xref: /freebsd/sys/dev/bwi/if_bwi.c (revision 8aac90f18aef7c9eea906c3ff9a001ca7b94f375)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Sepherosa Ziehau <sepherosa@gmail.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/dev/netif/bwi/if_bwi.c,v 1.19 2008/02/15 11:15:38 sephe Exp $
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_inet.h"
41 #include "opt_bwi.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/endian.h>
46 #include <sys/kernel.h>
47 #include <sys/bus.h>
48 #include <sys/malloc.h>
49 #include <sys/proc.h>
50 #include <sys/rman.h>
51 #include <sys/socket.h>
52 #include <sys/sockio.h>
53 #include <sys/sysctl.h>
54 #include <sys/systm.h>
55 #include <sys/taskqueue.h>
56 
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 #include <net/if_arp.h>
63 #include <net/ethernet.h>
64 #include <net/if_llc.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_radiotap.h>
68 #include <net80211/ieee80211_regdomain.h>
69 #include <net80211/ieee80211_phy.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <net/bpf.h>
73 
74 #ifdef INET
75 #include <netinet/in.h>
76 #include <netinet/if_ether.h>
77 #endif
78 
79 #include <machine/bus.h>
80 
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcireg.h>
83 
84 #include <dev/bwi/bitops.h>
85 #include <dev/bwi/if_bwireg.h>
86 #include <dev/bwi/if_bwivar.h>
87 #include <dev/bwi/bwimac.h>
88 #include <dev/bwi/bwirf.h>
89 
90 struct bwi_clock_freq {
91 	u_int		clkfreq_min;
92 	u_int		clkfreq_max;
93 };
94 
95 struct bwi_myaddr_bssid {
96 	uint8_t		myaddr[IEEE80211_ADDR_LEN];
97 	uint8_t		bssid[IEEE80211_ADDR_LEN];
98 } __packed;
99 
100 static struct ieee80211vap *bwi_vap_create(struct ieee80211com *,
101 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
102 		    const uint8_t [IEEE80211_ADDR_LEN],
103 		    const uint8_t [IEEE80211_ADDR_LEN]);
104 static void	bwi_vap_delete(struct ieee80211vap *);
105 static void	bwi_init(struct bwi_softc *);
106 static void	bwi_parent(struct ieee80211com *);
107 static int	bwi_transmit(struct ieee80211com *, struct mbuf *);
108 static void	bwi_start_locked(struct bwi_softc *);
109 static int	bwi_raw_xmit(struct ieee80211_node *, struct mbuf *,
110 			const struct ieee80211_bpf_params *);
111 static void	bwi_watchdog(void *);
112 static void	bwi_scan_start(struct ieee80211com *);
113 static void	bwi_getradiocaps(struct ieee80211com *, int, int *,
114 		    struct ieee80211_channel[]);
115 static void	bwi_set_channel(struct ieee80211com *);
116 static void	bwi_scan_end(struct ieee80211com *);
117 static int	bwi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
118 static void	bwi_updateslot(struct ieee80211com *);
119 
120 static void	bwi_calibrate(void *);
121 
122 static int	bwi_calc_rssi(struct bwi_softc *, const struct bwi_rxbuf_hdr *);
123 static int	bwi_calc_noise(struct bwi_softc *);
124 static __inline uint8_t bwi_plcp2rate(uint32_t, enum ieee80211_phytype);
125 static void	bwi_rx_radiotap(struct bwi_softc *, struct mbuf *,
126 			struct bwi_rxbuf_hdr *, const void *, int, int, int);
127 
128 static void	bwi_restart(void *, int);
129 static void	bwi_init_statechg(struct bwi_softc *, int);
130 static void	bwi_stop(struct bwi_softc *, int);
131 static void	bwi_stop_locked(struct bwi_softc *, int);
132 static int	bwi_newbuf(struct bwi_softc *, int, int);
133 static int	bwi_encap(struct bwi_softc *, int, struct mbuf *,
134 			  struct ieee80211_node *);
135 static int	bwi_encap_raw(struct bwi_softc *, int, struct mbuf *,
136 			  struct ieee80211_node *,
137 			  const struct ieee80211_bpf_params *);
138 
139 static void	bwi_init_rxdesc_ring32(struct bwi_softc *, uint32_t,
140 				       bus_addr_t, int, int);
141 static void	bwi_reset_rx_ring32(struct bwi_softc *, uint32_t);
142 
143 static int	bwi_init_tx_ring32(struct bwi_softc *, int);
144 static int	bwi_init_rx_ring32(struct bwi_softc *);
145 static int	bwi_init_txstats32(struct bwi_softc *);
146 static void	bwi_free_tx_ring32(struct bwi_softc *, int);
147 static void	bwi_free_rx_ring32(struct bwi_softc *);
148 static void	bwi_free_txstats32(struct bwi_softc *);
149 static void	bwi_setup_rx_desc32(struct bwi_softc *, int, bus_addr_t, int);
150 static void	bwi_setup_tx_desc32(struct bwi_softc *, struct bwi_ring_data *,
151 				    int, bus_addr_t, int);
152 static int	bwi_rxeof32(struct bwi_softc *);
153 static void	bwi_start_tx32(struct bwi_softc *, uint32_t, int);
154 static void	bwi_txeof_status32(struct bwi_softc *);
155 
156 static int	bwi_init_tx_ring64(struct bwi_softc *, int);
157 static int	bwi_init_rx_ring64(struct bwi_softc *);
158 static int	bwi_init_txstats64(struct bwi_softc *);
159 static void	bwi_free_tx_ring64(struct bwi_softc *, int);
160 static void	bwi_free_rx_ring64(struct bwi_softc *);
161 static void	bwi_free_txstats64(struct bwi_softc *);
162 static void	bwi_setup_rx_desc64(struct bwi_softc *, int, bus_addr_t, int);
163 static void	bwi_setup_tx_desc64(struct bwi_softc *, struct bwi_ring_data *,
164 				    int, bus_addr_t, int);
165 static int	bwi_rxeof64(struct bwi_softc *);
166 static void	bwi_start_tx64(struct bwi_softc *, uint32_t, int);
167 static void	bwi_txeof_status64(struct bwi_softc *);
168 
169 static int	bwi_rxeof(struct bwi_softc *, int);
170 static void	_bwi_txeof(struct bwi_softc *, uint16_t, int, int);
171 static void	bwi_txeof(struct bwi_softc *);
172 static void	bwi_txeof_status(struct bwi_softc *, int);
173 static void	bwi_enable_intrs(struct bwi_softc *, uint32_t);
174 static void	bwi_disable_intrs(struct bwi_softc *, uint32_t);
175 
176 static int	bwi_dma_alloc(struct bwi_softc *);
177 static void	bwi_dma_free(struct bwi_softc *);
178 static int	bwi_dma_ring_alloc(struct bwi_softc *, bus_dma_tag_t,
179 				   struct bwi_ring_data *, bus_size_t,
180 				   uint32_t);
181 static int	bwi_dma_mbuf_create(struct bwi_softc *);
182 static void	bwi_dma_mbuf_destroy(struct bwi_softc *, int, int);
183 static int	bwi_dma_txstats_alloc(struct bwi_softc *, uint32_t, bus_size_t);
184 static void	bwi_dma_txstats_free(struct bwi_softc *);
185 static void	bwi_dma_ring_addr(void *, bus_dma_segment_t *, int, int);
186 static void	bwi_dma_buf_addr(void *, bus_dma_segment_t *, int,
187 				 bus_size_t, int);
188 
189 static void	bwi_power_on(struct bwi_softc *, int);
190 static int	bwi_power_off(struct bwi_softc *, int);
191 static int	bwi_set_clock_mode(struct bwi_softc *, enum bwi_clock_mode);
192 static int	bwi_set_clock_delay(struct bwi_softc *);
193 static void	bwi_get_clock_freq(struct bwi_softc *, struct bwi_clock_freq *);
194 static int	bwi_get_pwron_delay(struct bwi_softc *sc);
195 static void	bwi_set_addr_filter(struct bwi_softc *, uint16_t,
196 				    const uint8_t *);
197 static void	bwi_set_bssid(struct bwi_softc *, const uint8_t *);
198 
199 static void	bwi_get_card_flags(struct bwi_softc *);
200 static void	bwi_get_eaddr(struct bwi_softc *, uint16_t, uint8_t *);
201 
202 static int	bwi_bus_attach(struct bwi_softc *);
203 static int	bwi_bbp_attach(struct bwi_softc *);
204 static int	bwi_bbp_power_on(struct bwi_softc *, enum bwi_clock_mode);
205 static void	bwi_bbp_power_off(struct bwi_softc *);
206 
207 static const char *bwi_regwin_name(const struct bwi_regwin *);
208 static uint32_t	bwi_regwin_disable_bits(struct bwi_softc *);
209 static void	bwi_regwin_info(struct bwi_softc *, uint16_t *, uint8_t *);
210 static int	bwi_regwin_select(struct bwi_softc *, int);
211 
212 static void	bwi_led_attach(struct bwi_softc *);
213 static void	bwi_led_newstate(struct bwi_softc *, enum ieee80211_state);
214 static void	bwi_led_event(struct bwi_softc *, int);
215 static void	bwi_led_blink_start(struct bwi_softc *, int, int);
216 static void	bwi_led_blink_next(void *);
217 static void	bwi_led_blink_end(void *);
218 
219 static const struct {
220 	uint16_t	did_min;
221 	uint16_t	did_max;
222 	uint16_t	bbp_id;
223 } bwi_bbpid_map[] = {
224 	{ 0x4301, 0x4301, 0x4301 },
225 	{ 0x4305, 0x4307, 0x4307 },
226 	{ 0x4402, 0x4403, 0x4402 },
227 	{ 0x4610, 0x4615, 0x4610 },
228 	{ 0x4710, 0x4715, 0x4710 },
229 	{ 0x4720, 0x4725, 0x4309 }
230 };
231 
232 static const struct {
233 	uint16_t	bbp_id;
234 	int		nregwin;
235 } bwi_regwin_count[] = {
236 	{ 0x4301, 5 },
237 	{ 0x4306, 6 },
238 	{ 0x4307, 5 },
239 	{ 0x4310, 8 },
240 	{ 0x4401, 3 },
241 	{ 0x4402, 3 },
242 	{ 0x4610, 9 },
243 	{ 0x4704, 9 },
244 	{ 0x4710, 9 },
245 	{ 0x5365, 7 }
246 };
247 
248 #define CLKSRC(src) 				\
249 [BWI_CLKSRC_ ## src] = {			\
250 	.freq_min = BWI_CLKSRC_ ##src## _FMIN,	\
251 	.freq_max = BWI_CLKSRC_ ##src## _FMAX	\
252 }
253 
254 static const struct {
255 	u_int	freq_min;
256 	u_int	freq_max;
257 } bwi_clkfreq[BWI_CLKSRC_MAX] = {
258 	CLKSRC(LP_OSC),
259 	CLKSRC(CS_OSC),
260 	CLKSRC(PCI)
261 };
262 
263 #undef CLKSRC
264 
265 #define VENDOR_LED_ACT(vendor)				\
266 {							\
267 	.vid = PCI_VENDOR_##vendor,			\
268 	.led_act = { BWI_VENDOR_LED_ACT_##vendor }	\
269 }
270 
271 static const struct {
272 #define	PCI_VENDOR_COMPAQ	0x0e11
273 #define	PCI_VENDOR_LINKSYS	0x1737
274 	uint16_t	vid;
275 	uint8_t		led_act[BWI_LED_MAX];
276 } bwi_vendor_led_act[] = {
277 	VENDOR_LED_ACT(COMPAQ),
278 	VENDOR_LED_ACT(LINKSYS)
279 #undef PCI_VENDOR_LINKSYS
280 #undef PCI_VENDOR_COMPAQ
281 };
282 
283 static const uint8_t bwi_default_led_act[BWI_LED_MAX] =
284 	{ BWI_VENDOR_LED_ACT_DEFAULT };
285 
286 #undef VENDOR_LED_ACT
287 
288 static const struct {
289 	int	on_dur;
290 	int	off_dur;
291 } bwi_led_duration[109] = {
292 	[0]	= { 400, 100 },
293 	[2]	= { 150, 75 },
