1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 26 * THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #define BXE_DRIVER_VERSION "1.78.91" 33 34 #include "bxe.h" 35 #include "ecore_sp.h" 36 #include "ecore_init.h" 37 #include "ecore_init_ops.h" 38 39 #include "57710_int_offsets.h" 40 #include "57711_int_offsets.h" 41 #include "57712_int_offsets.h" 42 43 /* 44 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these 45 * explicitly here for older kernels that don't include this changeset. 46 */ 47 #ifndef CTLTYPE_U64 48 #define CTLTYPE_U64 CTLTYPE_QUAD 49 #define sysctl_handle_64 sysctl_handle_quad 50 #endif 51 52 /* 53 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these 54 * here as zero(0) for older kernels that don't include this changeset 55 * thereby masking the functionality. 56 */ 57 #ifndef CSUM_TCP_IPV6 58 #define CSUM_TCP_IPV6 0 59 #define CSUM_UDP_IPV6 0 60 #endif 61 62 #define BXE_DEF_SB_ATT_IDX 0x0001 63 #define BXE_DEF_SB_IDX 0x0002 64 65 /* 66 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per 67 * function HW initialization. 68 */ 69 #define FLR_WAIT_USEC 10000 /* 10 msecs */ 70 #define FLR_WAIT_INTERVAL 50 /* usecs */ 71 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ 72 73 struct pbf_pN_buf_regs { 74 int pN; 75 uint32_t init_crd; 76 uint32_t crd; 77 uint32_t crd_freed; 78 }; 79 80 struct pbf_pN_cmd_regs { 81 int pN; 82 uint32_t lines_occup; 83 uint32_t lines_freed; 84 }; 85 86 /* 87 * PCI Device ID Table used by bxe_probe(). 88 */ 89 #define BXE_DEVDESC_MAX 64 90 static struct bxe_device_type bxe_devs[] = { 91 { 92 BRCM_VENDORID, 93 CHIP_NUM_57710, 94 PCI_ANY_ID, PCI_ANY_ID, 95 "QLogic NetXtreme II BCM57710 10GbE" 96 }, 97 { 98 BRCM_VENDORID, 99 CHIP_NUM_57711, 100 PCI_ANY_ID, PCI_ANY_ID, 101 "QLogic NetXtreme II BCM57711 10GbE" 102 }, 103 { 104 BRCM_VENDORID, 105 CHIP_NUM_57711E, 106 PCI_ANY_ID, PCI_ANY_ID, 107 "QLogic NetXtreme II BCM57711E 10GbE" 108 }, 109 { 110 BRCM_VENDORID, 111 CHIP_NUM_57712, 112 PCI_ANY_ID, PCI_ANY_ID, 113 "QLogic NetXtreme II BCM57712 10GbE" 114 }, 115 { 116 BRCM_VENDORID, 117 CHIP_NUM_57712_MF, 118 PCI_ANY_ID, PCI_ANY_ID, 119 "QLogic NetXtreme II BCM57712 MF 10GbE" 120 }, 121 { 122 BRCM_VENDORID, 123 CHIP_NUM_57800, 124 PCI_ANY_ID, PCI_ANY_ID, 125 "QLogic NetXtreme II BCM57800 10GbE" 126 }, 127 { 128 BRCM_VENDORID, 129 CHIP_NUM_57800_MF, 130 PCI_ANY_ID, PCI_ANY_ID, 131 "QLogic NetXtreme II BCM57800 MF 10GbE" 132 }, 133 { 134 BRCM_VENDORID, 135 CHIP_NUM_57810, 136 PCI_ANY_ID, PCI_ANY_ID, 137 "QLogic NetXtreme II BCM57810 10GbE" 138 }, 139 { 140 BRCM_VENDORID, 141 CHIP_NUM_57810_MF, 142 PCI_ANY_ID, PCI_ANY_ID, 143 "QLogic NetXtreme II BCM57810 MF 10GbE" 144 }, 145 { 146 BRCM_VENDORID, 147 CHIP_NUM_57811, 148 PCI_ANY_ID, PCI_ANY_ID, 149 "QLogic NetXtreme II BCM57811 10GbE" 150 }, 151 { 152 BRCM_VENDORID, 153 CHIP_NUM_57811_MF, 154 PCI_ANY_ID, PCI_ANY_ID, 155 "QLogic NetXtreme II BCM57811 MF 10GbE" 156 }, 157 { 158 BRCM_VENDORID, 159 CHIP_NUM_57840_4_10, 160 PCI_ANY_ID, PCI_ANY_ID, 161 "QLogic NetXtreme II BCM57840 4x10GbE" 162 }, 163 { 164 QLOGIC_VENDORID, 165 CHIP_NUM_57840_4_10, 166 PCI_ANY_ID, PCI_ANY_ID, 167 "QLogic NetXtreme II BCM57840 4x10GbE" 168 }, 169 { 170 BRCM_VENDORID, 171 CHIP_NUM_57840_2_20, 172 PCI_ANY_ID, PCI_ANY_ID, 173 "QLogic NetXtreme II BCM57840 2x20GbE" 174 }, 175 { 176 BRCM_VENDORID, 177 CHIP_NUM_57840_MF, 178 PCI_ANY_ID, PCI_ANY_ID, 179 "QLogic NetXtreme II BCM57840 MF 10GbE" 180 }, 181 { 182 0, 0, 0, 0, NULL 183 } 184 }; 185 186 MALLOC_DECLARE(M_BXE_ILT); 187 MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); 188 189 /* 190 * FreeBSD device entry points. 191 */ 192 static int bxe_probe(device_t); 193 static int bxe_attach(device_t); 194 static int bxe_detach(device_t); 195 static int bxe_shutdown(device_t); 196 197 198 /* 199 * FreeBSD KLD module/device interface event handler method. 200 */ 201 static device_method_t bxe_methods[] = { 202 /* Device interface (device_if.h) */ 203 DEVMETHOD(device_probe, bxe_probe), 204 DEVMETHOD(device_attach, bxe_attach), 205 DEVMETHOD(device_detach, bxe_detach), 206 DEVMETHOD(device_shutdown, bxe_shutdown), 207 /* Bus interface (bus_if.h) */ 208 DEVMETHOD(bus_print_child, bus_generic_print_child), 209 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 210 KOBJMETHOD_END 211 }; 212 213 /* 214 * FreeBSD KLD Module data declaration 215 */ 216 static driver_t bxe_driver = { 217 "bxe", /* module name */ 218 bxe_methods, /* event handler */ 219 sizeof(struct bxe_softc) /* extra data */ 220 }; 221 222 /* 223 * FreeBSD dev class is needed to manage dev instances and 224 * to associate with a bus type 225 */ 226 static devclass_t bxe_devclass; 227 228 MODULE_DEPEND(bxe, pci, 1, 1, 1); 229 MODULE_DEPEND(bxe, ether, 1, 1, 1); 230 DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0); 231 232 DEBUGNET_DEFINE(bxe); 233 234 /* resources needed for unloading a previously loaded device */ 235 236 #define BXE_PREV_WAIT_NEEDED 1 237 struct mtx bxe_prev_mtx; 238 MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF); 239 struct bxe_prev_list_node { 240 LIST_ENTRY(bxe_prev_list_node) node; 241 uint8_t bus; 242 uint8_t slot; 243 uint8_t path; 244 uint8_t aer; /* XXX automatic error recovery */ 245 uint8_t undi; 246 }; 247 static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); 248 249 static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ 250 251 /* Tunable device values... */ 252 253 SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 254 "bxe driver parameters"); 255 256 /* Debug */ 257 unsigned long bxe_debug = 0; 258 SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, 259 &bxe_debug, 0, "Debug logging mode"); 260 261 /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ 262 static int bxe_interrupt_mode = INTR_MODE_MSIX; 263 SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, 264 &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); 265 266 /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ 267 static int bxe_queue_count = 4; 268 SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, 269 &bxe_queue_count, 0, "Multi-Queue queue count"); 270 271 /* max number of buffers per queue (default RX_BD_USABLE) */ 272 static int bxe_max_rx_bufs = 0; 273 SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, 274 &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); 275 276 /* Host interrupt coalescing RX tick timer (usecs) */ 277 static int bxe_hc_rx_ticks = 25; 278 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, 279 &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); 280 281 /* Host interrupt coalescing TX tick timer (usecs) */ 282 static int bxe_hc_tx_ticks = 50; 283 SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, 284 &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); 285 286 /* Maximum number of Rx packets to process at a time */ 287 static int bxe_rx_budget = 0xffffffff; 288 SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, 289 &bxe_rx_budget, 0, "Rx processing budget"); 290 291 /* Maximum LRO aggregation size */ 292 static int bxe_max_aggregation_size = 0; 293 SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, 294 &bxe_max_aggregation_size, 0, "max aggregation size"); 295 296 /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ 297 static int bxe_mrrs = -1; 298 SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, 299 &bxe_mrrs, 0, "PCIe maximum read request size"); 300 301 /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ 302 static int bxe_autogreeen = 0; 303 SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, 304 &bxe_autogreeen, 0, "AutoGrEEEn support"); 305 306 /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ 307 static int bxe_udp_rss = 0; 308 SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, 309 &bxe_udp_rss, 0, "UDP RSS support"); 310 311 312 #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ 313 314 #define STATS_OFFSET32(stat_name) \ 315 (offsetof(struct bxe_eth_stats, stat_name) / 4) 316 317 #define Q_STATS_OFFSET32(stat_name) \ 318 (offsetof(struct bxe_eth_q_stats, stat_name) / 4) 319 320 static const struct { 321 uint32_t offset; 322 uint32_t size; 323 uint32_t flags; 324 #define STATS_FLAGS_PORT 1 325 #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ 326 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) 327 char string[STAT_NAME_LEN]; 328 } bxe_eth_stats_arr[] = { 329 { STATS_OFFSET32(total_bytes_received_hi), 330 8, STATS_FLAGS_BOTH, "rx_bytes" }, 331 { STATS_OFFSET32(error_bytes_received_hi), 332 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, 333 { STATS_OFFSET32(total_unicast_packets_received_hi), 334 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, 335 { STATS_OFFSET32(total_multicast_packets_received_hi), 336 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, 337 { STATS_OFFSET32(total_broadcast_packets_received_hi), 338 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, 339 { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 340 8, STATS_FLAGS_PORT, "rx_crc_errors" }, 341 { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 342 8, STATS_FLAGS_PORT, "rx_align_errors" }, 343 { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 344 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, 345 { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 346 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, 347 { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 348 8, STATS_FLAGS_PORT, "rx_fragments" }, 349 { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 350 8, STATS_FLAGS_PORT, "rx_jabbers" }, 351 { STATS_OFFSET32(no_buff_discard_hi), 352 8, STATS_FLAGS_BOTH, "rx_discards" }, 353 { STATS_OFFSET32(mac_filter_discard), 354 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, 355 { STATS_OFFSET32(mf_tag_discard), 356 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, 357 { STATS_OFFSET32(pfc_frames_received_hi), 358 8, STATS_FLAGS_PORT, "pfc_frames_received" }, 359 { STATS_OFFSET32(pfc_frames_sent_hi), 360 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, 361 { STATS_OFFSET32(brb_drop_hi), 362 8, STATS_FLAGS_PORT, "rx_brb_discard" }, 363 { STATS_OFFSET32(brb_truncate_hi), 364 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, 365 { STATS_OFFSET32(pause_frames_received_hi), 366 8, STATS_FLAGS_PORT, "rx_pause_frames" }, 367 { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 368 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, 369 { STATS_OFFSET32(nig_timer_max), 370 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, 371 { STATS_OFFSET32(total_bytes_transmitted_hi), 372 8, STATS_FLAGS_BOTH, "tx_bytes" }, 373 { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 374 8, STATS_FLAGS_PORT, "tx_error_bytes" }, 375 { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 376 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, 377 { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 378 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, 379 { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 380 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, 381 { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 382 8, STATS_FLAGS_PORT, "tx_mac_errors" }, 383 { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 384 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, 385 { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 386 8, STATS_FLAGS_PORT, "tx_single_collisions" }, 387 { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 388 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, 389 { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 390 8, STATS_FLAGS_PORT, "tx_deferred" }, 391 { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 392 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, 393 { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 394 8, STATS_FLAGS_PORT, "tx_late_collisions" }, 395 { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 396 8, STATS_FLAGS_PORT, "tx_total_collisions" }, 397 { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 398 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, 399 { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 400 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, 401 { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 402 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, 403 { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 404 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, 405 { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 406 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, 407 { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 408 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, 409 { STATS_OFFSET32(etherstatspktsover1522octets_hi), 410 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, 411 { STATS_OFFSET32(pause_frames_sent_hi), 412 8, STATS_FLAGS_PORT, "tx_pause_frames" }, 413 { STATS_OFFSET32(total_tpa_aggregations_hi), 414 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, 415 { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 416 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, 417 { STATS_OFFSET32(total_tpa_bytes_hi), 418 8, STATS_FLAGS_FUNC, "tpa_bytes"}, 419 { STATS_OFFSET32(eee_tx_lpi), 420 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, 421 { STATS_OFFSET32(rx_calls), 422 4, STATS_FLAGS_FUNC, "rx_calls"}, 423 { STATS_OFFSET32(rx_pkts), 424 4, STATS_FLAGS_FUNC, "rx_pkts"}, 425 { STATS_OFFSET32(rx_tpa_pkts), 426 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, 427 { STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 428 4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"}, 429 { STATS_OFFSET32(rx_bxe_service_rxsgl), 430 4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"}, 431 { STATS_OFFSET32(rx_jumbo_sge_pkts), 432 4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"}, 433 { STATS_OFFSET32(rx_soft_errors), 434 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, 435 { STATS_OFFSET32(rx_hw_csum_errors), 436 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, 437 { STATS_OFFSET32(rx_ofld_frames_csum_ip), 438 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, 439 { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 440 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, 441 { STATS_OFFSET32(rx_budget_reached), 442 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, 443 { STATS_OFFSET32(tx_pkts), 444 4, STATS_FLAGS_FUNC, "tx_pkts"}, 445 { STATS_OFFSET32(tx_soft_errors), 446 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, 447 { STATS_OFFSET32(tx_ofld_frames_csum_ip), 448 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, 449 { STATS_OFFSET32(tx_ofld_frames_csum_tcp), 450 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, 451 { STATS_OFFSET32(tx_ofld_frames_csum_udp), 452 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, 453 { STATS_OFFSET32(tx_ofld_frames_lso), 454 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, 455 { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 456 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, 457 { STATS_OFFSET32(tx_encap_failures), 458 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, 459 { STATS_OFFSET32(tx_hw_queue_full), 460 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, 461 { STATS_OFFSET32(tx_hw_max_queue_depth), 462 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, 463 { STATS_OFFSET32(tx_dma_mapping_failure), 464 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, 465 { STATS_OFFSET32(tx_max_drbr_queue_depth), 466 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, 467 { STATS_OFFSET32(tx_window_violation_std), 468 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, 469 { STATS_OFFSET32(tx_window_violation_tso), 470 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, 471 { STATS_OFFSET32(tx_chain_lost_mbuf), 472 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, 473 { STATS_OFFSET32(tx_frames_deferred), 474 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, 475 { STATS_OFFSET32(tx_queue_xoff), 476 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, 477 { STATS_OFFSET32(mbuf_defrag_attempts), 478 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, 479 { STATS_OFFSET32(mbuf_defrag_failures), 480 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, 481 { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 482 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, 483 { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 484 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, 485 { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 486 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, 487 { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 488 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, 489 { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 490 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, 491 { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 492 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, 493 { STATS_OFFSET32(mbuf_alloc_tx), 494 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, 495 { STATS_OFFSET32(mbuf_alloc_rx), 496 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, 497 { STATS_OFFSET32(mbuf_alloc_sge), 498 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, 499 { STATS_OFFSET32(mbuf_alloc_tpa), 500 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}, 501 { STATS_OFFSET32(tx_queue_full_return), 502 4, STATS_FLAGS_FUNC, "tx_queue_full_return"}, 503 { STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 504 4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"}, 505 { STATS_OFFSET32(tx_request_link_down_failures), 506 4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"}, 507 { STATS_OFFSET32(bd_avail_too_less_failures), 508 4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"}, 509 { STATS_OFFSET32(tx_mq_not_empty), 510 4, STATS_FLAGS_FUNC, "tx_mq_not_empty"}, 511 { STATS_OFFSET32(nsegs_path1_errors), 512 4, STATS_FLAGS_FUNC, "nsegs_path1_errors"}, 513 { STATS_OFFSET32(nsegs_path2_errors), 514 4, STATS_FLAGS_FUNC, "nsegs_path2_errors"} 515 516 517 }; 518 519 static const struct { 520 uint32_t offset; 521 uint32_t size; 522 char string[STAT_NAME_LEN]; 523 } bxe_eth_q_stats_arr[] = { 524 { Q_STATS_OFFSET32(total_bytes_received_hi), 525 8, "rx_bytes" }, 526 { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 527 8, "rx_ucast_packets" }, 528 { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 529 8, "rx_mcast_packets" }, 530 { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 531 8, "rx_bcast_packets" }, 532 { Q_STATS_OFFSET32(no_buff_discard_hi), 533 8, "rx_discards" }, 534 { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 535 8, "tx_bytes" }, 536 { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 537 8, "tx_ucast_packets" }, 538 { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 539 8, "tx_mcast_packets" }, 540 { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 541 8, "tx_bcast_packets" }, 542 { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 543 8, "tpa_aggregations" }, 544 { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 545 8, "tpa_aggregated_frames"}, 546 { Q_STATS_OFFSET32(total_tpa_bytes_hi), 547 8, "tpa_bytes"}, 548 { Q_STATS_OFFSET32(rx_calls), 549 4, "rx_calls"}, 550 { Q_STATS_OFFSET32(rx_pkts), 551 4, "rx_pkts"}, 552 { Q_STATS_OFFSET32(rx_tpa_pkts), 553 4, "rx_tpa_pkts"}, 554 { Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts), 555 4, "rx_erroneous_jumbo_sge_pkts"}, 556 { Q_STATS_OFFSET32(rx_bxe_service_rxsgl), 557 4, "rx_bxe_service_rxsgl"}, 558 { Q_STATS_OFFSET32(rx_jumbo_sge_pkts), 559 4, "rx_jumbo_sge_pkts"}, 560 { Q_STATS_OFFSET32(rx_soft_errors), 561 4, "rx_soft_errors"}, 562 { Q_STATS_OFFSET32(rx_hw_csum_errors), 563 4, "rx_hw_csum_errors"}, 564 { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), 565 4, "rx_ofld_frames_csum_ip"}, 566 { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), 567 4, "rx_ofld_frames_csum_tcp_udp"}, 568 { Q_STATS_OFFSET32(rx_budget_reached), 569 4, "rx_budget_reached"}, 570 { Q_STATS_OFFSET32(tx_pkts), 571 4, "tx_pkts"}, 572 { Q_STATS_OFFSET32(tx_soft_errors), 573 4, "tx_soft_errors"}, 574 { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), 575 4, "tx_ofld_frames_csum_ip"}, 576 { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), 577 4, "tx_ofld_frames_csum_tcp"}, 578 { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), 579 4, "tx_ofld_frames_csum_udp"}, 580 { Q_STATS_OFFSET32(tx_ofld_frames_lso), 581 4, "tx_ofld_frames_lso"}, 582 { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), 583 4, "tx_ofld_frames_lso_hdr_splits"}, 584 { Q_STATS_OFFSET32(tx_encap_failures), 585 4, "tx_encap_failures"}, 586 { Q_STATS_OFFSET32(tx_hw_queue_full), 587 4, "tx_hw_queue_full"}, 588 { Q_STATS_OFFSET32(tx_hw_max_queue_depth), 589 4, "tx_hw_max_queue_depth"}, 590 { Q_STATS_OFFSET32(tx_dma_mapping_failure), 591 4, "tx_dma_mapping_failure"}, 592 { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), 593 4, "tx_max_drbr_queue_depth"}, 594 { Q_STATS_OFFSET32(tx_window_violation_std), 595 4, "tx_window_violation_std"}, 596 { Q_STATS_OFFSET32(tx_window_violation_tso), 597 4, "tx_window_violation_tso"}, 598 { Q_STATS_OFFSET32(tx_chain_lost_mbuf), 599 4, "tx_chain_lost_mbuf"}, 600 { Q_STATS_OFFSET32(tx_frames_deferred), 601 4, "tx_frames_deferred"}, 602 { Q_STATS_OFFSET32(tx_queue_xoff), 603 4, "tx_queue_xoff"}, 604 { Q_STATS_OFFSET32(mbuf_defrag_attempts), 605 4, "mbuf_defrag_attempts"}, 606 { Q_STATS_OFFSET32(mbuf_defrag_failures), 607 4, "mbuf_defrag_failures"}, 608 { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), 609 4, "mbuf_rx_bd_alloc_failed"}, 610 { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), 611 4, "mbuf_rx_bd_mapping_failed"}, 612 { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), 613 4, "mbuf_rx_tpa_alloc_failed"}, 614 { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), 615 4, "mbuf_rx_tpa_mapping_failed"}, 616 { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), 617 4, "mbuf_rx_sge_alloc_failed"}, 618 { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), 619 4, "mbuf_rx_sge_mapping_failed"}, 620 { Q_STATS_OFFSET32(mbuf_alloc_tx), 621 4, "mbuf_alloc_tx"}, 622 { Q_STATS_OFFSET32(mbuf_alloc_rx), 623 4, "mbuf_alloc_rx"}, 624 { Q_STATS_OFFSET32(mbuf_alloc_sge), 625 4, "mbuf_alloc_sge"}, 626 { Q_STATS_OFFSET32(mbuf_alloc_tpa), 627 4, "mbuf_alloc_tpa"}, 628 { Q_STATS_OFFSET32(tx_queue_full_return), 629 4, "tx_queue_full_return"}, 630 { Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures), 631 4, "bxe_tx_mq_sc_state_failures"}, 632 { Q_STATS_OFFSET32(tx_request_link_down_failures), 633 4, "tx_request_link_down_failures"}, 634 { Q_STATS_OFFSET32(bd_avail_too_less_failures), 635 4, "bd_avail_too_less_failures"}, 636 { Q_STATS_OFFSET32(tx_mq_not_empty), 637 4, "tx_mq_not_empty"}, 638 { Q_STATS_OFFSET32(nsegs_path1_errors), 639 4, "nsegs_path1_errors"}, 640 { Q_STATS_OFFSET32(nsegs_path2_errors), 641 4, "nsegs_path2_errors"} 642 643 644 }; 645 646 #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) 647 #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) 648 649 650 static void bxe_cmng_fns_init(struct bxe_softc *sc, 651 uint8_t read_cfg, 652 uint8_t cmng_type); 653 static int bxe_get_cmng_fns_mode(struct bxe_softc *sc); 654 static void storm_memset_cmng(struct bxe_softc *sc, 655 struct cmng_init *cmng, 656 uint8_t port); 657 static void bxe_set_reset_global(struct bxe_softc *sc); 658 static void bxe_set_reset_in_progress(struct bxe_softc *sc); 659 static uint8_t bxe_reset_is_done(struct bxe_softc *sc, 660 int engine); 661 static uint8_t bxe_clear_pf_load(struct bxe_softc *sc); 662 static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc, 663 uint8_t *global, 664 uint8_t print); 665 static void bxe_int_disable(struct bxe_softc *sc); 666 static int bxe_release_leader_lock(struct bxe_softc *sc); 667 static void bxe_pf_disable(struct bxe_softc *sc); 668 static void bxe_free_fp_buffers(struct bxe_softc *sc); 669 static inline void bxe_update_rx_prod(struct bxe_softc *sc, 670 struct bxe_fastpath *fp, 671 uint16_t rx_bd_prod, 672 uint16_t rx_cq_prod, 673 uint16_t rx_sge_prod); 674 static void bxe_link_report_locked(struct bxe_softc *sc); 675 static void bxe_link_report(struct bxe_softc *sc); 676 static void bxe_link_status_update(struct bxe_softc *sc); 677 static void bxe_periodic_callout_func(void *xsc); 678 static void bxe_periodic_start(struct bxe_softc *sc); 679 static void bxe_periodic_stop(struct bxe_softc *sc); 680 static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 681 uint16_t prev_index, 682 uint16_t index); 683 static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 684 int queue); 685 static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 686 uint16_t index); 687 static uint8_t bxe_txeof(struct bxe_softc *sc, 688 struct bxe_fastpath *fp); 689 static void bxe_task_fp(struct bxe_fastpath *fp); 690 static __noinline void bxe_dump_mbuf(struct bxe_softc *sc, 691 struct mbuf *m, 692 uint8_t contents); 693 static int bxe_alloc_mem(struct bxe_softc *sc); 694 static void bxe_free_mem(struct bxe_softc *sc); 695 static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc); 696 static void bxe_free_fw_stats_mem(struct bxe_softc *sc); 697 static int bxe_interrupt_attach(struct bxe_softc *sc); 698 static void bxe_interrupt_detach(struct bxe_softc *sc); 699 static void bxe_set_rx_mode(struct bxe_softc *sc); 700 static int bxe_init_locked(struct bxe_softc *sc); 701 static int bxe_stop_locked(struct bxe_softc *sc); 702 static void bxe_sp_err_timeout_task(void *arg, int pending); 703 void bxe_parity_recover(struct bxe_softc *sc); 704 void bxe_handle_error(struct bxe_softc *sc); 705 static __noinline int bxe_nic_load(struct bxe_softc *sc, 706 int load_mode); 707 static __noinline int bxe_nic_unload(struct bxe_softc *sc, 708 uint32_t unload_mode, 709 uint8_t keep_link); 710 711 static void bxe_handle_sp_tq(void *context, int pending); 712 static void bxe_handle_fp_tq(void *context, int pending); 713 714 static int bxe_add_cdev(struct bxe_softc *sc); 715 static void bxe_del_cdev(struct bxe_softc *sc); 716 int bxe_grc_dump(struct bxe_softc *sc); 717 static int bxe_alloc_buf_rings(struct bxe_softc *sc); 718 static void bxe_free_buf_rings(struct bxe_softc *sc); 719 720 /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ 721 uint32_t 722 calc_crc32(uint8_t *crc32_packet, 723 uint32_t crc32_length, 724 uint32_t crc32_seed, 725 uint8_t complement) 726 { 727 uint32_t byte = 0; 728 uint32_t bit = 0; 729 uint8_t msb = 0; 730 uint32_t temp = 0; 731 uint32_t shft = 0; 732 uint8_t current_byte = 0; 733 uint32_t crc32_result = crc32_seed; 734 const uint32_t CRC32_POLY = 0x1edc6f41; 735 736 if ((crc32_packet == NULL) || 737 (crc32_length == 0) || 738 ((crc32_length % 8) != 0)) 739 { 740 return (crc32_result); 741 } 742 743 for (byte = 0; byte < crc32_length; byte = byte + 1) 744 { 745 current_byte = crc32_packet[byte]; 746 for (bit = 0; bit < 8; bit = bit + 1) 747 { 748 /* msb = crc32_result[31]; */ 749 msb = (uint8_t)(crc32_result >> 31); 750 751 crc32_result = crc32_result << 1; 752 753 /* it (msb != current_byte[bit]) */ 754 if (msb != (0x1 & (current_byte >> bit))) 755 { 756 crc32_result = crc32_result ^ CRC32_POLY; 757 /* crc32_result[0] = 1 */ 758 crc32_result |= 1; 759 } 760 } 761 } 762 763 /* Last step is to: 764 * 1. "mirror" every bit 765 * 2. swap the 4 bytes 766 * 3. complement each bit 767 */ 768 769 /* Mirror */ 770 temp = crc32_result; 771 shft = sizeof(crc32_result) * 8 - 1; 772 773 for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) 774 { 775 temp <<= 1; 776 temp |= crc32_result & 1; 777 shft-- ; 778 } 779 780 /* temp[31-bit] = crc32_result[bit] */ 781 temp <<= shft; 782 783 /* Swap */ 784 /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ 785 { 786 uint32_t t0, t1, t2, t3; 787 t0 = (0x000000ff & (temp >> 24)); 788 t1 = (0x0000ff00 & (temp >> 8)); 789 t2 = (0x00ff0000 & (temp << 8)); 790 t3 = (0xff000000 & (temp << 24)); 791 crc32_result = t0 | t1 | t2 | t3; 792 } 793 794 /* Complement */ 795 if (complement) 796 { 797 crc32_result = ~crc32_result; 798 } 799 800 return (crc32_result); 801 } 802 803 int 804 bxe_test_bit(int nr, 805 volatile unsigned long *addr) 806 { 807 return ((atomic_load_acq_long(addr) & (1 << nr)) != 0); 808 } 809 810 void 811 bxe_set_bit(unsigned int nr, 812 volatile unsigned long *addr) 813 { 814 atomic_set_acq_long(addr, (1 << nr)); 815 } 816 817 void 818 bxe_clear_bit(int nr, 819 volatile unsigned long *addr) 820 { 821 atomic_clear_acq_long(addr, (1 << nr)); 822 } 823 824 int 825 bxe_test_and_set_bit(int nr, 826 volatile unsigned long *addr) 827 { 828 unsigned long x; 829 nr = (1 << nr); 830 do { 831 x = *addr; 832 } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0); 833 // if (x & nr) bit_was_set; else bit_was_not_set; 834 return (x & nr); 835 } 836 837 int 838 bxe_test_and_clear_bit(int nr, 839 volatile unsigned long *addr) 840 { 841 unsigned long x; 842 nr = (1 << nr); 843 do { 844 x = *addr; 845 } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0); 846 // if (x & nr) bit_was_set; else bit_was_not_set; 847 return (x & nr); 848 } 849 850 int 851 bxe_cmpxchg(volatile int *addr, 852 int old, 853 int new) 854 { 855 int x; 856 do { 857 x = *addr; 858 } while (atomic_cmpset_acq_int(addr, old, new) == 0); 859 return (x); 860 } 861 862 /* 863 * Get DMA memory from the OS. 864 * 865 * Validates that the OS has provided DMA buffers in response to a 866 * bus_dmamap_load call and saves the physical address of those buffers. 867 * When the callback is used the OS will return 0 for the mapping function 868 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any 869 * failures back to the caller. 870 * 871 * Returns: 872 * Nothing. 873 */ 874 static void 875 bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 876 { 877 struct bxe_dma *dma = arg; 878 879 if (error) { 880 dma->paddr = 0; 881 dma->nseg = 0; 882 BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); 883 } else { 884 dma->paddr = segs->ds_addr; 885 dma->nseg = nseg; 886 } 887 } 888 889 /* 890 * Allocate a block of memory and map it for DMA. No partial completions 891 * allowed and release any resources acquired if we can't acquire all 892 * resources. 893 * 894 * Returns: 895 * 0 = Success, !0 = Failure 896 */ 897 int 898 bxe_dma_alloc(struct bxe_softc *sc, 899 bus_size_t size, 900 struct bxe_dma *dma, 901 const char *msg) 902 { 903 int rc; 904 905 if (dma->size > 0) { 906 BLOGE(sc, "dma block '%s' already has size %lu\n", msg, 907 (unsigned long)dma->size); 908 return (1); 909 } 910 911 memset(dma, 0, sizeof(*dma)); /* sanity */ 912 dma->sc = sc; 913 dma->size = size; 914 snprintf(dma->msg, sizeof(dma->msg), "%s", msg); 915 916 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 917 BCM_PAGE_SIZE, /* alignment */ 918 0, /* boundary limit */ 919 BUS_SPACE_MAXADDR, /* restricted low */ 920 BUS_SPACE_MAXADDR, /* restricted hi */ 921 NULL, /* addr filter() */ 922 NULL, /* addr filter() arg */ 923 size, /* max map size */ 924 1, /* num discontinuous */ 925 size, /* max seg size */ 926 BUS_DMA_ALLOCNOW, /* flags */ 927 NULL, /* lock() */ 928 NULL, /* lock() arg */ 929 &dma->tag); /* returned dma tag */ 930 if (rc != 0) { 931 BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); 932 memset(dma, 0, sizeof(*dma)); 933 return (1); 934 } 935 936 rc = bus_dmamem_alloc(dma->tag, 937 (void **)&dma->vaddr, 938 (BUS_DMA_NOWAIT | BUS_DMA_ZERO), 939 &dma->map); 940 if (rc != 0) { 941 BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); 942 bus_dma_tag_destroy(dma->tag); 943 memset(dma, 0, sizeof(*dma)); 944 return (1); 945 } 946 947 rc = bus_dmamap_load(dma->tag, 948 dma->map, 949 dma->vaddr, 950 size, 951 bxe_dma_map_addr, /* BLOGD in here */ 952 dma, 953 BUS_DMA_NOWAIT); 954 if (rc != 0) { 955 BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); 956 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 957 bus_dma_tag_destroy(dma->tag); 958 memset(dma, 0, sizeof(*dma)); 959 return (1); 960 } 961 962 return (0); 963 } 964 965 void 966 bxe_dma_free(struct bxe_softc *sc, 967 struct bxe_dma *dma) 968 { 969 if (dma->size > 0) { 970 DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); 971 972 bus_dmamap_sync(dma->tag, dma->map, 973 (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); 974 bus_dmamap_unload(dma->tag, dma->map); 975 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 976 bus_dma_tag_destroy(dma->tag); 977 } 978 979 memset(dma, 0, sizeof(*dma)); 980 } 981 982 /* 983 * These indirect read and write routines are only during init. 984 * The locking is handled by the MCP. 985 */ 986 987 void 988 bxe_reg_wr_ind(struct bxe_softc *sc, 989 uint32_t addr, 990 uint32_t val) 991 { 992 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 993 pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4); 994 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 995 } 996 997 uint32_t 998 bxe_reg_rd_ind(struct bxe_softc *sc, 999 uint32_t addr) 1000 { 1001 uint32_t val; 1002 1003 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4); 1004 val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4); 1005 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 1006 1007 return (val); 1008 } 1009 1010 static int 1011 bxe_acquire_hw_lock(struct bxe_softc *sc, 1012 uint32_t resource) 1013 { 1014 uint32_t lock_status; 1015 uint32_t resource_bit = (1 << resource); 1016 int func = SC_FUNC(sc); 1017 uint32_t hw_lock_control_reg; 1018 int cnt; 1019 1020 /* validate the resource is within range */ 1021 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1022 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1023 " resource_bit 0x%x\n", resource, resource_bit); 1024 return (-1); 1025 } 1026 1027 if (func <= 5) { 1028 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1029 } else { 1030 hw_lock_control_reg = 1031 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1032 } 1033 1034 /* validate the resource is not already taken */ 1035 lock_status = REG_RD(sc, hw_lock_control_reg); 1036 if (lock_status & resource_bit) { 1037 BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n", 1038 resource, lock_status, resource_bit); 1039 return (-1); 1040 } 1041 1042 /* try every 5ms for 5 seconds */ 1043 for (cnt = 0; cnt < 1000; cnt++) { 1044 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); 1045 lock_status = REG_RD(sc, hw_lock_control_reg); 1046 if (lock_status & resource_bit) { 1047 return (0); 1048 } 1049 DELAY(5000); 1050 } 1051 1052 BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n", 1053 resource, resource_bit); 1054 return (-1); 1055 } 1056 1057 static int 1058 bxe_release_hw_lock(struct bxe_softc *sc, 1059 uint32_t resource) 1060 { 1061 uint32_t lock_status; 1062 uint32_t resource_bit = (1 << resource); 1063 int func = SC_FUNC(sc); 1064 uint32_t hw_lock_control_reg; 1065 1066 /* validate the resource is within range */ 1067 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 1068 BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)" 1069 " resource_bit 0x%x\n", resource, resource_bit); 1070 return (-1); 1071 } 1072 1073 if (func <= 5) { 1074 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); 1075 } else { 1076 hw_lock_control_reg = 1077 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); 1078 } 1079 1080 /* validate the resource is currently taken */ 1081 lock_status = REG_RD(sc, hw_lock_control_reg); 1082 if (!(lock_status & resource_bit)) { 1083 BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n", 1084 resource, lock_status, resource_bit); 1085 return (-1); 1086 } 1087 1088 REG_WR(sc, hw_lock_control_reg, resource_bit); 1089 return (0); 1090 } 1091 static void bxe_acquire_phy_lock(struct bxe_softc *sc) 1092 { 1093 BXE_PHY_LOCK(sc); 1094 bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1095 } 1096 1097 static void bxe_release_phy_lock(struct bxe_softc *sc) 1098 { 1099 bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO); 1100 BXE_PHY_UNLOCK(sc); 1101 } 1102 /* 1103 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, 1104 * had we done things the other way around, if two pfs from the same port 1105 * would attempt to access nvram at the same time, we could run into a 1106 * scenario such as: 1107 * pf A takes the port lock. 1108 * pf B succeeds in taking the same lock since they are from the same port. 1109 * pf A takes the per pf misc lock. Performs eeprom access. 1110 * pf A finishes. Unlocks the per pf misc lock. 1111 * Pf B takes the lock and proceeds to perform it's own access. 1112 * pf A unlocks the per port lock, while pf B is still working (!). 1113 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own 1114 * access corrupted by pf B).* 1115 */ 1116 static int 1117 bxe_acquire_nvram_lock(struct bxe_softc *sc) 1118 { 1119 int port = SC_PORT(sc); 1120 int count, i; 1121 uint32_t val = 0; 1122 1123 /* acquire HW lock: protect against other PFs in PF Direct Assignment */ 1124 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1125 1126 /* adjust timeout for emulation/FPGA */ 1127 count = NVRAM_TIMEOUT_COUNT; 1128 if (CHIP_REV_IS_SLOW(sc)) { 1129 count *= 100; 1130 } 1131 1132 /* request access to nvram interface */ 1133 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1134 (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); 1135 1136 for (i = 0; i < count*10; i++) { 1137 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1138 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1139 break; 1140 } 1141 1142 DELAY(5); 1143 } 1144 1145 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1146 BLOGE(sc, "Cannot get access to nvram interface " 1147 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1148 port, val); 1149 return (-1); 1150 } 1151 1152 return (0); 1153 } 1154 1155 static int 1156 bxe_release_nvram_lock(struct bxe_softc *sc) 1157 { 1158 int port = SC_PORT(sc); 1159 int count, i; 1160 uint32_t val = 0; 1161 1162 /* adjust timeout for emulation/FPGA */ 1163 count = NVRAM_TIMEOUT_COUNT; 1164 if (CHIP_REV_IS_SLOW(sc)) { 1165 count *= 100; 1166 } 1167 1168 /* relinquish nvram interface */ 1169 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 1170 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); 1171 1172 for (i = 0; i < count*10; i++) { 1173 val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); 1174 if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { 1175 break; 1176 } 1177 1178 DELAY(5); 1179 } 1180 1181 if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { 1182 BLOGE(sc, "Cannot free access to nvram interface " 1183 "port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n", 1184 port, val); 1185 return (-1); 1186 } 1187 1188 /* release HW lock: protect against other PFs in PF Direct Assignment */ 1189 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); 1190 1191 return (0); 1192 } 1193 1194 static void 1195 bxe_enable_nvram_access(struct bxe_softc *sc) 1196 { 1197 uint32_t val; 1198 1199 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1200 1201 /* enable both bits, even on read */ 1202 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1203 (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); 1204 } 1205 1206 static void 1207 bxe_disable_nvram_access(struct bxe_softc *sc) 1208 { 1209 uint32_t val; 1210 1211 val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); 1212 1213 /* disable both bits, even after read */ 1214 REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, 1215 (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | 1216 MCPR_NVM_ACCESS_ENABLE_WR_EN))); 1217 } 1218 1219 static int 1220 bxe_nvram_read_dword(struct bxe_softc *sc, 1221 uint32_t offset, 1222 uint32_t *ret_val, 1223 uint32_t cmd_flags) 1224 { 1225 int count, i, rc; 1226 uint32_t val; 1227 1228 /* build the command word */ 1229 cmd_flags |= MCPR_NVM_COMMAND_DOIT; 1230 1231 /* need to clear DONE bit separately */ 1232 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1233 1234 /* address of the NVRAM to read from */ 1235 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1236 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1237 1238 /* issue a read command */ 1239 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1240 1241 /* adjust timeout for emulation/FPGA */ 1242 count = NVRAM_TIMEOUT_COUNT; 1243 if (CHIP_REV_IS_SLOW(sc)) { 1244 count *= 100; 1245 } 1246 1247 /* wait for completion */ 1248 *ret_val = 0; 1249 rc = -1; 1250 for (i = 0; i < count; i++) { 1251 DELAY(5); 1252 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1253 1254 if (val & MCPR_NVM_COMMAND_DONE) { 1255 val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); 1256 /* we read nvram data in cpu order 1257 * but ethtool sees it as an array of bytes 1258 * converting to big-endian will do the work 1259 */ 1260 *ret_val = htobe32(val); 1261 rc = 0; 1262 break; 1263 } 1264 } 1265 1266 if (rc == -1) { 1267 BLOGE(sc, "nvram read timeout expired " 1268 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1269 offset, cmd_flags, val); 1270 } 1271 1272 return (rc); 1273 } 1274 1275 static int 1276 bxe_nvram_read(struct bxe_softc *sc, 1277 uint32_t offset, 1278 uint8_t *ret_buf, 1279 int buf_size) 1280 { 1281 uint32_t cmd_flags; 1282 uint32_t val; 1283 int rc; 1284 1285 if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { 1286 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1287 offset, buf_size); 1288 return (-1); 1289 } 1290 1291 if ((offset + buf_size) > sc->devinfo.flash_size) { 1292 BLOGE(sc, "Invalid parameter, " 1293 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1294 offset, buf_size, sc->devinfo.flash_size); 1295 return (-1); 1296 } 1297 1298 /* request access to nvram interface */ 1299 rc = bxe_acquire_nvram_lock(sc); 1300 if (rc) { 1301 return (rc); 1302 } 1303 1304 /* enable access to nvram interface */ 1305 bxe_enable_nvram_access(sc); 1306 1307 /* read the first word(s) */ 1308 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1309 while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { 1310 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1311 memcpy(ret_buf, &val, 4); 1312 1313 /* advance to the next dword */ 1314 offset += sizeof(uint32_t); 1315 ret_buf += sizeof(uint32_t); 1316 buf_size -= sizeof(uint32_t); 1317 cmd_flags = 0; 1318 } 1319 1320 if (rc == 0) { 1321 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1322 rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); 1323 memcpy(ret_buf, &val, 4); 1324 } 1325 1326 /* disable access to nvram interface */ 1327 bxe_disable_nvram_access(sc); 1328 bxe_release_nvram_lock(sc); 1329 1330 return (rc); 1331 } 1332 1333 static int 1334 bxe_nvram_write_dword(struct bxe_softc *sc, 1335 uint32_t offset, 1336 uint32_t val, 1337 uint32_t cmd_flags) 1338 { 1339 int count, i, rc; 1340 1341 /* build the command word */ 1342 cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); 1343 1344 /* need to clear DONE bit separately */ 1345 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); 1346 1347 /* write the data */ 1348 REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); 1349 1350 /* address of the NVRAM to write to */ 1351 REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, 1352 (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); 1353 1354 /* issue the write command */ 1355 REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); 1356 1357 /* adjust timeout for emulation/FPGA */ 1358 count = NVRAM_TIMEOUT_COUNT; 1359 if (CHIP_REV_IS_SLOW(sc)) { 1360 count *= 100; 1361 } 1362 1363 /* wait for completion */ 1364 rc = -1; 1365 for (i = 0; i < count; i++) { 1366 DELAY(5); 1367 val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); 1368 if (val & MCPR_NVM_COMMAND_DONE) { 1369 rc = 0; 1370 break; 1371 } 1372 } 1373 1374 if (rc == -1) { 1375 BLOGE(sc, "nvram write timeout expired " 1376 "(offset 0x%x cmd_flags 0x%x val 0x%x)\n", 1377 offset, cmd_flags, val); 1378 } 1379 1380 return (rc); 1381 } 1382 1383 #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) 1384 1385 static int 1386 bxe_nvram_write1(struct bxe_softc *sc, 1387 uint32_t offset, 1388 uint8_t *data_buf, 1389 int buf_size) 1390 { 1391 uint32_t cmd_flags; 1392 uint32_t align_offset; 1393 uint32_t val; 1394 int rc; 1395 1396 if ((offset + buf_size) > sc->devinfo.flash_size) { 1397 BLOGE(sc, "Invalid parameter, " 1398 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1399 offset, buf_size, sc->devinfo.flash_size); 1400 return (-1); 1401 } 1402 1403 /* request access to nvram interface */ 1404 rc = bxe_acquire_nvram_lock(sc); 1405 if (rc) { 1406 return (rc); 1407 } 1408 1409 /* enable access to nvram interface */ 1410 bxe_enable_nvram_access(sc); 1411 1412 cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); 1413 align_offset = (offset & ~0x03); 1414 rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); 1415 1416 if (rc == 0) { 1417 val &= ~(0xff << BYTE_OFFSET(offset)); 1418 val |= (*data_buf << BYTE_OFFSET(offset)); 1419 1420 /* nvram data is returned as an array of bytes 1421 * convert it back to cpu order 1422 */ 1423 val = be32toh(val); 1424 1425 rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); 1426 } 1427 1428 /* disable access to nvram interface */ 1429 bxe_disable_nvram_access(sc); 1430 bxe_release_nvram_lock(sc); 1431 1432 return (rc); 1433 } 1434 1435 static int 1436 bxe_nvram_write(struct bxe_softc *sc, 1437 uint32_t offset, 1438 uint8_t *data_buf, 1439 int buf_size) 1440 { 1441 uint32_t cmd_flags; 1442 uint32_t val; 1443 uint32_t written_so_far; 1444 int rc; 1445 1446 if (buf_size == 1) { 1447 return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); 1448 } 1449 1450 if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { 1451 BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", 1452 offset, buf_size); 1453 return (-1); 1454 } 1455 1456 if (buf_size == 0) { 1457 return (0); /* nothing to do */ 1458 } 1459 1460 if ((offset + buf_size) > sc->devinfo.flash_size) { 1461 BLOGE(sc, "Invalid parameter, " 1462 "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", 1463 offset, buf_size, sc->devinfo.flash_size); 1464 return (-1); 1465 } 1466 1467 /* request access to nvram interface */ 1468 rc = bxe_acquire_nvram_lock(sc); 1469 if (rc) { 1470 return (rc); 1471 } 1472 1473 /* enable access to nvram interface */ 1474 bxe_enable_nvram_access(sc); 1475 1476 written_so_far = 0; 1477 cmd_flags = MCPR_NVM_COMMAND_FIRST; 1478 while ((written_so_far < buf_size) && (rc == 0)) { 1479 if (written_so_far == (buf_size - sizeof(uint32_t))) { 1480 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1481 } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { 1482 cmd_flags |= MCPR_NVM_COMMAND_LAST; 1483 } else if ((offset % NVRAM_PAGE_SIZE) == 0) { 1484 cmd_flags |= MCPR_NVM_COMMAND_FIRST; 1485 } 1486 1487 memcpy(&val, data_buf, 4); 1488 1489 rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); 1490 1491 /* advance to the next dword */ 1492 offset += sizeof(uint32_t); 1493 data_buf += sizeof(uint32_t); 1494 written_so_far += sizeof(uint32_t); 1495 cmd_flags = 0; 1496 } 1497 1498 /* disable access to nvram interface */ 1499 bxe_disable_nvram_access(sc); 1500 bxe_release_nvram_lock(sc); 1501 1502 return (rc); 1503 } 1504 1505 /* copy command into DMAE command memory and set DMAE command Go */ 1506 void 1507 bxe_post_dmae(struct bxe_softc *sc, 1508 struct dmae_cmd *dmae, 1509 int idx) 1510 { 1511 uint32_t cmd_offset; 1512 int i; 1513 1514 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx)); 1515 for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) { 1516 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); 1517 } 1518 1519 REG_WR(sc, dmae_reg_go_c[idx], 1); 1520 } 1521 1522 uint32_t 1523 bxe_dmae_opcode_add_comp(uint32_t opcode, 1524 uint8_t comp_type) 1525 { 1526 return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) | 1527 DMAE_CMD_C_TYPE_ENABLE)); 1528 } 1529 1530 uint32_t 1531 bxe_dmae_opcode_clr_src_reset(uint32_t opcode) 1532 { 1533 return (opcode & ~DMAE_CMD_SRC_RESET); 1534 } 1535 1536 uint32_t 1537 bxe_dmae_opcode(struct bxe_softc *sc, 1538 uint8_t src_type, 1539 uint8_t dst_type, 1540 uint8_t with_comp, 1541 uint8_t comp_type) 1542 { 1543 uint32_t opcode = 0; 1544 1545 opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) | 1546 (dst_type << DMAE_CMD_DST_SHIFT)); 1547 1548 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); 1549 1550 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); 1551 1552 opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) | 1553 (SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT)); 1554 1555 opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT); 1556 1557 #ifdef __BIG_ENDIAN 1558 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; 1559 #else 1560 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; 1561 #endif 1562 1563 if (with_comp) { 1564 opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); 1565 } 1566 1567 return (opcode); 1568 } 1569 1570 static void 1571 bxe_prep_dmae_with_comp(struct bxe_softc *sc, 1572 struct dmae_cmd *dmae, 1573 uint8_t src_type, 1574 uint8_t dst_type) 1575 { 1576 memset(dmae, 0, sizeof(struct dmae_cmd)); 1577 1578 /* set the opcode */ 1579 dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, 1580 TRUE, DMAE_COMP_PCI); 1581 1582 /* fill in the completion parameters */ 1583 dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); 1584 dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); 1585 dmae->comp_val = DMAE_COMP_VAL; 1586 } 1587 1588 /* issue a DMAE command over the init channel and wait for completion */ 1589 static int 1590 bxe_issue_dmae_with_comp(struct bxe_softc *sc, 1591 struct dmae_cmd *dmae) 1592 { 1593 uint32_t *wb_comp = BXE_SP(sc, wb_comp); 1594 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; 1595 1596 BXE_DMAE_LOCK(sc); 1597 1598 /* reset completion */ 1599 *wb_comp = 0; 1600 1601 /* post the command on the channel used for initializations */ 1602 bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); 1603 1604 /* wait for completion */ 1605 DELAY(5); 1606 1607 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { 1608 if (!timeout || 1609 (sc->recovery_state != BXE_RECOVERY_DONE && 1610 sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { 1611 BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n", 1612 *wb_comp, sc->recovery_state); 1613 BXE_DMAE_UNLOCK(sc); 1614 return (DMAE_TIMEOUT); 1615 } 1616 1617 timeout--; 1618 DELAY(50); 1619 } 1620 1621 if (*wb_comp & DMAE_PCI_ERR_FLAG) { 1622 BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n", 1623 *wb_comp, sc->recovery_state); 1624 BXE_DMAE_UNLOCK(sc); 1625 return (DMAE_PCI_ERROR); 1626 } 1627 1628 BXE_DMAE_UNLOCK(sc); 1629 return (0); 1630 } 1631 1632 void 1633 bxe_read_dmae(struct bxe_softc *sc, 1634 uint32_t src_addr, 1635 uint32_t len32) 1636 { 1637 struct dmae_cmd dmae; 1638 uint32_t *data; 1639 int i, rc; 1640 1641 DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); 1642 1643 if (!sc->dmae_ready) { 1644 data = BXE_SP(sc, wb_data[0]); 1645 1646 for (i = 0; i < len32; i++) { 1647 data[i] = (CHIP_IS_E1(sc)) ? 1648 bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : 1649 REG_RD(sc, (src_addr + (i * 4))); 1650 } 1651 1652 return; 1653 } 1654 1655 /* set opcode and fixed command fields */ 1656 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); 1657 1658 /* fill in addresses and len */ 1659 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ 1660 dmae.src_addr_hi = 0; 1661 dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); 1662 dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); 1663 dmae.len = len32; 1664 1665 /* issue the command and wait for completion */ 1666 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1667 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1668 } 1669 } 1670 1671 void 1672 bxe_write_dmae(struct bxe_softc *sc, 1673 bus_addr_t dma_addr, 1674 uint32_t dst_addr, 1675 uint32_t len32) 1676 { 1677 struct dmae_cmd dmae; 1678 int rc; 1679 1680 if (!sc->dmae_ready) { 1681 DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); 1682 1683 if (CHIP_IS_E1(sc)) { 1684 ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1685 } else { 1686 ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); 1687 } 1688 1689 return; 1690 } 1691 1692 /* set opcode and fixed command fields */ 1693 bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); 1694 1695 /* fill in addresses and len */ 1696 dmae.src_addr_lo = U64_LO(dma_addr); 1697 dmae.src_addr_hi = U64_HI(dma_addr); 1698 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ 1699 dmae.dst_addr_hi = 0; 1700 dmae.len = len32; 1701 1702 /* issue the command and wait for completion */ 1703 if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { 1704 bxe_panic(sc, ("DMAE failed (%d)\n", rc)); 1705 } 1706 } 1707 1708 void 1709 bxe_write_dmae_phys_len(struct bxe_softc *sc, 1710 bus_addr_t phys_addr, 1711 uint32_t addr, 1712 uint32_t len) 1713 { 1714 int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); 1715 int offset = 0; 1716 1717 while (len > dmae_wr_max) { 1718 bxe_write_dmae(sc, 1719 (phys_addr + offset), /* src DMA address */ 1720 (addr + offset), /* dst GRC address */ 1721 dmae_wr_max); 1722 offset += (dmae_wr_max * 4); 1723 len -= dmae_wr_max; 1724 } 1725 1726 bxe_write_dmae(sc, 1727 (phys_addr + offset), /* src DMA address */ 1728 (addr + offset), /* dst GRC address */ 1729 len); 1730 } 1731 1732 void 1733 bxe_set_ctx_validation(struct bxe_softc *sc, 1734 struct eth_context *cxt, 1735 uint32_t cid) 1736 { 1737 /* ustorm cxt validation */ 1738 cxt->ustorm_ag_context.cdu_usage = 1739 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1740 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); 1741 /* xcontext validation */ 1742 cxt->xstorm_ag_context.cdu_reserved = 1743 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), 1744 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); 1745 } 1746 1747 static void 1748 bxe_storm_memset_hc_timeout(struct bxe_softc *sc, 1749 uint8_t port, 1750 uint8_t fw_sb_id, 1751 uint8_t sb_index, 1752 uint8_t ticks) 1753 { 1754 uint32_t addr = 1755 (BAR_CSTRORM_INTMEM + 1756 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); 1757 1758 REG_WR8(sc, addr, ticks); 1759 1760 BLOGD(sc, DBG_LOAD, 1761 "port %d fw_sb_id %d sb_index %d ticks %d\n", 1762 port, fw_sb_id, sb_index, ticks); 1763 } 1764 1765 static void 1766 bxe_storm_memset_hc_disable(struct bxe_softc *sc, 1767 uint8_t port, 1768 uint16_t fw_sb_id, 1769 uint8_t sb_index, 1770 uint8_t disable) 1771 { 1772 uint32_t enable_flag = 1773 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); 1774 uint32_t addr = 1775 (BAR_CSTRORM_INTMEM + 1776 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); 1777 uint8_t flags; 1778 1779 /* clear and set */ 1780 flags = REG_RD8(sc, addr); 1781 flags &= ~HC_INDEX_DATA_HC_ENABLED; 1782 flags |= enable_flag; 1783 REG_WR8(sc, addr, flags); 1784 1785 BLOGD(sc, DBG_LOAD, 1786 "port %d fw_sb_id %d sb_index %d disable %d\n", 1787 port, fw_sb_id, sb_index, disable); 1788 } 1789 1790 void 1791 bxe_update_coalesce_sb_index(struct bxe_softc *sc, 1792 uint8_t fw_sb_id, 1793 uint8_t sb_index, 1794 uint8_t disable, 1795 uint16_t usec) 1796 { 1797 int port = SC_PORT(sc); 1798 uint8_t ticks = (usec / 4); /* XXX ??? */ 1799 1800 bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); 1801 1802 disable = (disable) ? 1 : ((usec) ? 0 : 1); 1803 bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); 1804 } 1805 1806 void 1807 elink_cb_udelay(struct bxe_softc *sc, 1808 uint32_t usecs) 1809 { 1810 DELAY(usecs); 1811 } 1812 1813 uint32_t 1814 elink_cb_reg_read(struct bxe_softc *sc, 1815 uint32_t reg_addr) 1816 { 1817 return (REG_RD(sc, reg_addr)); 1818 } 1819 1820 void 1821 elink_cb_reg_write(struct bxe_softc *sc, 1822 uint32_t reg_addr, 1823 uint32_t val) 1824 { 1825 REG_WR(sc, reg_addr, val); 1826 } 1827 1828 void 1829 elink_cb_reg_wb_write(struct bxe_softc *sc, 1830 uint32_t offset, 1831 uint32_t *wb_write, 1832 uint16_t len) 1833 { 1834 REG_WR_DMAE(sc, offset, wb_write, len); 1835 } 1836 1837 void 1838 elink_cb_reg_wb_read(struct bxe_softc *sc, 1839 uint32_t offset, 1840 uint32_t *wb_write, 1841 uint16_t len) 1842 { 1843 REG_RD_DMAE(sc, offset, wb_write, len); 1844 } 1845 1846 uint8_t 1847 elink_cb_path_id(struct bxe_softc *sc) 1848 { 1849 return (SC_PATH(sc)); 1850 } 1851 1852 void 1853 elink_cb_event_log(struct bxe_softc *sc, 1854 const elink_log_id_t elink_log_id, 1855 ...) 1856 { 1857 /* XXX */ 1858 BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); 1859 } 1860 1861 static int 1862 bxe_set_spio(struct bxe_softc *sc, 1863 int spio, 1864 uint32_t mode) 1865 { 1866 uint32_t spio_reg; 1867 1868 /* Only 2 SPIOs are configurable */ 1869 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { 1870 BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode); 1871 return (-1); 1872 } 1873 1874 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1875 1876 /* read SPIO and mask except the float bits */ 1877 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); 1878 1879 switch (mode) { 1880 case MISC_SPIO_OUTPUT_LOW: 1881 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); 1882 /* clear FLOAT and set CLR */ 1883 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1884 spio_reg |= (spio << MISC_SPIO_CLR_POS); 1885 break; 1886 1887 case MISC_SPIO_OUTPUT_HIGH: 1888 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); 1889 /* clear FLOAT and set SET */ 1890 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); 1891 spio_reg |= (spio << MISC_SPIO_SET_POS); 1892 break; 1893 1894 case MISC_SPIO_INPUT_HI_Z: 1895 BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); 1896 /* set FLOAT */ 1897 spio_reg |= (spio << MISC_SPIO_FLOAT_POS); 1898 break; 1899 1900 default: 1901 break; 1902 } 1903 1904 REG_WR(sc, MISC_REG_SPIO, spio_reg); 1905 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); 1906 1907 return (0); 1908 } 1909 1910 static int 1911 bxe_gpio_read(struct bxe_softc *sc, 1912 int gpio_num, 1913 uint8_t port) 1914 { 1915 /* The GPIO should be swapped if swap register is set and active */ 1916 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1917 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1918 int gpio_shift = (gpio_num + 1919 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1920 uint32_t gpio_mask = (1 << gpio_shift); 1921 uint32_t gpio_reg; 1922 1923 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1924 BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d" 1925 " gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift, 1926 gpio_mask); 1927 return (-1); 1928 } 1929 1930 /* read GPIO value */ 1931 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 1932 1933 /* get the requested pin value */ 1934 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; 1935 } 1936 1937 static int 1938 bxe_gpio_write(struct bxe_softc *sc, 1939 int gpio_num, 1940 uint32_t mode, 1941 uint8_t port) 1942 { 1943 /* The GPIO should be swapped if swap register is set and active */ 1944 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 1945 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 1946 int gpio_shift = (gpio_num + 1947 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 1948 uint32_t gpio_mask = (1 << gpio_shift); 1949 uint32_t gpio_reg; 1950 1951 if (gpio_num > MISC_REGISTERS_GPIO_3) { 1952 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 1953 " gpio_shift %d gpio_mask 0x%x\n", 1954 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 1955 return (-1); 1956 } 1957 1958 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1959 1960 /* read GPIO and mask except the float bits */ 1961 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); 1962 1963 switch (mode) { 1964 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 1965 BLOGD(sc, DBG_PHY, 1966 "Set GPIO %d (shift %d) -> output low\n", 1967 gpio_num, gpio_shift); 1968 /* clear FLOAT and set CLR */ 1969 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1970 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); 1971 break; 1972 1973 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 1974 BLOGD(sc, DBG_PHY, 1975 "Set GPIO %d (shift %d) -> output high\n", 1976 gpio_num, gpio_shift); 1977 /* clear FLOAT and set SET */ 1978 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1979 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); 1980 break; 1981 1982 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 1983 BLOGD(sc, DBG_PHY, 1984 "Set GPIO %d (shift %d) -> input\n", 1985 gpio_num, gpio_shift); 1986 /* set FLOAT */ 1987 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); 1988 break; 1989 1990 default: 1991 break; 1992 } 1993 1994 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 1995 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 1996 1997 return (0); 1998 } 1999 2000 static int 2001 bxe_gpio_mult_write(struct bxe_softc *sc, 2002 uint8_t pins, 2003 uint32_t mode) 2004 { 2005 uint32_t gpio_reg; 2006 2007 /* any port swapping should be handled by caller */ 2008 2009 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2010 2011 /* read GPIO and mask except the float bits */ 2012 gpio_reg = REG_RD(sc, MISC_REG_GPIO); 2013 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2014 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); 2015 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); 2016 2017 switch (mode) { 2018 case MISC_REGISTERS_GPIO_OUTPUT_LOW: 2019 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); 2020 /* set CLR */ 2021 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); 2022 break; 2023 2024 case MISC_REGISTERS_GPIO_OUTPUT_HIGH: 2025 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); 2026 /* set SET */ 2027 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); 2028 break; 2029 2030 case MISC_REGISTERS_GPIO_INPUT_HI_Z: 2031 BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); 2032 /* set FLOAT */ 2033 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); 2034 break; 2035 2036 default: 2037 BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x" 2038 " gpio_reg 0x%x\n", pins, mode, gpio_reg); 2039 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2040 return (-1); 2041 } 2042 2043 REG_WR(sc, MISC_REG_GPIO, gpio_reg); 2044 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2045 2046 return (0); 2047 } 2048 2049 static int 2050 bxe_gpio_int_write(struct bxe_softc *sc, 2051 int gpio_num, 2052 uint32_t mode, 2053 uint8_t port) 2054 { 2055 /* The GPIO should be swapped if swap register is set and active */ 2056 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && 2057 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); 2058 int gpio_shift = (gpio_num + 2059 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); 2060 uint32_t gpio_mask = (1 << gpio_shift); 2061 uint32_t gpio_reg; 2062 2063 if (gpio_num > MISC_REGISTERS_GPIO_3) { 2064 BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d" 2065 " gpio_shift %d gpio_mask 0x%x\n", 2066 gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask); 2067 return (-1); 2068 } 2069 2070 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2071 2072 /* read GPIO int */ 2073 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); 2074 2075 switch (mode) { 2076 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: 2077 BLOGD(sc, DBG_PHY, 2078 "Clear GPIO INT %d (shift %d) -> output low\n", 2079 gpio_num, gpio_shift); 2080 /* clear SET and set CLR */ 2081 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2082 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2083 break; 2084 2085 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: 2086 BLOGD(sc, DBG_PHY, 2087 "Set GPIO INT %d (shift %d) -> output high\n", 2088 gpio_num, gpio_shift); 2089 /* clear CLR and set SET */ 2090 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); 2091 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); 2092 break; 2093 2094 default: 2095 break; 2096 } 2097 2098 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); 2099 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); 2100 2101 return (0); 2102 } 2103 2104 uint32_t 2105 elink_cb_gpio_read(struct bxe_softc *sc, 2106 uint16_t gpio_num, 2107 uint8_t port) 2108 { 2109 return (bxe_gpio_read(sc, gpio_num, port)); 2110 } 2111 2112 uint8_t 2113 elink_cb_gpio_write(struct bxe_softc *sc, 2114 uint16_t gpio_num, 2115 uint8_t mode, /* 0=low 1=high */ 2116 uint8_t port) 2117 { 2118 return (bxe_gpio_write(sc, gpio_num, mode, port)); 2119 } 2120 2121 uint8_t 2122 elink_cb_gpio_mult_write(struct bxe_softc *sc, 2123 uint8_t pins, 2124 uint8_t mode) /* 0=low 1=high */ 2125 { 2126 return (bxe_gpio_mult_write(sc, pins, mode)); 2127 } 2128 2129 uint8_t 2130 elink_cb_gpio_int_write(struct bxe_softc *sc, 2131 uint16_t gpio_num, 2132 uint8_t mode, /* 0=low 1=high */ 2133 uint8_t port) 2134 { 2135 return (bxe_gpio_int_write(sc, gpio_num, mode, port)); 2136 } 2137 2138 void 2139 elink_cb_notify_link_changed(struct bxe_softc *sc) 2140 { 2141 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + 2142 (SC_FUNC(sc) * sizeof(uint32_t))), 1); 2143 } 2144 2145 /* send the MCP a request, block until there is a reply */ 2146 uint32_t 2147 elink_cb_fw_command(struct bxe_softc *sc, 2148 uint32_t command, 2149 uint32_t param) 2150 { 2151 int mb_idx = SC_FW_MB_IDX(sc); 2152 uint32_t seq; 2153 uint32_t rc = 0; 2154 uint32_t cnt = 1; 2155 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; 2156 2157 BXE_FWMB_LOCK(sc); 2158 2159 seq = ++sc->fw_seq; 2160 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); 2161 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); 2162 2163 BLOGD(sc, DBG_PHY, 2164 "wrote command 0x%08x to FW MB param 0x%08x\n", 2165 (command | seq), param); 2166 2167 /* Let the FW do it's magic. GIve it up to 5 seconds... */ 2168 do { 2169 DELAY(delay * 1000); 2170 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); 2171 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); 2172 2173 BLOGD(sc, DBG_PHY, 2174 "[after %d ms] read 0x%x seq 0x%x from FW MB\n", 2175 cnt*delay, rc, seq); 2176 2177 /* is this a reply to our command? */ 2178 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { 2179 rc &= FW_MSG_CODE_MASK; 2180 } else { 2181 /* Ruh-roh! */ 2182 BLOGE(sc, "FW failed to respond!\n"); 2183 // XXX bxe_fw_dump(sc); 2184 rc = 0; 2185 } 2186 2187 BXE_FWMB_UNLOCK(sc); 2188 return (rc); 2189 } 2190 2191 static uint32_t 2192 bxe_fw_command(struct bxe_softc *sc, 2193 uint32_t command, 2194 uint32_t param) 2195 { 2196 return (elink_cb_fw_command(sc, command, param)); 2197 } 2198 2199 static void 2200 __storm_memset_dma_mapping(struct bxe_softc *sc, 2201 uint32_t addr, 2202 bus_addr_t mapping) 2203 { 2204 REG_WR(sc, addr, U64_LO(mapping)); 2205 REG_WR(sc, (addr + 4), U64_HI(mapping)); 2206 } 2207 2208 static void 2209 storm_memset_spq_addr(struct bxe_softc *sc, 2210 bus_addr_t mapping, 2211 uint16_t abs_fid) 2212 { 2213 uint32_t addr = (XSEM_REG_FAST_MEMORY + 2214 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); 2215 __storm_memset_dma_mapping(sc, addr, mapping); 2216 } 2217 2218 static void 2219 storm_memset_vf_to_pf(struct bxe_softc *sc, 2220 uint16_t abs_fid, 2221 uint16_t pf_id) 2222 { 2223 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2224 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2225 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2226 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); 2227 } 2228 2229 static void 2230 storm_memset_func_en(struct bxe_softc *sc, 2231 uint16_t abs_fid, 2232 uint8_t enable) 2233 { 2234 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2235 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2236 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2237 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); 2238 } 2239 2240 static void 2241 storm_memset_eq_data(struct bxe_softc *sc, 2242 struct event_ring_data *eq_data, 2243 uint16_t pfid) 2244 { 2245 uint32_t addr; 2246 size_t size; 2247 2248 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); 2249 size = sizeof(struct event_ring_data); 2250 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); 2251 } 2252 2253 static void 2254 storm_memset_eq_prod(struct bxe_softc *sc, 2255 uint16_t eq_prod, 2256 uint16_t pfid) 2257 { 2258 uint32_t addr = (BAR_CSTRORM_INTMEM + 2259 CSTORM_EVENT_RING_PROD_OFFSET(pfid)); 2260 REG_WR16(sc, addr, eq_prod); 2261 } 2262 2263 /* 2264 * Post a slowpath command. 2265 * 2266 * A slowpath command is used to propagate a configuration change through 2267 * the controller in a controlled manner, allowing each STORM processor and 2268 * other H/W blocks to phase in the change. The commands sent on the 2269 * slowpath are referred to as ramrods. Depending on the ramrod used the 2270 * completion of the ramrod will occur in different ways. Here's a 2271 * breakdown of ramrods and how they complete: 2272 * 2273 * RAMROD_CMD_ID_ETH_PORT_SETUP 2274 * Used to setup the leading connection on a port. Completes on the 2275 * Receive Completion Queue (RCQ) of that port (typically fp[0]). 2276 * 2277 * RAMROD_CMD_ID_ETH_CLIENT_SETUP 2278 * Used to setup an additional connection on a port. Completes on the 2279 * RCQ of the multi-queue/RSS connection being initialized. 2280 * 2281 * RAMROD_CMD_ID_ETH_STAT_QUERY 2282 * Used to force the storm processors to update the statistics database 2283 * in host memory. This ramrod is send on the leading connection CID and 2284 * completes as an index increment of the CSTORM on the default status 2285 * block. 2286 * 2287 * RAMROD_CMD_ID_ETH_UPDATE 2288 * Used to update the state of the leading connection, usually to udpate 2289 * the RSS indirection table. Completes on the RCQ of the leading 2290 * connection. (Not currently used under FreeBSD until OS support becomes 2291 * available.) 2292 * 2293 * RAMROD_CMD_ID_ETH_HALT 2294 * Used when tearing down a connection prior to driver unload. Completes 2295 * on the RCQ of the multi-queue/RSS connection being torn down. Don't 2296 * use this on the leading connection. 2297 * 2298 * RAMROD_CMD_ID_ETH_SET_MAC 2299 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on 2300 * the RCQ of the leading connection. 2301 * 2302 * RAMROD_CMD_ID_ETH_CFC_DEL 2303 * Used when tearing down a conneciton prior to driver unload. Completes 2304 * on the RCQ of the leading connection (since the current connection 2305 * has been completely removed from controller memory). 2306 * 2307 * RAMROD_CMD_ID_ETH_PORT_DEL 2308 * Used to tear down the leading connection prior to driver unload, 2309 * typically fp[0]. Completes as an index increment of the CSTORM on the 2310 * default status block. 2311 * 2312 * RAMROD_CMD_ID_ETH_FORWARD_SETUP 2313 * Used for connection offload. Completes on the RCQ of the multi-queue 2314 * RSS connection that is being offloaded. (Not currently used under 2315 * FreeBSD.) 2316 * 2317 * There can only be one command pending per function. 2318 * 2319 * Returns: 2320 * 0 = Success, !0 = Failure. 2321 */ 2322 2323 /* must be called under the spq lock */ 2324 static inline 2325 struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc) 2326 { 2327 struct eth_spe *next_spe = sc->spq_prod_bd; 2328 2329 if (sc->spq_prod_bd == sc->spq_last_bd) { 2330 /* wrap back to the first eth_spq */ 2331 sc->spq_prod_bd = sc->spq; 2332 sc->spq_prod_idx = 0; 2333 } else { 2334 sc->spq_prod_bd++; 2335 sc->spq_prod_idx++; 2336 } 2337 2338 return (next_spe); 2339 } 2340 2341 /* must be called under the spq lock */ 2342 static inline 2343 void bxe_sp_prod_update(struct bxe_softc *sc) 2344 { 2345 int func = SC_FUNC(sc); 2346 2347 /* 2348 * Make sure that BD data is updated before writing the producer. 2349 * BD data is written to the memory, the producer is read from the 2350 * memory, thus we need a full memory barrier to ensure the ordering. 2351 */ 2352 mb(); 2353 2354 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), 2355 sc->spq_prod_idx); 2356 2357 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 2358 BUS_SPACE_BARRIER_WRITE); 2359 } 2360 2361 /** 2362 * bxe_is_contextless_ramrod - check if the current command ends on EQ 2363 * 2364 * @cmd: command to check 2365 * @cmd_type: command type 2366 */ 2367 static inline 2368 int bxe_is_contextless_ramrod(int cmd, 2369 int cmd_type) 2370 { 2371 if ((cmd_type == NONE_CONNECTION_TYPE) || 2372 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || 2373 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || 2374 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || 2375 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || 2376 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || 2377 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { 2378 return (TRUE); 2379 } else { 2380 return (FALSE); 2381 } 2382 } 2383 2384 /** 2385 * bxe_sp_post - place a single command on an SP ring 2386 * 2387 * @sc: driver handle 2388 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) 2389 * @cid: SW CID the command is related to 2390 * @data_hi: command private data address (high 32 bits) 2391 * @data_lo: command private data address (low 32 bits) 2392 * @cmd_type: command type (e.g. NONE, ETH) 2393 * 2394 * SP data is handled as if it's always an address pair, thus data fields are 2395 * not swapped to little endian in upper functions. Instead this function swaps 2396 * data as if it's two uint32 fields. 2397 */ 2398 int 2399 bxe_sp_post(struct bxe_softc *sc, 2400 int command, 2401 int cid, 2402 uint32_t data_hi, 2403 uint32_t data_lo, 2404 int cmd_type) 2405 { 2406 struct eth_spe *spe; 2407 uint16_t type; 2408 int common; 2409 2410 common = bxe_is_contextless_ramrod(command, cmd_type); 2411 2412 BXE_SP_LOCK(sc); 2413 2414 if (common) { 2415 if (!atomic_load_acq_long(&sc->eq_spq_left)) { 2416 BLOGE(sc, "EQ ring is full!\n"); 2417 BXE_SP_UNLOCK(sc); 2418 return (-1); 2419 } 2420 } else { 2421 if (!atomic_load_acq_long(&sc->cq_spq_left)) { 2422 BLOGE(sc, "SPQ ring is full!