 } 19073 19074 19075 cmd_offset = DMAE_REG_CMD_MEM; 19076 for (i = 0; i < 224; i++) { 19077 reg_addr = (cmd_offset +(i * 4)); 19078 reg_val = REG_RD(sc, reg_addr); 19079 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 19080 reg_addr, reg_val); 19081 } 19082 } 19083 19084 BLOGI(sc, "Collection of grcdump done\n"); 19085 sc->grcdump_done = 1; 19086 return(rval); 19087 } 19088 19089 static int 19090 bxe_add_cdev(struct bxe_softc *sc) 19091 { 19092 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 19093 19094 if (sc->eeprom == NULL) { 19095 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 19096 return (-1); 19097 } 19098 19099 sc->ioctl_dev = make_dev(&bxe_cdevsw, 19100 if_getdunit(sc->ifp), 19101 UID_ROOT, 19102 GID_WHEEL, 19103 0600, 19104 "%s", 19105 if_name(sc->ifp)); 19106 19107 if (sc->ioctl_dev == NULL) { 19108 free(sc->eeprom, M_DEVBUF); 19109 sc->eeprom = NULL; 19110 return (-1); 19111 } 19112 19113 sc->ioctl_dev->si_drv1 = sc; 19114 19115 return (0); 19116 } 19117 19118 static void 19119 bxe_del_cdev(struct bxe_softc *sc) 19120 { 19121 if (sc->ioctl_dev != NULL) 19122 destroy_dev(sc->ioctl_dev); 19123 19124 if (sc->eeprom != NULL) { 19125 free(sc->eeprom, M_DEVBUF); 19126 sc->eeprom = NULL; 19127 } 19128 sc->ioctl_dev = NULL; 19129 19130 return; 19131 } 19132 19133 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 19134 { 19135 19136 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 19137 return FALSE; 19138 19139 return TRUE; 19140 } 19141 19142 19143 static int 19144 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19145 { 19146 int rval = 0; 19147 19148 if(!bxe_is_nvram_accessible(sc)) { 19149 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19150 return (-EAGAIN); 19151 } 19152 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 19153 19154 19155 return (rval); 19156 } 19157 19158 static int 19159 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19160 { 19161 int rval = 0; 19162 19163 if(!bxe_is_nvram_accessible(sc)) { 19164 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19165 return (-EAGAIN); 19166 } 19167 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 19168 19169 return (rval); 19170 } 19171 19172 static int 19173 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 19174 { 19175 int rval = 0; 19176 19177 switch (eeprom->eeprom_cmd) { 19178 19179 case BXE_EEPROM_CMD_SET_EEPROM: 19180 19181 rval = copyin(eeprom->eeprom_data, sc->eeprom, 19182 eeprom->eeprom_data_len); 19183 19184 if (rval) 19185 break; 19186 19187 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19188 eeprom->eeprom_data_len); 19189 break; 19190 19191 case BXE_EEPROM_CMD_GET_EEPROM: 19192 19193 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19194 eeprom->eeprom_data_len); 19195 19196 if (rval) { 19197 break; 19198 } 19199 19200 rval = copyout(sc->eeprom, eeprom->eeprom_data, 19201 eeprom->eeprom_data_len); 19202 break; 19203 19204 default: 19205 rval = EINVAL; 19206 break; 19207 } 19208 19209 if (rval) { 19210 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 19211 } 19212 19213 return (rval); 19214 } 19215 19216 static int 19217 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 19218 { 19219 uint32_t ext_phy_config; 19220 int port = SC_PORT(sc); 19221 int cfg_idx = bxe_get_link_cfg_idx(sc); 19222 19223 dev_p->supported = sc->port.supported[cfg_idx] | 19224 (sc->port.supported[cfg_idx ^ 1] & 19225 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 19226 dev_p->advertising = sc->port.advertising[cfg_idx]; 19227 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 19228 ELINK_ETH_PHY_SFP_1G_FIBER) { 19229 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 19230 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 19231 } 19232 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 19233 !(sc->flags & BXE_MF_FUNC_DIS)) { 19234 dev_p->duplex = sc->link_vars.duplex; 19235 if (IS_MF(sc) && !BXE_NOMCP(sc)) 19236 dev_p->speed = bxe_get_mf_speed(sc); 19237 else 19238 dev_p->speed = sc->link_vars.line_speed; 19239 } else { 19240 dev_p->duplex = DUPLEX_UNKNOWN; 19241 dev_p->speed = SPEED_UNKNOWN; 19242 } 19243 19244 dev_p->port = bxe_media_detect(sc); 19245 19246 ext_phy_config = SHMEM_RD(sc, 19247 dev_info.port_hw_config[port].external_phy_config); 19248 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 19249 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 19250 dev_p->phy_address = sc->port.phy_addr; 19251 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19252 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 19253 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19254 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 19255 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 19256 else 19257 dev_p->phy_address = 0; 19258 19259 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 19260 dev_p->autoneg = AUTONEG_ENABLE; 19261 else 19262 dev_p->autoneg = AUTONEG_DISABLE; 19263 19264 19265 return 0; 19266 } 19267 19268 static int 19269 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19270 struct thread *td) 19271 { 19272 struct bxe_softc *sc; 19273 int rval = 0; 19274 bxe_grcdump_t *dump = NULL; 19275 int grc_dump_size; 19276 bxe_drvinfo_t *drv_infop = NULL; 19277 bxe_dev_setting_t *dev_p; 19278 bxe_dev_setting_t dev_set; 19279 bxe_get_regs_t *reg_p; 19280 bxe_reg_rdw_t *reg_rdw_p; 19281 bxe_pcicfg_rdw_t *cfg_rdw_p; 19282 bxe_perm_mac_addr_t *mac_addr_p; 