294 	[4]	= { 90, 45 },
295 	[11]	= { 66, 34 },
296 	[12]	= { 53, 26 },
297 	[18]	= { 42, 21 },
298 	[22]	= { 35, 17 },
299 	[24]	= { 32, 16 },
300 	[36]	= { 21, 10 },
301 	[48]	= { 16, 8 },
302 	[72]	= { 11, 5 },
303 	[96]	= { 9, 4 },
304 	[108]	= { 7, 3 }
305 };
306 
307 #ifdef BWI_DEBUG
308 #ifdef BWI_DEBUG_VERBOSE
309 static uint32_t bwi_debug = BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_TXPOWER;
310 #else
311 static uint32_t	bwi_debug;
312 #endif
313 TUNABLE_INT("hw.bwi.debug", (int *)&bwi_debug);
314 #endif	/* BWI_DEBUG */
315 
316 static const uint8_t bwi_zero_addr[IEEE80211_ADDR_LEN];
317 
318 uint16_t
319 bwi_read_sprom(struct bwi_softc *sc, uint16_t ofs)
320 {
321 	return CSR_READ_2(sc, ofs + BWI_SPROM_START);
322 }
323 
324 static __inline void
325 bwi_setup_desc32(struct bwi_softc *sc, struct bwi_desc32 *desc_array,
326 		 int ndesc, int desc_idx, bus_addr_t paddr, int buf_len,
327 		 int tx)
328 {
329 	struct bwi_desc32 *desc = &desc_array[desc_idx];
330 	uint32_t ctrl, addr, addr_hi, addr_lo;
331 
332 	addr_lo = __SHIFTOUT(paddr, BWI_DESC32_A_ADDR_MASK);
333 	addr_hi = __SHIFTOUT(paddr, BWI_DESC32_A_FUNC_MASK);
334 
335 	addr = __SHIFTIN(addr_lo, BWI_DESC32_A_ADDR_MASK) |
336 	       __SHIFTIN(BWI_DESC32_A_FUNC_TXRX, BWI_DESC32_A_FUNC_MASK);
337 
338 	ctrl = __SHIFTIN(buf_len, BWI_DESC32_C_BUFLEN_MASK) |
339 	       __SHIFTIN(addr_hi, BWI_DESC32_C_ADDRHI_MASK);
340 	if (desc_idx == ndesc - 1)
341 		ctrl |= BWI_DESC32_C_EOR;
342 	if (tx) {
343 		/* XXX */
344 		ctrl |= BWI_DESC32_C_FRAME_START |
345 			BWI_DESC32_C_FRAME_END |
346 			BWI_DESC32_C_INTR;
347 	}
348 
349 	desc->addr = htole32(addr);
350 	desc->ctrl = htole32(ctrl);
351 }
352 
353 int
354 bwi_attach(struct bwi_softc *sc)
355 {
356 	struct ieee80211com *ic = &sc->sc_ic;
357 	device_t dev = sc->sc_dev;
358 	struct bwi_mac *mac;
359 	struct bwi_phy *phy;
360 	int i, error;
361 
362 	BWI_LOCK_INIT(sc);
363 
364 	/*
365 	 * Initialize taskq and various tasks
366 	 */
367 	sc->sc_tq = taskqueue_create("bwi_taskq", M_NOWAIT | M_ZERO,
368 		taskqueue_thread_enqueue, &sc->sc_tq);
369 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
370 		device_get_nameunit(dev));
371 	TASK_INIT(&sc->sc_restart_task, 0, bwi_restart, sc);
372 	callout_init_mtx(&sc->sc_calib_ch, &sc->sc_mtx, 0);
373 	mbufq_init(&sc->sc_snd, ifqmaxlen);
374 
375 	/*
376 	 * Initialize sysctl variables
377 	 */
378 	sc->sc_fw_version = BWI_FW_VERSION3;
379 	sc->sc_led_idle = (2350 * hz) / 1000;
380 	sc->sc_led_ticks = ticks - sc->sc_led_idle;
381 	sc->sc_led_blink = 1;
382 	sc->sc_txpwr_calib = 1;
383 #ifdef BWI_DEBUG
384 	sc->sc_debug = bwi_debug;
385 #endif
386 	bwi_power_on(sc, 1);
387 
388 	error = bwi_bbp_attach(sc);
389 	if (error)
390 		goto fail;
391 
392 	error = bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
393 	if (error)
394 		goto fail;
395 
396 	if (BWI_REGWIN_EXIST(&sc->sc_com_regwin)) {
397 		error = bwi_set_clock_delay(sc);
398 		if (error)
399 			goto fail;
400 
401 		error = bwi_set_clock_mode(sc, BWI_CLOCK_MODE_FAST);
402 		if (error)
403 			goto fail;
404 
405 		error = bwi_get_pwron_delay(sc);
406 		if (error)
407 			goto fail;
408 	}
409 
410 	error = bwi_bus_attach(sc);
411 	if (error)
412 		goto fail;
413 
414 	bwi_get_card_flags(sc);
415 
416 	bwi_led_attach(sc);
417 
418 	for (i = 0; i < sc->sc_nmac; ++i) {
419 		struct bwi_regwin *old;
420 
421 		mac = &sc->sc_mac[i];
422 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old);
423 		if (error)
424 			goto fail;
425 
426 		error = bwi_mac_lateattach(mac);
427 		if (error)
428 			goto fail;
429 
430 		error = bwi_regwin_switch(sc, old, NULL);
431 		if (error)
432 			goto fail;
433 	}
434 
435 	/*
436 	 * XXX First MAC is known to exist
437 	 * TODO2
438 	 */
439 	mac = &sc->sc_mac[0];
440 	phy = &mac->mac_phy;
441 
442 	bwi_bbp_power_off(sc);
443 
444 	error = bwi_dma_alloc(sc);
445 	if (error)
446 		goto fail;
447 
448 	error = bwi_mac_fw_alloc(mac);
449 	if (error)
450 		goto fail;
451 
452 	callout_init_mtx(&sc->sc_watchdog_timer, &sc->sc_mtx, 0);
453 
454 	/*
455 	 * Setup ratesets, phytype, channels and get MAC address
456 	 */
457 	if (phy->phy_mode == IEEE80211_MODE_11B ||
458 	    phy->phy_mode == IEEE80211_MODE_11G) {
459 		if (phy->phy_mode == IEEE80211_MODE_11B) {
460 			ic->ic_phytype = IEEE80211_T_DS;
461 		} else {
462 			ic->ic_phytype = IEEE80211_T_OFDM;
463 		}
464 
465 		bwi_get_eaddr(sc, BWI_SPROM_11BG_EADDR, ic->ic_macaddr);
466 		if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
467 			bwi_get_eaddr(sc, BWI_SPROM_11A_EADDR, ic->ic_macaddr);
468 			if (IEEE80211_IS_MULTICAST(ic->ic_macaddr)) {
469 				device_printf(dev,
470 				    "invalid MAC address: %6D\n",
471 				    ic->ic_macaddr, ":");
472 			}
473 		}
474 	} else if (phy->phy_mode == IEEE80211_MODE_11A) {
475 		/* TODO:11A */
476 		error = ENXIO;
477 		goto fail;
478 	} else {
479 		panic("unknown phymode %d\n", phy->phy_mode);
480 	}
481 
482 	/* Get locale */
483 	sc->sc_locale = __SHIFTOUT(bwi_read_sprom(sc, BWI_SPROM_CARD_INFO),
484 				   BWI_SPROM_CARD_INFO_LOCALE);
485 	DPRINTF(sc, BWI_DBG_ATTACH, "locale: %d\n", sc->sc_locale);
486 	/* XXX use locale */
487 
488 	ic->ic_softc = sc;
489 
490 	bwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
491 	    ic->ic_channels);
492 
493 	ic->ic_name = device_get_nameunit(dev);
494 	ic->ic_caps = IEEE80211_C_STA |
495 		      IEEE80211_C_SHSLOT |
496 		      IEEE80211_C_SHPREAMBLE |
497 		      IEEE80211_C_WPA |
498 		      IEEE80211_C_BGSCAN |
499 		      IEEE80211_C_MONITOR;
500 	ic->ic_opmode = IEEE80211_M_STA;
501 	ieee80211_ifattach(ic);
502 
503 	ic->ic_headroom = sizeof(struct bwi_txbuf_hdr);
504 
505 	/* override default methods */
506 	ic->ic_vap_create = bwi_vap_create;
507 	ic->ic_vap_delete = bwi_vap_delete;
508 	ic->ic_raw_xmit = bwi_raw_xmit;
509 	ic->ic_updateslot = bwi_updateslot;
510 	ic->ic_scan_start = bwi_scan_start;
511 	ic->ic_scan_end = bwi_scan_end;
512 	ic->ic_getradiocaps = bwi_getradiocaps;
513 	ic->ic_set_channel = bwi_set_channel;
514 	ic->ic_transmit = bwi_transmit;
515 	ic->ic_parent = bwi_parent;
516 
517 	sc->sc_rates = ieee80211_get_ratetable(ic->ic_curchan);
518 
519 	ieee80211_radiotap_attach(ic,
520 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
521 		BWI_TX_RADIOTAP_PRESENT,
522 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
523 		BWI_RX_RADIOTAP_PRESENT);
524 
525 	/*
526 	 * Add sysctl nodes
527 	 */
528 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
529 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
530 		        "fw_version", CTLFLAG_RD, &sc->sc_fw_version, 0,
531 		        "Firmware version");
532 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
533 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
534 		        "led_idle", CTLFLAG_RW, &sc->sc_led_idle, 0,
535 		        "# ticks before LED enters idle state");
536 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
537 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
538 		       "led_blink", CTLFLAG_RW, &sc->sc_led_blink, 0,
539 		       "Allow LED to blink");
540 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
541 		       SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
542 		       "txpwr_calib", CTLFLAG_RW, &sc->sc_txpwr_calib, 0,
543 		       "Enable software TX power calibration");
544 #ifdef BWI_DEBUG
545 	SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
546 		        SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
547 		        "debug", CTLFLAG_RW, &sc->sc_debug, 0, "Debug flags");
548 #endif
549 	if (bootverbose)
550 		ieee80211_announce(ic);
551 
552 	return (0);
553 fail:
554 	BWI_LOCK_DESTROY(sc);
555 	return (error);
556 }
557 
558 int
559 bwi_detach(struct bwi_softc *sc)
560 {
561 	struct ieee80211com *ic = &sc->sc_ic;
562 	int i;
563 
564 	bwi_stop(sc, 1);
565 	callout_drain(&sc->sc_led_blink_ch);
566 	callout_drain(&sc->sc_calib_ch);
567 	callout_drain(&sc->sc_watchdog_timer);
568 	ieee80211_ifdetach(ic);
569 
570 	for (i = 0; i < sc->sc_nmac; ++i)
571 		bwi_mac_detach(&sc->sc_mac[i]);
572 	bwi_dma_free(sc);
573 	taskqueue_free(sc->sc_tq);
574 	mbufq_drain(&sc->sc_snd);
575 
576 	BWI_LOCK_DESTROY(sc);
577 
578 	return (0);
579 }
580 
581 static struct ieee80211vap *
582 bwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
583     enum ieee80211_opmode opmode, int flags,
584     const uint8_t bssid[IEEE80211_ADDR_LEN],
585     const uint8_t mac[IEEE80211_ADDR_LEN])
586 {
587 	struct bwi_vap *bvp;
588 	struct ieee80211vap *vap;
589 
590 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
591 		return NULL;
592 	bvp = malloc(sizeof(struct bwi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
593 	vap = &bvp->bv_vap;
594 	/* enable s/w bmiss handling for sta mode */
595 	ieee80211_vap_setup(ic, vap, name, unit, opmode,
596 	    flags | IEEE80211_CLONE_NOBEACONS, bssid);
597 
598 	/* override default methods */
599 	bvp->bv_newstate = vap->iv_newstate;
600 	vap->iv_newstate = bwi_newstate;
601 #if 0
602 	vap->iv_update_beacon = bwi_beacon_update;
603 #endif
604 	ieee80211_ratectl_init(vap);
605 
606 	/* complete setup */
607 	ieee80211_vap_attach(vap, ieee80211_media_change,
608 	    ieee80211_media_status, mac);
609 	ic->ic_opmode = opmode;
610 	return vap;
611 }
612 
613 static void
614 bwi_vap_delete(struct ieee80211vap *vap)
615 {
616 	struct bwi_vap *bvp = BWI_VAP(vap);
617 
618 	ieee80211_ratectl_deinit(vap);
619 	ieee80211_vap_detach(vap);