\n"); 2423 BXE_SP_UNLOCK(sc); 2424 return (-1); 2425 } 2426 } 2427 2428 spe = bxe_sp_get_next(sc); 2429 2430 /* CID needs port number to be encoded int it */ 2431 spe->hdr.conn_and_cmd_data = 2432 htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid)); 2433 2434 type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE; 2435 2436 /* TBD: Check if it works for VFs */ 2437 type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) & 2438 SPE_HDR_T_FUNCTION_ID); 2439 2440 spe->hdr.type = htole16(type); 2441 2442 spe->data.update_data_addr.hi = htole32(data_hi); 2443 spe->data.update_data_addr.lo = htole32(data_lo); 2444 2445 /* 2446 * It's ok if the actual decrement is issued towards the memory 2447 * somewhere between the lock and unlock. Thus no more explict 2448 * memory barrier is needed. 2449 */ 2450 if (common) { 2451 atomic_subtract_acq_long(&sc->eq_spq_left, 1); 2452 } else { 2453 atomic_subtract_acq_long(&sc->cq_spq_left, 1); 2454 } 2455 2456 BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); 2457 BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", 2458 BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); 2459 BLOGD(sc, DBG_SP, 2460 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", 2461 sc->spq_prod_idx, 2462 (uint32_t)U64_HI(sc->spq_dma.paddr), 2463 (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), 2464 command, 2465 common, 2466 HW_CID(sc, cid), 2467 data_hi, 2468 data_lo, 2469 type, 2470 atomic_load_acq_long(&sc->cq_spq_left), 2471 atomic_load_acq_long(&sc->eq_spq_left)); 2472 2473 bxe_sp_prod_update(sc); 2474 2475 BXE_SP_UNLOCK(sc); 2476 return (0); 2477 } 2478 2479 /** 2480 * bxe_debug_print_ind_table - prints the indirection table configuration. 2481 * 2482 * @sc: driver hanlde 2483 * @p: pointer to rss configuration 2484 */ 2485 2486 /* 2487 * FreeBSD Device probe function. 2488 * 2489 * Compares the device found to the driver's list of supported devices and 2490 * reports back to the bsd loader whether this is the right driver for the device. 2491 * This is the driver entry function called from the "kldload" command. 2492 * 2493 * Returns: 2494 * BUS_PROBE_DEFAULT on success, positive value on failure. 2495 */ 2496 static int 2497 bxe_probe(device_t dev) 2498 { 2499 struct bxe_device_type *t; 2500 char *descbuf; 2501 uint16_t did, sdid, svid, vid; 2502 2503 /* Find our device structure */ 2504 t = bxe_devs; 2505 2506 /* Get the data for the device to be probed. */ 2507 vid = pci_get_vendor(dev); 2508 did = pci_get_device(dev); 2509 svid = pci_get_subvendor(dev); 2510 sdid = pci_get_subdevice(dev); 2511 2512 /* Look through the list of known devices for a match. */ 2513 while (t->bxe_name != NULL) { 2514 if ((vid == t->bxe_vid) && (did == t->bxe_did) && 2515 ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && 2516 ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { 2517 descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT); 2518 if (descbuf == NULL) 2519 return (ENOMEM); 2520 2521 /* Print out the device identity. */ 2522 snprintf(descbuf, BXE_DEVDESC_MAX, 2523 "%s (%c%d) BXE v:%s", t->bxe_name, 2524 (((pci_read_config(dev, PCIR_REVID, 4) & 2525 0xf0) >> 4) + 'A'), 2526 (pci_read_config(dev, PCIR_REVID, 4) & 0xf), 2527 BXE_DRIVER_VERSION); 2528 2529 device_set_desc_copy(dev, descbuf); 2530 free(descbuf, M_TEMP); 2531 return (BUS_PROBE_DEFAULT); 2532 } 2533 t++; 2534 } 2535 2536 return (ENXIO); 2537 } 2538 2539 static void 2540 bxe_init_mutexes(struct bxe_softc *sc) 2541 { 2542 #ifdef BXE_CORE_LOCK_SX 2543 snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), 2544 "bxe%d_core_lock", sc->unit); 2545 sx_init(&sc->core_sx, sc->core_sx_name); 2546 #else 2547 snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), 2548 "bxe%d_core_lock", sc->unit); 2549 mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF); 2550 #endif 2551 2552 snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), 2553 "bxe%d_sp_lock", sc->unit); 2554 mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF); 2555 2556 snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), 2557 "bxe%d_dmae_lock", sc->unit); 2558 mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF); 2559 2560 snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), 2561 "bxe%d_phy_lock", sc->unit); 2562 mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF); 2563 2564 snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), 2565 "bxe%d_fwmb_lock", sc->unit); 2566 mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF); 2567 2568 snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), 2569 "bxe%d_print_lock", sc->unit); 2570 mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF); 2571 2572 snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), 2573 "bxe%d_stats_lock", sc->unit); 2574 mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF); 2575 2576 snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), 2577 "bxe%d_mcast_lock", sc->unit); 2578 mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF); 2579 } 2580 2581 static void 2582 bxe_release_mutexes(struct bxe_softc *sc) 2583 { 2584 #ifdef BXE_CORE_LOCK_SX 2585 sx_destroy(&sc->core_sx); 2586 #else 2587 if (mtx_initialized(&sc->core_mtx)) { 2588 mtx_destroy(&sc->core_mtx); 2589 } 2590 #endif 2591 2592 if (mtx_initialized(&sc->sp_mtx)) { 2593 mtx_destroy(&sc->sp_mtx); 2594 } 2595 2596 if (mtx_initialized(&sc->dmae_mtx)) { 2597 mtx_destroy(&sc->dmae_mtx); 2598 } 2599 2600 if (mtx_initialized(&sc->port.phy_mtx)) { 2601 mtx_destroy(&sc->port.phy_mtx); 2602 } 2603 2604 if (mtx_initialized(&sc->fwmb_mtx)) { 2605 mtx_destroy(&sc->fwmb_mtx); 2606 } 2607 2608 if (mtx_initialized(&sc->print_mtx)) { 2609 mtx_destroy(&sc->print_mtx); 2610 } 2611 2612 if (mtx_initialized(&sc->stats_mtx)) { 2613 mtx_destroy(&sc->stats_mtx); 2614 } 2615 2616 if (mtx_initialized(&sc->mcast_mtx)) { 2617 mtx_destroy(&sc->mcast_mtx); 2618 } 2619 } 2620 2621 static void 2622 bxe_tx_disable(struct bxe_softc* sc) 2623 { 2624 if_t ifp = sc->ifp; 2625 2626 /* tell the stack the driver is stopped and TX queue is full */ 2627 if (ifp != NULL) { 2628 if_setdrvflags(ifp, 0); 2629 } 2630 } 2631 2632 static void 2633 bxe_drv_pulse(struct bxe_softc *sc) 2634 { 2635 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, 2636 sc->fw_drv_pulse_wr_seq); 2637 } 2638 2639 static inline uint16_t 2640 bxe_tx_avail(struct bxe_softc *sc, 2641 struct bxe_fastpath *fp) 2642 { 2643 int16_t used; 2644 uint16_t prod; 2645 uint16_t cons; 2646 2647 prod = fp->tx_bd_prod; 2648 cons = fp->tx_bd_cons; 2649 2650 used = SUB_S16(prod, cons); 2651 2652 return (int16_t)(sc->tx_ring_size) - used; 2653 } 2654 2655 static inline int 2656 bxe_tx_queue_has_work(struct bxe_fastpath *fp) 2657 { 2658 uint16_t hw_cons; 2659 2660 mb(); /* status block fields can change */ 2661 hw_cons = le16toh(*fp->tx_cons_sb); 2662 return (hw_cons != fp->tx_pkt_cons); 2663 } 2664 2665 static inline uint8_t 2666 bxe_has_tx_work(struct bxe_fastpath *fp) 2667 { 2668 /* expand this for multi-cos if ever supported */ 2669 return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; 2670 } 2671 2672 static inline int 2673 bxe_has_rx_work(struct bxe_fastpath *fp) 2674 { 2675 uint16_t rx_cq_cons_sb; 2676 2677 mb(); /* status block fields can change */ 2678 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb); 2679 if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) 2680 rx_cq_cons_sb++; 2681 return (fp->rx_cq_cons != rx_cq_cons_sb); 2682 } 2683 2684 static void 2685 bxe_sp_event(struct bxe_softc *sc, 2686 struct bxe_fastpath *fp, 2687 union eth_rx_cqe *rr_cqe) 2688 { 2689 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2690 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); 2691 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; 2692 struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 2693 2694 BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", 2695 fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); 2696 2697 switch (command) { 2698 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): 2699 BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); 2700 drv_cmd = ECORE_Q_CMD_UPDATE; 2701 break; 2702 2703 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): 2704 BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); 2705 drv_cmd = ECORE_Q_CMD_SETUP; 2706 break; 2707 2708 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): 2709 BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); 2710 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; 2711 break; 2712 2713 case (RAMROD_CMD_ID_ETH_HALT): 2714 BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); 2715 drv_cmd = ECORE_Q_CMD_HALT; 2716 break; 2717 2718 case (RAMROD_CMD_ID_ETH_TERMINATE): 2719 BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); 2720 drv_cmd = ECORE_Q_CMD_TERMINATE; 2721 break; 2722 2723 case (RAMROD_CMD_ID_ETH_EMPTY): 2724 BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); 2725 drv_cmd = ECORE_Q_CMD_EMPTY; 2726 break; 2727 2728 default: 2729 BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", 2730 command, fp->index); 2731 return; 2732 } 2733 2734 if ((drv_cmd != ECORE_Q_CMD_MAX) && 2735 q_obj->complete_cmd(sc, q_obj, drv_cmd)) { 2736 /* 2737 * q_obj->complete_cmd() failure means that this was 2738 * an unexpected completion. 2739 * 2740 * In this case we don't want to increase the sc->spq_left 2741 * because apparently we haven't sent this command the first 2742 * place. 2743 */ 2744 // bxe_panic(sc, ("Unexpected SP completion\n")); 2745 return; 2746 } 2747 2748 atomic_add_acq_long(&sc->cq_spq_left, 1); 2749 2750 BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", 2751 atomic_load_acq_long(&sc->cq_spq_left)); 2752 } 2753 2754 /* 2755 * The current mbuf is part of an aggregation. Move the mbuf into the TPA 2756 * aggregation queue, put an empty mbuf back onto the receive chain, and mark 2757 * the current aggregation queue as in-progress. 2758 */ 2759 static void 2760 bxe_tpa_start(struct bxe_softc *sc, 2761 struct bxe_fastpath *fp, 2762 uint16_t queue, 2763 uint16_t cons, 2764 uint16_t prod, 2765 struct eth_fast_path_rx_cqe *cqe) 2766 { 2767 struct bxe_sw_rx_bd tmp_bd; 2768 struct bxe_sw_rx_bd *rx_buf; 2769 struct eth_rx_bd *rx_bd; 2770 int max_agg_queues __diagused; 2771 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 2772 uint16_t index; 2773 2774 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " 2775 "cons=%d prod=%d\n", 2776 fp->index, queue, cons, prod); 2777 2778 max_agg_queues = MAX_AGG_QS(sc); 2779 2780 KASSERT((queue < max_agg_queues), 2781 ("fp[%02d] invalid aggr queue (%d >= %d)!", 2782 fp->index, queue, max_agg_queues)); 2783 2784 KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), 2785 ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", 2786 fp->index, queue)); 2787 2788 /* copy the existing mbuf and mapping from the TPA pool */ 2789 tmp_bd = tpa_info->bd; 2790 2791 if (tmp_bd.m == NULL) { 2792 uint32_t *tmp; 2793 2794 tmp = (uint32_t *)cqe; 2795 2796 BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n", 2797 fp->index, queue, cons, prod); 2798 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2799 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2800 2801 /* XXX Error handling? */ 2802 return; 2803 } 2804 2805 /* change the TPA queue to the start state */ 2806 tpa_info->state = BXE_TPA_STATE_START; 2807 tpa_info->placement_offset = cqe->placement_offset; 2808 tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags); 2809 tpa_info->vlan_tag = le16toh(cqe->vlan_tag); 2810 tpa_info->len_on_bd = le16toh(cqe->len_on_bd); 2811 2812 fp->rx_tpa_queue_used |= (1 << queue); 2813 2814 /* 2815 * If all the buffer descriptors are filled with mbufs then fill in 2816 * the current consumer index with a new BD. Else if a maximum Rx 2817 * buffer limit is imposed then fill in the next producer index. 2818 */ 2819 index = (sc->max_rx_bufs != RX_BD_USABLE) ? 2820 prod : cons; 2821 2822 /* move the received mbuf and mapping to TPA pool */ 2823 tpa_info->bd = fp->rx_mbuf_chain[cons]; 2824 2825 /* release any existing RX BD mbuf mappings */ 2826 if (cons != index) { 2827 rx_buf = &fp->rx_mbuf_chain[cons]; 2828 2829 if (rx_buf->m_map != NULL) { 2830 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 2831 BUS_DMASYNC_POSTREAD); 2832 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 2833 } 2834 2835 /* 2836 * We get here when the maximum number of rx buffers is less than 2837 * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL 2838 * it out here without concern of a memory leak. 2839 */ 2840 fp->rx_mbuf_chain[cons].m = NULL; 2841 } 2842 2843 /* update the Rx SW BD with the mbuf info from the TPA pool */ 2844 fp->rx_mbuf_chain[index] = tmp_bd; 2845 2846 /* update the Rx BD with the empty mbuf phys address from the TPA pool */ 2847 rx_bd = &fp->rx_chain[index]; 2848 rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr)); 2849 rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr)); 2850 } 2851 2852 /* 2853 * When a TPA aggregation is completed, loop through the individual mbufs 2854 * of the aggregation, combining them into a single mbuf which will be sent 2855 * up the stack. Refill all freed SGEs with mbufs as we go along. 2856 */ 2857 static int 2858 bxe_fill_frag_mbuf(struct bxe_softc *sc, 2859 struct bxe_fastpath *fp, 2860 struct bxe_sw_tpa_info *tpa_info, 2861 uint16_t queue, 2862 uint16_t pages, 2863 struct mbuf *m, 2864 struct eth_end_agg_rx_cqe *cqe, 2865 uint16_t cqe_idx) 2866 { 2867 struct mbuf *m_frag; 2868 uint32_t frag_len, frag_size, i; 2869 uint16_t sge_idx; 2870 int rc = 0; 2871 int j; 2872 2873 frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd; 2874 2875 BLOGD(sc, DBG_LRO, 2876 "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", 2877 fp->index, queue, tpa_info->len_on_bd, frag_size, pages); 2878 2879 /* make sure the aggregated frame is not too big to handle */ 2880 if (pages > 8 * PAGES_PER_SGE) { 2881 2882 uint32_t *tmp = (uint32_t *)cqe; 2883 2884 BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " 2885 "pkt_len=%d len_on_bd=%d frag_size=%d\n", 2886 fp->index, cqe_idx, pages, le16toh(cqe->pkt_len), 2887 tpa_info->len_on_bd, frag_size); 2888 2889 BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n", 2890 *tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7)); 2891 2892 bxe_panic(sc, ("sge page count error\n")); 2893 return (EINVAL); 2894 } 2895 2896 /* 2897 * Scan through the scatter gather list pulling individual mbufs into a 2898 * single mbuf for the host stack. 2899 */ 2900 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { 2901 sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j])); 2902 2903 /* 2904 * Firmware gives the indices of the SGE as if the ring is an array 2905 * (meaning that the "next" element will consume 2 indices). 2906 */ 2907 frag_len = min(frag_size, (uint32_t)(SGE_PAGES)); 2908 2909 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " 2910 "sge_idx=%d frag_size=%d frag_len=%d\n", 2911 fp->index, queue, i, j, sge_idx, frag_size, frag_len); 2912 2913 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 2914 2915 /* allocate a new mbuf for the SGE */ 2916 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 2917 if (rc) { 2918 /* Leave all remaining SGEs in the ring! */ 2919 return (rc); 2920 } 2921 2922 /* update the fragment length */ 2923 m_frag->m_len = frag_len; 2924 2925 /* concatenate the fragment to the head mbuf */ 2926 m_cat(m, m_frag); 2927 fp->eth_q_stats.mbuf_alloc_sge--; 2928 2929 /* update the TPA mbuf size and remaining fragment size */ 2930 m->m_pkthdr.len += frag_len; 2931 frag_size -= frag_len; 2932 } 2933 2934 BLOGD(sc, DBG_LRO, 2935 "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", 2936 fp->index, queue, frag_size); 2937 2938 return (rc); 2939 } 2940 2941 static inline void 2942 bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) 2943 { 2944 int i, j; 2945 2946 for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { 2947 int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; 2948 2949 for (j = 0; j < 2; j++) { 2950 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); 2951 idx--; 2952 } 2953 } 2954 } 2955 2956 static inline void 2957 bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) 2958 { 2959 /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ 2960 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); 2961 2962 /* 2963 * Clear the two last indices in the page to 1. These are the indices that 2964 * correspond to the "next" element, hence will never be indicated and 2965 * should be removed from the calculations. 2966 */ 2967 bxe_clear_sge_mask_next_elems(fp); 2968 } 2969 2970 static inline void 2971 bxe_update_last_max_sge(struct bxe_fastpath *fp, 2972 uint16_t idx) 2973 { 2974 uint16_t last_max = fp->last_max_sge; 2975 2976 if (SUB_S16(idx, last_max) > 0) { 2977 fp->last_max_sge = idx; 2978 } 2979 } 2980 2981 static inline void 2982 bxe_update_sge_prod(struct bxe_softc *sc, 2983 struct bxe_fastpath *fp, 2984 uint16_t sge_len, 2985 union eth_sgl_or_raw_data *cqe) 2986 { 2987 uint16_t last_max, last_elem, first_elem; 2988 uint16_t delta = 0; 2989 uint16_t i; 2990 2991 if (!sge_len) { 2992 return; 2993 } 2994 2995 /* first mark all used pages */ 2996 for (i = 0; i < sge_len; i++) { 2997 BIT_VEC64_CLEAR_BIT(fp->sge_mask, 2998 RX_SGE(le16toh(cqe->sgl[i]))); 2999 } 3000 3001 BLOGD(sc, DBG_LRO, 3002 "fp[%02d] fp_cqe->sgl[%d] = %d\n", 3003 fp->index, sge_len - 1, 3004 le16toh(cqe->sgl[sge_len - 1])); 3005 3006 /* assume that the last SGE index is the biggest */ 3007 bxe_update_last_max_sge(fp, 3008 le16toh(cqe->sgl[sge_len - 1])); 3009 3010 last_max = RX_SGE(fp->last_max_sge); 3011 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; 3012 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; 3013 3014 /* if ring is not full */ 3015 if (last_elem + 1 != first_elem) { 3016 last_elem++; 3017 } 3018 3019 /* now update the prod */ 3020 for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { 3021 if (__predict_true(fp->sge_mask[i])) { 3022 break; 3023 } 3024 3025 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; 3026 delta += BIT_VEC64_ELEM_SZ; 3027 } 3028 3029 if (delta > 0) { 3030 fp->rx_sge_prod += delta; 3031 /* clear page-end entries */ 3032 bxe_clear_sge_mask_next_elems(fp); 3033 } 3034 3035 BLOGD(sc, DBG_LRO, 3036 "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", 3037 fp->index, fp->last_max_sge, fp->rx_sge_prod); 3038 } 3039 3040 /* 3041 * The aggregation on the current TPA queue has completed. Pull the individual 3042 * mbuf fragments together into a single mbuf, perform all necessary checksum 3043 * calculations, and send the resuting mbuf to the stack. 3044 */ 3045 static void 3046 bxe_tpa_stop(struct bxe_softc *sc, 3047 struct bxe_fastpath *fp, 3048 struct bxe_sw_tpa_info *tpa_info, 3049 uint16_t queue, 3050 uint16_t pages, 3051 struct eth_end_agg_rx_cqe *cqe, 3052 uint16_t cqe_idx) 3053 { 3054 if_t ifp = sc->ifp; 3055 struct mbuf *m; 3056 int rc = 0; 3057 3058 BLOGD(sc, DBG_LRO, 3059 "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", 3060 fp->index, queue, tpa_info->placement_offset, 3061 le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag); 3062 3063 m = tpa_info->bd.m; 3064 3065 /* allocate a replacement before modifying existing mbuf */ 3066 rc = bxe_alloc_rx_tpa_mbuf(fp, queue); 3067 if (rc) { 3068 /* drop the frame and log an error */ 3069 fp->eth_q_stats.rx_soft_errors++; 3070 goto bxe_tpa_stop_exit; 3071 } 3072 3073 /* we have a replacement, fixup the current mbuf */ 3074 m_adj(m, tpa_info->placement_offset); 3075 m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; 3076 3077 /* mark the checksums valid (taken care of by the firmware) */ 3078 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3079 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3080 m->m_pkthdr.csum_data = 0xffff; 3081 m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | 3082 CSUM_IP_VALID | 3083 CSUM_DATA_VALID | 3084 CSUM_PSEUDO_HDR); 3085 3086 /* aggregate all of the SGEs into a single mbuf */ 3087 rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); 3088 if (rc) { 3089 /* drop the packet and log an error */ 3090 fp->eth_q_stats.rx_soft_errors++; 3091 m_freem(m); 3092 } else { 3093 if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3094 m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; 3095 m->m_flags |= M_VLANTAG; 3096 } 3097 3098 /* assign packet to this interface interface */ 3099 if_setrcvif(m, ifp); 3100 3101 /* specify what RSS queue was used for this flow */ 3102 m->m_pkthdr.flowid = fp->index; 3103 BXE_SET_FLOWID(m); 3104 3105 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3106 fp->eth_q_stats.rx_tpa_pkts++; 3107 3108 /* pass the frame to the stack */ 3109 if_input(ifp, m); 3110 } 3111 3112 /* we passed an mbuf up the stack or dropped the frame */ 3113 fp->eth_q_stats.mbuf_alloc_tpa--; 3114 3115 bxe_tpa_stop_exit: 3116 3117 fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; 3118 fp->rx_tpa_queue_used &= ~(1 << queue); 3119 } 3120 3121 static uint8_t 3122 bxe_service_rxsgl( 3123 struct bxe_fastpath *fp, 3124 uint16_t len, 3125 uint16_t lenonbd, 3126 struct mbuf *m, 3127 struct eth_fast_path_rx_cqe *cqe_fp) 3128 { 3129 struct mbuf *m_frag; 3130 uint16_t frags, frag_len; 3131 uint16_t sge_idx = 0; 3132 uint16_t j; 3133 uint8_t i, rc = 0; 3134 uint32_t frag_size; 3135 3136 /* adjust the mbuf */ 3137 m->m_len = lenonbd; 3138 3139 frag_size = len - lenonbd; 3140 frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3141 3142 for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) { 3143 sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j])); 3144 3145 m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; 3146 frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE)); 3147 m_frag->m_len = frag_len; 3148 3149 /* allocate a new mbuf for the SGE */ 3150 rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); 3151 if (rc) { 3152 /* Leave all remaining SGEs in the ring! */ 3153 return (rc); 3154 } 3155 fp->eth_q_stats.mbuf_alloc_sge--; 3156 3157 /* concatenate the fragment to the head mbuf */ 3158 m_cat(m, m_frag); 3159 3160 frag_size -= frag_len; 3161 } 3162 3163 bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data); 3164 3165 return rc; 3166 } 3167 3168 static uint8_t 3169 bxe_rxeof(struct bxe_softc *sc, 3170 struct bxe_fastpath *fp) 3171 { 3172 if_t ifp = sc->ifp; 3173 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; 3174 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; 3175 int rx_pkts = 0; 3176 int rc = 0; 3177 3178 BXE_FP_RX_LOCK(fp); 3179 3180 /* CQ "next element" is of the size of the regular element */ 3181 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb); 3182 if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { 3183 hw_cq_cons++; 3184 } 3185 3186 bd_cons = fp->rx_bd_cons; 3187 bd_prod = fp->rx_bd_prod; 3188 bd_prod_fw = bd_prod; 3189 sw_cq_cons = fp->rx_cq_cons; 3190 sw_cq_prod = fp->rx_cq_prod; 3191 3192 /* 3193 * Memory barrier necessary as speculative reads of the rx 3194 * buffer can be ahead of the index in the status block 3195 */ 3196 rmb(); 3197 3198 BLOGD(sc, DBG_RX, 3199 "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", 3200 fp->index, hw_cq_cons, sw_cq_cons); 3201 3202 while (sw_cq_cons != hw_cq_cons) { 3203 struct bxe_sw_rx_bd *rx_buf = NULL; 3204 union eth_rx_cqe *cqe; 3205 struct eth_fast_path_rx_cqe *cqe_fp; 3206 uint8_t cqe_fp_flags; 3207 enum eth_rx_cqe_type cqe_fp_type; 3208 uint16_t len, lenonbd, pad; 3209 struct mbuf *m = NULL; 3210 3211 comp_ring_cons = RCQ(sw_cq_cons); 3212 bd_prod = RX_BD(bd_prod); 3213 bd_cons = RX_BD(bd_cons); 3214 3215 cqe = &fp->rcq_chain[comp_ring_cons]; 3216 cqe_fp = &cqe->fast_path_cqe; 3217 cqe_fp_flags = cqe_fp->type_error_flags; 3218 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; 3219 3220 BLOGD(sc, DBG_RX, 3221 "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " 3222 "BD prod=%d cons=%d CQE type=0x%x err=0x%x " 3223 "status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n", 3224 fp->index, 3225 hw_cq_cons, 3226 sw_cq_cons, 3227 bd_prod, 3228 bd_cons, 3229 CQE_TYPE(cqe_fp_flags), 3230 cqe_fp_flags, 3231 cqe_fp->status_flags, 3232 le32toh(cqe_fp->rss_hash_result), 3233 le16toh(cqe_fp->vlan_tag), 3234 le16toh(cqe_fp->pkt_len_or_gro_seg_len), 3235 le16toh(cqe_fp->len_on_bd)); 3236 3237 /* is this a slowpath msg? */ 3238 if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { 3239 bxe_sp_event(sc, fp, cqe); 3240 goto next_cqe; 3241 } 3242 3243 rx_buf = &fp->rx_mbuf_chain[bd_cons]; 3244 3245 if (!CQE_TYPE_FAST(cqe_fp_type)) { 3246 struct bxe_sw_tpa_info *tpa_info; 3247 uint16_t frag_size, pages; 3248 uint8_t queue; 3249 3250 if (CQE_TYPE_START(cqe_fp_type)) { 3251 bxe_tpa_start(sc, fp, cqe_fp->queue_index, 3252 bd_cons, bd_prod, cqe_fp); 3253 m = NULL; /* packet not ready yet */ 3254 goto next_rx; 3255 } 3256 3257 KASSERT(CQE_TYPE_STOP(cqe_fp_type), 3258 ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); 3259 3260 queue = cqe->end_agg_cqe.queue_index; 3261 tpa_info = &fp->rx_tpa_info[queue]; 3262 3263 BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", 3264 fp->index, queue); 3265 3266 frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) - 3267 tpa_info->len_on_bd); 3268 pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; 3269 3270 bxe_tpa_stop(sc, fp, tpa_info, queue, pages, 3271 &cqe->end_agg_cqe, comp_ring_cons); 3272 3273 bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data); 3274 3275 goto next_cqe; 3276 } 3277 3278 /* non TPA */ 3279 3280 /* is this an error packet? */ 3281 if (__predict_false(cqe_fp_flags & 3282 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { 3283 BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); 3284 fp->eth_q_stats.rx_soft_errors++; 3285 goto next_rx; 3286 } 3287 3288 len = le16toh(cqe_fp->pkt_len_or_gro_seg_len); 3289 lenonbd = le16toh(cqe_fp->len_on_bd); 3290 pad = cqe_fp->placement_offset; 3291 3292 m = rx_buf->m; 3293 3294 if (__predict_false(m == NULL)) { 3295 BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", 3296 bd_cons, fp->index); 3297 goto next_rx; 3298 } 3299 3300 /* XXX double copy if packet length under a threshold */ 3301 3302 /* 3303 * If all the buffer descriptors are filled with mbufs then fill in 3304 * the current consumer index with a new BD. Else if a maximum Rx 3305 * buffer limit is imposed then fill in the next producer index. 3306 */ 3307 rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, 3308 (sc->max_rx_bufs != RX_BD_USABLE) ? 3309 bd_prod : bd_cons); 3310 if (rc != 0) { 3311 3312 /* we simply reuse the received mbuf and don't post it to the stack */ 3313 m = NULL; 3314 3315 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 3316 fp->index, rc); 3317 fp->eth_q_stats.rx_soft_errors++; 3318 3319 if (sc->max_rx_bufs != RX_BD_USABLE) { 3320 /* copy this consumer index to the producer index */ 3321 memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, 3322 sizeof(struct bxe_sw_rx_bd)); 3323 memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); 3324 } 3325 3326 goto next_rx; 3327 } 3328 3329 /* current mbuf was detached from the bd */ 3330 fp->eth_q_stats.mbuf_alloc_rx--; 3331 3332 /* we allocated a replacement mbuf, fixup the current one */ 3333 m_adj(m, pad); 3334 m->m_pkthdr.len = m->m_len = len; 3335 3336 if ((len > 60) && (len > lenonbd)) { 3337 fp->eth_q_stats.rx_bxe_service_rxsgl++; 3338 rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp); 3339 if (rc) 3340 break; 3341 fp->eth_q_stats.rx_jumbo_sge_pkts++; 3342 } else if (lenonbd < len) { 3343 fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++; 3344 } 3345 3346 /* assign packet to this interface interface */ 3347 if_setrcvif(m, ifp); 3348 3349 /* assume no hardware checksum has complated */ 3350 m->m_pkthdr.csum_flags = 0; 3351 3352 /* validate checksum if offload enabled */ 3353 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 3354 /* check for a valid IP frame */ 3355 if (!(cqe->fast_path_cqe.status_flags & 3356 ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { 3357 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 3358 if (__predict_false(cqe_fp_flags & 3359 ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { 3360 fp->eth_q_stats.rx_hw_csum_errors++; 3361 } else { 3362 fp->eth_q_stats.rx_ofld_frames_csum_ip++; 3363 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 3364 } 3365 } 3366 3367 /* check for a valid TCP/UDP frame */ 3368 if (!(cqe->fast_path_cqe.status_flags & 3369 ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { 3370 if (__predict_false(cqe_fp_flags & 3371 ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { 3372 fp->eth_q_stats.rx_hw_csum_errors++; 3373 } else { 3374 fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; 3375 m->m_pkthdr.csum_data = 0xFFFF; 3376 m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | 3377 CSUM_PSEUDO_HDR); 3378 } 3379 } 3380 } 3381 3382 /* if there is a VLAN tag then flag that info */ 3383 if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) { 3384 m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; 3385 m->m_flags |= M_VLANTAG; 3386 } 3387 3388 /* specify what RSS queue was used for this flow */ 3389 m->m_pkthdr.flowid = fp->index; 3390 BXE_SET_FLOWID(m); 3391 3392 next_rx: 3393 3394 bd_cons = RX_BD_NEXT(bd_cons); 3395 bd_prod = RX_BD_NEXT(bd_prod); 3396 bd_prod_fw = RX_BD_NEXT(bd_prod_fw); 3397 3398 /* pass the frame to the stack */ 3399 if (__predict_true(m != NULL)) { 3400 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 3401 rx_pkts++; 3402 if_input(ifp, m); 3403 } 3404 3405 next_cqe: 3406 3407 sw_cq_prod = RCQ_NEXT(sw_cq_prod); 3408 sw_cq_cons = RCQ_NEXT(sw_cq_cons); 3409 3410 /* limit spinning on the queue */ 3411 if (rc != 0) 3412 break; 3413 3414 if (rx_pkts == sc->rx_budget) { 3415 fp->eth_q_stats.rx_budget_reached++; 3416 break; 3417 } 3418 } /* while work to do */ 3419 3420 fp->rx_bd_cons = bd_cons; 3421 fp->rx_bd_prod = bd_prod_fw; 3422 fp->rx_cq_cons = sw_cq_cons; 3423 fp->rx_cq_prod = sw_cq_prod; 3424 3425 /* Update producers */ 3426 bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); 3427 3428 fp->eth_q_stats.rx_pkts += rx_pkts; 3429 fp->eth_q_stats.rx_calls++; 3430 3431 BXE_FP_RX_UNLOCK(fp); 3432 3433 return (sw_cq_cons != hw_cq_cons); 3434 } 3435 3436 static uint16_t 3437 bxe_free_tx_pkt(struct bxe_softc *sc, 3438 struct bxe_fastpath *fp, 3439 uint16_t idx) 3440 { 3441 struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; 3442 struct eth_tx_start_bd *tx_start_bd; 3443 uint16_t bd_idx = TX_BD(tx_buf->first_bd); 3444 uint16_t new_cons; 3445 int nbd; 3446 3447 /* unmap the mbuf from non-paged memory */ 3448 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 3449 3450 tx_start_bd = &fp->tx_chain[bd_idx].start_bd; 3451 nbd = le16toh(tx_start_bd->nbd) - 1; 3452 3453 new_cons = (tx_buf->first_bd + nbd); 3454 3455 /* free the mbuf */ 3456 if (__predict_true(tx_buf->m != NULL)) { 3457 m_freem(tx_buf->m); 3458 fp->eth_q_stats.mbuf_alloc_tx--; 3459 } else { 3460 fp->eth_q_stats.tx_chain_lost_mbuf++; 3461 } 3462 3463 tx_buf->m = NULL; 3464 tx_buf->first_bd = 0; 3465 3466 return (new_cons); 3467 } 3468 3469 /* transmit timeout watchdog */ 3470 static int 3471 bxe_watchdog(struct bxe_softc *sc, 3472 struct bxe_fastpath *fp) 3473 { 3474 BXE_FP_TX_LOCK(fp); 3475 3476 if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { 3477 BXE_FP_TX_UNLOCK(fp); 3478 return (0); 3479 } 3480 3481 BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); 3482 3483 BXE_FP_TX_UNLOCK(fp); 3484 BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK); 3485 taskqueue_enqueue_timeout(taskqueue_thread, 3486 &sc->sp_err_timeout_task, hz/10); 3487 3488 return (-1); 3489 } 3490 3491 /* processes transmit completions */ 3492 static uint8_t 3493 bxe_txeof(struct bxe_softc *sc, 3494 struct bxe_fastpath *fp) 3495 { 3496 if_t ifp = sc->ifp; 3497 uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; 3498 uint16_t tx_bd_avail; 3499 3500 BXE_FP_TX_LOCK_ASSERT(fp); 3501 3502 bd_cons = fp->tx_bd_cons; 3503 hw_cons = le16toh(*fp->tx_cons_sb); 3504 sw_cons = fp->tx_pkt_cons; 3505 3506 while (sw_cons != hw_cons) { 3507 pkt_cons = TX_BD(sw_cons); 3508 3509 BLOGD(sc, DBG_TX, 3510 "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", 3511 fp->index, hw_cons, sw_cons, pkt_cons); 3512 3513 bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); 3514 3515 sw_cons++; 3516 } 3517 3518 fp->tx_pkt_cons = sw_cons; 3519 fp->tx_bd_cons = bd_cons; 3520 3521 BLOGD(sc, DBG_TX, 3522 "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", 3523 fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); 3524 3525 mb(); 3526 3527 tx_bd_avail = bxe_tx_avail(sc, fp); 3528 3529 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 3530 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 3531 } else { 3532 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3533 } 3534 3535 if (fp->tx_pkt_prod != fp->tx_pkt_cons) { 3536 /* reset the watchdog timer if there are pending transmits */ 3537 fp->watchdog_timer = BXE_TX_TIMEOUT; 3538 return (TRUE); 3539 } else { 3540 /* clear watchdog when there are no pending transmits */ 3541 fp->watchdog_timer = 0; 3542 return (FALSE); 3543 } 3544 } 3545 3546 static void 3547 bxe_drain_tx_queues(struct bxe_softc *sc) 3548 { 3549 struct bxe_fastpath *fp; 3550 int i, count; 3551 3552 /* wait until all TX fastpath tasks have completed */ 3553 for (i = 0; i < sc->num_queues; i++) { 3554 fp = &sc->fp[i]; 3555 3556 count = 1000; 3557 3558 while (bxe_has_tx_work(fp)) { 3559 3560 BXE_FP_TX_LOCK(fp); 3561 bxe_txeof(sc, fp); 3562 BXE_FP_TX_UNLOCK(fp); 3563 3564 if (count == 0) { 3565 BLOGE(sc, "Timeout waiting for fp[%d] " 3566 "transmits to complete!\n", i); 3567 bxe_panic(sc, ("tx drain failure\n")); 3568 return; 3569 } 3570 3571 count--; 3572 DELAY(1000); 3573 rmb(); 3574 } 3575 } 3576 3577 return; 3578 } 3579 3580 static int 3581 bxe_del_all_macs(struct bxe_softc *sc, 3582 struct ecore_vlan_mac_obj *mac_obj, 3583 int mac_type, 3584 uint8_t wait_for_comp) 3585 { 3586 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 3587 int rc; 3588 3589 /* wait for completion of requested */ 3590 if (wait_for_comp) { 3591 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 3592 } 3593 3594 /* Set the mac type of addresses we want to clear */ 3595 bxe_set_bit(mac_type, &vlan_mac_flags); 3596 3597 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); 3598 if (rc < 0) { 3599 BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n", 3600 rc, mac_type, wait_for_comp); 3601 } 3602 3603 return (rc); 3604 } 3605 3606 static int 3607 bxe_fill_accept_flags(struct bxe_softc *sc, 3608 uint32_t rx_mode, 3609 unsigned long *rx_accept_flags, 3610 unsigned long *tx_accept_flags) 3611 { 3612 /* Clear the flags first */ 3613 *rx_accept_flags = 0; 3614 *tx_accept_flags = 0; 3615 3616 switch (rx_mode) { 3617 case BXE_RX_MODE_NONE: 3618 /* 3619 * 'drop all' supersedes any accept flags that may have been 3620 * passed to the function. 3621 */ 3622 break; 3623 3624 case BXE_RX_MODE_NORMAL: 3625 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3626 bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); 3627 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3628 3629 /* internal switching mode */ 3630 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3631 bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); 3632 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3633 3634 break; 3635 3636 case BXE_RX_MODE_ALLMULTI: 3637 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3638 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3639 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3640 3641 /* internal switching mode */ 3642 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3643 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3644 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3645 3646 break; 3647 3648 case BXE_RX_MODE_PROMISC: 3649 /* 3650 * According to deffinition of SI mode, iface in promisc mode 3651 * should receive matched and unmatched (in resolution of port) 3652 * unicast packets. 3653 */ 3654 bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); 3655 bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); 3656 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); 3657 bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); 3658 3659 /* internal switching mode */ 3660 bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); 3661 bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); 3662 3663 if (IS_MF_SI(sc)) { 3664 bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); 3665 } else { 3666 bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); 3667 } 3668 3669 break; 3670 3671 default: 3672 BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode); 3673 return (-1); 3674 } 3675 3676 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ 3677 if (rx_mode != BXE_RX_MODE_NONE) { 3678 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); 3679 bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); 3680 } 3681 3682 return (0); 3683 } 3684 3685 static int 3686 bxe_set_q_rx_mode(struct bxe_softc *sc, 3687 uint8_t cl_id, 3688 unsigned long rx_mode_flags, 3689 unsigned long rx_accept_flags, 3690 unsigned long tx_accept_flags, 3691 unsigned long ramrod_flags) 3692 { 3693 struct ecore_rx_mode_ramrod_params ramrod_param; 3694 int rc; 3695 3696 memset(&ramrod_param, 0, sizeof(ramrod_param)); 3697 3698 /* Prepare ramrod parameters */ 3699 ramrod_param.cid = 0; 3700 ramrod_param.cl_id = cl_id; 3701 ramrod_param.rx_mode_obj = &sc->rx_mode_obj; 3702 ramrod_param.func_id = SC_FUNC(sc); 3703 3704 ramrod_param.pstate = &sc->sp_state; 3705 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; 3706 3707 ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); 3708 ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); 3709 3710 bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 3711 3712 ramrod_param.ramrod_flags = ramrod_flags; 3713 ramrod_param.rx_mode_flags = rx_mode_flags; 3714 3715 ramrod_param.rx_accept_flags = rx_accept_flags; 3716 ramrod_param.tx_accept_flags = tx_accept_flags; 3717 3718 rc = ecore_config_rx_mode(sc, &ramrod_param); 3719 if (rc < 0) { 3720 BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x " 3721 "rx_accept_flags 0x%x tx_accept_flags 0x%x " 3722 "ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id, 3723 (uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags, 3724 (uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc); 3725 return (rc); 3726 } 3727 3728 return (0); 3729 } 3730 3731 static int 3732 bxe_set_storm_rx_mode(struct bxe_softc *sc) 3733 { 3734 unsigned long rx_mode_flags = 0, ramrod_flags = 0; 3735 unsigned long rx_accept_flags = 0, tx_accept_flags = 0; 3736 int rc; 3737 3738 rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, 3739 &tx_accept_flags); 3740 if (rc) { 3741 return (rc); 3742 } 3743 3744 bxe_set_bit(RAMROD_RX, &ramrod_flags); 3745 bxe_set_bit(RAMROD_TX, &ramrod_flags); 3746 3747 /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */ 3748 return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, 3749 rx_accept_flags, tx_accept_flags, 3750 ramrod_flags)); 3751 } 3752 3753 /* returns the "mcp load_code" according to global load_count array */ 3754 static int 3755 bxe_nic_load_no_mcp(struct bxe_softc *sc) 3756 { 3757 int path = SC_PATH(sc); 3758 int port = SC_PORT(sc); 3759 3760 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3761 path, load_count[path][0], load_count[path][1], 3762 load_count[path][2]); 3763 load_count[path][0]++; 3764 load_count[path][1 + port]++; 3765 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3766 path, load_count[path][0], load_count[path][1], 3767 load_count[path][2]); 3768 if (load_count[path][0] == 1) { 3769 return (FW_MSG_CODE_DRV_LOAD_COMMON); 3770 } else if (load_count[path][1 + port] == 1) { 3771 return (FW_MSG_CODE_DRV_LOAD_PORT); 3772 } else { 3773 return (FW_MSG_CODE_DRV_LOAD_FUNCTION); 3774 } 3775 } 3776 3777 /* returns the "mcp load_code" according to global load_count array */ 3778 static int 3779 bxe_nic_unload_no_mcp(struct bxe_softc *sc) 3780 { 3781 int port = SC_PORT(sc); 3782 int path = SC_PATH(sc); 3783 3784 BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", 3785 path, load_count[path][0], load_count[path][1], 3786 load_count[path][2]); 3787 load_count[path][0]--; 3788 load_count[path][1 + port]--; 3789 BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", 3790 path, load_count[path][0], load_count[path][1], 3791 load_count[path][2]); 3792 if (load_count[path][0] == 0) { 3793 return (FW_MSG_CODE_DRV_UNLOAD_COMMON); 3794 } else if (load_count[path][1 + port] == 0) { 3795 return (FW_MSG_CODE_DRV_UNLOAD_PORT); 3796 } else { 3797 return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); 3798 } 3799 } 3800 3801 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ 3802 static uint32_t 3803 bxe_send_unload_req(struct bxe_softc *sc, 3804 int unload_mode) 3805 { 3806 uint32_t reset_code = 0; 3807 3808 /* Select the UNLOAD request mode */ 3809 if (unload_mode == UNLOAD_NORMAL) { 3810 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3811 } else { 3812 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; 3813 } 3814 3815 /* Send the request to the MCP */ 3816 if (!BXE_NOMCP(sc)) { 3817 reset_code = bxe_fw_command(sc, reset_code, 0); 3818 } else { 3819 reset_code = bxe_nic_unload_no_mcp(sc); 3820 } 3821 3822 return (reset_code); 3823 } 3824 3825 /* send UNLOAD_DONE command to the MCP */ 3826 static void 3827 bxe_send_unload_done(struct bxe_softc *sc, 3828 uint8_t keep_link) 3829 { 3830 uint32_t reset_param = 3831 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; 3832 3833 /* Report UNLOAD_DONE to MCP */ 3834 if (!BXE_NOMCP(sc)) { 3835 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); 3836 } 3837 } 3838 3839 static int 3840 bxe_func_wait_started(struct bxe_softc *sc) 3841 { 3842 int tout = 50; 3843 3844 if (!sc->port.pmf) { 3845 return (0); 3846 } 3847 3848 /* 3849 * (assumption: No Attention from MCP at this stage) 3850 * PMF probably in the middle of TX disable/enable transaction 3851 * 1. Sync IRS for default SB 3852 * 2. Sync SP queue - this guarantees us that attention handling started 3853 * 3. Wait, that TX disable/enable transaction completes 3854 * 3855 * 1+2 guarantee that if DCBX attention was scheduled it already changed 3856 * pending bit of transaction from STARTED-->TX_STOPPED, if we already 3857 * received completion for the transaction the state is TX_STOPPED. 3858 * State will return to STARTED after completion of TX_STOPPED-->STARTED 3859 * transaction. 3860 */ 3861 3862 /* XXX make sure default SB ISR is done */ 3863 /* need a way to synchronize an irq (intr_mtx?) */ 3864 3865 /* XXX flush any work queues */ 3866 3867 while (ecore_func_get_state(sc, &sc->func_obj) != 3868 ECORE_F_STATE_STARTED && tout--) { 3869 DELAY(20000); 3870 } 3871 3872 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { 3873 /* 3874 * Failed to complete the transaction in a "good way" 3875 * Force both transactions with CLR bit. 3876 */ 3877 struct ecore_func_state_params func_params = { NULL }; 3878 3879 BLOGE(sc, "Unexpected function state! " 3880 "Forcing STARTED-->TX_STOPPED-->STARTED\n"); 3881 3882 func_params.f_obj = &sc->func_obj; 3883 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3884 3885 /* STARTED-->TX_STOPPED */ 3886 func_params.cmd = ECORE_F_CMD_TX_STOP; 3887 ecore_func_state_change(sc, &func_params); 3888 3889 /* TX_STOPPED-->STARTED */ 3890 func_params.cmd = ECORE_F_CMD_TX_START; 3891 return (ecore_func_state_change(sc, &func_params)); 3892 } 3893 3894 return (0); 3895 } 3896 3897 static int 3898 bxe_stop_queue(struct bxe_softc *sc, 3899 int index) 3900 { 3901 struct bxe_fastpath *fp = &sc->fp[index]; 3902 struct ecore_queue_state_params q_params = { NULL }; 3903 int rc; 3904 3905 BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); 3906 3907 q_params.q_obj = &sc->sp_objs[fp->index].q_obj; 3908 /* We want to wait for completion in this context */ 3909 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 3910 3911 /* Stop the primary connection: */ 3912 3913 /* ...halt the connection */ 3914 q_params.cmd = ECORE_Q_CMD_HALT; 3915 rc = ecore_queue_state_change(sc, &q_params); 3916 if (rc) { 3917 return (rc); 3918 } 3919 3920 /* ...terminate the connection */ 3921 q_params.cmd = ECORE_Q_CMD_TERMINATE; 3922 memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); 3923 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; 3924 rc = ecore_queue_state_change(sc, &q_params); 3925 if (rc) { 3926 return (rc); 3927 } 3928 3929 /* ...delete cfc entry */ 3930 q_params.cmd = ECORE_Q_CMD_CFC_DEL; 3931 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); 3932 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; 3933 return (ecore_queue_state_change(sc, &q_params)); 3934 } 3935 3936 /* wait for the outstanding SP commands */ 3937 static inline uint8_t 3938 bxe_wait_sp_comp(struct bxe_softc *sc, 3939 unsigned long mask) 3940 { 3941 unsigned long tmp; 3942 int tout = 5000; /* wait for 5 secs tops */ 3943 3944 while (tout--) { 3945 mb(); 3946 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) { 3947 return (TRUE); 3948 } 3949 3950 DELAY(1000); 3951 } 3952 3953 mb(); 3954 3955 tmp = atomic_load_acq_long(&sc->sp_state); 3956 if (tmp & mask) { 3957 BLOGE(sc, "Filtering completion timed out: " 3958 "sp_state 0x%lx, mask 0x%lx\n", 3959 tmp, mask); 3960 return (FALSE); 3961 } 3962 3963 return (FALSE); 3964 } 3965 3966 static int 3967 bxe_func_stop(struct bxe_softc *sc) 3968 { 3969 struct ecore_func_state_params func_params = { NULL }; 3970 int rc; 3971 3972 /* prepare parameters for function state transitions */ 3973 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 3974 func_params.f_obj = &sc->func_obj; 3975 func_params.cmd = ECORE_F_CMD_STOP; 3976 3977 /* 3978 * Try to stop the function the 'good way'. If it fails (in case 3979 * of a parity error during bxe_chip_cleanup()) and we are 3980 * not in a debug mode, perform a state transaction in order to 3981 * enable further HW_RESET transaction. 3982 */ 3983 rc = ecore_func_state_change(sc, &func_params); 3984 if (rc) { 3985 BLOGE(sc, "FUNC_STOP ramrod failed. " 3986 "Running a dry transaction (%d)\n", rc); 3987 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); 3988 return (ecore_func_state_change(sc, &func_params)); 3989 } 3990 3991 return (0); 3992 } 3993 3994 static int 3995 bxe_reset_hw(struct bxe_softc *sc, 3996 uint32_t load_code) 3997 { 3998 struct ecore_func_state_params func_params = { NULL }; 3999 4000 /* Prepare parameters for function state transitions */ 4001 bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); 4002 4003 func_params.f_obj = &sc->func_obj; 4004 func_params.cmd = ECORE_F_CMD_HW_RESET; 4005 4006 func_params.params.hw_init.load_phase = load_code; 4007 4008 return (ecore_func_state_change(sc, &func_params)); 4009 } 4010 4011 static void 4012 bxe_int_disable_sync(struct bxe_softc *sc, 4013 int disable_hw) 4014 { 4015 if (disable_hw) { 4016 /* prevent the HW from sending interrupts */ 4017 bxe_int_disable(sc); 4018 } 4019 4020 /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ 4021 /* make sure all ISRs are done */ 4022 4023 /* XXX make sure sp_task is not running */ 4024 /* cancel and flush work queues */ 4025 } 4026 4027 static void 4028 bxe_chip_cleanup(struct bxe_softc *sc, 4029 uint32_t unload_mode, 4030 uint8_t keep_link) 4031 { 4032 int port = SC_PORT(sc); 4033 struct ecore_mcast_ramrod_params rparam = { NULL }; 4034 uint32_t reset_code; 4035 int i, rc = 0; 4036 4037 bxe_drain_tx_queues(sc); 4038 4039 /* give HW time to discard old tx messages */ 4040 DELAY(1000); 4041 4042 /* Clean all ETH MACs */ 4043 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); 4044 if (rc < 0) { 4045 BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); 4046 } 4047 4048 /* Clean up UC list */ 4049 rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); 4050 if (rc < 0) { 4051 BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); 4052 } 4053 4054 /* Disable LLH */ 4055 if (!CHIP_IS_E1(sc)) { 4056 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 4057 } 4058 4059 /* Set "drop all" to stop Rx */ 4060 4061 /* 4062 * We need to take the BXE_MCAST_LOCK() here in order to prevent 4063 * a race between the completion code and this code. 4064 */ 4065 BXE_MCAST_LOCK(sc); 4066 4067 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 4068 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 4069 } else { 4070 bxe_set_storm_rx_mode(sc); 4071 } 4072 4073 /* Clean up multicast configuration */ 4074 rparam.mcast_obj = &sc->mcast_obj; 4075 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4076 if (rc < 0) { 4077 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4078 } 4079 4080 BXE_MCAST_UNLOCK(sc); 4081 4082 // XXX bxe_iov_chip_cleanup(sc); 4083 4084 /* 4085 * Send the UNLOAD_REQUEST to the MCP. This will return if 4086 * this function should perform FUNCTION, PORT, or COMMON HW 4087 * reset. 4088 */ 4089 reset_code = bxe_send_unload_req(sc, unload_mode); 4090 4091 /* 4092 * (assumption: No Attention from MCP at this stage) 4093 * PMF probably in the middle of TX disable/enable transaction 4094 */ 4095 rc = bxe_func_wait_started(sc); 4096 if (rc) { 4097 BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc); 4098 } 4099 4100 /* 4101 * Close multi and leading connections 4102 * Completions for ramrods are collected in a synchronous way 4103 */ 4104 for (i = 0; i < sc->num_queues; i++) { 4105 if (bxe_stop_queue(sc, i)) { 4106 goto unload_error; 4107 } 4108 } 4109 4110 /* 4111 * If SP settings didn't get completed so far - something 4112 * very wrong has happen. 4113 */ 4114 if (!bxe_wait_sp_comp(sc, ~0x0UL)) { 4115 BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc); 4116 } 4117 4118 unload_error: 4119 4120 rc = bxe_func_stop(sc); 4121 if (rc) { 4122 BLOGE(sc, "Function stop failed!(%d)\n", rc); 4123 } 4124 4125 /* disable HW interrupts */ 4126 bxe_int_disable_sync(sc, TRUE); 4127 4128 /* detach interrupts */ 4129 bxe_interrupt_detach(sc); 4130 4131 /* Reset the chip */ 4132 rc = bxe_reset_hw(sc, reset_code); 4133 if (rc) { 4134 BLOGE(sc, "Hardware reset failed(%d)\n", rc); 4135 } 4136 4137 /* Report UNLOAD_DONE to MCP */ 4138 bxe_send_unload_done(sc, keep_link); 4139 } 4140 4141 static void 4142 bxe_disable_close_the_gate(struct bxe_softc *sc) 4143 { 4144 uint32_t val; 4145 int port = SC_PORT(sc); 4146 4147 BLOGD(sc, DBG_LOAD, 4148 "Disabling 'close the gates'\n"); 4149 4150 if (CHIP_IS_E1(sc)) { 4151 uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 4152 MISC_REG_AEU_MASK_ATTN_FUNC_0; 4153 val = REG_RD(sc, addr); 4154 val &= ~(0x300); 4155 REG_WR(sc, addr, val); 4156 } else { 4157 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); 4158 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | 4159 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); 4160 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); 4161 } 4162 } 4163 4164 /* 4165 * Cleans the object that have internal lists without sending 4166 * ramrods. Should be run when interrutps are disabled. 4167 */ 4168 static void 4169 bxe_squeeze_objects(struct bxe_softc *sc) 4170 { 4171 unsigned long ramrod_flags = 0, vlan_mac_flags = 0; 4172 struct ecore_mcast_ramrod_params rparam = { NULL }; 4173 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 4174 int rc; 4175 4176 /* Cleanup MACs' object first... */ 4177 4178 /* Wait for completion of requested */ 4179 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 4180 /* Perform a dry cleanup */ 4181 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); 4182 4183 /* Clean ETH primary MAC */ 4184 bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); 4185 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, 4186 &ramrod_flags); 4187 if (rc != 0) { 4188 BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); 4189 } 4190 4191 /* Cleanup UC list */ 4192 vlan_mac_flags = 0; 4193 bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); 4194 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, 4195 &ramrod_flags); 4196 if (rc != 0) { 4197 BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); 4198 } 4199 4200 /* Now clean mcast object... */ 4201 4202 rparam.mcast_obj = &sc->mcast_obj; 4203 bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); 4204 4205 /* Add a DEL command... */ 4206 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 4207 if (rc < 0) { 4208 BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); 4209 } 4210 4211 /* now wait until all pending commands are cleared */ 4212 4213 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4214 while (rc != 0) { 4215 if (rc < 0) { 4216 BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); 4217 return; 4218 } 4219 4220 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 4221 } 4222 } 4223 4224 /* stop the controller */ 4225 static __noinline int 4226 bxe_nic_unload(struct bxe_softc *sc, 4227 uint32_t unload_mode, 4228 uint8_t keep_link) 4229 { 4230 uint8_t global = FALSE; 4231 uint32_t val; 4232 int i; 4233 4234 BXE_CORE_LOCK_ASSERT(sc); 4235 4236 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 4237 4238 for (i = 0; i < sc->num_queues; i++) { 4239 struct bxe_fastpath *fp; 4240 4241 fp = &sc->fp[i]; 4242 fp->watchdog_timer = 0; 4243 BXE_FP_TX_LOCK(fp); 4244 BXE_FP_TX_UNLOCK(fp); 4245 } 4246 4247 BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); 4248 4249 /* mark driver as unloaded in shmem2 */ 4250 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 4251 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 4252 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 4253 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); 4254 } 4255 4256 if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && 4257 (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { 4258 4259 if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 4260 /* 4261 * We can get here if the driver has been unloaded 4262 * during parity error recovery and is either waiting for a 4263 * leader to complete or for other functions to unload and 4264 * then ifconfig down has been issued. In this case we want to 4265 * unload and let other functions to complete a recovery 4266 * process. 4267 */ 4268 sc->recovery_state = BXE_RECOVERY_DONE; 4269 sc->is_leader = 0; 4270 bxe_release_leader_lock(sc); 4271 mb(); 4272 BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); 4273 } 4274 BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x" 4275 " state = 0x%x\n", sc->recovery_state, sc->state); 4276 return (-1); 4277 } 4278 4279 /* 4280 * Nothing to do during unload if previous bxe_nic_load() 4281 * did not completed successfully - all resourses are released. 4282 */ 4283 if ((sc->state == BXE_STATE_CLOSED) || 4284 (sc->state == BXE_STATE_ERROR)) { 4285 return (0); 4286 } 4287 4288 sc->state = BXE_STATE_CLOSING_WAITING_HALT; 4289 mb(); 4290 4291 /* stop tx */ 4292 bxe_tx_disable(sc); 4293 4294 sc->rx_mode = BXE_RX_MODE_NONE; 4295 /* XXX set rx mode ??? */ 4296 4297 if (IS_PF(sc) && !sc->grcdump_done) { 4298 /* set ALWAYS_ALIVE bit in shmem */ 4299 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 4300 4301 bxe_drv_pulse(sc); 4302 4303 bxe_stats_handle(sc, STATS_EVENT_STOP); 4304 bxe_save_statistics(sc); 4305 } 4306 4307 /* wait till consumers catch up with producers in all queues */ 4308 bxe_drain_tx_queues(sc); 4309 4310 /* if VF indicate to PF this function is going down (PF will delete sp 4311 * elements and clear initializations 4312 */ 4313 if (IS_VF(sc)) { 4314 ; /* bxe_vfpf_close_vf(sc); */ 4315 } else if (unload_mode != UNLOAD_RECOVERY) { 4316 /* if this is a normal/close unload need to clean up chip */ 4317 if (!sc->grcdump_done) 4318 bxe_chip_cleanup(sc, unload_mode, keep_link); 4319 } else { 4320 /* Send the UNLOAD_REQUEST to the MCP */ 4321 bxe_send_unload_req(sc, unload_mode); 4322 4323 /* 4324 * Prevent transactions to host from the functions on the 4325 * engine that doesn't reset global blocks in case of global 4326 * attention once gloabl blocks are reset and gates are opened 4327 * (the engine which leader will perform the recovery 4328 * last). 4329 */ 4330 if (!CHIP_IS_E1x(sc)) { 4331 bxe_pf_disable(sc); 4332 } 4333 4334 /* disable HW interrupts */ 4335 bxe_int_disable_sync(sc, TRUE); 4336 4337 /* detach interrupts */ 4338 bxe_interrupt_detach(sc); 4339 4340 /* Report UNLOAD_DONE to MCP */ 4341 bxe_send_unload_done(sc, FALSE); 4342 } 4343 4344 /* 4345 * At this stage no more interrupts will arrive so we may safely clean 4346 * the queue'able objects here in case they failed to get cleaned so far. 4347 */ 4348 if (IS_PF(sc)) { 4349 bxe_squeeze_objects(sc); 4350 } 4351 4352 /* There should be no more pending SP commands at this stage */ 4353 sc->sp_state = 0; 4354 4355 sc->port.pmf = 0; 4356 4357 bxe_free_fp_buffers(sc); 4358 4359 if (IS_PF(sc)) { 4360 bxe_free_mem(sc); 4361 } 4362 4363 bxe_free_fw_stats_mem(sc); 4364 4365 sc->state = BXE_STATE_CLOSED; 4366 4367 /* 4368 * Check if there are pending parity attentions. If there are - set 4369 * RECOVERY_IN_PROGRESS. 4370 */ 4371 if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { 4372 bxe_set_reset_in_progress(sc); 4373 4374 /* Set RESET_IS_GLOBAL if needed */ 4375 if (global) { 4376 bxe_set_reset_global(sc); 4377 } 4378 } 4379 4380 /* 4381 * The last driver must disable a "close the gate" if there is no 4382 * parity attention or "process kill" pending. 4383 */ 4384 if (IS_PF(sc) && !bxe_clear_pf_load(sc) && 4385 bxe_reset_is_done(sc, SC_PATH(sc))) { 4386 bxe_disable_close_the_gate(sc); 4387 } 4388 4389 BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); 4390 4391 bxe_link_report(sc); 4392 4393 return (0); 4394 } 4395 4396 /* 4397 * Called by the OS to set various media options (i.e. link, speed, etc.) when 4398 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". 4399 */ 4400 static int 4401 bxe_ifmedia_update(struct ifnet *ifp) 4402 { 4403 struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp); 4404 struct ifmedia *ifm; 4405 4406 ifm = &sc->ifmedia; 4407 4408 /* We only support Ethernet media type. */ 4409 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) { 4410 return (EINVAL); 4411 } 4412 4413 switch (IFM_SUBTYPE(ifm->ifm_media)) { 4414 case IFM_AUTO: 4415 break; 4416 case IFM_10G_CX4: 4417 case IFM_10G_SR: 4418 case IFM_10G_T: 4419 case IFM_10G_TWINAX: 4420 default: 4421 /* We don't support changing the media type. */ 4422 BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n", 4423 IFM_SUBTYPE(ifm->ifm_media)); 4424 return (EINVAL); 4425 } 4426 4427 return (0); 4428 } 4429 4430 /* 4431 * Called by the OS to get the current media status (i.e. link, speed, etc.). 4432 */ 4433 static void 4434 bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr) 4435 { 4436 struct bxe_softc *sc = if_getsoftc(ifp); 4437 4438 /* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..." 4439 line if the IFM_AVALID flag is *NOT* set. So we need to set this 4440 flag unconditionally (irrespective of the admininistrative 4441 'up/down' state of the interface) to ensure that that line is always 4442 displayed. 4443 */ 4444 ifmr->ifm_status = IFM_AVALID; 4445 4446 /* Setup the default interface info. */ 4447 ifmr->ifm_active = IFM_ETHER; 4448 4449 /* Report link down if the driver isn't running. */ 4450 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4451 ifmr->ifm_active |= IFM_NONE; 4452 BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__); 4453 BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n", 4454 __func__, sc->link_vars.link_up); 4455 return; 4456 } 4457 4458 4459 if (sc->link_vars.link_up) { 4460 ifmr->ifm_status |= IFM_ACTIVE; 4461 ifmr->ifm_active |= IFM_FDX; 4462 } else { 4463 ifmr->ifm_active |= IFM_NONE; 4464 BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n", 4465 __func__); 4466 return; 4467 } 4468 4469 ifmr->ifm_active |= sc->media; 4470 return; 4471 } 4472 4473 static void 4474 bxe_handle_chip_tq(void *context, 4475 int pending) 4476 { 4477 struct bxe_softc *sc = (struct bxe_softc *)context; 4478 long work = atomic_load_acq_long(&sc->chip_tq_flags); 4479 4480 switch (work) 4481 { 4482 4483 case CHIP_TQ_REINIT: 4484 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 4485 /* restart the interface */ 4486 BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); 4487 bxe_periodic_stop(sc); 4488 BXE_CORE_LOCK(sc); 4489 bxe_stop_locked(sc); 4490 bxe_init_locked(sc); 4491 BXE_CORE_UNLOCK(sc); 4492 } 4493 break; 4494 4495 default: 4496 break; 4497 } 4498 } 4499 4500 /* 4501 * Handles any IOCTL calls from the operating system. 4502 * 4503 * Returns: 4504 * 0 = Success, >0 Failure 4505 */ 4506 static int 4507 bxe_ioctl(if_t ifp, 4508 u_long command, 4509 caddr_t data) 4510 { 4511 struct bxe_softc *sc = if_getsoftc(ifp); 4512 struct ifreq *ifr = (struct ifreq *)data; 4513 int mask = 0; 4514 int reinit = 0; 4515 int error = 0; 4516 4517 int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); 4518 int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); 4519 4520 switch (command) 4521 { 4522 case SIOCSIFMTU: 4523 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", 4524 ifr->ifr_mtu); 4525 4526 if (sc->mtu == ifr->ifr_mtu) { 4527 /* nothing to change */ 4528 break; 4529 } 4530 4531 if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { 4532 BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", 4533 ifr->ifr_mtu, mtu_min, mtu_max); 4534 error = EINVAL; 4535 break; 4536 } 4537 4538 atomic_store_rel_int((volatile unsigned int *)&sc->mtu, 4539 (unsigned long)ifr->ifr_mtu); 4540 /* 4541 atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp), 4542 (unsigned long)ifr->ifr_mtu); 4543 XXX - Not sure why it needs to be atomic 4544 */ 4545 if_setmtu(ifp, ifr->ifr_mtu); 4546 reinit = 1; 4547 break; 4548 4549 case SIOCSIFFLAGS: 4550 /* toggle the interface state up or down */ 4551 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); 4552 4553 BXE_CORE_LOCK(sc); 4554 /* check if the interface is up */ 4555 if (if_getflags(ifp) & IFF_UP) { 4556 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4557 /* set the receive mode flags */ 4558 bxe_set_rx_mode(sc); 4559 } else if(sc->state != BXE_STATE_DISABLED) { 4560 bxe_init_locked(sc); 4561 } 4562 } else { 4563 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4564 bxe_periodic_stop(sc); 4565 bxe_stop_locked(sc); 4566 } 4567 } 4568 BXE_CORE_UNLOCK(sc); 4569 4570 break; 4571 4572 case SIOCADDMULTI: 4573 case SIOCDELMULTI: 4574 /* add/delete multicast addresses */ 4575 BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); 4576 4577 /* check if the interface is up */ 4578 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4579 /* set the receive mode flags */ 4580 BXE_CORE_LOCK(sc); 4581 bxe_set_rx_mode(sc); 4582 BXE_CORE_UNLOCK(sc); 4583 } 4584 4585 break; 4586 4587 case SIOCSIFCAP: 4588 /* find out which capabilities have changed */ 4589 mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); 4590 4591 BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", 4592 mask); 4593 4594 /* toggle the LRO capabilites enable flag */ 4595 if (mask & IFCAP_LRO) { 4596 if_togglecapenable(ifp, IFCAP_LRO); 4597 BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", 4598 (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); 4599 reinit = 1; 4600 } 4601 4602 /* toggle the TXCSUM checksum capabilites enable flag */ 4603 if (mask & IFCAP_TXCSUM) { 4604 if_togglecapenable(ifp, IFCAP_TXCSUM); 4605 BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", 4606 (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); 4607 if (if_getcapenable(ifp) & IFCAP_TXCSUM) { 4608 if_sethwassistbits(ifp, (CSUM_IP | 4609 CSUM_TCP | 4610 CSUM_UDP | 4611 CSUM_TSO | 4612 CSUM_TCP_IPV6 | 4613 CSUM_UDP_IPV6), 0); 4614 } else { 4615 if_clearhwassist(ifp); /* XXX */ 4616 } 4617 } 4618 4619 /* toggle the RXCSUM checksum capabilities enable flag */ 4620 if (mask & IFCAP_RXCSUM) { 4621 if_togglecapenable(ifp, IFCAP_RXCSUM); 4622 BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", 4623 (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); 4624 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 4625 if_sethwassistbits(ifp, (CSUM_IP | 4626 CSUM_TCP | 4627 CSUM_UDP | 4628 CSUM_TSO | 4629 CSUM_TCP_IPV6 | 4630 CSUM_UDP_IPV6), 0); 4631 } else { 4632 if_clearhwassist(ifp); /* XXX */ 4633 } 4634 } 4635 4636 /* toggle TSO4 capabilities enabled flag */ 4637 if (mask & IFCAP_TSO4) { 4638 if_togglecapenable(ifp, IFCAP_TSO4); 4639 BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", 4640 (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); 4641 } 4642 4643 /* toggle TSO6 capabilities enabled flag */ 4644 if (mask & IFCAP_TSO6) { 4645 if_togglecapenable(ifp, IFCAP_TSO6); 4646 BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", 4647 (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); 4648 } 4649 4650 /* toggle VLAN_HWTSO capabilities enabled flag */ 4651 if (mask & IFCAP_VLAN_HWTSO) { 4652 4653 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 4654 BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", 4655 (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); 4656 } 4657 4658 /* toggle VLAN_HWCSUM capabilities enabled flag */ 4659 if (mask & IFCAP_VLAN_HWCSUM) { 4660 /* XXX investigate this... */ 4661 BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); 4662 error = EINVAL; 4663 } 4664 4665 /* toggle VLAN_MTU capabilities enable flag */ 4666 if (mask & IFCAP_VLAN_MTU) { 4667 /* XXX investigate this... */ 4668 BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); 4669 error = EINVAL; 4670 } 4671 4672 /* toggle VLAN_HWTAGGING capabilities enabled flag */ 4673 if (mask & IFCAP_VLAN_HWTAGGING) { 4674 /* XXX investigate this... */ 4675 BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); 4676 error = EINVAL; 4677 } 4678 4679 /* toggle VLAN_HWFILTER capabilities enabled flag */ 4680 if (mask & IFCAP_VLAN_HWFILTER) { 4681 /* XXX investigate this... */ 4682 BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); 4683 error = EINVAL; 4684 } 4685 4686 /* XXX not yet... 4687 * IFCAP_WOL_MAGIC 4688 */ 4689 4690 break; 4691 4692 case SIOCSIFMEDIA: 4693 case SIOCGIFMEDIA: 4694 /* set/get interface media */ 4695 BLOGD(sc, DBG_IOCTL, 4696 "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", 4697 (command & 0xff)); 4698 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); 4699 break; 4700 4701 default: 4702 BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", 4703 (command & 0xff)); 4704 error = ether_ioctl(ifp, command, data); 4705 break; 4706 } 4707 4708 if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 4709 BLOGD(sc, DBG_LOAD | DBG_IOCTL, 4710 "Re-initializing hardware from IOCTL change\n"); 4711 bxe_periodic_stop(sc); 4712 BXE_CORE_LOCK(sc); 4713 bxe_stop_locked(sc); 4714 bxe_init_locked(sc); 4715 BXE_CORE_UNLOCK(sc); 4716 } 4717 4718 return (error); 4719 } 4720 4721 static __noinline void 4722 bxe_dump_mbuf(struct bxe_softc *sc, 4723 struct mbuf *m, 4724 uint8_t contents) 4725 { 4726 char * type; 4727 int i = 0; 4728 4729 if (!(sc->debug & DBG_MBUF)) { 4730 return; 4731 } 4732 4733 if (m == NULL) { 4734 BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); 4735 return; 4736 } 4737 4738 while (m) { 4739 4740 BLOGD(sc, DBG_MBUF, 4741 "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", 4742 i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); 4743 4744 if (m->m_flags & M_PKTHDR) { 4745 BLOGD(sc, DBG_MBUF, 4746 "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", 4747 i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, 4748 (int)m->m_pkthdr.csum_flags, CSUM_BITS); 4749 } 4750 4751 if (m->m_flags & M_EXT) { 4752 switch (m->m_ext.ext_type) { 4753 case EXT_CLUSTER: type = "EXT_CLUSTER"; break; 4754 case EXT_SFBUF: type = "EXT_SFBUF"; break; 4755 case EXT_JUMBOP: type = "EXT_JUMBOP"; break; 4756 case EXT_JUMBO9: type = "EXT_JUMBO9"; break; 4757 case EXT_JUMBO16: type = "EXT_JUMBO16"; break; 4758 case EXT_PACKET: type = "EXT_PACKET"; break; 4759 case EXT_MBUF: type = "EXT_MBUF"; break; 4760 case EXT_NET_DRV: type = "EXT_NET_DRV"; break; 4761 case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; 4762 case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; 4763 case EXT_EXTREF: type = "EXT_EXTREF"; break; 4764 default: type = "UNKNOWN"; break; 4765 } 4766 4767 BLOGD(sc, DBG_MBUF, 4768 "%02d: - m_ext: %p ext_size=%d type=%s\n", 4769 i, m->m_ext.ext_buf, m->m_ext.ext_size, type); 4770 } 4771 4772 if (contents) { 4773 bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); 4774 } 4775 4776 m = m->m_next; 4777 i++; 4778 } 4779 } 4780 4781 /* 4782 * Checks to ensure the 13 bd sliding window is >= MSS for TSO. 4783 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. 4784 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD 4785 * The headers comes in a separate bd in FreeBSD so 13-3=10. 4786 * Returns: 0 if OK to send, 1 if packet needs further defragmentation 4787 */ 4788 static int 4789 bxe_chktso_window(struct bxe_softc *sc, 4790 int nsegs, 4791 bus_dma_segment_t *segs, 4792 struct mbuf *m) 4793 { 4794 uint32_t num_wnds, wnd_size, wnd_sum; 4795 int32_t frag_idx, wnd_idx; 4796 unsigned short lso_mss; 4797 4798 wnd_sum = 0; 4799 wnd_size = 10; 4800 num_wnds = nsegs - wnd_size; 4801 lso_mss = htole16(m->m_pkthdr.tso_segsz); 4802 4803 /* 4804 * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the 4805 * first window sum of data while skipping the first assuming it is the 4806 * header in FreeBSD. 4807 */ 4808 for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { 4809 wnd_sum += htole16(segs[frag_idx].ds_len); 4810 } 4811 4812 /* check the first 10 bd window size */ 4813 if (wnd_sum < lso_mss) { 4814 return (1); 4815 } 4816 4817 /* run through the windows */ 4818 for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { 4819 /* subtract the first mbuf->m_len of the last wndw(-header) */ 4820 wnd_sum -= htole16(segs[wnd_idx+1].ds_len); 4821 /* add the next mbuf len to the len of our new window */ 4822 wnd_sum += htole16(segs[frag_idx].ds_len); 4823 if (wnd_sum < lso_mss) { 4824 return (1); 4825 } 4826 } 4827 4828 return (0); 4829 } 4830 4831 static uint8_t 4832 bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, 4833 struct mbuf *m, 4834 uint32_t *parsing_data) 4835 { 4836 struct ether_vlan_header *eh = NULL; 4837 struct ip *ip4 = NULL; 4838 struct ip6_hdr *ip6 = NULL; 4839 caddr_t ip = NULL; 4840 struct tcphdr *th = NULL; 4841 int e_hlen, ip_hlen, l4_off; 4842 uint16_t proto; 4843 4844 if (m->m_pkthdr.csum_flags == CSUM_IP) { 4845 /* no L4 checksum offload needed */ 4846 return (0); 4847 } 4848 4849 /* get the Ethernet header */ 4850 eh = mtod(m, struct ether_vlan_header *); 4851 4852 /* handle VLAN encapsulation if present */ 4853 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4854 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4855 proto = ntohs(eh->evl_proto); 4856 } else { 4857 e_hlen = ETHER_HDR_LEN; 4858 proto = ntohs(eh->evl_encap_proto); 4859 } 4860 4861 switch (proto) { 4862 case ETHERTYPE_IP: 4863 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4864 ip4 = (m->m_len < sizeof(struct ip)) ? 4865 (struct ip *)m->m_next->m_data : 4866 (struct ip *)(m->m_data + e_hlen); 4867 /* ip_hl is number of 32-bit words */ 4868 ip_hlen = (ip4->ip_hl << 2); 4869 ip = (caddr_t)ip4; 4870 break; 4871 case ETHERTYPE_IPV6: 4872 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4873 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4874 (struct ip6_hdr *)m->m_next->m_data : 4875 (struct ip6_hdr *)(m->m_data + e_hlen); 4876 /* XXX cannot support offload with IPv6 extensions */ 4877 ip_hlen = sizeof(struct ip6_hdr); 4878 ip = (caddr_t)ip6; 4879 break; 4880 default: 4881 /* We can't offload in this case... */ 4882 /* XXX error stat ??? */ 4883 return (0); 4884 } 4885 4886 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4887 l4_off = (e_hlen + ip_hlen); 4888 4889 *parsing_data |= 4890 (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & 4891 ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); 4892 4893 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4894 CSUM_TSO | 4895 CSUM_TCP_IPV6)) { 4896 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 4897 th = (struct tcphdr *)(ip + ip_hlen); 4898 /* th_off is number of 32-bit words */ 4899 *parsing_data |= ((th->th_off << 4900 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & 4901 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); 4902 return (l4_off + (th->th_off << 2)); /* entire header length */ 4903 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4904 CSUM_UDP_IPV6)) { 4905 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 4906 return (l4_off + sizeof(struct udphdr)); /* entire header length */ 4907 } else { 4908 /* XXX error stat ??? */ 4909 return (0); 4910 } 4911 } 4912 4913 static uint8_t 4914 bxe_set_pbd_csum(struct bxe_fastpath *fp, 4915 struct mbuf *m, 4916 struct eth_tx_parse_bd_e1x *pbd) 4917 { 4918 struct ether_vlan_header *eh = NULL; 4919 struct ip *ip4 = NULL; 4920 struct ip6_hdr *ip6 = NULL; 4921 caddr_t ip = NULL; 4922 struct tcphdr *th = NULL; 4923 struct udphdr *uh = NULL; 4924 int e_hlen, ip_hlen; 4925 uint16_t proto; 4926 uint8_t hlen; 4927 uint16_t tmp_csum; 4928 uint32_t *tmp_uh; 4929 4930 /* get the Ethernet header */ 4931 eh = mtod(m, struct ether_vlan_header *); 4932 4933 /* handle VLAN encapsulation if present */ 4934 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 4935 e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 4936 proto = ntohs(eh->evl_proto); 4937 } else { 4938 e_hlen = ETHER_HDR_LEN; 4939 proto = ntohs(eh->evl_encap_proto); 4940 } 4941 4942 switch (proto) { 4943 case ETHERTYPE_IP: 4944 /* get the IP header, if mbuf len < 20 then header in next mbuf */ 4945 ip4 = (m->m_len < sizeof(struct ip)) ? 