19283 19284 19285 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19286 return ENXIO; 19287 19288 dump = (bxe_grcdump_t *)data; 19289 19290 switch(cmd) { 19291 19292 case BXE_GRC_DUMP_SIZE: 19293 dump->pci_func = sc->pcie_func; 19294 dump->grcdump_size = 19295 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19296 sizeof(struct dump_header); 19297 break; 19298 19299 case BXE_GRC_DUMP: 19300 19301 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19302 sizeof(struct dump_header); 19303 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19304 (dump->grcdump_size < grc_dump_size)) { 19305 rval = EINVAL; 19306 break; 19307 } 19308 19309 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19310 (!sc->grcdump_started)) { 19311 rval = bxe_grc_dump(sc); 19312 } 19313 19314 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19315 (sc->grc_dump != NULL)) { 19316 dump->grcdump_dwords = grc_dump_size >> 2; 19317 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19318 free(sc->grc_dump, M_DEVBUF); 19319 sc->grc_dump = NULL; 19320 sc->grcdump_started = 0; 19321 sc->grcdump_done = 0; 19322 } 19323 19324 break; 19325 19326 case BXE_DRV_INFO: 19327 drv_infop = (bxe_drvinfo_t *)data; 19328 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19329 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19330 BXE_DRIVER_VERSION); 19331 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19332 sc->devinfo.bc_ver_str); 19333 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19334 "%s", sc->fw_ver_str); 19335 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19336 drv_infop->reg_dump_len = 19337 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19338 + sizeof(struct dump_header); 19339 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19340 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19341 break; 19342 19343 case BXE_DEV_SETTING: 19344 dev_p = (bxe_dev_setting_t *)data; 19345 bxe_get_settings(sc, &dev_set); 19346 dev_p->supported = dev_set.supported; 19347 dev_p->advertising = dev_set.advertising; 19348 dev_p->speed = dev_set.speed; 19349 dev_p->duplex = dev_set.duplex; 19350 dev_p->port = dev_set.port; 19351 dev_p->phy_address = dev_set.phy_address; 19352 dev_p->autoneg = dev_set.autoneg; 19353 19354 break; 19355 19356 case BXE_GET_REGS: 19357 19358 reg_p = (bxe_get_regs_t *)data; 19359 grc_dump_size = reg_p->reg_buf_len; 19360 19361 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19362 bxe_grc_dump(sc); 19363 } 19364 if((sc->grcdump_done) && (sc->grcdump_started) && 19365 (sc->grc_dump != NULL)) { 19366 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19367 free(sc->grc_dump, M_DEVBUF); 19368 sc->grc_dump = NULL; 19369 sc->grcdump_started = 0; 19370 sc->grcdump_done = 0; 19371 } 19372 19373 break; 19374 19375 case BXE_RDW_REG: 19376 reg_rdw_p = (bxe_reg_rdw_t *)data; 19377 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19378 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19379 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19380 19381 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19382 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19383 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19384 19385 break; 19386 19387 case BXE_RDW_PCICFG: 19388 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19389 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19390 19391 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19392 cfg_rdw_p->cfg_width); 19393 19394 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19395 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19396 cfg_rdw_p->cfg_width); 19397 } else { 19398 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19399 } 19400 break; 19401 19402 case BXE_MAC_ADDR: 19403 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19404 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19405 sc->mac_addr_str); 19406 break; 19407 19408 case BXE_EEPROM: 19409 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19410 break; 19411 19412 19413 default: 19414 break; 19415 } 19416 19417 return (rval); 19418 } 19419 19420 #ifdef DEBUGNET 19421 static void 19422 bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 19423 { 19424 struct bxe_softc *sc; 19425 19426 sc = if_getsoftc(ifp); 19427 BXE_CORE_LOCK(sc); 19428 *nrxr = sc->num_queues; 19429 *ncl = DEBUGNET_MAX_IN_FLIGHT; 19430 *clsize = sc->fp[0].mbuf_alloc_size; 19431 BXE_CORE_UNLOCK(sc); 19432 } 19433 19434 static void 19435 bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 19436 { 19437 } 19438 19439 static int 19440 bxe_debugnet_transmit(if_t ifp, struct mbuf *m) 19441 { 19442 struct bxe_softc *sc; 19443 int error; 19444 19445 sc = if_getsoftc(ifp); 19446 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 19447 IFF_DRV_RUNNING || !sc->link_vars.link_up) 19448 return (ENOENT); 19449 19450 error = bxe_tx_encap(&sc->fp[0], &m); 19451 if (error != 0 && m != NULL) 19452 m_freem(m); 19453 return (error); 19454 } 19455 19456 static int 19457 bxe_debugnet_poll(if_t ifp, int count) 19458 { 19459 struct bxe_softc *sc; 19460 int i; 19461 19462 sc = if_getsoftc(ifp); 19463 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 19464 !sc->link_vars.link_up) 19465 return (ENOENT); 19466 19467 for (i = 0; i < sc->num_queues; i++) 19468 (void)bxe_rxeof(sc, &sc->fp[i]); 19469 (void)bxe_txeof(sc, &sc->fp[0]); 19470 return (0); 19471 } 19472 #endif /* DEBUGNET */ 19473