620 	free(bvp, M_80211_VAP);
621 }
622 
623 void
624 bwi_suspend(struct bwi_softc *sc)
625 {
626 	bwi_stop(sc, 1);
627 }
628 
629 void
630 bwi_resume(struct bwi_softc *sc)
631 {
632 
633 	if (sc->sc_ic.ic_nrunning > 0)
634 		bwi_init(sc);
635 }
636 
637 int
638 bwi_shutdown(struct bwi_softc *sc)
639 {
640 	bwi_stop(sc, 1);
641 	return 0;
642 }
643 
644 static void
645 bwi_power_on(struct bwi_softc *sc, int with_pll)
646 {
647 	uint32_t gpio_in, gpio_out, gpio_en;
648 	uint16_t status;
649 
650 	gpio_in = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4);
651 	if (gpio_in & BWI_PCIM_GPIO_PWR_ON)
652 		goto back;
653 
654 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
655 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
656 
657 	gpio_out |= BWI_PCIM_GPIO_PWR_ON;
658 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
659 	if (with_pll) {
660 		/* Turn off PLL first */
661 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
662 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
663 	}
664 
665 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
666 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
667 	DELAY(1000);
668 
669 	if (with_pll) {
670 		/* Turn on PLL */
671 		gpio_out &= ~BWI_PCIM_GPIO_PLL_PWR_OFF;
672 		pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
673 		DELAY(5000);
674 	}
675 
676 back:
677 	/* Clear "Signaled Target Abort" */
678 	status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
679 	status &= ~PCIM_STATUS_STABORT;
680 	pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
681 }
682 
683 static int
684 bwi_power_off(struct bwi_softc *sc, int with_pll)
685 {
686 	uint32_t gpio_out, gpio_en;
687 
688 	pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_IN, 4); /* dummy read */
689 	gpio_out = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
690 	gpio_en = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, 4);
691 
692 	gpio_out &= ~BWI_PCIM_GPIO_PWR_ON;
693 	gpio_en |= BWI_PCIM_GPIO_PWR_ON;
694 	if (with_pll) {
695 		gpio_out |= BWI_PCIM_GPIO_PLL_PWR_OFF;
696 		gpio_en |= BWI_PCIM_GPIO_PLL_PWR_OFF;
697 	}
698 
699 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, gpio_out, 4);
700 	pci_write_config(sc->sc_dev, BWI_PCIR_GPIO_ENABLE, gpio_en, 4);
701 	return 0;
702 }
703 
704 int
705 bwi_regwin_switch(struct bwi_softc *sc, struct bwi_regwin *rw,
706 		  struct bwi_regwin **old_rw)
707 {
708 	int error;
709 
710 	if (old_rw != NULL)
711 		*old_rw = NULL;
712 
713 	if (!BWI_REGWIN_EXIST(rw))
714 		return EINVAL;
715 
716 	if (sc->sc_cur_regwin != rw) {
717 		error = bwi_regwin_select(sc, rw->rw_id);
718 		if (error) {
719 			device_printf(sc->sc_dev, "can't select regwin %d\n",
720 				  rw->rw_id);
721 			return error;
722 		}
723 	}
724 
725 	if (old_rw != NULL)
726 		*old_rw = sc->sc_cur_regwin;
727 	sc->sc_cur_regwin = rw;
728 	return 0;
729 }
730 
731 static int
732 bwi_regwin_select(struct bwi_softc *sc, int id)
733 {
734 	uint32_t win = BWI_PCIM_REGWIN(id);
735 	int i;
736 
737 #define RETRY_MAX	50
738 	for (i = 0; i < RETRY_MAX; ++i) {
739 		pci_write_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, win, 4);
740 		if (pci_read_config(sc->sc_dev, BWI_PCIR_SEL_REGWIN, 4) == win)
741 			return 0;
742 		DELAY(10);
743 	}
744 #undef RETRY_MAX
745 
746 	return ENXIO;
747 }
748 
749 static void
750 bwi_regwin_info(struct bwi_softc *sc, uint16_t *type, uint8_t *rev)
751 {
752 	uint32_t val;
753 
754 	val = CSR_READ_4(sc, BWI_ID_HI);
755 	*type = BWI_ID_HI_REGWIN_TYPE(val);
756 	*rev = BWI_ID_HI_REGWIN_REV(val);
757 
758 	DPRINTF(sc, BWI_DBG_ATTACH, "regwin: type 0x%03x, rev %d, "
759 		"vendor 0x%04x\n", *type, *rev,
760 		__SHIFTOUT(val, BWI_ID_HI_REGWIN_VENDOR_MASK));
761 }
762 
763 static int
764 bwi_bbp_attach(struct bwi_softc *sc)
765 {
766 	uint16_t bbp_id, rw_type;
767 	uint8_t rw_rev;
768 	uint32_t info;
769 	int error, nregwin, i;
770 
771 	/*
772 	 * Get 0th regwin information
773 	 * NOTE: 0th regwin should exist
774 	 */
775 	error = bwi_regwin_select(sc, 0);
776 	if (error) {
777 		device_printf(sc->sc_dev, "can't select regwin 0\n");
778 		return error;
779 	}
780 	bwi_regwin_info(sc, &rw_type, &rw_rev);
781 
782 	/*
783 	 * Find out BBP id
784 	 */
785 	bbp_id = 0;
786 	info = 0;
787 	if (rw_type == BWI_REGWIN_T_COM) {
788 		info = CSR_READ_4(sc, BWI_INFO);
789 		bbp_id = __SHIFTOUT(info, BWI_INFO_BBPID_MASK);
790 
791 		BWI_CREATE_REGWIN(&sc->sc_com_regwin, 0, rw_type, rw_rev);
792 
793 		sc->sc_cap = CSR_READ_4(sc, BWI_CAPABILITY);
794 	} else {
795 		for (i = 0; i < nitems(bwi_bbpid_map); ++i) {
796 			if (sc->sc_pci_did >= bwi_bbpid_map[i].did_min &&
797 			    sc->sc_pci_did <= bwi_bbpid_map[i].did_max) {
798 				bbp_id = bwi_bbpid_map[i].bbp_id;
799 				break;
800 			}
801 		}
802 		if (bbp_id == 0) {
803 			device_printf(sc->sc_dev, "no BBP id for device id "
804 				      "0x%04x\n", sc->sc_pci_did);
805 			return ENXIO;
806 		}
807 
808 		info = __SHIFTIN(sc->sc_pci_revid, BWI_INFO_BBPREV_MASK) |
809 		       __SHIFTIN(0, BWI_INFO_BBPPKG_MASK);
810 	}
811 
812 	/*
813 	 * Find out number of regwins
814 	 */
815 	nregwin = 0;
816 	if (rw_type == BWI_REGWIN_T_COM && rw_rev >= 4) {
817 		nregwin = __SHIFTOUT(info, BWI_INFO_NREGWIN_MASK);
818 	} else {
819 		for (i = 0; i < nitems(bwi_regwin_count); ++i) {
820 			if (bwi_regwin_count[i].bbp_id == bbp_id) {
821 				nregwin = bwi_regwin_count[i].nregwin;
822 				break;
823 			}
824 		}
825 		if (nregwin == 0) {
826 			device_printf(sc->sc_dev, "no number of win for "
827 				      "BBP id 0x%04x\n", bbp_id);
828 			return ENXIO;
829 		}
830 	}
831 
832 	/* Record BBP id/rev for later using */
833 	sc->sc_bbp_id = bbp_id;
834 	sc->sc_bbp_rev = __SHIFTOUT(info, BWI_INFO_BBPREV_MASK);
835 	sc->sc_bbp_pkg = __SHIFTOUT(info, BWI_INFO_BBPPKG_MASK);
836 	device_printf(sc->sc_dev, "BBP: id 0x%04x, rev 0x%x, pkg %d\n",
837 		      sc->sc_bbp_id, sc->sc_bbp_rev, sc->sc_bbp_pkg);
838 
839 	DPRINTF(sc, BWI_DBG_ATTACH, "nregwin %d, cap 0x%08x\n",
840 		nregwin, sc->sc_cap);
841 
842 	/*
843 	 * Create rest of the regwins
844 	 */
845 
846 	/* Don't re-create common regwin, if it is already created */
847 	i = BWI_REGWIN_EXIST(&sc->sc_com_regwin) ? 1 : 0;
848 
849 	for (; i < nregwin; ++i) {
850 		/*
851 		 * Get regwin information
852 		 */
853 		error = bwi_regwin_select(sc, i);
854 		if (error) {
855 			device_printf(sc->sc_dev,
856 				      "can't select regwin %d\n", i);
857 			return error;
858 		}
859 		bwi_regwin_info(sc, &rw_type, &rw_rev);
860 
861 		/*
862 		 * Try attach:
863 		 * 1) Bus (PCI/PCIE) regwin
864 		 * 2) MAC regwin
865 		 * Ignore rest types of regwin
866 		 */
867 		if (rw_type == BWI_REGWIN_T_BUSPCI ||
868 		    rw_type == BWI_REGWIN_T_BUSPCIE) {
869 			if (BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
870 				device_printf(sc->sc_dev,
871 					      "bus regwin already exists\n");
872 			} else {
873 				BWI_CREATE_REGWIN(&sc->sc_bus_regwin, i,
874 						  rw_type, rw_rev);
875 			}
876 		} else if (rw_type == BWI_REGWIN_T_MAC) {
877 			/* XXX ignore return value */
878 			bwi_mac_attach(sc, i, rw_rev);
879 		}
880 	}
881 
882 	/* At least one MAC shold exist */
883 	if (!BWI_REGWIN_EXIST(&sc->sc_mac[0].mac_regwin)) {
884 		device_printf(sc->sc_dev, "no MAC was found\n");
885 		return ENXIO;
886 	}
887 	KASSERT(sc->sc_nmac > 0, ("no mac's"));
888 
889 	/* Bus regwin must exist */
890 	if (!BWI_REGWIN_EXIST(&sc->sc_bus_regwin)) {
891 		device_printf(sc->sc_dev, "no bus regwin was found\n");
892 		return ENXIO;
893 	}
894 
895 	/* Start with first MAC */
896 	error = bwi_regwin_switch(sc, &sc->sc_mac[0].mac_regwin, NULL);
897 	if (error)
898 		return error;
899 
900 	return 0;
901 }
902 
903 int
904 bwi_bus_init(struct bwi_softc *sc, struct bwi_mac *mac)
905 {
906 	struct bwi_regwin *old, *bus;
907 	uint32_t val;
908 	int error;
909 
910 	bus = &sc->sc_bus_regwin;
911 	KASSERT(sc->sc_cur_regwin == &mac->mac_regwin, ("not cur regwin"));
912 
913 	/*
914 	 * Tell bus to generate requested interrupts
915 	 */
916 	if (bus->rw_rev < 6 && bus->rw_type == BWI_REGWIN_T_BUSPCI) {
917 		/*
918 		 * NOTE: Read BWI_FLAGS from MAC regwin
919 		 */
920 		val = CSR_READ_4(sc, BWI_FLAGS);
921 
922 		error = bwi_regwin_switch(sc, bus, &old);
923 		if (error)
924 			return error;
925 
926 		CSR_SETBITS_4(sc, BWI_INTRVEC, (val & BWI_FLAGS_INTR_MASK));
927 	} else {
928 		uint32_t mac_mask;
929 
930 		mac_mask = 1 << mac->mac_id;
931 
932 		error = bwi_regwin_switch(sc, bus, &old);
933 		if (error)
934 			return error;
935 
936 		val = pci_read_config(sc->sc_dev, BWI_PCIR_INTCTL, 4);
937 		val |= mac_mask << 8;
938 		pci_write_config(sc->sc_dev, BWI_PCIR_INTCTL, val, 4);
939 	}
940 
941 	if (sc->sc_flags & BWI_F_BUS_INITED)
942 		goto back;
943 
944 	if (bus->rw_type == BWI_REGWIN_T_BUSPCI) {
945 		/*
946 		 * Enable prefetch and burst
947 		 */
948 		CSR_SETBITS_4(sc, BWI_BUS_CONFIG,
949 			      BWI_BUS_CONFIG_PREFETCH | BWI_BUS_CONFIG_BURST);
950 
951 		if (bus->rw_rev < 5) {
952 			struct bwi_regwin *com = &sc->sc_com_regwin;
953 
954 			/*
955 			 * Configure timeouts for bus operation
956 			 */
957 
958 			/*
959 			 * Set service timeout and request timeout
960 			 */
961 			CSR_SETBITS_4(sc, BWI_CONF_LO,
962 			__SHIFTIN(BWI_CONF_LO_SERVTO, BWI_CONF_LO_SERVTO_MASK) |
963 			__SHIFTIN(BWI_CONF_LO_REQTO, BWI_CONF_LO_REQTO_MASK));
964 
965 			/*
966 			 * If there is common regwin, we switch to that regwin
967 			 * and switch back to bus regwin once we have done.