4946 (struct ip *)m->m_next->m_data : 4947 (struct ip *)(m->m_data + e_hlen); 4948 /* ip_hl is number of 32-bit words */ 4949 ip_hlen = (ip4->ip_hl << 1); 4950 ip = (caddr_t)ip4; 4951 break; 4952 case ETHERTYPE_IPV6: 4953 /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ 4954 ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? 4955 (struct ip6_hdr *)m->m_next->m_data : 4956 (struct ip6_hdr *)(m->m_data + e_hlen); 4957 /* XXX cannot support offload with IPv6 extensions */ 4958 ip_hlen = (sizeof(struct ip6_hdr) >> 1); 4959 ip = (caddr_t)ip6; 4960 break; 4961 default: 4962 /* We can't offload in this case... */ 4963 /* XXX error stat ??? */ 4964 return (0); 4965 } 4966 4967 hlen = (e_hlen >> 1); 4968 4969 /* note that rest of global_data is indirectly zeroed here */ 4970 if (m->m_flags & M_VLANTAG) { 4971 pbd->global_data = 4972 htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); 4973 } else { 4974 pbd->global_data = htole16(hlen); 4975 } 4976 4977 pbd->ip_hlen_w = ip_hlen; 4978 4979 hlen += pbd->ip_hlen_w; 4980 4981 /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ 4982 4983 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 4984 CSUM_TSO | 4985 CSUM_TCP_IPV6)) { 4986 th = (struct tcphdr *)(ip + (ip_hlen << 1)); 4987 /* th_off is number of 32-bit words */ 4988 hlen += (uint16_t)(th->th_off << 1); 4989 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 4990 CSUM_UDP_IPV6)) { 4991 uh = (struct udphdr *)(ip + (ip_hlen << 1)); 4992 hlen += (sizeof(struct udphdr) / 2); 4993 } else { 4994 /* valid case as only CSUM_IP was set */ 4995 return (0); 4996 } 4997 4998 pbd->total_hlen_w = htole16(hlen); 4999 5000 if (m->m_pkthdr.csum_flags & (CSUM_TCP | 5001 CSUM_TSO | 5002 CSUM_TCP_IPV6)) { 5003 fp->eth_q_stats.tx_ofld_frames_csum_tcp++; 5004 pbd->tcp_pseudo_csum = ntohs(th->th_sum); 5005 } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | 5006 CSUM_UDP_IPV6)) { 5007 fp->eth_q_stats.tx_ofld_frames_csum_udp++; 5008 5009 /* 5010 * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP 5011 * checksums and does not know anything about the UDP header and where 5012 * the checksum field is located. It only knows about TCP. Therefore 5013 * we "lie" to the hardware for outgoing UDP packets w/ checksum 5014 * offload. Since the checksum field offset for TCP is 16 bytes and 5015 * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 5016 * bytes less than the start of the UDP header. This allows the 5017 * hardware to write the checksum in the correct spot. But the 5018 * hardware will compute a checksum which includes the last 10 bytes 5019 * of the IP header. To correct this we tweak the stack computed 5020 * pseudo checksum by folding in the calculation of the inverse 5021 * checksum for those final 10 bytes of the IP header. This allows 5022 * the correct checksum to be computed by the hardware. 5023 */ 5024 5025 /* set pointer 10 bytes before UDP header */ 5026 tmp_uh = (uint32_t *)((uint8_t *)uh - 10); 5027 5028 /* calculate a pseudo header checksum over the first 10 bytes */ 5029 tmp_csum = in_pseudo(*tmp_uh, 5030 *(tmp_uh + 1), 5031 *(uint16_t *)(tmp_uh + 2)); 5032 5033 pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); 5034 } 5035 5036 return (hlen * 2); /* entire header length, number of bytes */ 5037 } 5038 5039 static void 5040 bxe_set_pbd_lso_e2(struct mbuf *m, 5041 uint32_t *parsing_data) 5042 { 5043 *parsing_data |= ((m->m_pkthdr.tso_segsz << 5044 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & 5045 ETH_TX_PARSE_BD_E2_LSO_MSS); 5046 5047 /* XXX test for IPv6 with extension header... */ 5048 } 5049 5050 static void 5051 bxe_set_pbd_lso(struct mbuf *m, 5052 struct eth_tx_parse_bd_e1x *pbd) 5053 { 5054 struct ether_vlan_header *eh = NULL; 5055 struct ip *ip = NULL; 5056 struct tcphdr *th = NULL; 5057 int e_hlen; 5058 5059 /* get the Ethernet header */ 5060 eh = mtod(m, struct ether_vlan_header *); 5061 5062 /* handle VLAN encapsulation if present */ 5063 e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? 5064 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; 5065 5066 /* get the IP and TCP header, with LSO entire header in first mbuf */ 5067 /* XXX assuming IPv4 */ 5068 ip = (struct ip *)(m->m_data + e_hlen); 5069 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 5070 5071 pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz); 5072 pbd->tcp_send_seq = ntohl(th->th_seq); 5073 pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); 5074 5075 #if 1 5076 /* XXX IPv4 */ 5077 pbd->ip_id = ntohs(ip->ip_id); 5078 pbd->tcp_pseudo_csum = 5079 ntohs(in_pseudo(ip->ip_src.s_addr, 5080 ip->ip_dst.s_addr, 5081 htons(IPPROTO_TCP))); 5082 #else 5083 /* XXX IPv6 */ 5084 pbd->tcp_pseudo_csum = 5085 ntohs(in_pseudo(&ip6->ip6_src, 5086 &ip6->ip6_dst, 5087 htons(IPPROTO_TCP))); 5088 #endif 5089 5090 pbd->global_data |= 5091 htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); 5092 } 5093 5094 /* 5095 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory 5096 * visible to the controller. 5097 * 5098 * If an mbuf is submitted to this routine and cannot be given to the 5099 * controller (e.g. it has too many fragments) then the function may free 5100 * the mbuf and return to the caller. 5101 * 5102 * Returns: 5103 * 0 = Success, !0 = Failure 5104 * Note the side effect that an mbuf may be freed if it causes a problem. 5105 */ 5106 static int 5107 bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) 5108 { 5109 bus_dma_segment_t segs[32]; 5110 struct mbuf *m0; 5111 struct bxe_sw_tx_bd *tx_buf; 5112 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; 5113 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; 5114 /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ 5115 struct eth_tx_bd *tx_data_bd; 5116 struct eth_tx_bd *tx_total_pkt_size_bd; 5117 struct eth_tx_start_bd *tx_start_bd; 5118 uint16_t bd_prod, pkt_prod, total_pkt_size; 5119 uint8_t mac_type; 5120 int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; 5121 struct bxe_softc *sc; 5122 uint16_t tx_bd_avail; 5123 struct ether_vlan_header *eh; 5124 uint32_t pbd_e2_parsing_data = 0; 5125 uint8_t hlen = 0; 5126 int tmp_bd; 5127 int i; 5128 5129 sc = fp->sc; 5130 5131 M_ASSERTPKTHDR(*m_head); 5132 5133 m0 = *m_head; 5134 rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; 5135 tx_start_bd = NULL; 5136 tx_data_bd = NULL; 5137 tx_total_pkt_size_bd = NULL; 5138 5139 /* get the H/W pointer for packets and BDs */ 5140 pkt_prod = fp->tx_pkt_prod; 5141 bd_prod = fp->tx_bd_prod; 5142 5143 mac_type = UNICAST_ADDRESS; 5144 5145 /* map the mbuf into the next open DMAable memory */ 5146 tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; 5147 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5148 tx_buf->m_map, m0, 5149 segs, &nsegs, BUS_DMA_NOWAIT); 5150 5151 /* mapping errors */ 5152 if(__predict_false(error != 0)) { 5153 fp->eth_q_stats.tx_dma_mapping_failure++; 5154 if (error == ENOMEM) { 5155 /* resource issue, try again later */ 5156 rc = ENOMEM; 5157 } else if (error == EFBIG) { 5158 /* possibly recoverable with defragmentation */ 5159 fp->eth_q_stats.mbuf_defrag_attempts++; 5160 m0 = m_defrag(*m_head, M_NOWAIT); 5161 if (m0 == NULL) { 5162 fp->eth_q_stats.mbuf_defrag_failures++; 5163 rc = ENOBUFS; 5164 } else { 5165 /* defrag successful, try mapping again */ 5166 *m_head = m0; 5167 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5168 tx_buf->m_map, m0, 5169 segs, &nsegs, BUS_DMA_NOWAIT); 5170 if (error) { 5171 fp->eth_q_stats.tx_dma_mapping_failure++; 5172 rc = error; 5173 } 5174 } 5175 } else { 5176 /* unknown, unrecoverable mapping error */ 5177 BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); 5178 bxe_dump_mbuf(sc, m0, FALSE); 5179 rc = error; 5180 } 5181 5182 goto bxe_tx_encap_continue; 5183 } 5184 5185 tx_bd_avail = bxe_tx_avail(sc, fp); 5186 5187 /* make sure there is enough room in the send queue */ 5188 if (__predict_false(tx_bd_avail < (nsegs + 2))) { 5189 /* Recoverable, try again later. */ 5190 fp->eth_q_stats.tx_hw_queue_full++; 5191 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5192 rc = ENOMEM; 5193 goto bxe_tx_encap_continue; 5194 } 5195 5196 /* capture the current H/W TX chain high watermark */ 5197 if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < 5198 (TX_BD_USABLE - tx_bd_avail))) { 5199 fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); 5200 } 5201 5202 /* make sure it fits in the packet window */ 5203 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5204 /* 5205 * The mbuf may be to big for the controller to handle. If the frame 5206 * is a TSO frame we'll need to do an additional check. 5207 */ 5208 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5209 if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { 5210 goto bxe_tx_encap_continue; /* OK to send */ 5211 } else { 5212 fp->eth_q_stats.tx_window_violation_tso++; 5213 } 5214 } else { 5215 fp->eth_q_stats.tx_window_violation_std++; 5216 } 5217 5218 /* lets try to defragment this mbuf and remap it */ 5219 fp->eth_q_stats.mbuf_defrag_attempts++; 5220 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5221 5222 m0 = m_defrag(*m_head, M_NOWAIT); 5223 if (m0 == NULL) { 5224 fp->eth_q_stats.mbuf_defrag_failures++; 5225 /* Ugh, just drop the frame... :( */ 5226 rc = ENOBUFS; 5227 } else { 5228 /* defrag successful, try mapping again */ 5229 *m_head = m0; 5230 error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, 5231 tx_buf->m_map, m0, 5232 segs, &nsegs, BUS_DMA_NOWAIT); 5233 if (error) { 5234 fp->eth_q_stats.tx_dma_mapping_failure++; 5235 /* No sense in trying to defrag/copy chain, drop it. :( */ 5236 rc = error; 5237 } else { 5238 /* if the chain is still too long then drop it */ 5239 if(m0->m_pkthdr.csum_flags & CSUM_TSO) { 5240 /* 5241 * in case TSO is enabled nsegs should be checked against 5242 * BXE_TSO_MAX_SEGMENTS 5243 */ 5244 if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) { 5245 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5246 fp->eth_q_stats.nsegs_path1_errors++; 5247 rc = ENODEV; 5248 } 5249 } else { 5250 if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { 5251 bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); 5252 fp->eth_q_stats.nsegs_path2_errors++; 5253 rc = ENODEV; 5254 } 5255 } 5256 } 5257 } 5258 } 5259 5260 bxe_tx_encap_continue: 5261 5262 /* Check for errors */ 5263 if (rc) { 5264 if (rc == ENOMEM) { 5265 /* recoverable try again later */ 5266 } else { 5267 fp->eth_q_stats.tx_soft_errors++; 5268 fp->eth_q_stats.mbuf_alloc_tx--; 5269 m_freem(*m_head); 5270 *m_head = NULL; 5271 } 5272 5273 return (rc); 5274 } 5275 5276 /* set flag according to packet type (UNICAST_ADDRESS is default) */ 5277 if (m0->m_flags & M_BCAST) { 5278 mac_type = BROADCAST_ADDRESS; 5279 } else if (m0->m_flags & M_MCAST) { 5280 mac_type = MULTICAST_ADDRESS; 5281 } 5282 5283 /* store the mbuf into the mbuf ring */ 5284 tx_buf->m = m0; 5285 tx_buf->first_bd = fp->tx_bd_prod; 5286 tx_buf->flags = 0; 5287 5288 /* prepare the first transmit (start) BD for the mbuf */ 5289 tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; 5290 5291 BLOGD(sc, DBG_TX, 5292 "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", 5293 pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); 5294 5295 tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 5296 tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 5297 tx_start_bd->nbytes = htole16(segs[0].ds_len); 5298 total_pkt_size += tx_start_bd->nbytes; 5299 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; 5300 5301 tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); 5302 5303 /* all frames have at least Start BD + Parsing BD */ 5304 nbds = nsegs + 1; 5305 tx_start_bd->nbd = htole16(nbds); 5306 5307 if (m0->m_flags & M_VLANTAG) { 5308 tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag); 5309 tx_start_bd->bd_flags.as_bitfield |= 5310 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); 5311 } else { 5312 /* vf tx, start bd must hold the ethertype for fw to enforce it */ 5313 if (IS_VF(sc)) { 5314 /* map ethernet header to find type and header length */ 5315 eh = mtod(m0, struct ether_vlan_header *); 5316 tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; 5317 } else { 5318 /* used by FW for packet accounting */ 5319 tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod); 5320 } 5321 } 5322 5323 /* 5324 * add a parsing BD from the chain. The parsing BD is always added 5325 * though it is only used for TSO and chksum 5326 */ 5327 bd_prod = TX_BD_NEXT(bd_prod); 5328 5329 if (m0->m_pkthdr.csum_flags) { 5330 if (m0->m_pkthdr.csum_flags & CSUM_IP) { 5331 fp->eth_q_stats.tx_ofld_frames_csum_ip++; 5332 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; 5333 } 5334 5335 if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { 5336 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5337 ETH_TX_BD_FLAGS_L4_CSUM); 5338 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { 5339 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | 5340 ETH_TX_BD_FLAGS_IS_UDP | 5341 ETH_TX_BD_FLAGS_L4_CSUM); 5342 } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || 5343 (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5344 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; 5345 } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { 5346 tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | 5347 ETH_TX_BD_FLAGS_IS_UDP); 5348 } 5349 } 5350 5351 if (!CHIP_IS_E1x(sc)) { 5352 pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; 5353 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); 5354 5355 if (m0->m_pkthdr.csum_flags) { 5356 hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); 5357 } 5358 5359 SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, 5360 mac_type); 5361 } else { 5362 uint16_t global_data = 0; 5363 5364 pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; 5365 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); 5366 5367 if (m0->m_pkthdr.csum_flags) { 5368 hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); 5369 } 5370 5371 SET_FLAG(global_data, 5372 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); 5373 pbd_e1x->global_data |= htole16(global_data); 5374 } 5375 5376 /* setup the parsing BD with TSO specific info */ 5377 if (m0->m_pkthdr.csum_flags & CSUM_TSO) { 5378 fp->eth_q_stats.tx_ofld_frames_lso++; 5379 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; 5380 5381 if (__predict_false(tx_start_bd->nbytes > hlen)) { 5382 fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; 5383 5384 /* split the first BD into header/data making the fw job easy */ 5385 nbds++; 5386 tx_start_bd->nbd = htole16(nbds); 5387 tx_start_bd->nbytes = htole16(hlen); 5388 5389 bd_prod = TX_BD_NEXT(bd_prod); 5390 5391 /* new transmit BD after the tx_parse_bd */ 5392 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5393 tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen)); 5394 tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen)); 5395 tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen); 5396 if (tx_total_pkt_size_bd == NULL) { 5397 tx_total_pkt_size_bd = tx_data_bd; 5398 } 5399 5400 BLOGD(sc, DBG_TX, 5401 "TSO split header size is %d (%x:%x) nbds %d\n", 5402 le16toh(tx_start_bd->nbytes), 5403 le32toh(tx_start_bd->addr_hi), 5404 le32toh(tx_start_bd->addr_lo), 5405 nbds); 5406 } 5407 5408 if (!CHIP_IS_E1x(sc)) { 5409 bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); 5410 } else { 5411 bxe_set_pbd_lso(m0, pbd_e1x); 5412 } 5413 } 5414 5415 if (pbd_e2_parsing_data) { 5416 pbd_e2->parsing_data = htole32(pbd_e2_parsing_data); 5417 } 5418 5419 /* prepare remaining BDs, start tx bd contains first seg/frag */ 5420 for (i = 1; i < nsegs ; i++) { 5421 bd_prod = TX_BD_NEXT(bd_prod); 5422 tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; 5423 tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr)); 5424 tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr)); 5425 tx_data_bd->nbytes = htole16(segs[i].ds_len); 5426 if (tx_total_pkt_size_bd == NULL) { 5427 tx_total_pkt_size_bd = tx_data_bd; 5428 } 5429 total_pkt_size += tx_data_bd->nbytes; 5430 } 5431 5432 BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); 5433 5434 if (tx_total_pkt_size_bd != NULL) { 5435 tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; 5436 } 5437 5438 if (__predict_false(sc->debug & DBG_TX)) { 5439 tmp_bd = tx_buf->first_bd; 5440 for (i = 0; i < nbds; i++) 5441 { 5442 if (i == 0) { 5443 BLOGD(sc, DBG_TX, 5444 "TX Strt: %p bd=%d nbd=%d vlan=0x%x " 5445 "bd_flags=0x%x hdr_nbds=%d\n", 5446 tx_start_bd, 5447 tmp_bd, 5448 le16toh(tx_start_bd->nbd), 5449 le16toh(tx_start_bd->vlan_or_ethertype), 5450 tx_start_bd->bd_flags.as_bitfield, 5451 (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); 5452 } else if (i == 1) { 5453 if (pbd_e1x) { 5454 BLOGD(sc, DBG_TX, 5455 "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " 5456 "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " 5457 "tcp_seq=%u total_hlen_w=%u\n", 5458 pbd_e1x, 5459 tmp_bd, 5460 pbd_e1x->global_data, 5461 pbd_e1x->ip_hlen_w, 5462 pbd_e1x->ip_id, 5463 pbd_e1x->lso_mss, 5464 pbd_e1x->tcp_flags, 5465 pbd_e1x->tcp_pseudo_csum, 5466 pbd_e1x->tcp_send_seq, 5467 le16toh(pbd_e1x->total_hlen_w)); 5468 } else { /* if (pbd_e2) */ 5469 BLOGD(sc, DBG_TX, 5470 "-> Parse: %p bd=%d dst=%02x:%02x:%02x " 5471 "src=%02x:%02x:%02x parsing_data=0x%x\n", 5472 pbd_e2, 5473 tmp_bd, 5474 pbd_e2->data.mac_addr.dst_hi, 5475 pbd_e2->data.mac_addr.dst_mid, 5476 pbd_e2->data.mac_addr.dst_lo, 5477 pbd_e2->data.mac_addr.src_hi, 5478 pbd_e2->data.mac_addr.src_mid, 5479 pbd_e2->data.mac_addr.src_lo, 5480 pbd_e2->parsing_data); 5481 } 5482 } 5483 5484 if (i != 1) { /* skip parse db as it doesn't hold data */ 5485 tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; 5486 BLOGD(sc, DBG_TX, 5487 "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", 5488 tx_data_bd, 5489 tmp_bd, 5490 le16toh(tx_data_bd->nbytes), 5491 le32toh(tx_data_bd->addr_hi), 5492 le32toh(tx_data_bd->addr_lo)); 5493 } 5494 5495 tmp_bd = TX_BD_NEXT(tmp_bd); 5496 } 5497 } 5498 5499 BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); 5500 5501 /* update TX BD producer index value for next TX */ 5502 bd_prod = TX_BD_NEXT(bd_prod); 5503 5504 /* 5505 * If the chain of tx_bd's describing this frame is adjacent to or spans 5506 * an eth_tx_next_bd element then we need to increment the nbds value. 5507 */ 5508 if (TX_BD_IDX(bd_prod) < nbds) { 5509 nbds++; 5510 } 5511 5512 /* don't allow reordering of writes for nbd and packets */ 5513 mb(); 5514 5515 fp->tx_db.data.prod += nbds; 5516 5517 /* producer points to the next free tx_bd at this point */ 5518 fp->tx_pkt_prod++; 5519 fp->tx_bd_prod = bd_prod; 5520 5521 DOORBELL(sc, fp->index, fp->tx_db.raw); 5522 5523 fp->eth_q_stats.tx_pkts++; 5524 5525 /* Prevent speculative reads from getting ahead of the status block. */ 5526 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 5527 0, 0, BUS_SPACE_BARRIER_READ); 5528 5529 /* Prevent speculative reads from getting ahead of the doorbell. */ 5530 bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, 5531 0, 0, BUS_SPACE_BARRIER_READ); 5532 5533 return (0); 5534 } 5535 5536 static void 5537 bxe_tx_start_locked(struct bxe_softc *sc, 5538 if_t ifp, 5539 struct bxe_fastpath *fp) 5540 { 5541 struct mbuf *m = NULL; 5542 int tx_count = 0; 5543 uint16_t tx_bd_avail; 5544 5545 BXE_FP_TX_LOCK_ASSERT(fp); 5546 5547 /* keep adding entries while there are frames to send */ 5548 while (!if_sendq_empty(ifp)) { 5549 5550 /* 5551 * check for any frames to send 5552 * dequeue can still be NULL even if queue is not empty 5553 */ 5554 m = if_dequeue(ifp); 5555 if (__predict_false(m == NULL)) { 5556 break; 5557 } 5558 5559 /* the mbuf now belongs to us */ 5560 fp->eth_q_stats.mbuf_alloc_tx++; 5561 5562 /* 5563 * Put the frame into the transmit ring. If we don't have room, 5564 * place the mbuf back at the head of the TX queue, set the 5565 * OACTIVE flag, and wait for the NIC to drain the chain. 5566 */ 5567 if (__predict_false(bxe_tx_encap(fp, &m))) { 5568 fp->eth_q_stats.tx_encap_failures++; 5569 if (m != NULL) { 5570 /* mark the TX queue as full and return the frame */ 5571 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5572 if_sendq_prepend(ifp, m); 5573 fp->eth_q_stats.mbuf_alloc_tx--; 5574 fp->eth_q_stats.tx_queue_xoff++; 5575 } 5576 5577 /* stop looking for more work */ 5578 break; 5579 } 5580 5581 /* the frame was enqueued successfully */ 5582 tx_count++; 5583 5584 /* send a copy of the frame to any BPF listeners. */ 5585 if_etherbpfmtap(ifp, m); 5586 5587 tx_bd_avail = bxe_tx_avail(sc, fp); 5588 5589 /* handle any completions if we're running low */ 5590 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5591 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5592 bxe_txeof(sc, fp); 5593 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5594 break; 5595 } 5596 } 5597 } 5598 5599 /* all TX packets were dequeued and/or the tx ring is full */ 5600 if (tx_count > 0) { 5601 /* reset the TX watchdog timeout timer */ 5602 fp->watchdog_timer = BXE_TX_TIMEOUT; 5603 } 5604 } 5605 5606 /* Legacy (non-RSS) dispatch routine */ 5607 static void 5608 bxe_tx_start(if_t ifp) 5609 { 5610 struct bxe_softc *sc; 5611 struct bxe_fastpath *fp; 5612 5613 sc = if_getsoftc(ifp); 5614 5615 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5616 BLOGW(sc, "Interface not running, ignoring transmit request\n"); 5617 return; 5618 } 5619 5620 if (!sc->link_vars.link_up) { 5621 BLOGW(sc, "Interface link is down, ignoring transmit request\n"); 5622 return; 5623 } 5624 5625 fp = &sc->fp[0]; 5626 5627 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { 5628 fp->eth_q_stats.tx_queue_full_return++; 5629 return; 5630 } 5631 5632 BXE_FP_TX_LOCK(fp); 5633 bxe_tx_start_locked(sc, ifp, fp); 5634 BXE_FP_TX_UNLOCK(fp); 5635 } 5636 5637 static int 5638 bxe_tx_mq_start_locked(struct bxe_softc *sc, 5639 if_t ifp, 5640 struct bxe_fastpath *fp, 5641 struct mbuf *m) 5642 { 5643 struct buf_ring *tx_br = fp->tx_br; 5644 struct mbuf *next; 5645 int depth, rc, tx_count; 5646 uint16_t tx_bd_avail; 5647 5648 rc = tx_count = 0; 5649 5650 BXE_FP_TX_LOCK_ASSERT(fp); 5651 5652 if (sc->state != BXE_STATE_OPEN) { 5653 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5654 return ENETDOWN; 5655 } 5656 5657 if (!tx_br) { 5658 BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); 5659 return (EINVAL); 5660 } 5661 5662 if (m != NULL) { 5663 rc = drbr_enqueue(ifp, tx_br, m); 5664 if (rc != 0) { 5665 fp->eth_q_stats.tx_soft_errors++; 5666 goto bxe_tx_mq_start_locked_exit; 5667 } 5668 } 5669 5670 if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 5671 fp->eth_q_stats.tx_request_link_down_failures++; 5672 goto bxe_tx_mq_start_locked_exit; 5673 } 5674 5675 /* fetch the depth of the driver queue */ 5676 depth = drbr_inuse(ifp, tx_br); 5677 if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { 5678 fp->eth_q_stats.tx_max_drbr_queue_depth = depth; 5679 } 5680 5681 /* keep adding entries while there are frames to send */ 5682 while ((next = drbr_peek(ifp, tx_br)) != NULL) { 5683 /* handle any completions if we're running low */ 5684 tx_bd_avail = bxe_tx_avail(sc, fp); 5685 if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { 5686 /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ 5687 bxe_txeof(sc, fp); 5688 tx_bd_avail = bxe_tx_avail(sc, fp); 5689 if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) { 5690 fp->eth_q_stats.bd_avail_too_less_failures++; 5691 m_freem(next); 5692 drbr_advance(ifp, tx_br); 5693 rc = ENOBUFS; 5694 break; 5695 } 5696 } 5697 5698 /* the mbuf now belongs to us */ 5699 fp->eth_q_stats.mbuf_alloc_tx++; 5700 5701 /* 5702 * Put the frame into the transmit ring. If we don't have room, 5703 * place the mbuf back at the head of the TX queue, set the 5704 * OACTIVE flag, and wait for the NIC to drain the chain. 5705 */ 5706 rc = bxe_tx_encap(fp, &next); 5707 if (__predict_false(rc != 0)) { 5708 fp->eth_q_stats.tx_encap_failures++; 5709 if (next != NULL) { 5710 /* mark the TX queue as full and save the frame */ 5711 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5712 drbr_putback(ifp, tx_br, next); 5713 fp->eth_q_stats.mbuf_alloc_tx--; 5714 fp->eth_q_stats.tx_frames_deferred++; 5715 } else 5716 drbr_advance(ifp, tx_br); 5717 5718 /* stop looking for more work */ 5719 break; 5720 } 5721 5722 /* the transmit frame was enqueued successfully */ 5723 tx_count++; 5724 5725 /* send a copy of the frame to any BPF listeners */ 5726 if_etherbpfmtap(ifp, next); 5727 5728 drbr_advance(ifp, tx_br); 5729 } 5730 5731 /* all TX packets were dequeued and/or the tx ring is full */ 5732 if (tx_count > 0) { 5733 /* reset the TX watchdog timeout timer */ 5734 fp->watchdog_timer = BXE_TX_TIMEOUT; 5735 } 5736 5737 bxe_tx_mq_start_locked_exit: 5738 /* If we didn't drain the drbr, enqueue a task in the future to do it. */ 5739 if (!drbr_empty(ifp, tx_br)) { 5740 fp->eth_q_stats.tx_mq_not_empty++; 5741 taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1); 5742 } 5743 5744 return (rc); 5745 } 5746 5747 static void 5748 bxe_tx_mq_start_deferred(void *arg, 5749 int pending) 5750 { 5751 struct bxe_fastpath *fp = (struct bxe_fastpath *)arg; 5752 struct bxe_softc *sc = fp->sc; 5753 if_t ifp = sc->ifp; 5754 5755 BXE_FP_TX_LOCK(fp); 5756 bxe_tx_mq_start_locked(sc, ifp, fp, NULL); 5757 BXE_FP_TX_UNLOCK(fp); 5758 } 5759 5760 /* Multiqueue (TSS) dispatch routine. */ 5761 static int 5762 bxe_tx_mq_start(struct ifnet *ifp, 5763 struct mbuf *m) 5764 { 5765 struct bxe_softc *sc = if_getsoftc(ifp); 5766 struct bxe_fastpath *fp; 5767 int fp_index, rc; 5768 5769 fp_index = 0; /* default is the first queue */ 5770 5771 /* check if flowid is set */ 5772 5773 if (BXE_VALID_FLOWID(m)) 5774 fp_index = (m->m_pkthdr.flowid % sc->num_queues); 5775 5776 fp = &sc->fp[fp_index]; 5777 5778 if (sc->state != BXE_STATE_OPEN) { 5779 fp->eth_q_stats.bxe_tx_mq_sc_state_failures++; 5780 return ENETDOWN; 5781 } 5782 5783 if (BXE_FP_TX_TRYLOCK(fp)) { 5784 rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); 5785 BXE_FP_TX_UNLOCK(fp); 5786 } else { 5787 rc = drbr_enqueue(ifp, fp->tx_br, m); 5788 taskqueue_enqueue(fp->tq, &fp->tx_task); 5789 } 5790 5791 return (rc); 5792 } 5793 5794 static void 5795 bxe_mq_flush(struct ifnet *ifp) 5796 { 5797 struct bxe_softc *sc = if_getsoftc(ifp); 5798 struct bxe_fastpath *fp; 5799 struct mbuf *m; 5800 int i; 5801 5802 for (i = 0; i < sc->num_queues; i++) { 5803 fp = &sc->fp[i]; 5804 5805 if (fp->state != BXE_FP_STATE_IRQ) { 5806 BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", 5807 fp->index, fp->state); 5808 continue; 5809 } 5810 5811 if (fp->tx_br != NULL) { 5812 BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); 5813 BXE_FP_TX_LOCK(fp); 5814 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { 5815 m_freem(m); 5816 } 5817 BXE_FP_TX_UNLOCK(fp); 5818 } 5819 } 5820 5821 if_qflush(ifp); 5822 } 5823 5824 static uint16_t 5825 bxe_cid_ilt_lines(struct bxe_softc *sc) 5826 { 5827 if (IS_SRIOV(sc)) { 5828 return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); 5829 } 5830 return (L2_ILT_LINES(sc)); 5831 } 5832 5833 static void 5834 bxe_ilt_set_info(struct bxe_softc *sc) 5835 { 5836 struct ilt_client_info *ilt_client; 5837 struct ecore_ilt *ilt = sc->ilt; 5838 uint16_t line = 0; 5839 5840 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); 5841 BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); 5842 5843 /* CDU */ 5844 ilt_client = &ilt->clients[ILT_CLIENT_CDU]; 5845 ilt_client->client_num = ILT_CLIENT_CDU; 5846 ilt_client->page_size = CDU_ILT_PAGE_SZ; 5847 ilt_client->flags = ILT_CLIENT_SKIP_MEM; 5848 ilt_client->start = line; 5849 line += bxe_cid_ilt_lines(sc); 5850 5851 if (CNIC_SUPPORT(sc)) { 5852 line += CNIC_ILT_LINES; 5853 } 5854 5855 ilt_client->end = (line - 1); 5856 5857 BLOGD(sc, DBG_LOAD, 5858 "ilt client[CDU]: start %d, end %d, " 5859 "psz 0x%x, flags 0x%x, hw psz %d\n", 5860 ilt_client->start, ilt_client->end, 5861 ilt_client->page_size, 5862 ilt_client->flags, 5863 ilog2(ilt_client->page_size >> 12)); 5864 5865 /* QM */ 5866 if (QM_INIT(sc->qm_cid_count)) { 5867 ilt_client = &ilt->clients[ILT_CLIENT_QM]; 5868 ilt_client->client_num = ILT_CLIENT_QM; 5869 ilt_client->page_size = QM_ILT_PAGE_SZ; 5870 ilt_client->flags = 0; 5871 ilt_client->start = line; 5872 5873 /* 4 bytes for each cid */ 5874 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, 5875 QM_ILT_PAGE_SZ); 5876 5877 ilt_client->end = (line - 1); 5878 5879 BLOGD(sc, DBG_LOAD, 5880 "ilt client[QM]: start %d, end %d, " 5881 "psz 0x%x, flags 0x%x, hw psz %d\n", 5882 ilt_client->start, ilt_client->end, 5883 ilt_client->page_size, ilt_client->flags, 5884 ilog2(ilt_client->page_size >> 12)); 5885 } 5886 5887 if (CNIC_SUPPORT(sc)) { 5888 /* SRC */ 5889 ilt_client = &ilt->clients[ILT_CLIENT_SRC]; 5890 ilt_client->client_num = ILT_CLIENT_SRC; 5891 ilt_client->page_size = SRC_ILT_PAGE_SZ; 5892 ilt_client->flags = 0; 5893 ilt_client->start = line; 5894 line += SRC_ILT_LINES; 5895 ilt_client->end = (line - 1); 5896 5897 BLOGD(sc, DBG_LOAD, 5898 "ilt client[SRC]: start %d, end %d, " 5899 "psz 0x%x, flags 0x%x, hw psz %d\n", 5900 ilt_client->start, ilt_client->end, 5901 ilt_client->page_size, ilt_client->flags, 5902 ilog2(ilt_client->page_size >> 12)); 5903 5904 /* TM */ 5905 ilt_client = &ilt->clients[ILT_CLIENT_TM]; 5906 ilt_client->client_num = ILT_CLIENT_TM; 5907 ilt_client->page_size = TM_ILT_PAGE_SZ; 5908 ilt_client->flags = 0; 5909 ilt_client->start = line; 5910 line += TM_ILT_LINES; 5911 ilt_client->end = (line - 1); 5912 5913 BLOGD(sc, DBG_LOAD, 5914 "ilt client[TM]: start %d, end %d, " 5915 "psz 0x%x, flags 0x%x, hw psz %d\n", 5916 ilt_client->start, ilt_client->end, 5917 ilt_client->page_size, ilt_client->flags, 5918 ilog2(ilt_client->page_size >> 12)); 5919 } 5920 5921 KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); 5922 } 5923 5924 static void 5925 bxe_set_fp_rx_buf_size(struct bxe_softc *sc) 5926 { 5927 int i; 5928 uint32_t rx_buf_size; 5929 5930 rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu); 5931 5932 for (i = 0; i < sc->num_queues; i++) { 5933 if(rx_buf_size <= MCLBYTES){ 5934 sc->fp[i].rx_buf_size = rx_buf_size; 5935 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5936 }else if (rx_buf_size <= MJUMPAGESIZE){ 5937 sc->fp[i].rx_buf_size = rx_buf_size; 5938 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5939 }else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){ 5940 sc->fp[i].rx_buf_size = MCLBYTES; 5941 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5942 }else if (rx_buf_size <= (2 * MJUMPAGESIZE)){ 5943 sc->fp[i].rx_buf_size = MJUMPAGESIZE; 5944 sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE; 5945 }else { 5946 sc->fp[i].rx_buf_size = MCLBYTES; 5947 sc->fp[i].mbuf_alloc_size = MCLBYTES; 5948 } 5949 } 5950 } 5951 5952 static int 5953 bxe_alloc_ilt_mem(struct bxe_softc *sc) 5954 { 5955 int rc = 0; 5956 5957 if ((sc->ilt = 5958 (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt), 5959 M_BXE_ILT, 5960 (M_NOWAIT | M_ZERO))) == NULL) { 5961 rc = 1; 5962 } 5963 5964 return (rc); 5965 } 5966 5967 static int 5968 bxe_alloc_ilt_lines_mem(struct bxe_softc *sc) 5969 { 5970 int rc = 0; 5971 5972 if ((sc->ilt->lines = 5973 (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES), 5974 M_BXE_ILT, 5975 (M_NOWAIT | M_ZERO))) == NULL) { 5976 rc = 1; 5977 } 5978 5979 return (rc); 5980 } 5981 5982 static void 5983 bxe_free_ilt_mem(struct bxe_softc *sc) 5984 { 5985 if (sc->ilt != NULL) { 5986 free(sc->ilt, M_BXE_ILT); 5987 sc->ilt = NULL; 5988 } 5989 } 5990 5991 static void 5992 bxe_free_ilt_lines_mem(struct bxe_softc *sc) 5993 { 5994 if (sc->ilt->lines != NULL) { 5995 free(sc->ilt->lines, M_BXE_ILT); 5996 sc->ilt->lines = NULL; 5997 } 5998 } 5999 6000 static void 6001 bxe_free_mem(struct bxe_softc *sc) 6002 { 6003 int i; 6004 6005 for (i = 0; i < L2_ILT_LINES(sc); i++) { 6006 bxe_dma_free(sc, &sc->context[i].vcxt_dma); 6007 sc->context[i].vcxt = NULL; 6008 sc->context[i].size = 0; 6009 } 6010 6011 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); 6012 6013 bxe_free_ilt_lines_mem(sc); 6014 6015 } 6016 6017 static int 6018 bxe_alloc_mem(struct bxe_softc *sc) 6019 { 6020 6021 int context_size; 6022 int allocated; 6023 int i; 6024 6025 /* 6026 * Allocate memory for CDU context: 6027 * This memory is allocated separately and not in the generic ILT 6028 * functions because CDU differs in few aspects: 6029 * 1. There can be multiple entities allocating memory for context - 6030 * regular L2, CNIC, and SRIOV drivers. Each separately controls 6031 * its own ILT lines. 6032 * 2. Since CDU page-size is not a single 4KB page (which is the case 6033 * for the other ILT clients), to be efficient we want to support 6034 * allocation of sub-page-size in the last entry. 6035 * 3. Context pointers are used by the driver to pass to FW / update 6036 * the context (for the other ILT clients the pointers are used just to 6037 * free the memory during unload). 6038 */ 6039 context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); 6040 for (i = 0, allocated = 0; allocated < context_size; i++) { 6041 sc->context[i].size = min(CDU_ILT_PAGE_SZ, 6042 (context_size - allocated)); 6043 6044 if (bxe_dma_alloc(sc, sc->context[i].size, 6045 &sc->context[i].vcxt_dma, 6046 "cdu context") != 0) { 6047 bxe_free_mem(sc); 6048 return (-1); 6049 } 6050 6051 sc->context[i].vcxt = 6052 (union cdu_context *)sc->context[i].vcxt_dma.vaddr; 6053 6054 allocated += sc->context[i].size; 6055 } 6056 6057 bxe_alloc_ilt_lines_mem(sc); 6058 6059 BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", 6060 sc->ilt, sc->ilt->start_line, sc->ilt->lines); 6061 { 6062 for (i = 0; i < 4; i++) { 6063 BLOGD(sc, DBG_LOAD, 6064 "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", 6065 i, 6066 sc->ilt->clients[i].page_size, 6067 sc->ilt->clients[i].start, 6068 sc->ilt->clients[i].end, 6069 sc->ilt->clients[i].client_num, 6070 sc->ilt->clients[i].flags); 6071 } 6072 } 6073 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { 6074 BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); 6075 bxe_free_mem(sc); 6076 return (-1); 6077 } 6078 6079 return (0); 6080 } 6081 6082 static void 6083 bxe_free_rx_bd_chain(struct bxe_fastpath *fp) 6084 { 6085 int i; 6086 6087 if (fp->rx_mbuf_tag == NULL) { 6088 return; 6089 } 6090 6091 /* free all mbufs and unload all maps */ 6092 for (i = 0; i < RX_BD_TOTAL; i++) { 6093 if (fp->rx_mbuf_chain[i].m_map != NULL) { 6094 bus_dmamap_sync(fp->rx_mbuf_tag, 6095 fp->rx_mbuf_chain[i].m_map, 6096 BUS_DMASYNC_POSTREAD); 6097 bus_dmamap_unload(fp->rx_mbuf_tag, 6098 fp->rx_mbuf_chain[i].m_map); 6099 } 6100 6101 if (fp->rx_mbuf_chain[i].m != NULL) { 6102 m_freem(fp->rx_mbuf_chain[i].m); 6103 fp->rx_mbuf_chain[i].m = NULL; 6104 fp->eth_q_stats.mbuf_alloc_rx--; 6105 } 6106 } 6107 } 6108 6109 static void 6110 bxe_free_tpa_pool(struct bxe_fastpath *fp) 6111 { 6112 struct bxe_softc *sc; 6113 int i, max_agg_queues; 6114 6115 sc = fp->sc; 6116 6117 if (fp->rx_mbuf_tag == NULL) { 6118 return; 6119 } 6120 6121 max_agg_queues = MAX_AGG_QS(sc); 6122 6123 /* release all mbufs and unload all DMA maps in the TPA pool */ 6124 for (i = 0; i < max_agg_queues; i++) { 6125 if (fp->rx_tpa_info[i].bd.m_map != NULL) { 6126 bus_dmamap_sync(fp->rx_mbuf_tag, 6127 fp->rx_tpa_info[i].bd.m_map, 6128 BUS_DMASYNC_POSTREAD); 6129 bus_dmamap_unload(fp->rx_mbuf_tag, 6130 fp->rx_tpa_info[i].bd.m_map); 6131 } 6132 6133 if (fp->rx_tpa_info[i].bd.m != NULL) { 6134 m_freem(fp->rx_tpa_info[i].bd.m); 6135 fp->rx_tpa_info[i].bd.m = NULL; 6136 fp->eth_q_stats.mbuf_alloc_tpa--; 6137 } 6138 } 6139 } 6140 6141 static void 6142 bxe_free_sge_chain(struct bxe_fastpath *fp) 6143 { 6144 int i; 6145 6146 if (fp->rx_sge_mbuf_tag == NULL) { 6147 return; 6148 } 6149 6150 /* rree all mbufs and unload all maps */ 6151 for (i = 0; i < RX_SGE_TOTAL; i++) { 6152 if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { 6153 bus_dmamap_sync(fp->rx_sge_mbuf_tag, 6154 fp->rx_sge_mbuf_chain[i].m_map, 6155 BUS_DMASYNC_POSTREAD); 6156 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 6157 fp->rx_sge_mbuf_chain[i].m_map); 6158 } 6159 6160 if (fp->rx_sge_mbuf_chain[i].m != NULL) { 6161 m_freem(fp->rx_sge_mbuf_chain[i].m); 6162 fp->rx_sge_mbuf_chain[i].m = NULL; 6163 fp->eth_q_stats.mbuf_alloc_sge--; 6164 } 6165 } 6166 } 6167 6168 static void 6169 bxe_free_fp_buffers(struct bxe_softc *sc) 6170 { 6171 struct bxe_fastpath *fp; 6172 int i; 6173 6174 for (i = 0; i < sc->num_queues; i++) { 6175 fp = &sc->fp[i]; 6176 6177 if (fp->tx_br != NULL) { 6178 /* just in case bxe_mq_flush() wasn't called */ 6179 if (mtx_initialized(&fp->tx_mtx)) { 6180 struct mbuf *m; 6181 6182 BXE_FP_TX_LOCK(fp); 6183 while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) 6184 m_freem(m); 6185 BXE_FP_TX_UNLOCK(fp); 6186 } 6187 } 6188 6189 /* free all RX buffers */ 6190 bxe_free_rx_bd_chain(fp); 6191 bxe_free_tpa_pool(fp); 6192 bxe_free_sge_chain(fp); 6193 6194 if (fp->eth_q_stats.mbuf_alloc_rx != 0) { 6195 BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", 6196 fp->eth_q_stats.mbuf_alloc_rx); 6197 } 6198 6199 if (fp->eth_q_stats.mbuf_alloc_sge != 0) { 6200 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6201 fp->eth_q_stats.mbuf_alloc_sge); 6202 } 6203 6204 if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { 6205 BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", 6206 fp->eth_q_stats.mbuf_alloc_tpa); 6207 } 6208 6209 if (fp->eth_q_stats.mbuf_alloc_tx != 0) { 6210 BLOGE(sc, "failed to release tx mbufs (%d left)\n", 6211 fp->eth_q_stats.mbuf_alloc_tx); 6212 } 6213 6214 /* XXX verify all mbufs were reclaimed */ 6215 } 6216 } 6217 6218 static int 6219 bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, 6220 uint16_t prev_index, 6221 uint16_t index) 6222 { 6223 struct bxe_sw_rx_bd *rx_buf; 6224 struct eth_rx_bd *rx_bd; 6225 bus_dma_segment_t segs[1]; 6226 bus_dmamap_t map; 6227 struct mbuf *m; 6228 int nsegs, rc; 6229 6230 rc = 0; 6231 6232 /* allocate the new RX BD mbuf */ 6233 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6234 if (__predict_false(m == NULL)) { 6235 fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; 6236 return (ENOBUFS); 6237 } 6238 6239 fp->eth_q_stats.mbuf_alloc_rx++; 6240 6241 /* initialize the mbuf buffer length */ 6242 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6243 6244 /* map the mbuf into non-paged pool */ 6245 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6246 fp->rx_mbuf_spare_map, 6247 m, segs, &nsegs, BUS_DMA_NOWAIT); 6248 if (__predict_false(rc != 0)) { 6249 fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; 6250 m_freem(m); 6251 fp->eth_q_stats.mbuf_alloc_rx--; 6252 return (rc); 6253 } 6254 6255 /* all mbufs must map to a single segment */ 6256 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6257 6258 /* release any existing RX BD mbuf mappings */ 6259 6260 if (prev_index != index) { 6261 rx_buf = &fp->rx_mbuf_chain[prev_index]; 6262 6263 if (rx_buf->m_map != NULL) { 6264 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6265 BUS_DMASYNC_POSTREAD); 6266 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6267 } 6268 6269 /* 6270 * We only get here from bxe_rxeof() when the maximum number 6271 * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already 6272 * holds the mbuf in the prev_index so it's OK to NULL it out 6273 * here without concern of a memory leak. 6274 */ 6275 fp->rx_mbuf_chain[prev_index].m = NULL; 6276 } 6277 6278 rx_buf = &fp->rx_mbuf_chain[index]; 6279 6280 if (rx_buf->m_map != NULL) { 6281 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6282 BUS_DMASYNC_POSTREAD); 6283 bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); 6284 } 6285 6286 /* save the mbuf and mapping info for a future packet */ 6287 map = (prev_index != index) ? 6288 fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; 6289 rx_buf->m_map = fp->rx_mbuf_spare_map; 6290 fp->rx_mbuf_spare_map = map; 6291 bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, 6292 BUS_DMASYNC_PREREAD); 6293 rx_buf->m = m; 6294 6295 rx_bd = &fp->rx_chain[index]; 6296 rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6297 rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6298 6299 return (rc); 6300 } 6301 6302 static int 6303 bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, 6304 int queue) 6305 { 6306 struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; 6307 bus_dma_segment_t segs[1]; 6308 bus_dmamap_t map; 6309 struct mbuf *m; 6310 int nsegs; 6311 int rc = 0; 6312 6313 /* allocate the new TPA mbuf */ 6314 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); 6315 if (__predict_false(m == NULL)) { 6316 fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; 6317 return (ENOBUFS); 6318 } 6319 6320 fp->eth_q_stats.mbuf_alloc_tpa++; 6321 6322 /* initialize the mbuf buffer length */ 6323 m->m_pkthdr.len = m->m_len = fp->rx_buf_size; 6324 6325 /* map the mbuf into non-paged pool */ 6326 rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, 6327 fp->rx_tpa_info_mbuf_spare_map, 6328 m, segs, &nsegs, BUS_DMA_NOWAIT); 6329 if (__predict_false(rc != 0)) { 6330 fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; 6331 m_free(m); 6332 fp->eth_q_stats.mbuf_alloc_tpa--; 6333 return (rc); 6334 } 6335 6336 /* all mbufs must map to a single segment */ 6337 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6338 6339 /* release any existing TPA mbuf mapping */ 6340 if (tpa_info->bd.m_map != NULL) { 6341 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6342 BUS_DMASYNC_POSTREAD); 6343 bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); 6344 } 6345 6346 /* save the mbuf and mapping info for the TPA mbuf */ 6347 map = tpa_info->bd.m_map; 6348 tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; 6349 fp->rx_tpa_info_mbuf_spare_map = map; 6350 bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, 6351 BUS_DMASYNC_PREREAD); 6352 tpa_info->bd.m = m; 6353 tpa_info->seg = segs[0]; 6354 6355 return (rc); 6356 } 6357 6358 /* 6359 * Allocate an mbuf and assign it to the receive scatter gather chain. The 6360 * caller must take care to save a copy of the existing mbuf in the SG mbuf 6361 * chain. 6362 */ 6363 static int 6364 bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, 6365 uint16_t index) 6366 { 6367 struct bxe_sw_rx_bd *sge_buf; 6368 struct eth_rx_sge *sge; 6369 bus_dma_segment_t segs[1]; 6370 bus_dmamap_t map; 6371 struct mbuf *m; 6372 int nsegs; 6373 int rc = 0; 6374 6375 /* allocate a new SGE mbuf */ 6376 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); 6377 if (__predict_false(m == NULL)) { 6378 fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; 6379 return (ENOMEM); 6380 } 6381 6382 fp->eth_q_stats.mbuf_alloc_sge++; 6383 6384 /* initialize the mbuf buffer length */ 6385 m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; 6386 6387 /* map the SGE mbuf into non-paged pool */ 6388 rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, 6389 fp->rx_sge_mbuf_spare_map, 6390 m, segs, &nsegs, BUS_DMA_NOWAIT); 6391 if (__predict_false(rc != 0)) { 6392 fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; 6393 m_freem(m); 6394 fp->eth_q_stats.mbuf_alloc_sge--; 6395 return (rc); 6396 } 6397 6398 /* all mbufs must map to a single segment */ 6399 KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs)); 6400 6401 sge_buf = &fp->rx_sge_mbuf_chain[index]; 6402 6403 /* release any existing SGE mbuf mapping */ 6404 if (sge_buf->m_map != NULL) { 6405 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6406 BUS_DMASYNC_POSTREAD); 6407 bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); 6408 } 6409 6410 /* save the mbuf and mapping info for a future packet */ 6411 map = sge_buf->m_map; 6412 sge_buf->m_map = fp->rx_sge_mbuf_spare_map; 6413 fp->rx_sge_mbuf_spare_map = map; 6414 bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, 6415 BUS_DMASYNC_PREREAD); 6416 sge_buf->m = m; 6417 6418 sge = &fp->rx_sge_chain[index]; 6419 sge->addr_hi = htole32(U64_HI(segs[0].ds_addr)); 6420 sge->addr_lo = htole32(U64_LO(segs[0].ds_addr)); 6421 6422 return (rc); 6423 } 6424 6425 static __noinline int 6426 bxe_alloc_fp_buffers(struct bxe_softc *sc) 6427 { 6428 struct bxe_fastpath *fp; 6429 int i, j, rc = 0; 6430 int ring_prod, cqe_ring_prod; 6431 int max_agg_queues; 6432 6433 for (i = 0; i < sc->num_queues; i++) { 6434 fp = &sc->fp[i]; 6435 6436 ring_prod = cqe_ring_prod = 0; 6437 fp->rx_bd_cons = 0; 6438 fp->rx_cq_cons = 0; 6439 6440 /* allocate buffers for the RX BDs in RX BD chain */ 6441 for (j = 0; j < sc->max_rx_bufs; j++) { 6442 rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); 6443 if (rc != 0) { 6444 BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", 6445 i, rc); 6446 goto bxe_alloc_fp_buffers_error; 6447 } 6448 6449 ring_prod = RX_BD_NEXT(ring_prod); 6450 cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); 6451 } 6452 6453 fp->rx_bd_prod = ring_prod; 6454 fp->rx_cq_prod = cqe_ring_prod; 6455 fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; 6456 6457 max_agg_queues = MAX_AGG_QS(sc); 6458 6459 fp->tpa_enable = TRUE; 6460 6461 /* fill the TPA pool */ 6462 for (j = 0; j < max_agg_queues; j++) { 6463 rc = bxe_alloc_rx_tpa_mbuf(fp, j); 6464 if (rc != 0) { 6465 BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", 6466 i, j); 6467 fp->tpa_enable = FALSE; 6468 goto bxe_alloc_fp_buffers_error; 6469 } 6470 6471 fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; 6472 } 6473 6474 if (fp->tpa_enable) { 6475 /* fill the RX SGE chain */ 6476 ring_prod = 0; 6477 for (j = 0; j < RX_SGE_USABLE; j++) { 6478 rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); 6479 if (rc != 0) { 6480 BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", 6481 i, ring_prod); 6482 fp->tpa_enable = FALSE; 6483 ring_prod = 0; 6484 goto bxe_alloc_fp_buffers_error; 6485 } 6486 6487 ring_prod = RX_SGE_NEXT(ring_prod); 6488 } 6489 6490 fp->rx_sge_prod = ring_prod; 6491 } 6492 } 6493 6494 return (0); 6495 6496 bxe_alloc_fp_buffers_error: 6497 6498 /* unwind what was already allocated */ 6499 bxe_free_rx_bd_chain(fp); 6500 bxe_free_tpa_pool(fp); 6501 bxe_free_sge_chain(fp); 6502 6503 return (ENOBUFS); 6504 } 6505 6506 static void 6507 bxe_free_fw_stats_mem(struct bxe_softc *sc) 6508 { 6509 bxe_dma_free(sc, &sc->fw_stats_dma); 6510 6511 sc->fw_stats_num = 0; 6512 6513 sc->fw_stats_req_size = 0; 6514 sc->fw_stats_req = NULL; 6515 sc->fw_stats_req_mapping = 0; 6516 6517 sc->fw_stats_data_size = 0; 6518 sc->fw_stats_data = NULL; 6519 sc->fw_stats_data_mapping = 0; 6520 } 6521 6522 static int 6523 bxe_alloc_fw_stats_mem(struct bxe_softc *sc) 6524 { 6525 uint8_t num_queue_stats; 6526 int num_groups; 6527 6528 /* number of queues for statistics is number of eth queues */ 6529 num_queue_stats = BXE_NUM_ETH_QUEUES(sc); 6530 6531 /* 6532 * Total number of FW statistics requests = 6533 * 1 for port stats + 1 for PF stats + num of queues 6534 */ 6535 sc->fw_stats_num = (2 + num_queue_stats); 6536 6537 /* 6538 * Request is built from stats_query_header and an array of 6539 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT 6540 * rules. The real number or requests is configured in the 6541 * stats_query_header. 6542 */ 6543 num_groups = 6544 ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + 6545 ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); 6546 6547 BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", 6548 sc->fw_stats_num, num_groups); 6549 6550 sc->fw_stats_req_size = 6551 (sizeof(struct stats_query_header) + 6552 (num_groups * sizeof(struct stats_query_cmd_group))); 6553 6554 /* 6555 * Data for statistics requests + stats_counter. 6556 * stats_counter holds per-STORM counters that are incremented when 6557 * STORM has finished with the current request. Memory for FCoE 6558 * offloaded statistics are counted anyway, even if they will not be sent. 6559 * VF stats are not accounted for here as the data of VF stats is stored 6560 * in memory allocated by the VF, not here. 6561 */ 6562 sc->fw_stats_data_size = 6563 (sizeof(struct stats_counter) + 6564 sizeof(struct per_port_stats) + 6565 sizeof(struct per_pf_stats) + 6566 /* sizeof(struct fcoe_statistics_params) + */ 6567 (sizeof(struct per_queue_stats) * num_queue_stats)); 6568 6569 if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), 6570 &sc->fw_stats_dma, "fw stats") != 0) { 6571 bxe_free_fw_stats_mem(sc); 6572 return (-1); 6573 } 6574 6575 /* set up the shortcuts */ 6576 6577 sc->fw_stats_req = 6578 (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; 6579 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; 6580 6581 sc->fw_stats_data = 6582 (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + 6583 sc->fw_stats_req_size); 6584 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + 6585 sc->fw_stats_req_size); 6586 6587 BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", 6588 (uintmax_t)sc->fw_stats_req_mapping); 6589 6590 BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", 6591 (uintmax_t)sc->fw_stats_data_mapping); 6592 6593 return (0); 6594 } 6595 6596 /* 6597 * Bits map: 6598 * 0-7 - Engine0 load counter. 6599 * 8-15 - Engine1 load counter. 6600 * 16 - Engine0 RESET_IN_PROGRESS bit. 6601 * 17 - Engine1 RESET_IN_PROGRESS bit. 6602 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active 6603 * function on the engine 6604 * 19 - Engine1 ONE_IS_LOADED. 6605 * 20 - Chip reset flow bit. When set none-leader must wait for both engines 6606 * leader to complete (check for both RESET_IN_PROGRESS bits and not 6607 * for just the one belonging to its engine). 6608 */ 6609 #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 6610 #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff 6611 #define BXE_PATH0_LOAD_CNT_SHIFT 0 6612 #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 6613 #define BXE_PATH1_LOAD_CNT_SHIFT 8 6614 #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 6615 #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 6616 #define BXE_GLOBAL_RESET_BIT 0x00040000 6617 6618 /* set the GLOBAL_RESET bit, should be run under rtnl lock */ 6619 static void 6620 bxe_set_reset_global(struct bxe_softc *sc) 6621 { 6622 uint32_t val; 6623 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6624 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6625 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); 6626 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6627 } 6628 6629 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ 6630 static void 6631 bxe_clear_reset_global(struct bxe_softc *sc) 6632 { 6633 uint32_t val; 6634 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6635 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6636 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); 6637 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6638 } 6639 6640 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ 6641 static uint8_t 6642 bxe_reset_is_global(struct bxe_softc *sc) 6643 { 6644 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6645 BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); 6646 return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; 6647 } 6648 6649 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ 6650 static void 6651 bxe_set_reset_done(struct bxe_softc *sc) 6652 { 6653 uint32_t val; 6654 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6655 BXE_PATH0_RST_IN_PROG_BIT; 6656 6657 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6658 6659 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6660 /* Clear the bit */ 6661 val &= ~bit; 6662 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6663 6664 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6665 } 6666 6667 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ 6668 static void 6669 bxe_set_reset_in_progress(struct bxe_softc *sc) 6670 { 6671 uint32_t val; 6672 uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : 6673 BXE_PATH0_RST_IN_PROG_BIT; 6674 6675 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6676 6677 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6678 /* Set the bit */ 6679 val |= bit; 6680 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6681 6682 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6683 } 6684 6685 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ 6686 static uint8_t 6687 bxe_reset_is_done(struct bxe_softc *sc, 6688 int engine) 6689 { 6690 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6691 uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : 6692 BXE_PATH0_RST_IN_PROG_BIT; 6693 6694 /* return false if bit is set */ 6695 return (val & bit) ? FALSE : TRUE; 6696 } 6697 6698 /* get the load status for an engine, should be run under rtnl lock */ 6699 static uint8_t 6700 bxe_get_load_status(struct bxe_softc *sc, 6701 int engine) 6702 { 6703 uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : 6704 BXE_PATH0_LOAD_CNT_MASK; 6705 uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : 6706 BXE_PATH0_LOAD_CNT_SHIFT; 6707 uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6708 6709 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6710 6711 val = ((val & mask) >> shift); 6712 6713 BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); 6714 6715 return (val != 0); 6716 } 6717 6718 /* set pf load mark */ 6719 /* XXX needs to be under rtnl lock */ 6720 static void 6721 bxe_set_pf_load(struct bxe_softc *sc) 6722 { 6723 uint32_t val; 6724 uint32_t val1; 6725 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6726 BXE_PATH0_LOAD_CNT_MASK; 6727 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6728 BXE_PATH0_LOAD_CNT_SHIFT; 6729 6730 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6731 6732 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6733 BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); 6734 6735 /* get the current counter value */ 6736 val1 = ((val & mask) >> shift); 6737 6738 /* set bit of this PF */ 6739 val1 |= (1 << SC_ABS_FUNC(sc)); 6740 6741 /* clear the old value */ 6742 val &= ~mask; 6743 6744 /* set the new one */ 6745 val |= ((val1 << shift) & mask); 6746 6747 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6748 6749 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6750 } 6751 6752 /* clear pf load mark */ 6753 /* XXX needs to be under rtnl lock */ 6754 static uint8_t 6755 bxe_clear_pf_load(struct bxe_softc *sc) 6756 { 6757 uint32_t val1, val; 6758 uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : 6759 BXE_PATH0_LOAD_CNT_MASK; 6760 uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : 6761 BXE_PATH0_LOAD_CNT_SHIFT; 6762 6763 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6764 val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); 6765 BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); 6766 6767 /* get the current counter value */ 6768 val1 = (val & mask) >> shift; 6769 6770 /* clear bit of that PF */ 6771 val1 &= ~(1 << SC_ABS_FUNC(sc)); 6772 6773 /* clear the old value */ 6774 val &= ~mask; 6775 6776 /* set the new one */ 6777 val |= ((val1 << shift) & mask); 6778 6779 REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); 6780 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); 6781 return (val1 != 0); 6782 } 6783 6784 /* send load requrest to mcp and analyze response */ 6785 static int 6786 bxe_nic_load_request(struct bxe_softc *sc, 6787 uint32_t *load_code) 6788 { 6789 /* init fw_seq */ 6790 sc->fw_seq = 6791 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 6792 DRV_MSG_SEQ_NUMBER_MASK); 6793 6794 BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); 6795 6796 /* get the current FW pulse sequence */ 6797 sc->fw_drv_pulse_wr_seq = 6798 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & 6799 DRV_PULSE_SEQ_MASK); 6800 6801 BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", 6802 sc->fw_drv_pulse_wr_seq); 6803 6804 /* load request */ 6805 (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 6806 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 6807 6808 /* if the MCP fails to respond we must abort */ 6809 if (!(*load_code)) { 6810 BLOGE(sc, "MCP response failure!\n"); 6811 return (-1); 6812 } 6813 6814 /* if MCP refused then must abort */ 6815 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { 6816 BLOGE(sc, "MCP refused load request\n"); 6817 return (-1); 6818 } 6819 6820 return (0); 6821 } 6822 6823 /* 6824 * Check whether another PF has already loaded FW to chip. In virtualized 6825 * environments a pf from anoth VM may have already initialized the device 6826 * including loading FW. 6827 */ 6828 static int 6829 bxe_nic_load_analyze_req(struct bxe_softc *sc, 6830 uint32_t load_code) 6831 { 6832 uint32_t my_fw, loaded_fw; 6833 6834 /* is another pf loaded on this engine? */ 6835 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 6836 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 6837 /* build my FW version dword */ 6838 my_fw = (BCM_5710_FW_MAJOR_VERSION + 6839 (BCM_5710_FW_MINOR_VERSION << 8 ) + 6840 (BCM_5710_FW_REVISION_VERSION << 16) + 6841 (BCM_5710_FW_ENGINEERING_VERSION << 24)); 6842 6843 /* read loaded FW from chip */ 6844 loaded_fw = REG_RD(sc, XSEM_REG_PRAM); 6845 BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", 6846 loaded_fw, my_fw); 6847 6848 /* abort nic load if version mismatch */ 6849 if (my_fw != loaded_fw) { 6850 BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", 6851 loaded_fw, my_fw); 6852 return (-1); 6853 } 6854 } 6855 6856 return (0); 6857 } 6858 6859 /* mark PMF if applicable */ 6860 static void 6861 bxe_nic_load_pmf(struct bxe_softc *sc, 6862 uint32_t load_code) 6863 { 6864 uint32_t ncsi_oem_data_addr; 6865 6866 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || 6867 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || 6868 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { 6869 /* 6870 * Barrier here for ordering between the writing to sc->port.pmf here 6871 * and reading it from the periodic task. 6872 */ 6873 sc->port.pmf = 1; 6874 mb(); 6875 } else { 6876 sc->port.pmf = 0; 6877 } 6878 6879 BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); 6880 6881 /* XXX needed? */ 6882 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { 6883 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { 6884 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); 6885 if (ncsi_oem_data_addr) { 6886 REG_WR(sc, 6887 (ncsi_oem_data_addr + 6888 offsetof(struct glob_ncsi_oem_data, driver_version)), 6889 0); 6890 } 6891 } 6892 } 6893 } 6894 6895 static void 6896 bxe_read_mf_cfg(struct bxe_softc *sc) 6897 { 6898 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); 6899 int abs_func; 6900 int vn; 6901 6902 if (BXE_NOMCP(sc)) { 6903 return; /* what should be the default bvalue in this case */ 6904 } 6905 6906 /* 6907 * The formula for computing the absolute function number is... 6908 * For 2 port configuration (4 functions per port): 6909 * abs_func = 2 * vn + SC_PORT + SC_PATH 6910 * For 4 port configuration (2 functions per port): 6911 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH 6912 */ 6913 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 6914 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); 6915 if (abs_func >= E1H_FUNC_MAX) { 6916 break; 6917 } 6918 sc->devinfo.mf_info.mf_config[vn] = 6919 MFCFG_RD(sc, func_mf_config[abs_func].config); 6920 } 6921 6922 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & 6923 FUNC_MF_CFG_FUNC_DISABLED) { 6924 BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); 6925 sc->flags |= BXE_MF_FUNC_DIS; 6926 } else { 6927 BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); 6928 sc->flags &= ~BXE_MF_FUNC_DIS; 6929 } 6930 } 6931 6932 /* acquire split MCP access lock register */ 6933 static int bxe_acquire_alr(struct bxe_softc *sc) 6934 { 6935 uint32_t j, val; 6936 6937 for (j = 0; j < 1000; j++) { 6938 val = (1UL << 31); 6939 REG_WR(sc, GRCBASE_MCP + 0x9c, val); 6940 val = REG_RD(sc, GRCBASE_MCP + 0x9c); 6941 if (val & (1L << 31)) 6942 break; 6943 6944 DELAY(5000); 6945 } 6946 6947 if (!(val & (1L << 31))) { 6948 BLOGE(sc, "Cannot acquire MCP access lock register\n"); 6949 return (-1); 6950 } 6951 6952 return (0); 6953 } 6954 6955 /* release split MCP access lock register */ 6956 static void bxe_release_alr(struct bxe_softc *sc) 6957 { 6958 REG_WR(sc, GRCBASE_MCP + 0x9c, 0); 6959 } 6960 6961 static void 6962 bxe_fan_failure(struct bxe_softc *sc) 6963 { 6964 int port = SC_PORT(sc); 6965 uint32_t ext_phy_config; 6966 6967 /* mark the failure */ 6968 ext_phy_config = 6969 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 6970 6971 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; 6972 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; 6973 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, 6974 ext_phy_config); 6975 6976 /* log the failure */ 6977 BLOGW(sc, "Fan Failure has caused the driver to shutdown " 6978 "the card to prevent permanent damage. " 6979 "Please contact OEM Support for assistance\n"); 6980 6981 /* XXX */ 6982 #if 1 6983 bxe_panic(sc, ("Schedule task to handle fan failure\n")); 6984 #else 6985 /* 6986 * Schedule device reset (unload) 6987 * This is due to some boards consuming sufficient power when driver is 6988 * up to overheat if fan fails. 6989 */ 6990 bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); 6991 schedule_delayed_work(&sc->sp_rtnl_task, 0); 6992 #endif 6993 } 6994 6995 /* this function is called upon a link interrupt */ 6996 static void 6997 bxe_link_attn(struct bxe_softc *sc) 6998 { 6999 uint32_t pause_enabled = 0; 7000 struct host_port_stats *pstats; 7001 int cmng_fns; 7002 struct bxe_fastpath *fp; 7003 int i; 7004 7005 /* Make sure that we are synced with the current statistics */ 7006 bxe_stats_handle(sc, STATS_EVENT_STOP); 7007 BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags); 7008 elink_link_update(&sc->link_params, &sc->link_vars); 7009 7010 if (sc->link_vars.link_up) { 7011 7012 /* dropless flow control */ 7013 if (!CHIP_IS_E1(sc) && sc->dropless_fc) { 7014 pause_enabled = 0; 7015 7016 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 7017 pause_enabled = 1; 7018 } 7019 7020 REG_WR(sc, 7021 (BAR_USTRORM_INTMEM + 7022 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), 7023 pause_enabled); 7024 } 7025 7026 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { 7027 pstats = BXE_SP(sc, port_stats); 7028 /* reset old mac stats */ 7029 memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); 7030 } 7031 7032 if (sc->state == BXE_STATE_OPEN) { 7033 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 7034 /* Restart tx when the link comes back. */ 7035 FOR_EACH_ETH_QUEUE(sc, i) { 7036 fp = &sc->fp[i]; 7037 taskqueue_enqueue(fp->tq, &fp->tx_task); 7038 } 7039 } 7040 7041 } 7042 7043 if (sc->link_vars.link_up && sc->link_vars.line_speed) { 7044 cmng_fns = bxe_get_cmng_fns_mode(sc); 7045 7046 if (cmng_fns != CMNG_FNS_NONE) { 7047 bxe_cmng_fns_init(sc, FALSE, cmng_fns); 7048 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7049 } else { 7050 /* rate shaping and fairness are disabled */ 7051 BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); 7052 } 7053 } 7054 7055 bxe_link_report_locked(sc); 7056 7057 if (IS_MF(sc)) { 7058 ; // XXX bxe_link_sync_notify(sc); 7059 } 7060 } 7061 7062 static void 7063 bxe_attn_int_asserted(struct bxe_softc *sc, 7064 uint32_t asserted) 7065 { 7066 int port = SC_PORT(sc); 7067 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 7068 MISC_REG_AEU_MASK_ATTN_FUNC_0; 7069 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : 7070 NIG_REG_MASK_INTERRUPT_PORT0; 7071 uint32_t aeu_mask; 7072 uint32_t nig_mask = 0; 7073 uint32_t reg_addr; 7074 uint32_t igu_acked; 7075 uint32_t cnt; 7076 7077 if (sc->attn_state & asserted) { 7078 BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); 7079 } 7080 7081 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7082 7083 aeu_mask = REG_RD(sc, aeu_addr); 7084 7085 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", 7086 aeu_mask, asserted); 7087 7088 aeu_mask &= ~(asserted & 0x3ff); 7089 7090 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 7091 7092 REG_WR(sc, aeu_addr, aeu_mask); 7093 7094 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 7095 7096 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 7097 sc->attn_state |= asserted; 7098 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 7099 7100 if (asserted & ATTN_HARD_WIRED_MASK) { 7101 if (asserted & ATTN_NIG_FOR_FUNC) { 7102 7103 bxe_acquire_phy_lock(sc); 7104 /* save nig interrupt mask */ 7105 nig_mask = REG_RD(sc, nig_int_mask_addr); 7106 7107 /* If nig_mask is not set, no need to call the update function */ 7108 if (nig_mask) { 7109 REG_WR(sc, nig_int_mask_addr, 0); 7110 7111 bxe_link_attn(sc); 7112 } 7113 7114 /* handle unicore attn? */ 7115 } 7116 7117 if (asserted & ATTN_SW_TIMER_4_FUNC) { 7118 BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); 7119 } 7120 7121 if (asserted & GPIO_2_FUNC) { 7122 BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); 7123 } 7124 7125 if (asserted & GPIO_3_FUNC) { 7126 BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); 7127 } 7128 7129 if (asserted & GPIO_4_FUNC) { 7130 BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); 7131 } 7132 7133 if (port == 0) { 7134 if (asserted & ATTN_GENERAL_ATTN_1) { 7135 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); 7136 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); 7137 } 7138 if (asserted & ATTN_GENERAL_ATTN_2) { 7139 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); 7140 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); 7141 } 7142 if (asserted & ATTN_GENERAL_ATTN_3) { 7143 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); 7144 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); 7145 } 7146 } else { 7147 if (asserted & ATTN_GENERAL_ATTN_4) { 7148 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); 7149 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); 7150 } 7151 if (asserted & ATTN_GENERAL_ATTN_5) { 7152 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); 7153 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); 7154 } 7155 if (asserted & ATTN_GENERAL_ATTN_6) { 7156 BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); 7157 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); 7158 } 7159 } 7160 } /* hardwired */ 7161 7162 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7163 reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); 7164 } else { 7165 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); 7166 } 7167 7168 BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", 7169 asserted, 7170 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 7171 REG_WR(sc, reg_addr, asserted); 7172 7173 /* now set back the mask */ 7174 if (asserted & ATTN_NIG_FOR_FUNC) { 7175 /* 7176 * Verify that IGU ack through BAR was written before restoring 7177 * NIG mask. This loop should exit after 2-3 iterations max. 7178 */ 7179 if (sc->devinfo.int_block != INT_BLOCK_HC) { 7180 cnt = 0; 7181 7182 do { 7183 igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); 7184 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && 7185 (++cnt < MAX_IGU_ATTN_ACK_TO)); 7186 7187 if (!igu_acked) { 7188 BLOGE(sc, "Failed to verify IGU ack on time\n"); 7189 } 7190 7191 mb(); 7192 } 7193 7194 REG_WR(sc, nig_int_mask_addr, nig_mask); 7195 7196 bxe_release_phy_lock(sc); 7197 } 7198 } 7199 7200 static void 7201 bxe_print_next_block(struct bxe_softc *sc, 7202 int idx, 7203 const char *blk) 7204 { 7205 BLOGI(sc, "%s%s", idx ? ", " : "", blk); 7206 } 7207 7208 static int 7209 bxe_check_blocks_with_parity0(struct bxe_softc *sc, 7210 uint32_t sig, 7211 int par_num, 7212 uint8_t print) 7213 { 7214 uint32_t cur_bit = 0; 7215 int i = 0; 7216 7217 for (i = 0; sig; i++) { 7218 cur_bit = ((uint32_t)0x1 << i); 7219 if (sig & cur_bit) { 7220 switch (cur_bit) { 7221 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: 7222 if (print) 7223 bxe_print_next_block(sc, par_num++, "BRB"); 7224 break; 7225 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: 7226 if (print) 7227 bxe_print_next_block(sc, par_num++, "PARSER"); 7228 break; 7229 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: 7230 if (print) 7231 bxe_print_next_block(sc, par_num++, "TSDM"); 7232 break; 7233 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: 7234 if (print) 7235 bxe_print_next_block(sc, par_num++, "SEARCHER"); 7236 break; 7237 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: 7238 if (print) 7239 bxe_print_next_block(sc, par_num++, "TCM"); 7240 break; 7241 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: 7242 if (print) 7243 bxe_print_next_block(sc, par_num++, "TSEMI"); 7244 break; 7245 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: 7246 if (print) 7247 bxe_print_next_block(sc, par_num++, "XPB"); 7248 break; 7249 } 7250 7251 /* Clear the bit */ 7252 sig &= ~cur_bit; 7253 } 7254 } 7255 7256 return (par_num); 7257 } 7258 7259 static int 7260 bxe_check_blocks_with_parity1(struct bxe_softc *sc, 7261 uint32_t sig, 7262 int par_num, 7263 uint8_t *global, 7264 uint8_t print) 7265 { 7266 int i = 0; 7267 uint32_t cur_bit = 0; 7268 for (i = 0; sig; i++) { 7269 cur_bit = ((uint32_t)0x1 << i); 7270 if (sig & cur_bit) { 7271 switch (cur_bit) { 7272 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: 7273 if (print) 7274 bxe_print_next_block(sc, par_num++, "PBF"); 7275 break; 7276 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: 7277 if (print) 7278 bxe_print_next_block(sc, par_num++, "QM"); 7279 break; 7280 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: 7281 if (print) 7282 bxe_print_next_block(sc, par_num++, "TM"); 7283 break; 7284 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: 7285 if (print) 7286 bxe_print_next_block(sc, par_num++, "XSDM"); 7287 break; 7288 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: 7289 if (print) 7290 bxe_print_next_block(sc, par_num++, "XCM"); 7291 break; 7292 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: 7293 if (print) 7294 bxe_print_next_block(sc, par_num++, "XSEMI"); 7295 break; 7296 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: 7297 if (print) 7298 bxe_print_next_block(sc, par_num++, "DOORBELLQ"); 7299 break; 7300 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: 7301 if (print) 7302 bxe_print_next_block(sc, par_num++, "NIG"); 7303 break; 7304 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: 7305 if (print) 7306 bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); 7307 *global = TRUE; 7308 break; 7309 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: 7310 if (print) 7311 bxe_print_next_block(sc, par_num++, "DEBUG"); 7312 break; 7313 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: 7314 if (print) 7315 bxe_print_next_block(sc, par_num++, "USDM"); 7316 break; 7317 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: 7318 if (print) 7319 bxe_print_next_block(sc, par_num++, "UCM"); 7320 break; 7321 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: 7322 if (print) 7323 bxe_print_next_block(sc, par_num++, "USEMI"); 7324 break; 7325 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: 7326 if (print) 7327 bxe_print_next_block(sc, par_num++, "UPB"); 7328 break; 7329 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: 7330 if (print) 7331 bxe_print_next_block(sc, par_num++, "CSDM"); 7332 break; 7333 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: 7334 if (print) 7335 bxe_print_next_block(sc, par_num++, "CCM"); 7336 break; 7337 } 7338 7339 /* Clear the bit */ 7340 sig &= ~cur_bit; 7341 } 7342 } 7343 7344 return (par_num); 7345 } 7346 7347 static int 7348 bxe_check_blocks_with_parity2(struct bxe_softc *sc, 7349 uint32_t sig, 7350 int par_num, 7351 uint8_t print) 7352 { 7353 uint32_t cur_bit = 0; 7354 int i = 0; 7355 7356 for (i = 0; sig; i++) { 7357 cur_bit = ((uint32_t)0x1 << i); 7358 if (sig & cur_bit) { 7359 switch (cur_bit) { 7360 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: 7361 if (print) 7362 bxe_print_next_block(sc, par_num++, "CSEMI"); 7363 break; 7364 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: 7365 if (print) 7366 bxe_print_next_block(sc, par_num++, "PXP"); 7367 break; 7368 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: 7369 if (print) 7370 bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); 7371 break; 7372 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: 7373 if (print) 7374 bxe_print_next_block(sc, par_num++, "CFC"); 7375 break; 7376 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: 7377 if (print) 7378 bxe_print_next_block(sc, par_num++, "CDU"); 7379 break; 7380 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: 7381 if (print) 7382 bxe_print_next_block(sc, par_num++, "DMAE"); 7383 break; 7384 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: 7385 if (print) 7386 bxe_print_next_block(sc, par_num++, "IGU"); 7387 break; 7388 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: 7389 if (print) 7390 bxe_print_next_block(sc, par_num++, "MISC"); 7391 break; 7392 } 7393 7394 /* Clear the bit */ 7395 sig &= ~cur_bit; 7396 } 7397 } 7398 7399 return (par_num); 7400 } 7401 7402 static int 7403 bxe_check_blocks_with_parity3(struct bxe_softc *sc, 7404 uint32_t sig, 7405 int par_num, 7406 uint8_t *global, 7407 uint8_t print) 7408 { 7409 uint32_t cur_bit = 0; 7410 int i = 0; 7411 7412 for (i = 0; sig; i++) { 7413 cur_bit = ((uint32_t)0x1 << i); 7414 if (sig & cur_bit) { 7415 switch (cur_bit) { 7416 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: 7417 if (print) 7418 bxe_print_next_block(sc, par_num++, "MCP ROM"); 7419 *global = TRUE; 7420 break; 7421 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: 7422 if (print) 7423 bxe_print_next_block(sc, par_num++, 7424 "MCP UMP RX"); 7425 *global = TRUE; 7426 break; 7427 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: 7428 if (print) 7429 bxe_print_next_block(sc, par_num++, 7430 "MCP UMP TX"); 7431 *global = TRUE; 7432 break; 7433 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: 7434 if (print) 7435 bxe_print_next_block(sc, par_num++, 7436 "MCP SCPAD"); 7437 *global = TRUE; 7438 break; 7439 } 7440 7441 /* Clear the bit */ 7442 sig &= ~cur_bit; 7443 } 7444 } 7445 7446 return (par_num); 7447 } 7448 7449 static int 7450 bxe_check_blocks_with_parity4(struct bxe_softc *sc, 7451 uint32_t sig, 7452 int par_num, 7453 uint8_t print) 7454 { 7455 uint32_t cur_bit = 0; 7456 int i = 0; 7457 7458 for (i = 0; sig; i++) { 7459 cur_bit = ((uint32_t)0x1 << i); 7460 if (sig & cur_bit) { 7461 switch (cur_bit) { 7462 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: 7463 if (print) 7464 bxe_print_next_block(sc, par_num++, "PGLUE_B"); 7465 break; 7466 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: 7467 if (print) 7468 bxe_print_next_block(sc, par_num++, "ATC"); 7469 break; 7470 } 7471 7472 /* Clear the bit */ 7473 sig &= ~cur_bit; 7474 } 7475 } 7476 7477 return (par_num); 7478 } 7479 7480 static uint8_t 7481 bxe_parity_attn(struct bxe_softc *sc, 7482 uint8_t *global, 7483 uint8_t print, 7484 uint32_t *sig) 7485 { 7486 int par_num = 0; 7487 7488 if ((sig[0] & HW_PRTY_ASSERT_SET_0) || 7489 (sig[1] & HW_PRTY_ASSERT_SET_1) || 7490 (sig[2] & HW_PRTY_ASSERT_SET_2) || 7491 (sig[3] & HW_PRTY_ASSERT_SET_3) || 7492 (sig[4] & HW_PRTY_ASSERT_SET_4)) { 7493 BLOGE(sc, "Parity error: HW block parity attention:\n" 7494 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", 7495 (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), 7496 (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), 7497 (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), 7498 (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), 7499 (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); 7500 7501 if (print) 7502 BLOGI(sc, "Parity errors detected in blocks: "); 7503 7504 par_num = 7505 bxe_check_blocks_with_parity0(sc, sig[0] & 7506 HW_PRTY_ASSERT_SET_0, 7507 par_num, print); 7508 par_num = 7509 bxe_check_blocks_with_parity1(sc, sig[1] & 7510 HW_PRTY_ASSERT_SET_1, 7511 par_num, global, print); 7512 par_num = 7513 bxe_check_blocks_with_parity2(sc, sig[2] & 7514 HW_PRTY_ASSERT_SET_2, 7515 par_num, print); 7516 par_num = 7517 bxe_check_blocks_with_parity3(sc, sig[3] & 7518 HW_PRTY_ASSERT_SET_3, 7519 par_num, global, print); 7520 par_num = 7521 bxe_check_blocks_with_parity4(sc, sig[4] & 7522 HW_PRTY_ASSERT_SET_4, 7523 par_num, print); 7524 7525 if (print) 7526 BLOGI(sc, "\n"); 7527 7528 if( *global == TRUE ) { 7529 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 7530 } 7531 7532 return (TRUE); 7533 } 7534 7535 return (FALSE); 7536 } 7537 7538 static uint8_t 7539 bxe_chk_parity_attn(struct bxe_softc *sc, 7540 uint8_t *global, 7541 uint8_t print) 7542 { 7543 struct attn_route attn = { {0} }; 7544 int port = SC_PORT(sc); 7545 7546 if(sc->state != BXE_STATE_OPEN) 7547 return FALSE; 7548 7549 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 7550 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 7551 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 7552 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 7553 7554 /* 7555 * Since MCP attentions can't be disabled inside the block, we need to 7556 * read AEU registers to see whether they're currently disabled 7557 */ 7558 attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 7559 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) & 7560 MISC_AEU_ENABLE_MCP_PRTY_BITS) | 7561 ~MISC_AEU_ENABLE_MCP_PRTY_BITS); 7562 7563 7564 if (!CHIP_IS_E1x(sc)) 7565 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 7566 7567 return (bxe_parity_attn(sc, global, print, attn.sig)); 7568 } 7569 7570 static void 7571 bxe_attn_int_deasserted4(struct bxe_softc *sc, 7572 uint32_t attn) 7573 { 7574 uint32_t val; 7575 boolean_t err_flg = FALSE; 7576 7577 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { 7578 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); 7579 BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); 7580 err_flg = TRUE; 7581 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) 7582 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); 7583 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) 7584 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); 7585 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) 7586 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); 7587 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) 7588 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); 7589 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) 7590 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); 7591 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) 7592 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); 7593 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) 7594 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); 7595 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) 7596 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); 7597 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) 7598 BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); 7599 } 7600 7601 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { 7602 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); 7603 BLOGE(sc, "ATC hw attention 0x%08x\n", val); 7604 err_flg = TRUE; 7605 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) 7606 BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); 7607 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) 7608 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); 7609 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) 7610 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); 7611 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) 7612 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); 7613 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) 7614 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); 7615 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) 7616 BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); 7617 } 7618 7619 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7620 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { 7621 BLOGE(sc, "FATAL parity attention set4 0x%08x\n", 7622 (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | 7623 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); 7624 err_flg = TRUE; 7625 } 7626 if (err_flg) { 7627 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 7628 taskqueue_enqueue_timeout(taskqueue_thread, 7629 &sc->sp_err_timeout_task, hz/10); 7630 } 7631 7632 } 7633 7634 static void 7635 bxe_e1h_disable(struct bxe_softc *sc) 7636 { 7637 int port = SC_PORT(sc); 7638 7639 bxe_tx_disable(sc); 7640 7641 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); 7642 } 7643 7644 static void 7645 bxe_e1h_enable(struct bxe_softc *sc) 7646 { 7647 int port = SC_PORT(sc); 7648 7649 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 7650 7651 // XXX bxe_tx_enable(sc); 7652 } 7653 7654 /* 7655 * called due to MCP event (on pmf): 7656 * reread new bandwidth configuration 7657 * configure FW 7658 * notify others function about the change 7659 */ 7660 static void 7661 bxe_config_mf_bw(struct bxe_softc *sc) 7662 { 7663 if (sc->link_vars.link_up) { 7664 bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); 7665 // XXX bxe_link_sync_notify(sc); 7666 } 7667 7668 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 7669 } 7670 7671 static void 7672 bxe_set_mf_bw(struct bxe_softc *sc) 7673 { 7674 bxe_config_mf_bw(sc); 7675 bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); 7676 } 7677 7678 static void 7679 bxe_handle_eee_event(struct bxe_softc *sc) 7680 { 7681 BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); 7682 bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); 7683 } 7684 7685 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 7686 7687 static void 7688 bxe_drv_info_ether_stat(struct bxe_softc *sc) 7689 { 7690 struct eth_stats_info *ether_stat = 7691 &sc->sp->drv_info_to_mcp.ether_stat; 7692 7693 strlcpy(ether_stat->version, BXE_DRIVER_VERSION, 7694 ETH_STAT_INFO_VERSION_LEN); 7695 7696 /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ 7697 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, 7698 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, 7699 ether_stat->mac_local + MAC_PAD, 7700 MAC_PAD, ETH_ALEN); 7701 7702 ether_stat->mtu_size = sc->mtu; 7703 7704 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; 7705 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 7706 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; 7707 } 7708 7709 // XXX ether_stat->feature_flags |= ???; 7710 7711 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; 7712 7713 ether_stat->txq_size = sc->tx_ring_size; 7714 ether_stat->rxq_size = sc->rx_ring_size; 7715 } 7716 7717 static void 7718 bxe_handle_drv_info_req(struct bxe_softc *sc) 7719 { 7720 enum drv_info_opcode op_code; 7721 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); 7722 7723 /* if drv_info version supported by MFW doesn't match - send NACK */ 7724 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { 7725 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7726 return; 7727 } 7728 7729 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> 7730 DRV_INFO_CONTROL_OP_CODE_SHIFT); 7731 7732 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); 7733 7734 switch (op_code) { 7735 case ETH_STATS_OPCODE: 7736 bxe_drv_info_ether_stat(sc); 7737 break; 7738 case FCOE_STATS_OPCODE: 7739 case ISCSI_STATS_OPCODE: 7740 default: 7741 /* if op code isn't supported - send NACK */ 7742 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); 7743 return; 7744 } 7745 7746 /* 7747 * If we got drv_info attn from MFW then these fields are defined in 7748 * shmem2 for sure 7749 */ 7750 SHMEM2_WR(sc, drv_info_host_addr_lo, 7751 U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7752 SHMEM2_WR(sc, drv_info_host_addr_hi, 7753 U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); 7754 7755 bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); 7756 } 7757 7758 static void 7759 bxe_dcc_event(struct bxe_softc *sc, 7760 uint32_t dcc_event) 7761 { 7762 BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); 7763 7764 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { 7765 /* 7766 * This is the only place besides the function initialization 7767 * where the sc->flags can change so it is done without any 7768 * locks 7769 */ 7770 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { 7771 BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); 7772 sc->flags |= BXE_MF_FUNC_DIS; 7773 bxe_e1h_disable(sc); 7774 } else { 7775 BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); 7776 sc->flags &= ~BXE_MF_FUNC_DIS; 7777 bxe_e1h_enable(sc); 7778 } 7779 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; 7780 } 7781 7782 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { 7783 bxe_config_mf_bw(sc); 7784 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; 7785 } 7786 7787 /* Report results to MCP */ 7788 if (dcc_event) 7789 bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); 7790 else 7791 bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); 7792 } 7793 7794 static void 7795 bxe_pmf_update(struct bxe_softc *sc) 7796 { 7797 int port = SC_PORT(sc); 7798 uint32_t val; 7799 7800 sc->port.pmf = 1; 7801 BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); 7802 7803 /* 7804 * We need the mb() to ensure the ordering between the writing to 7805 * sc->port.pmf here and reading it from the bxe_periodic_task(). 7806 */ 7807 mb(); 7808 7809 /* queue a periodic task */ 7810 // XXX schedule task... 7811 7812 // XXX bxe_dcbx_pmf_update(sc); 7813 7814 /* enable nig attention */ 7815 val = (0xff0f | (1 << (SC_VN(sc) + 4))); 7816 if (sc->devinfo.int_block == INT_BLOCK_HC) { 7817 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); 7818 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); 7819 } else if (!CHIP_IS_E1x(sc)) { 7820 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 7821 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 7822 } 7823 7824 bxe_stats_handle(sc, STATS_EVENT_PMF); 7825 } 7826 7827 static int 7828 bxe_mc_assert(struct bxe_softc *sc) 7829 { 7830 char last_idx; 7831 int i, rc = 0; 7832 uint32_t row0, row1, row2, row3; 7833 7834 /* XSTORM */ 7835 last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); 7836 if (last_idx) 7837 BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7838 7839 /* print the asserts */ 7840 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7841 7842 row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); 7843 row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); 7844 row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); 7845 row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); 7846 7847 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7848 BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7849 i, row3, row2, row1, row0); 7850 rc++; 7851 } else { 7852 break; 7853 } 7854 } 7855 7856 /* TSTORM */ 7857 last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); 7858 if (last_idx) { 7859 BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7860 } 7861 7862 /* print the asserts */ 7863 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7864 7865 row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); 7866 row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); 7867 row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); 7868 row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); 7869 7870 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7871 BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7872 i, row3, row2, row1, row0); 7873 rc++; 7874 } else { 7875 break; 7876 } 7877 } 7878 7879 /* CSTORM */ 7880 last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); 7881 if (last_idx) { 7882 BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7883 } 7884 7885 /* print the asserts */ 7886 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7887 7888 row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); 7889 row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); 7890 row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); 7891 row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); 7892 7893 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7894 BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7895 i, row3, row2, row1, row0); 7896 rc++; 7897 } else { 7898 break; 7899 } 7900 } 7901 7902 /* USTORM */ 7903 last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); 7904 if (last_idx) { 7905 BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); 7906 } 7907 7908 /* print the asserts */ 7909 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { 7910 7911 row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); 7912 row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); 7913 row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); 7914 row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); 7915 7916 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { 7917 BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", 7918 i, row3, row2, row1, row0); 7919 rc++; 7920 } else { 7921 break; 7922 } 7923 } 7924 7925 return (rc); 7926 } 7927 7928 static void 7929 bxe_attn_int_deasserted3(struct bxe_softc *sc, 7930 uint32_t attn) 7931 { 7932 int func = SC_FUNC(sc); 7933 uint32_t val; 7934 7935 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { 7936 7937 if (attn & BXE_PMF_LINK_ASSERT(sc)) { 7938 7939 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 7940 bxe_read_mf_cfg(sc); 7941 sc->devinfo.mf_info.mf_config[SC_VN(sc)] = 7942 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 7943 val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); 7944 7945 if (val & DRV_STATUS_DCC_EVENT_MASK) 7946 bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); 7947 7948 if (val & DRV_STATUS_SET_MF_BW) 7949 bxe_set_mf_bw(sc); 7950 7951 if (val & DRV_STATUS_DRV_INFO_REQ) 7952 bxe_handle_drv_info_req(sc); 7953 7954 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) 7955 bxe_pmf_update(sc); 7956 7957 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) 7958 bxe_handle_eee_event(sc); 7959 7960 if (sc->link_vars.periodic_flags & 7961 ELINK_PERIODIC_FLAGS_LINK_EVENT) { 7962 /* sync with link */ 7963 bxe_acquire_phy_lock(sc); 7964 sc->link_vars.periodic_flags &= 7965 ~ELINK_PERIODIC_FLAGS_LINK_EVENT; 7966 bxe_release_phy_lock(sc); 7967 if (IS_MF(sc)) 7968 ; // XXX bxe_link_sync_notify(sc); 7969 bxe_link_report(sc); 7970 } 7971 7972 /* 7973 * Always call it here: bxe_link_report() will 7974 * prevent the link indication duplication. 7975 */ 7976 bxe_link_status_update(sc); 7977 7978 } else if (attn & BXE_MC_ASSERT_BITS) { 7979 7980 BLOGE(sc, "MC assert!\n"); 7981 bxe_mc_assert(sc); 7982 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); 7983 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); 7984 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); 7985 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); 7986 bxe_int_disable(sc); 7987 BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT); 7988 taskqueue_enqueue_timeout(taskqueue_thread, 7989 &sc->sp_err_timeout_task, hz/10); 7990 7991 } else if (attn & BXE_MCP_ASSERT) { 7992 7993 BLOGE(sc, "MCP assert!\n"); 7994 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); 7995 BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT); 7996 taskqueue_enqueue_timeout(taskqueue_thread, 7997 &sc->sp_err_timeout_task, hz/10); 7998 bxe_int_disable(sc); /*avoid repetive assert alert */ 7999 8000 8001 } else { 8002 BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); 8003 } 8004 } 8005 8006 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { 8007 BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); 8008 if (attn & BXE_GRC_TIMEOUT) { 8009 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); 8010 BLOGE(sc, "GRC time-out 0x%08x\n", val); 8011 } 8012 if (attn & BXE_GRC_RSV) { 8013 val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); 8014 BLOGE(sc, "GRC reserved 0x%08x\n", val); 8015 } 8016 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); 8017 } 8018 } 8019 8020 static void 8021 bxe_attn_int_deasserted2(struct bxe_softc *sc, 8022 uint32_t attn) 8023 { 8024 int port = SC_PORT(sc); 8025 int reg_offset; 8026 uint32_t val0, mask0, val1, mask1; 8027 uint32_t val; 8028 boolean_t err_flg = FALSE; 8029 8030 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { 8031 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); 8032 BLOGE(sc, "CFC hw attention 0x%08x\n", val); 8033 /* CFC error attention */ 8034 if (val & 0x2) { 8035 BLOGE(sc, "FATAL error from CFC\n"); 8036 err_flg = TRUE; 8037 } 8038 } 8039 8040 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { 8041 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); 8042 BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); 8043 /* RQ_USDMDP_FIFO_OVERFLOW */ 8044 if (val & 0x18000) { 8045 BLOGE(sc, "FATAL error from PXP\n"); 8046 err_flg = TRUE; 8047 } 8048 8049 if (!CHIP_IS_E1x(sc)) { 8050 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); 8051 BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); 8052 err_flg = TRUE; 8053 } 8054 } 8055 8056 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR 8057 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT 8058 8059 if (attn & AEU_PXP2_HW_INT_BIT) { 8060 /* CQ47854 workaround do not panic on 8061 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8062 */ 8063 if (!CHIP_IS_E1x(sc)) { 8064 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); 8065 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); 8066 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); 8067 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); 8068 /* 8069 * If the only PXP2_EOP_ERROR_BIT is set in 8070 * STS0 and STS1 - clear it 8071 * 8072 * probably we lose additional attentions between 8073 * STS0 and STS_CLR0, in this case user will not 8074 * be notified about them 8075 */ 8076 if (val0 & mask0 & PXP2_EOP_ERROR_BIT && 8077 !(val1 & mask1)) 8078 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 8079 8080 /* print the register, since no one can restore it */ 8081 BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); 8082 8083 /* 8084 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR 8085 * then notify 8086 */ 8087 if (val0 & PXP2_EOP_ERROR_BIT) { 8088 BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); 8089 err_flg = TRUE; 8090 8091 /* 8092 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is 8093 * set then clear attention from PXP2 block without panic 8094 */ 8095 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && 8096 ((val1 & mask1) == 0)) 8097 attn &= ~AEU_PXP2_HW_INT_BIT; 8098 } 8099 } 8100 } 8101 8102 if (attn & HW_INTERRUT_ASSERT_SET_2) { 8103 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : 8104 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); 8105 8106 val = REG_RD(sc, reg_offset); 8107 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); 8108 REG_WR(sc, reg_offset, val); 8109 8110 BLOGE(sc, "FATAL HW block attention set2 0x%x\n", 8111 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); 8112 err_flg = TRUE; 8113 bxe_panic(sc, ("HW block attention set2\n")); 8114 } 8115 if(err_flg) { 8116 BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL); 8117 taskqueue_enqueue_timeout(taskqueue_thread, 8118 &sc->sp_err_timeout_task, hz/10); 8119 } 8120 8121 } 8122 8123 static void 8124 bxe_attn_int_deasserted1(struct bxe_softc *sc, 8125 uint32_t attn) 8126 { 8127 int port = SC_PORT(sc); 8128 int reg_offset; 8129 uint32_t val; 8130 boolean_t err_flg = FALSE; 8131 8132 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { 8133 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); 8134 BLOGE(sc, "DB hw attention 0x%08x\n", val); 8135 /* DORQ discard attention */ 8136 if (val & 0x2) { 8137 BLOGE(sc, "FATAL error from DORQ\n"); 8138 err_flg = TRUE; 8139 } 8140 } 8141 8142 if (attn & HW_INTERRUT_ASSERT_SET_1) { 8143 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : 8144 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); 8145 8146 val = REG_RD(sc, reg_offset); 8147 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); 8148 REG_WR(sc, reg_offset, val); 8149 8150 BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", 8151 (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); 8152 err_flg = TRUE; 8153 bxe_panic(sc, ("HW block attention set1\n")); 8154 } 8155 if(err_flg) { 8156 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8157 taskqueue_enqueue_timeout(taskqueue_thread, 8158 &sc->sp_err_timeout_task, hz/10); 8159 } 8160 8161 } 8162 8163 static void 8164 bxe_attn_int_deasserted0(struct bxe_softc *sc, 8165 uint32_t attn) 8166 { 8167 int port = SC_PORT(sc); 8168 int reg_offset; 8169 uint32_t val; 8170 8171 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 8172 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 8173 8174 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { 8175 val = REG_RD(sc, reg_offset); 8176 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; 8177 REG_WR(sc, reg_offset, val); 8178 8179 BLOGW(sc, "SPIO5 hw attention\n"); 8180 8181 /* Fan failure attention */ 8182 elink_hw_reset_phy(&sc->link_params); 8183 bxe_fan_failure(sc); 8184 } 8185 8186 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { 8187 bxe_acquire_phy_lock(sc); 8188 elink_handle_module_detect_int(&sc->link_params); 8189 bxe_release_phy_lock(sc); 8190 } 8191 8192 if (attn & HW_INTERRUT_ASSERT_SET_0) { 8193 val = REG_RD(sc, reg_offset); 8194 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); 8195 REG_WR(sc, reg_offset, val); 8196 8197 8198 BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC); 8199 taskqueue_enqueue_timeout(taskqueue_thread, 8200 &sc->sp_err_timeout_task, hz/10); 8201 8202 bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", 8203 (attn & HW_INTERRUT_ASSERT_SET_0))); 8204 } 8205 } 8206 8207 static void 8208 bxe_attn_int_deasserted(struct bxe_softc *sc, 8209 uint32_t deasserted) 8210 { 8211 struct attn_route attn; 8212 struct attn_route *group_mask; 8213 int port = SC_PORT(sc); 8214 int index; 8215 uint32_t reg_addr; 8216 uint32_t val; 8217 uint32_t aeu_mask; 8218 uint8_t global = FALSE; 8219 8220 /* 8221 * Need to take HW lock because MCP or other port might also 8222 * try to handle this event. 8223 */ 8224 bxe_acquire_alr(sc); 8225 8226 if (bxe_chk_parity_attn(sc, &global, TRUE)) { 8227 /* XXX 8228 * In case of parity errors don't handle attentions so that 8229 * other function would "see" parity errors. 8230 */ 8231 // XXX schedule a recovery task... 8232 /* disable HW interrupts */ 8233 bxe_int_disable(sc); 8234 BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY); 8235 taskqueue_enqueue_timeout(taskqueue_thread, 8236 &sc->sp_err_timeout_task, hz/10); 8237 bxe_release_alr(sc); 8238 return; 8239 } 8240 8241 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); 8242 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); 8243 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); 8244 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); 8245 if (!CHIP_IS_E1x(sc)) { 8246 attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); 8247 } else { 8248 attn.sig[4] = 0; 8249 } 8250 8251 BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", 8252 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); 8253 8254 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 8255 if (deasserted & (1 << index)) { 8256 group_mask = &sc->attn_group[index]; 8257 8258 BLOGD(sc, DBG_INTR, 8259 "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, 8260 group_mask->sig[0], group_mask->sig[1], 8261 group_mask->sig[2], group_mask->sig[3], 8262 group_mask->sig[4]); 8263 8264 bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); 8265 bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); 8266 bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); 8267 bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); 8268 bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); 8269 } 8270 } 8271 8272 bxe_release_alr(sc); 8273 8274 if (sc->devinfo.int_block == INT_BLOCK_HC) { 8275 reg_addr = (HC_REG_COMMAND_REG + port*32 + 8276 COMMAND_REG_ATTN_BITS_CLR); 8277 } else { 8278 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); 8279 } 8280 8281 val = ~deasserted; 8282 BLOGD(sc, DBG_INTR, 8283 "about to mask 0x%08x at %s addr 0x%08x\n", val, 8284 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); 8285 REG_WR(sc, reg_addr, val); 8286 8287 if (~sc->attn_state & deasserted) { 8288 BLOGE(sc, "IGU error\n"); 8289 } 8290 8291 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : 8292 MISC_REG_AEU_MASK_ATTN_FUNC_0; 8293 8294 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8295 8296 aeu_mask = REG_RD(sc, reg_addr); 8297 8298 BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", 8299 aeu_mask, deasserted); 8300 aeu_mask |= (deasserted & 0x3ff); 8301 BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); 8302 8303 REG_WR(sc, reg_addr, aeu_mask); 8304 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); 8305 8306 BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); 8307 sc->attn_state &= ~deasserted; 8308 BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); 8309 } 8310 8311 static void 8312 bxe_attn_int(struct bxe_softc *sc) 8313 { 8314 /* read local copy of bits */ 8315 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits); 8316 uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack); 8317 uint32_t attn_state = sc->attn_state; 8318 8319 /* look for changed bits */ 8320 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; 8321 uint32_t deasserted = ~attn_bits & attn_ack & attn_state; 8322 8323 BLOGD(sc, DBG_INTR, 8324 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", 8325 attn_bits, attn_ack, asserted, deasserted); 8326 8327 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { 8328 BLOGE(sc, "BAD attention state\n"); 8329 } 8330 8331 /* handle bits that were raised */ 8332 if (asserted) { 8333 bxe_attn_int_asserted(sc, asserted); 8334 } 8335 8336 if (deasserted) { 8337 bxe_attn_int_deasserted(sc, deasserted); 8338 } 8339 } 8340 8341 static uint16_t 8342 bxe_update_dsb_idx(struct bxe_softc *sc) 8343 { 8344 struct host_sp_status_block *def_sb = sc->def_sb; 8345 uint16_t rc = 0; 8346 8347 mb(); /* status block is written to by the chip */ 8348 8349 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { 8350 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; 8351 rc |= BXE_DEF_SB_ATT_IDX; 8352 } 8353 8354 if (sc->def_idx != def_sb->sp_sb.running_index) { 8355 sc->def_idx = def_sb->sp_sb.running_index; 8356 rc |= BXE_DEF_SB_IDX; 8357 } 8358 8359 mb(); 8360 8361 return (rc); 8362 } 8363 8364 static inline struct ecore_queue_sp_obj * 8365 bxe_cid_to_q_obj(struct bxe_softc *sc, 8366 uint32_t cid) 8367 { 8368 BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); 8369 return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); 8370 } 8371 8372 static void 8373 bxe_handle_mcast_eqe(struct bxe_softc *sc) 8374 { 8375 struct ecore_mcast_ramrod_params rparam; 8376 int rc; 8377 8378 memset(&rparam, 0, sizeof(rparam)); 8379 8380 rparam.mcast_obj = &sc->mcast_obj; 8381 8382 BXE_MCAST_LOCK(sc); 8383 8384 /* clear pending state for the last command */ 8385 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); 8386 8387 /* if there are pending mcast commands - send them */ 8388 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { 8389 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); 8390 if (rc < 0) { 8391 BLOGD(sc, DBG_SP, 8392 "ERROR: Failed to send pending mcast commands (%d)\n", rc); 8393 } 8394 } 8395 8396 BXE_MCAST_UNLOCK(sc); 8397 } 8398 8399 static void 8400 bxe_handle_classification_eqe(struct bxe_softc *sc, 8401 union event_ring_elem *elem) 8402 { 8403 unsigned long ramrod_flags = 0; 8404 int rc = 0; 8405 uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8406 struct ecore_vlan_mac_obj *vlan_mac_obj; 8407 8408 /* always push next commands out, don't wait here */ 8409 bit_set(&ramrod_flags, RAMROD_CONT); 8410 8411 switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { 8412 case ECORE_FILTER_MAC_PENDING: 8413 BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); 8414 vlan_mac_obj = &sc->sp_objs[cid].mac_obj; 8415 break; 8416 8417 case ECORE_FILTER_MCAST_PENDING: 8418 BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); 8419 /* 8420 * This is only relevant for 57710 where multicast MACs are 8421 * configured as unicast MACs using the same ramrod. 8422 */ 8423 bxe_handle_mcast_eqe(sc); 8424 return; 8425 8426 default: 8427 BLOGE(sc, "Unsupported classification command: %d\n", 8428 elem->message.data.eth_event.echo); 8429 return; 8430 } 8431 8432 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); 8433 8434 if (rc < 0) { 8435 BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); 8436 } else if (rc > 0) { 8437 BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); 8438 } 8439 } 8440 8441 static void 8442 bxe_handle_rx_mode_eqe(struct bxe_softc *sc, 8443 union event_ring_elem *elem) 8444 { 8445 bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); 8446 8447 /* send rx_mode command again if was requested */ 8448 if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, 8449 &sc->sp_state)) { 8450 bxe_set_storm_rx_mode(sc); 8451 } 8452 } 8453 8454 static void 8455 bxe_update_eq_prod(struct bxe_softc *sc, 8456 uint16_t prod) 8457 { 8458 storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); 8459 wmb(); /* keep prod updates ordered */ 8460 } 8461 8462 static void 8463 bxe_eq_int(struct bxe_softc *sc) 8464 { 8465 uint16_t hw_cons, sw_cons, sw_prod; 8466 union event_ring_elem *elem; 8467 uint8_t echo; 8468 uint32_t cid; 8469 uint8_t opcode; 8470 int spqe_cnt = 0; 8471 struct ecore_queue_sp_obj *q_obj; 8472 struct ecore_func_sp_obj *f_obj = &sc->func_obj; 8473 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; 8474 8475 hw_cons = le16toh(*sc->eq_cons_sb); 8476 8477 /* 8478 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. 8479 * when we get to the next-page we need to adjust so the loop 8480 * condition below will be met. The next element is the size of a 8481 * regular element and hence incrementing by 1 8482 */ 8483 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { 8484 hw_cons++; 8485 } 8486 8487 /* 8488 * This function may never run in parallel with itself for a 8489 * specific sc and no need for a read memory barrier here. 8490 */ 8491 sw_cons = sc->eq_cons; 8492 sw_prod = sc->eq_prod; 8493 8494 BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", 8495 hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left)); 8496 8497 for (; 8498 sw_cons != hw_cons; 8499 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { 8500 8501 elem = &sc->eq[EQ_DESC(sw_cons)]; 8502 8503 /* elem CID originates from FW, actually LE */ 8504 cid = SW_CID(elem->message.data.cfc_del_event.cid); 8505 opcode = elem->message.opcode; 8506 8507 /* handle eq element */ 8508 switch (opcode) { 8509 8510 case EVENT_RING_OPCODE_STAT_QUERY: 8511 BLOGD(sc, DBG_SP, "got statistics completion event %d\n", 8512 sc->stats_comp++); 8513 /* nothing to do with stats comp */ 8514 goto next_spqe; 8515 8516 case EVENT_RING_OPCODE_CFC_DEL: 8517 /* handle according to cid range */ 8518 /* we may want to verify here that the sc state is HALTING */ 8519 BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); 8520 q_obj = bxe_cid_to_q_obj(sc, cid); 8521 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { 8522 break; 8523 } 8524 goto next_spqe; 8525 8526 case EVENT_RING_OPCODE_STOP_TRAFFIC: 8527 BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); 8528 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { 8529 break; 8530 } 8531 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); 8532 goto next_spqe; 8533 8534 case EVENT_RING_OPCODE_START_TRAFFIC: 8535 BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); 8536 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { 8537 break; 8538 } 8539 // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); 8540 goto next_spqe; 8541 8542 case EVENT_RING_OPCODE_FUNCTION_UPDATE: 8543 echo = elem->message.data.function_update_event.echo; 8544 if (echo == SWITCH_UPDATE) { 8545 BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); 8546 if (f_obj->complete_cmd(sc, f_obj, 8547 ECORE_F_CMD_SWITCH_UPDATE)) { 8548 break; 8549 } 8550 } 8551 else { 8552 BLOGD(sc, DBG_SP, 8553 "AFEX: ramrod completed FUNCTION_UPDATE\n"); 8554 } 8555 goto next_spqe; 8556 8557 case EVENT_RING_OPCODE_FORWARD_SETUP: 8558 q_obj = &bxe_fwd_sp_obj(sc, q_obj); 8559 if (q_obj->complete_cmd(sc, q_obj, 8560 ECORE_Q_CMD_SETUP_TX_ONLY)) { 8561 break; 8562 } 8563 goto next_spqe; 8564 8565 case EVENT_RING_OPCODE_FUNCTION_START: 8566 BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); 8567 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { 8568 break; 8569 } 8570 goto next_spqe; 8571 8572 case EVENT_RING_OPCODE_FUNCTION_STOP: 8573 BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); 8574 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { 8575 break; 8576 } 8577 goto next_spqe; 8578 } 8579 8580 switch (opcode | sc->state) { 8581 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): 8582 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): 8583 cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; 8584 BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); 8585 rss_raw->clear_pending(rss_raw); 8586 break; 8587 8588 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): 8589 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): 8590 case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): 8591 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): 8592 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): 8593 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8594 BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); 8595 bxe_handle_classification_eqe(sc, elem); 8596 break; 8597 8598 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): 8599 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): 8600 case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8601 BLOGD(sc, DBG_SP, "got mcast ramrod\n"); 8602 bxe_handle_mcast_eqe(sc); 8603 break; 8604 8605 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): 8606 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): 8607 case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): 8608 BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); 8609 bxe_handle_rx_mode_eqe(sc, elem); 8610 break; 8611 8612 default: 8613 /* unknown event log error and continue */ 8614 BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", 8615 elem->message.opcode, sc->state); 8616 } 8617 8618 next_spqe: 8619 spqe_cnt++; 8620 } /* for */ 8621 8622 mb(); 8623 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt); 8624 8625 sc->eq_cons = sw_cons; 8626 sc->eq_prod = sw_prod; 8627 8628 /* make sure that above mem writes were issued towards the memory */ 8629 wmb(); 8630 8631 /* update producer */ 8632 bxe_update_eq_prod(sc, sc->eq_prod); 8633 } 8634 8635 static void 8636 bxe_handle_sp_tq(void *context, 8637 int pending) 8638 { 8639 struct bxe_softc *sc = (struct bxe_softc *)context; 8640 uint16_t status; 8641 8642 BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); 8643 8644 /* what work needs to be performed? */ 8645 status = bxe_update_dsb_idx(sc); 8646 8647 BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); 8648 8649 /* HW attentions */ 8650 if (status & BXE_DEF_SB_ATT_IDX) { 8651 BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); 8652 bxe_attn_int(sc); 8653 status &= ~BXE_DEF_SB_ATT_IDX; 8654 } 8655 8656 /* SP events: STAT_QUERY and others */ 8657 if (status & BXE_DEF_SB_IDX) { 8658 /* handle EQ completions */ 8659 BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); 8660 bxe_eq_int(sc); 8661 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 8662 le16toh(sc->def_idx), IGU_INT_NOP, 1); 8663 status &= ~BXE_DEF_SB_IDX; 8664 } 8665 8666 /* if status is non zero then something went wrong */ 8667 if (__predict_false(status)) { 8668 BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); 8669 } 8670 8671 /* ack status block only if something was actually handled */ 8672 bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, 8673 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1); 8674 8675 /* 8676 * Must be called after the EQ processing (since eq leads to sriov 8677 * ramrod completion flows). 8678 * This flow may have been scheduled by the arrival of a ramrod 8679 * completion, or by the sriov code rescheduling itself. 8680 */ 8681 // XXX bxe_iov_sp_task(sc); 8682 8683 } 8684 8685 static void 8686 bxe_handle_fp_tq(void *context, 8687 int pending) 8688 { 8689 struct bxe_fastpath *fp = (struct bxe_fastpath *)context; 8690 struct bxe_softc *sc = fp->sc; 8691 uint8_t more_tx = FALSE; 8692 uint8_t more_rx = FALSE; 8693 8694 BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); 8695 8696 /* XXX 8697 * IFF_DRV_RUNNING state can't be checked here since we process 8698 * slowpath events on a client queue during setup. Instead 8699 * we need to add a "process/continue" flag here that the driver 8700 * can use to tell the task here not to do anything. 8701 */ 8702 #if 0 8703 if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { 8704 return; 8705 } 8706 #endif 8707 8708 /* update the fastpath index */ 8709 bxe_update_fp_sb_idx(fp); 8710 8711 /* XXX add loop here if ever support multiple tx CoS */ 8712 /* fp->txdata[cos] */ 8713 if (bxe_has_tx_work(fp)) { 8714 BXE_FP_TX_LOCK(fp); 8715 more_tx = bxe_txeof(sc, fp); 8716 BXE_FP_TX_UNLOCK(fp); 8717 } 8718 8719 if (bxe_has_rx_work(fp)) { 8720 more_rx = bxe_rxeof(sc, fp); 8721 } 8722 8723 if (more_rx /*|| more_tx*/) { 8724 /* still more work to do */ 8725 taskqueue_enqueue(fp->tq, &fp->tq_task); 8726 return; 8727 } 8728 8729 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8730 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8731 } 8732 8733 static void 8734 bxe_task_fp(struct bxe_fastpath *fp) 8735 { 8736 struct bxe_softc *sc = fp->sc; 8737 uint8_t more_tx = FALSE; 8738 uint8_t more_rx = FALSE; 8739 8740 BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); 8741 8742 /* update the fastpath index */ 8743 bxe_update_fp_sb_idx(fp); 8744 8745 /* XXX add loop here if ever support multiple tx CoS */ 8746 /* fp->txdata[cos] */ 8747 if (bxe_has_tx_work(fp)) { 8748 BXE_FP_TX_LOCK(fp); 8749 more_tx = bxe_txeof(sc, fp); 8750 BXE_FP_TX_UNLOCK(fp); 8751 } 8752 8753 if (bxe_has_rx_work(fp)) { 8754 more_rx = bxe_rxeof(sc, fp); 8755 } 8756 8757 if (more_rx /*|| more_tx*/) { 8758 /* still more work to do, bail out if this ISR and process later */ 8759 taskqueue_enqueue(fp->tq, &fp->tq_task); 8760 return; 8761 } 8762 8763 /* 8764 * Here we write the fastpath index taken before doing any tx or rx work. 8765 * It is very well possible other hw events occurred up to this point and 8766 * they were actually processed accordingly above. Since we're going to 8767 * write an older fastpath index, an interrupt is coming which we might 8768 * not do any work in. 8769 */ 8770 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 8771 le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1); 8772 } 8773 8774 /* 8775 * Legacy interrupt entry point. 8776 * 8777 * Verifies that the controller generated the interrupt and 8778 * then calls a separate routine to handle the various 8779 * interrupt causes: link, RX, and TX. 8780 */ 8781 static void 8782 bxe_intr_legacy(void *xsc) 8783 { 8784 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8785 struct bxe_fastpath *fp; 8786 uint16_t status, mask; 8787 int i; 8788 8789 BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); 8790 8791 /* 8792 * 0 for ustorm, 1 for cstorm 8793 * the bits returned from ack_int() are 0-15 8794 * bit 0 = attention status block 8795 * bit 1 = fast path status block 8796 * a mask of 0x2 or more = tx/rx event 8797 * a mask of 1 = slow path event 8798 */ 8799 8800 status = bxe_ack_int(sc); 8801 8802 /* the interrupt is not for us */ 8803 if (__predict_false(status == 0)) { 8804 BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); 8805 return; 8806 } 8807 8808 BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); 8809 8810 FOR_EACH_ETH_QUEUE(sc, i) { 8811 fp = &sc->fp[i]; 8812 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); 8813 if (status & mask) { 8814 /* acknowledge and disable further fastpath interrupts */ 8815 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8816 bxe_task_fp(fp); 8817 status &= ~mask; 8818 } 8819 } 8820 8821 if (__predict_false(status & 0x1)) { 8822 /* acknowledge and disable further slowpath interrupts */ 8823 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8824 8825 /* schedule slowpath handler */ 8826 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8827 8828 status &= ~0x1; 8829 } 8830 8831 if (__predict_false(status)) { 8832 BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); 8833 } 8834 } 8835 8836 /* slowpath interrupt entry point */ 8837 static void 8838 bxe_intr_sp(void *xsc) 8839 { 8840 struct bxe_softc *sc = (struct bxe_softc *)xsc; 8841 8842 BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); 8843 8844 /* acknowledge and disable further slowpath interrupts */ 8845 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8846 8847 /* schedule slowpath handler */ 8848 taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); 8849 } 8850 8851 /* fastpath interrupt entry point */ 8852 static void 8853 bxe_intr_fp(void *xfp) 8854 { 8855 struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; 8856 struct bxe_softc *sc = fp->sc; 8857 8858 BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); 8859 8860 BLOGD(sc, DBG_INTR, 8861 "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", 8862 curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id); 8863 8864 /* acknowledge and disable further fastpath interrupts */ 8865 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); 8866 8867 bxe_task_fp(fp); 8868 } 8869 8870 /* Release all interrupts allocated by the driver. */ 8871 static void 8872 bxe_interrupt_free(struct bxe_softc *sc) 8873 { 8874 int i; 8875 8876 switch (sc->interrupt_mode) { 8877 case INTR_MODE_INTX: 8878 BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); 8879 if (sc->intr[0].resource != NULL) { 8880 bus_release_resource(sc->dev, 8881 SYS_RES_IRQ, 8882 sc->intr[0].rid, 8883 sc->intr[0].resource); 8884 } 8885 break; 8886 case INTR_MODE_MSI: 8887 for (i = 0; i < sc->intr_count; i++) { 8888 BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); 8889 if (sc->intr[i].resource && sc->intr[i].rid) { 8890 bus_release_resource(sc->dev, 8891 SYS_RES_IRQ, 8892 sc->intr[i].rid, 8893 sc->intr[i].resource); 8894 } 8895 } 8896 pci_release_msi(sc->dev); 8897 break; 8898 case INTR_MODE_MSIX: 8899 for (i = 0; i < sc->intr_count; i++) { 8900 BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); 8901 if (sc->intr[i].resource && sc->intr[i].rid) { 8902 bus_release_resource(sc->dev, 8903 SYS_RES_IRQ, 8904 sc->intr[i].rid, 8905 sc->intr[i].resource); 8906 } 8907 } 8908 pci_release_msi(sc->dev); 8909 break; 8910 default: 8911 /* nothing to do as initial allocation failed */ 8912 break; 8913 } 8914 } 8915 8916 /* 8917 * This function determines and allocates the appropriate 8918 * interrupt based on system capabilites and user request. 8919 * 8920 * The user may force a particular interrupt mode, specify 8921 * the number of receive queues, specify the method for 8922 * distribuitng received frames to receive queues, or use 8923 * the default settings which will automatically select the 8924 * best supported combination. In addition, the OS may or 8925 * may not support certain combinations of these settings. 8926 * This routine attempts to reconcile the settings requested 8927 * by the user with the capabilites available from the system 8928 * to select the optimal combination of features. 8929 * 8930 * Returns: 8931 * 0 = Success, !0 = Failure. 8932 */ 8933 static int 8934 bxe_interrupt_alloc(struct bxe_softc *sc) 8935 { 8936 int msix_count = 0; 8937 int msi_count = 0; 8938 int num_requested = 0; 8939 int num_allocated = 0; 8940 int rid, i, j; 8941 int rc; 8942 8943 /* get the number of available MSI/MSI-X interrupts from the OS */ 8944 if (sc->interrupt_mode > 0) { 8945 if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { 8946 msix_count = pci_msix_count(sc->dev); 8947 } 8948 8949 if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { 8950 msi_count = pci_msi_count(sc->dev); 8951 } 8952 8953 BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", 8954 msi_count, msix_count); 8955 } 8956 8957 do { /* try allocating MSI-X interrupt resources (at least 2) */ 8958 if (sc->interrupt_mode != INTR_MODE_MSIX) { 8959 break; 8960 } 8961 8962 if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || 8963 (msix_count < 2)) { 8964 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8965 break; 8966 } 8967 8968 /* ask for the necessary number of MSI-X vectors */ 8969 num_requested = min((sc->num_queues + 1), msix_count); 8970 8971 BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); 8972 8973 num_allocated = num_requested; 8974 if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) { 8975 BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); 8976 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8977 break; 8978 } 8979 8980 if (num_allocated < 2) { /* possible? */ 8981 BLOGE(sc, "MSI-X allocation less than 2!\n"); 8982 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 8983 pci_release_msi(sc->dev); 8984 break; 8985 } 8986 8987 BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", 8988 num_requested, num_allocated); 8989 8990 /* best effort so use the number of vectors allocated to us */ 8991 sc->intr_count = num_allocated; 8992 sc->num_queues = num_allocated - 1; 8993 8994 rid = 1; /* initial resource identifier */ 8995 8996 /* allocate the MSI-X vectors */ 8997 for (i = 0; i < num_allocated; i++) { 8998 sc->intr[i].rid = (rid + i); 8999 9000 if ((sc->intr[i].resource = 9001 bus_alloc_resource_any(sc->dev, 9002 SYS_RES_IRQ, 9003 &sc->intr[i].rid, 9004 RF_ACTIVE)) == NULL) { 9005 BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", 9006 i, (rid + i)); 9007 9008 for (j = (i - 1); j >= 0; j--) { 9009 bus_release_resource(sc->dev, 9010 SYS_RES_IRQ, 9011 sc->intr[j].rid, 9012 sc->intr[j].resource); 9013 } 9014 9015 sc->intr_count = 0; 9016 sc->num_queues = 0; 9017 sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ 9018 pci_release_msi(sc->dev); 9019 break; 9020 } 9021 9022 BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); 9023 } 9024 } while (0); 9025 9026 do { /* try allocating MSI vector resources (at least 2) */ 9027 if (sc->interrupt_mode != INTR_MODE_MSI) { 9028 break; 9029 } 9030 9031 if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || 9032 (msi_count < 1)) { 9033 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9034 break; 9035 } 9036 9037 /* ask for a single MSI vector */ 9038 num_requested = 1; 9039 9040 BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); 9041 9042 num_allocated = num_requested; 9043 if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) { 9044 BLOGE(sc, "MSI alloc failed (%d)!\n", rc); 9045 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9046 break; 9047 } 9048 9049 if (num_allocated != 1) { /* possible? */ 9050 BLOGE(sc, "MSI allocation is not 1!\n"); 9051 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9052 pci_release_msi(sc->dev); 9053 break; 9054 } 9055 9056 BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", 9057 num_requested, num_allocated); 9058 9059 /* best effort so use the number of vectors allocated to us */ 9060 sc->intr_count = num_allocated; 9061 sc->num_queues = num_allocated; 9062 9063 rid = 1; /* initial resource identifier */ 9064 9065 sc->intr[0].rid = rid; 9066 9067 if ((sc->intr[0].resource = 9068 bus_alloc_resource_any(sc->dev, 9069 SYS_RES_IRQ, 9070 &sc->intr[0].rid, 9071 RF_ACTIVE)) == NULL) { 9072 BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); 9073 sc->intr_count = 0; 9074 sc->num_queues = 0; 9075 sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ 9076 pci_release_msi(sc->dev); 9077 break; 9078 } 9079 9080 BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); 9081 } while (0); 9082 9083 do { /* try allocating INTx vector resources */ 9084 if (sc->interrupt_mode != INTR_MODE_INTX) { 9085 break; 9086 } 9087 9088 BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); 9089 9090 /* only one vector for INTx */ 9091 sc->intr_count = 1; 9092 sc->num_queues = 1; 9093 9094 rid = 0; /* initial resource identifier */ 9095 9096 sc->intr[0].rid = rid; 9097 9098 if ((sc->intr[0].resource = 9099 bus_alloc_resource_any(sc->dev, 9100 SYS_RES_IRQ, 9101 &sc->intr[0].rid, 9102 (RF_ACTIVE | RF_SHAREABLE))) == NULL) { 9103 BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); 9104 sc->intr_count = 0; 9105 sc->num_queues = 0; 9106 sc->interrupt_mode = -1; /* Failed! */ 9107 break; 9108 } 9109 9110 BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); 9111 } while (0); 9112 9113 if (sc->interrupt_mode == -1) { 9114 BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); 9115 rc = 1; 9116 } else { 9117 BLOGD(sc, DBG_LOAD, 9118 "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", 9119 sc->interrupt_mode, sc->num_queues); 9120 rc = 0; 9121 } 9122 9123 return (rc); 9124 } 9125 9126 static void 9127 bxe_interrupt_detach(struct bxe_softc *sc) 9128 { 9129 struct bxe_fastpath *fp; 9130 int i; 9131 9132 /* release interrupt resources */ 9133 for (i = 0; i < sc->intr_count; i++) { 9134 if (sc->intr[i].resource && sc->intr[i].tag) { 9135 BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); 9136 bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag); 9137 } 9138 } 9139 9140 for (i = 0; i < sc->num_queues; i++) { 9141 fp = &sc->fp[i]; 9142 if (fp->tq) { 9143 taskqueue_drain(fp->tq, &fp->tq_task); 9144 taskqueue_drain(fp->tq, &fp->tx_task); 9145 while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task, 9146 NULL)) 9147 taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task); 9148 } 9149 9150 for (i = 0; i < sc->num_queues; i++) { 9151 fp = &sc->fp[i]; 9152 if (fp->tq != NULL) { 9153 taskqueue_free(fp->tq); 9154 fp->tq = NULL; 9155 } 9156 } 9157 } 9158 9159 if (sc->sp_tq) { 9160 taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); 9161 taskqueue_free(sc->sp_tq); 9162 sc->sp_tq = NULL; 9163 } 9164 } 9165 9166 /* 9167 * Enables interrupts and attach to the ISR. 9168 * 9169 * When using multiple MSI/MSI-X vectors the first vector 9170 * is used for slowpath operations while all remaining 9171 * vectors are used for fastpath operations. If only a 9172 * single MSI/MSI-X vector is used (SINGLE_ISR) then the 9173 * ISR must look for both slowpath and fastpath completions. 9174 */ 9175 static int 9176 bxe_interrupt_attach(struct bxe_softc *sc) 9177 { 9178 struct bxe_fastpath *fp; 9179 int rc = 0; 9180 int i; 9181 9182 snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), 9183 "bxe%d_sp_tq", sc->unit); 9184 TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); 9185 sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT, 9186 taskqueue_thread_enqueue, 9187 &sc->sp_tq); 9188 taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ 9189 "%s", sc->sp_tq_name); 9190 9191 9192 for (i = 0; i < sc->num_queues; i++) { 9193 fp = &sc->fp[i]; 9194 snprintf(fp->tq_name, sizeof(fp->tq_name), 9195 "bxe%d_fp%d_tq", sc->unit, i); 9196 NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); 9197 TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp); 9198 fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT, 9199 taskqueue_thread_enqueue, 9200 &fp->tq); 9201 TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0, 9202 bxe_tx_mq_start_deferred, fp); 9203 taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ 9204 "%s", fp->tq_name); 9205 } 9206 9207 /* setup interrupt handlers */ 9208 if (sc->interrupt_mode == INTR_MODE_MSIX) { 9209 BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); 9210 9211 /* 9212 * Setup the interrupt handler. Note that we pass the driver instance 9213 * to the interrupt handler for the slowpath. 9214 */ 9215 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9216 (INTR_TYPE_NET | INTR_MPSAFE), 9217 NULL, bxe_intr_sp, sc, 9218 &sc->intr[0].tag)) != 0) { 9219 BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); 9220 goto bxe_interrupt_attach_exit; 9221 } 9222 9223 bus_describe_intr(sc->dev, sc->intr[0].resource, 9224 sc->intr[0].tag, "sp"); 9225 9226 /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */ 9227 9228 /* initialize the fastpath vectors (note the first was used for sp) */ 9229 for (i = 0; i < sc->num_queues; i++) { 9230 fp = &sc->fp[i]; 9231 BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); 9232 9233 /* 9234 * Setup the interrupt handler. Note that we pass the 9235 * fastpath context to the interrupt handler in this 9236 * case. 9237 */ 9238 if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource, 9239 (INTR_TYPE_NET | INTR_MPSAFE), 9240 NULL, bxe_intr_fp, fp, 9241 &sc->intr[i + 1].tag)) != 0) { 9242 BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", 9243 (i + 1), rc); 9244 goto bxe_interrupt_attach_exit; 9245 } 9246 9247 bus_describe_intr(sc->dev, sc->intr[i + 1].resource, 9248 sc->intr[i + 1].tag, "fp%02d", i); 9249 9250 /* bind the fastpath instance to a cpu */ 9251 if (sc->num_queues > 1) { 9252 bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i); 9253 } 9254 9255 fp->state = BXE_FP_STATE_IRQ; 9256 } 9257 } else if (sc->interrupt_mode == INTR_MODE_MSI) { 9258 BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); 9259 9260 /* 9261 * Setup the interrupt handler. Note that we pass the 9262 * driver instance to the interrupt handler which 9263 * will handle both the slowpath and fastpath. 9264 */ 9265 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9266 (INTR_TYPE_NET | INTR_MPSAFE), 9267 NULL, bxe_intr_legacy, sc, 9268 &sc->intr[0].tag)) != 0) { 9269 BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); 9270 goto bxe_interrupt_attach_exit; 9271 } 9272 9273 } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ 9274 BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); 9275 9276 /* 9277 * Setup the interrupt handler. Note that we pass the 9278 * driver instance to the interrupt handler which 9279 * will handle both the slowpath and fastpath. 9280 */ 9281 if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource, 9282 (INTR_TYPE_NET | INTR_MPSAFE), 9283 NULL, bxe_intr_legacy, sc, 9284 &sc->intr[0].tag)) != 0) { 9285 BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); 9286 goto bxe_interrupt_attach_exit; 9287 } 9288 } 9289 9290 bxe_interrupt_attach_exit: 9291 9292 return (rc); 9293 } 9294 9295 static int bxe_init_hw_common_chip(struct bxe_softc *sc); 9296 static int bxe_init_hw_common(struct bxe_softc *sc); 9297 static int bxe_init_hw_port(struct bxe_softc *sc); 9298 static int bxe_init_hw_func(struct bxe_softc *sc); 9299 static void bxe_reset_common(struct bxe_softc *sc); 9300 static void bxe_reset_port(struct bxe_softc *sc); 9301 static void bxe_reset_func(struct bxe_softc *sc); 9302 static int bxe_gunzip_init(struct bxe_softc *sc); 9303 static void bxe_gunzip_end(struct bxe_softc *sc); 9304 static int bxe_init_firmware(struct bxe_softc *sc); 9305 static void bxe_release_firmware(struct bxe_softc *sc); 9306 9307 static struct 9308 ecore_func_sp_drv_ops bxe_func_sp_drv = { 9309 .init_hw_cmn_chip = bxe_init_hw_common_chip, 9310 .init_hw_cmn = bxe_init_hw_common, 9311 .init_hw_port = bxe_init_hw_port, 9312 .init_hw_func = bxe_init_hw_func, 9313 9314 .reset_hw_cmn = bxe_reset_common, 9315 .reset_hw_port = bxe_reset_port, 9316 .reset_hw_func = bxe_reset_func, 9317 9318 .gunzip_init = bxe_gunzip_init, 9319 .gunzip_end = bxe_gunzip_end, 9320 9321 .init_fw = bxe_init_firmware, 9322 .release_fw = bxe_release_firmware, 9323 }; 9324 9325 static void 9326 bxe_init_func_obj(struct bxe_softc *sc) 9327 { 9328 sc->dmae_ready = 0; 9329 9330 ecore_init_func_obj(sc, 9331 &sc->func_obj, 9332 BXE_SP(sc, func_rdata), 9333 BXE_SP_MAPPING(sc, func_rdata), 9334 BXE_SP(sc, func_afex_rdata), 9335 BXE_SP_MAPPING(sc, func_afex_rdata), 9336 &bxe_func_sp_drv); 9337 } 9338 9339 static int 9340 bxe_init_hw(struct bxe_softc *sc, 9341 uint32_t load_code) 9342 { 9343 struct ecore_func_state_params func_params = { NULL }; 9344 int rc; 9345 9346 /* prepare the parameters for function state transitions */ 9347 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 9348 9349 func_params.f_obj = &sc->func_obj; 9350 func_params.cmd = ECORE_F_CMD_HW_INIT; 9351 9352 func_params.params.hw_init.load_phase = load_code; 9353 9354 /* 9355 * Via a plethora of function pointers, we will eventually reach 9356 * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). 9357 */ 9358 rc = ecore_func_state_change(sc, &func_params); 9359 9360 return (rc); 9361 } 9362 9363 static void 9364 bxe_fill(struct bxe_softc *sc, 9365 uint32_t addr, 9366 int fill, 9367 uint32_t len) 9368 { 9369 uint32_t i; 9370 9371 if (!(len % 4) && !(addr % 4)) { 9372 for (i = 0; i < len; i += 4) { 9373 REG_WR(sc, (addr + i), fill); 9374 } 9375 } else { 9376 for (i = 0; i < len; i++) { 9377 REG_WR8(sc, (addr + i), fill); 9378 } 9379 } 9380 } 9381 9382 /* writes FP SP data to FW - data_size in dwords */ 9383 static void 9384 bxe_wr_fp_sb_data(struct bxe_softc *sc, 9385 int fw_sb_id, 9386 uint32_t *sb_data_p, 9387 uint32_t data_size) 9388 { 9389 int index; 9390 9391 for (index = 0; index < data_size; index++) { 9392 REG_WR(sc, 9393 (BAR_CSTRORM_INTMEM + 9394 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + 9395 (sizeof(uint32_t) * index)), 9396 *(sb_data_p + index)); 9397 } 9398 } 9399 9400 static void 9401 bxe_zero_fp_sb(struct bxe_softc *sc, 9402 int fw_sb_id) 9403 { 9404 struct hc_status_block_data_e2 sb_data_e2; 9405 struct hc_status_block_data_e1x sb_data_e1x; 9406 uint32_t *sb_data_p; 9407 uint32_t data_size = 0; 9408 9409 if (!CHIP_IS_E1x(sc)) { 9410 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9411 sb_data_e2.common.state = SB_DISABLED; 9412 sb_data_e2.common.p_func.vf_valid = FALSE; 9413 sb_data_p = (uint32_t *)&sb_data_e2; 9414 data_size = (sizeof(struct hc_status_block_data_e2) / 9415 sizeof(uint32_t)); 9416 } else { 9417 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9418 sb_data_e1x.common.state = SB_DISABLED; 9419 sb_data_e1x.common.p_func.vf_valid = FALSE; 9420 sb_data_p = (uint32_t *)&sb_data_e1x; 9421 data_size = (sizeof(struct hc_status_block_data_e1x) / 9422 sizeof(uint32_t)); 9423 } 9424 9425 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9426 9427 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 9428 0, CSTORM_STATUS_BLOCK_SIZE); 9429 bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), 9430 0, CSTORM_SYNC_BLOCK_SIZE); 9431 } 9432 9433 static void 9434 bxe_wr_sp_sb_data(struct bxe_softc *sc, 9435 struct hc_sp_status_block_data *sp_sb_data) 9436 { 9437 int i; 9438 9439 for (i = 0; 9440 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); 9441 i++) { 9442 REG_WR(sc, 9443 (BAR_CSTRORM_INTMEM + 9444 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + 9445 (i * sizeof(uint32_t))), 9446 *((uint32_t *)sp_sb_data + i)); 9447 } 9448 } 9449 9450 static void 9451 bxe_zero_sp_sb(struct bxe_softc *sc) 9452 { 9453 struct hc_sp_status_block_data sp_sb_data; 9454 9455 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9456 9457 sp_sb_data.state = SB_DISABLED; 9458 sp_sb_data.p_func.vf_valid = FALSE; 9459 9460 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9461 9462 bxe_fill(sc, 9463 (BAR_CSTRORM_INTMEM + 9464 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), 9465 0, CSTORM_SP_STATUS_BLOCK_SIZE); 9466 bxe_fill(sc, 9467 (BAR_CSTRORM_INTMEM + 9468 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), 9469 0, CSTORM_SP_SYNC_BLOCK_SIZE); 9470 } 9471 9472 static void 9473 bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, 9474 int igu_sb_id, 9475 int igu_seg_id) 9476 { 9477 hc_sm->igu_sb_id = igu_sb_id; 9478 hc_sm->igu_seg_id = igu_seg_id; 9479 hc_sm->timer_value = 0xFF; 9480 hc_sm->time_to_expire = 0xFFFFFFFF; 9481 } 9482 9483 static void 9484 bxe_map_sb_state_machines(struct hc_index_data *index_data) 9485 { 9486 /* zero out state machine indices */ 9487 9488 /* rx indices */ 9489 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9490 9491 /* tx indices */ 9492 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; 9493 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; 9494 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; 9495 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; 9496 9497 /* map indices */ 9498 9499 /* rx indices */ 9500 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= 9501 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9502 9503 /* tx indices */ 9504 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= 9505 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9506 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= 9507 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9508 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= 9509 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9510 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= 9511 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); 9512 } 9513 9514 static void 9515 bxe_init_sb(struct bxe_softc *sc, 9516 bus_addr_t busaddr, 9517 int vfid, 9518 uint8_t vf_valid, 9519 int fw_sb_id, 9520 int igu_sb_id) 9521 { 9522 struct hc_status_block_data_e2 sb_data_e2; 9523 struct hc_status_block_data_e1x sb_data_e1x; 9524 struct hc_status_block_sm *hc_sm_p; 9525 uint32_t *sb_data_p; 9526 int igu_seg_id; 9527 int data_size; 9528 9529 if (CHIP_INT_MODE_IS_BC(sc)) { 9530 igu_seg_id = HC_SEG_ACCESS_NORM; 9531 } else { 9532 igu_seg_id = IGU_SEG_ACCESS_NORM; 9533 } 9534 9535 bxe_zero_fp_sb(sc, fw_sb_id); 9536 9537 if (!CHIP_IS_E1x(sc)) { 9538 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); 9539 sb_data_e2.common.state = SB_ENABLED; 9540 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); 9541 sb_data_e2.common.p_func.vf_id = vfid; 9542 sb_data_e2.common.p_func.vf_valid = vf_valid; 9543 sb_data_e2.common.p_func.vnic_id = SC_VN(sc); 9544 sb_data_e2.common.same_igu_sb_1b = TRUE; 9545 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); 9546 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); 9547 hc_sm_p = sb_data_e2.common.state_machine; 9548 sb_data_p = (uint32_t *)&sb_data_e2; 9549 data_size = (sizeof(struct hc_status_block_data_e2) / 9550 sizeof(uint32_t)); 9551 bxe_map_sb_state_machines(sb_data_e2.index_data); 9552 } else { 9553 memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); 9554 sb_data_e1x.common.state = SB_ENABLED; 9555 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); 9556 sb_data_e1x.common.p_func.vf_id = 0xff; 9557 sb_data_e1x.common.p_func.vf_valid = FALSE; 9558 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); 9559 sb_data_e1x.common.same_igu_sb_1b = TRUE; 9560 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); 9561 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); 9562 hc_sm_p = sb_data_e1x.common.state_machine; 9563 sb_data_p = (uint32_t *)&sb_data_e1x; 9564 data_size = (sizeof(struct hc_status_block_data_e1x) / 9565 sizeof(uint32_t)); 9566 bxe_map_sb_state_machines(sb_data_e1x.index_data); 9567 } 9568 9569 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); 9570 bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); 9571 9572 BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); 9573 9574 /* write indices to HW - PCI guarantees endianity of regpairs */ 9575 bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); 9576 } 9577 9578 static inline uint8_t 9579 bxe_fp_qzone_id(struct bxe_fastpath *fp) 9580 { 9581 if (CHIP_IS_E1x(fp->sc)) { 9582 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); 9583 } else { 9584 return (fp->cl_id); 9585 } 9586 } 9587 9588 static inline uint32_t 9589 bxe_rx_ustorm_prods_offset(struct bxe_softc *sc, 9590 struct bxe_fastpath *fp) 9591 { 9592 uint32_t offset = BAR_USTRORM_INTMEM; 9593 9594 if (!CHIP_IS_E1x(sc)) { 9595 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); 9596 } else { 9597 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); 9598 } 9599 9600 return (offset); 9601 } 9602 9603 static void 9604 bxe_init_eth_fp(struct bxe_softc *sc, 9605 int idx) 9606 { 9607 struct bxe_fastpath *fp = &sc->fp[idx]; 9608 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; 9609 unsigned long q_type = 0; 9610 int cos; 9611 9612 fp->sc = sc; 9613 fp->index = idx; 9614 9615 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); 9616 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); 9617 9618 fp->cl_id = (CHIP_IS_E1x(sc)) ? 9619 (SC_L_ID(sc) + idx) : 9620 /* want client ID same as IGU SB ID for non-E1 */ 9621 fp->igu_sb_id; 9622 fp->cl_qzone_id = bxe_fp_qzone_id(fp); 9623 9624 /* setup sb indices */ 9625 if (!CHIP_IS_E1x(sc)) { 9626 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; 9627 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; 9628 } else { 9629 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; 9630 fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; 9631 } 9632 9633 /* init shortcut */ 9634 fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); 9635 9636 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; 9637 9638 /* 9639 * XXX If multiple CoS is ever supported then each fastpath structure 9640 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 9641 */ 9642 for (cos = 0; cos < sc->max_cos; cos++) { 9643 cids[cos] = idx; 9644 } 9645 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; 9646 9647 /* nothing more for a VF to do */ 9648 if (IS_VF(sc)) { 9649 return; 9650 } 9651 9652 bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, 9653 fp->fw_sb_id, fp->igu_sb_id); 9654 9655 bxe_update_fp_sb_idx(fp); 9656 9657 /* Configure Queue State object */ 9658 bit_set(&q_type, ECORE_Q_TYPE_HAS_RX); 9659 bit_set(&q_type, ECORE_Q_TYPE_HAS_TX); 9660 9661 ecore_init_queue_obj(sc, 9662 &sc->sp_objs[idx].q_obj, 9663 fp->cl_id, 9664 cids, 9665 sc->max_cos, 9666 SC_FUNC(sc), 9667 BXE_SP(sc, q_rdata), 9668 BXE_SP_MAPPING(sc, q_rdata), 9669 q_type); 9670 9671 /* configure classification DBs */ 9672 ecore_init_mac_obj(sc, 9673 &sc->sp_objs[idx].mac_obj, 9674 fp->cl_id, 9675 idx, 9676 SC_FUNC(sc), 9677 BXE_SP(sc, mac_rdata), 9678 BXE_SP_MAPPING(sc, mac_rdata), 9679 ECORE_FILTER_MAC_PENDING, 9680 &sc->sp_state, 9681 ECORE_OBJ_TYPE_RX_TX, 9682 &sc->macs_pool); 9683 9684 BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", 9685 idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); 9686 } 9687 9688 static inline void 9689 bxe_update_rx_prod(struct bxe_softc *sc, 9690 struct bxe_fastpath *fp, 9691 uint16_t rx_bd_prod, 9692 uint16_t rx_cq_prod, 9693 uint16_t rx_sge_prod) 9694 { 9695 struct ustorm_eth_rx_producers rx_prods = { 0 }; 9696 uint32_t i; 9697 9698 /* update producers */ 9699 rx_prods.bd_prod = rx_bd_prod; 9700 rx_prods.cqe_prod = rx_cq_prod; 9701 rx_prods.sge_prod = rx_sge_prod; 9702 9703 /* 9704 * Make sure that the BD and SGE data is updated before updating the 9705 * producers since FW might read the BD/SGE right after the producer 9706 * is updated. 9707 * This is only applicable for weak-ordered memory model archs such 9708 * as IA-64. The following barrier is also mandatory since FW will 9709 * assumes BDs must have buffers. 9710 */ 9711 wmb(); 9712 9713 for (i = 0; i < (sizeof(rx_prods) / 4); i++) { 9714 REG_WR(sc, 9715 (fp->ustorm_rx_prods_offset + (i * 4)), 9716 ((uint32_t *)&rx_prods)[i]); 9717 } 9718 9719 wmb(); /* keep prod updates ordered */ 9720 9721 BLOGD(sc, DBG_RX, 9722 "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", 9723 fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); 9724 } 9725 9726 static void 9727 bxe_init_rx_rings(struct bxe_softc *sc) 9728 { 9729 struct bxe_fastpath *fp; 9730 int i; 9731 9732 for (i = 0; i < sc->num_queues; i++) { 9733 fp = &sc->fp[i]; 9734 9735 fp->rx_bd_cons = 0; 9736 9737 /* 9738 * Activate the BD ring... 9739 * Warning, this will generate an interrupt (to the TSTORM) 9740 * so this can only be done after the chip is initialized 9741 */ 9742 bxe_update_rx_prod(sc, fp, 9743 fp->rx_bd_prod, 9744 fp->rx_cq_prod, 9745 fp->rx_sge_prod); 9746 9747 if (i != 0) { 9748 continue; 9749 } 9750 9751 if (CHIP_IS_E1(sc)) { 9752 REG_WR(sc, 9753 (BAR_USTRORM_INTMEM + 9754 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), 9755 U64_LO(fp->rcq_dma.paddr)); 9756 REG_WR(sc, 9757 (BAR_USTRORM_INTMEM + 9758 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), 9759 U64_HI(fp->rcq_dma.paddr)); 9760 } 9761 } 9762 } 9763 9764 static void 9765 bxe_init_tx_ring_one(struct bxe_fastpath *fp) 9766 { 9767 SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1); 9768 fp->tx_db.data.zero_fill1 = 0; 9769 fp->tx_db.data.prod = 0; 9770 9771 fp->tx_pkt_prod = 0; 9772 fp->tx_pkt_cons = 0; 9773 fp->tx_bd_prod = 0; 9774 fp->tx_bd_cons = 0; 9775 fp->eth_q_stats.tx_pkts = 0; 9776 } 9777 9778 static inline void 9779 bxe_init_tx_rings(struct bxe_softc *sc) 9780 { 9781 int i; 9782 9783 for (i = 0; i < sc->num_queues; i++) { 9784 bxe_init_tx_ring_one(&sc->fp[i]); 9785 } 9786 } 9787 9788 static void 9789 bxe_init_def_sb(struct bxe_softc *sc) 9790 { 9791 struct host_sp_status_block *def_sb = sc->def_sb; 9792 bus_addr_t mapping = sc->def_sb_dma.paddr; 9793 int igu_sp_sb_index; 9794 int igu_seg_id; 9795 int port = SC_PORT(sc); 9796 int func = SC_FUNC(sc); 9797 int reg_offset, reg_offset_en5; 9798 uint64_t section; 9799 int index, sindex; 9800 struct hc_sp_status_block_data sp_sb_data; 9801 9802 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); 9803 9804 if (CHIP_INT_MODE_IS_BC(sc)) { 9805 igu_sp_sb_index = DEF_SB_IGU_ID; 9806 igu_seg_id = HC_SEG_ACCESS_DEF; 9807 } else { 9808 igu_sp_sb_index = sc->igu_dsb_id; 9809 igu_seg_id = IGU_SEG_ACCESS_DEF; 9810 } 9811 9812 /* attentions */ 9813 section = ((uint64_t)mapping + 9814 offsetof(struct host_sp_status_block, atten_status_block)); 9815 def_sb->atten_status_block.status_block_id = igu_sp_sb_index; 9816 sc->attn_state = 0; 9817 9818 reg_offset = (port) ? 9819 MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 9820 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; 9821 reg_offset_en5 = (port) ? 9822 MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : 9823 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; 9824 9825 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { 9826 /* take care of sig[0]..sig[4] */ 9827 for (sindex = 0; sindex < 4; sindex++) { 9828 sc->attn_group[index].sig[sindex] = 9829 REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); 9830 } 9831 9832 if (!CHIP_IS_E1x(sc)) { 9833 /* 9834 * enable5 is separate from the rest of the registers, 9835 * and the address skip is 4 and not 16 between the 9836 * different groups 9837 */ 9838 sc->attn_group[index].sig[4] = 9839 REG_RD(sc, (reg_offset_en5 + (0x4 * index))); 9840 } else { 9841 sc->attn_group[index].sig[4] = 0; 9842 } 9843 } 9844 9845 if (sc->devinfo.int_block == INT_BLOCK_HC) { 9846 reg_offset = (port) ? 