968 			 */
969 			if (BWI_REGWIN_EXIST(com)) {
970 				error = bwi_regwin_switch(sc, com, NULL);
971 				if (error)
972 					return error;
973 			}
974 
975 			/* Let bus know what we have changed */
976 			CSR_WRITE_4(sc, BWI_BUS_ADDR, BWI_BUS_ADDR_MAGIC);
977 			CSR_READ_4(sc, BWI_BUS_ADDR); /* Flush */
978 			CSR_WRITE_4(sc, BWI_BUS_DATA, 0);
979 			CSR_READ_4(sc, BWI_BUS_DATA); /* Flush */
980 
981 			if (BWI_REGWIN_EXIST(com)) {
982 				error = bwi_regwin_switch(sc, bus, NULL);
983 				if (error)
984 					return error;
985 			}
986 		} else if (bus->rw_rev >= 11) {
987 			/*
988 			 * Enable memory read multiple
989 			 */
990 			CSR_SETBITS_4(sc, BWI_BUS_CONFIG, BWI_BUS_CONFIG_MRM);
991 		}
992 	} else {
993 		/* TODO:PCIE */
994 	}
995 
996 	sc->sc_flags |= BWI_F_BUS_INITED;
997 back:
998 	return bwi_regwin_switch(sc, old, NULL);
999 }
1000 
1001 static void
1002 bwi_get_card_flags(struct bwi_softc *sc)
1003 {
1004 #define	PCI_VENDOR_APPLE 0x106b
1005 #define	PCI_VENDOR_DELL  0x1028
1006 	sc->sc_card_flags = bwi_read_sprom(sc, BWI_SPROM_CARD_FLAGS);
1007 	if (sc->sc_card_flags == 0xffff)
1008 		sc->sc_card_flags = 0;
1009 
1010 	if (sc->sc_pci_subvid == PCI_VENDOR_DELL &&
1011 	    sc->sc_bbp_id == BWI_BBPID_BCM4301 &&
1012 	    sc->sc_pci_revid == 0x74)
1013 		sc->sc_card_flags |= BWI_CARD_F_BT_COEXIST;
1014 
1015 	if (sc->sc_pci_subvid == PCI_VENDOR_APPLE &&
1016 	    sc->sc_pci_subdid == 0x4e && /* XXX */
1017 	    sc->sc_pci_revid > 0x40)
1018 		sc->sc_card_flags |= BWI_CARD_F_PA_GPIO9;
1019 
1020 	DPRINTF(sc, BWI_DBG_ATTACH, "card flags 0x%04x\n", sc->sc_card_flags);
1021 #undef PCI_VENDOR_DELL
1022 #undef PCI_VENDOR_APPLE
1023 }
1024 
1025 static void
1026 bwi_get_eaddr(struct bwi_softc *sc, uint16_t eaddr_ofs, uint8_t *eaddr)
1027 {
1028 	int i;
1029 
1030 	for (i = 0; i < 3; ++i) {
1031 		*((uint16_t *)eaddr + i) =
1032 			htobe16(bwi_read_sprom(sc, eaddr_ofs + 2 * i));
1033 	}
1034 }
1035 
1036 static void
1037 bwi_get_clock_freq(struct bwi_softc *sc, struct bwi_clock_freq *freq)
1038 {
1039 	struct bwi_regwin *com;
1040 	uint32_t val;
1041 	u_int div;
1042 	int src;
1043 
1044 	bzero(freq, sizeof(*freq));
1045 	com = &sc->sc_com_regwin;
1046 
1047 	KASSERT(BWI_REGWIN_EXIST(com), ("regwin does not exist"));
1048 	KASSERT(sc->sc_cur_regwin == com, ("wrong regwin"));
1049 	KASSERT(sc->sc_cap & BWI_CAP_CLKMODE, ("wrong clock mode"));
1050 
1051 	/*
1052 	 * Calculate clock frequency
1053 	 */
1054 	src = -1;
1055 	div = 0;
1056 	if (com->rw_rev < 6) {
1057 		val = pci_read_config(sc->sc_dev, BWI_PCIR_GPIO_OUT, 4);
1058 		if (val & BWI_PCIM_GPIO_OUT_CLKSRC) {
1059 			src = BWI_CLKSRC_PCI;
1060 			div = 64;
1061 		} else {
1062 			src = BWI_CLKSRC_CS_OSC;
1063 			div = 32;
1064 		}
1065 	} else if (com->rw_rev < 10) {
1066 		val = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1067 
1068 		src = __SHIFTOUT(val, BWI_CLOCK_CTRL_CLKSRC);
1069 		if (src == BWI_CLKSRC_LP_OSC) {
1070 			div = 1;
1071 		} else {
1072 			div = (__SHIFTOUT(val, BWI_CLOCK_CTRL_FDIV) + 1) << 2;
1073 
1074 			/* Unknown source */
1075 			if (src >= BWI_CLKSRC_MAX)
1076 				src = BWI_CLKSRC_CS_OSC;
1077 		}
1078 	} else {
1079 		val = CSR_READ_4(sc, BWI_CLOCK_INFO);
1080 
1081 		src = BWI_CLKSRC_CS_OSC;
1082 		div = (__SHIFTOUT(val, BWI_CLOCK_INFO_FDIV) + 1) << 2;
1083 	}
1084 
1085 	KASSERT(src >= 0 && src < BWI_CLKSRC_MAX, ("bad src %d", src));
1086 	KASSERT(div != 0, ("div zero"));
1087 
1088 	DPRINTF(sc, BWI_DBG_ATTACH, "clksrc %s\n",
1089 		src == BWI_CLKSRC_PCI ? "PCI" :
1090 		(src == BWI_CLKSRC_LP_OSC ? "LP_OSC" : "CS_OSC"));
1091 
1092 	freq->clkfreq_min = bwi_clkfreq[src].freq_min / div;
1093 	freq->clkfreq_max = bwi_clkfreq[src].freq_max / div;
1094 
1095 	DPRINTF(sc, BWI_DBG_ATTACH, "clkfreq min %u, max %u\n",
1096 		freq->clkfreq_min, freq->clkfreq_max);
1097 }
1098 
1099 static int
1100 bwi_set_clock_mode(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
1101 {
1102 	struct bwi_regwin *old, *com;
1103 	uint32_t clk_ctrl, clk_src;
1104 	int error, pwr_off = 0;
1105 
1106 	com = &sc->sc_com_regwin;
1107 	if (!BWI_REGWIN_EXIST(com))
1108 		return 0;
1109 
1110 	if (com->rw_rev >= 10 || com->rw_rev < 6)
1111 		return 0;
1112 
1113 	/*
1114 	 * For common regwin whose rev is [6, 10), the chip
1115 	 * must be capable to change clock mode.
1116 	 */
1117 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
1118 		return 0;
1119 
1120 	error = bwi_regwin_switch(sc, com, &old);
1121 	if (error)
1122 		return error;
1123 
1124 	if (clk_mode == BWI_CLOCK_MODE_FAST)
1125 		bwi_power_on(sc, 0);	/* Don't turn on PLL */
1126 
1127 	clk_ctrl = CSR_READ_4(sc, BWI_CLOCK_CTRL);
1128 	clk_src = __SHIFTOUT(clk_ctrl, BWI_CLOCK_CTRL_CLKSRC);
1129 
1130 	switch (clk_mode) {
1131 	case BWI_CLOCK_MODE_FAST:
1132 		clk_ctrl &= ~BWI_CLOCK_CTRL_SLOW;
1133 		clk_ctrl |= BWI_CLOCK_CTRL_IGNPLL;
1134 		break;
1135 	case BWI_CLOCK_MODE_SLOW:
1136 		clk_ctrl |= BWI_CLOCK_CTRL_SLOW;
1137 		break;
1138 	case BWI_CLOCK_MODE_DYN:
1139 		clk_ctrl &= ~(BWI_CLOCK_CTRL_SLOW |
1140 			      BWI_CLOCK_CTRL_IGNPLL |
1141 			      BWI_CLOCK_CTRL_NODYN);
1142 		if (clk_src != BWI_CLKSRC_CS_OSC) {
1143 			clk_ctrl |= BWI_CLOCK_CTRL_NODYN;
1144 			pwr_off = 1;
1145 		}
1146 		break;
1147 	}
1148 	CSR_WRITE_4(sc, BWI_CLOCK_CTRL, clk_ctrl);
1149 
1150 	if (pwr_off)
1151 		bwi_power_off(sc, 0);	/* Leave PLL as it is */
1152 
1153 	return bwi_regwin_switch(sc, old, NULL);
1154 }
1155 
1156 static int
1157 bwi_set_clock_delay(struct bwi_softc *sc)
1158 {
1159 	struct bwi_regwin *old, *com;
1160 	int error;
1161 
1162 	com = &sc->sc_com_regwin;
1163 	if (!BWI_REGWIN_EXIST(com))
1164 		return 0;
1165 
1166 	error = bwi_regwin_switch(sc, com, &old);
1167 	if (error)
1168 		return error;
1169 
1170 	if (sc->sc_bbp_id == BWI_BBPID_BCM4321) {
1171 		if (sc->sc_bbp_rev == 0)
1172 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC0);
1173 		else if (sc->sc_bbp_rev == 1)
1174 			CSR_WRITE_4(sc, BWI_CONTROL, BWI_CONTROL_MAGIC1);
1175 	}
1176 
1177 	if (sc->sc_cap & BWI_CAP_CLKMODE) {
1178 		if (com->rw_rev >= 10) {
1179 			CSR_FILT_SETBITS_4(sc, BWI_CLOCK_INFO, 0xffff, 0x40000);
1180 		} else {
1181 			struct bwi_clock_freq freq;
1182 
1183 			bwi_get_clock_freq(sc, &freq);
1184 			CSR_WRITE_4(sc, BWI_PLL_ON_DELAY,
1185 				howmany(freq.clkfreq_max * 150, 1000000));
1186 			CSR_WRITE_4(sc, BWI_FREQ_SEL_DELAY,
1187 				howmany(freq.clkfreq_max * 15, 1000000));
1188 		}
1189 	}
1190 
1191 	return bwi_regwin_switch(sc, old, NULL);
1192 }
1193 
1194 static void
1195 bwi_init(struct bwi_softc *sc)
1196 {
1197 	struct ieee80211com *ic = &sc->sc_ic;
1198 
1199 	BWI_LOCK(sc);
1200 	bwi_init_statechg(sc, 1);
1201 	BWI_UNLOCK(sc);
1202 
1203 	if (sc->sc_flags & BWI_F_RUNNING)
1204 		ieee80211_start_all(ic);		/* start all vap's */
1205 }
1206 
1207 static void
1208 bwi_init_statechg(struct bwi_softc *sc, int statechg)
1209 {
1210 	struct bwi_mac *mac;
1211 	int error;
1212 
1213 	BWI_ASSERT_LOCKED(sc);
1214 
1215 	bwi_stop_locked(sc, statechg);
1216 
1217 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_FAST);
1218 
1219 	/* TODO: 2 MAC */
1220 
1221 	mac = &sc->sc_mac[0];
1222 	error = bwi_regwin_switch(sc, &mac->mac_regwin, NULL);
1223 	if (error) {
1224 		device_printf(sc->sc_dev, "%s: error %d on regwin switch\n",
1225 		    __func__, error);
1226 		goto bad;
1227 	}
1228 	error = bwi_mac_init(mac);
1229 	if (error) {
1230 		device_printf(sc->sc_dev, "%s: error %d on MAC init\n",
1231 		    __func__, error);
1232 		goto bad;
1233 	}
1234 
1235 	bwi_bbp_power_on(sc, BWI_CLOCK_MODE_DYN);
1236 
1237 	bwi_set_bssid(sc, bwi_zero_addr);	/* Clear BSSID */
1238 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_MYADDR, sc->sc_ic.ic_macaddr);
1239 
1240 	bwi_mac_reset_hwkeys(mac);
1241 
1242 	if ((mac->mac_flags & BWI_MAC_F_HAS_TXSTATS) == 0) {
1243 		int i;
1244 
1245 #define NRETRY	1000
1246 		/*
1247 		 * Drain any possible pending TX status
1248 		 */
1249 		for (i = 0; i < NRETRY; ++i) {
1250 			if ((CSR_READ_4(sc, BWI_TXSTATUS0) &
1251 			     BWI_TXSTATUS0_VALID) == 0)
1252 				break;
1253 			CSR_READ_4(sc, BWI_TXSTATUS1);
1254 		}
1255 		if (i == NRETRY)
1256 			device_printf(sc->sc_dev,
1257 			    "%s: can't drain TX status\n", __func__);
1258 #undef NRETRY
1259 	}
1260 
1261 	if (mac->mac_phy.phy_mode == IEEE80211_MODE_11G)
1262 		bwi_mac_updateslot(mac, 1);
1263 
1264 	/* Start MAC */
1265 	error = bwi_mac_start(mac);
1266 	if (error) {
1267 		device_printf(sc->sc_dev, "%s: error %d starting MAC\n",
1268 		    __func__, error);
1269 		goto bad;
1270 	}
1271 
1272 	/* Clear stop flag before enabling interrupt */
1273 	sc->sc_flags &= ~BWI_F_STOP;
1274 	sc->sc_flags |= BWI_F_RUNNING;
1275 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1276 
1277 	/* Enable intrs */
1278 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1279 	return;
1280 bad:
1281 	bwi_stop_locked(sc, 1);
1282 }
1283 
1284 static void
1285 bwi_parent(struct ieee80211com *ic)
1286 {
1287 	struct bwi_softc *sc = ic->ic_softc;
1288 	int startall = 0;
1289 
1290 	BWI_LOCK(sc);
1291 	if (ic->ic_nrunning > 0) {
1292 		struct bwi_mac *mac;
1293 		int promisc = -1;
1294 
1295 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1296 		    ("current regwin type %d",
1297 		    sc->sc_cur_regwin->rw_type));
1298 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1299 
1300 		if (ic->ic_promisc > 0 && (sc->sc_flags & BWI_F_PROMISC) == 0) {
1301 			promisc = 1;
1302 			sc->sc_flags |= BWI_F_PROMISC;
1303 		} else if (ic->ic_promisc == 0 &&
1304 		    (sc->sc_flags & BWI_F_PROMISC) != 0) {
1305 			promisc = 0;
1306 			sc->sc_flags &= ~BWI_F_PROMISC;
1307 		}
1308 
1309 		if (promisc >= 0)
1310 			bwi_mac_set_promisc(mac, promisc);
1311 	}
1312 	if (ic->ic_nrunning > 0) {
1313 		if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1314 			bwi_init_statechg(sc, 1);
1315 			startall = 1;
1316 		}
1317 	} else if (sc->sc_flags & BWI_F_RUNNING)
1318 		bwi_stop_locked(sc, 1);
1319 	BWI_UNLOCK(sc);
1320 	if (startall)
1321 		ieee80211_start_all(ic);
1322 }
1323 
1324 static int
1325 bwi_transmit(struct ieee80211com *ic, struct mbuf *m)
1326 {
1327 	struct bwi_softc *sc = ic->ic_softc;
1328 	int error;
1329 
1330 	BWI_LOCK(sc);
1331 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1332 		BWI_UNLOCK(sc);
1333 		return (ENXIO);
1334 	}
1335 	error = mbufq_enqueue(&sc->sc_snd, m);
1336 	if (error) {
1337 		BWI_UNLOCK(sc);
1338 		return (error);
1339 	}
1340 	bwi_start_locked(sc);
1341 	BWI_UNLOCK(sc);
1342 	return (0);
1343 }
1344 
1345 static void
1346 bwi_start_locked(struct bwi_softc *sc)
1347 {
1348 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1349 	struct ieee80211_frame *wh;
1350 	struct ieee80211_node *ni;
1351 	struct mbuf *m;
1352 	int trans, idx;
1353 
1354 	BWI_ASSERT_LOCKED(sc);
1355 
1356 	trans = 0;
1357 	idx = tbd->tbd_idx;
1358 
1359 	while (tbd->tbd_buf[idx].tb_mbuf == NULL &&
1360 	    tbd->tbd_used + BWI_TX_NSPRDESC < BWI_TX_NDESC &&
1361 	    (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1362 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1363 		wh = mtod(m, struct ieee80211_frame *);
1364 		if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0 &&
1365 		    ieee80211_crypto_encap(ni, m) == NULL) {
1366 			if_inc_counter(ni->ni_vap->iv_ifp,
1367 			    IFCOUNTER_OERRORS, 1);
1368 			ieee80211_free_node(ni);
1369 			m_freem(m);
1370 			continue;
1371 		}
1372 		if (bwi_encap(sc, idx, m, ni) != 0) {
1373 			/* 'm' is freed in bwi_encap() if we reach here */
1374 			if (ni != NULL) {
1375 				if_inc_counter(ni->ni_vap->iv_ifp,
1376 				    IFCOUNTER_OERRORS, 1);
1377 				ieee80211_free_node(ni);
1378 			} else
1379 				counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1380 			continue;
1381 		}
1382 		trans = 1;
1383 		tbd->tbd_used++;
1384 		idx = (idx + 1) % BWI_TX_NDESC;
1385 	}
1386 
1387 	tbd->tbd_idx = idx;
1388 	if (trans)
1389 		sc->sc_tx_timer = 5;
1390 }
1391 
1392 static int
1393 bwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1394 	const struct ieee80211_bpf_params *params)
1395 {
1396 	struct ieee80211com *ic = ni->ni_ic;
1397 	struct bwi_softc *sc = ic->ic_softc;
1398 	/* XXX wme? */
1399 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
1400 	int idx, error;
1401 
1402 	if ((sc->sc_flags & BWI_F_RUNNING) == 0) {
1403 		m_freem(m);
1404 		return ENETDOWN;
1405 	}
1406 
1407 	BWI_LOCK(sc);
1408 	idx = tbd->tbd_idx;
1409 	KASSERT(tbd->tbd_buf[idx].tb_mbuf == NULL, ("slot %d not empty", idx));
1410 	if (params == NULL) {
1411 		/*
1412 		 * Legacy path; interpret frame contents to decide
1413 		 * precisely how to send the frame.
1414 		 */
1415 		error = bwi_encap(sc, idx, m, ni);
1416 	} else {
1417 		/*
1418 		 * Caller supplied explicit parameters to use in
1419 		 * sending the frame.
1420 		 */
1421 		error = bwi_encap_raw(sc, idx, m, ni, params);
1422 	}
1423 	if (error == 0) {
1424 		tbd->tbd_used++;
1425 		tbd->tbd_idx = (idx + 1) % BWI_TX_NDESC;
1426 		sc->sc_tx_timer = 5;
1427 	}
1428 	BWI_UNLOCK(sc);
1429 	return error;
1430 }
1431 
1432 static void
1433 bwi_watchdog(void *arg)
1434 {
1435 	struct bwi_softc *sc;
1436 
1437 	sc = arg;
1438 	BWI_ASSERT_LOCKED(sc);
1439 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0) {
1440 		device_printf(sc->sc_dev, "watchdog timeout\n");
1441 		counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1442 		taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1443 	}
1444 	callout_reset(&sc->sc_watchdog_timer, hz, bwi_watchdog, sc);
1445 }
1446 
1447 static void
1448 bwi_stop(struct bwi_softc *sc, int statechg)
1449 {
1450 	BWI_LOCK(sc);
1451 	bwi_stop_locked(sc, statechg);
1452 	BWI_UNLOCK(sc);
1453 }
1454 
1455 static void
1456 bwi_stop_locked(struct bwi_softc *sc, int statechg)
1457 {
1458 	struct bwi_mac *mac;
1459 	int i, error, pwr_off = 0;
1460 
1461 	BWI_ASSERT_LOCKED(sc);
1462 
1463 	callout_stop(&sc->sc_calib_ch);
1464 	callout_stop(&sc->sc_led_blink_ch);
1465 	sc->sc_led_blinking = 0;
1466 	sc->sc_flags |= BWI_F_STOP;
1467 
1468 	if (sc->sc_flags & BWI_F_RUNNING) {
1469 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1470 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1471 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1472 
1473 		bwi_disable_intrs(sc, BWI_ALL_INTRS);
1474 		CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1475 		bwi_mac_stop(mac);
1476 	}
1477 
1478 	for (i = 0; i < sc->sc_nmac; ++i) {
1479 		struct bwi_regwin *old_rw;
1480 
1481 		mac = &sc->sc_mac[i];
1482 		if ((mac->mac_flags & BWI_MAC_F_INITED) == 0)
1483 			continue;
1484 
1485 		error = bwi_regwin_switch(sc, &mac->mac_regwin, &old_rw);
1486 		if (error)
1487 			continue;
1488 
1489 		bwi_mac_shutdown(mac);
1490 		pwr_off = 1;
1491 
1492 		bwi_regwin_switch(sc, old_rw, NULL);
1493 	}
1494 
1495 	if (pwr_off)
1496 		bwi_bbp_power_off(sc);
1497 
1498 	sc->sc_tx_timer = 0;
1499 	callout_stop(&sc->sc_watchdog_timer);
1500 	sc->sc_flags &= ~BWI_F_RUNNING;
1501 }
1502 
1503 void
1504 bwi_intr(void *xsc)
1505 {
1506 	struct bwi_softc *sc = xsc;
1507 	struct bwi_mac *mac;
1508 	uint32_t intr_status;
1509 	uint32_t txrx_intr_status[BWI_TXRX_NRING];
1510 	int i, txrx_error, tx = 0, rx_data = -1;
1511 
1512 	BWI_LOCK(sc);
1513 
1514 	if ((sc->sc_flags & BWI_F_RUNNING) == 0 ||
1515 	    (sc->sc_flags & BWI_F_STOP)) {
1516 		BWI_UNLOCK(sc);
1517 		return;
1518 	}
1519 	/*
1520 	 * Get interrupt status
1521 	 */
1522 	intr_status = CSR_READ_4(sc, BWI_MAC_INTR_STATUS);
1523 	if (intr_status == 0xffffffff) {	/* Not for us */
1524 		BWI_UNLOCK(sc);
1525 		return;
1526 	}
1527 
1528 	DPRINTF(sc, BWI_DBG_INTR, "intr status 0x%08x\n", intr_status);
1529 
1530 	intr_status &= CSR_READ_4(sc, BWI_MAC_INTR_MASK);
1531 	if (intr_status == 0) {		/* Nothing is interesting */
1532 		BWI_UNLOCK(sc);
1533 		return;
1534 	}
1535 
1536 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1537 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1538 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1539 
1540 	txrx_error = 0;
1541 	DPRINTF(sc, BWI_DBG_INTR, "%s\n", "TX/RX intr");
1542 	for (i = 0; i < BWI_TXRX_NRING; ++i) {
1543 		uint32_t mask;
1544 
1545 		if (BWI_TXRX_IS_RX(i))
1546 			mask = BWI_TXRX_RX_INTRS;
1547 		else
1548 			mask = BWI_TXRX_TX_INTRS;
1549 
1550 		txrx_intr_status[i] =
1551 		CSR_READ_4(sc, BWI_TXRX_INTR_STATUS(i)) & mask;
1552 
1553 		_DPRINTF(sc, BWI_DBG_INTR, ", %d 0x%08x",
1554 			 i, txrx_intr_status[i]);
1555 
1556 		if (txrx_intr_status[i] & BWI_TXRX_INTR_ERROR) {
1557 			device_printf(sc->sc_dev,
1558 			    "%s: intr fatal TX/RX (%d) error 0x%08x\n",
1559 			    __func__, i, txrx_intr_status[i]);
1560 			txrx_error = 1;
1561 		}
1562 	}
1563 	_DPRINTF(sc, BWI_DBG_INTR, "%s\n", "");
1564 
1565 	/*
1566 	 * Acknowledge interrupt
1567 	 */
1568 	CSR_WRITE_4(sc, BWI_MAC_INTR_STATUS, intr_status);
1569 
1570 	for (i = 0; i < BWI_TXRX_NRING; ++i)
1571 		CSR_WRITE_4(sc, BWI_TXRX_INTR_STATUS(i), txrx_intr_status[i]);
1572 
1573 	/* Disable all interrupts */
1574 	bwi_disable_intrs(sc, BWI_ALL_INTRS);
1575 
1576 	/*
1577 	 * http://bcm-specs.sipsolutions.net/Interrupts
1578 	 * Says for this bit (0x800):
1579 	 * "Fatal Error
1580 	 *
1581 	 * We got this one while testing things when by accident the
1582 	 * template ram wasn't set to big endian when it should have
1583 	 * been after writing the initial values. It keeps on being
1584 	 * triggered, the only way to stop it seems to shut down the
1585 	 * chip."
1586 	 *
1587 	 * Suggesting that we should never get it and if we do we're not
1588 	 * feeding TX packets into the MAC correctly if we do...  Apparently,
1589 	 * it is valid only on mac version 5 and higher, but I couldn't
1590 	 * find a reference for that...  Since I see them from time to time
1591 	 * on my card, this suggests an error in the tx path still...
1592 	 */
1593 	if (intr_status & BWI_INTR_PHY_TXERR) {
1594 		if (mac->mac_flags & BWI_MAC_F_PHYE_RESET) {
1595 			device_printf(sc->sc_dev, "%s: intr PHY TX error\n",
1596 			    __func__);
1597 			taskqueue_enqueue(sc->sc_tq, &sc->sc_restart_task);
1598 			BWI_UNLOCK(sc);
1599 			return;
1600 		}
1601 	}
1602 
1603 	if (txrx_error) {
1604 		/* TODO: reset device */
1605 	}
1606 
1607 	if (intr_status & BWI_INTR_TBTT)
1608 		bwi_mac_config_ps(mac);
1609 
1610 	if (intr_status & BWI_INTR_EO_ATIM)
1611 		device_printf(sc->sc_dev, "EO_ATIM\n");
1612 
1613 	if (intr_status & BWI_INTR_PMQ) {
1614 		for (;;) {
1615 			if ((CSR_READ_4(sc, BWI_MAC_PS_STATUS) & 0x8) == 0)
1616 				break;
1617 		}
1618 		CSR_WRITE_2(sc, BWI_MAC_PS_STATUS, 0x2);
1619 	}
1620 
1621 	if (intr_status & BWI_INTR_NOISE)
1622 		device_printf(sc->sc_dev, "intr noise\n");
1623 
1624 	if (txrx_intr_status[0] & BWI_TXRX_INTR_RX) {
1625 		rx_data = sc->sc_rxeof(sc);
1626 		if (sc->sc_flags & BWI_F_STOP) {
1627 			BWI_UNLOCK(sc);
1628 			return;
1629 		}
1630 	}
1631 
1632 	if (txrx_intr_status[3] & BWI_TXRX_INTR_RX) {
1633 		sc->sc_txeof_status(sc);
1634 		tx = 1;
1635 	}
1636 
1637 	if (intr_status & BWI_INTR_TX_DONE) {
1638 		bwi_txeof(sc);
1639 		tx = 1;
1640 	}
1641 
1642 	/* Re-enable interrupts */
1643 	bwi_enable_intrs(sc, BWI_INIT_INTRS);
1644 
1645 	if (sc->sc_blink_led != NULL && sc->sc_led_blink) {
1646 		int evt = BWI_LED_EVENT_NONE;
1647 
1648 		if (tx && rx_data > 0) {
1649 			if (sc->sc_rx_rate > sc->sc_tx_rate)
1650 				evt = BWI_LED_EVENT_RX;
1651 			else
1652 				evt = BWI_LED_EVENT_TX;
1653 		} else if (tx) {
1654 			evt = BWI_LED_EVENT_TX;
1655 		} else if (rx_data > 0) {
1656 			evt = BWI_LED_EVENT_RX;
1657 		} else if (rx_data == 0) {
1658 			evt = BWI_LED_EVENT_POLL;
1659 		}
1660 
1661 		if (evt != BWI_LED_EVENT_NONE)
1662 			bwi_led_event(sc, evt);
1663 	}
1664 
1665 	BWI_UNLOCK(sc);
1666 }
1667 
1668 static void
1669 bwi_scan_start(struct ieee80211com *ic)
1670 {
1671 	struct bwi_softc *sc = ic->ic_softc;
1672 
1673 	BWI_LOCK(sc);
1674 	/* Enable MAC beacon promiscuity */
1675 	CSR_SETBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1676 	BWI_UNLOCK(sc);
1677 }
1678 
1679 static void
1680 bwi_getradiocaps(struct ieee80211com *ic,
1681     int maxchans, int *nchans, struct ieee80211_channel chans[])
1682 {
1683 	struct bwi_softc *sc = ic->ic_softc;
1684 	struct bwi_mac *mac;
1685 	struct bwi_phy *phy;
1686 	uint8_t bands[IEEE80211_MODE_BYTES];
1687 
1688 	/*
1689 	 * XXX First MAC is known to exist
1690 	 * TODO2
1691 	 */
1692 	mac = &sc->sc_mac[0];
1693 	phy = &mac->mac_phy;
1694 
1695 	memset(bands, 0, sizeof(bands));
1696 	switch (phy->phy_mode) {
1697 	case IEEE80211_MODE_11G:
1698 		setbit(bands, IEEE80211_MODE_11G);
1699 		/* FALLTHROUGH */
1700 	case IEEE80211_MODE_11B:
1701 		setbit(bands, IEEE80211_MODE_11B);
1702 		break;
1703 	case IEEE80211_MODE_11A:
1704 		/* TODO:11A */
1705 		setbit(bands, IEEE80211_MODE_11A);
1706 		device_printf(sc->sc_dev, "no 11a support\n");
1707 		return;
1708 	default:
1709 		panic("unknown phymode %d\n", phy->phy_mode);
1710 	}
1711 
1712 	ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0);
1713 }
1714 
1715 static void
1716 bwi_set_channel(struct ieee80211com *ic)
1717 {
1718 	struct bwi_softc *sc = ic->ic_softc;
1719 	struct ieee80211_channel *c = ic->ic_curchan;
1720 	struct bwi_mac *mac;
1721 
1722 	BWI_LOCK(sc);
1723 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1724 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1725 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
1726 	bwi_rf_set_chan(mac, ieee80211_chan2ieee(ic, c), 0);
1727 
1728 	sc->sc_rates = ieee80211_get_ratetable(c);
1729 	BWI_UNLOCK(sc);
1730 }
1731 
1732 static void
1733 bwi_scan_end(struct ieee80211com *ic)
1734 {
1735 	struct bwi_softc *sc = ic->ic_softc;
1736 
1737 	BWI_LOCK(sc);
1738 	CSR_CLRBITS_4(sc, BWI_MAC_STATUS, BWI_MAC_STATUS_PASS_BCN);
1739 	BWI_UNLOCK(sc);
1740 }
1741 
1742 static int
1743 bwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1744 {
1745 	struct bwi_vap *bvp = BWI_VAP(vap);
1746 	struct ieee80211com *ic= vap->iv_ic;
1747 	struct bwi_softc *sc = ic->ic_softc;
1748 	enum ieee80211_state ostate = vap->iv_state;
1749 	struct bwi_mac *mac;
1750 	int error;
1751 
1752 	BWI_LOCK(sc);
1753 
1754 	callout_stop(&sc->sc_calib_ch);
1755 
1756 	if (nstate == IEEE80211_S_INIT)
1757 		sc->sc_txpwrcb_type = BWI_TXPWR_INIT;
1758 
1759 	bwi_led_newstate(sc, nstate);
1760 
1761 	error = bvp->bv_newstate(vap, nstate, arg);
1762 	if (error != 0)
1763 		goto back;
1764 
1765 	/*
1766 	 * Clear the BSSID when we stop a STA
1767 	 */
1768 	if (vap->iv_opmode == IEEE80211_M_STA) {
1769 		if (ostate == IEEE80211_S_RUN && nstate != IEEE80211_S_RUN) {
1770 			/*
1771 			 * Clear out the BSSID.  If we reassociate to
1772 			 * the same AP, this will reinialize things
1773 			 * correctly...