9847 HC_REG_ATTN_MSG1_ADDR_L : 9848 HC_REG_ATTN_MSG0_ADDR_L; 9849 REG_WR(sc, reg_offset, U64_LO(section)); 9850 REG_WR(sc, (reg_offset + 4), U64_HI(section)); 9851 } else if (!CHIP_IS_E1x(sc)) { 9852 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); 9853 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); 9854 } 9855 9856 section = ((uint64_t)mapping + 9857 offsetof(struct host_sp_status_block, sp_sb)); 9858 9859 bxe_zero_sp_sb(sc); 9860 9861 /* PCI guarantees endianity of regpair */ 9862 sp_sb_data.state = SB_ENABLED; 9863 sp_sb_data.host_sb_addr.lo = U64_LO(section); 9864 sp_sb_data.host_sb_addr.hi = U64_HI(section); 9865 sp_sb_data.igu_sb_id = igu_sp_sb_index; 9866 sp_sb_data.igu_seg_id = igu_seg_id; 9867 sp_sb_data.p_func.pf_id = func; 9868 sp_sb_data.p_func.vnic_id = SC_VN(sc); 9869 sp_sb_data.p_func.vf_id = 0xff; 9870 9871 bxe_wr_sp_sb_data(sc, &sp_sb_data); 9872 9873 bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 9874 } 9875 9876 static void 9877 bxe_init_sp_ring(struct bxe_softc *sc) 9878 { 9879 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING); 9880 sc->spq_prod_idx = 0; 9881 sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; 9882 sc->spq_prod_bd = sc->spq; 9883 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); 9884 } 9885 9886 static void 9887 bxe_init_eq_ring(struct bxe_softc *sc) 9888 { 9889 union event_ring_elem *elem; 9890 int i; 9891 9892 for (i = 1; i <= NUM_EQ_PAGES; i++) { 9893 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; 9894 9895 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr + 9896 BCM_PAGE_SIZE * 9897 (i % NUM_EQ_PAGES))); 9898 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr + 9899 BCM_PAGE_SIZE * 9900 (i % NUM_EQ_PAGES))); 9901 } 9902 9903 sc->eq_cons = 0; 9904 sc->eq_prod = NUM_EQ_DESC; 9905 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; 9906 9907 atomic_store_rel_long(&sc->eq_spq_left, 9908 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), 9909 NUM_EQ_DESC) - 1)); 9910 } 9911 9912 static void 9913 bxe_init_internal_common(struct bxe_softc *sc) 9914 { 9915 int i; 9916 9917 /* 9918 * Zero this manually as its initialization is currently missing 9919 * in the initTool. 9920 */ 9921 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { 9922 REG_WR(sc, 9923 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), 9924 0); 9925 } 9926 9927 if (!CHIP_IS_E1x(sc)) { 9928 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), 9929 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); 9930 } 9931 } 9932 9933 static void 9934 bxe_init_internal(struct bxe_softc *sc, 9935 uint32_t load_code) 9936 { 9937 switch (load_code) { 9938 case FW_MSG_CODE_DRV_LOAD_COMMON: 9939 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: 9940 bxe_init_internal_common(sc); 9941 /* no break */ 9942 9943 case FW_MSG_CODE_DRV_LOAD_PORT: 9944 /* nothing to do */ 9945 /* no break */ 9946 9947 case FW_MSG_CODE_DRV_LOAD_FUNCTION: 9948 /* internal memory per function is initialized inside bxe_pf_init */ 9949 break; 9950 9951 default: 9952 BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); 9953 break; 9954 } 9955 } 9956 9957 static void 9958 storm_memset_func_cfg(struct bxe_softc *sc, 9959 struct tstorm_eth_function_common_config *tcfg, 9960 uint16_t abs_fid) 9961 { 9962 uint32_t addr; 9963 size_t size; 9964 9965 addr = (BAR_TSTRORM_INTMEM + 9966 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); 9967 size = sizeof(struct tstorm_eth_function_common_config); 9968 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); 9969 } 9970 9971 static void 9972 bxe_func_init(struct bxe_softc *sc, 9973 struct bxe_func_init_params *p) 9974 { 9975 struct tstorm_eth_function_common_config tcfg = { 0 }; 9976 9977 if (CHIP_IS_E1x(sc)) { 9978 storm_memset_func_cfg(sc, &tcfg, p->func_id); 9979 } 9980 9981 /* Enable the function in the FW */ 9982 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); 9983 storm_memset_func_en(sc, p->func_id, 1); 9984 9985 /* spq */ 9986 if (p->func_flgs & FUNC_FLG_SPQ) { 9987 storm_memset_spq_addr(sc, p->spq_map, p->func_id); 9988 REG_WR(sc, 9989 (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), 9990 p->spq_prod); 9991 } 9992 } 9993 9994 /* 9995 * Calculates the sum of vn_min_rates. 9996 * It's needed for further normalizing of the min_rates. 9997 * Returns: 9998 * sum of vn_min_rates. 9999 * or 10000 * 0 - if all the min_rates are 0. 10001 * In the later case fainess algorithm should be deactivated. 10002 * If all min rates are not zero then those that are zeroes will be set to 1. 10003 */ 10004 static void 10005 bxe_calc_vn_min(struct bxe_softc *sc, 10006 struct cmng_init_input *input) 10007 { 10008 uint32_t vn_cfg; 10009 uint32_t vn_min_rate; 10010 int all_zero = 1; 10011 int vn; 10012 10013 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10014 vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10015 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> 10016 FUNC_MF_CFG_MIN_BW_SHIFT) * 100); 10017 10018 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10019 /* skip hidden VNs */ 10020 vn_min_rate = 0; 10021 } else if (!vn_min_rate) { 10022 /* If min rate is zero - set it to 100 */ 10023 vn_min_rate = DEF_MIN_RATE; 10024 } else { 10025 all_zero = 0; 10026 } 10027 10028 input->vnic_min_rate[vn] = vn_min_rate; 10029 } 10030 10031 /* if ETS or all min rates are zeros - disable fairness */ 10032 if (BXE_IS_ETS_ENABLED(sc)) { 10033 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10034 BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); 10035 } else if (all_zero) { 10036 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10037 BLOGD(sc, DBG_LOAD, 10038 "Fariness disabled (all MIN values are zeroes)\n"); 10039 } else { 10040 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; 10041 } 10042 } 10043 10044 static inline uint16_t 10045 bxe_extract_max_cfg(struct bxe_softc *sc, 10046 uint32_t mf_cfg) 10047 { 10048 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> 10049 FUNC_MF_CFG_MAX_BW_SHIFT); 10050 10051 if (!max_cfg) { 10052 BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); 10053 max_cfg = 100; 10054 } 10055 10056 return (max_cfg); 10057 } 10058 10059 static void 10060 bxe_calc_vn_max(struct bxe_softc *sc, 10061 int vn, 10062 struct cmng_init_input *input) 10063 { 10064 uint16_t vn_max_rate; 10065 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; 10066 uint32_t max_cfg; 10067 10068 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { 10069 vn_max_rate = 0; 10070 } else { 10071 max_cfg = bxe_extract_max_cfg(sc, vn_cfg); 10072 10073 if (IS_MF_SI(sc)) { 10074 /* max_cfg in percents of linkspeed */ 10075 vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); 10076 } else { /* SD modes */ 10077 /* max_cfg is absolute in 100Mb units */ 10078 vn_max_rate = (max_cfg * 100); 10079 } 10080 } 10081 10082 BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); 10083 10084 input->vnic_max_rate[vn] = vn_max_rate; 10085 } 10086 10087 static void 10088 bxe_cmng_fns_init(struct bxe_softc *sc, 10089 uint8_t read_cfg, 10090 uint8_t cmng_type) 10091 { 10092 struct cmng_init_input input; 10093 int vn; 10094 10095 memset(&input, 0, sizeof(struct cmng_init_input)); 10096 10097 input.port_rate = sc->link_vars.line_speed; 10098 10099 if (cmng_type == CMNG_FNS_MINMAX) { 10100 /* read mf conf from shmem */ 10101 if (read_cfg) { 10102 bxe_read_mf_cfg(sc); 10103 } 10104 10105 /* get VN min rate and enable fairness if not 0 */ 10106 bxe_calc_vn_min(sc, &input); 10107 10108 /* get VN max rate */ 10109 if (sc->port.pmf) { 10110 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10111 bxe_calc_vn_max(sc, vn, &input); 10112 } 10113 } 10114 10115 /* always enable rate shaping and fairness */ 10116 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; 10117 10118 ecore_init_cmng(&input, &sc->cmng); 10119 return; 10120 } 10121 10122 /* rate shaping and fairness are disabled */ 10123 BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); 10124 } 10125 10126 static int 10127 bxe_get_cmng_fns_mode(struct bxe_softc *sc) 10128 { 10129 if (CHIP_REV_IS_SLOW(sc)) { 10130 return (CMNG_FNS_NONE); 10131 } 10132 10133 if (IS_MF(sc)) { 10134 return (CMNG_FNS_MINMAX); 10135 } 10136 10137 return (CMNG_FNS_NONE); 10138 } 10139 10140 static void 10141 storm_memset_cmng(struct bxe_softc *sc, 10142 struct cmng_init *cmng, 10143 uint8_t port) 10144 { 10145 int vn; 10146 int func; 10147 uint32_t addr; 10148 size_t size; 10149 10150 addr = (BAR_XSTRORM_INTMEM + 10151 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); 10152 size = sizeof(struct cmng_struct_per_port); 10153 ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); 10154 10155 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { 10156 func = func_by_vn(sc, vn); 10157 10158 addr = (BAR_XSTRORM_INTMEM + 10159 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); 10160 size = sizeof(struct rate_shaping_vars_per_vn); 10161 ecore_storm_memset_struct(sc, addr, size, 10162 (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); 10163 10164 addr = (BAR_XSTRORM_INTMEM + 10165 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); 10166 size = sizeof(struct fairness_vars_per_vn); 10167 ecore_storm_memset_struct(sc, addr, size, 10168 (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); 10169 } 10170 } 10171 10172 static void 10173 bxe_pf_init(struct bxe_softc *sc) 10174 { 10175 struct bxe_func_init_params func_init = { 0 }; 10176 struct event_ring_data eq_data = { { 0 } }; 10177 uint16_t flags; 10178 10179 if (!CHIP_IS_E1x(sc)) { 10180 /* reset IGU PF statistics: MSIX + ATTN */ 10181 /* PF */ 10182 REG_WR(sc, 10183 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10184 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10185 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10186 0); 10187 /* ATTN */ 10188 REG_WR(sc, 10189 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + 10190 (BXE_IGU_STAS_MSG_VF_CNT * 4) + 10191 (BXE_IGU_STAS_MSG_PF_CNT * 4) + 10192 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), 10193 0); 10194 } 10195 10196 /* function setup flags */ 10197 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); 10198 10199 /* 10200 * This flag is relevant for E1x only. 10201 * E2 doesn't have a TPA configuration in a function level. 10202 */ 10203 flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0; 10204 10205 func_init.func_flgs = flags; 10206 func_init.pf_id = SC_FUNC(sc); 10207 func_init.func_id = SC_FUNC(sc); 10208 func_init.spq_map = sc->spq_dma.paddr; 10209 func_init.spq_prod = sc->spq_prod_idx; 10210 10211 bxe_func_init(sc, &func_init); 10212 10213 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); 10214 10215 /* 10216 * Congestion management values depend on the link rate. 10217 * There is no active link so initial link rate is set to 10Gbps. 10218 * When the link comes up the congestion management values are 10219 * re-calculated according to the actual link rate. 10220 */ 10221 sc->link_vars.line_speed = SPEED_10000; 10222 bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); 10223 10224 /* Only the PMF sets the HW */ 10225 if (sc->port.pmf) { 10226 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); 10227 } 10228 10229 /* init Event Queue - PCI bus guarantees correct endainity */ 10230 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); 10231 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); 10232 eq_data.producer = sc->eq_prod; 10233 eq_data.index_id = HC_SP_INDEX_EQ_CONS; 10234 eq_data.sb_id = DEF_SB_ID; 10235 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); 10236 } 10237 10238 static void 10239 bxe_hc_int_enable(struct bxe_softc *sc) 10240 { 10241 int port = SC_PORT(sc); 10242 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10243 uint32_t val = REG_RD(sc, addr); 10244 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10245 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10246 (sc->intr_count == 1)) ? TRUE : FALSE; 10247 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10248 10249 if (msix) { 10250 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10251 HC_CONFIG_0_REG_INT_LINE_EN_0); 10252 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10253 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10254 if (single_msix) { 10255 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; 10256 } 10257 } else if (msi) { 10258 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; 10259 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10260 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10261 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10262 } else { 10263 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10264 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10265 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10266 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10267 10268 if (!CHIP_IS_E1(sc)) { 10269 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", 10270 val, port, addr); 10271 10272 REG_WR(sc, addr, val); 10273 10274 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; 10275 } 10276 } 10277 10278 if (CHIP_IS_E1(sc)) { 10279 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); 10280 } 10281 10282 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", 10283 val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10284 10285 REG_WR(sc, addr, val); 10286 10287 /* ensure that HC_CONFIG is written before leading/trailing edge config */ 10288 mb(); 10289 10290 if (!CHIP_IS_E1(sc)) { 10291 /* init leading/trailing edge */ 10292 if (IS_MF(sc)) { 10293 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10294 if (sc->port.pmf) { 10295 /* enable nig and gpio3 attention */ 10296 val |= 0x1100; 10297 } 10298 } else { 10299 val = 0xffff; 10300 } 10301 10302 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); 10303 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); 10304 } 10305 10306 /* make sure that interrupts are indeed enabled from here on */ 10307 mb(); 10308 } 10309 10310 static void 10311 bxe_igu_int_enable(struct bxe_softc *sc) 10312 { 10313 uint32_t val; 10314 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; 10315 uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && 10316 (sc->intr_count == 1)) ? TRUE : FALSE; 10317 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; 10318 10319 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10320 10321 if (msix) { 10322 val &= ~(IGU_PF_CONF_INT_LINE_EN | 10323 IGU_PF_CONF_SINGLE_ISR_EN); 10324 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10325 IGU_PF_CONF_ATTN_BIT_EN); 10326 if (single_msix) { 10327 val |= IGU_PF_CONF_SINGLE_ISR_EN; 10328 } 10329 } else if (msi) { 10330 val &= ~IGU_PF_CONF_INT_LINE_EN; 10331 val |= (IGU_PF_CONF_MSI_MSIX_EN | 10332 IGU_PF_CONF_ATTN_BIT_EN | 10333 IGU_PF_CONF_SINGLE_ISR_EN); 10334 } else { 10335 val &= ~IGU_PF_CONF_MSI_MSIX_EN; 10336 val |= (IGU_PF_CONF_INT_LINE_EN | 10337 IGU_PF_CONF_ATTN_BIT_EN | 10338 IGU_PF_CONF_SINGLE_ISR_EN); 10339 } 10340 10341 /* clean previous status - need to configure igu prior to ack*/ 10342 if ((!msix) || single_msix) { 10343 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10344 bxe_ack_int(sc); 10345 } 10346 10347 val |= IGU_PF_CONF_FUNC_EN; 10348 10349 BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", 10350 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); 10351 10352 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10353 10354 mb(); 10355 10356 /* init leading/trailing edge */ 10357 if (IS_MF(sc)) { 10358 val = (0xee0f | (1 << (SC_VN(sc) + 4))); 10359 if (sc->port.pmf) { 10360 /* enable nig and gpio3 attention */ 10361 val |= 0x1100; 10362 } 10363 } else { 10364 val = 0xffff; 10365 } 10366 10367 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); 10368 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); 10369 10370 /* make sure that interrupts are indeed enabled from here on */ 10371 mb(); 10372 } 10373 10374 static void 10375 bxe_int_enable(struct bxe_softc *sc) 10376 { 10377 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10378 bxe_hc_int_enable(sc); 10379 } else { 10380 bxe_igu_int_enable(sc); 10381 } 10382 } 10383 10384 static void 10385 bxe_hc_int_disable(struct bxe_softc *sc) 10386 { 10387 int port = SC_PORT(sc); 10388 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; 10389 uint32_t val = REG_RD(sc, addr); 10390 10391 /* 10392 * In E1 we must use only PCI configuration space to disable MSI/MSIX 10393 * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC 10394 * block 10395 */ 10396 if (CHIP_IS_E1(sc)) { 10397 /* 10398 * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register 10399 * to prevent from HC sending interrupts after we exit the function 10400 */ 10401 REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); 10402 10403 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10404 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10405 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10406 } else { 10407 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | 10408 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | 10409 HC_CONFIG_0_REG_INT_LINE_EN_0 | 10410 HC_CONFIG_0_REG_ATTN_BIT_EN_0); 10411 } 10412 10413 BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); 10414 10415 /* flush all outstanding writes */ 10416 mb(); 10417 10418 REG_WR(sc, addr, val); 10419 if (REG_RD(sc, addr) != val) { 10420 BLOGE(sc, "proper val not read from HC IGU!\n"); 10421 } 10422 } 10423 10424 static void 10425 bxe_igu_int_disable(struct bxe_softc *sc) 10426 { 10427 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 10428 10429 val &= ~(IGU_PF_CONF_MSI_MSIX_EN | 10430 IGU_PF_CONF_INT_LINE_EN | 10431 IGU_PF_CONF_ATTN_BIT_EN); 10432 10433 BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); 10434 10435 /* flush all outstanding writes */ 10436 mb(); 10437 10438 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 10439 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { 10440 BLOGE(sc, "proper val not read from IGU!\n"); 10441 } 10442 } 10443 10444 static void 10445 bxe_int_disable(struct bxe_softc *sc) 10446 { 10447 if (sc->devinfo.int_block == INT_BLOCK_HC) { 10448 bxe_hc_int_disable(sc); 10449 } else { 10450 bxe_igu_int_disable(sc); 10451 } 10452 } 10453 10454 static void 10455 bxe_nic_init(struct bxe_softc *sc, 10456 int load_code) 10457 { 10458 int i; 10459 10460 for (i = 0; i < sc->num_queues; i++) { 10461 bxe_init_eth_fp(sc, i); 10462 } 10463 10464 rmb(); /* ensure status block indices were read */ 10465 10466 bxe_init_rx_rings(sc); 10467 bxe_init_tx_rings(sc); 10468 10469 if (IS_VF(sc)) { 10470 return; 10471 } 10472 10473 /* initialize MOD_ABS interrupts */ 10474 elink_init_mod_abs_int(sc, &sc->link_vars, 10475 sc->devinfo.chip_id, 10476 sc->devinfo.shmem_base, 10477 sc->devinfo.shmem2_base, 10478 SC_PORT(sc)); 10479 10480 bxe_init_def_sb(sc); 10481 bxe_update_dsb_idx(sc); 10482 bxe_init_sp_ring(sc); 10483 bxe_init_eq_ring(sc); 10484 bxe_init_internal(sc, load_code); 10485 bxe_pf_init(sc); 10486 bxe_stats_init(sc); 10487 10488 /* flush all before enabling interrupts */ 10489 mb(); 10490 10491 bxe_int_enable(sc); 10492 10493 /* check for SPIO5 */ 10494 bxe_attn_int_deasserted0(sc, 10495 REG_RD(sc, 10496 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + 10497 SC_PORT(sc)*4)) & 10498 AEU_INPUTS_ATTN_BITS_SPIO5); 10499 } 10500 10501 static inline void 10502 bxe_init_objs(struct bxe_softc *sc) 10503 { 10504 /* mcast rules must be added to tx if tx switching is enabled */ 10505 ecore_obj_type o_type = 10506 (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : 10507 ECORE_OBJ_TYPE_RX; 10508 10509 /* RX_MODE controlling object */ 10510 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); 10511 10512 /* multicast configuration controlling object */ 10513 ecore_init_mcast_obj(sc, 10514 &sc->mcast_obj, 10515 sc->fp[0].cl_id, 10516 sc->fp[0].index, 10517 SC_FUNC(sc), 10518 SC_FUNC(sc), 10519 BXE_SP(sc, mcast_rdata), 10520 BXE_SP_MAPPING(sc, mcast_rdata), 10521 ECORE_FILTER_MCAST_PENDING, 10522 &sc->sp_state, 10523 o_type); 10524 10525 /* Setup CAM credit pools */ 10526 ecore_init_mac_credit_pool(sc, 10527 &sc->macs_pool, 10528 SC_FUNC(sc), 10529 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10530 VNICS_PER_PATH(sc)); 10531 10532 ecore_init_vlan_credit_pool(sc, 10533 &sc->vlans_pool, 10534 SC_ABS_FUNC(sc) >> 1, 10535 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : 10536 VNICS_PER_PATH(sc)); 10537 10538 /* RSS configuration object */ 10539 ecore_init_rss_config_obj(sc, 10540 &sc->rss_conf_obj, 10541 sc->fp[0].cl_id, 10542 sc->fp[0].index, 10543 SC_FUNC(sc), 10544 SC_FUNC(sc), 10545 BXE_SP(sc, rss_rdata), 10546 BXE_SP_MAPPING(sc, rss_rdata), 10547 ECORE_FILTER_RSS_CONF_PENDING, 10548 &sc->sp_state, ECORE_OBJ_TYPE_RX); 10549 } 10550 10551 /* 10552 * Initialize the function. This must be called before sending CLIENT_SETUP 10553 * for the first client. 10554 */ 10555 static inline int 10556 bxe_func_start(struct bxe_softc *sc) 10557 { 10558 struct ecore_func_state_params func_params = { NULL }; 10559 struct ecore_func_start_params *start_params = &func_params.params.start; 10560 10561 /* Prepare parameters for function state transitions */ 10562 bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT); 10563 10564 func_params.f_obj = &sc->func_obj; 10565 func_params.cmd = ECORE_F_CMD_START; 10566 10567 /* Function parameters */ 10568 start_params->mf_mode = sc->devinfo.mf_info.mf_mode; 10569 start_params->sd_vlan_tag = OVLAN(sc); 10570 10571 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 10572 start_params->network_cos_mode = STATIC_COS; 10573 } else { /* CHIP_IS_E1X */ 10574 start_params->network_cos_mode = FW_WRR; 10575 } 10576 10577 //start_params->gre_tunnel_mode = 0; 10578 //start_params->gre_tunnel_rss = 0; 10579 10580 return (ecore_func_state_change(sc, &func_params)); 10581 } 10582 10583 static int 10584 bxe_set_power_state(struct bxe_softc *sc, 10585 uint8_t state) 10586 { 10587 uint16_t pmcsr; 10588 10589 /* If there is no power capability, silently succeed */ 10590 if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { 10591 BLOGW(sc, "No power capability\n"); 10592 return (0); 10593 } 10594 10595 pmcsr = pci_read_config(sc->dev, 10596 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10597 2); 10598 10599 switch (state) { 10600 case PCI_PM_D0: 10601 pci_write_config(sc->dev, 10602 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10603 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2); 10604 10605 if (pmcsr & PCIM_PSTAT_DMASK) { 10606 /* delay required during transition out of D3hot */ 10607 DELAY(20000); 10608 } 10609 10610 break; 10611 10612 case PCI_PM_D3hot: 10613 /* XXX if there are other clients above don't shut down the power */ 10614 10615 /* don't shut down the power for emulation and FPGA */ 10616 if (CHIP_REV_IS_SLOW(sc)) { 10617 return (0); 10618 } 10619 10620 pmcsr &= ~PCIM_PSTAT_DMASK; 10621 pmcsr |= PCIM_PSTAT_D3; 10622 10623 if (sc->wol) { 10624 pmcsr |= PCIM_PSTAT_PMEENABLE; 10625 } 10626 10627 pci_write_config(sc->dev, 10628 (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), 10629 pmcsr, 4); 10630 10631 /* 10632 * No more memory access after this point until device is brought back 10633 * to D0 state. 10634 */ 10635 break; 10636 10637 default: 10638 BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n", 10639 state, pmcsr); 10640 return (-1); 10641 } 10642 10643 return (0); 10644 } 10645 10646 10647 /* return true if succeeded to acquire the lock */ 10648 static uint8_t 10649 bxe_trylock_hw_lock(struct bxe_softc *sc, 10650 uint32_t resource) 10651 { 10652 uint32_t lock_status; 10653 uint32_t resource_bit = (1 << resource); 10654 int func = SC_FUNC(sc); 10655 uint32_t hw_lock_control_reg; 10656 10657 BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); 10658 10659 /* Validating that the resource is within range */ 10660 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { 10661 BLOGD(sc, DBG_LOAD, 10662 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", 10663 resource, HW_LOCK_MAX_RESOURCE_VALUE); 10664 return (FALSE); 10665 } 10666 10667 if (func <= 5) { 10668 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); 10669 } else { 10670 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); 10671 } 10672 10673 /* try to acquire the lock */ 10674 REG_WR(sc, hw_lock_control_reg + 4, resource_bit); 10675 lock_status = REG_RD(sc, hw_lock_control_reg); 10676 if (lock_status & resource_bit) { 10677 return (TRUE); 10678 } 10679 10680 BLOGE(sc, "Failed to get a resource lock 0x%x func %d " 10681 "lock_status 0x%x resource_bit 0x%x\n", resource, func, 10682 lock_status, resource_bit); 10683 10684 return (FALSE); 10685 } 10686 10687 /* 10688 * Get the recovery leader resource id according to the engine this function 10689 * belongs to. Currently only only 2 engines is supported. 10690 */ 10691 static int 10692 bxe_get_leader_lock_resource(struct bxe_softc *sc) 10693 { 10694 if (SC_PATH(sc)) { 10695 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); 10696 } else { 10697 return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); 10698 } 10699 } 10700 10701 /* try to acquire a leader lock for current engine */ 10702 static uint8_t 10703 bxe_trylock_leader_lock(struct bxe_softc *sc) 10704 { 10705 return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10706 } 10707 10708 static int 10709 bxe_release_leader_lock(struct bxe_softc *sc) 10710 { 10711 return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); 10712 } 10713 10714 /* close gates #2, #3 and #4 */ 10715 static void 10716 bxe_set_234_gates(struct bxe_softc *sc, 10717 uint8_t close) 10718 { 10719 uint32_t val; 10720 10721 /* gates #2 and #4a are closed/opened for "not E1" only */ 10722 if (!CHIP_IS_E1(sc)) { 10723 /* #4 */ 10724 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); 10725 /* #2 */ 10726 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); 10727 } 10728 10729 /* #3 */ 10730 if (CHIP_IS_E1x(sc)) { 10731 /* prevent interrupts from HC on both ports */ 10732 val = REG_RD(sc, HC_REG_CONFIG_1); 10733 REG_WR(sc, HC_REG_CONFIG_1, 10734 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : 10735 (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); 10736 10737 val = REG_RD(sc, HC_REG_CONFIG_0); 10738 REG_WR(sc, HC_REG_CONFIG_0, 10739 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : 10740 (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); 10741 } else { 10742 /* Prevent incoming interrupts in IGU */ 10743 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 10744 10745 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, 10746 (!close) ? 10747 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : 10748 (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); 10749 } 10750 10751 BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", 10752 close ? "closing" : "opening"); 10753 10754 wmb(); 10755 } 10756 10757 /* poll for pending writes bit, it should get cleared in no more than 1s */ 10758 static int 10759 bxe_er_poll_igu_vq(struct bxe_softc *sc) 10760 { 10761 uint32_t cnt = 1000; 10762 uint32_t pend_bits = 0; 10763 10764 do { 10765 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); 10766 10767 if (pend_bits == 0) { 10768 break; 10769 } 10770 10771 DELAY(1000); 10772 } while (--cnt > 0); 10773 10774 if (cnt == 0) { 10775 BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); 10776 return (-1); 10777 } 10778 10779 return (0); 10780 } 10781 10782 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ 10783 10784 static void 10785 bxe_clp_reset_prep(struct bxe_softc *sc, 10786 uint32_t *magic_val) 10787 { 10788 /* Do some magic... */ 10789 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10790 *magic_val = val & SHARED_MF_CLP_MAGIC; 10791 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); 10792 } 10793 10794 /* restore the value of the 'magic' bit */ 10795 static void 10796 bxe_clp_reset_done(struct bxe_softc *sc, 10797 uint32_t magic_val) 10798 { 10799 /* Restore the 'magic' bit value... */ 10800 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); 10801 MFCFG_WR(sc, shared_mf_config.clp_mb, 10802 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); 10803 } 10804 10805 /* prepare for MCP reset, takes care of CLP configurations */ 10806 static void 10807 bxe_reset_mcp_prep(struct bxe_softc *sc, 10808 uint32_t *magic_val) 10809 { 10810 uint32_t shmem; 10811 uint32_t validity_offset; 10812 10813 /* set `magic' bit in order to save MF config */ 10814 if (!CHIP_IS_E1(sc)) { 10815 bxe_clp_reset_prep(sc, magic_val); 10816 } 10817 10818 /* get shmem offset */ 10819 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10820 validity_offset = 10821 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); 10822 10823 /* Clear validity map flags */ 10824 if (shmem > 0) { 10825 REG_WR(sc, shmem + validity_offset, 0); 10826 } 10827 } 10828 10829 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ 10830 #define MCP_ONE_TIMEOUT 100 /* 100 ms */ 10831 10832 static void 10833 bxe_mcp_wait_one(struct bxe_softc *sc) 10834 { 10835 /* special handling for emulation and FPGA (10 times longer) */ 10836 if (CHIP_REV_IS_SLOW(sc)) { 10837 DELAY((MCP_ONE_TIMEOUT*10) * 1000); 10838 } else { 10839 DELAY((MCP_ONE_TIMEOUT) * 1000); 10840 } 10841 } 10842 10843 /* initialize shmem_base and waits for validity signature to appear */ 10844 static int 10845 bxe_init_shmem(struct bxe_softc *sc) 10846 { 10847 int cnt = 0; 10848 uint32_t val = 0; 10849 10850 do { 10851 sc->devinfo.shmem_base = 10852 sc->link_params.shmem_base = 10853 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 10854 10855 if (sc->devinfo.shmem_base) { 10856 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 10857 if (val & SHR_MEM_VALIDITY_MB) 10858 return (0); 10859 } 10860 10861 bxe_mcp_wait_one(sc); 10862 10863 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); 10864 10865 BLOGE(sc, "BAD MCP validity signature\n"); 10866 10867 return (-1); 10868 } 10869 10870 static int 10871 bxe_reset_mcp_comp(struct bxe_softc *sc, 10872 uint32_t magic_val) 10873 { 10874 int rc = bxe_init_shmem(sc); 10875 10876 /* Restore the `magic' bit value */ 10877 if (!CHIP_IS_E1(sc)) { 10878 bxe_clp_reset_done(sc, magic_val); 10879 } 10880 10881 return (rc); 10882 } 10883 10884 static void 10885 bxe_pxp_prep(struct bxe_softc *sc) 10886 { 10887 if (!CHIP_IS_E1(sc)) { 10888 REG_WR(sc, PXP2_REG_RD_START_INIT, 0); 10889 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); 10890 wmb(); 10891 } 10892 } 10893 10894 /* 10895 * Reset the whole chip except for: 10896 * - PCIE core 10897 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) 10898 * - IGU 10899 * - MISC (including AEU) 10900 * - GRC 10901 * - RBCN, RBCP 10902 */ 10903 static void 10904 bxe_process_kill_chip_reset(struct bxe_softc *sc, 10905 uint8_t global) 10906 { 10907 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; 10908 uint32_t global_bits2, stay_reset2; 10909 10910 /* 10911 * Bits that have to be set in reset_mask2 if we want to reset 'global' 10912 * (per chip) blocks. 10913 */ 10914 global_bits2 = 10915 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | 10916 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; 10917 10918 /* 10919 * Don't reset the following blocks. 10920 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be 10921 * reset, as in 4 port device they might still be owned 10922 * by the MCP (there is only one leader per path). 10923 */ 10924 not_reset_mask1 = 10925 MISC_REGISTERS_RESET_REG_1_RST_HC | 10926 MISC_REGISTERS_RESET_REG_1_RST_PXPV | 10927 MISC_REGISTERS_RESET_REG_1_RST_PXP; 10928 10929 not_reset_mask2 = 10930 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | 10931 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | 10932 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | 10933 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | 10934 MISC_REGISTERS_RESET_REG_2_RST_RBCN | 10935 MISC_REGISTERS_RESET_REG_2_RST_GRC | 10936 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | 10937 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | 10938 MISC_REGISTERS_RESET_REG_2_RST_ATC | 10939 MISC_REGISTERS_RESET_REG_2_PGLC | 10940 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | 10941 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | 10942 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | 10943 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | 10944 MISC_REGISTERS_RESET_REG_2_UMAC0 | 10945 MISC_REGISTERS_RESET_REG_2_UMAC1; 10946 10947 /* 10948 * Keep the following blocks in reset: 10949 * - all xxMACs are handled by the elink code. 10950 */ 10951 stay_reset2 = 10952 MISC_REGISTERS_RESET_REG_2_XMAC | 10953 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; 10954 10955 /* Full reset masks according to the chip */ 10956 reset_mask1 = 0xffffffff; 10957 10958 if (CHIP_IS_E1(sc)) 10959 reset_mask2 = 0xffff; 10960 else if (CHIP_IS_E1H(sc)) 10961 reset_mask2 = 0x1ffff; 10962 else if (CHIP_IS_E2(sc)) 10963 reset_mask2 = 0xfffff; 10964 else /* CHIP_IS_E3 */ 10965 reset_mask2 = 0x3ffffff; 10966 10967 /* Don't reset global blocks unless we need to */ 10968 if (!global) 10969 reset_mask2 &= ~global_bits2; 10970 10971 /* 10972 * In case of attention in the QM, we need to reset PXP 10973 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM 10974 * because otherwise QM reset would release 'close the gates' shortly 10975 * before resetting the PXP, then the PSWRQ would send a write 10976 * request to PGLUE. Then when PXP is reset, PGLUE would try to 10977 * read the payload data from PSWWR, but PSWWR would not 10978 * respond. The write queue in PGLUE would stuck, dmae commands 10979 * would not return. Therefore it's important to reset the second 10980 * reset register (containing the 10981 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the 10982 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM 10983 * bit). 10984 */ 10985 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, 10986 reset_mask2 & (~not_reset_mask2)); 10987 10988 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 10989 reset_mask1 & (~not_reset_mask1)); 10990 10991 mb(); 10992 wmb(); 10993 10994 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, 10995 reset_mask2 & (~stay_reset2)); 10996 10997 mb(); 10998 wmb(); 10999 11000 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); 11001 wmb(); 11002 } 11003 11004 static int 11005 bxe_process_kill(struct bxe_softc *sc, 11006 uint8_t global) 11007 { 11008 int cnt = 1000; 11009 uint32_t val = 0; 11010 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; 11011 uint32_t tags_63_32 = 0; 11012 11013 /* Empty the Tetris buffer, wait for 1s */ 11014 do { 11015 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); 11016 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); 11017 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); 11018 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); 11019 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); 11020 if (CHIP_IS_E3(sc)) { 11021 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); 11022 } 11023 11024 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && 11025 ((port_is_idle_0 & 0x1) == 0x1) && 11026 ((port_is_idle_1 & 0x1) == 0x1) && 11027 (pgl_exp_rom2 == 0xffffffff) && 11028 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) 11029 break; 11030 DELAY(1000); 11031 } while (cnt-- > 0); 11032 11033 if (cnt <= 0) { 11034 BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " 11035 "are still outstanding read requests after 1s! " 11036 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " 11037 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", 11038 sr_cnt, blk_cnt, port_is_idle_0, 11039 port_is_idle_1, pgl_exp_rom2); 11040 return (-1); 11041 } 11042 11043 mb(); 11044 11045 /* Close gates #2, #3 and #4 */ 11046 bxe_set_234_gates(sc, TRUE); 11047 11048 /* Poll for IGU VQs for 57712 and newer chips */ 11049 if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { 11050 return (-1); 11051 } 11052 11053 /* XXX indicate that "process kill" is in progress to MCP */ 11054 11055 /* clear "unprepared" bit */ 11056 REG_WR(sc, MISC_REG_UNPREPARED, 0); 11057 mb(); 11058 11059 /* Make sure all is written to the chip before the reset */ 11060 wmb(); 11061 11062 /* 11063 * Wait for 1ms to empty GLUE and PCI-E core queues, 11064 * PSWHST, GRC and PSWRD Tetris buffer. 11065 */ 11066 DELAY(1000); 11067 11068 /* Prepare to chip reset: */ 11069 /* MCP */ 11070 if (global) { 11071 bxe_reset_mcp_prep(sc, &val); 11072 } 11073 11074 /* PXP */ 11075 bxe_pxp_prep(sc); 11076 mb(); 11077 11078 /* reset the chip */ 11079 bxe_process_kill_chip_reset(sc, global); 11080 mb(); 11081 11082 /* clear errors in PGB */ 11083 if (!CHIP_IS_E1(sc)) 11084 REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); 11085 11086 /* Recover after reset: */ 11087 /* MCP */ 11088 if (global && bxe_reset_mcp_comp(sc, val)) { 11089 return (-1); 11090 } 11091 11092 /* XXX add resetting the NO_MCP mode DB here */ 11093 11094 /* Open the gates #2, #3 and #4 */ 11095 bxe_set_234_gates(sc, FALSE); 11096 11097 /* XXX 11098 * IGU/AEU preparation bring back the AEU/IGU to a reset state 11099 * re-enable attentions 11100 */ 11101 11102 return (0); 11103 } 11104 11105 static int 11106 bxe_leader_reset(struct bxe_softc *sc) 11107 { 11108 int rc = 0; 11109 uint8_t global = bxe_reset_is_global(sc); 11110 uint32_t load_code; 11111 11112 /* 11113 * If not going to reset MCP, load "fake" driver to reset HW while 11114 * driver is owner of the HW. 11115 */ 11116 if (!global && !BXE_NOMCP(sc)) { 11117 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, 11118 DRV_MSG_CODE_LOAD_REQ_WITH_LFA); 11119 if (!load_code) { 11120 BLOGE(sc, "MCP response failure, aborting\n"); 11121 rc = -1; 11122 goto exit_leader_reset; 11123 } 11124 11125 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && 11126 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { 11127 BLOGE(sc, "MCP unexpected response, aborting\n"); 11128 rc = -1; 11129 goto exit_leader_reset2; 11130 } 11131 11132 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 11133 if (!load_code) { 11134 BLOGE(sc, "MCP response failure, aborting\n"); 11135 rc = -1; 11136 goto exit_leader_reset2; 11137 } 11138 } 11139 11140 /* try to recover after the failure */ 11141 if (bxe_process_kill(sc, global)) { 11142 BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); 11143 rc = -1; 11144 goto exit_leader_reset2; 11145 } 11146 11147 /* 11148 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver 11149 * state. 11150 */ 11151 bxe_set_reset_done(sc); 11152 if (global) { 11153 bxe_clear_reset_global(sc); 11154 } 11155 11156 exit_leader_reset2: 11157 11158 /* unload "fake driver" if it was loaded */ 11159 if (!global && !BXE_NOMCP(sc)) { 11160 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 11161 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 11162 } 11163 11164 exit_leader_reset: 11165 11166 sc->is_leader = 0; 11167 bxe_release_leader_lock(sc); 11168 11169 mb(); 11170 return (rc); 11171 } 11172 11173 /* 11174 * prepare INIT transition, parameters configured: 11175 * - HC configuration 11176 * - Queue's CDU context 11177 */ 11178 static void 11179 bxe_pf_q_prep_init(struct bxe_softc *sc, 11180 struct bxe_fastpath *fp, 11181 struct ecore_queue_init_params *init_params) 11182 { 11183 uint8_t cos; 11184 int cxt_index, cxt_offset; 11185 11186 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); 11187 bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); 11188 11189 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); 11190 bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); 11191 11192 /* HC rate */ 11193 init_params->rx.hc_rate = 11194 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; 11195 init_params->tx.hc_rate = 11196 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; 11197 11198 /* FW SB ID */ 11199 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; 11200 11201 /* CQ index among the SB indices */ 11202 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11203 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; 11204 11205 /* set maximum number of COSs supported by this queue */ 11206 init_params->max_cos = sc->max_cos; 11207 11208 BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", 11209 fp->index, init_params->max_cos); 11210 11211 /* set the context pointers queue object */ 11212 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { 11213 /* XXX change index/cid here if ever support multiple tx CoS */ 11214 /* fp->txdata[cos]->cid */ 11215 cxt_index = fp->index / ILT_PAGE_CIDS; 11216 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); 11217 init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; 11218 } 11219 } 11220 11221 /* set flags that are common for the Tx-only and not normal connections */ 11222 static unsigned long 11223 bxe_get_common_flags(struct bxe_softc *sc, 11224 struct bxe_fastpath *fp, 11225 uint8_t zero_stats) 11226 { 11227 unsigned long flags = 0; 11228 11229 /* PF driver will always initialize the Queue to an ACTIVE state */ 11230 bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); 11231 11232 /* 11233 * tx only connections collect statistics (on the same index as the 11234 * parent connection). The statistics are zeroed when the parent 11235 * connection is initialized. 11236 */ 11237 11238 bxe_set_bit(ECORE_Q_FLG_STATS, &flags); 11239 if (zero_stats) { 11240 bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); 11241 } 11242 11243 /* 11244 * tx only connections can support tx-switching, though their 11245 * CoS-ness doesn't survive the loopback 11246 */ 11247 if (sc->flags & BXE_TX_SWITCHING) { 11248 bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); 11249 } 11250 11251 bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); 11252 11253 return (flags); 11254 } 11255 11256 static unsigned long 11257 bxe_get_q_flags(struct bxe_softc *sc, 11258 struct bxe_fastpath *fp, 11259 uint8_t leading) 11260 { 11261 unsigned long flags = 0; 11262 11263 if (IS_MF_SD(sc)) { 11264 bxe_set_bit(ECORE_Q_FLG_OV, &flags); 11265 } 11266 11267 if (if_getcapenable(sc->ifp) & IFCAP_LRO) { 11268 bxe_set_bit(ECORE_Q_FLG_TPA, &flags); 11269 bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); 11270 } 11271 11272 if (leading) { 11273 bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); 11274 bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); 11275 } 11276 11277 bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); 11278 11279 /* merge with common flags */ 11280 return (flags | bxe_get_common_flags(sc, fp, TRUE)); 11281 } 11282 11283 static void 11284 bxe_pf_q_prep_general(struct bxe_softc *sc, 11285 struct bxe_fastpath *fp, 11286 struct ecore_general_setup_params *gen_init, 11287 uint8_t cos) 11288 { 11289 gen_init->stat_id = bxe_stats_id(fp); 11290 gen_init->spcl_id = fp->cl_id; 11291 gen_init->mtu = sc->mtu; 11292 gen_init->cos = cos; 11293 } 11294 11295 static void 11296 bxe_pf_rx_q_prep(struct bxe_softc *sc, 11297 struct bxe_fastpath *fp, 11298 struct rxq_pause_params *pause, 11299 struct ecore_rxq_setup_params *rxq_init) 11300 { 11301 uint8_t max_sge = 0; 11302 uint16_t sge_sz = 0; 11303 uint16_t tpa_agg_size = 0; 11304 11305 pause->sge_th_lo = SGE_TH_LO(sc); 11306 pause->sge_th_hi = SGE_TH_HI(sc); 11307 11308 /* validate SGE ring has enough to cross high threshold */ 11309 if (sc->dropless_fc && 11310 (pause->sge_th_hi + FW_PREFETCH_CNT) > 11311 (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { 11312 BLOGW(sc, "sge ring threshold limit\n"); 11313 } 11314 11315 /* minimum max_aggregation_size is 2*MTU (two full buffers) */ 11316 tpa_agg_size = (2 * sc->mtu); 11317 if (tpa_agg_size < sc->max_aggregation_size) { 11318 tpa_agg_size = sc->max_aggregation_size; 11319 } 11320 11321 max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; 11322 max_sge = ((max_sge + PAGES_PER_SGE - 1) & 11323 (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; 11324 sge_sz = (uint16_t)min(SGE_PAGES, 0xffff); 11325 11326 /* pause - not for e1 */ 11327 if (!CHIP_IS_E1(sc)) { 11328 pause->bd_th_lo = BD_TH_LO(sc); 11329 pause->bd_th_hi = BD_TH_HI(sc); 11330 11331 pause->rcq_th_lo = RCQ_TH_LO(sc); 11332 pause->rcq_th_hi = RCQ_TH_HI(sc); 11333 11334 /* validate rings have enough entries to cross high thresholds */ 11335 if (sc->dropless_fc && 11336 pause->bd_th_hi + FW_PREFETCH_CNT > 11337 sc->rx_ring_size) { 11338 BLOGW(sc, "rx bd ring threshold limit\n"); 11339 } 11340 11341 if (sc->dropless_fc && 11342 pause->rcq_th_hi + FW_PREFETCH_CNT > 11343 RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { 11344 BLOGW(sc, "rcq ring threshold limit\n"); 11345 } 11346 11347 pause->pri_map = 1; 11348 } 11349 11350 /* rxq setup */ 11351 rxq_init->dscr_map = fp->rx_dma.paddr; 11352 rxq_init->sge_map = fp->rx_sge_dma.paddr; 11353 rxq_init->rcq_map = fp->rcq_dma.paddr; 11354 rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); 11355 11356 /* 11357 * This should be a maximum number of data bytes that may be 11358 * placed on the BD (not including paddings). 11359 */ 11360 rxq_init->buf_sz = (fp->rx_buf_size - 11361 IP_HEADER_ALIGNMENT_PADDING); 11362 11363 rxq_init->cl_qzone_id = fp->cl_qzone_id; 11364 rxq_init->tpa_agg_sz = tpa_agg_size; 11365 rxq_init->sge_buf_sz = sge_sz; 11366 rxq_init->max_sges_pkt = max_sge; 11367 rxq_init->rss_engine_id = SC_FUNC(sc); 11368 rxq_init->mcast_engine_id = SC_FUNC(sc); 11369 11370 /* 11371 * Maximum number or simultaneous TPA aggregation for this Queue. 11372 * For PF Clients it should be the maximum available number. 11373 * VF driver(s) may want to define it to a smaller value. 11374 */ 11375 rxq_init->max_tpa_queues = MAX_AGG_QS(sc); 11376 11377 rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; 11378 rxq_init->fw_sb_id = fp->fw_sb_id; 11379 11380 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; 11381 11382 /* 11383 * configure silent vlan removal 11384 * if multi function mode is afex, then mask default vlan 11385 */ 11386 if (IS_MF_AFEX(sc)) { 11387 rxq_init->silent_removal_value = 11388 sc->devinfo.mf_info.afex_def_vlan_tag; 11389 rxq_init->silent_removal_mask = EVL_VLID_MASK; 11390 } 11391 } 11392 11393 static void 11394 bxe_pf_tx_q_prep(struct bxe_softc *sc, 11395 struct bxe_fastpath *fp, 11396 struct ecore_txq_setup_params *txq_init, 11397 uint8_t cos) 11398 { 11399 /* 11400 * XXX If multiple CoS is ever supported then each fastpath structure 11401 * will need to maintain tx producer/consumer/dma/etc values *per* CoS. 11402 * fp->txdata[cos]->tx_dma.paddr; 11403 */ 11404 txq_init->dscr_map = fp->tx_dma.paddr; 11405 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; 11406 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; 11407 txq_init->fw_sb_id = fp->fw_sb_id; 11408 11409 /* 11410 * set the TSS leading client id for TX classfication to the 11411 * leading RSS client id 11412 */ 11413 txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); 11414 } 11415 11416 /* 11417 * This function performs 2 steps in a queue state machine: 11418 * 1) RESET->INIT 11419 * 2) INIT->SETUP 11420 */ 11421 static int 11422 bxe_setup_queue(struct bxe_softc *sc, 11423 struct bxe_fastpath *fp, 11424 uint8_t leading) 11425 { 11426 struct ecore_queue_state_params q_params = { NULL }; 11427 struct ecore_queue_setup_params *setup_params = 11428 &q_params.params.setup; 11429 int rc; 11430 11431 BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); 11432 11433 bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); 11434 11435 q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; 11436 11437 /* we want to wait for completion in this context */ 11438 bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); 11439 11440 /* prepare the INIT parameters */ 11441 bxe_pf_q_prep_init(sc, fp, &q_params.params.init); 11442 11443 /* Set the command */ 11444 q_params.cmd = ECORE_Q_CMD_INIT; 11445 11446 /* Change the state to INIT */ 11447 rc = ecore_queue_state_change(sc, &q_params); 11448 if (rc) { 11449 BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc); 11450 return (rc); 11451 } 11452 11453 BLOGD(sc, DBG_LOAD, "init complete\n"); 11454 11455 /* now move the Queue to the SETUP state */ 11456 memset(setup_params, 0, sizeof(*setup_params)); 11457 11458 /* set Queue flags */ 11459 setup_params->flags = bxe_get_q_flags(sc, fp, leading); 11460 11461 /* set general SETUP parameters */ 11462 bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, 11463 FIRST_TX_COS_INDEX); 11464 11465 bxe_pf_rx_q_prep(sc, fp, 11466 &setup_params->pause_params, 11467 &setup_params->rxq_params); 11468 11469 bxe_pf_tx_q_prep(sc, fp, 11470 &setup_params->txq_params, 11471 FIRST_TX_COS_INDEX); 11472 11473 /* Set the command */ 11474 q_params.cmd = ECORE_Q_CMD_SETUP; 11475 11476 /* change the state to SETUP */ 11477 rc = ecore_queue_state_change(sc, &q_params); 11478 if (rc) { 11479 BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc); 11480 return (rc); 11481 } 11482 11483 return (rc); 11484 } 11485 11486 static int 11487 bxe_setup_leading(struct bxe_softc *sc) 11488 { 11489 return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); 11490 } 11491 11492 static int 11493 bxe_config_rss_pf(struct bxe_softc *sc, 11494 struct ecore_rss_config_obj *rss_obj, 11495 uint8_t config_hash) 11496 { 11497 struct ecore_config_rss_params params = { NULL }; 11498 int i; 11499 11500 /* 11501 * Although RSS is meaningless when there is a single HW queue we 11502 * still need it enabled in order to have HW Rx hash generated. 11503 */ 11504 11505 params.rss_obj = rss_obj; 11506 11507 bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); 11508 11509 bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); 11510 11511 /* RSS configuration */ 11512 bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); 11513 bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); 11514 bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); 11515 bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); 11516 if (rss_obj->udp_rss_v4) { 11517 bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); 11518 } 11519 if (rss_obj->udp_rss_v6) { 11520 bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); 11521 } 11522 11523 /* Hash bits */ 11524 params.rss_result_mask = MULTI_MASK; 11525 11526 memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); 11527 11528 if (config_hash) { 11529 /* RSS keys */ 11530 for (i = 0; i < sizeof(params.rss_key) / 4; i++) { 11531 params.rss_key[i] = arc4random(); 11532 } 11533 11534 bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); 11535 } 11536 11537 return (ecore_config_rss(sc, ¶ms)); 11538 } 11539 11540 static int 11541 bxe_config_rss_eth(struct bxe_softc *sc, 11542 uint8_t config_hash) 11543 { 11544 return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); 11545 } 11546 11547 static int 11548 bxe_init_rss_pf(struct bxe_softc *sc) 11549 { 11550 uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); 11551 int i; 11552 11553 /* 11554 * Prepare the initial contents of the indirection table if 11555 * RSS is enabled 11556 */ 11557 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { 11558 sc->rss_conf_obj.ind_table[i] = 11559 (sc->fp->cl_id + (i % num_eth_queues)); 11560 } 11561 11562 if (sc->udp_rss) { 11563 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; 11564 } 11565 11566 /* 11567 * For 57710 and 57711 SEARCHER configuration (rss_keys) is 11568 * per-port, so if explicit configuration is needed, do it only 11569 * for a PMF. 11570 * 11571 * For 57712 and newer it's a per-function configuration. 11572 */ 11573 return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); 11574 } 11575 11576 static int 11577 bxe_set_mac_one(struct bxe_softc *sc, 11578 uint8_t *mac, 11579 struct ecore_vlan_mac_obj *obj, 11580 uint8_t set, 11581 int mac_type, 11582 unsigned long *ramrod_flags) 11583 { 11584 struct ecore_vlan_mac_ramrod_params ramrod_param; 11585 int rc; 11586 11587 memset(&ramrod_param, 0, sizeof(ramrod_param)); 11588 11589 /* fill in general parameters */ 11590 ramrod_param.vlan_mac_obj = obj; 11591 ramrod_param.ramrod_flags = *ramrod_flags; 11592 11593 /* fill a user request section if needed */ 11594 if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { 11595 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); 11596 11597 bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); 11598 11599 /* Set the command: ADD or DEL */ 11600 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : 11601 ECORE_VLAN_MAC_DEL; 11602 } 11603 11604 rc = ecore_config_vlan_mac(sc, &ramrod_param); 11605 11606 if (rc == ECORE_EXISTS) { 11607 BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 11608 /* do not treat adding same MAC as error */ 11609 rc = 0; 11610 } else if (rc < 0) { 11611 BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); 11612 } 11613 11614 return (rc); 11615 } 11616 11617 static int 11618 bxe_set_eth_mac(struct bxe_softc *sc, 11619 uint8_t set) 11620 { 11621 unsigned long ramrod_flags = 0; 11622 11623 BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); 11624 11625 bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); 11626 11627 /* Eth MAC is set on RSS leading client (fp[0]) */ 11628 return (bxe_set_mac_one(sc, sc->link_params.mac_addr, 11629 &sc->sp_objs->mac_obj, 11630 set, ECORE_ETH_MAC, &ramrod_flags)); 11631 } 11632 11633 static int 11634 bxe_get_cur_phy_idx(struct bxe_softc *sc) 11635 { 11636 uint32_t sel_phy_idx = 0; 11637 11638 if (sc->link_params.num_phys <= 1) { 11639 return (ELINK_INT_PHY); 11640 } 11641 11642 if (sc->link_vars.link_up) { 11643 sel_phy_idx = ELINK_EXT_PHY1; 11644 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ 11645 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && 11646 (sc->link_params.phy[ELINK_EXT_PHY2].supported & 11647 ELINK_SUPPORTED_FIBRE)) 11648 sel_phy_idx = ELINK_EXT_PHY2; 11649 } else { 11650 switch (elink_phy_selection(&sc->link_params)) { 11651 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: 11652 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: 11653 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: 11654 sel_phy_idx = ELINK_EXT_PHY1; 11655 break; 11656 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: 11657 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: 11658 sel_phy_idx = ELINK_EXT_PHY2; 11659 break; 11660 } 11661 } 11662 11663 return (sel_phy_idx); 11664 } 11665 11666 static int 11667 bxe_get_link_cfg_idx(struct bxe_softc *sc) 11668 { 11669 uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); 11670 11671 /* 11672 * The selected activated PHY is always after swapping (in case PHY 11673 * swapping is enabled). So when swapping is enabled, we need to reverse 11674 * the configuration 11675 */ 11676 11677 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 11678 if (sel_phy_idx == ELINK_EXT_PHY1) 11679 sel_phy_idx = ELINK_EXT_PHY2; 11680 else if (sel_phy_idx == ELINK_EXT_PHY2) 11681 sel_phy_idx = ELINK_EXT_PHY1; 11682 } 11683 11684 return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); 11685 } 11686 11687 static void 11688 bxe_set_requested_fc(struct bxe_softc *sc) 11689 { 11690 /* 11691 * Initialize link parameters structure variables 11692 * It is recommended to turn off RX FC for jumbo frames 11693 * for better performance 11694 */ 11695 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { 11696 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; 11697 } else { 11698 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; 11699 } 11700 } 11701 11702 static void 11703 bxe_calc_fc_adv(struct bxe_softc *sc) 11704 { 11705 uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); 11706 11707 11708 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | 11709 ADVERTISED_Pause); 11710 11711 switch (sc->link_vars.ieee_fc & 11712 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { 11713 11714 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: 11715 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | 11716 ADVERTISED_Pause); 11717 break; 11718 11719 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: 11720 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; 11721 break; 11722 11723 default: 11724 break; 11725 11726 } 11727 } 11728 11729 static uint16_t 11730 bxe_get_mf_speed(struct bxe_softc *sc) 11731 { 11732 uint16_t line_speed = sc->link_vars.line_speed; 11733 if (IS_MF(sc)) { 11734 uint16_t maxCfg = 11735 bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); 11736 11737 /* calculate the current MAX line speed limit for the MF devices */ 11738 if (IS_MF_SI(sc)) { 11739 line_speed = (line_speed * maxCfg) / 100; 11740 } else { /* SD mode */ 11741 uint16_t vn_max_rate = maxCfg * 100; 11742 11743 if (vn_max_rate < line_speed) { 11744 line_speed = vn_max_rate; 11745 } 11746 } 11747 } 11748 11749 return (line_speed); 11750 } 11751 11752 static void 11753 bxe_fill_report_data(struct bxe_softc *sc, 11754 struct bxe_link_report_data *data) 11755 { 11756 uint16_t line_speed = bxe_get_mf_speed(sc); 11757 11758 memset(data, 0, sizeof(*data)); 11759 11760 /* fill the report data with the effective line speed */ 11761 data->line_speed = line_speed; 11762 11763 /* Link is down */ 11764 if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { 11765 bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); 11766 } 11767 11768 /* Full DUPLEX */ 11769 if (sc->link_vars.duplex == DUPLEX_FULL) { 11770 bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); 11771 } 11772 11773 /* Rx Flow Control is ON */ 11774 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { 11775 bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); 11776 } 11777 11778 /* Tx Flow Control is ON */ 11779 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { 11780 bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); 11781 } 11782 } 11783 11784 /* report link status to OS, should be called under phy_lock */ 11785 static void 11786 bxe_link_report_locked(struct bxe_softc *sc) 11787 { 11788 struct bxe_link_report_data cur_data; 11789 11790 /* reread mf_cfg */ 11791 if (IS_PF(sc) && !CHIP_IS_E1(sc)) { 11792 bxe_read_mf_cfg(sc); 11793 } 11794 11795 /* Read the current link report info */ 11796 bxe_fill_report_data(sc, &cur_data); 11797 11798 /* Don't report link down or exactly the same link status twice */ 11799 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || 11800 (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11801 &sc->last_reported_link.link_report_flags) && 11802 bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11803 &cur_data.link_report_flags))) { 11804 return; 11805 } 11806 11807 ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n", 11808 cur_data.link_report_flags, sc->last_reported_link.link_report_flags); 11809 sc->link_cnt++; 11810 11811 ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt); 11812 /* report new link params and remember the state for the next time */ 11813 memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); 11814 11815 if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, 11816 &cur_data.link_report_flags)) { 11817 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 11818 } else { 11819 const char *duplex; 11820 const char *flow; 11821 11822 if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, 11823 &cur_data.link_report_flags)) { 11824 duplex = "full"; 11825 ELINK_DEBUG_P0(sc, "link set to full duplex\n"); 11826 } else { 11827 duplex = "half"; 11828 ELINK_DEBUG_P0(sc, "link set to half duplex\n"); 11829 } 11830 11831 /* 11832 * Handle the FC at the end so that only these flags would be 11833 * possibly set. This way we may easily check if there is no FC 11834 * enabled. 11835 */ 11836 if (cur_data.link_report_flags) { 11837 if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11838 &cur_data.link_report_flags) && 11839 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11840 &cur_data.link_report_flags)) { 11841 flow = "ON - receive & transmit"; 11842 } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11843 &cur_data.link_report_flags) && 11844 !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11845 &cur_data.link_report_flags)) { 11846 flow = "ON - receive"; 11847 } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, 11848 &cur_data.link_report_flags) && 11849 bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, 11850 &cur_data.link_report_flags)) { 11851 flow = "ON - transmit"; 11852 } else { 11853 flow = "none"; /* possible? */ 11854 } 11855 } else { 11856 flow = "none"; 11857 } 11858 11859 if_link_state_change(sc->ifp, LINK_STATE_UP); 11860 BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", 11861 cur_data.line_speed, duplex, flow); 11862 } 11863 } 11864 11865 static void 11866 bxe_link_report(struct bxe_softc *sc) 11867 { 11868 bxe_acquire_phy_lock(sc); 11869 bxe_link_report_locked(sc); 11870 bxe_release_phy_lock(sc); 11871 } 11872 11873 static void 11874 bxe_link_status_update(struct bxe_softc *sc) 11875 { 11876 if (sc->state != BXE_STATE_OPEN) { 11877 return; 11878 } 11879 11880 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { 11881 elink_link_status_update(&sc->link_params, &sc->link_vars); 11882 } else { 11883 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | 11884 ELINK_SUPPORTED_10baseT_Full | 11885 ELINK_SUPPORTED_100baseT_Half | 11886 ELINK_SUPPORTED_100baseT_Full | 11887 ELINK_SUPPORTED_1000baseT_Full | 11888 ELINK_SUPPORTED_2500baseX_Full | 11889 ELINK_SUPPORTED_10000baseT_Full | 11890 ELINK_SUPPORTED_TP | 11891 ELINK_SUPPORTED_FIBRE | 11892 ELINK_SUPPORTED_Autoneg | 11893 ELINK_SUPPORTED_Pause | 11894 ELINK_SUPPORTED_Asym_Pause); 11895 sc->port.advertising[0] = sc->port.supported[0]; 11896 11897 sc->link_params.sc = sc; 11898 sc->link_params.port = SC_PORT(sc); 11899 sc->link_params.req_duplex[0] = DUPLEX_FULL; 11900 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; 11901 sc->link_params.req_line_speed[0] = SPEED_10000; 11902 sc->link_params.speed_cap_mask[0] = 0x7f0000; 11903 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; 11904 11905 if (CHIP_REV_IS_FPGA(sc)) { 11906 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; 11907 sc->link_vars.line_speed = ELINK_SPEED_1000; 11908 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11909 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); 11910 } else { 11911 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; 11912 sc->link_vars.line_speed = ELINK_SPEED_10000; 11913 sc->link_vars.link_status = (LINK_STATUS_LINK_UP | 11914 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); 11915 } 11916 11917 sc->link_vars.link_up = 1; 11918 11919 sc->link_vars.duplex = DUPLEX_FULL; 11920 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; 11921 11922 if (IS_PF(sc)) { 11923 REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); 11924 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11925 bxe_link_report(sc); 11926 } 11927 } 11928 11929 if (IS_PF(sc)) { 11930 if (sc->link_vars.link_up) { 11931 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11932 } else { 11933 bxe_stats_handle(sc, STATS_EVENT_STOP); 11934 } 11935 bxe_link_report(sc); 11936 } else { 11937 bxe_link_report(sc); 11938 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 11939 } 11940 } 11941 11942 static int 11943 bxe_initial_phy_init(struct bxe_softc *sc, 11944 int load_mode) 11945 { 11946 int rc, cfg_idx = bxe_get_link_cfg_idx(sc); 11947 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; 11948 struct elink_params *lp = &sc->link_params; 11949 11950 bxe_set_requested_fc(sc); 11951 11952 if (CHIP_REV_IS_SLOW(sc)) { 11953 uint32_t bond = CHIP_BOND_ID(sc); 11954 uint32_t feat = 0; 11955 11956 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { 11957 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11958 } else if (bond & 0x4) { 11959 if (CHIP_IS_E3(sc)) { 11960 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; 11961 } else { 11962 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; 11963 } 11964 } else if (bond & 0x8) { 11965 if (CHIP_IS_E3(sc)) { 11966 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; 11967 } else { 11968 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11969 } 11970 } 11971 11972 /* disable EMAC for E3 and above */ 11973 if (bond & 0x2) { 11974 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; 11975 } 11976 11977 sc->link_params.feature_config_flags |= feat; 11978 } 11979 11980 bxe_acquire_phy_lock(sc); 11981 11982 if (load_mode == LOAD_DIAG) { 11983 lp->loopback_mode = ELINK_LOOPBACK_XGXS; 11984 /* Prefer doing PHY loopback at 10G speed, if possible */ 11985 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { 11986 if (lp->speed_cap_mask[cfg_idx] & 11987 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 11988 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; 11989 } else { 11990 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; 11991 } 11992 } 11993 } 11994 11995 if (load_mode == LOAD_LOOPBACK_EXT) { 11996 lp->loopback_mode = ELINK_LOOPBACK_EXT; 11997 } 11998 11999 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 12000 12001 bxe_release_phy_lock(sc); 12002 12003 bxe_calc_fc_adv(sc); 12004 12005 if (sc->link_vars.link_up) { 12006 bxe_stats_handle(sc, STATS_EVENT_LINK_UP); 12007 bxe_link_report(sc); 12008 } 12009 12010 if (!CHIP_REV_IS_SLOW(sc)) { 12011 bxe_periodic_start(sc); 12012 } 12013 12014 sc->link_params.req_line_speed[cfg_idx] = req_line_speed; 12015 return (rc); 12016 } 12017 12018 static u_int 12019 bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12020 { 12021 struct ecore_mcast_list_elem *mc_mac = arg; 12022 12023 mc_mac += cnt; 12024 mc_mac->mac = (uint8_t *)LLADDR(sdl); 12025 12026 return (1); 12027 } 12028 12029 static int 12030 bxe_init_mcast_macs_list(struct bxe_softc *sc, 12031 struct ecore_mcast_ramrod_params *p) 12032 { 12033 if_t ifp = sc->ifp; 12034 int mc_count; 12035 struct ecore_mcast_list_elem *mc_mac; 12036 12037 ECORE_LIST_INIT(&p->mcast_list); 12038 p->mcast_list_len = 0; 12039 12040 /* XXXGL: multicast count may change later */ 12041 mc_count = if_llmaddr_count(ifp); 12042 12043 if (!mc_count) { 12044 return (0); 12045 } 12046 12047 mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF, 12048 (M_NOWAIT | M_ZERO)); 12049 if (!mc_mac) { 12050 BLOGE(sc, "Failed to allocate temp mcast list\n"); 12051 return (-1); 12052 } 12053 bzero(mc_mac, (sizeof(*mc_mac) * mc_count)); 12054 if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac); 12055 12056 for (int i = 0; i < mc_count; i ++) { 12057 ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list); 12058 BLOGD(sc, DBG_LOAD, 12059 "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n", 12060 mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2], 12061 mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5], 12062 mc_count); 12063 } 12064 12065 p->mcast_list_len = mc_count; 12066 12067 return (0); 12068 } 12069 12070 static void 12071 bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) 12072 { 12073 struct ecore_mcast_list_elem *mc_mac = 12074 ECORE_LIST_FIRST_ENTRY(&p->mcast_list, 12075 struct ecore_mcast_list_elem, 12076 link); 12077 12078 if (mc_mac) { 12079 /* only a single free as all mc_macs are in the same heap array */ 12080 free(mc_mac, M_DEVBUF); 12081 } 12082 } 12083 static int 12084 bxe_set_mc_list(struct bxe_softc *sc) 12085 { 12086 struct ecore_mcast_ramrod_params rparam = { NULL }; 12087 int rc = 0; 12088 12089 rparam.mcast_obj = &sc->mcast_obj; 12090 12091 BXE_MCAST_LOCK(sc); 12092 12093 /* first, clear all configured multicast MACs */ 12094 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); 12095 if (rc < 0) { 12096 BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); 12097 /* Manual backport parts of FreeBSD upstream r284470. */ 12098 BXE_MCAST_UNLOCK(sc); 12099 return (rc); 12100 } 12101 12102 /* configure a new MACs list */ 12103 rc = bxe_init_mcast_macs_list(sc, &rparam); 12104 if (rc) { 12105 BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); 12106 BXE_MCAST_UNLOCK(sc); 12107 return (rc); 12108 } 12109 12110 /* Now add the new MACs */ 12111 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); 12112 if (rc < 0) { 12113 BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); 12114 } 12115 12116 bxe_free_mcast_macs_list(&rparam); 12117 12118 BXE_MCAST_UNLOCK(sc); 12119 12120 return (rc); 12121 } 12122 12123 struct bxe_set_addr_ctx { 12124 struct bxe_softc *sc; 12125 unsigned long ramrod_flags; 12126 int rc; 12127 }; 12128 12129 static u_int 12130 bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 12131 { 12132 struct bxe_set_addr_ctx *ctx = arg; 12133 struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj; 12134 int rc; 12135 12136 if (ctx->rc < 0) 12137 return (0); 12138 12139 rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE, 12140 ECORE_UC_LIST_MAC, &ctx->ramrod_flags); 12141 12142 /* do not treat adding same MAC as an error */ 12143 if (rc == -EEXIST) 12144 BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); 12145 else if (rc < 0) { 12146 BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc); 12147 ctx->rc = rc; 12148 } 12149 12150 return (1); 12151 } 12152 12153 static int 12154 bxe_set_uc_list(struct bxe_softc *sc) 12155 { 12156 if_t ifp = sc->ifp; 12157 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; 12158 struct bxe_set_addr_ctx ctx = { sc, 0, 0 }; 12159 int rc; 12160 12161 /* first schedule a cleanup up of old configuration */ 12162 rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); 12163 if (rc < 0) { 12164 BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); 12165 return (rc); 12166 } 12167 12168 if_foreach_lladdr(ifp, bxe_set_addr, &ctx); 12169 if (ctx.rc < 0) 12170 return (ctx.rc); 12171 12172 /* Execute the pending commands */ 12173 bit_set(&ctx.ramrod_flags, RAMROD_CONT); 12174 return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, 12175 ECORE_UC_LIST_MAC, &ctx.ramrod_flags)); 12176 } 12177 12178 static void 12179 bxe_set_rx_mode(struct bxe_softc *sc) 12180 { 12181 if_t ifp = sc->ifp; 12182 uint32_t rx_mode = BXE_RX_MODE_NORMAL; 12183 12184 if (sc->state != BXE_STATE_OPEN) { 12185 BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); 12186 return; 12187 } 12188 12189 BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); 12190 12191 if (if_getflags(ifp) & IFF_PROMISC) { 12192 rx_mode = BXE_RX_MODE_PROMISC; 12193 } else if ((if_getflags(ifp) & IFF_ALLMULTI) || 12194 ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && 12195 CHIP_IS_E1(sc))) { 12196 rx_mode = BXE_RX_MODE_ALLMULTI; 12197 } else { 12198 if (IS_PF(sc)) { 12199 /* some multicasts */ 12200 if (bxe_set_mc_list(sc) < 0) { 12201 rx_mode = BXE_RX_MODE_ALLMULTI; 12202 } 12203 if (bxe_set_uc_list(sc) < 0) { 12204 rx_mode = BXE_RX_MODE_PROMISC; 12205 } 12206 } 12207 } 12208 12209 sc->rx_mode = rx_mode; 12210 12211 /* schedule the rx_mode command */ 12212 if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { 12213 BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); 12214 bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); 12215 return; 12216 } 12217 12218 if (IS_PF(sc)) { 12219 bxe_set_storm_rx_mode(sc); 12220 } 12221 } 12222 12223 12224 /* update flags in shmem */ 12225 static void 12226 bxe_update_drv_flags(struct bxe_softc *sc, 12227 uint32_t flags, 12228 uint32_t set) 12229 { 12230 uint32_t drv_flags; 12231 12232 if (SHMEM2_HAS(sc, drv_flags)) { 12233 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12234 drv_flags = SHMEM2_RD(sc, drv_flags); 12235 12236 if (set) { 12237 SET_FLAGS(drv_flags, flags); 12238 } else { 12239 RESET_FLAGS(drv_flags, flags); 12240 } 12241 12242 SHMEM2_WR(sc, drv_flags, drv_flags); 12243 BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); 12244 12245 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); 12246 } 12247 } 12248 12249 /* periodic timer callout routine, only runs when the interface is up */ 12250 12251 static void 12252 bxe_periodic_callout_func(void *xsc) 12253 { 12254 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12255 int i; 12256 12257 if (!BXE_CORE_TRYLOCK(sc)) { 12258 /* just bail and try again next time */ 12259 12260 if ((sc->state == BXE_STATE_OPEN) && 12261 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12262 /* schedule the next periodic callout */ 12263 callout_reset(&sc->periodic_callout, hz, 12264 bxe_periodic_callout_func, sc); 12265 } 12266 12267 return; 12268 } 12269 12270 if ((sc->state != BXE_STATE_OPEN) || 12271 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) { 12272 BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); 12273 BXE_CORE_UNLOCK(sc); 12274 return; 12275 } 12276 12277 12278 /* Check for TX timeouts on any fastpath. */ 12279 FOR_EACH_QUEUE(sc, i) { 12280 if (bxe_watchdog(sc, &sc->fp[i]) != 0) { 12281 /* Ruh-Roh, chip was reset! */ 12282 break; 12283 } 12284 } 12285 12286 if (!CHIP_REV_IS_SLOW(sc)) { 12287 /* 12288 * This barrier is needed to ensure the ordering between the writing 12289 * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and 12290 * the reading here. 12291 */ 12292 mb(); 12293 if (sc->port.pmf) { 12294 bxe_acquire_phy_lock(sc); 12295 elink_period_func(&sc->link_params, &sc->link_vars); 12296 bxe_release_phy_lock(sc); 12297 } 12298 } 12299 12300 if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) { 12301 int mb_idx = SC_FW_MB_IDX(sc); 12302 uint32_t drv_pulse; 12303 uint32_t mcp_pulse; 12304 12305 ++sc->fw_drv_pulse_wr_seq; 12306 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; 12307 12308 drv_pulse = sc->fw_drv_pulse_wr_seq; 12309 bxe_drv_pulse(sc); 12310 12311 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & 12312 MCP_PULSE_SEQ_MASK); 12313 12314 /* 12315 * The delta between driver pulse and mcp response should 12316 * be 1 (before mcp response) or 0 (after mcp response). 12317 */ 12318 if ((drv_pulse != mcp_pulse) && 12319 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { 12320 /* someone lost a heartbeat... */ 12321 BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", 12322 drv_pulse, mcp_pulse); 12323 } 12324 } 12325 12326 /* state is BXE_STATE_OPEN */ 12327 bxe_stats_handle(sc, STATS_EVENT_UPDATE); 12328 12329 BXE_CORE_UNLOCK(sc); 12330 12331 if ((sc->state == BXE_STATE_OPEN) && 12332 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) { 12333 /* schedule the next periodic callout */ 12334 callout_reset(&sc->periodic_callout, hz, 12335 bxe_periodic_callout_func, sc); 12336 } 12337 } 12338 12339 static void 12340 bxe_periodic_start(struct bxe_softc *sc) 12341 { 12342 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO); 12343 callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc); 12344 } 12345 12346 static void 12347 bxe_periodic_stop(struct bxe_softc *sc) 12348 { 12349 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP); 12350 callout_drain(&sc->periodic_callout); 12351 } 12352 12353 void 12354 bxe_parity_recover(struct bxe_softc *sc) 12355 { 12356 uint8_t global = FALSE; 12357 uint32_t error_recovered, error_unrecovered; 12358 bool is_parity; 12359 12360 12361 if ((sc->recovery_state == BXE_RECOVERY_FAILED) && 12362 (sc->state == BXE_STATE_ERROR)) { 12363 BLOGE(sc, "RECOVERY failed, " 12364 "stack notified driver is NOT running! " 12365 "Please reboot/power cycle the system.