1774 			 */
1775 			if (ic->ic_opmode == IEEE80211_M_STA &&
1776 			    !(sc->sc_flags & BWI_F_STOP))
1777 				bwi_set_bssid(sc, bwi_zero_addr);
1778 		}
1779 	}
1780 
1781 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
1782 		/* Nothing to do */
1783 	} else if (nstate == IEEE80211_S_RUN) {
1784 		bwi_set_bssid(sc, vap->iv_bss->ni_bssid);
1785 
1786 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
1787 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
1788 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
1789 
1790 		/* Initial TX power calibration */
1791 		bwi_mac_calibrate_txpower(mac, BWI_TXPWR_INIT);
1792 #ifdef notyet
1793 		sc->sc_txpwrcb_type = BWI_TXPWR_FORCE;
1794 #else
1795 		sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
1796 #endif
1797 
1798 		callout_reset(&sc->sc_calib_ch, hz, bwi_calibrate, sc);
1799 	}
1800 back:
1801 	BWI_UNLOCK(sc);
1802 
1803 	return error;
1804 }
1805 
1806 static int
1807 bwi_dma_alloc(struct bwi_softc *sc)
1808 {
1809 	int error, i, has_txstats;
1810 	bus_addr_t lowaddr = 0;
1811 	bus_size_t tx_ring_sz, rx_ring_sz, desc_sz = 0;
1812 	uint32_t txrx_ctrl_step = 0;
1813 
1814 	has_txstats = 0;
1815 	for (i = 0; i < sc->sc_nmac; ++i) {
1816 		if (sc->sc_mac[i].mac_flags & BWI_MAC_F_HAS_TXSTATS) {
1817 			has_txstats = 1;
1818 			break;
1819 		}
1820 	}
1821 
1822 	switch (sc->sc_bus_space) {
1823 	case BWI_BUS_SPACE_30BIT:
1824 	case BWI_BUS_SPACE_32BIT:
1825 		if (sc->sc_bus_space == BWI_BUS_SPACE_30BIT)
1826 			lowaddr = BWI_BUS_SPACE_MAXADDR;
1827 		else
1828 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1829 		desc_sz = sizeof(struct bwi_desc32);
1830 		txrx_ctrl_step = 0x20;
1831 
1832 		sc->sc_init_tx_ring = bwi_init_tx_ring32;
1833 		sc->sc_free_tx_ring = bwi_free_tx_ring32;
1834 		sc->sc_init_rx_ring = bwi_init_rx_ring32;
1835 		sc->sc_free_rx_ring = bwi_free_rx_ring32;
1836 		sc->sc_setup_rxdesc = bwi_setup_rx_desc32;
1837 		sc->sc_setup_txdesc = bwi_setup_tx_desc32;
1838 		sc->sc_rxeof = bwi_rxeof32;
1839 		sc->sc_start_tx = bwi_start_tx32;
1840 		if (has_txstats) {
1841 			sc->sc_init_txstats = bwi_init_txstats32;
1842 			sc->sc_free_txstats = bwi_free_txstats32;
1843 			sc->sc_txeof_status = bwi_txeof_status32;
1844 		}
1845 		break;
1846 
1847 	case BWI_BUS_SPACE_64BIT:
1848 		lowaddr = BUS_SPACE_MAXADDR;	/* XXX */
1849 		desc_sz = sizeof(struct bwi_desc64);
1850 		txrx_ctrl_step = 0x40;
1851 
1852 		sc->sc_init_tx_ring = bwi_init_tx_ring64;
1853 		sc->sc_free_tx_ring = bwi_free_tx_ring64;
1854 		sc->sc_init_rx_ring = bwi_init_rx_ring64;
1855 		sc->sc_free_rx_ring = bwi_free_rx_ring64;
1856 		sc->sc_setup_rxdesc = bwi_setup_rx_desc64;
1857 		sc->sc_setup_txdesc = bwi_setup_tx_desc64;
1858 		sc->sc_rxeof = bwi_rxeof64;
1859 		sc->sc_start_tx = bwi_start_tx64;
1860 		if (has_txstats) {
1861 			sc->sc_init_txstats = bwi_init_txstats64;
1862 			sc->sc_free_txstats = bwi_free_txstats64;
1863 			sc->sc_txeof_status = bwi_txeof_status64;
1864 		}
1865 		break;
1866 	}
1867 
1868 	KASSERT(lowaddr != 0, ("lowaddr zero"));
1869 	KASSERT(desc_sz != 0, ("desc_sz zero"));
1870 	KASSERT(txrx_ctrl_step != 0, ("txrx_ctrl_step zero"));
1871 
1872 	tx_ring_sz = roundup(desc_sz * BWI_TX_NDESC, BWI_RING_ALIGN);
1873 	rx_ring_sz = roundup(desc_sz * BWI_RX_NDESC, BWI_RING_ALIGN);
1874 
1875 	/*
1876 	 * Create top level DMA tag
1877 	 */
1878 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1879 			       BWI_ALIGN, 0,		/* alignment, bounds */
1880 			       lowaddr,			/* lowaddr */
1881 			       BUS_SPACE_MAXADDR,	/* highaddr */
1882 			       NULL, NULL,		/* filter, filterarg */
1883 			       BUS_SPACE_MAXSIZE,	/* maxsize */
1884 			       BUS_SPACE_UNRESTRICTED,	/* nsegments */
1885 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1886 			       0,			/* flags */
1887 			       NULL, NULL,		/* lockfunc, lockarg */
1888 			       &sc->sc_parent_dtag);
1889 	if (error) {
1890 		device_printf(sc->sc_dev, "can't create parent DMA tag\n");
1891 		return error;
1892 	}
1893 
1894 #define TXRX_CTRL(idx)	(BWI_TXRX_CTRL_BASE + (idx) * txrx_ctrl_step)
1895 
1896 	/*
1897 	 * Create TX ring DMA stuffs
1898 	 */
1899 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1900 				BWI_RING_ALIGN, 0,
1901 				BUS_SPACE_MAXADDR,
1902 				BUS_SPACE_MAXADDR,
1903 				NULL, NULL,
1904 				tx_ring_sz,
1905 				1,
1906 				tx_ring_sz,
1907 				0,
1908 				NULL, NULL,
1909 				&sc->sc_txring_dtag);
1910 	if (error) {
1911 		device_printf(sc->sc_dev, "can't create TX ring DMA tag\n");
1912 		return error;
1913 	}
1914 
1915 	for (i = 0; i < BWI_TX_NRING; ++i) {
1916 		error = bwi_dma_ring_alloc(sc, sc->sc_txring_dtag,
1917 					   &sc->sc_tx_rdata[i], tx_ring_sz,
1918 					   TXRX_CTRL(i));
1919 		if (error) {
1920 			device_printf(sc->sc_dev, "%dth TX ring "
1921 				      "DMA alloc failed\n", i);
1922 			return error;
1923 		}
1924 	}
1925 
1926 	/*
1927 	 * Create RX ring DMA stuffs
1928 	 */
1929 	error = bus_dma_tag_create(sc->sc_parent_dtag,
1930 				BWI_RING_ALIGN, 0,
1931 				BUS_SPACE_MAXADDR,
1932 				BUS_SPACE_MAXADDR,
1933 				NULL, NULL,
1934 				rx_ring_sz,
1935 				1,
1936 				rx_ring_sz,
1937 				0,
1938 				NULL, NULL,
1939 				&sc->sc_rxring_dtag);
1940 	if (error) {
1941 		device_printf(sc->sc_dev, "can't create RX ring DMA tag\n");
1942 		return error;
1943 	}
1944 
1945 	error = bwi_dma_ring_alloc(sc, sc->sc_rxring_dtag, &sc->sc_rx_rdata,
1946 				   rx_ring_sz, TXRX_CTRL(0));
1947 	if (error) {
1948 		device_printf(sc->sc_dev, "RX ring DMA alloc failed\n");
1949 		return error;
1950 	}
1951 
1952 	if (has_txstats) {
1953 		error = bwi_dma_txstats_alloc(sc, TXRX_CTRL(3), desc_sz);
1954 		if (error) {
1955 			device_printf(sc->sc_dev,
1956 				      "TX stats DMA alloc failed\n");
1957 			return error;
1958 		}
1959 	}
1960 
1961 #undef TXRX_CTRL
1962 
1963 	return bwi_dma_mbuf_create(sc);
1964 }
1965 
1966 static void
1967 bwi_dma_free(struct bwi_softc *sc)
1968 {
1969 	if (sc->sc_txring_dtag != NULL) {
1970 		int i;
1971 
1972 		for (i = 0; i < BWI_TX_NRING; ++i) {
1973 			struct bwi_ring_data *rd = &sc->sc_tx_rdata[i];
1974 
1975 			if (rd->rdata_desc != NULL) {
1976 				bus_dmamap_unload(sc->sc_txring_dtag,
1977 						  rd->rdata_dmap);
1978 				bus_dmamem_free(sc->sc_txring_dtag,
1979 						rd->rdata_desc,
1980 						rd->rdata_dmap);
1981 			}
1982 		}
1983 		bus_dma_tag_destroy(sc->sc_txring_dtag);
1984 	}
1985 
1986 	if (sc->sc_rxring_dtag != NULL) {
1987 		struct bwi_ring_data *rd = &sc->sc_rx_rdata;
1988 
1989 		if (rd->rdata_desc != NULL) {
1990 			bus_dmamap_unload(sc->sc_rxring_dtag, rd->rdata_dmap);
1991 			bus_dmamem_free(sc->sc_rxring_dtag, rd->rdata_desc,
1992 					rd->rdata_dmap);
1993 		}
1994 		bus_dma_tag_destroy(sc->sc_rxring_dtag);
1995 	}
1996 
1997 	bwi_dma_txstats_free(sc);
1998 	bwi_dma_mbuf_destroy(sc, BWI_TX_NRING, 1);
1999 
2000 	if (sc->sc_parent_dtag != NULL)
2001 		bus_dma_tag_destroy(sc->sc_parent_dtag);
2002 }
2003 
2004 static int
2005 bwi_dma_ring_alloc(struct bwi_softc *sc, bus_dma_tag_t dtag,
2006 		   struct bwi_ring_data *rd, bus_size_t size,
2007 		   uint32_t txrx_ctrl)
2008 {
2009 	int error;
2010 
2011 	error = bus_dmamem_alloc(dtag, &rd->rdata_desc,
2012 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2013 				 &rd->rdata_dmap);
2014 	if (error) {
2015 		device_printf(sc->sc_dev, "can't allocate DMA mem\n");
2016 		return error;
2017 	}
2018 
2019 	error = bus_dmamap_load(dtag, rd->rdata_dmap, rd->rdata_desc, size,
2020 				bwi_dma_ring_addr, &rd->rdata_paddr,
2021 				BUS_DMA_NOWAIT);
2022 	if (error) {
2023 		device_printf(sc->sc_dev, "can't load DMA mem\n");
2024 		bus_dmamem_free(dtag, rd->rdata_desc, rd->rdata_dmap);
2025 		rd->rdata_desc = NULL;
2026 		return error;
2027 	}
2028 
2029 	rd->rdata_txrx_ctrl = txrx_ctrl;
2030 	return 0;
2031 }
2032 
2033 static int
2034 bwi_dma_txstats_alloc(struct bwi_softc *sc, uint32_t ctrl_base,
2035 		      bus_size_t desc_sz)
2036 {
2037 	struct bwi_txstats_data *st;
2038 	bus_size_t dma_size;
2039 	int error;
2040 
2041 	st = malloc(sizeof(*st), M_DEVBUF, M_NOWAIT | M_ZERO);
2042 	if (st == NULL) {
2043 		device_printf(sc->sc_dev, "can't allocate txstats data\n");
2044 		return ENOMEM;
2045 	}
2046 	sc->sc_txstats = st;
2047 
2048 	/*
2049 	 * Create TX stats descriptor DMA stuffs
2050 	 */
2051 	dma_size = roundup(desc_sz * BWI_TXSTATS_NDESC, BWI_RING_ALIGN);
2052 
2053 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2054 				BWI_RING_ALIGN,
2055 				0,
2056 				BUS_SPACE_MAXADDR,
2057 				BUS_SPACE_MAXADDR,
2058 				NULL, NULL,
2059 				dma_size,
2060 				1,
2061 				dma_size,
2062 				0,
2063 				NULL, NULL,
2064 				&st->stats_ring_dtag);
2065 	if (error) {
2066 		device_printf(sc->sc_dev, "can't create txstats ring "
2067 			      "DMA tag\n");
2068 		return error;
2069 	}
2070 
2071 	error = bus_dmamem_alloc(st->stats_ring_dtag, &st->stats_ring,
2072 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2073 				 &st->stats_ring_dmap);
2074 	if (error) {
2075 		device_printf(sc->sc_dev, "can't allocate txstats ring "
2076 			      "DMA mem\n");
2077 		bus_dma_tag_destroy(st->stats_ring_dtag);
2078 		st->stats_ring_dtag = NULL;
2079 		return error;
2080 	}
2081 
2082 	error = bus_dmamap_load(st->stats_ring_dtag, st->stats_ring_dmap,
2083 				st->stats_ring, dma_size,
2084 				bwi_dma_ring_addr, &st->stats_ring_paddr,
2085 				BUS_DMA_NOWAIT);
2086 	if (error) {
2087 		device_printf(sc->sc_dev, "can't load txstats ring DMA mem\n");
2088 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2089 				st->stats_ring_dmap);
2090 		bus_dma_tag_destroy(st->stats_ring_dtag);
2091 		st->stats_ring_dtag = NULL;
2092 		return error;
2093 	}
2094 
2095 	/*
2096 	 * Create TX stats DMA stuffs
2097 	 */
2098 	dma_size = roundup(sizeof(struct bwi_txstats) * BWI_TXSTATS_NDESC,
2099 			   BWI_ALIGN);
2100 
2101 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2102 				BWI_ALIGN,
2103 				0,
2104 				BUS_SPACE_MAXADDR,
2105 				BUS_SPACE_MAXADDR,
2106 				NULL, NULL,
2107 				dma_size,
2108 				1,
2109 				dma_size,
2110 				0,
2111 				NULL, NULL,
2112 				&st->stats_dtag);
2113 	if (error) {
2114 		device_printf(sc->sc_dev, "can't create txstats DMA tag\n");
2115 		return error;
2116 	}
2117 
2118 	error = bus_dmamem_alloc(st->stats_dtag, (void **)&st->stats,
2119 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
2120 				 &st->stats_dmap);
2121 	if (error) {
2122 		device_printf(sc->sc_dev, "can't allocate txstats DMA mem\n");
2123 		bus_dma_tag_destroy(st->stats_dtag);
2124 		st->stats_dtag = NULL;
2125 		return error;
2126 	}
2127 
2128 	error = bus_dmamap_load(st->stats_dtag, st->stats_dmap, st->stats,
2129 				dma_size, bwi_dma_ring_addr, &st->stats_paddr,
2130 				BUS_DMA_NOWAIT);
2131 	if (error) {
2132 		device_printf(sc->sc_dev, "can't load txstats DMA mem\n");
2133 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2134 		bus_dma_tag_destroy(st->stats_dtag);
2135 		st->stats_dtag = NULL;
2136 		return error;
2137 	}
2138 
2139 	st->stats_ctrl_base = ctrl_base;
2140 	return 0;
2141 }
2142 
2143 static void
2144 bwi_dma_txstats_free(struct bwi_softc *sc)
2145 {
2146 	struct bwi_txstats_data *st;
2147 
2148 	if (sc->sc_txstats == NULL)
2149 		return;
2150 	st = sc->sc_txstats;
2151 
2152 	if (st->stats_ring_dtag != NULL) {
2153 		bus_dmamap_unload(st->stats_ring_dtag, st->stats_ring_dmap);
2154 		bus_dmamem_free(st->stats_ring_dtag, st->stats_ring,
2155 				st->stats_ring_dmap);
2156 		bus_dma_tag_destroy(st->stats_ring_dtag);
2157 	}
2158 
2159 	if (st->stats_dtag != NULL) {
2160 		bus_dmamap_unload(st->stats_dtag, st->stats_dmap);
2161 		bus_dmamem_free(st->stats_dtag, st->stats, st->stats_dmap);
2162 		bus_dma_tag_destroy(st->stats_dtag);
2163 	}
2164 
2165 	free(st, M_DEVBUF);
2166 }
2167 
2168 static void
2169 bwi_dma_ring_addr(void *arg, bus_dma_segment_t *seg, int nseg, int error)
2170 {
2171 	KASSERT(nseg == 1, ("too many segments\n"));
2172 	*((bus_addr_t *)arg) = seg->ds_addr;
2173 }
2174 
2175 static int
2176 bwi_dma_mbuf_create(struct bwi_softc *sc)
2177 {
2178 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2179 	int i, j, k, ntx, error;
2180 
2181 	/*
2182 	 * Create TX/RX mbuf DMA tag
2183 	 */
2184 	error = bus_dma_tag_create(sc->sc_parent_dtag,
2185 				1,
2186 				0,
2187 				BUS_SPACE_MAXADDR,
2188 				BUS_SPACE_MAXADDR,
2189 				NULL, NULL,
2190 				MCLBYTES,
2191 				1,
2192 				MCLBYTES,
2193 				BUS_DMA_ALLOCNOW,
2194 				NULL, NULL,
2195 				&sc->sc_buf_dtag);
2196 	if (error) {
2197 		device_printf(sc->sc_dev, "can't create mbuf DMA tag\n");
2198 		return error;
2199 	}
2200 
2201 	ntx = 0;
2202 
2203 	/*
2204 	 * Create TX mbuf DMA map
2205 	 */
2206 	for (i = 0; i < BWI_TX_NRING; ++i) {
2207 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2208 
2209 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2210 			error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2211 						  &tbd->tbd_buf[j].tb_dmap);
2212 			if (error) {
2213 				device_printf(sc->sc_dev, "can't create "
2214 					      "%dth tbd, %dth DMA map\n", i, j);
2215 
2216 				ntx = i;
2217 				for (k = 0; k < j; ++k) {
2218 					bus_dmamap_destroy(sc->sc_buf_dtag,
2219 						tbd->tbd_buf[k].tb_dmap);
2220 				}
2221 				goto fail;
2222 			}
2223 		}
2224 	}
2225 	ntx = BWI_TX_NRING;
2226 
2227 	/*
2228 	 * Create RX mbuf DMA map and a spare DMA map
2229 	 */
2230 	error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2231 				  &rbd->rbd_tmp_dmap);
2232 	if (error) {
2233 		device_printf(sc->sc_dev,
2234 			      "can't create spare RX buf DMA map\n");
2235 		goto fail;
2236 	}
2237 
2238 	for (j = 0; j < BWI_RX_NDESC; ++j) {
2239 		error = bus_dmamap_create(sc->sc_buf_dtag, 0,
2240 					  &rbd->rbd_buf[j].rb_dmap);
2241 		if (error) {
2242 			device_printf(sc->sc_dev, "can't create %dth "
2243 				      "RX buf DMA map\n", j);
2244 
2245 			for (k = 0; k < j; ++k) {
2246 				bus_dmamap_destroy(sc->sc_buf_dtag,
2247 					rbd->rbd_buf[j].rb_dmap);
2248 			}
2249 			bus_dmamap_destroy(sc->sc_buf_dtag,
2250 					   rbd->rbd_tmp_dmap);
2251 			goto fail;
2252 		}
2253 	}
2254 
2255 	return 0;
2256 fail:
2257 	bwi_dma_mbuf_destroy(sc, ntx, 0);
2258 	return error;
2259 }
2260 
2261 static void
2262 bwi_dma_mbuf_destroy(struct bwi_softc *sc, int ntx, int nrx)
2263 {
2264 	int i, j;
2265 
2266 	if (sc->sc_buf_dtag == NULL)
2267 		return;
2268 
2269 	for (i = 0; i < ntx; ++i) {
2270 		struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[i];
2271 
2272 		for (j = 0; j < BWI_TX_NDESC; ++j) {
2273 			struct bwi_txbuf *tb = &tbd->tbd_buf[j];
2274 
2275 			if (tb->tb_mbuf != NULL) {
2276 				bus_dmamap_unload(sc->sc_buf_dtag,
2277 						  tb->tb_dmap);
2278 				m_freem(tb->tb_mbuf);
2279 			}
2280 			if (tb->tb_ni != NULL)
2281 				ieee80211_free_node(tb->tb_ni);
2282 			bus_dmamap_destroy(sc->sc_buf_dtag, tb->tb_dmap);
2283 		}
2284 	}
2285 
2286 	if (nrx) {
2287 		struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2288 
2289 		bus_dmamap_destroy(sc->sc_buf_dtag, rbd->rbd_tmp_dmap);
2290 		for (j = 0; j < BWI_RX_NDESC; ++j) {
2291 			struct bwi_rxbuf *rb = &rbd->rbd_buf[j];
2292 
2293 			if (rb->rb_mbuf != NULL) {
2294 				bus_dmamap_unload(sc->sc_buf_dtag,
2295 						  rb->rb_dmap);
2296 				m_freem(rb->rb_mbuf);
2297 			}
2298 			bus_dmamap_destroy(sc->sc_buf_dtag, rb->rb_dmap);
2299 		}
2300 	}
2301 
2302 	bus_dma_tag_destroy(sc->sc_buf_dtag);
2303 	sc->sc_buf_dtag = NULL;
2304 }
2305 
2306 static void
2307 bwi_enable_intrs(struct bwi_softc *sc, uint32_t enable_intrs)
2308 {
2309 	CSR_SETBITS_4(sc, BWI_MAC_INTR_MASK, enable_intrs);
2310 }
2311 
2312 static void
2313 bwi_disable_intrs(struct bwi_softc *sc, uint32_t disable_intrs)
2314 {
2315 	CSR_CLRBITS_4(sc, BWI_MAC_INTR_MASK, disable_intrs);
2316 }
2317 
2318 static int
2319 bwi_init_tx_ring32(struct bwi_softc *sc, int ring_idx)
2320 {
2321 	struct bwi_ring_data *rd;
2322 	struct bwi_txbuf_data *tbd;
2323 	uint32_t val, addr_hi, addr_lo;
2324 
2325 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2326 	rd = &sc->sc_tx_rdata[ring_idx];
2327 	tbd = &sc->sc_tx_bdata[ring_idx];
2328 
2329 	tbd->tbd_idx = 0;
2330 	tbd->tbd_used = 0;
2331 
2332 	bzero(rd->rdata_desc, sizeof(struct bwi_desc32) * BWI_TX_NDESC);
2333 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
2334 			BUS_DMASYNC_PREWRITE);
2335 
2336 	addr_lo = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2337 	addr_hi = __SHIFTOUT(rd->rdata_paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2338 
2339 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2340 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2341 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2342 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, val);
2343 
2344 	val = __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2345 	      BWI_TXRX32_CTRL_ENABLE;
2346 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, val);
2347 
2348 	return 0;
2349 }
2350 
2351 static void
2352 bwi_init_rxdesc_ring32(struct bwi_softc *sc, uint32_t ctrl_base,
2353 		       bus_addr_t paddr, int hdr_size, int ndesc)
2354 {
2355 	uint32_t val, addr_hi, addr_lo;
2356 
2357 	addr_lo = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_ADDR_MASK);
2358 	addr_hi = __SHIFTOUT(paddr, BWI_TXRX32_RINGINFO_FUNC_MASK);
2359 
2360 	val = __SHIFTIN(addr_lo, BWI_TXRX32_RINGINFO_ADDR_MASK) |
2361 	      __SHIFTIN(BWI_TXRX32_RINGINFO_FUNC_TXRX,
2362 	      		BWI_TXRX32_RINGINFO_FUNC_MASK);
2363 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_RINGINFO, val);
2364 
2365 	val = __SHIFTIN(hdr_size, BWI_RX32_CTRL_HDRSZ_MASK) |
2366 	      __SHIFTIN(addr_hi, BWI_TXRX32_CTRL_ADDRHI_MASK) |
2367 	      BWI_TXRX32_CTRL_ENABLE;
2368 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_CTRL, val);
2369 
2370 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
2371 		    (ndesc - 1) * sizeof(struct bwi_desc32));
2372 }
2373 
2374 static int
2375 bwi_init_rx_ring32(struct bwi_softc *sc)
2376 {