\n"); 12366 return; 12367 } 12368 12369 while (1) { 12370 BLOGD(sc, DBG_SP, 12371 "%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n", 12372 __func__, sc, sc->state, sc->recovery_state, sc->error_status); 12373 12374 switch(sc->recovery_state) { 12375 12376 case BXE_RECOVERY_INIT: 12377 is_parity = bxe_chk_parity_attn(sc, &global, FALSE); 12378 12379 if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) || 12380 (sc->error_status & BXE_ERR_MCP_ASSERT) || 12381 (sc->error_status & BXE_ERR_GLOBAL)) { 12382 12383 BXE_CORE_LOCK(sc); 12384 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12385 bxe_periodic_stop(sc); 12386 } 12387 bxe_nic_unload(sc, UNLOAD_RECOVERY, false); 12388 sc->state = BXE_STATE_ERROR; 12389 sc->recovery_state = BXE_RECOVERY_FAILED; 12390 BLOGE(sc, " No Recovery tried for error 0x%x" 12391 " stack notified driver is NOT running!" 12392 " Please reboot/power cycle the system.\n", 12393 sc->error_status); 12394 BXE_CORE_UNLOCK(sc); 12395 return; 12396 } 12397 12398 12399 /* Try to get a LEADER_LOCK HW lock */ 12400 if (bxe_trylock_leader_lock(sc)) { 12401 12402 bxe_set_reset_in_progress(sc); 12403 /* 12404 * Check if there is a global attention and if 12405 * there was a global attention, set the global 12406 * reset bit. 12407 */ 12408 if (global) { 12409 bxe_set_reset_global(sc); 12410 } 12411 sc->is_leader = 1; 12412 } 12413 12414 /* If interface has been removed - break */ 12415 12416 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12417 bxe_periodic_stop(sc); 12418 } 12419 12420 BXE_CORE_LOCK(sc); 12421 bxe_nic_unload(sc,UNLOAD_RECOVERY, false); 12422 sc->recovery_state = BXE_RECOVERY_WAIT; 12423 BXE_CORE_UNLOCK(sc); 12424 12425 /* 12426 * Ensure "is_leader", MCP command sequence and 12427 * "recovery_state" update values are seen on other 12428 * CPUs. 12429 */ 12430 mb(); 12431 break; 12432 case BXE_RECOVERY_WAIT: 12433 12434 if (sc->is_leader) { 12435 int other_engine = SC_PATH(sc) ? 0 : 1; 12436 bool other_load_status = 12437 bxe_get_load_status(sc, other_engine); 12438 bool load_status = 12439 bxe_get_load_status(sc, SC_PATH(sc)); 12440 global = bxe_reset_is_global(sc); 12441 12442 /* 12443 * In case of a parity in a global block, let 12444 * the first leader that performs a 12445 * leader_reset() reset the global blocks in 12446 * order to clear global attentions. Otherwise 12447 * the gates will remain closed for that 12448 * engine. 12449 */ 12450 if (load_status || 12451 (global && other_load_status)) { 12452 /* 12453 * Wait until all other functions get 12454 * down. 12455 */ 12456 taskqueue_enqueue_timeout(taskqueue_thread, 12457 &sc->sp_err_timeout_task, hz/10); 12458 return; 12459 } else { 12460 /* 12461 * If all other functions got down 12462 * try to bring the chip back to 12463 * normal. In any case it's an exit 12464 * point for a leader. 12465 */ 12466 if (bxe_leader_reset(sc)) { 12467 BLOGE(sc, "RECOVERY failed, " 12468 "stack notified driver is NOT running!\n"); 12469 sc->recovery_state = BXE_RECOVERY_FAILED; 12470 sc->state = BXE_STATE_ERROR; 12471 mb(); 12472 return; 12473 } 12474 12475 /* 12476 * If we are here, means that the 12477 * leader has succeeded and doesn't 12478 * want to be a leader any more. Try 12479 * to continue as a none-leader. 12480 */ 12481 break; 12482 } 12483 12484 } else { /* non-leader */ 12485 if (!bxe_reset_is_done(sc, SC_PATH(sc))) { 12486 /* 12487 * Try to get a LEADER_LOCK HW lock as 12488 * long as a former leader may have 12489 * been unloaded by the user or 12490 * released a leadership by another 12491 * reason. 12492 */ 12493 if (bxe_trylock_leader_lock(sc)) { 12494 /* 12495 * I'm a leader now! Restart a 12496 * switch case. 12497 */ 12498 sc->is_leader = 1; 12499 break; 12500 } 12501 12502 taskqueue_enqueue_timeout(taskqueue_thread, 12503 &sc->sp_err_timeout_task, hz/10); 12504 return; 12505 12506 } else { 12507 /* 12508 * If there was a global attention, wait 12509 * for it to be cleared. 12510 */ 12511 if (bxe_reset_is_global(sc)) { 12512 taskqueue_enqueue_timeout(taskqueue_thread, 12513 &sc->sp_err_timeout_task, hz/10); 12514 return; 12515 } 12516 12517 error_recovered = 12518 sc->eth_stats.recoverable_error; 12519 error_unrecovered = 12520 sc->eth_stats.unrecoverable_error; 12521 BXE_CORE_LOCK(sc); 12522 sc->recovery_state = 12523 BXE_RECOVERY_NIC_LOADING; 12524 if (bxe_nic_load(sc, LOAD_NORMAL)) { 12525 error_unrecovered++; 12526 sc->recovery_state = BXE_RECOVERY_FAILED; 12527 sc->state = BXE_STATE_ERROR; 12528 BLOGE(sc, "Recovery is NOT successfull, " 12529 " state=0x%x recovery_state=0x%x error=%x\n", 12530 sc->state, sc->recovery_state, sc->error_status); 12531 sc->error_status = 0; 12532 } else { 12533 sc->recovery_state = 12534 BXE_RECOVERY_DONE; 12535 error_recovered++; 12536 BLOGI(sc, "Recovery is successfull from errors %x," 12537 " state=0x%x" 12538 " recovery_state=0x%x \n", sc->error_status, 12539 sc->state, sc->recovery_state); 12540 mb(); 12541 } 12542 sc->error_status = 0; 12543 BXE_CORE_UNLOCK(sc); 12544 sc->eth_stats.recoverable_error = 12545 error_recovered; 12546 sc->eth_stats.unrecoverable_error = 12547 error_unrecovered; 12548 12549 return; 12550 } 12551 } 12552 default: 12553 return; 12554 } 12555 } 12556 } 12557 void 12558 bxe_handle_error(struct bxe_softc * sc) 12559 { 12560 12561 if(sc->recovery_state == BXE_RECOVERY_WAIT) { 12562 return; 12563 } 12564 if(sc->error_status) { 12565 if (sc->state == BXE_STATE_OPEN) { 12566 bxe_int_disable(sc); 12567 } 12568 if (sc->link_vars.link_up) { 12569 if_link_state_change(sc->ifp, LINK_STATE_DOWN); 12570 } 12571 sc->recovery_state = BXE_RECOVERY_INIT; 12572 BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n", 12573 sc->unit, sc->error_status, sc->recovery_state); 12574 bxe_parity_recover(sc); 12575 } 12576 } 12577 12578 static void 12579 bxe_sp_err_timeout_task(void *arg, int pending) 12580 { 12581 12582 struct bxe_softc *sc = (struct bxe_softc *)arg; 12583 12584 BLOGD(sc, DBG_SP, 12585 "%s state = 0x%x rec state=0x%x error_status=%x\n", 12586 __func__, sc->state, sc->recovery_state, sc->error_status); 12587 12588 if((sc->recovery_state == BXE_RECOVERY_FAILED) && 12589 (sc->state == BXE_STATE_ERROR)) { 12590 return; 12591 } 12592 /* if can be taken */ 12593 if ((sc->error_status) && (sc->trigger_grcdump)) { 12594 bxe_grc_dump(sc); 12595 } 12596 if (sc->recovery_state != BXE_RECOVERY_DONE) { 12597 bxe_handle_error(sc); 12598 bxe_parity_recover(sc); 12599 } else if (sc->error_status) { 12600 bxe_handle_error(sc); 12601 } 12602 12603 return; 12604 } 12605 12606 /* start the controller */ 12607 static __noinline int 12608 bxe_nic_load(struct bxe_softc *sc, 12609 int load_mode) 12610 { 12611 uint32_t val; 12612 int load_code = 0; 12613 int i, rc = 0; 12614 12615 BXE_CORE_LOCK_ASSERT(sc); 12616 12617 BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); 12618 12619 sc->state = BXE_STATE_OPENING_WAITING_LOAD; 12620 12621 if (IS_PF(sc)) { 12622 /* must be called before memory allocation and HW init */ 12623 bxe_ilt_set_info(sc); 12624 } 12625 12626 sc->last_reported_link_state = LINK_STATE_UNKNOWN; 12627 12628 bxe_set_fp_rx_buf_size(sc); 12629 12630 if (bxe_alloc_fp_buffers(sc) != 0) { 12631 BLOGE(sc, "Failed to allocate fastpath memory\n"); 12632 sc->state = BXE_STATE_CLOSED; 12633 rc = ENOMEM; 12634 goto bxe_nic_load_error0; 12635 } 12636 12637 if (bxe_alloc_mem(sc) != 0) { 12638 sc->state = BXE_STATE_CLOSED; 12639 rc = ENOMEM; 12640 goto bxe_nic_load_error0; 12641 } 12642 12643 if (bxe_alloc_fw_stats_mem(sc) != 0) { 12644 sc->state = BXE_STATE_CLOSED; 12645 rc = ENOMEM; 12646 goto bxe_nic_load_error0; 12647 } 12648 12649 if (IS_PF(sc)) { 12650 /* set pf load just before approaching the MCP */ 12651 bxe_set_pf_load(sc); 12652 12653 /* if MCP exists send load request and analyze response */ 12654 if (!BXE_NOMCP(sc)) { 12655 /* attempt to load pf */ 12656 if (bxe_nic_load_request(sc, &load_code) != 0) { 12657 sc->state = BXE_STATE_CLOSED; 12658 rc = ENXIO; 12659 goto bxe_nic_load_error1; 12660 } 12661 12662 /* what did the MCP say? */ 12663 if (bxe_nic_load_analyze_req(sc, load_code) != 0) { 12664 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12665 sc->state = BXE_STATE_CLOSED; 12666 rc = ENXIO; 12667 goto bxe_nic_load_error2; 12668 } 12669 } else { 12670 BLOGI(sc, "Device has no MCP!\n"); 12671 load_code = bxe_nic_load_no_mcp(sc); 12672 } 12673 12674 /* mark PMF if applicable */ 12675 bxe_nic_load_pmf(sc, load_code); 12676 12677 /* Init Function state controlling object */ 12678 bxe_init_func_obj(sc); 12679 12680 /* Initialize HW */ 12681 if (bxe_init_hw(sc, load_code) != 0) { 12682 BLOGE(sc, "HW init failed\n"); 12683 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12684 sc->state = BXE_STATE_CLOSED; 12685 rc = ENXIO; 12686 goto bxe_nic_load_error2; 12687 } 12688 } 12689 12690 /* set ALWAYS_ALIVE bit in shmem */ 12691 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; 12692 bxe_drv_pulse(sc); 12693 sc->flags |= BXE_NO_PULSE; 12694 12695 /* attach interrupts */ 12696 if (bxe_interrupt_attach(sc) != 0) { 12697 sc->state = BXE_STATE_CLOSED; 12698 rc = ENXIO; 12699 goto bxe_nic_load_error2; 12700 } 12701 12702 bxe_nic_init(sc, load_code); 12703 12704 /* Init per-function objects */ 12705 if (IS_PF(sc)) { 12706 bxe_init_objs(sc); 12707 // XXX bxe_iov_nic_init(sc); 12708 12709 /* set AFEX default VLAN tag to an invalid value */ 12710 sc->devinfo.mf_info.afex_def_vlan_tag = -1; 12711 // XXX bxe_nic_load_afex_dcc(sc, load_code); 12712 12713 sc->state = BXE_STATE_OPENING_WAITING_PORT; 12714 rc = bxe_func_start(sc); 12715 if (rc) { 12716 BLOGE(sc, "Function start failed! rc = %d\n", rc); 12717 bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12718 sc->state = BXE_STATE_ERROR; 12719 goto bxe_nic_load_error3; 12720 } 12721 12722 /* send LOAD_DONE command to MCP */ 12723 if (!BXE_NOMCP(sc)) { 12724 load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); 12725 if (!load_code) { 12726 BLOGE(sc, "MCP response failure, aborting\n"); 12727 sc->state = BXE_STATE_ERROR; 12728 rc = ENXIO; 12729 goto bxe_nic_load_error3; 12730 } 12731 } 12732 12733 rc = bxe_setup_leading(sc); 12734 if (rc) { 12735 BLOGE(sc, "Setup leading failed! rc = %d\n", rc); 12736 sc->state = BXE_STATE_ERROR; 12737 goto bxe_nic_load_error3; 12738 } 12739 12740 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { 12741 rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); 12742 if (rc) { 12743 BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc); 12744 sc->state = BXE_STATE_ERROR; 12745 goto bxe_nic_load_error3; 12746 } 12747 } 12748 12749 rc = bxe_init_rss_pf(sc); 12750 if (rc) { 12751 BLOGE(sc, "PF RSS init failed\n"); 12752 sc->state = BXE_STATE_ERROR; 12753 goto bxe_nic_load_error3; 12754 } 12755 } 12756 /* XXX VF */ 12757 12758 /* now when Clients are configured we are ready to work */ 12759 sc->state = BXE_STATE_OPEN; 12760 12761 /* Configure a ucast MAC */ 12762 if (IS_PF(sc)) { 12763 rc = bxe_set_eth_mac(sc, TRUE); 12764 } 12765 if (rc) { 12766 BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc); 12767 sc->state = BXE_STATE_ERROR; 12768 goto bxe_nic_load_error3; 12769 } 12770 12771 if (sc->port.pmf) { 12772 rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); 12773 if (rc) { 12774 sc->state = BXE_STATE_ERROR; 12775 goto bxe_nic_load_error3; 12776 } 12777 } 12778 12779 sc->link_params.feature_config_flags &= 12780 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; 12781 12782 /* start fast path */ 12783 12784 /* Initialize Rx filter */ 12785 bxe_set_rx_mode(sc); 12786 12787 /* start the Tx */ 12788 switch (/* XXX load_mode */LOAD_OPEN) { 12789 case LOAD_NORMAL: 12790 case LOAD_OPEN: 12791 break; 12792 12793 case LOAD_DIAG: 12794 case LOAD_LOOPBACK_EXT: 12795 sc->state = BXE_STATE_DIAG; 12796 break; 12797 12798 default: 12799 break; 12800 } 12801 12802 if (sc->port.pmf) { 12803 bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); 12804 } else { 12805 bxe_link_status_update(sc); 12806 } 12807 12808 /* start the periodic timer callout */ 12809 bxe_periodic_start(sc); 12810 12811 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { 12812 /* mark driver is loaded in shmem2 */ 12813 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); 12814 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], 12815 (val | 12816 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | 12817 DRV_FLAGS_CAPABILITIES_LOADED_L2)); 12818 } 12819 12820 /* wait for all pending SP commands to complete */ 12821 if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { 12822 BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); 12823 bxe_periodic_stop(sc); 12824 bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); 12825 return (ENXIO); 12826 } 12827 12828 /* Tell the stack the driver is running! */ 12829 if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); 12830 12831 BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); 12832 12833 return (0); 12834 12835 bxe_nic_load_error3: 12836 12837 if (IS_PF(sc)) { 12838 bxe_int_disable_sync(sc, 1); 12839 12840 /* clean out queued objects */ 12841 bxe_squeeze_objects(sc); 12842 } 12843 12844 bxe_interrupt_detach(sc); 12845 12846 bxe_nic_load_error2: 12847 12848 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 12849 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); 12850 bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); 12851 } 12852 12853 sc->port.pmf = 0; 12854 12855 bxe_nic_load_error1: 12856 12857 /* clear pf_load status, as it was already set */ 12858 if (IS_PF(sc)) { 12859 bxe_clear_pf_load(sc); 12860 } 12861 12862 bxe_nic_load_error0: 12863 12864 bxe_free_fw_stats_mem(sc); 12865 bxe_free_fp_buffers(sc); 12866 bxe_free_mem(sc); 12867 12868 return (rc); 12869 } 12870 12871 static int 12872 bxe_init_locked(struct bxe_softc *sc) 12873 { 12874 int other_engine = SC_PATH(sc) ? 0 : 1; 12875 uint8_t other_load_status, load_status; 12876 uint8_t global = FALSE; 12877 int rc; 12878 12879 BXE_CORE_LOCK_ASSERT(sc); 12880 12881 /* check if the driver is already running */ 12882 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 12883 BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); 12884 return (0); 12885 } 12886 12887 if((sc->state == BXE_STATE_ERROR) && 12888 (sc->recovery_state == BXE_RECOVERY_FAILED)) { 12889 BLOGE(sc, "Initialization not done, " 12890 "as previous recovery failed." 12891 "Reboot/Power-cycle the system\n" ); 12892 return (ENXIO); 12893 } 12894 12895 12896 bxe_set_power_state(sc, PCI_PM_D0); 12897 12898 /* 12899 * If parity occurred during the unload, then attentions and/or 12900 * RECOVERY_IN_PROGRES may still be set. If so we want the first function 12901 * loaded on the current engine to complete the recovery. Parity recovery 12902 * is only relevant for PF driver. 12903 */ 12904 if (IS_PF(sc)) { 12905 other_load_status = bxe_get_load_status(sc, other_engine); 12906 load_status = bxe_get_load_status(sc, SC_PATH(sc)); 12907 12908 if (!bxe_reset_is_done(sc, SC_PATH(sc)) || 12909 bxe_chk_parity_attn(sc, &global, TRUE)) { 12910 do { 12911 /* 12912 * If there are attentions and they are in global blocks, set 12913 * the GLOBAL_RESET bit regardless whether it will be this 12914 * function that will complete the recovery or not. 12915 */ 12916 if (global) { 12917 bxe_set_reset_global(sc); 12918 } 12919 12920 /* 12921 * Only the first function on the current engine should try 12922 * to recover in open. In case of attentions in global blocks 12923 * only the first in the chip should try to recover. 12924 */ 12925 if ((!load_status && (!global || !other_load_status)) && 12926 bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { 12927 BLOGI(sc, "Recovered during init\n"); 12928 break; 12929 } 12930 12931 /* recovery has failed... */ 12932 bxe_set_power_state(sc, PCI_PM_D3hot); 12933 sc->recovery_state = BXE_RECOVERY_FAILED; 12934 12935 BLOGE(sc, "Recovery flow hasn't properly " 12936 "completed yet, try again later. " 12937 "If you still see this message after a " 12938 "few retries then power cycle is required.\n"); 12939 12940 rc = ENXIO; 12941 goto bxe_init_locked_done; 12942 } while (0); 12943 } 12944 } 12945 12946 sc->recovery_state = BXE_RECOVERY_DONE; 12947 12948 rc = bxe_nic_load(sc, LOAD_OPEN); 12949 12950 bxe_init_locked_done: 12951 12952 if (rc) { 12953 /* Tell the stack the driver is NOT running! */ 12954 BLOGE(sc, "Initialization failed, " 12955 "stack notified driver is NOT running!\n"); 12956 if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); 12957 } 12958 12959 return (rc); 12960 } 12961 12962 static int 12963 bxe_stop_locked(struct bxe_softc *sc) 12964 { 12965 BXE_CORE_LOCK_ASSERT(sc); 12966 return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); 12967 } 12968 12969 /* 12970 * Handles controller initialization when called from an unlocked routine. 12971 * ifconfig calls this function. 12972 * 12973 * Returns: 12974 * void 12975 */ 12976 static void 12977 bxe_init(void *xsc) 12978 { 12979 struct bxe_softc *sc = (struct bxe_softc *)xsc; 12980 12981 BXE_CORE_LOCK(sc); 12982 bxe_init_locked(sc); 12983 BXE_CORE_UNLOCK(sc); 12984 } 12985 12986 static int 12987 bxe_init_ifnet(struct bxe_softc *sc) 12988 { 12989 if_t ifp; 12990 int capabilities; 12991 12992 /* ifconfig entrypoint for media type/status reporting */ 12993 ifmedia_init(&sc->ifmedia, IFM_IMASK, 12994 bxe_ifmedia_update, 12995 bxe_ifmedia_status); 12996 12997 /* set the default interface values */ 12998 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); 12999 ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); 13000 ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); 13001 13002 sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ 13003 BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media); 13004 13005 /* allocate the ifnet structure */ 13006 if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { 13007 BLOGE(sc, "Interface allocation failed!\n"); 13008 return (ENXIO); 13009 } 13010 13011 if_setsoftc(ifp, sc); 13012 if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); 13013 if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); 13014 if_setioctlfn(ifp, bxe_ioctl); 13015 if_setstartfn(ifp, bxe_tx_start); 13016 if_setgetcounterfn(ifp, bxe_get_counter); 13017 if_settransmitfn(ifp, bxe_tx_mq_start); 13018 if_setqflushfn(ifp, bxe_mq_flush); 13019 if_setinitfn(ifp, bxe_init); 13020 if_setmtu(ifp, sc->mtu); 13021 if_sethwassist(ifp, (CSUM_IP | 13022 CSUM_TCP | 13023 CSUM_UDP | 13024 CSUM_TSO | 13025 CSUM_TCP_IPV6 | 13026 CSUM_UDP_IPV6)); 13027 13028 capabilities = 13029 (IFCAP_VLAN_MTU | 13030 IFCAP_VLAN_HWTAGGING | 13031 IFCAP_VLAN_HWTSO | 13032 IFCAP_VLAN_HWFILTER | 13033 IFCAP_VLAN_HWCSUM | 13034 IFCAP_HWCSUM | 13035 IFCAP_JUMBO_MTU | 13036 IFCAP_LRO | 13037 IFCAP_TSO4 | 13038 IFCAP_TSO6 | 13039 IFCAP_WOL_MAGIC); 13040 if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ 13041 if_setcapenable(ifp, if_getcapabilities(ifp)); 13042 if_setbaudrate(ifp, IF_Gbps(10)); 13043 /* XXX */ 13044 if_setsendqlen(ifp, sc->tx_ring_size); 13045 if_setsendqready(ifp); 13046 /* XXX */ 13047 13048 sc->ifp = ifp; 13049 13050 /* attach to the Ethernet interface list */ 13051 ether_ifattach(ifp, sc->link_params.mac_addr); 13052 13053 /* Attach driver debugnet methods. */ 13054 DEBUGNET_SET(ifp, bxe); 13055 13056 return (0); 13057 } 13058 13059 static void 13060 bxe_deallocate_bars(struct bxe_softc *sc) 13061 { 13062 int i; 13063 13064 for (i = 0; i < MAX_BARS; i++) { 13065 if (sc->bar[i].resource != NULL) { 13066 bus_release_resource(sc->dev, 13067 SYS_RES_MEMORY, 13068 sc->bar[i].rid, 13069 sc->bar[i].resource); 13070 BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", 13071 i, PCIR_BAR(i)); 13072 } 13073 } 13074 } 13075 13076 static int 13077 bxe_allocate_bars(struct bxe_softc *sc) 13078 { 13079 u_int flags; 13080 int i; 13081 13082 memset(sc->bar, 0, sizeof(sc->bar)); 13083 13084 for (i = 0; i < MAX_BARS; i++) { 13085 13086 /* memory resources reside at BARs 0, 2, 4 */ 13087 /* Run `pciconf -lb` to see mappings */ 13088 if ((i != 0) && (i != 2) && (i != 4)) { 13089 continue; 13090 } 13091 13092 sc->bar[i].rid = PCIR_BAR(i); 13093 13094 flags = RF_ACTIVE; 13095 if (i == 0) { 13096 flags |= RF_SHAREABLE; 13097 } 13098 13099 if ((sc->bar[i].resource = 13100 bus_alloc_resource_any(sc->dev, 13101 SYS_RES_MEMORY, 13102 &sc->bar[i].rid, 13103 flags)) == NULL) { 13104 return (0); 13105 } 13106 13107 sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); 13108 sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); 13109 sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); 13110 13111 BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n", 13112 i, PCIR_BAR(i), 13113 rman_get_start(sc->bar[i].resource), 13114 rman_get_end(sc->bar[i].resource), 13115 rman_get_size(sc->bar[i].resource), 13116 (uintmax_t)sc->bar[i].kva); 13117 } 13118 13119 return (0); 13120 } 13121 13122 static void 13123 bxe_get_function_num(struct bxe_softc *sc) 13124 { 13125 uint32_t val = 0; 13126 13127 /* 13128 * Read the ME register to get the function number. The ME register 13129 * holds the relative-function number and absolute-function number. The 13130 * absolute-function number appears only in E2 and above. Before that 13131 * these bits always contained zero, therefore we cannot blindly use them. 13132 */ 13133 13134 val = REG_RD(sc, BAR_ME_REGISTER); 13135 13136 sc->pfunc_rel = 13137 (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); 13138 sc->path_id = 13139 (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; 13140 13141 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13142 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); 13143 } else { 13144 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); 13145 } 13146 13147 BLOGD(sc, DBG_LOAD, 13148 "Relative function %d, Absolute function %d, Path %d\n", 13149 sc->pfunc_rel, sc->pfunc_abs, sc->path_id); 13150 } 13151 13152 static uint32_t 13153 bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc) 13154 { 13155 uint32_t shmem2_size; 13156 uint32_t offset; 13157 uint32_t mf_cfg_offset_value; 13158 13159 /* Non 57712 */ 13160 offset = (SHMEM_RD(sc, func_mb) + 13161 (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); 13162 13163 /* 57712 plus */ 13164 if (sc->devinfo.shmem2_base != 0) { 13165 shmem2_size = SHMEM2_RD(sc, size); 13166 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { 13167 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); 13168 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { 13169 offset = mf_cfg_offset_value; 13170 } 13171 } 13172 } 13173 13174 return (offset); 13175 } 13176 13177 static uint32_t 13178 bxe_pcie_capability_read(struct bxe_softc *sc, 13179 int reg, 13180 int width) 13181 { 13182 int pcie_reg; 13183 13184 /* ensure PCIe capability is enabled */ 13185 if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) { 13186 if (pcie_reg != 0) { 13187 BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); 13188 return (pci_read_config(sc->dev, (pcie_reg + reg), width)); 13189 } 13190 } 13191 13192 BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); 13193 13194 return (0); 13195 } 13196 13197 static uint8_t 13198 bxe_is_pcie_pending(struct bxe_softc *sc) 13199 { 13200 return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) & 13201 PCIEM_STA_TRANSACTION_PND); 13202 } 13203 13204 /* 13205 * Walk the PCI capabiites list for the device to find what features are 13206 * supported. These capabilites may be enabled/disabled by firmware so it's 13207 * best to walk the list rather than make assumptions. 13208 */ 13209 static void 13210 bxe_probe_pci_caps(struct bxe_softc *sc) 13211 { 13212 uint16_t link_status; 13213 int reg; 13214 13215 /* check if PCI Power Management is enabled */ 13216 if (pci_find_cap(sc->dev, PCIY_PMG, ®) == 0) { 13217 if (reg != 0) { 13218 BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); 13219 13220 sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; 13221 sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; 13222 } 13223 } 13224 13225 link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2); 13226 13227 /* handle PCIe 2.0 workarounds for 57710 */ 13228 if (CHIP_IS_E1(sc)) { 13229 /* workaround for 57710 errata E4_57710_27462 */ 13230 sc->devinfo.pcie_link_speed = 13231 (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; 13232 13233 /* workaround for 57710 errata E4_57710_27488 */ 13234 sc->devinfo.pcie_link_width = 13235 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13236 if (sc->devinfo.pcie_link_speed > 1) { 13237 sc->devinfo.pcie_link_width = 13238 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1; 13239 } 13240 } else { 13241 sc->devinfo.pcie_link_speed = 13242 (link_status & PCIEM_LINK_STA_SPEED); 13243 sc->devinfo.pcie_link_width = 13244 ((link_status & PCIEM_LINK_STA_WIDTH) >> 4); 13245 } 13246 13247 BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", 13248 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); 13249 13250 sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; 13251 sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; 13252 13253 /* check if MSI capability is enabled */ 13254 if (pci_find_cap(sc->dev, PCIY_MSI, ®) == 0) { 13255 if (reg != 0) { 13256 BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); 13257 13258 sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; 13259 sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; 13260 } 13261 } 13262 13263 /* check if MSI-X capability is enabled */ 13264 if (pci_find_cap(sc->dev, PCIY_MSIX, ®) == 0) { 13265 if (reg != 0) { 13266 BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); 13267 13268 sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; 13269 sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; 13270 } 13271 } 13272 } 13273 13274 static int 13275 bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc) 13276 { 13277 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13278 uint32_t val; 13279 13280 /* get the outer vlan if we're in switch-dependent mode */ 13281 13282 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13283 mf_info->ext_id = (uint16_t)val; 13284 13285 mf_info->multi_vnics_mode = 1; 13286 13287 if (!VALID_OVLAN(mf_info->ext_id)) { 13288 BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); 13289 return (1); 13290 } 13291 13292 /* get the capabilities */ 13293 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13294 FUNC_MF_CFG_PROTOCOL_ISCSI) { 13295 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; 13296 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == 13297 FUNC_MF_CFG_PROTOCOL_FCOE) { 13298 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; 13299 } else { 13300 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; 13301 } 13302 13303 mf_info->vnics_per_port = 13304 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13305 13306 return (0); 13307 } 13308 13309 static uint32_t 13310 bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc) 13311 { 13312 uint32_t retval = 0; 13313 uint32_t val; 13314 13315 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13316 13317 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { 13318 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { 13319 retval |= MF_PROTO_SUPPORT_ETHERNET; 13320 } 13321 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { 13322 retval |= MF_PROTO_SUPPORT_ISCSI; 13323 } 13324 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { 13325 retval |= MF_PROTO_SUPPORT_FCOE; 13326 } 13327 } 13328 13329 return (retval); 13330 } 13331 13332 static int 13333 bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc) 13334 { 13335 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13336 uint32_t val; 13337 13338 /* 13339 * There is no outer vlan if we're in switch-independent mode. 13340 * If the mac is valid then assume multi-function. 13341 */ 13342 13343 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); 13344 13345 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); 13346 13347 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13348 13349 mf_info->vnics_per_port = 13350 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13351 13352 return (0); 13353 } 13354 13355 static int 13356 bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc) 13357 { 13358 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13359 uint32_t e1hov_tag; 13360 uint32_t func_config; 13361 uint32_t niv_config; 13362 13363 mf_info->multi_vnics_mode = 1; 13364 13365 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13366 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13367 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); 13368 13369 mf_info->ext_id = 13370 (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> 13371 FUNC_MF_CFG_E1HOV_TAG_SHIFT); 13372 13373 mf_info->default_vlan = 13374 (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> 13375 FUNC_MF_CFG_AFEX_VLAN_SHIFT); 13376 13377 mf_info->niv_allowed_priorities = 13378 (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> 13379 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); 13380 13381 mf_info->niv_default_cos = 13382 (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> 13383 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); 13384 13385 mf_info->afex_vlan_mode = 13386 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> 13387 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); 13388 13389 mf_info->niv_mba_enabled = 13390 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> 13391 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); 13392 13393 mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); 13394 13395 mf_info->vnics_per_port = 13396 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; 13397 13398 return (0); 13399 } 13400 13401 static int 13402 bxe_check_valid_mf_cfg(struct bxe_softc *sc) 13403 { 13404 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13405 uint32_t mf_cfg1; 13406 uint32_t mf_cfg2; 13407 uint32_t ovlan1; 13408 uint32_t ovlan2; 13409 uint8_t i, j; 13410 13411 BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", 13412 SC_PORT(sc)); 13413 BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", 13414 mf_info->mf_config[SC_VN(sc)]); 13415 BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", 13416 mf_info->multi_vnics_mode); 13417 BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", 13418 mf_info->vnics_per_port); 13419 BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", 13420 mf_info->ext_id); 13421 BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", 13422 mf_info->min_bw[0], mf_info->min_bw[1], 13423 mf_info->min_bw[2], mf_info->min_bw[3]); 13424 BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", 13425 mf_info->max_bw[0], mf_info->max_bw[1], 13426 mf_info->max_bw[2], mf_info->max_bw[3]); 13427 BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", 13428 sc->mac_addr_str); 13429 13430 /* various MF mode sanity checks... */ 13431 13432 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { 13433 BLOGE(sc, "Enumerated function %d is marked as hidden\n", 13434 SC_PORT(sc)); 13435 return (1); 13436 } 13437 13438 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { 13439 BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", 13440 mf_info->vnics_per_port, mf_info->multi_vnics_mode); 13441 return (1); 13442 } 13443 13444 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13445 /* vnic id > 0 must have valid ovlan in switch-dependent mode */ 13446 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { 13447 BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", 13448 SC_VN(sc), OVLAN(sc)); 13449 return (1); 13450 } 13451 13452 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { 13453 BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", 13454 mf_info->multi_vnics_mode, OVLAN(sc)); 13455 return (1); 13456 } 13457 13458 /* 13459 * Verify all functions are either MF or SF mode. If MF, make sure 13460 * sure that all non-hidden functions have a valid ovlan. If SF, 13461 * make sure that all non-hidden functions have an invalid ovlan. 13462 */ 13463 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13464 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13465 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13466 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13467 (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || 13468 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { 13469 BLOGE(sc, "mf_mode=SD function %d MF config " 13470 "mismatch, multi_vnics_mode=%d ovlan=%d\n", 13471 i, mf_info->multi_vnics_mode, ovlan1); 13472 return (1); 13473 } 13474 } 13475 13476 /* Verify all funcs on the same port each have a different ovlan. */ 13477 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13478 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); 13479 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); 13480 /* iterate from the next function on the port to the max func */ 13481 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { 13482 mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); 13483 ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); 13484 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && 13485 VALID_OVLAN(ovlan1) && 13486 !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && 13487 VALID_OVLAN(ovlan2) && 13488 (ovlan1 == ovlan2)) { 13489 BLOGE(sc, "mf_mode=SD functions %d and %d " 13490 "have the same ovlan (%d)\n", 13491 i, j, ovlan1); 13492 return (1); 13493 } 13494 } 13495 } 13496 } /* MULTI_FUNCTION_SD */ 13497 13498 return (0); 13499 } 13500 13501 static int 13502 bxe_get_mf_cfg_info(struct bxe_softc *sc) 13503 { 13504 struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; 13505 uint32_t val, mac_upper; 13506 uint8_t i, vnic; 13507 13508 /* initialize mf_info defaults */ 13509 mf_info->vnics_per_port = 1; 13510 mf_info->multi_vnics_mode = FALSE; 13511 mf_info->path_has_ovlan = FALSE; 13512 mf_info->mf_mode = SINGLE_FUNCTION; 13513 13514 if (!CHIP_IS_MF_CAP(sc)) { 13515 return (0); 13516 } 13517 13518 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { 13519 BLOGE(sc, "Invalid mf_cfg_base!\n"); 13520 return (1); 13521 } 13522 13523 /* get the MF mode (switch dependent / independent / single-function) */ 13524 13525 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13526 13527 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) 13528 { 13529 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: 13530 13531 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13532 13533 /* check for legal upper mac bytes */ 13534 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { 13535 mf_info->mf_mode = MULTI_FUNCTION_SI; 13536 } else { 13537 BLOGE(sc, "Invalid config for Switch Independent mode\n"); 13538 } 13539 13540 break; 13541 13542 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: 13543 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: 13544 13545 /* get outer vlan configuration */ 13546 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); 13547 13548 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != 13549 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { 13550 mf_info->mf_mode = MULTI_FUNCTION_SD; 13551 } else { 13552 BLOGE(sc, "Invalid config for Switch Dependent mode\n"); 13553 } 13554 13555 break; 13556 13557 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: 13558 13559 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ 13560 return (0); 13561 13562 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: 13563 13564 /* 13565 * Mark MF mode as NIV if MCP version includes NPAR-SD support 13566 * and the MAC address is valid. 13567 */ 13568 mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13569 13570 if ((SHMEM2_HAS(sc, afex_driver_support)) && 13571 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { 13572 mf_info->mf_mode = MULTI_FUNCTION_AFEX; 13573 } else { 13574 BLOGE(sc, "Invalid config for AFEX mode\n"); 13575 } 13576 13577 break; 13578 13579 default: 13580 13581 BLOGE(sc, "Unknown MF mode (0x%08x)\n", 13582 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); 13583 13584 return (1); 13585 } 13586 13587 /* set path mf_mode (which could be different than function mf_mode) */ 13588 if (mf_info->mf_mode == MULTI_FUNCTION_SD) { 13589 mf_info->path_has_ovlan = TRUE; 13590 } else if (mf_info->mf_mode == SINGLE_FUNCTION) { 13591 /* 13592 * Decide on path multi vnics mode. If we're not in MF mode and in 13593 * 4-port mode, this is good enough to check vnic-0 of the other port 13594 * on the same path 13595 */ 13596 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { 13597 uint8_t other_port = !(PORT_ID(sc) & 1); 13598 uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); 13599 13600 val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); 13601 13602 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; 13603 } 13604 } 13605 13606 if (mf_info->mf_mode == SINGLE_FUNCTION) { 13607 /* invalid MF config */ 13608 if (SC_VN(sc) >= 1) { 13609 BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); 13610 return (1); 13611 } 13612 13613 return (0); 13614 } 13615 13616 /* get the MF configuration */ 13617 mf_info->mf_config[SC_VN(sc)] = 13618 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); 13619 13620 switch(mf_info->mf_mode) 13621 { 13622 case MULTI_FUNCTION_SD: 13623 13624 bxe_get_shmem_mf_cfg_info_sd(sc); 13625 break; 13626 13627 case MULTI_FUNCTION_SI: 13628 13629 bxe_get_shmem_mf_cfg_info_si(sc); 13630 break; 13631 13632 case MULTI_FUNCTION_AFEX: 13633 13634 bxe_get_shmem_mf_cfg_info_niv(sc); 13635 break; 13636 13637 default: 13638 13639 BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", 13640 mf_info->mf_mode); 13641 return (1); 13642 } 13643 13644 /* get the congestion management parameters */ 13645 13646 vnic = 0; 13647 FOREACH_ABS_FUNC_IN_PORT(sc, i) { 13648 /* get min/max bw */ 13649 val = MFCFG_RD(sc, func_mf_config[i].config); 13650 mf_info->min_bw[vnic] = 13651 ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); 13652 mf_info->max_bw[vnic] = 13653 ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); 13654 vnic++; 13655 } 13656 13657 return (bxe_check_valid_mf_cfg(sc)); 13658 } 13659 13660 static int 13661 bxe_get_shmem_info(struct bxe_softc *sc) 13662 { 13663 int port; 13664 uint32_t mac_hi, mac_lo, val; 13665 13666 port = SC_PORT(sc); 13667 mac_hi = mac_lo = 0; 13668 13669 sc->link_params.sc = sc; 13670 sc->link_params.port = port; 13671 13672 /* get the hardware config info */ 13673 sc->devinfo.hw_config = 13674 SHMEM_RD(sc, dev_info.shared_hw_config.config); 13675 sc->devinfo.hw_config2 = 13676 SHMEM_RD(sc, dev_info.shared_hw_config.config2); 13677 13678 sc->link_params.hw_led_mode = 13679 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> 13680 SHARED_HW_CFG_LED_MODE_SHIFT); 13681 13682 /* get the port feature config */ 13683 sc->port.config = 13684 SHMEM_RD(sc, dev_info.port_feature_config[port].config); 13685 13686 /* get the link params */ 13687 sc->link_params.speed_cap_mask[0] = 13688 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); 13689 sc->link_params.speed_cap_mask[1] = 13690 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); 13691 13692 /* get the lane config */ 13693 sc->link_params.lane_config = 13694 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); 13695 13696 /* get the link config */ 13697 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); 13698 sc->port.link_config[ELINK_INT_PHY] = val; 13699 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); 13700 sc->port.link_config[ELINK_EXT_PHY1] = 13701 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); 13702 13703 /* get the override preemphasis flag and enable it or turn it off */ 13704 val = SHMEM_RD(sc, dev_info.shared_feature_config.config); 13705 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { 13706 sc->link_params.feature_config_flags |= 13707 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13708 } else { 13709 sc->link_params.feature_config_flags &= 13710 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; 13711 } 13712 13713 /* get the initial value of the link params */ 13714 sc->link_params.multi_phy_config = 13715 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); 13716 13717 /* get external phy info */ 13718 sc->port.ext_phy_config = 13719 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); 13720 13721 /* get the multifunction configuration */ 13722 bxe_get_mf_cfg_info(sc); 13723 13724 /* get the mac address */ 13725 if (IS_MF(sc)) { 13726 mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); 13727 mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); 13728 } else { 13729 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); 13730 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); 13731 } 13732 13733 if ((mac_lo == 0) && (mac_hi == 0)) { 13734 *sc->mac_addr_str = 0; 13735 BLOGE(sc, "No Ethernet address programmed!\n"); 13736 } else { 13737 sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); 13738 sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); 13739 sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); 13740 sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); 13741 sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); 13742 sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); 13743 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), 13744 "%02x:%02x:%02x:%02x:%02x:%02x", 13745 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], 13746 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], 13747 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); 13748 BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); 13749 } 13750 13751 return (0); 13752 } 13753 13754 static void 13755 bxe_get_tunable_params(struct bxe_softc *sc) 13756 { 13757 /* sanity checks */ 13758 13759 if ((bxe_interrupt_mode != INTR_MODE_INTX) && 13760 (bxe_interrupt_mode != INTR_MODE_MSI) && 13761 (bxe_interrupt_mode != INTR_MODE_MSIX)) { 13762 BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); 13763 bxe_interrupt_mode = INTR_MODE_MSIX; 13764 } 13765 13766 if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { 13767 BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); 13768 bxe_queue_count = 0; 13769 } 13770 13771 if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { 13772 if (bxe_max_rx_bufs == 0) { 13773 bxe_max_rx_bufs = RX_BD_USABLE; 13774 } else { 13775 BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); 13776 bxe_max_rx_bufs = 2048; 13777 } 13778 } 13779 13780 if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { 13781 BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); 13782 bxe_hc_rx_ticks = 25; 13783 } 13784 13785 if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { 13786 BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); 13787 bxe_hc_tx_ticks = 50; 13788 } 13789 13790 if (bxe_max_aggregation_size == 0) { 13791 bxe_max_aggregation_size = TPA_AGG_SIZE; 13792 } 13793 13794 if (bxe_max_aggregation_size > 0xffff) { 13795 BLOGW(sc, "invalid max_aggregation_size (%d)\n", 13796 bxe_max_aggregation_size); 13797 bxe_max_aggregation_size = TPA_AGG_SIZE; 13798 } 13799 13800 if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { 13801 BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); 13802 bxe_mrrs = -1; 13803 } 13804 13805 if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { 13806 BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); 13807 bxe_autogreeen = 0; 13808 } 13809 13810 if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { 13811 BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); 13812 bxe_udp_rss = 0; 13813 } 13814 13815 /* pull in user settings */ 13816 13817 sc->interrupt_mode = bxe_interrupt_mode; 13818 sc->max_rx_bufs = bxe_max_rx_bufs; 13819 sc->hc_rx_ticks = bxe_hc_rx_ticks; 13820 sc->hc_tx_ticks = bxe_hc_tx_ticks; 13821 sc->max_aggregation_size = bxe_max_aggregation_size; 13822 sc->mrrs = bxe_mrrs; 13823 sc->autogreeen = bxe_autogreeen; 13824 sc->udp_rss = bxe_udp_rss; 13825 13826 if (bxe_interrupt_mode == INTR_MODE_INTX) { 13827 sc->num_queues = 1; 13828 } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ 13829 sc->num_queues = 13830 min((bxe_queue_count ? bxe_queue_count : mp_ncpus), 13831 MAX_RSS_CHAINS); 13832 if (sc->num_queues > mp_ncpus) { 13833 sc->num_queues = mp_ncpus; 13834 } 13835 } 13836 13837 BLOGD(sc, DBG_LOAD, 13838 "User Config: " 13839 "debug=0x%lx " 13840 "interrupt_mode=%d " 13841 "queue_count=%d " 13842 "hc_rx_ticks=%d " 13843 "hc_tx_ticks=%d " 13844 "rx_budget=%d " 13845 "max_aggregation_size=%d " 13846 "mrrs=%d " 13847 "autogreeen=%d " 13848 "udp_rss=%d\n", 13849 bxe_debug, 13850 sc->interrupt_mode, 13851 sc->num_queues, 13852 sc->hc_rx_ticks, 13853 sc->hc_tx_ticks, 13854 bxe_rx_budget, 13855 sc->max_aggregation_size, 13856 sc->mrrs, 13857 sc->autogreeen, 13858 sc->udp_rss); 13859 } 13860 13861 static int 13862 bxe_media_detect(struct bxe_softc *sc) 13863 { 13864 int port_type; 13865 uint32_t phy_idx = bxe_get_cur_phy_idx(sc); 13866 13867 switch (sc->link_params.phy[phy_idx].media_type) { 13868 case ELINK_ETH_PHY_SFPP_10G_FIBER: 13869 case ELINK_ETH_PHY_XFP_FIBER: 13870 BLOGI(sc, "Found 10Gb Fiber media.\n"); 13871 sc->media = IFM_10G_SR; 13872 port_type = PORT_FIBRE; 13873 break; 13874 case ELINK_ETH_PHY_SFP_1G_FIBER: 13875 BLOGI(sc, "Found 1Gb Fiber media.\n"); 13876 sc->media = IFM_1000_SX; 13877 port_type = PORT_FIBRE; 13878 break; 13879 case ELINK_ETH_PHY_KR: 13880 case ELINK_ETH_PHY_CX4: 13881 BLOGI(sc, "Found 10GBase-CX4 media.\n"); 13882 sc->media = IFM_10G_CX4; 13883 port_type = PORT_FIBRE; 13884 break; 13885 case ELINK_ETH_PHY_DA_TWINAX: 13886 BLOGI(sc, "Found 10Gb Twinax media.\n"); 13887 sc->media = IFM_10G_TWINAX; 13888 port_type = PORT_DA; 13889 break; 13890 case ELINK_ETH_PHY_BASE_T: 13891 if (sc->link_params.speed_cap_mask[0] & 13892 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { 13893 BLOGI(sc, "Found 10GBase-T media.\n"); 13894 sc->media = IFM_10G_T; 13895 port_type = PORT_TP; 13896 } else { 13897 BLOGI(sc, "Found 1000Base-T media.\n"); 13898 sc->media = IFM_1000_T; 13899 port_type = PORT_TP; 13900 } 13901 break; 13902 case ELINK_ETH_PHY_NOT_PRESENT: 13903 BLOGI(sc, "Media not present.\n"); 13904 sc->media = 0; 13905 port_type = PORT_OTHER; 13906 break; 13907 case ELINK_ETH_PHY_UNSPECIFIED: 13908 default: 13909 BLOGI(sc, "Unknown media!\n"); 13910 sc->media = 0; 13911 port_type = PORT_OTHER; 13912 break; 13913 } 13914 return port_type; 13915 } 13916 13917 #define GET_FIELD(value, fname) \ 13918 (((value) & (fname##_MASK)) >> (fname##_SHIFT)) 13919 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) 13920 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) 13921 13922 static int 13923 bxe_get_igu_cam_info(struct bxe_softc *sc) 13924 { 13925 int pfid = SC_FUNC(sc); 13926 int igu_sb_id; 13927 uint32_t val; 13928 uint8_t fid, igu_sb_cnt = 0; 13929 13930 sc->igu_base_sb = 0xff; 13931 13932 if (CHIP_INT_MODE_IS_BC(sc)) { 13933 int vn = SC_VN(sc); 13934 igu_sb_cnt = sc->igu_sb_cnt; 13935 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * 13936 FP_SB_MAX_E1x); 13937 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + 13938 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); 13939 return (0); 13940 } 13941 13942 /* IGU in normal mode - read CAM */ 13943 for (igu_sb_id = 0; 13944 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; 13945 igu_sb_id++) { 13946 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); 13947 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { 13948 continue; 13949 } 13950 fid = IGU_FID(val); 13951 if ((fid & IGU_FID_ENCODE_IS_PF)) { 13952 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { 13953 continue; 13954 } 13955 if (IGU_VEC(val) == 0) { 13956 /* default status block */ 13957 sc->igu_dsb_id = igu_sb_id; 13958 } else { 13959 if (sc->igu_base_sb == 0xff) { 13960 sc->igu_base_sb = igu_sb_id; 13961 } 13962 igu_sb_cnt++; 13963 } 13964 } 13965 } 13966 13967 /* 13968 * Due to new PF resource allocation by MFW T7.4 and above, it's optional 13969 * that number of CAM entries will not be equal to the value advertised in 13970 * PCI. Driver should use the minimal value of both as the actual status 13971 * block count 13972 */ 13973 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt); 13974 13975 if (igu_sb_cnt == 0) { 13976 BLOGE(sc, "CAM configuration error\n"); 13977 return (-1); 13978 } 13979 13980 return (0); 13981 } 13982 13983 /* 13984 * Gather various information from the device config space, the device itself, 13985 * shmem, and the user input. 13986 */ 13987 static int 13988 bxe_get_device_info(struct bxe_softc *sc) 13989 { 13990 uint32_t val; 13991 int rc; 13992 13993 /* Get the data for the device */ 13994 sc->devinfo.vendor_id = pci_get_vendor(sc->dev); 13995 sc->devinfo.device_id = pci_get_device(sc->dev); 13996 sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev); 13997 sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev); 13998 13999 /* get the chip revision (chip metal comes from pci config space) */ 14000 sc->devinfo.chip_id = 14001 sc->link_params.chip_id = 14002 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | 14003 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | 14004 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | 14005 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); 14006 14007 /* force 57811 according to MISC register */ 14008 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { 14009 if (CHIP_IS_57810(sc)) { 14010 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | 14011 (sc->devinfo.chip_id & 0x0000ffff)); 14012 } else if (CHIP_IS_57810_MF(sc)) { 14013 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | 14014 (sc->devinfo.chip_id & 0x0000ffff)); 14015 } 14016 sc->devinfo.chip_id |= 0x1; 14017 } 14018 14019 BLOGD(sc, DBG_LOAD, 14020 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", 14021 sc->devinfo.chip_id, 14022 ((sc->devinfo.chip_id >> 16) & 0xffff), 14023 ((sc->devinfo.chip_id >> 12) & 0xf), 14024 ((sc->devinfo.chip_id >> 4) & 0xff), 14025 ((sc->devinfo.chip_id >> 0) & 0xf)); 14026 14027 val = (REG_RD(sc, 0x2874) & 0x55); 14028 if ((sc->devinfo.chip_id & 0x1) || 14029 (CHIP_IS_E1(sc) && val) || 14030 (CHIP_IS_E1H(sc) && (val == 0x55))) { 14031 sc->flags |= BXE_ONE_PORT_FLAG; 14032 BLOGD(sc, DBG_LOAD, "single port device\n"); 14033 } 14034 14035 /* set the doorbell size */ 14036 sc->doorbell_size = (1 << BXE_DB_SHIFT); 14037 14038 /* determine whether the device is in 2 port or 4 port mode */ 14039 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ 14040 if (CHIP_IS_E2E3(sc)) { 14041 /* 14042 * Read port4mode_en_ovwr[0]: 14043 * If 1, four port mode is in port4mode_en_ovwr[1]. 14044 * If 0, four port mode is in port4mode_en[0]. 14045 */ 14046 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); 14047 if (val & 1) { 14048 val = ((val >> 1) & 1); 14049 } else { 14050 val = REG_RD(sc, MISC_REG_PORT4MODE_EN); 14051 } 14052 14053 sc->devinfo.chip_port_mode = 14054 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; 14055 14056 BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); 14057 } 14058 14059 /* get the function and path info for the device */ 14060 bxe_get_function_num(sc); 14061 14062 /* get the shared memory base address */ 14063 sc->devinfo.shmem_base = 14064 sc->link_params.shmem_base = 14065 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); 14066 sc->devinfo.shmem2_base = 14067 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : 14068 MISC_REG_GENERIC_CR_0)); 14069 14070 BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", 14071 sc->devinfo.shmem_base, sc->devinfo.shmem2_base); 14072 14073 if (!sc->devinfo.shmem_base) { 14074 /* this should ONLY prevent upcoming shmem reads */ 14075 BLOGI(sc, "MCP not active\n"); 14076 sc->flags |= BXE_NO_MCP_FLAG; 14077 return (0); 14078 } 14079 14080 /* make sure the shared memory contents are valid */ 14081 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); 14082 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != 14083 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { 14084 BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); 14085 return (0); 14086 } 14087 BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); 14088 14089 /* get the bootcode version */ 14090 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); 14091 snprintf(sc->devinfo.bc_ver_str, 14092 sizeof(sc->devinfo.bc_ver_str), 14093 "%d.%d.%d", 14094 ((sc->devinfo.bc_ver >> 24) & 0xff), 14095 ((sc->devinfo.bc_ver >> 16) & 0xff), 14096 ((sc->devinfo.bc_ver >> 8) & 0xff)); 14097 BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); 14098 14099 /* get the bootcode shmem address */ 14100 sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); 14101 BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); 14102 14103 /* clean indirect addresses as they're not used */ 14104 pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4); 14105 if (IS_PF(sc)) { 14106 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); 14107 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); 14108 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); 14109 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); 14110 if (CHIP_IS_E1x(sc)) { 14111 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); 14112 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); 14113 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); 14114 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); 14115 } 14116 14117 /* 14118 * Enable internal target-read (in case we are probed after PF 14119 * FLR). Must be done prior to any BAR read access. Only for 14120 * 57712 and up 14121 */ 14122 if (!CHIP_IS_E1x(sc)) { 14123 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 14124 } 14125 } 14126 14127 /* get the nvram size */ 14128 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); 14129 sc->devinfo.flash_size = 14130 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); 14131 BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); 14132 14133 /* get PCI capabilites */ 14134 bxe_probe_pci_caps(sc); 14135 14136 bxe_set_power_state(sc, PCI_PM_D0); 14137 14138 /* get various configuration parameters from shmem */ 14139 bxe_get_shmem_info(sc); 14140 14141 if (sc->devinfo.pcie_msix_cap_reg != 0) { 14142 val = pci_read_config(sc->dev, 14143 (sc->devinfo.pcie_msix_cap_reg + 14144 PCIR_MSIX_CTRL), 14145 2); 14146 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); 14147 } else { 14148 sc->igu_sb_cnt = 1; 14149 } 14150 14151 sc->igu_base_addr = BAR_IGU_INTMEM; 14152 14153 /* initialize IGU parameters */ 14154 if (CHIP_IS_E1x(sc)) { 14155 sc->devinfo.int_block = INT_BLOCK_HC; 14156 sc->igu_dsb_id = DEF_SB_IGU_ID; 14157 sc->igu_base_sb = 0; 14158 } else { 14159 sc->devinfo.int_block = INT_BLOCK_IGU; 14160 14161 /* do not allow device reset during IGU info preocessing */ 14162 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14163 14164 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); 14165 14166 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14167 int tout = 5000; 14168 14169 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); 14170 14171 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); 14172 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); 14173 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); 14174 14175 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14176 tout--; 14177 DELAY(1000); 14178 } 14179 14180 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { 14181 BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); 14182 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14183 return (-1); 14184 } 14185 } 14186 14187 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { 14188 BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); 14189 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; 14190 } else { 14191 BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); 14192 } 14193 14194 rc = bxe_get_igu_cam_info(sc); 14195 14196 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 14197 14198 if (rc) { 14199 return (rc); 14200 } 14201 } 14202 14203 /* 14204 * Get base FW non-default (fast path) status block ID. This value is 14205 * used to initialize the fw_sb_id saved on the fp/queue structure to 14206 * determine the id used by the FW. 14207 */ 14208 if (CHIP_IS_E1x(sc)) { 14209 sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); 14210 } else { 14211 /* 14212 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of 14213 * the same queue are indicated on the same IGU SB). So we prefer 14214 * FW and IGU SBs to be the same value. 14215 */ 14216 sc->base_fw_ndsb = sc->igu_base_sb; 14217 } 14218 14219 BLOGD(sc, DBG_LOAD, 14220 "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", 14221 sc->igu_dsb_id, sc->igu_base_sb, 14222 sc->igu_sb_cnt, sc->base_fw_ndsb); 14223 14224 elink_phy_probe(&sc->link_params); 14225 14226 return (0); 14227 } 14228 14229 static void 14230 bxe_link_settings_supported(struct bxe_softc *sc, 14231 uint32_t switch_cfg) 14232 { 14233 uint32_t cfg_size = 0; 14234 uint32_t idx; 14235 uint8_t port = SC_PORT(sc); 14236 14237 /* aggregation of supported attributes of all external phys */ 14238 sc->port.supported[0] = 0; 14239 sc->port.supported[1] = 0; 14240 14241 switch (sc->link_params.num_phys) { 14242 case 1: 14243 sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; 14244 cfg_size = 1; 14245 break; 14246 case 2: 14247 sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; 14248 cfg_size = 1; 14249 break; 14250 case 3: 14251 if (sc->link_params.multi_phy_config & 14252 PORT_HW_CFG_PHY_SWAPPED_ENABLED) { 14253 sc->port.supported[1] = 14254 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14255 sc->port.supported[0] = 14256 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14257 } else { 14258 sc->port.supported[0] = 14259 sc->link_params.phy[ELINK_EXT_PHY1].supported; 14260 sc->port.supported[1] = 14261 sc->link_params.phy[ELINK_EXT_PHY2].supported; 14262 } 14263 cfg_size = 2; 14264 break; 14265 } 14266 14267 if (!(sc->port.supported[0] || sc->port.supported[1])) { 14268 BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", 14269 SHMEM_RD(sc, 14270 dev_info.port_hw_config[port].external_phy_config), 14271 SHMEM_RD(sc, 14272 dev_info.port_hw_config[port].external_phy_config2)); 14273 return; 14274 } 14275 14276 if (CHIP_IS_E3(sc)) 14277 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); 14278 else { 14279 switch (switch_cfg) { 14280 case ELINK_SWITCH_CFG_1G: 14281 sc->port.phy_addr = 14282 REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); 14283 break; 14284 case ELINK_SWITCH_CFG_10G: 14285 sc->port.phy_addr = 14286 REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); 14287 break; 14288 default: 14289 BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", 14290 sc->port.link_config[0]); 14291 return; 14292 } 14293 } 14294 14295 BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); 14296 14297 /* mask what we support according to speed_cap_mask per configuration */ 14298 for (idx = 0; idx < cfg_size; idx++) { 14299 if (!(sc->link_params.speed_cap_mask[idx] & 14300 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { 14301 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; 14302 } 14303 14304 if (!(sc->link_params.speed_cap_mask[idx] & 14305 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { 14306 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; 14307 } 14308 14309 if (!(sc->link_params.speed_cap_mask[idx] & 14310 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { 14311 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; 14312 } 14313 14314 if (!(sc->link_params.speed_cap_mask[idx] & 14315 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { 14316 sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; 14317 } 14318 14319 if (!(sc->link_params.speed_cap_mask[idx] & 14320 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { 14321 sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; 14322 } 14323 14324 if (!(sc->link_params.speed_cap_mask[idx] & 14325 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { 14326 sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; 14327 } 14328 14329 if (!(sc->link_params.speed_cap_mask[idx] & 14330 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { 14331 sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; 14332 } 14333 14334 if (!(sc->link_params.speed_cap_mask[idx] & 14335 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { 14336 sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; 14337 } 14338 } 14339 14340 BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", 14341 sc->port.supported[0], sc->port.supported[1]); 14342 ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n", 14343 sc->port.supported[0], sc->port.supported[1]); 14344 } 14345 14346 static void 14347 bxe_link_settings_requested(struct bxe_softc *sc) 14348 { 14349 uint32_t link_config; 14350 uint32_t idx; 14351 uint32_t cfg_size = 0; 14352 14353 sc->port.advertising[0] = 0; 14354 sc->port.advertising[1] = 0; 14355 14356 switch (sc->link_params.num_phys) { 14357 case 1: 14358 case 2: 14359 cfg_size = 1; 14360 break; 14361 case 3: 14362 cfg_size = 2; 14363 break; 14364 } 14365 14366 for (idx = 0; idx < cfg_size; idx++) { 14367 sc->link_params.req_duplex[idx] = DUPLEX_FULL; 14368 link_config = sc->port.link_config[idx]; 14369 14370 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { 14371 case PORT_FEATURE_LINK_SPEED_AUTO: 14372 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { 14373 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14374 sc->port.advertising[idx] |= sc->port.supported[idx]; 14375 if (sc->link_params.phy[ELINK_EXT_PHY1].type == 14376 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) 14377 sc->port.advertising[idx] |= 14378 (ELINK_SUPPORTED_100baseT_Half | 14379 ELINK_SUPPORTED_100baseT_Full); 14380 } else { 14381 /* force 10G, no AN */ 14382 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14383 sc->port.advertising[idx] |= 14384 (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); 14385 continue; 14386 } 14387 break; 14388 14389 case PORT_FEATURE_LINK_SPEED_10M_FULL: 14390 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { 14391 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14392 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | 14393 ADVERTISED_TP); 14394 } else { 14395 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14396 "speed_cap_mask=0x%08x\n", 14397 link_config, sc->link_params.speed_cap_mask[idx]); 14398 return; 14399 } 14400 break; 14401 14402 case PORT_FEATURE_LINK_SPEED_10M_HALF: 14403 if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { 14404 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; 14405 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14406 sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | 14407 ADVERTISED_TP); 14408 ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n", 14409 sc->link_params.req_duplex[idx]); 14410 } else { 14411 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14412 "speed_cap_mask=0x%08x\n", 14413 link_config, sc->link_params.speed_cap_mask[idx]); 14414 return; 14415 } 14416 break; 14417 14418 case PORT_FEATURE_LINK_SPEED_100M_FULL: 14419 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { 14420 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14421 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | 14422 ADVERTISED_TP); 14423 } else { 14424 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14425 "speed_cap_mask=0x%08x\n", 14426 link_config, sc->link_params.speed_cap_mask[idx]); 14427 return; 14428 } 14429 break; 14430 14431 case PORT_FEATURE_LINK_SPEED_100M_HALF: 14432 if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { 14433 sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; 14434 sc->link_params.req_duplex[idx] = DUPLEX_HALF; 14435 sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | 14436 ADVERTISED_TP); 14437 } else { 14438 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14439 "speed_cap_mask=0x%08x\n", 14440 link_config, sc->link_params.speed_cap_mask[idx]); 14441 return; 14442 } 14443 break; 14444 14445 case PORT_FEATURE_LINK_SPEED_1G: 14446 if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { 14447 sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; 14448 sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | 14449 ADVERTISED_TP); 14450 } else { 14451 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14452 "speed_cap_mask=0x%08x\n", 14453 link_config, sc->link_params.speed_cap_mask[idx]); 14454 return; 14455 } 14456 break; 14457 14458 case PORT_FEATURE_LINK_SPEED_2_5G: 14459 if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { 14460 sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; 14461 sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | 14462 ADVERTISED_TP); 14463 } else { 14464 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14465 "speed_cap_mask=0x%08x\n", 14466 link_config, sc->link_params.speed_cap_mask[idx]); 14467 return; 14468 } 14469 break; 14470 14471 case PORT_FEATURE_LINK_SPEED_10G_CX4: 14472 if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { 14473 sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; 14474 sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | 14475 ADVERTISED_FIBRE); 14476 } else { 14477 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14478 "speed_cap_mask=0x%08x\n", 14479 link_config, sc->link_params.speed_cap_mask[idx]); 14480 return; 14481 } 14482 break; 14483 14484 case PORT_FEATURE_LINK_SPEED_20G: 14485 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; 14486 break; 14487 14488 default: 14489 BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " 14490 "speed_cap_mask=0x%08x\n", 14491 link_config, sc->link_params.speed_cap_mask[idx]); 14492 sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; 14493 sc->port.advertising[idx] = sc->port.supported[idx]; 14494 break; 14495 } 14496 14497 sc->link_params.req_flow_ctrl[idx] = 14498 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); 14499 14500 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { 14501 if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { 14502 sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; 14503 } else { 14504 bxe_set_requested_fc(sc); 14505 } 14506 } 14507 14508 BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " 14509 "req_flow_ctrl=0x%x advertising=0x%x\n", 14510 sc->link_params.req_line_speed[idx], 14511 sc->link_params.req_duplex[idx], 14512 sc->link_params.req_flow_ctrl[idx], 14513 sc->port.advertising[idx]); 14514 ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d " 14515 "advertising=0x%x\n", 14516 sc->link_params.req_line_speed[idx], 14517 sc->link_params.req_duplex[idx], 14518 sc->port.advertising[idx]); 14519 } 14520 } 14521 14522 static void 14523 bxe_get_phy_info(struct bxe_softc *sc) 14524 { 14525 uint8_t port = SC_PORT(sc); 14526 uint32_t config = sc->port.config; 14527 uint32_t eee_mode; 14528 14529 /* shmem data already read in bxe_get_shmem_info() */ 14530 14531 ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x " 14532 "link_config0=0x%08x\n", 14533 sc->link_params.lane_config, 14534 sc->link_params.speed_cap_mask[0], 14535 sc->port.link_config[0]); 14536 14537 14538 bxe_link_settings_supported(sc, sc->link_params.switch_cfg); 14539 bxe_link_settings_requested(sc); 14540 14541 if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { 14542 sc->link_params.feature_config_flags |= 14543 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14544 } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { 14545 sc->link_params.feature_config_flags &= 14546 ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14547 } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { 14548 sc->link_params.feature_config_flags |= 14549 ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; 14550 } 14551 14552 /* configure link feature according to nvram value */ 14553 eee_mode = 14554 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & 14555 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> 14556 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); 14557 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { 14558 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | 14559 ELINK_EEE_MODE_ENABLE_LPI | 14560 ELINK_EEE_MODE_OUTPUT_TIME); 14561 } else { 14562 sc->link_params.eee_mode = 0; 14563 } 14564 14565 /* get the media type */ 14566 bxe_media_detect(sc); 14567 ELINK_DEBUG_P1(sc, "detected media type\n", sc->media); 14568 } 14569 14570 static void 14571 bxe_get_params(struct bxe_softc *sc) 14572 { 14573 /* get user tunable params */ 14574 bxe_get_tunable_params(sc); 14575 14576 /* select the RX and TX ring sizes */ 14577 sc->tx_ring_size = TX_BD_USABLE; 14578 sc->rx_ring_size = RX_BD_USABLE; 14579 14580 /* XXX disable WoL */ 14581 sc->wol = 0; 14582 } 14583 14584 static void 14585 bxe_set_modes_bitmap(struct bxe_softc *sc) 14586 { 14587 uint32_t flags = 0; 14588 14589 if (CHIP_REV_IS_FPGA(sc)) { 14590 SET_FLAGS(flags, MODE_FPGA); 14591 } else if (CHIP_REV_IS_EMUL(sc)) { 14592 SET_FLAGS(flags, MODE_EMUL); 14593 } else { 14594 SET_FLAGS(flags, MODE_ASIC); 14595 } 14596 14597 if (CHIP_IS_MODE_4_PORT(sc)) { 14598 SET_FLAGS(flags, MODE_PORT4); 14599 } else { 14600 SET_FLAGS(flags, MODE_PORT2); 14601 } 14602 14603 if (CHIP_IS_E2(sc)) { 14604 SET_FLAGS(flags, MODE_E2); 14605 } else if (CHIP_IS_E3(sc)) { 14606 SET_FLAGS(flags, MODE_E3); 14607 if (CHIP_REV(sc) == CHIP_REV_Ax) { 14608 SET_FLAGS(flags, MODE_E3_A0); 14609 } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { 14610 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); 14611 } 14612 } 14613 14614 if (IS_MF(sc)) { 14615 SET_FLAGS(flags, MODE_MF); 14616 switch (sc->devinfo.mf_info.mf_mode) { 14617 case MULTI_FUNCTION_SD: 14618 SET_FLAGS(flags, MODE_MF_SD); 14619 break; 14620 case MULTI_FUNCTION_SI: 14621 SET_FLAGS(flags, MODE_MF_SI); 14622 break; 14623 case MULTI_FUNCTION_AFEX: 14624 SET_FLAGS(flags, MODE_MF_AFEX); 14625 break; 14626 } 14627 } else { 14628 SET_FLAGS(flags, MODE_SF); 14629 } 14630 14631 #if defined(__LITTLE_ENDIAN) 14632 SET_FLAGS(flags, MODE_LITTLE_ENDIAN); 14633 #else /* __BIG_ENDIAN */ 14634 SET_FLAGS(flags, MODE_BIG_ENDIAN); 14635 #endif 14636 14637 INIT_MODE_FLAGS(sc) = flags; 14638 } 14639 14640 static int 14641 bxe_alloc_hsi_mem(struct bxe_softc *sc) 14642 { 14643 struct bxe_fastpath *fp; 14644 bus_addr_t busaddr; 14645 int max_agg_queues; 14646 int max_segments; 14647 bus_size_t max_size; 14648 bus_size_t max_seg_size; 14649 char buf[32]; 14650 int rc; 14651 int i, j; 14652 14653 /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ 14654 14655 /* allocate the parent bus DMA tag */ 14656 rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */ 14657 1, /* alignment */ 14658 0, /* boundary limit */ 14659 BUS_SPACE_MAXADDR, /* restricted low */ 14660 BUS_SPACE_MAXADDR, /* restricted hi */ 14661 NULL, /* addr filter() */ 14662 NULL, /* addr filter() arg */ 14663 BUS_SPACE_MAXSIZE_32BIT, /* max map size */ 14664 BUS_SPACE_UNRESTRICTED, /* num discontinuous */ 14665 BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ 14666 0, /* flags */ 14667 NULL, /* lock() */ 14668 NULL, /* lock() arg */ 14669 &sc->parent_dma_tag); /* returned dma tag */ 14670 if (rc != 0) { 14671 BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); 14672 return (1); 14673 } 14674 14675 /************************/ 14676 /* DEFAULT STATUS BLOCK */ 14677 /************************/ 14678 14679 if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), 14680 &sc->def_sb_dma, "default status block") != 0) { 14681 /* XXX */ 14682 bus_dma_tag_destroy(sc->parent_dma_tag); 14683 return (1); 14684 } 14685 14686 sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; 14687 14688 /***************/ 14689 /* EVENT QUEUE */ 14690 /***************/ 14691 14692 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14693 &sc->eq_dma, "event queue") != 0) { 14694 /* XXX */ 14695 bxe_dma_free(sc, &sc->def_sb_dma); 14696 sc->def_sb = NULL; 14697 bus_dma_tag_destroy(sc->parent_dma_tag); 14698 return (1); 14699 } 14700 14701 sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; 14702 14703 /*************/ 14704 /* SLOW PATH */ 14705 /*************/ 14706 14707 if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), 14708 &sc->sp_dma, "slow path") != 0) { 14709 /* XXX */ 14710 bxe_dma_free(sc, &sc->eq_dma); 14711 sc->eq = NULL; 14712 bxe_dma_free(sc, &sc->def_sb_dma); 14713 sc->def_sb = NULL; 14714 bus_dma_tag_destroy(sc->parent_dma_tag); 14715 return (1); 14716 } 14717 14718 sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; 14719 14720 /*******************/ 14721 /* SLOW PATH QUEUE */ 14722 /*******************/ 14723 14724 if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, 14725 &sc->spq_dma, "slow path queue") != 0) { 14726 /* XXX */ 14727 bxe_dma_free(sc, &sc->sp_dma); 14728 sc->sp = NULL; 14729 bxe_dma_free(sc, &sc->eq_dma); 14730 sc->eq = NULL; 14731 bxe_dma_free(sc, &sc->def_sb_dma); 14732 sc->def_sb = NULL; 14733 bus_dma_tag_destroy(sc->parent_dma_tag); 14734 return (1); 14735 } 14736 14737 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; 14738 14739 /***************************/ 14740 /* FW DECOMPRESSION BUFFER */ 14741 /***************************/ 14742 14743 if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, 14744 "fw decompression buffer") != 0) { 14745 /* XXX */ 14746 bxe_dma_free(sc, &sc->spq_dma); 14747 sc->spq = NULL; 14748 bxe_dma_free(sc, &sc->sp_dma); 14749 sc->sp = NULL; 14750 bxe_dma_free(sc, &sc->eq_dma); 14751 sc->eq = NULL; 14752 bxe_dma_free(sc, &sc->def_sb_dma); 14753 sc->def_sb = NULL; 14754 bus_dma_tag_destroy(sc->parent_dma_tag); 14755 return (1); 14756 } 14757 14758 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; 14759 14760 if ((sc->gz_strm = 14761 malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) { 14762 /* XXX */ 14763 bxe_dma_free(sc, &sc->gz_buf_dma); 14764 sc->gz_buf = NULL; 14765 bxe_dma_free(sc, &sc->spq_dma); 14766 sc->spq = NULL; 14767 bxe_dma_free(sc, &sc->sp_dma); 14768 sc->sp = NULL; 14769 bxe_dma_free(sc, &sc->eq_dma); 14770 sc->eq = NULL; 14771 bxe_dma_free(sc, &sc->def_sb_dma); 14772 sc->def_sb = NULL; 14773 bus_dma_tag_destroy(sc->parent_dma_tag); 14774 return (1); 14775 } 14776 14777 /*************/ 14778 /* FASTPATHS */ 14779 /*************/ 14780 14781 /* allocate DMA memory for each fastpath structure */ 14782 for (i = 0; i < sc->num_queues; i++) { 14783 fp = &sc->fp[i]; 14784 fp->sc = sc; 14785 fp->index = i; 14786 14787 /*******************/ 14788 /* FP STATUS BLOCK */ 14789 /*******************/ 14790 14791 snprintf(buf, sizeof(buf), "fp %d status block", i); 14792 if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), 14793 &fp->sb_dma, buf) != 0) { 14794 /* XXX unwind and free previous fastpath allocations */ 14795 BLOGE(sc, "Failed to alloc %s\n", buf); 14796 return (1); 14797 } else { 14798 if (CHIP_IS_E2E3(sc)) { 14799 fp->status_block.e2_sb = 14800 (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; 14801 } else { 14802 fp->status_block.e1x_sb = 14803 (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; 14804 } 14805 } 14806 14807 /******************/ 14808 /* FP TX BD CHAIN */ 14809 /******************/ 14810 14811 snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); 14812 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), 14813 &fp->tx_dma, buf) != 0) { 14814 /* XXX unwind and free previous fastpath allocations */ 14815 BLOGE(sc, "Failed to alloc %s\n", buf); 14816 return (1); 14817 } else { 14818 fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; 14819 } 14820 14821 /* link together the tx bd chain pages */ 14822 for (j = 1; j <= TX_BD_NUM_PAGES; j++) { 14823 /* index into the tx bd chain array to last entry per page */ 14824 struct eth_tx_next_bd *tx_next_bd = 14825 &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; 14826 /* point to the next page and wrap from last page */ 14827 busaddr = (fp->tx_dma.paddr + 14828 (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); 14829 tx_next_bd->addr_hi = htole32(U64_HI(busaddr)); 14830 tx_next_bd->addr_lo = htole32(U64_LO(busaddr)); 14831 } 14832 14833 /******************/ 14834 /* FP RX BD CHAIN */ 14835 /******************/ 14836 14837 snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); 14838 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), 14839 &fp->rx_dma, buf) != 0) { 14840 /* XXX unwind and free previous fastpath allocations */ 14841 BLOGE(sc, "Failed to alloc %s\n", buf); 14842 return (1); 14843 } else { 14844 fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; 14845 } 14846 14847 /* link together the rx bd chain pages */ 14848 for (j = 1; j <= RX_BD_NUM_PAGES; j++) { 14849 /* index into the rx bd chain array to last entry per page */ 14850 struct eth_rx_bd *rx_bd = 14851 &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; 14852 /* point to the next page and wrap from last page */ 14853 busaddr = (fp->rx_dma.paddr + 14854 (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); 14855 rx_bd->addr_hi = htole32(U64_HI(busaddr)); 14856 rx_bd->addr_lo = htole32(U64_LO(busaddr)); 14857 } 14858 14859 /*******************/ 14860 /* FP RX RCQ CHAIN */ 14861 /*******************/ 14862 14863 snprintf(buf, sizeof(buf), "fp %d rcq chain", i); 14864 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), 14865 &fp->rcq_dma, buf) != 0) { 14866 /* XXX unwind and free previous fastpath allocations */ 14867 BLOGE(sc, "Failed to alloc %s\n", buf); 14868 return (1); 14869 } else { 14870 fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; 14871 } 14872 14873 /* link together the rcq chain pages */ 14874 for (j = 1; j <= RCQ_NUM_PAGES; j++) { 14875 /* index into the rcq chain array to last entry per page */ 14876 struct eth_rx_cqe_next_page *rx_cqe_next = 14877 (struct eth_rx_cqe_next_page *) 14878 &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; 14879 /* point to the next page and wrap from last page */ 14880 busaddr = (fp->rcq_dma.paddr + 14881 (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); 14882 rx_cqe_next->addr_hi = htole32(U64_HI(busaddr)); 14883 rx_cqe_next->addr_lo = htole32(U64_LO(busaddr)); 14884 } 14885 14886 /*******************/ 14887 /* FP RX SGE CHAIN */ 14888 /*******************/ 14889 14890 snprintf(buf, sizeof(buf), "fp %d sge chain", i); 14891 if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), 14892 &fp->rx_sge_dma, buf) != 0) { 14893 /* XXX unwind and free previous fastpath allocations */ 14894 BLOGE(sc, "Failed to alloc %s\n", buf); 14895 return (1); 14896 } else { 14897 fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; 14898 } 14899 14900 /* link together the sge chain pages */ 14901 for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { 14902 /* index into the rcq chain array to last entry per page */ 14903 struct eth_rx_sge *rx_sge = 14904 &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; 14905 /* point to the next page and wrap from last page */ 14906 busaddr = (fp->rx_sge_dma.paddr + 14907 (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); 14908 rx_sge->addr_hi = htole32(U64_HI(busaddr)); 14909 rx_sge->addr_lo = htole32(U64_LO(busaddr)); 14910 } 14911 14912 /***********************/ 14913 /* FP TX MBUF DMA MAPS */ 14914 /***********************/ 14915 14916 /* set required sizes before mapping to conserve resources */ 14917 if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { 14918 max_size = BXE_TSO_MAX_SIZE; 14919 max_segments = BXE_TSO_MAX_SEGMENTS; 14920 max_seg_size = BXE_TSO_MAX_SEG_SIZE; 14921 } else { 14922 max_size = (MCLBYTES * BXE_MAX_SEGMENTS); 14923 max_segments = BXE_MAX_SEGMENTS; 14924 max_seg_size = MCLBYTES; 14925 } 14926 14927 /* create a dma tag for the tx mbufs */ 14928 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14929 1, /* alignment */ 14930 0, /* boundary limit */ 14931 BUS_SPACE_MAXADDR, /* restricted low */ 14932 BUS_SPACE_MAXADDR, /* restricted hi */ 14933 NULL, /* addr filter() */ 14934 NULL, /* addr filter() arg */ 14935 max_size, /* max map size */ 14936 max_segments, /* num discontinuous */ 14937 max_seg_size, /* max seg size */ 14938 0, /* flags */ 14939 NULL, /* lock() */ 14940 NULL, /* lock() arg */ 14941 &fp->tx_mbuf_tag); /* returned dma tag */ 14942 if (rc != 0) { 14943 /* XXX unwind and free previous fastpath allocations */ 14944 BLOGE(sc, "Failed to create dma tag for " 14945 "'fp %d tx mbufs' (%d)\n", i, rc); 14946 return (1); 14947 } 14948 14949 /* create dma maps for each of the tx mbuf clusters */ 14950 for (j = 0; j < TX_BD_TOTAL; j++) { 14951 if (bus_dmamap_create(fp->tx_mbuf_tag, 14952 BUS_DMA_NOWAIT, 14953 &fp->tx_mbuf_chain[j].m_map)) { 14954 /* XXX unwind and free previous fastpath allocations */ 14955 BLOGE(sc, "Failed to create dma map for " 14956 "'fp %d tx mbuf %d' (%d)\n", i, j, rc); 14957 return (1); 14958 } 14959 } 14960 14961 /***********************/ 14962 /* FP RX MBUF DMA MAPS */ 14963 /***********************/ 14964 14965 /* create a dma tag for the rx mbufs */ 14966 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 14967 1, /* alignment */ 14968 0, /* boundary limit */ 14969 BUS_SPACE_MAXADDR, /* restricted low */ 14970 BUS_SPACE_MAXADDR, /* restricted hi */ 14971 NULL, /* addr filter() */ 14972 NULL, /* addr filter() arg */ 14973 MJUM9BYTES, /* max map size */ 14974 1, /* num discontinuous */ 14975 MJUM9BYTES, /* max seg size */ 14976 0, /* flags */ 14977 NULL, /* lock() */ 14978 NULL, /* lock() arg */ 14979 &fp->rx_mbuf_tag); /* returned dma tag */ 14980 if (rc != 0) { 14981 /* XXX unwind and free previous fastpath allocations */ 14982 BLOGE(sc, "Failed to create dma tag for " 14983 "'fp %d rx mbufs' (%d)\n", i, rc); 14984 return (1); 14985 } 14986 14987 /* create dma maps for each of the rx mbuf clusters */ 14988 for (j = 0; j < RX_BD_TOTAL; j++) { 14989 if (bus_dmamap_create(fp->rx_mbuf_tag, 14990 BUS_DMA_NOWAIT, 14991 &fp->rx_mbuf_chain[j].m_map)) { 14992 /* XXX unwind and free previous fastpath allocations */ 14993 BLOGE(sc, "Failed to create dma map for " 14994 "'fp %d rx mbuf %d' (%d)\n", i, j, rc); 14995 return (1); 14996 } 14997 } 14998 14999 /* create dma map for the spare rx mbuf cluster */ 15000 if (bus_dmamap_create(fp->rx_mbuf_tag, 15001 BUS_DMA_NOWAIT, 15002 &fp->rx_mbuf_spare_map)) { 15003 /* XXX unwind and free previous fastpath allocations */ 15004 BLOGE(sc, "Failed to create dma map for " 15005 "'fp %d spare rx mbuf' (%d)\n", i, rc); 15006 return (1); 15007 } 15008 15009 /***************************/ 15010 /* FP RX SGE MBUF DMA MAPS */ 15011 /***************************/ 15012 15013 /* create a dma tag for the rx sge mbufs */ 15014 rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ 15015 1, /* alignment */ 15016 0, /* boundary limit */ 15017 BUS_SPACE_MAXADDR, /* restricted low */ 15018 BUS_SPACE_MAXADDR, /* restricted hi */ 15019 NULL, /* addr filter() */ 15020 NULL, /* addr filter() arg */ 15021 BCM_PAGE_SIZE, /* max map size */ 15022 1, /* num discontinuous */ 15023 BCM_PAGE_SIZE, /* max seg size */ 15024 0, /* flags */ 15025 NULL, /* lock() */ 15026 NULL, /* lock() arg */ 15027 &fp->rx_sge_mbuf_tag); /* returned dma tag */ 15028 if (rc != 0) { 15029 /* XXX unwind and free previous fastpath allocations */ 15030 BLOGE(sc, "Failed to create dma tag for " 15031 "'fp %d rx sge mbufs' (%d)\n", i, rc); 15032 return (1); 15033 } 15034 15035 /* create dma maps for the rx sge mbuf clusters */ 15036 for (j = 0; j < RX_SGE_TOTAL; j++) { 15037 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15038 BUS_DMA_NOWAIT, 15039 &fp->rx_sge_mbuf_chain[j].m_map)) { 15040 /* XXX unwind and free previous fastpath allocations */ 15041 BLOGE(sc, "Failed to create dma map for " 15042 "'fp %d rx sge mbuf %d' (%d)\n", i, j, rc); 15043 return (1); 15044 } 15045 } 15046 15047 /* create dma map for the spare rx sge mbuf cluster */ 15048 if (bus_dmamap_create(fp->rx_sge_mbuf_tag, 15049 BUS_DMA_NOWAIT, 15050 &fp->rx_sge_mbuf_spare_map)) { 15051 /* XXX unwind and free previous fastpath allocations */ 15052 BLOGE(sc, "Failed to create dma map for " 15053 "'fp %d spare rx sge mbuf' (%d)\n", i, rc); 15054 return (1); 15055 } 15056 15057 /***************************/ 15058 /* FP RX TPA MBUF DMA MAPS */ 15059 /***************************/ 15060 15061 /* create dma maps for the rx tpa mbuf clusters */ 15062 max_agg_queues = MAX_AGG_QS(sc); 15063 15064 for (j = 0; j < max_agg_queues; j++) { 15065 if (bus_dmamap_create(fp->rx_mbuf_tag, 15066 BUS_DMA_NOWAIT, 15067 &fp->rx_tpa_info[j].bd.m_map)) { 15068 /* XXX unwind and free previous fastpath allocations */ 15069 BLOGE(sc, "Failed to create dma map for " 15070 "'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc); 15071 return (1); 15072 } 15073 } 15074 15075 /* create dma map for the spare rx tpa mbuf cluster */ 15076 if (bus_dmamap_create(fp->rx_mbuf_tag, 15077 BUS_DMA_NOWAIT, 15078 &fp->rx_tpa_info_mbuf_spare_map)) { 15079 /* XXX unwind and free previous fastpath allocations */ 15080 BLOGE(sc, "Failed to create dma map for " 15081 "'fp %d spare rx tpa mbuf' (%d)\n", i, rc); 15082 return (1); 15083 } 15084 15085 bxe_init_sge_ring_bit_mask(fp); 15086 } 15087 15088 return (0); 15089 } 15090 15091 static void 15092 bxe_free_hsi_mem(struct bxe_softc *sc) 15093 { 15094 struct bxe_fastpath *fp; 15095 int max_agg_queues; 15096 int i, j; 15097 15098 if (sc->parent_dma_tag == NULL) { 15099 return; /* assume nothing was allocated */ 15100 } 15101 15102 for (i = 0; i < sc->num_queues; i++) { 15103 fp = &sc->fp[i]; 15104 15105 /*******************/ 15106 /* FP STATUS BLOCK */ 15107 /*******************/ 15108 15109 bxe_dma_free(sc, &fp->sb_dma); 15110 memset(&fp->status_block, 0, sizeof(fp->status_block)); 15111 15112 /******************/ 15113 /* FP TX BD CHAIN */ 15114 /******************/ 15115 15116 bxe_dma_free(sc, &fp->tx_dma); 15117 fp->tx_chain = NULL; 15118 15119 /******************/ 15120 /* FP RX BD CHAIN */ 15121 /******************/ 15122 15123 bxe_dma_free(sc, &fp->rx_dma); 15124 fp->rx_chain = NULL; 15125 15126 /*******************/ 15127 /* FP RX RCQ CHAIN */ 15128 /*******************/ 15129 15130 bxe_dma_free(sc, &fp->rcq_dma); 15131 fp->rcq_chain = NULL; 15132 15133 /*******************/ 15134 /* FP RX SGE CHAIN */ 15135 /*******************/ 15136 15137 bxe_dma_free(sc, &fp->rx_sge_dma); 15138 fp->rx_sge_chain = NULL; 15139 15140 /***********************/ 15141 /* FP TX MBUF DMA MAPS */ 15142 /***********************/ 15143 15144 if (fp->tx_mbuf_tag != NULL) { 15145 for (j = 0; j < TX_BD_TOTAL; j++) { 15146 if (fp->tx_mbuf_chain[j].m_map != NULL) { 15147 bus_dmamap_unload(fp->tx_mbuf_tag, 15148 fp->tx_mbuf_chain[j].m_map); 15149 bus_dmamap_destroy(fp->tx_mbuf_tag, 15150 fp->tx_mbuf_chain[j].m_map); 15151 } 15152 } 15153 15154 bus_dma_tag_destroy(fp->tx_mbuf_tag); 15155 fp->tx_mbuf_tag = NULL; 15156 } 15157 15158 /***********************/ 15159 /* FP RX MBUF DMA MAPS */ 15160 /***********************/ 15161 15162 if (fp->rx_mbuf_tag != NULL) { 15163 for (j = 0; j < RX_BD_TOTAL; j++) { 15164 if (fp->rx_mbuf_chain[j].m_map != NULL) { 15165 bus_dmamap_unload(fp->rx_mbuf_tag, 15166 fp->rx_mbuf_chain[j].m_map); 15167 bus_dmamap_destroy(fp->rx_mbuf_tag, 15168 fp->rx_mbuf_chain[j].m_map); 15169 } 15170 } 15171 15172 if (fp->rx_mbuf_spare_map != NULL) { 15173 bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15174 bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); 15175 } 15176 15177 /***************************/ 15178 /* FP RX TPA MBUF DMA MAPS */ 15179 /***************************/ 15180 15181 max_agg_queues = MAX_AGG_QS(sc); 15182 15183 for (j = 0; j < max_agg_queues; j++) { 15184 if (fp->rx_tpa_info[j].bd.m_map != NULL) { 15185 bus_dmamap_unload(fp->rx_mbuf_tag, 15186 fp->rx_tpa_info[j].bd.m_map); 15187 bus_dmamap_destroy(fp->rx_mbuf_tag, 15188 fp->rx_tpa_info[j].bd.m_map); 15189 } 15190 } 15191 15192 if (fp->rx_tpa_info_mbuf_spare_map != NULL) { 15193 bus_dmamap_unload(fp->rx_mbuf_tag, 15194 fp->rx_tpa_info_mbuf_spare_map); 15195 bus_dmamap_destroy(fp->rx_mbuf_tag, 15196 fp->rx_tpa_info_mbuf_spare_map); 15197 } 15198 15199 bus_dma_tag_destroy(fp->rx_mbuf_tag); 15200 fp->rx_mbuf_tag = NULL; 15201 } 15202 15203 /***************************/ 15204 /* FP RX SGE MBUF DMA MAPS */ 15205 /***************************/ 15206 15207 if (fp->rx_sge_mbuf_tag != NULL) { 15208 for (j = 0; j < RX_SGE_TOTAL; j++) { 15209 if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { 15210 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15211 fp->rx_sge_mbuf_chain[j].m_map); 15212 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15213 fp->rx_sge_mbuf_chain[j].m_map); 15214 } 15215 } 15216 15217 if (fp->rx_sge_mbuf_spare_map != NULL) { 15218 bus_dmamap_unload(fp->rx_sge_mbuf_tag, 15219 fp->rx_sge_mbuf_spare_map); 15220 bus_dmamap_destroy(fp->rx_sge_mbuf_tag, 15221 fp->rx_sge_mbuf_spare_map); 15222 } 15223 15224 bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); 15225 fp->rx_sge_mbuf_tag = NULL; 15226 } 15227 } 15228 15229 /***************************/ 15230 /* FW DECOMPRESSION BUFFER */ 15231 /***************************/ 15232 15233 bxe_dma_free(sc, &sc->gz_buf_dma); 15234 sc->gz_buf = NULL; 15235 free(sc->gz_strm, M_DEVBUF); 15236 sc->gz_strm = NULL; 15237 15238 /*******************/ 15239 /* SLOW PATH QUEUE */ 15240 /*******************/ 15241 15242 bxe_dma_free(sc, &sc->spq_dma); 15243 sc->spq = NULL; 15244 15245 /*************/ 15246 /* SLOW PATH */ 15247 /*************/ 15248 15249 bxe_dma_free(sc, &sc->sp_dma); 15250 sc->sp = NULL; 15251 15252 /***************/ 15253 /* EVENT QUEUE */ 15254 /***************/ 15255 15256 bxe_dma_free(sc, &sc->eq_dma); 15257 sc->eq = NULL; 15258 15259 /************************/ 15260 /* DEFAULT STATUS BLOCK */ 15261 /************************/ 15262 15263 bxe_dma_free(sc, &sc->def_sb_dma); 15264 sc->def_sb = NULL; 15265 15266 bus_dma_tag_destroy(sc->parent_dma_tag); 15267 sc->parent_dma_tag = NULL; 15268 } 15269 15270 /* 15271 * Previous driver DMAE transaction may have occurred when pre-boot stage 15272 * ended and boot began. This would invalidate the addresses of the 15273 * transaction, resulting in was-error bit set in the PCI causing all 15274 * hw-to-host PCIe transactions to timeout. If this happened we want to clear 15275 * the interrupt which detected this from the pglueb and the was-done bit 15276 */ 15277 static void 15278 bxe_prev_interrupted_dmae(struct bxe_softc *sc) 15279 { 15280 uint32_t val; 15281 15282 if (!CHIP_IS_E1x(sc)) { 15283 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); 15284 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { 15285 BLOGD(sc, DBG_LOAD, 15286 "Clearing 'was-error' bit that was set in pglueb"); 15287 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); 15288 } 15289 } 15290 } 15291 15292 static int 15293 bxe_prev_mcp_done(struct bxe_softc *sc) 15294 { 15295 uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 15296 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); 15297 if (!rc) { 15298 BLOGE(sc, "MCP response failure, aborting\n"); 15299 return (-1); 15300 } 15301 15302 return (0); 15303 } 15304 15305 static struct bxe_prev_list_node * 15306 bxe_prev_path_get_entry(struct bxe_softc *sc) 15307 { 15308 struct bxe_prev_list_node *tmp; 15309 15310 LIST_FOREACH(tmp, &bxe_prev_list, node) { 15311 if ((sc->pcie_bus == tmp->bus) && 15312 (sc->pcie_device == tmp->slot) && 15313 (SC_PATH(sc) == tmp->path)) { 15314 return (tmp); 15315 } 15316 } 15317 15318 return (NULL); 15319 } 15320 15321 static uint8_t 15322 bxe_prev_is_path_marked(struct bxe_softc *sc) 15323 { 15324 struct bxe_prev_list_node *tmp; 15325 int rc = FALSE; 15326 15327 mtx_lock(&bxe_prev_mtx); 15328 15329 tmp = bxe_prev_path_get_entry(sc); 15330 if (tmp) { 15331 if (tmp->aer) { 15332 BLOGD(sc, DBG_LOAD, 15333 "Path %d/%d/%d was marked by AER\n", 15334 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15335 } else { 15336 rc = TRUE; 15337 BLOGD(sc, DBG_LOAD, 15338 "Path %d/%d/%d was already cleaned from previous drivers\n", 15339 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15340 } 15341 } 15342 15343 mtx_unlock(&bxe_prev_mtx); 15344 15345 return (rc); 15346 } 15347 15348 static int 15349 bxe_prev_mark_path(struct bxe_softc *sc, 15350 uint8_t after_undi) 15351 { 15352 struct bxe_prev_list_node *tmp; 15353 15354 mtx_lock(&bxe_prev_mtx); 15355 15356 /* Check whether the entry for this path already exists */ 15357 tmp = bxe_prev_path_get_entry(sc); 15358 if (tmp) { 15359 if (!tmp->aer) { 15360 BLOGD(sc, DBG_LOAD, 15361 "Re-marking AER in path %d/%d/%d\n", 15362 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15363 } else { 15364 BLOGD(sc, DBG_LOAD, 15365 "Removing AER indication from path %d/%d/%d\n", 15366 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15367 tmp->aer = 0; 15368 } 15369 15370 mtx_unlock(&bxe_prev_mtx); 15371 return (0); 15372 } 15373 15374 mtx_unlock(&bxe_prev_mtx); 15375 15376 /* Create an entry for this path and add it */ 15377 tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF, 15378 (M_NOWAIT | M_ZERO)); 15379 if (!tmp) { 15380 BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); 15381 return (-1); 15382 } 15383 15384 tmp->bus = sc->pcie_bus; 15385 tmp->slot = sc->pcie_device; 15386 tmp->path = SC_PATH(sc); 15387 tmp->aer = 0; 15388 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; 15389 15390 mtx_lock(&bxe_prev_mtx); 15391 15392 BLOGD(sc, DBG_LOAD, 15393 "Marked path %d/%d/%d - finished previous unload\n", 15394 sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); 15395 LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); 15396 15397 mtx_unlock(&bxe_prev_mtx); 15398 15399 return (0); 15400 } 15401 15402 static int 15403 bxe_do_flr(struct bxe_softc *sc) 15404 { 15405 int i; 15406 15407 /* only E2 and onwards support FLR */ 15408 if (CHIP_IS_E1x(sc)) { 15409 BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); 15410 return (-1); 15411 } 15412 15413 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ 15414 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { 15415 BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", 15416 sc->devinfo.bc_ver); 15417 return (-1); 15418 } 15419 15420 /* Wait for Transaction Pending bit clean */ 15421 for (i = 0; i < 4; i++) { 15422 if (i) { 15423 DELAY(((1 << (i - 1)) * 100) * 1000); 15424 } 15425 15426 if (!bxe_is_pcie_pending(sc)) { 15427 goto clear; 15428 } 15429 } 15430 15431 BLOGE(sc, "PCIE transaction is not cleared, " 15432 "proceeding with reset anyway\n"); 15433 15434 clear: 15435 15436 BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); 15437 bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); 15438 15439 return (0); 15440 } 15441 15442 struct bxe_mac_vals { 15443 uint32_t xmac_addr; 15444 uint32_t xmac_val; 15445 uint32_t emac_addr; 15446 uint32_t emac_val; 15447 uint32_t umac_addr; 15448 uint32_t umac_val; 15449 uint32_t bmac_addr; 15450 uint32_t bmac_val[2]; 15451 }; 15452 15453 static void 15454 bxe_prev_unload_close_mac(struct bxe_softc *sc, 15455 struct bxe_mac_vals *vals) 15456 { 15457 uint32_t val, base_addr, offset, mask, reset_reg; 15458 uint8_t mac_stopped = FALSE; 15459 uint8_t port = SC_PORT(sc); 15460 uint32_t wb_data[2]; 15461 15462 /* reset addresses as they also mark which values were changed */ 15463 vals->bmac_addr = 0; 15464 vals->umac_addr = 0; 15465 vals->xmac_addr = 0; 15466 vals->emac_addr = 0; 15467 15468 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); 15469 15470 if (!CHIP_IS_E3(sc)) { 15471 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); 15472 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; 15473 if ((mask & reset_reg) && val) { 15474 BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); 15475 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM 15476 : NIG_REG_INGRESS_BMAC0_MEM; 15477 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL 15478 : BIGMAC_REGISTER_BMAC_CONTROL; 15479 15480 /* 15481 * use rd/wr since we cannot use dmae. This is safe 15482 * since MCP won't access the bus due to the request 15483 * to unload, and no function on the path can be 15484 * loaded at this time. 15485 */ 15486 wb_data[0] = REG_RD(sc, base_addr + offset); 15487 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); 15488 vals->bmac_addr = base_addr + offset; 15489 vals->bmac_val[0] = wb_data[0]; 15490 vals->bmac_val[1] = wb_data[1]; 15491 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; 15492 REG_WR(sc, vals->bmac_addr, wb_data[0]); 15493 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); 15494 } 15495 15496 BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); 15497 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; 15498 vals->emac_val = REG_RD(sc, vals->emac_addr); 15499 REG_WR(sc, vals->emac_addr, 0); 15500 mac_stopped = TRUE; 15501 } else { 15502 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { 15503 BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); 15504 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; 15505 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); 15506 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); 15507 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); 15508 vals->xmac_addr = base_addr + XMAC_REG_CTRL; 15509 vals->xmac_val = REG_RD(sc, vals->xmac_addr); 15510 REG_WR(sc, vals->xmac_addr, 0); 15511 mac_stopped = TRUE; 15512 } 15513 15514 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; 15515 if (mask & reset_reg) { 15516 BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); 15517 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; 15518 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; 15519 vals->umac_val = REG_RD(sc, vals->umac_addr); 15520 REG_WR(sc, vals->umac_addr, 0); 15521 mac_stopped = TRUE; 15522 } 15523 } 15524 15525 if (mac_stopped) { 15526 DELAY(20000); 15527 } 15528 } 15529 15530 #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) 15531 #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) 15532 #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) 15533 #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) 15534 15535 static void 15536 bxe_prev_unload_undi_inc(struct bxe_softc *sc, 15537 uint8_t port, 15538 uint8_t inc) 15539 { 15540 uint16_t rcq, bd; 15541 uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); 15542 15543 rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; 15544 bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; 15545 15546 tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); 15547 REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); 15548 15549 BLOGD(sc, DBG_LOAD, 15550 "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", 15551 port, bd, rcq); 15552 } 15553 15554 static int 15555 bxe_prev_unload_common(struct bxe_softc *sc) 15556 { 15557 uint32_t reset_reg, tmp_reg = 0, rc; 15558 uint8_t prev_undi = FALSE; 15559 struct bxe_mac_vals mac_vals; 15560 uint32_t timer_count = 1000; 15561 uint32_t prev_brb; 15562 15563 /* 15564 * It is possible a previous function received 'common' answer, 15565 * but hasn't loaded yet, therefore creating a scenario of 15566 * multiple functions receiving 'common' on the same path. 15567 */ 15568 BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); 15569 15570 memset(&mac_vals, 0, sizeof(mac_vals)); 15571 15572 if (bxe_prev_is_path_marked(sc)) { 15573 return (bxe_prev_mcp_done(sc)); 15574 } 15575 15576 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); 15577 15578 /* Reset should be performed after BRB is emptied */ 15579 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { 15580 /* Close the MAC Rx to prevent BRB from filling up */ 15581 bxe_prev_unload_close_mac(sc, &mac_vals); 15582 15583 /* close LLH filters towards the BRB */ 15584 elink_set_rx_filter(&sc->link_params, 0); 15585 15586 /* 15587 * Check if the UNDI driver was previously loaded. 15588 * UNDI driver initializes CID offset for normal bell to 0x7 15589 */ 15590 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { 15591 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); 15592 if (tmp_reg == 0x7) { 15593 BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); 15594 prev_undi = TRUE; 15595 /* clear the UNDI indication */ 15596 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); 15597 /* clear possible idle check errors */ 15598 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); 15599 } 15600 } 15601 15602 /* wait until BRB is empty */ 15603 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15604 while (timer_count) { 15605 prev_brb = tmp_reg; 15606 15607 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); 15608 if (!tmp_reg) { 15609 break; 15610 } 15611 15612 BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); 15613 15614 /* reset timer as long as BRB actually gets emptied */ 15615 if (prev_brb > tmp_reg) { 15616 timer_count = 1000; 15617 } else { 15618 timer_count--; 15619 } 15620 15621 /* If UNDI resides in memory, manually increment it */ 15622 if (prev_undi) { 15623 bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); 15624 } 15625 15626 DELAY(10); 15627 } 15628 15629 if (!timer_count) { 15630 BLOGE(sc, "Failed to empty BRB\n"); 15631 } 15632 } 15633 15634 /* No packets are in the pipeline, path is ready for reset */ 15635 bxe_reset_common(sc); 15636 15637 if (mac_vals.xmac_addr) { 15638 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); 15639 } 15640 if (mac_vals.umac_addr) { 15641 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); 15642 } 15643 if (mac_vals.emac_addr) { 15644 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); 15645 } 15646 if (mac_vals.bmac_addr) { 15647 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); 15648 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); 15649 } 15650 15651 rc = bxe_prev_mark_path(sc, prev_undi); 15652 if (rc) { 15653 bxe_prev_mcp_done(sc); 15654 return (rc); 15655 } 15656 15657 return (bxe_prev_mcp_done(sc)); 15658 } 15659 15660 static int 15661 bxe_prev_unload_uncommon(struct bxe_softc *sc) 15662 { 15663 int rc; 15664 15665 BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); 15666 15667 /* Test if previous unload process was already finished for this path */ 15668 if (bxe_prev_is_path_marked(sc)) { 15669 return (bxe_prev_mcp_done(sc)); 15670 } 15671 15672 BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); 15673 15674 /* 15675 * If function has FLR capabilities, and existing FW version matches 15676 * the one required, then FLR will be sufficient to clean any residue 15677 * left by previous driver 15678 */ 15679 rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); 15680 if (!rc) { 15681 /* fw version is good */ 15682 BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); 15683 rc = bxe_do_flr(sc); 15684 } 15685 15686 if (!rc) { 15687 /* FLR was performed */ 15688 BLOGD(sc, DBG_LOAD, "FLR successful\n"); 15689 return (0); 15690 } 15691 15692 BLOGD(sc, DBG_LOAD, "Could not FLR\n"); 15693 15694 /* Close the MCP request, return failure*/ 15695 rc = bxe_prev_mcp_done(sc); 15696 if (!rc) { 15697 rc = BXE_PREV_WAIT_NEEDED; 15698 } 15699 15700 return (rc); 15701 } 15702 15703 static int 15704 bxe_prev_unload(struct bxe_softc *sc) 15705 { 15706 int time_counter = 10; 15707 uint32_t fw, hw_lock_reg, hw_lock_val; 15708 uint32_t rc = 0; 15709 15710 /* 15711 * Clear HW from errors which may have resulted from an interrupted 15712 * DMAE transaction. 15713 */ 15714 bxe_prev_interrupted_dmae(sc); 15715 15716 /* Release previously held locks */ 15717 hw_lock_reg = 15718 (SC_FUNC(sc) <= 5) ? 15719 (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : 15720 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); 15721 15722 hw_lock_val = (REG_RD(sc, hw_lock_reg)); 15723 if (hw_lock_val) { 15724 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { 15725 BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); 15726 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, 15727 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); 15728 } 15729 BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); 15730 REG_WR(sc, hw_lock_reg, 0xffffffff); 15731 } else { 15732 BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); 15733 } 15734 15735 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { 15736 BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); 15737 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); 15738 } 15739 15740 do { 15741 /* Lock MCP using an unload request */ 15742 fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); 15743 if (!fw) { 15744 BLOGE(sc, "MCP response failure, aborting\n"); 15745 rc = -1; 15746 break; 15747 } 15748 15749 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { 15750 rc = bxe_prev_unload_common(sc); 15751 break; 15752 } 15753 15754 /* non-common reply from MCP night require looping */ 15755 rc = bxe_prev_unload_uncommon(sc); 15756 if (rc != BXE_PREV_WAIT_NEEDED) { 15757 break; 15758 } 15759 15760 DELAY(20000); 15761 } while (--time_counter); 15762 15763 if (!time_counter || rc) { 15764 BLOGE(sc, "Failed to unload previous driver!" 15765 " time_counter %d rc %d\n", time_counter, rc); 15766 rc = -1; 15767 } 15768 15769 return (rc); 15770 } 15771 15772 void 15773 bxe_dcbx_set_state(struct bxe_softc *sc, 15774 uint8_t dcb_on, 15775 uint32_t dcbx_enabled) 15776 { 15777 if (!CHIP_IS_E1x(sc)) { 15778 sc->dcb_state = dcb_on; 15779 sc->dcbx_enabled = dcbx_enabled; 15780 } else { 15781 sc->dcb_state = FALSE; 15782 sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; 15783 } 15784 BLOGD(sc, DBG_LOAD, 15785 "DCB state [%s:%s]\n", 15786 dcb_on ? "ON" : "OFF", 15787 (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : 15788 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : 15789 (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? 15790 "on-chip with negotiation" : "invalid"); 15791 } 15792 15793 /* must be called after sriov-enable */ 15794 static int 15795 bxe_set_qm_cid_count(struct bxe_softc *sc) 15796 { 15797 int cid_count = BXE_L2_MAX_CID(sc); 15798 15799 if (IS_SRIOV(sc)) { 15800 cid_count += BXE_VF_CIDS; 15801 } 15802 15803 if (CNIC_SUPPORT(sc)) { 15804 cid_count += CNIC_CID_MAX; 15805 } 15806 15807 return (roundup(cid_count, QM_CID_ROUND)); 15808 } 15809 15810 static void 15811 bxe_init_multi_cos(struct bxe_softc *sc) 15812 { 15813 int pri, cos; 15814 15815 uint32_t pri_map = 0; /* XXX change to user config */ 15816 15817 for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { 15818 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); 15819 if (cos < sc->max_cos) { 15820 sc->prio_to_cos[pri] = cos; 15821 } else { 15822 BLOGW(sc, "Invalid COS %d for priority %d " 15823 "(max COS is %d), setting to 0\n", 15824 cos, pri, (sc->max_cos - 1)); 15825 sc->prio_to_cos[pri] = 0; 15826 } 15827 } 15828 } 15829 15830 static int 15831 bxe_sysctl_state(SYSCTL_HANDLER_ARGS) 15832 { 15833 struct bxe_softc *sc; 15834 int error, result; 15835 15836 result = 0; 15837 error = sysctl_handle_int(oidp, &result, 0, req); 15838 15839 if (error || !req->newptr) { 15840 return (error); 15841 } 15842 15843 if (result == 1) { 15844 uint32_t temp; 15845 sc = (struct bxe_softc *)arg1; 15846 15847 BLOGI(sc, "... dumping driver state ...\n"); 15848 temp = SHMEM2_RD(sc, temperature_in_half_celsius); 15849 BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2)); 15850 } 15851 15852 return (error); 15853 } 15854 15855 static int 15856 bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) 15857 { 15858 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15859 uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; 15860 uint32_t *offset; 15861 uint64_t value = 0; 15862 int index = (int)arg2; 15863 15864 if (index >= BXE_NUM_ETH_STATS) { 15865 BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); 15866 return (-1); 15867 } 15868 15869 offset = (eth_stats + bxe_eth_stats_arr[index].offset); 15870 15871 switch (bxe_eth_stats_arr[index].size) { 15872 case 4: 15873 value = (uint64_t)*offset; 15874 break; 15875 case 8: 15876 value = HILO_U64(*offset, *(offset + 1)); 15877 break; 15878 default: 15879 BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", 15880 index, bxe_eth_stats_arr[index].size); 15881 return (-1); 15882 } 15883 15884 return (sysctl_handle_64(oidp, &value, 0, req)); 15885 } 15886 15887 static int 15888 bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) 15889 { 15890 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15891 uint32_t *eth_stats; 15892 uint32_t *offset; 15893 uint64_t value = 0; 15894 uint32_t q_stat = (uint32_t)arg2; 15895 uint32_t fp_index = ((q_stat >> 16) & 0xffff); 15896 uint32_t index = (q_stat & 0xffff); 15897 15898 eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; 15899 15900 if (index >= BXE_NUM_ETH_Q_STATS) { 15901 BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); 15902 return (-1); 15903 } 15904 15905 offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); 15906 15907 switch (bxe_eth_q_stats_arr[index].size) { 15908 case 4: 15909 value = (uint64_t)*offset; 15910 break; 15911 case 8: 15912 value = HILO_U64(*offset, *(offset + 1)); 15913 break; 15914 default: 15915 BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", 15916 index, bxe_eth_q_stats_arr[index].size); 15917 return (-1); 15918 } 15919 15920 return (sysctl_handle_64(oidp, &value, 0, req)); 15921 } 15922 15923 static void bxe_force_link_reset(struct bxe_softc *sc) 15924 { 15925 15926 bxe_acquire_phy_lock(sc); 15927 elink_link_reset(&sc->link_params, &sc->link_vars, 1); 15928 bxe_release_phy_lock(sc); 15929 } 15930 15931 static int 15932 bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS) 15933 { 15934 struct bxe_softc *sc = (struct bxe_softc *)arg1; 15935 uint32_t cfg_idx = bxe_get_link_cfg_idx(sc); 15936 int rc = 0; 15937 int error; 15938 int result; 15939 15940 15941 error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req); 15942 15943 if (error || !req->newptr) { 15944 return (error); 15945 } 15946 if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) { 15947 BLOGW(sc, "invalid pause param (%d) - use intergers between 1 & 8\n",sc->bxe_pause_param); 15948 sc->bxe_pause_param = 8; 15949 } 15950 15951 result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT); 15952 15953 15954 if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) { 15955 BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param); 15956 return -EINVAL; 15957 } 15958 15959 if(IS_MF(sc)) 15960 return 0; 15961 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO; 15962 if(result & ELINK_FLOW_CTRL_RX) 15963 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX; 15964 15965 if(result & ELINK_FLOW_CTRL_TX) 15966 sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX; 15967 if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO) 15968 sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE; 15969 15970 if(result & 0x400) { 15971 if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) { 15972 sc->link_params.req_flow_ctrl[cfg_idx] = 15973 ELINK_FLOW_CTRL_AUTO; 15974 } 15975 sc->link_params.req_fc_auto_adv = 0; 15976 if (result & ELINK_FLOW_CTRL_RX) 15977 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX; 15978 15979 if (result & ELINK_FLOW_CTRL_TX) 15980 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX; 15981 if (!sc->link_params.req_fc_auto_adv) 15982 sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE; 15983 } 15984 if (IS_PF(sc)) { 15985 if (sc->link_vars.link_up) { 15986 bxe_stats_handle(sc, STATS_EVENT_STOP); 15987 } 15988 if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { 15989 bxe_force_link_reset(sc); 15990 bxe_acquire_phy_lock(sc); 15991 15992 rc = elink_phy_init(&sc->link_params, &sc->link_vars); 15993 15994 bxe_release_phy_lock(sc); 15995 15996 bxe_calc_fc_adv(sc); 15997 } 15998 } 15999 return rc; 16000 } 16001 16002 16003 static void 16004 bxe_add_sysctls(struct bxe_softc *sc) 16005 { 16006 struct sysctl_ctx_list *ctx; 16007 struct sysctl_oid_list *children; 16008 struct sysctl_oid *queue_top, *queue; 16009 struct sysctl_oid_list *queue_top_children, *queue_children; 16010 char queue_num_buf[32]; 16011 uint32_t q_stat; 16012 int i, j; 16013 16014 ctx = device_get_sysctl_ctx(sc->dev); 16015 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); 16016 16017 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", 16018 CTLFLAG_RD, BXE_DRIVER_VERSION, 0, 16019 "version"); 16020 16021 snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", 16022 BCM_5710_FW_MAJOR_VERSION, 16023 BCM_5710_FW_MINOR_VERSION, 16024 BCM_5710_FW_REVISION_VERSION, 16025 BCM_5710_FW_ENGINEERING_VERSION); 16026 16027 snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", 16028 ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : 16029 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : 16030 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : 16031 (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : 16032 "Unknown")); 16033 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", 16034 CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, 16035 "multifunction vnics per port"); 16036 16037 snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", 16038 ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : 16039 (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : 16040 (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : 16041 "???GT/s"), 16042 sc->devinfo.pcie_link_width); 16043 16044 sc->debug = bxe_debug; 16045 16046 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", 16047 CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, 16048 "bootcode version"); 16049 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", 16050 CTLFLAG_RD, sc->fw_ver_str, 0, 16051 "firmware version"); 16052 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", 16053 CTLFLAG_RD, sc->mf_mode_str, 0, 16054 "multifunction mode"); 16055 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", 16056 CTLFLAG_RD, sc->mac_addr_str, 0, 16057 "mac address"); 16058 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", 16059 CTLFLAG_RD, sc->pci_link_str, 0, 16060 "pci link status"); 16061 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", 16062 CTLFLAG_RW, &sc->debug, 16063 "debug logging mode"); 16064 16065 sc->trigger_grcdump = 0; 16066 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump", 16067 CTLFLAG_RW, &sc->trigger_grcdump, 0, 16068 "trigger grcdump should be invoked" 16069 " before collecting grcdump"); 16070 16071 sc->grcdump_started = 0; 16072 sc->grcdump_done = 0; 16073 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done", 16074 CTLFLAG_RD, &sc->grcdump_done, 0, 16075 "set by driver when grcdump is done"); 16076 16077 sc->rx_budget = bxe_rx_budget; 16078 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", 16079 CTLFLAG_RW, &sc->rx_budget, 0, 16080 "rx processing budget"); 16081 16082 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param", 16083 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16084 bxe_sysctl_pauseparam, "IU", 16085 "need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8"); 16086 16087 16088 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", 16089 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 16090 bxe_sysctl_state, "IU", "dump driver state"); 16091 16092 for (i = 0; i < BXE_NUM_ETH_STATS; i++) { 16093 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, 16094 bxe_eth_stats_arr[i].string, 16095 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 16096 bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string); 16097 } 16098 16099 /* add a new parent node for all queues "dev.bxe.#.queue" */ 16100 queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", 16101 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue"); 16102 queue_top_children = SYSCTL_CHILDREN(queue_top); 16103 16104 for (i = 0; i < sc->num_queues; i++) { 16105 /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ 16106 snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); 16107 queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, 16108 queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue"); 16109 queue_children = SYSCTL_CHILDREN(queue); 16110 16111 for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { 16112 q_stat = ((i << 16) | j); 16113 SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, 16114 bxe_eth_q_stats_arr[j].string, 16115 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat, 16116 bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string); 16117 } 16118 } 16119 } 16120 16121 static int 16122 bxe_alloc_buf_rings(struct bxe_softc *sc) 16123 { 16124 int i; 16125 struct bxe_fastpath *fp; 16126 16127 for (i = 0; i < sc->num_queues; i++) { 16128 16129 fp = &sc->fp[i]; 16130 16131 fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, 16132 M_NOWAIT, &fp->tx_mtx); 16133 if (fp->tx_br == NULL) 16134 return (-1); 16135 } 16136 16137 return (0); 16138 } 16139 16140 static void 16141 bxe_free_buf_rings(struct bxe_softc *sc) 16142 { 16143 int i; 16144 struct bxe_fastpath *fp; 16145 16146 for (i = 0; i < sc->num_queues; i++) { 16147 16148 fp = &sc->fp[i]; 16149 16150 if (fp->tx_br) { 16151 buf_ring_free(fp->tx_br, M_DEVBUF); 16152 fp->tx_br = NULL; 16153 } 16154 } 16155 } 16156 16157 static void 16158 bxe_init_fp_mutexs(struct bxe_softc *sc) 16159 { 16160 int i; 16161 struct bxe_fastpath *fp; 16162 16163 for (i = 0; i < sc->num_queues; i++) { 16164 16165 fp = &sc->fp[i]; 16166 16167 snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), 16168 "bxe%d_fp%d_tx_lock", sc->unit, i); 16169 mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF); 16170 16171 snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), 16172 "bxe%d_fp%d_rx_lock", sc->unit, i); 16173 mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF); 16174 } 16175 } 16176 16177 static void 16178 bxe_destroy_fp_mutexs(struct bxe_softc *sc) 16179 { 16180 int i; 16181 struct bxe_fastpath *fp; 16182 16183 for (i = 0; i < sc->num_queues; i++) { 16184 16185 fp = &sc->fp[i]; 16186 16187 if (mtx_initialized(&fp->tx_mtx)) { 16188 mtx_destroy(&fp->tx_mtx); 16189 } 16190 16191 if (mtx_initialized(&fp->rx_mtx)) { 16192 mtx_destroy(&fp->rx_mtx); 16193 } 16194 } 16195 } 16196 16197 16198 /* 16199 * Device attach function. 16200 * 16201 * Allocates device resources, performs secondary chip identification, and 16202 * initializes driver instance variables. This function is called from driver 16203 * load after a successful probe. 16204 * 16205 * Returns: 16206 * 0 = Success, >0 = Failure 16207 */ 16208 static int 16209 bxe_attach(device_t dev) 16210 { 16211 struct bxe_softc *sc; 16212 16213 sc = device_get_softc(dev); 16214 16215 BLOGD(sc, DBG_LOAD, "Starting attach...\n"); 16216 16217 sc->state = BXE_STATE_CLOSED; 16218 16219 sc->dev = dev; 16220 sc->unit = device_get_unit(dev); 16221 16222 BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); 16223 16224 sc->pcie_bus = pci_get_bus(dev); 16225 sc->pcie_device = pci_get_slot(dev); 16226 sc->pcie_func = pci_get_function(dev); 16227 16228 /* enable bus master capability */ 16229 pci_enable_busmaster(dev); 16230 16231 /* get the BARs */ 16232 if (bxe_allocate_bars(sc) != 0) { 16233 return (ENXIO); 16234 } 16235 16236 /* initialize the mutexes */ 16237 bxe_init_mutexes(sc); 16238 16239 /* prepare the periodic callout */ 16240 callout_init(&sc->periodic_callout, 1); 16241 16242 /* prepare the chip taskqueue */ 16243 sc->chip_tq_flags = CHIP_TQ_NONE; 16244 snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), 16245 "bxe%d_chip_tq", sc->unit); 16246 TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); 16247 sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, 16248 taskqueue_thread_enqueue, 16249 &sc->chip_tq); 16250 taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ 16251 "%s", sc->chip_tq_name); 16252 16253 TIMEOUT_TASK_INIT(taskqueue_thread, 16254 &sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc); 16255 16256 16257 /* get device info and set params */ 16258 if (bxe_get_device_info(sc) != 0) { 16259 BLOGE(sc, "getting device info\n"); 16260 bxe_deallocate_bars(sc); 16261 pci_disable_busmaster(dev); 16262 return (ENXIO); 16263 } 16264 16265 /* get final misc params */ 16266 bxe_get_params(sc); 16267 16268 /* set the default MTU (changed via ifconfig) */ 16269 sc->mtu = ETHERMTU; 16270 16271 bxe_set_modes_bitmap(sc); 16272 16273 /* XXX 16274 * If in AFEX mode and the function is configured for FCoE 16275 * then bail... no L2 allowed. 16276 */ 16277 16278 /* get phy settings from shmem and 'and' against admin settings */ 16279 bxe_get_phy_info(sc); 16280 16281 /* initialize the FreeBSD ifnet interface */ 16282 if (bxe_init_ifnet(sc) != 0) { 16283 bxe_release_mutexes(sc); 16284 bxe_deallocate_bars(sc); 16285 pci_disable_busmaster(dev); 16286 return (ENXIO); 16287 } 16288 16289 if (bxe_add_cdev(sc) != 0) { 16290 if (sc->ifp != NULL) { 16291 ether_ifdetach(sc->ifp); 16292 } 16293 ifmedia_removeall(&sc->ifmedia); 16294 bxe_release_mutexes(sc); 16295 bxe_deallocate_bars(sc); 16296 pci_disable_busmaster(dev); 16297 return (ENXIO); 16298 } 16299 16300 /* allocate device interrupts */ 16301 if (bxe_interrupt_alloc(sc) != 0) { 16302 bxe_del_cdev(sc); 16303 if (sc->ifp != NULL) { 16304 ether_ifdetach(sc->ifp); 16305 } 16306 ifmedia_removeall(&sc->ifmedia); 16307 bxe_release_mutexes(sc); 16308 bxe_deallocate_bars(sc); 16309 pci_disable_busmaster(dev); 16310 return (ENXIO); 16311 } 16312 16313 bxe_init_fp_mutexs(sc); 16314 16315 if (bxe_alloc_buf_rings(sc) != 0) { 16316 bxe_free_buf_rings(sc); 16317 bxe_interrupt_free(sc); 16318 bxe_del_cdev(sc); 16319 if (sc->ifp != NULL) { 16320 ether_ifdetach(sc->ifp); 16321 } 16322 ifmedia_removeall(&sc->ifmedia); 16323 bxe_release_mutexes(sc); 16324 bxe_deallocate_bars(sc); 16325 pci_disable_busmaster(dev); 16326 return (ENXIO); 16327 } 16328 16329 /* allocate ilt */ 16330 if (bxe_alloc_ilt_mem(sc) != 0) { 16331 bxe_free_buf_rings(sc); 16332 bxe_interrupt_free(sc); 16333 bxe_del_cdev(sc); 16334 if (sc->ifp != NULL) { 16335 ether_ifdetach(sc->ifp); 16336 } 16337 ifmedia_removeall(&sc->ifmedia); 16338 bxe_release_mutexes(sc); 16339 bxe_deallocate_bars(sc); 16340 pci_disable_busmaster(dev); 16341 return (ENXIO); 16342 } 16343 16344 /* allocate the host hardware/software hsi structures */ 16345 if (bxe_alloc_hsi_mem(sc) != 0) { 16346 bxe_free_ilt_mem(sc); 16347 bxe_free_buf_rings(sc); 16348 bxe_interrupt_free(sc); 16349 bxe_del_cdev(sc); 16350 if (sc->ifp != NULL) { 16351 ether_ifdetach(sc->ifp); 16352 } 16353 ifmedia_removeall(&sc->ifmedia); 16354 bxe_release_mutexes(sc); 16355 bxe_deallocate_bars(sc); 16356 pci_disable_busmaster(dev); 16357 return (ENXIO); 16358 } 16359 16360 /* need to reset chip if UNDI was active */ 16361 if (IS_PF(sc) && !BXE_NOMCP(sc)) { 16362 /* init fw_seq */ 16363 sc->fw_seq = 16364 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & 16365 DRV_MSG_SEQ_NUMBER_MASK); 16366 BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); 16367 bxe_prev_unload(sc); 16368 } 16369 16370 #if 1 16371 /* XXX */ 16372 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16373 #else 16374 if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && 16375 SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && 16376 SHMEM2_RD(sc, dcbx_lldp_params_offset) && 16377 SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { 16378 bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); 16379 bxe_dcbx_init_params(sc); 16380 } else { 16381 bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); 16382 } 16383 #endif 16384 16385 /* calculate qm_cid_count */ 16386 sc->qm_cid_count = bxe_set_qm_cid_count(sc); 16387 BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); 16388 16389 sc->max_cos = 1; 16390 bxe_init_multi_cos(sc); 16391 16392 bxe_add_sysctls(sc); 16393 16394 return (0); 16395 } 16396 16397 /* 16398 * Device detach function. 16399 * 16400 * Stops the controller, resets the controller, and releases resources. 16401 * 16402 * Returns: 16403 * 0 = Success, >0 = Failure 16404 */ 16405 static int 16406 bxe_detach(device_t dev) 16407 { 16408 struct bxe_softc *sc; 16409 if_t ifp; 16410 16411 sc = device_get_softc(dev); 16412 16413 BLOGD(sc, DBG_LOAD, "Starting detach...\n"); 16414 16415 ifp = sc->ifp; 16416 if (ifp != NULL && if_vlantrunkinuse(ifp)) { 16417 BLOGE(sc, "Cannot detach while VLANs are in use.\n"); 16418 return(EBUSY); 16419 } 16420 16421 bxe_del_cdev(sc); 16422 16423 /* stop the periodic callout */ 16424 bxe_periodic_stop(sc); 16425 16426 /* stop the chip taskqueue */ 16427 atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE); 16428 if (sc->chip_tq) { 16429 taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); 16430 taskqueue_free(sc->chip_tq); 16431 sc->chip_tq = NULL; 16432 taskqueue_drain_timeout(taskqueue_thread, 16433 &sc->sp_err_timeout_task); 16434 } 16435 16436 /* stop and reset the controller if it was open */ 16437 if (sc->state != BXE_STATE_CLOSED) { 16438 BXE_CORE_LOCK(sc); 16439 bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); 16440 sc->state = BXE_STATE_DISABLED; 16441 BXE_CORE_UNLOCK(sc); 16442 } 16443 16444 /* release the network interface */ 16445 if (ifp != NULL) { 16446 ether_ifdetach(ifp); 16447 } 16448 ifmedia_removeall(&sc->ifmedia); 16449 16450 /* XXX do the following based on driver state... */ 16451 16452 /* free the host hardware/software hsi structures */ 16453 bxe_free_hsi_mem(sc); 16454 16455 /* free ilt */ 16456 bxe_free_ilt_mem(sc); 16457 16458 bxe_free_buf_rings(sc); 16459 16460 /* release the interrupts */ 16461 bxe_interrupt_free(sc); 16462 16463 /* Release the mutexes*/ 16464 bxe_destroy_fp_mutexs(sc); 16465 bxe_release_mutexes(sc); 16466 16467 16468 /* Release the PCIe BAR mapped memory */ 16469 bxe_deallocate_bars(sc); 16470 16471 /* Release the FreeBSD interface. */ 16472 if (sc->ifp != NULL) { 16473 if_free(sc->ifp); 16474 } 16475 16476 pci_disable_busmaster(dev); 16477 16478 return (0); 16479 } 16480 16481 /* 16482 * Device shutdown function. 16483 * 16484 * Stops and resets the controller. 16485 * 16486 * Returns: 16487 * Nothing 16488 */ 16489 static int 16490 bxe_shutdown(device_t dev) 16491 { 16492 struct bxe_softc *sc; 16493 16494 sc = device_get_softc(dev); 16495 16496 BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); 16497 16498 /* stop the periodic callout */ 16499 bxe_periodic_stop(sc); 16500 16501 if (sc->state != BXE_STATE_CLOSED) { 16502 BXE_CORE_LOCK(sc); 16503 bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); 16504 BXE_CORE_UNLOCK(sc); 16505 } 16506 16507 return (0); 16508 } 16509 16510 void 16511 bxe_igu_ack_sb(struct bxe_softc *sc, 16512 uint8_t igu_sb_id, 16513 uint8_t segment, 16514 uint16_t index, 16515 uint8_t op, 16516 uint8_t update) 16517 { 16518 uint32_t igu_addr = sc->igu_base_addr; 16519 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; 16520 bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); 16521 } 16522 16523 static void 16524 bxe_igu_clear_sb_gen(struct bxe_softc *sc, 16525 uint8_t func, 16526 uint8_t idu_sb_id, 16527 uint8_t is_pf) 16528 { 16529 uint32_t data, ctl, cnt = 100; 16530 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; 16531 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; 16532 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; 16533 uint32_t sb_bit = 1 << (idu_sb_id%32); 16534 uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; 16535 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; 16536 16537 /* Not supported in BC mode */ 16538 if (CHIP_INT_MODE_IS_BC(sc)) { 16539 return; 16540 } 16541 16542 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << 16543 IGU_REGULAR_CLEANUP_TYPE_SHIFT) | 16544 IGU_REGULAR_CLEANUP_SET | 16545 IGU_REGULAR_BCLEANUP); 16546 16547 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | 16548 (func_encode << IGU_CTRL_REG_FID_SHIFT) | 16549 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); 16550 16551 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16552 data, igu_addr_data); 16553 REG_WR(sc, igu_addr_data, data); 16554 16555 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16556 BUS_SPACE_BARRIER_WRITE); 16557 mb(); 16558 16559 BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", 16560 ctl, igu_addr_ctl); 16561 REG_WR(sc, igu_addr_ctl, ctl); 16562 16563 bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, 16564 BUS_SPACE_BARRIER_WRITE); 16565 mb(); 16566 16567 /* wait for clean up to finish */ 16568 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { 16569 DELAY(20000); 16570 } 16571 16572 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { 16573 BLOGD(sc, DBG_LOAD, 16574 "Unable to finish IGU cleanup: " 16575 "idu_sb_id %d offset %d bit %d (cnt %d)\n", 16576 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); 16577 } 16578 } 16579 16580 static void 16581 bxe_igu_clear_sb(struct bxe_softc *sc, 16582 uint8_t idu_sb_id) 16583 { 16584 bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); 16585 } 16586 16587 16588 16589 16590 16591 16592 16593 /*******************/ 16594 /* ECORE CALLBACKS */ 16595 /*******************/ 16596 16597 static void 16598 bxe_reset_common(struct bxe_softc *sc) 16599 { 16600 uint32_t val = 0x1400; 16601 16602 /* reset_common */ 16603 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); 16604 16605 if (CHIP_IS_E3(sc)) { 16606 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 16607 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 16608 } 16609 16610 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); 16611 } 16612 16613 static void 16614 bxe_common_init_phy(struct bxe_softc *sc) 16615 { 16616 uint32_t shmem_base[2]; 16617 uint32_t shmem2_base[2]; 16618 16619 /* Avoid common init in case MFW supports LFA */ 16620 if (SHMEM2_RD(sc, size) > 16621 (uint32_t)offsetof(struct shmem2_region, 16622 lfa_host_addr[SC_PORT(sc)])) { 16623 return; 16624 } 16625 16626 shmem_base[0] = sc->devinfo.shmem_base; 16627 shmem2_base[0] = sc->devinfo.shmem2_base; 16628 16629 if (!CHIP_IS_E1x(sc)) { 16630 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); 16631 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); 16632 } 16633 16634 bxe_acquire_phy_lock(sc); 16635 elink_common_init_phy(sc, shmem_base, shmem2_base, 16636 sc->devinfo.chip_id, 0); 16637 bxe_release_phy_lock(sc); 16638 } 16639 16640 static void 16641 bxe_pf_disable(struct bxe_softc *sc) 16642 { 16643 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); 16644 16645 val &= ~IGU_PF_CONF_FUNC_EN; 16646 16647 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); 16648 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 16649 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); 16650 } 16651 16652 static void 16653 bxe_init_pxp(struct bxe_softc *sc) 16654 { 16655 uint16_t devctl; 16656 int r_order, w_order; 16657 16658 devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2); 16659 16660 BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); 16661 16662 w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5); 16663 16664 if (sc->mrrs == -1) { 16665 r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12); 16666 } else { 16667 BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); 16668 r_order = sc->mrrs; 16669 } 16670 16671 ecore_init_pxp_arb(sc, r_order, w_order); 16672 } 16673 16674 static uint32_t 16675 bxe_get_pretend_reg(struct bxe_softc *sc) 16676 { 16677 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; 16678 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); 16679 return (base + (SC_ABS_FUNC(sc)) * stride); 16680 } 16681 16682 /* 16683 * Called only on E1H or E2. 16684 * When pretending to be PF, the pretend value is the function number 0..7. 16685 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID 16686 * combination. 16687 */ 16688 static int 16689 bxe_pretend_func(struct bxe_softc *sc, 16690 uint16_t pretend_func_val) 16691 { 16692 uint32_t pretend_reg; 16693 16694 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { 16695 return (-1); 16696 } 16697 16698 /* get my own pretend register */ 16699 pretend_reg = bxe_get_pretend_reg(sc); 16700 REG_WR(sc, pretend_reg, pretend_func_val); 16701 REG_RD(sc, pretend_reg); 16702 return (0); 16703 } 16704 16705 static void 16706 bxe_iov_init_dmae(struct bxe_softc *sc) 16707 { 16708 return; 16709 } 16710 16711 static void 16712 bxe_iov_init_dq(struct bxe_softc *sc) 16713 { 16714 return; 16715 } 16716 16717 /* send a NIG loopback debug packet */ 16718 static void 16719 bxe_lb_pckt(struct bxe_softc *sc) 16720 { 16721 uint32_t wb_write[3]; 16722 16723 /* Ethernet source and destination addresses */ 16724 wb_write[0] = 0x55555555; 16725 wb_write[1] = 0x55555555; 16726 wb_write[2] = 0x20; /* SOP */ 16727 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16728 16729 /* NON-IP protocol */ 16730 wb_write[0] = 0x09000000; 16731 wb_write[1] = 0x55555555; 16732 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ 16733 REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); 16734 } 16735 16736 /* 16737 * Some of the internal memories are not directly readable from the driver. 16738 * To test them we send debug packets. 16739 */ 16740 static int 16741 bxe_int_mem_test(struct bxe_softc *sc) 16742 { 16743 int factor; 16744 int count, i; 16745 uint32_t val = 0; 16746 16747 if (CHIP_REV_IS_FPGA(sc)) { 16748 factor = 120; 16749 } else if (CHIP_REV_IS_EMUL(sc)) { 16750 factor = 200; 16751 } else { 16752 factor = 1; 16753 } 16754 16755 /* disable inputs of parser neighbor blocks */ 16756 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16757 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16758 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16759 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16760 16761 /* write 0 to parser credits for CFC search request */ 16762 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16763 16764 /* send Ethernet packet */ 16765 bxe_lb_pckt(sc); 16766 16767 /* TODO do i reset NIG statistic? */ 16768 /* Wait until NIG register shows 1 packet of size 0x10 */ 16769 count = 1000 * factor; 16770 while (count) { 16771 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16772 val = *BXE_SP(sc, wb_data[0]); 16773 if (val == 0x10) { 16774 break; 16775 } 16776 16777 DELAY(10000); 16778 count--; 16779 } 16780 16781 if (val != 0x10) { 16782 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16783 return (-1); 16784 } 16785 16786 /* wait until PRS register shows 1 packet */ 16787 count = (1000 * factor); 16788 while (count) { 16789 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16790 if (val == 1) { 16791 break; 16792 } 16793 16794 DELAY(10000); 16795 count--; 16796 } 16797 16798 if (val != 0x1) { 16799 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16800 return (-2); 16801 } 16802 16803 /* Reset and init BRB, PRS */ 16804 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16805 DELAY(50000); 16806 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16807 DELAY(50000); 16808 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16809 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16810 16811 /* Disable inputs of parser neighbor blocks */ 16812 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); 16813 REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); 16814 REG_WR(sc, CFC_REG_DEBUG0, 0x1); 16815 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); 16816 16817 /* Write 0 to parser credits for CFC search request */ 16818 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); 16819 16820 /* send 10 Ethernet packets */ 16821 for (i = 0; i < 10; i++) { 16822 bxe_lb_pckt(sc); 16823 } 16824 16825 /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ 16826 count = (1000 * factor); 16827 while (count) { 16828 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 16829 val = *BXE_SP(sc, wb_data[0]); 16830 if (val == 0xb0) { 16831 break; 16832 } 16833 16834 DELAY(10000); 16835 count--; 16836 } 16837 16838 if (val != 0xb0) { 16839 BLOGE(sc, "NIG timeout val=0x%x\n", val); 16840 return (-3); 16841 } 16842 16843 /* Wait until PRS register shows 2 packets */ 16844 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16845 if (val != 2) { 16846 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16847 } 16848 16849 /* Write 1 to parser credits for CFC search request */ 16850 REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); 16851 16852 /* Wait until PRS register shows 3 packets */ 16853 DELAY(10000 * factor); 16854 16855 /* Wait until NIG register shows 1 packet of size 0x10 */ 16856 val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); 16857 if (val != 3) { 16858 BLOGE(sc, "PRS timeout val=0x%x\n", val); 16859 } 16860 16861 /* clear NIG EOP FIFO */ 16862 for (i = 0; i < 11; i++) { 16863 REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); 16864 } 16865 16866 val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); 16867 if (val != 1) { 16868 BLOGE(sc, "clear of NIG failed val=0x%x\n", val); 16869 return (-4); 16870 } 16871 16872 /* Reset and init BRB, PRS, NIG */ 16873 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); 16874 DELAY(50000); 16875 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); 16876 DELAY(50000); 16877 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 16878 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 16879 if (!CNIC_SUPPORT(sc)) { 16880 /* set NIC mode */ 16881 REG_WR(sc, PRS_REG_NIC_MODE, 1); 16882 } 16883 16884 /* Enable inputs of parser neighbor blocks */ 16885 REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); 16886 REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); 16887 REG_WR(sc, CFC_REG_DEBUG0, 0x0); 16888 REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); 16889 16890 return (0); 16891 } 16892 16893 static void 16894 bxe_setup_fan_failure_detection(struct bxe_softc *sc) 16895 { 16896 int is_required; 16897 uint32_t val; 16898 int port; 16899 16900 is_required = 0; 16901 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & 16902 SHARED_HW_CFG_FAN_FAILURE_MASK); 16903 16904 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { 16905 is_required = 1; 16906 } 16907 /* 16908 * The fan failure mechanism is usually related to the PHY type since 16909 * the power consumption of the board is affected by the PHY. Currently, 16910 * fan is required for most designs with SFX7101, BCM8727 and BCM8481. 16911 */ 16912 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { 16913 for (port = PORT_0; port < PORT_MAX; port++) { 16914 is_required |= elink_fan_failure_det_req(sc, 16915 sc->devinfo.shmem_base, 16916 sc->devinfo.shmem2_base, 16917 port); 16918 } 16919 } 16920 16921 BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); 16922 16923 if (is_required == 0) { 16924 return; 16925 } 16926 16927 /* Fan failure is indicated by SPIO 5 */ 16928 bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); 16929 16930 /* set to active low mode */ 16931 val = REG_RD(sc, MISC_REG_SPIO_INT); 16932 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); 16933 REG_WR(sc, MISC_REG_SPIO_INT, val); 16934 16935 /* enable interrupt to signal the IGU */ 16936 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 16937 val |= MISC_SPIO_SPIO5; 16938 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); 16939 } 16940 16941 static void 16942 bxe_enable_blocks_attention(struct bxe_softc *sc) 16943 { 16944 uint32_t val; 16945 16946 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 16947 if (!CHIP_IS_E1x(sc)) { 16948 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); 16949 } else { 16950 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); 16951 } 16952 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 16953 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 16954 /* 16955 * mask read length error interrupts in brb for parser 16956 * (parsing unit and 'checksum and crc' unit) 16957 * these errors are legal (PU reads fixed length and CAC can cause 16958 * read length error on truncated packets) 16959 */ 16960 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); 16961 REG_WR(sc, QM_REG_QM_INT_MASK, 0); 16962 REG_WR(sc, TM_REG_TM_INT_MASK, 0); 16963 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); 16964 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); 16965 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); 16966 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ 16967 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ 16968 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); 16969 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); 16970 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); 16971 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ 16972 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ 16973 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); 16974 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); 16975 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); 16976 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); 16977 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ 16978 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ 16979 16980 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | 16981 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | 16982 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); 16983 if (!CHIP_IS_E1x(sc)) { 16984 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | 16985 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); 16986 } 16987 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); 16988 16989 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); 16990 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); 16991 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); 16992 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ 16993 16994 if (!CHIP_IS_E1x(sc)) { 16995 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ 16996 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); 16997 } 16998 16999 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); 17000 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); 17001 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ 17002 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ 17003 } 17004 17005 /** 17006 * bxe_init_hw_common - initialize the HW at the COMMON phase. 17007 * 17008 * @sc: driver handle 17009 */ 17010 static int 17011 bxe_init_hw_common(struct bxe_softc *sc) 17012 { 17013 uint8_t abs_func_id; 17014 uint32_t val; 17015 17016 BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", 17017 SC_ABS_FUNC(sc)); 17018 17019 /* 17020 * take the RESET lock to protect undi_unload flow from accessing 17021 * registers while we are resetting the chip 17022 */ 17023 bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17024 17025 bxe_reset_common(sc); 17026 17027 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); 17028 17029 val = 0xfffc; 17030 if (CHIP_IS_E3(sc)) { 17031 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; 17032 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; 17033 } 17034 17035 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); 17036 17037 bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); 17038 17039 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); 17040 BLOGD(sc, DBG_LOAD, "after misc block init\n"); 17041 17042 if (!CHIP_IS_E1x(sc)) { 17043 /* 17044 * 4-port mode or 2-port mode we need to turn off master-enable for 17045 * everyone. After that we turn it back on for self. So, we disregard 17046 * multi-function, and always disable all functions on the given path, 17047 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 17048 */ 17049 for (abs_func_id = SC_PATH(sc); 17050 abs_func_id < (E2_FUNC_MAX * 2); 17051 abs_func_id += 2) { 17052 if (abs_func_id == SC_ABS_FUNC(sc)) { 17053 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17054 continue; 17055 } 17056 17057 bxe_pretend_func(sc, abs_func_id); 17058 17059 /* clear pf enable */ 17060 bxe_pf_disable(sc); 17061 17062 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17063 } 17064 } 17065 17066 BLOGD(sc, DBG_LOAD, "after pf disable\n"); 17067 17068 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); 17069 17070 if (CHIP_IS_E1(sc)) { 17071 /* 17072 * enable HW interrupt from PXP on USDM overflow 17073 * bit 16 on INT_MASK_0 17074 */ 17075 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); 17076 } 17077 17078 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); 17079 bxe_init_pxp(sc); 17080 17081 #ifdef __BIG_ENDIAN 17082 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); 17083 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); 17084 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); 17085 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); 17086 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); 17087 /* make sure this value is 0 */ 17088 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); 17089 17090 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); 17091 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); 17092 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); 17093 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); 17094 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); 17095 #endif 17096 17097 ecore_ilt_init_page_size(sc, INITOP_SET); 17098 17099 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { 17100 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); 17101 } 17102 17103 /* let the HW do it's magic... */ 17104 DELAY(100000); 17105 17106 /* finish PXP init */ 17107 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); 17108 if (val != 1) { 17109 BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n", 17110 val); 17111 return (-1); 17112 } 17113 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); 17114 if (val != 1) { 17115 BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val); 17116 return (-1); 17117 } 17118 17119 BLOGD(sc, DBG_LOAD, "after pxp init\n"); 17120 17121 /* 17122 * Timer bug workaround for E2 only. We need to set the entire ILT to have 17123 * entries with value "0" and valid bit on. This needs to be done by the 17124 * first PF that is loaded in a path (i.e. common phase) 17125 */ 17126 if (!CHIP_IS_E1x(sc)) { 17127 /* 17128 * In E2 there is a bug in the timers block that can cause function 6 / 7 17129 * (i.e. vnic3) to start even if it is marked as "scan-off". 17130 * This occurs when a different function (func2,3) is being marked 17131 * as "scan-off". Real-life scenario for example: if a driver is being 17132 * load-unloaded while func6,7 are down. This will cause the timer to access 17133 * the ilt, translate to a logical address and send a request to read/write. 17134 * Since the ilt for the function that is down is not valid, this will cause 17135 * a translation error which is unrecoverable. 17136 * The Workaround is intended to make sure that when this happens nothing 17137 * fatal will occur. The workaround: 17138 * 1. First PF driver which loads on a path will: 17139 * a. After taking the chip out of reset, by using pretend, 17140 * it will write "0" to the following registers of 17141 * the other vnics. 17142 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); 17143 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); 17144 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); 17145 * And for itself it will write '1' to 17146 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable 17147 * dmae-operations (writing to pram for example.) 17148 * note: can be done for only function 6,7 but cleaner this 17149 * way. 17150 * b. Write zero+valid to the entire ILT. 17151 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of 17152 * VNIC3 (of that port). The range allocated will be the 17153 * entire ILT. This is needed to prevent ILT range error. 17154 * 2. Any PF driver load flow: 17155 * a. ILT update with the physical addresses of the allocated 17156 * logical pages. 17157 * b. Wait 20msec. - note that this timeout is needed to make 17158 * sure there are no requests in one of the PXP internal 17159 * queues with "old" ILT addresses. 17160 * c. PF enable in the PGLC. 17161 * d. Clear the was_error of the PF in the PGLC. (could have 17162 * occurred while driver was down) 17163 * e. PF enable in the CFC (WEAK + STRONG) 17164 * f. Timers scan enable 17165 * 3. PF driver unload flow: 17166 * a. Clear the Timers scan_en. 17167 * b. Polling for scan_on=0 for that PF. 17168 * c. Clear the PF enable bit in the PXP. 17169 * d. Clear the PF enable in the CFC (WEAK + STRONG) 17170 * e. Write zero+valid to all ILT entries (The valid bit must 17171 * stay set) 17172 * f. If this is VNIC 3 of a port then also init 17173 * first_timers_ilt_entry to zero and last_timers_ilt_entry 17174 * to the last entry in the ILT. 17175 * 17176 * Notes: 17177 * Currently the PF error in the PGLC is non recoverable. 17178 * In the future the there will be a recovery routine for this error. 17179 * Currently attention is masked. 17180 * Having an MCP lock on the load/unload process does not guarantee that 17181 * there is no Timer disable during Func6/7 enable. This is because the 17182 * Timers scan is currently being cleared by the MCP on FLR. 17183 * Step 2.d can be done only for PF6/7 and the driver can also check if 17184 * there is error before clearing it. But the flow above is simpler and 17185 * more general. 17186 * All ILT entries are written by zero+valid and not just PF6/7 17187 * ILT entries since in the future the ILT entries allocation for 17188 * PF-s might be dynamic. 17189 */ 17190 struct ilt_client_info ilt_cli; 17191 struct ecore_ilt ilt; 17192 17193 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 17194 memset(&ilt, 0, sizeof(struct ecore_ilt)); 17195 17196 /* initialize dummy TM client */ 17197 ilt_cli.start = 0; 17198 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 17199 ilt_cli.client_num = ILT_CLIENT_TM; 17200 17201 /* 17202 * Step 1: set zeroes to all ilt page entries with valid bit on 17203 * Step 2: set the timers first/last ilt entry to point 17204 * to the entire range to prevent ILT range error for 3rd/4th 17205 * vnic (this code assumes existence of the vnic) 17206 * 17207 * both steps performed by call to ecore_ilt_client_init_op() 17208 * with dummy TM client 17209 * 17210 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT 17211 * and his brother are split registers 17212 */ 17213 17214 bxe_pretend_func(sc, (SC_PATH(sc) + 6)); 17215 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); 17216 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 17217 17218 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); 17219 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); 17220 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); 17221 } 17222 17223 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); 17224 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); 17225 17226 if (!CHIP_IS_E1x(sc)) { 17227 int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : 17228 (CHIP_REV_IS_FPGA(sc) ? 400 : 0); 17229 17230 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); 17231 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); 17232 17233 /* let the HW do it's magic... */ 17234 do { 17235 DELAY(200000); 17236 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); 17237 } while (factor-- && (val != 1)); 17238 17239 if (val != 1) { 17240 BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val); 17241 return (-1); 17242 } 17243 } 17244 17245 BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); 17246 17247 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); 17248 17249 bxe_iov_init_dmae(sc); 17250 17251 /* clean the DMAE memory */ 17252 sc->dmae_ready = 1; 17253 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); 17254 17255 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); 17256 17257 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); 17258 17259 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); 17260 17261 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); 17262 17263 bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); 17264 bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); 17265 bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); 17266 bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); 17267 17268 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); 17269 17270 /* QM queues pointers table */ 17271 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); 17272 17273 /* soft reset pulse */ 17274 REG_WR(sc, QM_REG_SOFT_RESET, 1); 17275 REG_WR(sc, QM_REG_SOFT_RESET, 0); 17276 17277 if (CNIC_SUPPORT(sc)) 17278 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); 17279 17280 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); 17281 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); 17282 if (!CHIP_REV_IS_SLOW(sc)) { 17283 /* enable hw interrupt from doorbell Q */ 17284 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); 17285 } 17286 17287 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); 17288 17289 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); 17290 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); 17291 17292 if (!CHIP_IS_E1(sc)) { 17293 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); 17294 } 17295 17296 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { 17297 if (IS_MF_AFEX(sc)) { 17298 /* 17299 * configure that AFEX and VLAN headers must be 17300 * received in AFEX mode 17301 */ 17302 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); 17303 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); 17304 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); 17305 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); 17306 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); 17307 } else { 17308 /* 17309 * Bit-map indicating which L2 hdrs may appear 17310 * after the basic Ethernet header 17311 */ 17312 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 17313 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17314 } 17315 } 17316 17317 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); 17318 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); 17319 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); 17320 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); 17321 17322 if (!CHIP_IS_E1x(sc)) { 17323 /* reset VFC memories */ 17324 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17325 VFC_MEMORIES_RST_REG_CAM_RST | 17326 VFC_MEMORIES_RST_REG_RAM_RST); 17327 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, 17328 VFC_MEMORIES_RST_REG_CAM_RST | 17329 VFC_MEMORIES_RST_REG_RAM_RST); 17330 17331 DELAY(20000); 17332 } 17333 17334 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); 17335 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); 17336 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); 17337 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); 17338 17339 /* sync semi rtc */ 17340 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 17341 0x80000000); 17342 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 17343 0x80000000); 17344 17345 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); 17346 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); 17347 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); 17348 17349 if (!CHIP_IS_E1x(sc)) { 17350 if (IS_MF_AFEX(sc)) { 17351 /* 17352 * configure that AFEX and VLAN headers must be 17353 * sent in AFEX mode 17354 */ 17355 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); 17356 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); 17357 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); 17358 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); 17359 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); 17360 } else { 17361 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 17362 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); 17363 } 17364 } 17365 17366 REG_WR(sc, SRC_REG_SOFT_RST, 1); 17367 17368 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); 17369 17370 if (CNIC_SUPPORT(sc)) { 17371 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); 17372 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); 17373 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); 17374 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); 17375 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); 17376 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); 17377 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); 17378 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); 17379 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); 17380 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); 17381 } 17382 REG_WR(sc, SRC_REG_SOFT_RST, 0); 17383 17384 if (sizeof(union cdu_context) != 1024) { 17385 /* we currently assume that a context is 1024 bytes */ 17386 BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", 17387 (long)sizeof(union cdu_context)); 17388 } 17389 17390 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); 17391 val = (4 << 24) + (0 << 12) + 1024; 17392 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); 17393 17394 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); 17395 17396 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); 17397 /* enable context validation interrupt from CFC */ 17398 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); 17399 17400 /* set the thresholds to prevent CFC/CDU race */ 17401 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); 17402 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); 17403 17404 if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { 17405 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); 17406 } 17407 17408 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); 17409 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); 17410 17411 /* Reset PCIE errors for debug */ 17412 REG_WR(sc, 0x2814, 0xffffffff); 17413 REG_WR(sc, 0x3820, 0xffffffff); 17414 17415 if (!CHIP_IS_E1x(sc)) { 17416 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, 17417 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | 17418 PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); 17419 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, 17420 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | 17421 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | 17422 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); 17423 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, 17424 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | 17425 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | 17426 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); 17427 } 17428 17429 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); 17430 17431 if (!CHIP_IS_E1(sc)) { 17432 /* in E3 this done in per-port section */ 17433 if (!CHIP_IS_E3(sc)) 17434 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17435 } 17436 17437 if (CHIP_IS_E1H(sc)) { 17438 /* not applicable for E2 (and above ...) */ 17439 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); 17440 } 17441 17442 if (CHIP_REV_IS_SLOW(sc)) { 17443 DELAY(200000); 17444 } 17445 17446 /* finish CFC init */ 17447 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); 17448 if (val != 1) { 17449 BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val); 17450 return (-1); 17451 } 17452 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); 17453 if (val != 1) { 17454 BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val); 17455 return (-1); 17456 } 17457 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); 17458 if (val != 1) { 17459 BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val); 17460 return (-1); 17461 } 17462 REG_WR(sc, CFC_REG_DEBUG0, 0); 17463 17464 if (CHIP_IS_E1(sc)) { 17465 /* read NIG statistic to see if this is our first up since powerup */ 17466 bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); 17467 val = *BXE_SP(sc, wb_data[0]); 17468 17469 /* do internal memory self test */ 17470 if ((val == 0) && bxe_int_mem_test(sc)) { 17471 BLOGE(sc, "internal mem self test failed val=0x%x\n", val); 17472 return (-1); 17473 } 17474 } 17475 17476 bxe_setup_fan_failure_detection(sc); 17477 17478 /* clear PXP2 attentions */ 17479 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); 17480 17481 bxe_enable_blocks_attention(sc); 17482 17483 if (!CHIP_REV_IS_SLOW(sc)) { 17484 ecore_enable_blocks_parity(sc); 17485 } 17486 17487 if (!BXE_NOMCP(sc)) { 17488 if (CHIP_IS_E1x(sc)) { 17489 bxe_common_init_phy(sc); 17490 } 17491 } 17492 17493 return (0); 17494 } 17495 17496 /** 17497 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. 17498 * 17499 * @sc: driver handle 17500 */ 17501 static int 17502 bxe_init_hw_common_chip(struct bxe_softc *sc) 17503 { 17504 int rc = bxe_init_hw_common(sc); 17505 17506 if (rc) { 17507 BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc); 17508 return (rc); 17509 } 17510 17511 /* In E2 2-PORT mode, same ext phy is used for the two paths */ 17512 if (!BXE_NOMCP(sc)) { 17513 bxe_common_init_phy(sc); 17514 } 17515 17516 return (0); 17517 } 17518 17519 static int 17520 bxe_init_hw_port(struct bxe_softc *sc) 17521 { 17522 int port = SC_PORT(sc); 17523 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; 17524 uint32_t low, high; 17525 uint32_t val; 17526 17527 BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); 17528 17529 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 17530 17531 ecore_init_block(sc, BLOCK_MISC, init_phase); 17532 ecore_init_block(sc, BLOCK_PXP, init_phase); 17533 ecore_init_block(sc, BLOCK_PXP2, init_phase); 17534 17535 /* 17536 * Timers bug workaround: disables the pf_master bit in pglue at 17537 * common phase, we need to enable it here before any dmae access are 17538 * attempted. Therefore we manually added the enable-master to the 17539 * port phase (it also happens in the function phase) 17540 */ 17541 if (!CHIP_IS_E1x(sc)) { 17542 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 17543 } 17544 17545 ecore_init_block(sc, BLOCK_ATC, init_phase); 17546 ecore_init_block(sc, BLOCK_DMAE, init_phase); 17547 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 17548 ecore_init_block(sc, BLOCK_QM, init_phase); 17549 17550 ecore_init_block(sc, BLOCK_TCM, init_phase); 17551 ecore_init_block(sc, BLOCK_UCM, init_phase); 17552 ecore_init_block(sc, BLOCK_CCM, init_phase); 17553 ecore_init_block(sc, BLOCK_XCM, init_phase); 17554 17555 /* QM cid (connection) count */ 17556 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); 17557 17558 if (CNIC_SUPPORT(sc)) { 17559 ecore_init_block(sc, BLOCK_TM, init_phase); 17560 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); 17561 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); 17562 } 17563 17564 ecore_init_block(sc, BLOCK_DORQ, init_phase); 17565 17566 ecore_init_block(sc, BLOCK_BRB1, init_phase); 17567 17568 if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { 17569 if (IS_MF(sc)) { 17570 low = (BXE_ONE_PORT(sc) ? 160 : 246); 17571 } else if (sc->mtu > 4096) { 17572 if (BXE_ONE_PORT(sc)) { 17573 low = 160; 17574 } else { 17575 val = sc->mtu; 17576 /* (24*1024 + val*4)/256 */ 17577 low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); 17578 } 17579 } else { 17580 low = (BXE_ONE_PORT(sc) ? 80 : 160); 17581 } 17582 high = (low + 56); /* 14*1024/256 */ 17583 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); 17584 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); 17585 } 17586 17587 if (CHIP_IS_MODE_4_PORT(sc)) { 17588 REG_WR(sc, SC_PORT(sc) ? 17589 BRB1_REG_MAC_GUARANTIED_1 : 17590 BRB1_REG_MAC_GUARANTIED_0, 40); 17591 } 17592 17593 ecore_init_block(sc, BLOCK_PRS, init_phase); 17594 if (CHIP_IS_E3B0(sc)) { 17595 if (IS_MF_AFEX(sc)) { 17596 /* configure headers for AFEX mode */ 17597 REG_WR(sc, SC_PORT(sc) ? 17598 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17599 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); 17600 REG_WR(sc, SC_PORT(sc) ? 17601 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : 17602 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); 17603 REG_WR(sc, SC_PORT(sc) ? 17604 PRS_REG_MUST_HAVE_HDRS_PORT_1 : 17605 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); 17606 } else { 17607 /* Ovlan exists only if we are in multi-function + 17608 * switch-dependent mode, in switch-independent there 17609 * is no ovlan headers 17610 */ 17611 REG_WR(sc, SC_PORT(sc) ? 17612 PRS_REG_HDRS_AFTER_BASIC_PORT_1 : 17613 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 17614 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); 17615 } 17616 } 17617 17618 ecore_init_block(sc, BLOCK_TSDM, init_phase); 17619 ecore_init_block(sc, BLOCK_CSDM, init_phase); 17620 ecore_init_block(sc, BLOCK_USDM, init_phase); 17621 ecore_init_block(sc, BLOCK_XSDM, init_phase); 17622 17623 ecore_init_block(sc, BLOCK_TSEM, init_phase); 17624 ecore_init_block(sc, BLOCK_USEM, init_phase); 17625 ecore_init_block(sc, BLOCK_CSEM, init_phase); 17626 ecore_init_block(sc, BLOCK_XSEM, init_phase); 17627 17628 ecore_init_block(sc, BLOCK_UPB, init_phase); 17629 ecore_init_block(sc, BLOCK_XPB, init_phase); 17630 17631 ecore_init_block(sc, BLOCK_PBF, init_phase); 17632 17633 if (CHIP_IS_E1x(sc)) { 17634 /* configure PBF to work without PAUSE mtu 9000 */ 17635 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); 17636 17637 /* update threshold */ 17638 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); 17639 /* update init credit */ 17640 REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); 17641 17642 /* probe changes */ 17643 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); 17644 DELAY(50); 17645 REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); 17646 } 17647 17648 if (CNIC_SUPPORT(sc)) { 17649 ecore_init_block(sc, BLOCK_SRC, init_phase); 17650 } 17651 17652 ecore_init_block(sc, BLOCK_CDU, init_phase); 17653 ecore_init_block(sc, BLOCK_CFC, init_phase); 17654 17655 if (CHIP_IS_E1(sc)) { 17656 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 17657 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 17658 } 17659 ecore_init_block(sc, BLOCK_HC, init_phase); 17660 17661 ecore_init_block(sc, BLOCK_IGU, init_phase); 17662 17663 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 17664 /* init aeu_mask_attn_func_0/1: 17665 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use 17666 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF 17667 * bits 4-7 are used for "per vn group attention" */ 17668 val = IS_MF(sc) ? 0xF7 : 0x7; 17669 /* Enable DCBX attention for all but E1 */ 17670 val |= CHIP_IS_E1(sc) ? 0 : 0x10; 17671 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); 17672 17673 ecore_init_block(sc, BLOCK_NIG, init_phase); 17674 17675 if (!CHIP_IS_E1x(sc)) { 17676 /* Bit-map indicating which L2 hdrs may appear after the 17677 * basic Ethernet header 17678 */ 17679 if (IS_MF_AFEX(sc)) { 17680 REG_WR(sc, SC_PORT(sc) ? 17681 NIG_REG_P1_HDRS_AFTER_BASIC : 17682 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); 17683 } else { 17684 REG_WR(sc, SC_PORT(sc) ? 17685 NIG_REG_P1_HDRS_AFTER_BASIC : 17686 NIG_REG_P0_HDRS_AFTER_BASIC, 17687 IS_MF_SD(sc) ? 7 : 6); 17688 } 17689 17690 if (CHIP_IS_E3(sc)) { 17691 REG_WR(sc, SC_PORT(sc) ? 17692 NIG_REG_LLH1_MF_MODE : 17693 NIG_REG_LLH_MF_MODE, IS_MF(sc)); 17694 } 17695 } 17696 if (!CHIP_IS_E3(sc)) { 17697 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); 17698 } 17699 17700 if (!CHIP_IS_E1(sc)) { 17701 /* 0x2 disable mf_ov, 0x1 enable */ 17702 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, 17703 (IS_MF_SD(sc) ? 0x1 : 0x2)); 17704 17705 if (!CHIP_IS_E1x(sc)) { 17706 val = 0; 17707 switch (sc->devinfo.mf_info.mf_mode) { 17708 case MULTI_FUNCTION_SD: 17709 val = 1; 17710 break; 17711 case MULTI_FUNCTION_SI: 17712 case MULTI_FUNCTION_AFEX: 17713 val = 2; 17714 break; 17715 } 17716 17717 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : 17718 NIG_REG_LLH0_CLS_TYPE), val); 17719 } 17720 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); 17721 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); 17722 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); 17723 } 17724 17725 /* If SPIO5 is set to generate interrupts, enable it for this port */ 17726 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); 17727 if (val & MISC_SPIO_SPIO5) { 17728 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : 17729 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); 17730 val = REG_RD(sc, reg_addr); 17731 val |= AEU_INPUTS_ATTN_BITS_SPIO5; 17732 REG_WR(sc, reg_addr, val); 17733 } 17734 17735 return (0); 17736 } 17737 17738 static uint32_t 17739 bxe_flr_clnup_reg_poll(struct bxe_softc *sc, 17740 uint32_t reg, 17741 uint32_t expected, 17742 uint32_t poll_count) 17743 { 17744 uint32_t cur_cnt = poll_count; 17745 uint32_t val; 17746 17747 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { 17748 DELAY(FLR_WAIT_INTERVAL); 17749 } 17750 17751 return (val); 17752 } 17753 17754 static int 17755 bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc, 17756 uint32_t reg, 17757 char *msg, 17758 uint32_t poll_cnt) 17759 { 17760 uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); 17761 17762 if (val != 0) { 17763 BLOGE(sc, "%s usage count=%d\n", msg, val); 17764 return (1); 17765 } 17766 17767 return (0); 17768 } 17769 17770 /* Common routines with VF FLR cleanup */ 17771 static uint32_t 17772 bxe_flr_clnup_poll_count(struct bxe_softc *sc) 17773 { 17774 /* adjust polling timeout */ 17775 if (CHIP_REV_IS_EMUL(sc)) { 17776 return (FLR_POLL_CNT * 2000); 17777 } 17778 17779 if (CHIP_REV_IS_FPGA(sc)) { 17780 return (FLR_POLL_CNT * 120); 17781 } 17782 17783 return (FLR_POLL_CNT); 17784 } 17785 17786 static int 17787 bxe_poll_hw_usage_counters(struct bxe_softc *sc, 17788 uint32_t poll_cnt) 17789 { 17790 /* wait for CFC PF usage-counter to zero (includes all the VFs) */ 17791 if (bxe_flr_clnup_poll_hw_counter(sc, 17792 CFC_REG_NUM_LCIDS_INSIDE_PF, 17793 "CFC PF usage counter timed out", 17794 poll_cnt)) { 17795 return (1); 17796 } 17797 17798 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ 17799 if (bxe_flr_clnup_poll_hw_counter(sc, 17800 DORQ_REG_PF_USAGE_CNT, 17801 "DQ PF usage counter timed out", 17802 poll_cnt)) { 17803 return (1); 17804 } 17805 17806 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ 17807 if (bxe_flr_clnup_poll_hw_counter(sc, 17808 QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), 17809 "QM PF usage counter timed out", 17810 poll_cnt)) { 17811 return (1); 17812 } 17813 17814 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ 17815 if (bxe_flr_clnup_poll_hw_counter(sc, 17816 TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), 17817 "Timers VNIC usage counter timed out", 17818 poll_cnt)) { 17819 return (1); 17820 } 17821 17822 if (bxe_flr_clnup_poll_hw_counter(sc, 17823 TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), 17824 "Timers NUM_SCANS usage counter timed out", 17825 poll_cnt)) { 17826 return (1); 17827 } 17828 17829 /* Wait DMAE PF usage counter to zero */ 17830 if (bxe_flr_clnup_poll_hw_counter(sc, 17831 dmae_reg_go_c[INIT_DMAE_C(sc)], 17832 "DMAE dommand register timed out", 17833 poll_cnt)) { 17834 return (1); 17835 } 17836 17837 return (0); 17838 } 17839 17840 #define OP_GEN_PARAM(param) \ 17841 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) 17842 #define OP_GEN_TYPE(type) \ 17843 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) 17844 #define OP_GEN_AGG_VECT(index) \ 17845 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) 17846 17847 static int 17848 bxe_send_final_clnup(struct bxe_softc *sc, 17849 uint8_t clnup_func, 17850 uint32_t poll_cnt) 17851 { 17852 uint32_t op_gen_command = 0; 17853 uint32_t comp_addr = (BAR_CSTRORM_INTMEM + 17854 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); 17855 int ret = 0; 17856 17857 if (REG_RD(sc, comp_addr)) { 17858 BLOGE(sc, "Cleanup complete was not 0 before sending\n"); 17859 return (1); 17860 } 17861 17862 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); 17863 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); 17864 op_gen_command |= OP_GEN_AGG_VECT(clnup_func); 17865 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; 17866 17867 BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); 17868 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); 17869 17870 if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { 17871 BLOGE(sc, "FW final cleanup did not succeed\n"); 17872 BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", 17873 (REG_RD(sc, comp_addr))); 17874 bxe_panic(sc, ("FLR cleanup failed\n")); 17875 return (1); 17876 } 17877 17878 /* Zero completion for nxt FLR */ 17879 REG_WR(sc, comp_addr, 0); 17880 17881 return (ret); 17882 } 17883 17884 static void 17885 bxe_pbf_pN_buf_flushed(struct bxe_softc *sc, 17886 struct pbf_pN_buf_regs *regs, 17887 uint32_t poll_count) 17888 { 17889 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; 17890 uint32_t cur_cnt = poll_count; 17891 17892 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); 17893 crd = crd_start = REG_RD(sc, regs->crd); 17894 init_crd = REG_RD(sc, regs->init_crd); 17895 17896 BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); 17897 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); 17898 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); 17899 17900 while ((crd != init_crd) && 17901 ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < 17902 (init_crd - crd_start))) { 17903 if (cur_cnt--) { 17904 DELAY(FLR_WAIT_INTERVAL); 17905 crd = REG_RD(sc, regs->crd); 17906 crd_freed = REG_RD(sc, regs->crd_freed); 17907 } else { 17908 BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); 17909 BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); 17910 BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); 17911 break; 17912 } 17913 } 17914 17915 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", 17916 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17917 } 17918 17919 static void 17920 bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc, 17921 struct pbf_pN_cmd_regs *regs, 17922 uint32_t poll_count) 17923 { 17924 uint32_t occup, to_free, freed, freed_start; 17925 uint32_t cur_cnt = poll_count; 17926 17927 occup = to_free = REG_RD(sc, regs->lines_occup); 17928 freed = freed_start = REG_RD(sc, regs->lines_freed); 17929 17930 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17931 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17932 17933 while (occup && 17934 ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { 17935 if (cur_cnt--) { 17936 DELAY(FLR_WAIT_INTERVAL); 17937 occup = REG_RD(sc, regs->lines_occup); 17938 freed = REG_RD(sc, regs->lines_freed); 17939 } else { 17940 BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); 17941 BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); 17942 BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); 17943 break; 17944 } 17945 } 17946 17947 BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", 17948 poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); 17949 } 17950 17951 static void 17952 bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count) 17953 { 17954 struct pbf_pN_cmd_regs cmd_regs[] = { 17955 {0, (CHIP_IS_E3B0(sc)) ? 17956 PBF_REG_TQ_OCCUPANCY_Q0 : 17957 PBF_REG_P0_TQ_OCCUPANCY, 17958 (CHIP_IS_E3B0(sc)) ? 17959 PBF_REG_TQ_LINES_FREED_CNT_Q0 : 17960 PBF_REG_P0_TQ_LINES_FREED_CNT}, 17961 {1, (CHIP_IS_E3B0(sc)) ? 17962 PBF_REG_TQ_OCCUPANCY_Q1 : 17963 PBF_REG_P1_TQ_OCCUPANCY, 17964 (CHIP_IS_E3B0(sc)) ? 17965 PBF_REG_TQ_LINES_FREED_CNT_Q1 : 17966 PBF_REG_P1_TQ_LINES_FREED_CNT}, 17967 {4, (CHIP_IS_E3B0(sc)) ? 17968 PBF_REG_TQ_OCCUPANCY_LB_Q : 17969 PBF_REG_P4_TQ_OCCUPANCY, 17970 (CHIP_IS_E3B0(sc)) ? 17971 PBF_REG_TQ_LINES_FREED_CNT_LB_Q : 17972 PBF_REG_P4_TQ_LINES_FREED_CNT} 17973 }; 17974 17975 struct pbf_pN_buf_regs buf_regs[] = { 17976 {0, (CHIP_IS_E3B0(sc)) ? 17977 PBF_REG_INIT_CRD_Q0 : 17978 PBF_REG_P0_INIT_CRD , 17979 (CHIP_IS_E3B0(sc)) ? 17980 PBF_REG_CREDIT_Q0 : 17981 PBF_REG_P0_CREDIT, 17982 (CHIP_IS_E3B0(sc)) ? 17983 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : 17984 PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, 17985 {1, (CHIP_IS_E3B0(sc)) ? 17986 PBF_REG_INIT_CRD_Q1 : 17987 PBF_REG_P1_INIT_CRD, 17988 (CHIP_IS_E3B0(sc)) ? 17989 PBF_REG_CREDIT_Q1 : 17990 PBF_REG_P1_CREDIT, 17991 (CHIP_IS_E3B0(sc)) ? 17992 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : 17993 PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, 17994 {4, (CHIP_IS_E3B0(sc)) ? 17995 PBF_REG_INIT_CRD_LB_Q : 17996 PBF_REG_P4_INIT_CRD, 17997 (CHIP_IS_E3B0(sc)) ? 17998 PBF_REG_CREDIT_LB_Q : 17999 PBF_REG_P4_CREDIT, 18000 (CHIP_IS_E3B0(sc)) ? 18001 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : 18002 PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, 18003 }; 18004 18005 int i; 18006 18007 /* Verify the command queues are flushed P0, P1, P4 */ 18008 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { 18009 bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); 18010 } 18011 18012 /* Verify the transmission buffers are flushed P0, P1, P4 */ 18013 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { 18014 bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); 18015 } 18016 } 18017 18018 static void 18019 bxe_hw_enable_status(struct bxe_softc *sc) 18020 { 18021 uint32_t val; 18022 18023 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); 18024 BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); 18025 18026 val = REG_RD(sc, PBF_REG_DISABLE_PF); 18027 BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); 18028 18029 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); 18030 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); 18031 18032 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); 18033 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); 18034 18035 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); 18036 BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); 18037 18038 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); 18039 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); 18040 18041 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); 18042 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); 18043 18044 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); 18045 BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); 18046 } 18047 18048 static int 18049 bxe_pf_flr_clnup(struct bxe_softc *sc) 18050 { 18051 uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); 18052 18053 BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); 18054 18055 /* Re-enable PF target read access */ 18056 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); 18057 18058 /* Poll HW usage counters */ 18059 BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); 18060 if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { 18061 return (-1); 18062 } 18063 18064 /* Zero the igu 'trailing edge' and 'leading edge' */ 18065 18066 /* Send the FW cleanup command */ 18067 if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { 18068 return (-1); 18069 } 18070 18071 /* ATC cleanup */ 18072 18073 /* Verify TX hw is flushed */ 18074 bxe_tx_hw_flushed(sc, poll_cnt); 18075 18076 /* Wait 100ms (not adjusted according to platform) */ 18077 DELAY(100000); 18078 18079 /* Verify no pending pci transactions */ 18080 if (bxe_is_pcie_pending(sc)) { 18081 BLOGE(sc, "PCIE Transactions still pending\n"); 18082 } 18083 18084 /* Debug */ 18085 bxe_hw_enable_status(sc); 18086 18087 /* 18088 * Master enable - Due to WB DMAE writes performed before this 18089 * register is re-initialized as part of the regular function init 18090 */ 18091 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18092 18093 return (0); 18094 } 18095 18096 static int 18097 bxe_init_hw_func(struct bxe_softc *sc) 18098 { 18099 int port = SC_PORT(sc); 18100 int func = SC_FUNC(sc); 18101 int init_phase = PHASE_PF0 + func; 18102 struct ecore_ilt *ilt = sc->ilt; 18103 uint16_t cdu_ilt_start; 18104 uint32_t addr, val; 18105 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; 18106 int i, main_mem_width, rc; 18107 18108 BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); 18109 18110 /* FLR cleanup */ 18111 if (!CHIP_IS_E1x(sc)) { 18112 rc = bxe_pf_flr_clnup(sc); 18113 if (rc) { 18114 BLOGE(sc, "FLR cleanup failed!\n"); 18115 // XXX bxe_fw_dump(sc); 18116 // XXX bxe_idle_chk(sc); 18117 return (rc); 18118 } 18119 } 18120 18121 /* set MSI reconfigure capability */ 18122 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18123 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); 18124 val = REG_RD(sc, addr); 18125 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; 18126 REG_WR(sc, addr, val); 18127 } 18128 18129 ecore_init_block(sc, BLOCK_PXP, init_phase); 18130 ecore_init_block(sc, BLOCK_PXP2, init_phase); 18131 18132 ilt = sc->ilt; 18133 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; 18134 18135 for (i = 0; i < L2_ILT_LINES(sc); i++) { 18136 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; 18137 ilt->lines[cdu_ilt_start + i].page_mapping = 18138 sc->context[i].vcxt_dma.paddr; 18139 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; 18140 } 18141 ecore_ilt_init_op(sc, INITOP_SET); 18142 18143 /* Set NIC mode */ 18144 REG_WR(sc, PRS_REG_NIC_MODE, 1); 18145 BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); 18146 18147 if (!CHIP_IS_E1x(sc)) { 18148 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; 18149 18150 /* Turn on a single ISR mode in IGU if driver is going to use 18151 * INT#x or MSI 18152 */ 18153 if (sc->interrupt_mode != INTR_MODE_MSIX) { 18154 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; 18155 } 18156 18157 /* 18158 * Timers workaround bug: function init part. 18159 * Need to wait 20msec after initializing ILT, 18160 * needed to make sure there are no requests in 18161 * one of the PXP internal queues with "old" ILT addresses 18162 */ 18163 DELAY(20000); 18164 18165 /* 18166 * Master enable - Due to WB DMAE writes performed before this 18167 * register is re-initialized as part of the regular function 18168 * init 18169 */ 18170 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); 18171 /* Enable the function in IGU */ 18172 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); 18173 } 18174 18175 sc->dmae_ready = 1; 18176 18177 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); 18178 18179 if (!CHIP_IS_E1x(sc)) 18180 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); 18181 18182 ecore_init_block(sc, BLOCK_ATC, init_phase); 18183 ecore_init_block(sc, BLOCK_DMAE, init_phase); 18184 ecore_init_block(sc, BLOCK_NIG, init_phase); 18185 ecore_init_block(sc, BLOCK_SRC, init_phase); 18186 ecore_init_block(sc, BLOCK_MISC, init_phase); 18187 ecore_init_block(sc, BLOCK_TCM, init_phase); 18188 ecore_init_block(sc, BLOCK_UCM, init_phase); 18189 ecore_init_block(sc, BLOCK_CCM, init_phase); 18190 ecore_init_block(sc, BLOCK_XCM, init_phase); 18191 ecore_init_block(sc, BLOCK_TSEM, init_phase); 18192 ecore_init_block(sc, BLOCK_USEM, init_phase); 18193 ecore_init_block(sc, BLOCK_CSEM, init_phase); 18194 ecore_init_block(sc, BLOCK_XSEM, init_phase); 18195 18196 if (!CHIP_IS_E1x(sc)) 18197 REG_WR(sc, QM_REG_PF_EN, 1); 18198 18199 if (!CHIP_IS_E1x(sc)) { 18200 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18201 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18202 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18203 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); 18204 } 18205 ecore_init_block(sc, BLOCK_QM, init_phase); 18206 18207 ecore_init_block(sc, BLOCK_TM, init_phase); 18208 ecore_init_block(sc, BLOCK_DORQ, init_phase); 18209 18210 bxe_iov_init_dq(sc); 18211 18212 ecore_init_block(sc, BLOCK_BRB1, init_phase); 18213 ecore_init_block(sc, BLOCK_PRS, init_phase); 18214 ecore_init_block(sc, BLOCK_TSDM, init_phase); 18215 ecore_init_block(sc, BLOCK_CSDM, init_phase); 18216 ecore_init_block(sc, BLOCK_USDM, init_phase); 18217 ecore_init_block(sc, BLOCK_XSDM, init_phase); 18218 ecore_init_block(sc, BLOCK_UPB, init_phase); 18219 ecore_init_block(sc, BLOCK_XPB, init_phase); 18220 ecore_init_block(sc, BLOCK_PBF, init_phase); 18221 if (!CHIP_IS_E1x(sc)) 18222 REG_WR(sc, PBF_REG_DISABLE_PF, 0); 18223 18224 ecore_init_block(sc, BLOCK_CDU, init_phase); 18225 18226 ecore_init_block(sc, BLOCK_CFC, init_phase); 18227 18228 if (!CHIP_IS_E1x(sc)) 18229 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); 18230 18231 if (IS_MF(sc)) { 18232 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); 18233 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); 18234 } 18235 18236 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); 18237 18238 /* HC init per function */ 18239 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18240 if (CHIP_IS_E1H(sc)) { 18241 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18242 18243 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18244 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18245 } 18246 ecore_init_block(sc, BLOCK_HC, init_phase); 18247 18248 } else { 18249 int num_segs, sb_idx, prod_offset; 18250 18251 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); 18252 18253 if (!CHIP_IS_E1x(sc)) { 18254 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18255 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18256 } 18257 18258 ecore_init_block(sc, BLOCK_IGU, init_phase); 18259 18260 if (!CHIP_IS_E1x(sc)) { 18261 int dsb_idx = 0; 18262 /** 18263 * Producer memory: 18264 * E2 mode: address 0-135 match to the mapping memory; 18265 * 136 - PF0 default prod; 137 - PF1 default prod; 18266 * 138 - PF2 default prod; 139 - PF3 default prod; 18267 * 140 - PF0 attn prod; 141 - PF1 attn prod; 18268 * 142 - PF2 attn prod; 143 - PF3 attn prod; 18269 * 144-147 reserved. 18270 * 18271 * E1.5 mode - In backward compatible mode; 18272 * for non default SB; each even line in the memory 18273 * holds the U producer and each odd line hold 18274 * the C producer. The first 128 producers are for 18275 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 18276 * producers are for the DSB for each PF. 18277 * Each PF has five segments: (the order inside each 18278 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; 18279 * 132-135 C prods; 136-139 X prods; 140-143 T prods; 18280 * 144-147 attn prods; 18281 */ 18282 /* non-default-status-blocks */ 18283 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18284 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; 18285 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { 18286 prod_offset = (sc->igu_base_sb + sb_idx) * 18287 num_segs; 18288 18289 for (i = 0; i < num_segs; i++) { 18290 addr = IGU_REG_PROD_CONS_MEMORY + 18291 (prod_offset + i) * 4; 18292 REG_WR(sc, addr, 0); 18293 } 18294 /* send consumer update with value 0 */ 18295 bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, 18296 USTORM_ID, 0, IGU_INT_NOP, 1); 18297 bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); 18298 } 18299 18300 /* default-status-blocks */ 18301 num_segs = CHIP_INT_MODE_IS_BC(sc) ? 18302 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; 18303 18304 if (CHIP_IS_MODE_4_PORT(sc)) 18305 dsb_idx = SC_FUNC(sc); 18306 else 18307 dsb_idx = SC_VN(sc); 18308 18309 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? 18310 IGU_BC_BASE_DSB_PROD + dsb_idx : 18311 IGU_NORM_BASE_DSB_PROD + dsb_idx); 18312 18313 /* 18314 * igu prods come in chunks of E1HVN_MAX (4) - 18315 * does not matters what is the current chip mode 18316 */ 18317 for (i = 0; i < (num_segs * E1HVN_MAX); 18318 i += E1HVN_MAX) { 18319 addr = IGU_REG_PROD_CONS_MEMORY + 18320 (prod_offset + i)*4; 18321 REG_WR(sc, addr, 0); 18322 } 18323 /* send consumer update with 0 */ 18324 if (CHIP_INT_MODE_IS_BC(sc)) { 18325 bxe_ack_sb(sc, sc->igu_dsb_id, 18326 USTORM_ID, 0, IGU_INT_NOP, 1); 18327 bxe_ack_sb(sc, sc->igu_dsb_id, 18328 CSTORM_ID, 0, IGU_INT_NOP, 1); 18329 bxe_ack_sb(sc, sc->igu_dsb_id, 18330 XSTORM_ID, 0, IGU_INT_NOP, 1); 18331 bxe_ack_sb(sc, sc->igu_dsb_id, 18332 TSTORM_ID, 0, IGU_INT_NOP, 1); 18333 bxe_ack_sb(sc, sc->igu_dsb_id, 18334 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18335 } else { 18336 bxe_ack_sb(sc, sc->igu_dsb_id, 18337 USTORM_ID, 0, IGU_INT_NOP, 1); 18338 bxe_ack_sb(sc, sc->igu_dsb_id, 18339 ATTENTION_ID, 0, IGU_INT_NOP, 1); 18340 } 18341 bxe_igu_clear_sb(sc, sc->igu_dsb_id); 18342 18343 /* !!! these should become driver const once 18344 rf-tool supports split-68 const */ 18345 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); 18346 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); 18347 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); 18348 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); 18349 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); 18350 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); 18351 } 18352 } 18353 18354 /* Reset PCIE errors for debug */ 18355 REG_WR(sc, 0x2114, 0xffffffff); 18356 REG_WR(sc, 0x2120, 0xffffffff); 18357 18358 if (CHIP_IS_E1x(sc)) { 18359 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ 18360 main_mem_base = HC_REG_MAIN_MEMORY + 18361 SC_PORT(sc) * (main_mem_size * 4); 18362 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; 18363 main_mem_width = 8; 18364 18365 val = REG_RD(sc, main_mem_prty_clr); 18366 if (val) { 18367 BLOGD(sc, DBG_LOAD, 18368 "Parity errors in HC block during function init (0x%x)!\n", 18369 val); 18370 } 18371 18372 /* Clear "false" parity errors in MSI-X table */ 18373 for (i = main_mem_base; 18374 i < main_mem_base + main_mem_size * 4; 18375 i += main_mem_width) { 18376 bxe_read_dmae(sc, i, main_mem_width / 4); 18377 bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), 18378 i, main_mem_width / 4); 18379 } 18380 /* Clear HC parity attention */ 18381 REG_RD(sc, main_mem_prty_clr); 18382 } 18383 18384 #if 1 18385 /* Enable STORMs SP logging */ 18386 REG_WR8(sc, BAR_USTRORM_INTMEM + 18387 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18388 REG_WR8(sc, BAR_TSTRORM_INTMEM + 18389 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18390 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18391 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18392 REG_WR8(sc, BAR_XSTRORM_INTMEM + 18393 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); 18394 #endif 18395 18396 elink_phy_probe(&sc->link_params); 18397 18398 return (0); 18399 } 18400 18401 static void 18402 bxe_link_reset(struct bxe_softc *sc) 18403 { 18404 if (!BXE_NOMCP(sc)) { 18405 bxe_acquire_phy_lock(sc); 18406 elink_lfa_reset(&sc->link_params, &sc->link_vars); 18407 bxe_release_phy_lock(sc); 18408 } else { 18409 if (!CHIP_REV_IS_SLOW(sc)) { 18410 BLOGW(sc, "Bootcode is missing - cannot reset link\n"); 18411 } 18412 } 18413 } 18414 18415 static void 18416 bxe_reset_port(struct bxe_softc *sc) 18417 { 18418 int port = SC_PORT(sc); 18419 uint32_t val; 18420 18421 ELINK_DEBUG_P0(sc, "bxe_reset_port called\n"); 18422 /* reset physical Link */ 18423 bxe_link_reset(sc); 18424 18425 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); 18426 18427 /* Do not rcv packets to BRB */ 18428 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); 18429 /* Do not direct rcv packets that are not for MCP to the BRB */ 18430 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : 18431 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); 18432 18433 /* Configure AEU */ 18434 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); 18435 18436 DELAY(100000); 18437 18438 /* Check for BRB port occupancy */ 18439 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); 18440 if (val) { 18441 BLOGD(sc, DBG_LOAD, 18442 "BRB1 is not empty, %d blocks are occupied\n", val); 18443 } 18444 18445 /* TODO: Close Doorbell port? */ 18446 } 18447 18448 static void 18449 bxe_ilt_wr(struct bxe_softc *sc, 18450 uint32_t index, 18451 bus_addr_t addr) 18452 { 18453 int reg; 18454 uint32_t wb_write[2]; 18455 18456 if (CHIP_IS_E1(sc)) { 18457 reg = PXP2_REG_RQ_ONCHIP_AT + index*8; 18458 } else { 18459 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; 18460 } 18461 18462 wb_write[0] = ONCHIP_ADDR1(addr); 18463 wb_write[1] = ONCHIP_ADDR2(addr); 18464 REG_WR_DMAE(sc, reg, wb_write, 2); 18465 } 18466 18467 static void 18468 bxe_clear_func_ilt(struct bxe_softc *sc, 18469 uint32_t func) 18470 { 18471 uint32_t i, base = FUNC_ILT_BASE(func); 18472 for (i = base; i < base + ILT_PER_FUNC; i++) { 18473 bxe_ilt_wr(sc, i, 0); 18474 } 18475 } 18476 18477 static void 18478 bxe_reset_func(struct bxe_softc *sc) 18479 { 18480 struct bxe_fastpath *fp; 18481 int port = SC_PORT(sc); 18482 int func = SC_FUNC(sc); 18483 int i; 18484 18485 /* Disable the function in the FW */ 18486 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); 18487 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); 18488 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); 18489 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); 18490 18491 /* FP SBs */ 18492 FOR_EACH_ETH_QUEUE(sc, i) { 18493 fp = &sc->fp[i]; 18494 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18495 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), 18496 SB_DISABLED); 18497 } 18498 18499 /* SP SB */ 18500 REG_WR8(sc, BAR_CSTRORM_INTMEM + 18501 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), 18502 SB_DISABLED); 18503 18504 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { 18505 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); 18506 } 18507 18508 /* Configure IGU */ 18509 if (sc->devinfo.int_block == INT_BLOCK_HC) { 18510 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); 18511 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); 18512 } else { 18513 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); 18514 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); 18515 } 18516 18517 if (CNIC_LOADED(sc)) { 18518 /* Disable Timer scan */ 18519 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); 18520 /* 18521 * Wait for at least 10ms and up to 2 second for the timers 18522 * scan to complete 18523 */ 18524 for (i = 0; i < 200; i++) { 18525 DELAY(10000); 18526 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) 18527 break; 18528 } 18529 } 18530 18531 /* Clear ILT */ 18532 bxe_clear_func_ilt(sc, func); 18533 18534 /* 18535 * Timers workaround bug for E2: if this is vnic-3, 18536 * we need to set the entire ilt range for this timers. 18537 */ 18538 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { 18539 struct ilt_client_info ilt_cli; 18540 /* use dummy TM client */ 18541 memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); 18542 ilt_cli.start = 0; 18543 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; 18544 ilt_cli.client_num = ILT_CLIENT_TM; 18545 18546 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); 18547 } 18548 18549 /* this assumes that reset_port() called before reset_func()*/ 18550 if (!CHIP_IS_E1x(sc)) { 18551 bxe_pf_disable(sc); 18552 } 18553 18554 sc->dmae_ready = 0; 18555 } 18556 18557 static int 18558 bxe_gunzip_init(struct bxe_softc *sc) 18559 { 18560 return (0); 18561 } 18562 18563 static void 18564 bxe_gunzip_end(struct bxe_softc *sc) 18565 { 18566 return; 18567 } 18568 18569 static int 18570 bxe_init_firmware(struct bxe_softc *sc) 18571 { 18572 if (CHIP_IS_E1(sc)) { 18573 ecore_init_e1_firmware(sc); 18574 sc->iro_array = e1_iro_arr; 18575 } else if (CHIP_IS_E1H(sc)) { 18576 ecore_init_e1h_firmware(sc); 18577 sc->iro_array = e1h_iro_arr; 18578 } else if (!CHIP_IS_E1x(sc)) { 18579 ecore_init_e2_firmware(sc); 18580 sc->iro_array = e2_iro_arr; 18581 } else { 18582 BLOGE(sc, "Unsupported chip revision\n"); 18583 return (-1); 18584 } 18585 18586 return (0); 18587 } 18588 18589 static void 18590 bxe_release_firmware(struct bxe_softc *sc) 18591 { 18592 /* Do nothing */ 18593 return; 18594 } 18595 18596 static int 18597 ecore_gunzip(struct bxe_softc *sc, 18598 const uint8_t *zbuf, 18599 int len) 18600 { 18601 /* XXX : Implement... */ 18602 BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); 18603 return (FALSE); 18604 } 18605 18606 static void 18607 ecore_reg_wr_ind(struct bxe_softc *sc, 18608 uint32_t addr, 18609 uint32_t val) 18610 { 18611 bxe_reg_wr_ind(sc, addr, val); 18612 } 18613 18614 static void 18615 ecore_write_dmae_phys_len(struct bxe_softc *sc, 18616 bus_addr_t phys_addr, 18617 uint32_t addr, 18618 uint32_t len) 18619 { 18620 bxe_write_dmae_phys_len(sc, phys_addr, addr, len); 18621 } 18622 18623 void 18624 ecore_storm_memset_struct(struct bxe_softc *sc, 18625 uint32_t addr, 18626 size_t size, 18627 uint32_t *data) 18628 { 18629 uint8_t i; 18630 for (i = 0; i < size/4; i++) { 18631 REG_WR(sc, addr + (i * 4), data[i]); 18632 } 18633 } 18634 18635 18636 /* 18637 * character device - ioctl interface definitions 18638 */ 18639 18640 18641 #include "bxe_dump.h" 18642 #include "bxe_ioctl.h" 18643 #include <sys/conf.h> 18644 18645 static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 18646 struct thread *td); 18647 18648 static struct cdevsw bxe_cdevsw = { 18649 .d_version = D_VERSION, 18650 .d_ioctl = bxe_eioctl, 18651 .d_name = "bxecnic", 18652 }; 18653 18654 #define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1)) 18655 18656 18657 #define DUMP_ALL_PRESETS 0x1FFF 18658 #define DUMP_MAX_PRESETS 13 18659 #define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1) 18660 #define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H) 18661 #define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2) 18662 #define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0) 18663 #define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0) 18664 18665 #define IS_REG_IN_PRESET(presets, idx) \ 18666 ((presets & (1 << (idx-1))) == (1 << (idx-1))) 18667 18668 18669 static int 18670 bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset) 18671 { 18672 if (CHIP_IS_E1(sc)) 18673 return dump_num_registers[0][preset-1]; 18674 else if (CHIP_IS_E1H(sc)) 18675 return dump_num_registers[1][preset-1]; 18676 else if (CHIP_IS_E2(sc)) 18677 return dump_num_registers[2][preset-1]; 18678 else if (CHIP_IS_E3A0(sc)) 18679 return dump_num_registers[3][preset-1]; 18680 else if (CHIP_IS_E3B0(sc)) 18681 return dump_num_registers[4][preset-1]; 18682 else 18683 return 0; 18684 } 18685 18686 static int 18687 bxe_get_total_regs_len32(struct bxe_softc *sc) 18688 { 18689 uint32_t preset_idx; 18690 int regdump_len32 = 0; 18691 18692 18693 /* Calculate the total preset regs length */ 18694 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18695 regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx); 18696 } 18697 18698 return regdump_len32; 18699 } 18700 18701 static const uint32_t * 18702 __bxe_get_page_addr_ar(struct bxe_softc *sc) 18703 { 18704 if (CHIP_IS_E2(sc)) 18705 return page_vals_e2; 18706 else if (CHIP_IS_E3(sc)) 18707 return page_vals_e3; 18708 else 18709 return NULL; 18710 } 18711 18712 static uint32_t 18713 __bxe_get_page_reg_num(struct bxe_softc *sc) 18714 { 18715 if (CHIP_IS_E2(sc)) 18716 return PAGE_MODE_VALUES_E2; 18717 else if (CHIP_IS_E3(sc)) 18718 return PAGE_MODE_VALUES_E3; 18719 else 18720 return 0; 18721 } 18722 18723 static const uint32_t * 18724 __bxe_get_page_write_ar(struct bxe_softc *sc) 18725 { 18726 if (CHIP_IS_E2(sc)) 18727 return page_write_regs_e2; 18728 else if (CHIP_IS_E3(sc)) 18729 return page_write_regs_e3; 18730 else 18731 return NULL; 18732 } 18733 18734 static uint32_t 18735 __bxe_get_page_write_num(struct bxe_softc *sc) 18736 { 18737 if (CHIP_IS_E2(sc)) 18738 return PAGE_WRITE_REGS_E2; 18739 else if (CHIP_IS_E3(sc)) 18740 return PAGE_WRITE_REGS_E3; 18741 else 18742 return 0; 18743 } 18744 18745 static const struct reg_addr * 18746 __bxe_get_page_read_ar(struct bxe_softc *sc) 18747 { 18748 if (CHIP_IS_E2(sc)) 18749 return page_read_regs_e2; 18750 else if (CHIP_IS_E3(sc)) 18751 return page_read_regs_e3; 18752 else 18753 return NULL; 18754 } 18755 18756 static uint32_t 18757 __bxe_get_page_read_num(struct bxe_softc *sc) 18758 { 18759 if (CHIP_IS_E2(sc)) 18760 return PAGE_READ_REGS_E2; 18761 else if (CHIP_IS_E3(sc)) 18762 return PAGE_READ_REGS_E3; 18763 else 18764 return 0; 18765 } 18766 18767 static bool 18768 bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info) 18769 { 18770 if (CHIP_IS_E1(sc)) 18771 return IS_E1_REG(reg_info->chips); 18772 else if (CHIP_IS_E1H(sc)) 18773 return IS_E1H_REG(reg_info->chips); 18774 else if (CHIP_IS_E2(sc)) 18775 return IS_E2_REG(reg_info->chips); 18776 else if (CHIP_IS_E3A0(sc)) 18777 return IS_E3A0_REG(reg_info->chips); 18778 else if (CHIP_IS_E3B0(sc)) 18779 return IS_E3B0_REG(reg_info->chips); 18780 else 18781 return 0; 18782 } 18783 18784 static bool 18785 bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info) 18786 { 18787 if (CHIP_IS_E1(sc)) 18788 return IS_E1_REG(wreg_info->chips); 18789 else if (CHIP_IS_E1H(sc)) 18790 return IS_E1H_REG(wreg_info->chips); 18791 else if (CHIP_IS_E2(sc)) 18792 return IS_E2_REG(wreg_info->chips); 18793 else if (CHIP_IS_E3A0(sc)) 18794 return IS_E3A0_REG(wreg_info->chips); 18795 else if (CHIP_IS_E3B0(sc)) 18796 return IS_E3B0_REG(wreg_info->chips); 18797 else 18798 return 0; 18799 } 18800 18801 /** 18802 * bxe_read_pages_regs - read "paged" registers 18803 * 18804 * @bp device handle 18805 * @p output buffer 18806 * 18807 * Reads "paged" memories: memories that may only be read by first writing to a 18808 * specific address ("write address") and then reading from a specific address 18809 * ("read address"). There may be more than one write address per "page" and 18810 * more than one read address per write address. 18811 */ 18812 static void 18813 bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18814 { 18815 uint32_t i, j, k, n; 18816 18817 /* addresses of the paged registers */ 18818 const uint32_t *page_addr = __bxe_get_page_addr_ar(sc); 18819 /* number of paged registers */ 18820 int num_pages = __bxe_get_page_reg_num(sc); 18821 /* write addresses */ 18822 const uint32_t *write_addr = __bxe_get_page_write_ar(sc); 18823 /* number of write addresses */ 18824 int write_num = __bxe_get_page_write_num(sc); 18825 /* read addresses info */ 18826 const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc); 18827 /* number of read addresses */ 18828 int read_num = __bxe_get_page_read_num(sc); 18829 uint32_t addr, size; 18830 18831 for (i = 0; i < num_pages; i++) { 18832 for (j = 0; j < write_num; j++) { 18833 REG_WR(sc, write_addr[j], page_addr[i]); 18834 18835 for (k = 0; k < read_num; k++) { 18836 if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) { 18837 size = read_addr[k].size; 18838 for (n = 0; n < size; n++) { 18839 addr = read_addr[k].addr + n*4; 18840 *p++ = REG_RD(sc, addr); 18841 } 18842 } 18843 } 18844 } 18845 } 18846 return; 18847 } 18848 18849 18850 static int 18851 bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset) 18852 { 18853 uint32_t i, j, addr; 18854 const struct wreg_addr *wreg_addr_p = NULL; 18855 18856 if (CHIP_IS_E1(sc)) 18857 wreg_addr_p = &wreg_addr_e1; 18858 else if (CHIP_IS_E1H(sc)) 18859 wreg_addr_p = &wreg_addr_e1h; 18860 else if (CHIP_IS_E2(sc)) 18861 wreg_addr_p = &wreg_addr_e2; 18862 else if (CHIP_IS_E3A0(sc)) 18863 wreg_addr_p = &wreg_addr_e3; 18864 else if (CHIP_IS_E3B0(sc)) 18865 wreg_addr_p = &wreg_addr_e3b0; 18866 else 18867 return (-1); 18868 18869 /* Read the idle_chk registers */ 18870 for (i = 0; i < IDLE_REGS_COUNT; i++) { 18871 if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) && 18872 IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) { 18873 for (j = 0; j < idle_reg_addrs[i].size; j++) 18874 *p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4); 18875 } 18876 } 18877 18878 /* Read the regular registers */ 18879 for (i = 0; i < REGS_COUNT; i++) { 18880 if (bxe_is_reg_in_chip(sc, ®_addrs[i]) && 18881 IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) { 18882 for (j = 0; j < reg_addrs[i].size; j++) 18883 *p++ = REG_RD(sc, reg_addrs[i].addr + j*4); 18884 } 18885 } 18886 18887 /* Read the CAM registers */ 18888 if (bxe_is_wreg_in_chip(sc, wreg_addr_p) && 18889 IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) { 18890 for (i = 0; i < wreg_addr_p->size; i++) { 18891 *p++ = REG_RD(sc, wreg_addr_p->addr + i*4); 18892 18893 /* In case of wreg_addr register, read additional 18894 registers from read_regs array 18895 */ 18896 for (j = 0; j < wreg_addr_p->read_regs_count; j++) { 18897 addr = *(wreg_addr_p->read_regs); 18898 *p++ = REG_RD(sc, addr + j*4); 18899 } 18900 } 18901 } 18902 18903 /* Paged registers are supported in E2 & E3 only */ 18904 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { 18905 /* Read "paged" registers */ 18906 bxe_read_pages_regs(sc, p, preset); 18907 } 18908 18909 return 0; 18910 } 18911 18912 int 18913 bxe_grc_dump(struct bxe_softc *sc) 18914 { 18915 int rval = 0; 18916 uint32_t preset_idx; 18917 uint8_t *buf; 18918 uint32_t size; 18919 struct dump_header *d_hdr; 18920 uint32_t i; 18921 uint32_t reg_val; 18922 uint32_t reg_addr; 18923 uint32_t cmd_offset; 18924 struct ecore_ilt *ilt = SC_ILT(sc); 18925 struct bxe_fastpath *fp; 18926 struct ilt_client_info *ilt_cli; 18927 int grc_dump_size; 18928 18929 18930 if (sc->grcdump_done || sc->grcdump_started) 18931 return (rval); 18932 18933 sc->grcdump_started = 1; 18934 BLOGI(sc, "Started collecting grcdump\n"); 18935 18936 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 18937 sizeof(struct dump_header); 18938 18939 sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT); 18940 18941 if (sc->grc_dump == NULL) { 18942 BLOGW(sc, "Unable to allocate memory for grcdump collection\n"); 18943 return(ENOMEM); 18944 } 18945 18946 18947 18948 /* Disable parity attentions as long as following dump may 18949 * cause false alarms by reading never written registers. We 18950 * will re-enable parity attentions right after the dump. 18951 */ 18952 18953 /* Disable parity on path 0 */ 18954 bxe_pretend_func(sc, 0); 18955 18956 ecore_disable_blocks_parity(sc); 18957 18958 /* Disable parity on path 1 */ 18959 bxe_pretend_func(sc, 1); 18960 ecore_disable_blocks_parity(sc); 18961 18962 /* Return to current function */ 18963 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 18964 18965 buf = sc->grc_dump; 18966 d_hdr = sc->grc_dump; 18967 18968 d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1; 18969 d_hdr->version = BNX2X_DUMP_VERSION; 18970 d_hdr->preset = DUMP_ALL_PRESETS; 18971 18972 if (CHIP_IS_E1(sc)) { 18973 d_hdr->dump_meta_data = DUMP_CHIP_E1; 18974 } else if (CHIP_IS_E1H(sc)) { 18975 d_hdr->dump_meta_data = DUMP_CHIP_E1H; 18976 } else if (CHIP_IS_E2(sc)) { 18977 d_hdr->dump_meta_data = DUMP_CHIP_E2 | 18978 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18979 } else if (CHIP_IS_E3A0(sc)) { 18980 d_hdr->dump_meta_data = DUMP_CHIP_E3A0 | 18981 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18982 } else if (CHIP_IS_E3B0(sc)) { 18983 d_hdr->dump_meta_data = DUMP_CHIP_E3B0 | 18984 (BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0); 18985 } 18986 18987 buf += sizeof(struct dump_header); 18988 18989 for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) { 18990 18991 /* Skip presets with IOR */ 18992 if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) || 18993 (preset_idx == 11)) 18994 continue; 18995 18996 rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx); 18997 18998 if (rval) 18999 break; 19000 19001 size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t)); 19002 19003 buf += size; 19004 } 19005 19006 bxe_pretend_func(sc, 0); 19007 ecore_clear_blocks_parity(sc); 19008 ecore_enable_blocks_parity(sc); 19009 19010 bxe_pretend_func(sc, 1); 19011 ecore_clear_blocks_parity(sc); 19012 ecore_enable_blocks_parity(sc); 19013 19014 /* Return to current function */ 19015 bxe_pretend_func(sc, SC_ABS_FUNC(sc)); 19016 19017 19018 19019 if(sc->state == BXE_STATE_OPEN) { 19020 if(sc->fw_stats_req != NULL) { 19021 BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n", 19022 (uintmax_t)sc->fw_stats_req_mapping, 19023 (uintmax_t)sc->fw_stats_data_mapping, 19024 sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size)); 19025 } 19026 if(sc->def_sb != NULL) { 19027 BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n", 19028 (void *)sc->def_sb_dma.paddr, sc->def_sb, 19029 sizeof(struct host_sp_status_block)); 19030 } 19031 if(sc->eq_dma.vaddr != NULL) { 19032 BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n", 19033 (uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE); 19034 } 19035 if(sc->sp_dma.vaddr != NULL) { 19036 BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n", 19037 (uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr, 19038 sizeof(struct bxe_slowpath)); 19039 } 19040 if(sc->spq_dma.vaddr != NULL) { 19041 BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n", 19042 (uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE); 19043 } 19044 if(sc->gz_buf_dma.vaddr != NULL) { 19045 BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n", 19046 (uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr, 19047 FW_BUF_SIZE); 19048 } 19049 for (i = 0; i < sc->num_queues; i++) { 19050 fp = &sc->fp[i]; 19051 if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL && 19052 fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL && 19053 fp->rx_sge_dma.vaddr != NULL) { 19054 19055 BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19056 (uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr, 19057 sizeof(union bxe_host_hc_status_block)); 19058 BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19059 (uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr, 19060 (BCM_PAGE_SIZE * TX_BD_NUM_PAGES)); 19061 BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19062 (uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr, 19063 (BCM_PAGE_SIZE * RX_BD_NUM_PAGES)); 19064 BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i, 19065 (uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr, 19066 (BCM_PAGE_SIZE * RCQ_NUM_PAGES)); 19067 BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i, 19068 (uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr, 19069 (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES)); 19070 } 19071 } 19072 if(ilt != NULL ) { 19073 ilt_cli = &ilt->clients[1]; 19074 if(ilt->lines != NULL) { 19075 for (i = ilt_cli->start; i <= ilt_cli->end; i++) { 19076 BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n", 19077 (uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr), 19078 ((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE); 19079 } 19080 } 19081 } 19082 19083 19084 cmd_offset = DMAE_REG_CMD_MEM; 19085 for (i = 0; i < 224; i++) { 19086 reg_addr = (cmd_offset +(i * 4)); 19087 reg_val = REG_RD(sc, reg_addr); 19088 BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i, 19089 reg_addr, reg_val); 19090 } 19091 } 19092 19093 BLOGI(sc, "Collection of grcdump done\n"); 19094 sc->grcdump_done = 1; 19095 return(rval); 19096 } 19097 19098 static int 19099 bxe_add_cdev(struct bxe_softc *sc) 19100 { 19101 sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT); 19102 19103 if (sc->eeprom == NULL) { 19104 BLOGW(sc, "Unable to alloc for eeprom size buffer\n"); 19105 return (-1); 19106 } 19107 19108 sc->ioctl_dev = make_dev(&bxe_cdevsw, 19109 sc->ifp->if_dunit, 19110 UID_ROOT, 19111 GID_WHEEL, 19112 0600, 19113 "%s", 19114 if_name(sc->ifp)); 19115 19116 if (sc->ioctl_dev == NULL) { 19117 free(sc->eeprom, M_DEVBUF); 19118 sc->eeprom = NULL; 19119 return (-1); 19120 } 19121 19122 sc->ioctl_dev->si_drv1 = sc; 19123 19124 return (0); 19125 } 19126 19127 static void 19128 bxe_del_cdev(struct bxe_softc *sc) 19129 { 19130 if (sc->ioctl_dev != NULL) 19131 destroy_dev(sc->ioctl_dev); 19132 19133 if (sc->eeprom != NULL) { 19134 free(sc->eeprom, M_DEVBUF); 19135 sc->eeprom = NULL; 19136 } 19137 sc->ioctl_dev = NULL; 19138 19139 return; 19140 } 19141 19142 static bool bxe_is_nvram_accessible(struct bxe_softc *sc) 19143 { 19144 19145 if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0) 19146 return FALSE; 19147 19148 return TRUE; 19149 } 19150 19151 19152 static int 19153 bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19154 { 19155 int rval = 0; 19156 19157 if(!bxe_is_nvram_accessible(sc)) { 19158 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19159 return (-EAGAIN); 19160 } 19161 rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len); 19162 19163 19164 return (rval); 19165 } 19166 19167 static int 19168 bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len) 19169 { 19170 int rval = 0; 19171 19172 if(!bxe_is_nvram_accessible(sc)) { 19173 BLOGW(sc, "Cannot access eeprom when interface is down\n"); 19174 return (-EAGAIN); 19175 } 19176 rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len); 19177 19178 return (rval); 19179 } 19180 19181 static int 19182 bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom) 19183 { 19184 int rval = 0; 19185 19186 switch (eeprom->eeprom_cmd) { 19187 19188 case BXE_EEPROM_CMD_SET_EEPROM: 19189 19190 rval = copyin(eeprom->eeprom_data, sc->eeprom, 19191 eeprom->eeprom_data_len); 19192 19193 if (rval) 19194 break; 19195 19196 rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19197 eeprom->eeprom_data_len); 19198 break; 19199 19200 case BXE_EEPROM_CMD_GET_EEPROM: 19201 19202 rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset, 19203 eeprom->eeprom_data_len); 19204 19205 if (rval) { 19206 break; 19207 } 19208 19209 rval = copyout(sc->eeprom, eeprom->eeprom_data, 19210 eeprom->eeprom_data_len); 19211 break; 19212 19213 default: 19214 rval = EINVAL; 19215 break; 19216 } 19217 19218 if (rval) { 19219 BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval); 19220 } 19221 19222 return (rval); 19223 } 19224 19225 static int 19226 bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p) 19227 { 19228 uint32_t ext_phy_config; 19229 int port = SC_PORT(sc); 19230 int cfg_idx = bxe_get_link_cfg_idx(sc); 19231 19232 dev_p->supported = sc->port.supported[cfg_idx] | 19233 (sc->port.supported[cfg_idx ^ 1] & 19234 (ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE)); 19235 dev_p->advertising = sc->port.advertising[cfg_idx]; 19236 if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type == 19237 ELINK_ETH_PHY_SFP_1G_FIBER) { 19238 dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full); 19239 dev_p->advertising &= ~(ADVERTISED_10000baseT_Full); 19240 } 19241 if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up && 19242 !(sc->flags & BXE_MF_FUNC_DIS)) { 19243 dev_p->duplex = sc->link_vars.duplex; 19244 if (IS_MF(sc) && !BXE_NOMCP(sc)) 19245 dev_p->speed = bxe_get_mf_speed(sc); 19246 else 19247 dev_p->speed = sc->link_vars.line_speed; 19248 } else { 19249 dev_p->duplex = DUPLEX_UNKNOWN; 19250 dev_p->speed = SPEED_UNKNOWN; 19251 } 19252 19253 dev_p->port = bxe_media_detect(sc); 19254 19255 ext_phy_config = SHMEM_RD(sc, 19256 dev_info.port_hw_config[port].external_phy_config); 19257 if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) == 19258 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) 19259 dev_p->phy_address = sc->port.phy_addr; 19260 else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19261 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && 19262 ((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) != 19263 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) 19264 dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config); 19265 else 19266 dev_p->phy_address = 0; 19267 19268 if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) 19269 dev_p->autoneg = AUTONEG_ENABLE; 19270 else 19271 dev_p->autoneg = AUTONEG_DISABLE; 19272 19273 19274 return 0; 19275 } 19276 19277 static int 19278 bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, 19279 struct thread *td) 19280 { 19281 struct bxe_softc *sc; 19282 int rval = 0; 19283 bxe_grcdump_t *dump = NULL; 19284 int grc_dump_size; 19285 bxe_drvinfo_t *drv_infop = NULL; 19286 bxe_dev_setting_t *dev_p; 19287 bxe_dev_setting_t dev_set; 19288 bxe_get_regs_t *reg_p; 19289 bxe_reg_rdw_t *reg_rdw_p; 19290 bxe_pcicfg_rdw_t *cfg_rdw_p; 19291 bxe_perm_mac_addr_t *mac_addr_p; 19292 19293 19294 if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL) 19295 return ENXIO; 19296 19297 dump = (bxe_grcdump_t *)data; 19298 19299 switch(cmd) { 19300 19301 case BXE_GRC_DUMP_SIZE: 19302 dump->pci_func = sc->pcie_func; 19303 dump->grcdump_size = 19304 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19305 sizeof(struct dump_header); 19306 break; 19307 19308 case BXE_GRC_DUMP: 19309 19310 grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) + 19311 sizeof(struct dump_header); 19312 if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) || 19313 (dump->grcdump_size < grc_dump_size)) { 19314 rval = EINVAL; 19315 break; 19316 } 19317 19318 if((sc->trigger_grcdump) && (!sc->grcdump_done) && 19319 (!sc->grcdump_started)) { 19320 rval = bxe_grc_dump(sc); 19321 } 19322 19323 if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) && 19324 (sc->grc_dump != NULL)) { 19325 dump->grcdump_dwords = grc_dump_size >> 2; 19326 rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size); 19327 free(sc->grc_dump, M_DEVBUF); 19328 sc->grc_dump = NULL; 19329 sc->grcdump_started = 0; 19330 sc->grcdump_done = 0; 19331 } 19332 19333 break; 19334 19335 case BXE_DRV_INFO: 19336 drv_infop = (bxe_drvinfo_t *)data; 19337 snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe"); 19338 snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s", 19339 BXE_DRIVER_VERSION); 19340 snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s", 19341 sc->devinfo.bc_ver_str); 19342 snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH, 19343 "%s", sc->fw_ver_str); 19344 drv_infop->eeprom_dump_len = sc->devinfo.flash_size; 19345 drv_infop->reg_dump_len = 19346 (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) 19347 + sizeof(struct dump_header); 19348 snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d", 19349 sc->pcie_bus, sc->pcie_device, sc->pcie_func); 19350 break; 19351 19352 case BXE_DEV_SETTING: 19353 dev_p = (bxe_dev_setting_t *)data; 19354 bxe_get_settings(sc, &dev_set); 19355 dev_p->supported = dev_set.supported; 19356 dev_p->advertising = dev_set.advertising; 19357 dev_p->speed = dev_set.speed; 19358 dev_p->duplex = dev_set.duplex; 19359 dev_p->port = dev_set.port; 19360 dev_p->phy_address = dev_set.phy_address; 19361 dev_p->autoneg = dev_set.autoneg; 19362 19363 break; 19364 19365 case BXE_GET_REGS: 19366 19367 reg_p = (bxe_get_regs_t *)data; 19368 grc_dump_size = reg_p->reg_buf_len; 19369 19370 if((!sc->grcdump_done) && (!sc->grcdump_started)) { 19371 bxe_grc_dump(sc); 19372 } 19373 if((sc->grcdump_done) && (sc->grcdump_started) && 19374 (sc->grc_dump != NULL)) { 19375 rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size); 19376 free(sc->grc_dump, M_DEVBUF); 19377 sc->grc_dump = NULL; 19378 sc->grcdump_started = 0; 19379 sc->grcdump_done = 0; 19380 } 19381 19382 break; 19383 19384 case BXE_RDW_REG: 19385 reg_rdw_p = (bxe_reg_rdw_t *)data; 19386 if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) && 19387 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19388 reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id); 19389 19390 if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) && 19391 (reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT)) 19392 REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val); 19393 19394 break; 19395 19396 case BXE_RDW_PCICFG: 19397 cfg_rdw_p = (bxe_pcicfg_rdw_t *)data; 19398 if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) { 19399 19400 cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id, 19401 cfg_rdw_p->cfg_width); 19402 19403 } else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) { 19404 pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val, 19405 cfg_rdw_p->cfg_width); 19406 } else { 19407 BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n"); 19408 } 19409 break; 19410 19411 case BXE_MAC_ADDR: 19412 mac_addr_p = (bxe_perm_mac_addr_t *)data; 19413 snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s", 19414 sc->mac_addr_str); 19415 break; 19416 19417 case BXE_EEPROM: 19418 rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data); 19419 break; 19420 19421 19422 default: 19423 break; 19424 } 19425 19426 return (rval); 19427 } 19428 19429 #ifdef DEBUGNET 19430 static void 19431 bxe_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) 19432 { 19433 struct bxe_softc *sc; 19434 19435 sc = if_getsoftc(ifp); 19436 BXE_CORE_LOCK(sc); 19437 *nrxr = sc->num_queues; 19438 *ncl = DEBUGNET_MAX_IN_FLIGHT; 19439 *clsize = sc->fp[0].mbuf_alloc_size; 19440 BXE_CORE_UNLOCK(sc); 19441 } 19442 19443 static void 19444 bxe_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused) 19445 { 19446 } 19447 19448 static int 19449 bxe_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) 19450 { 19451 struct bxe_softc *sc; 19452 int error; 19453 19454 sc = if_getsoftc(ifp); 19455 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 19456 IFF_DRV_RUNNING || !sc->link_vars.link_up) 19457 return (ENOENT); 19458 19459 error = bxe_tx_encap(&sc->fp[0], &m); 19460 if (error != 0 && m != NULL) 19461 m_freem(m); 19462 return (error); 19463 } 19464 19465 static int 19466 bxe_debugnet_poll(struct ifnet *ifp, int count) 19467 { 19468 struct bxe_softc *sc; 19469 int i; 19470 19471 sc = if_getsoftc(ifp); 19472 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 19473 !sc->link_vars.link_up) 19474 return (ENOENT); 19475 19476 for (i = 0; i < sc->num_queues; i++) 19477 (void)bxe_rxeof(sc, &sc->fp[i]); 19478 (void)bxe_txeof(sc, &sc->fp[0]); 19479 return (0); 19480 } 19481 #endif /* DEBUGNET */ 19482