2377 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2378 	int i, error;
2379 
2380 	sc->sc_rx_bdata.rbd_idx = 0;
2381 
2382 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2383 		error = bwi_newbuf(sc, i, 1);
2384 		if (error) {
2385 			device_printf(sc->sc_dev,
2386 				  "can't allocate %dth RX buffer\n", i);
2387 			return error;
2388 		}
2389 	}
2390 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2391 			BUS_DMASYNC_PREWRITE);
2392 
2393 	bwi_init_rxdesc_ring32(sc, rd->rdata_txrx_ctrl, rd->rdata_paddr,
2394 			       sizeof(struct bwi_rxbuf_hdr), BWI_RX_NDESC);
2395 	return 0;
2396 }
2397 
2398 static int
2399 bwi_init_txstats32(struct bwi_softc *sc)
2400 {
2401 	struct bwi_txstats_data *st = sc->sc_txstats;
2402 	bus_addr_t stats_paddr;
2403 	int i;
2404 
2405 	bzero(st->stats, BWI_TXSTATS_NDESC * sizeof(struct bwi_txstats));
2406 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_PREWRITE);
2407 
2408 	st->stats_idx = 0;
2409 
2410 	stats_paddr = st->stats_paddr;
2411 	for (i = 0; i < BWI_TXSTATS_NDESC; ++i) {
2412 		bwi_setup_desc32(sc, st->stats_ring, BWI_TXSTATS_NDESC, i,
2413 				 stats_paddr, sizeof(struct bwi_txstats), 0);
2414 		stats_paddr += sizeof(struct bwi_txstats);
2415 	}
2416 	bus_dmamap_sync(st->stats_ring_dtag, st->stats_ring_dmap,
2417 			BUS_DMASYNC_PREWRITE);
2418 
2419 	bwi_init_rxdesc_ring32(sc, st->stats_ctrl_base,
2420 			       st->stats_ring_paddr, 0, BWI_TXSTATS_NDESC);
2421 	return 0;
2422 }
2423 
2424 static void
2425 bwi_setup_rx_desc32(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2426 		    int buf_len)
2427 {
2428 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2429 
2430 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2431 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_RX_NDESC, buf_idx,
2432 			 paddr, buf_len, 0);
2433 }
2434 
2435 static void
2436 bwi_setup_tx_desc32(struct bwi_softc *sc, struct bwi_ring_data *rd,
2437 		    int buf_idx, bus_addr_t paddr, int buf_len)
2438 {
2439 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
2440 	bwi_setup_desc32(sc, rd->rdata_desc, BWI_TX_NDESC, buf_idx,
2441 			 paddr, buf_len, 1);
2442 }
2443 
2444 static int
2445 bwi_init_tx_ring64(struct bwi_softc *sc, int ring_idx)
2446 {
2447 	/* TODO:64 */
2448 	return EOPNOTSUPP;
2449 }
2450 
2451 static int
2452 bwi_init_rx_ring64(struct bwi_softc *sc)
2453 {
2454 	/* TODO:64 */
2455 	return EOPNOTSUPP;
2456 }
2457 
2458 static int
2459 bwi_init_txstats64(struct bwi_softc *sc)
2460 {
2461 	/* TODO:64 */
2462 	return EOPNOTSUPP;
2463 }
2464 
2465 static void
2466 bwi_setup_rx_desc64(struct bwi_softc *sc, int buf_idx, bus_addr_t paddr,
2467 		    int buf_len)
2468 {
2469 	/* TODO:64 */
2470 }
2471 
2472 static void
2473 bwi_setup_tx_desc64(struct bwi_softc *sc, struct bwi_ring_data *rd,
2474 		    int buf_idx, bus_addr_t paddr, int buf_len)
2475 {
2476 	/* TODO:64 */
2477 }
2478 
2479 static void
2480 bwi_dma_buf_addr(void *arg, bus_dma_segment_t *seg, int nseg,
2481 		 bus_size_t mapsz __unused, int error)
2482 {
2483         if (!error) {
2484 		KASSERT(nseg == 1, ("too many segments(%d)\n", nseg));
2485 		*((bus_addr_t *)arg) = seg->ds_addr;
2486 	}
2487 }
2488 
2489 static int
2490 bwi_newbuf(struct bwi_softc *sc, int buf_idx, int init)
2491 {
2492 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2493 	struct bwi_rxbuf *rxbuf = &rbd->rbd_buf[buf_idx];
2494 	struct bwi_rxbuf_hdr *hdr;
2495 	bus_dmamap_t map;
2496 	bus_addr_t paddr;
2497 	struct mbuf *m;
2498 	int error;
2499 
2500 	KASSERT(buf_idx < BWI_RX_NDESC, ("buf_idx %d", buf_idx));
2501 
2502 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2503 	if (m == NULL) {
2504 		error = ENOBUFS;
2505 
2506 		/*
2507 		 * If the NIC is up and running, we need to:
2508 		 * - Clear RX buffer's header.
2509 		 * - Restore RX descriptor settings.
2510 		 */
2511 		if (init)
2512 			return error;
2513 		else
2514 			goto back;
2515 	}
2516 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2517 
2518 	/*
2519 	 * Try to load RX buf into temporary DMA map
2520 	 */
2521 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, rbd->rbd_tmp_dmap, m,
2522 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
2523 	if (error) {
2524 		m_freem(m);
2525 
2526 		/*
2527 		 * See the comment above
2528 		 */
2529 		if (init)
2530 			return error;
2531 		else
2532 			goto back;
2533 	}
2534 
2535 	if (!init)
2536 		bus_dmamap_unload(sc->sc_buf_dtag, rxbuf->rb_dmap);
2537 	rxbuf->rb_mbuf = m;
2538 	rxbuf->rb_paddr = paddr;
2539 
2540 	/*
2541 	 * Swap RX buf's DMA map with the loaded temporary one
2542 	 */
2543 	map = rxbuf->rb_dmap;
2544 	rxbuf->rb_dmap = rbd->rbd_tmp_dmap;
2545 	rbd->rbd_tmp_dmap = map;
2546 
2547 back:
2548 	/*
2549 	 * Clear RX buf header
2550 	 */
2551 	hdr = mtod(rxbuf->rb_mbuf, struct bwi_rxbuf_hdr *);
2552 	bzero(hdr, sizeof(*hdr));
2553 	bus_dmamap_sync(sc->sc_buf_dtag, rxbuf->rb_dmap, BUS_DMASYNC_PREWRITE);
2554 
2555 	/*
2556 	 * Setup RX buf descriptor
2557 	 */
2558 	sc->sc_setup_rxdesc(sc, buf_idx, rxbuf->rb_paddr,
2559 			    rxbuf->rb_mbuf->m_len - sizeof(*hdr));
2560 	return error;
2561 }
2562 
2563 static void
2564 bwi_set_addr_filter(struct bwi_softc *sc, uint16_t addr_ofs,
2565 		    const uint8_t *addr)
2566 {
2567 	int i;
2568 
2569 	CSR_WRITE_2(sc, BWI_ADDR_FILTER_CTRL,
2570 		    BWI_ADDR_FILTER_CTRL_SET | addr_ofs);
2571 
2572 	for (i = 0; i < (IEEE80211_ADDR_LEN / 2); ++i) {
2573 		uint16_t addr_val;
2574 
2575 		addr_val = (uint16_t)addr[i * 2] |
2576 			   (((uint16_t)addr[(i * 2) + 1]) << 8);
2577 		CSR_WRITE_2(sc, BWI_ADDR_FILTER_DATA, addr_val);
2578 	}
2579 }
2580 
2581 static int
2582 bwi_rxeof(struct bwi_softc *sc, int end_idx)
2583 {
2584 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2585 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2586 	struct ieee80211com *ic = &sc->sc_ic;
2587 	int idx, rx_data = 0;
2588 
2589 	idx = rbd->rbd_idx;
2590 	while (idx != end_idx) {
2591 		struct bwi_rxbuf *rb = &rbd->rbd_buf[idx];
2592 		struct bwi_rxbuf_hdr *hdr;
2593 		struct ieee80211_frame_min *wh;
2594 		struct ieee80211_node *ni;
2595 		struct mbuf *m;
2596 		uint32_t plcp;
2597 		uint16_t flags2;
2598 		int buflen, wh_ofs, hdr_extra, rssi, noise, type, rate;
2599 
2600 		m = rb->rb_mbuf;
2601 		bus_dmamap_sync(sc->sc_buf_dtag, rb->rb_dmap,
2602 				BUS_DMASYNC_POSTREAD);
2603 
2604 		if (bwi_newbuf(sc, idx, 0)) {
2605 			counter_u64_add(ic->ic_ierrors, 1);
2606 			goto next;
2607 		}
2608 
2609 		hdr = mtod(m, struct bwi_rxbuf_hdr *);
2610 		flags2 = le16toh(hdr->rxh_flags2);
2611 
2612 		hdr_extra = 0;
2613 		if (flags2 & BWI_RXH_F2_TYPE2FRAME)
2614 			hdr_extra = 2;
2615 		wh_ofs = hdr_extra + 6;	/* XXX magic number */
2616 
2617 		buflen = le16toh(hdr->rxh_buflen);
2618 		if (buflen < BWI_FRAME_MIN_LEN(wh_ofs)) {
2619 			device_printf(sc->sc_dev,
2620 			    "%s: zero length data, hdr_extra %d\n",
2621 			    __func__, hdr_extra);
2622 			counter_u64_add(ic->ic_ierrors, 1);
2623 			m_freem(m);
2624 			goto next;
2625 		}
2626 
2627 	        bcopy((uint8_t *)(hdr + 1) + hdr_extra, &plcp, sizeof(plcp));
2628 		rssi = bwi_calc_rssi(sc, hdr);
2629 		noise = bwi_calc_noise(sc);
2630 
2631 		m->m_len = m->m_pkthdr.len = buflen + sizeof(*hdr);
2632 		m_adj(m, sizeof(*hdr) + wh_ofs);
2633 
2634 		if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_OFDM)
2635 			rate = bwi_plcp2rate(plcp, IEEE80211_T_OFDM);
2636 		else
2637 			rate = bwi_plcp2rate(plcp, IEEE80211_T_CCK);
2638 
2639 		/* RX radio tap */
2640 		if (ieee80211_radiotap_active(ic))
2641 			bwi_rx_radiotap(sc, m, hdr, &plcp, rate, rssi, noise);
2642 
2643 		m_adj(m, -IEEE80211_CRC_LEN);
2644 
2645 		BWI_UNLOCK(sc);
2646 
2647 		wh = mtod(m, struct ieee80211_frame_min *);
2648 		ni = ieee80211_find_rxnode(ic, wh);
2649 		if (ni != NULL) {
2650 			type = ieee80211_input(ni, m, rssi - noise, noise);
2651 			ieee80211_free_node(ni);
2652 		} else
2653 			type = ieee80211_input_all(ic, m, rssi - noise, noise);
2654 		if (type == IEEE80211_FC0_TYPE_DATA) {
2655 			rx_data = 1;
2656 			sc->sc_rx_rate = rate;
2657 		}
2658 
2659 		BWI_LOCK(sc);
2660 next:
2661 		idx = (idx + 1) % BWI_RX_NDESC;
2662 
2663 		if (sc->sc_flags & BWI_F_STOP) {
2664 			/*
2665 			 * Take the fast lane, don't do
2666 			 * any damage to softc
2667 			 */
2668 			return -1;
2669 		}
2670 	}
2671 
2672 	rbd->rbd_idx = idx;
2673 	bus_dmamap_sync(sc->sc_rxring_dtag, rd->rdata_dmap,
2674 			BUS_DMASYNC_PREWRITE);
2675 
2676 	return rx_data;
2677 }
2678 
2679 static int
2680 bwi_rxeof32(struct bwi_softc *sc)
2681 {
2682 	uint32_t val, rx_ctrl;
2683 	int end_idx, rx_data;
2684 
2685 	rx_ctrl = sc->sc_rx_rdata.rdata_txrx_ctrl;
2686 
2687 	val = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2688 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
2689 		  sizeof(struct bwi_desc32);
2690 
2691 	rx_data = bwi_rxeof(sc, end_idx);
2692 	if (rx_data >= 0) {
2693 		CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_INDEX,
2694 			    end_idx * sizeof(struct bwi_desc32));
2695 	}
2696 	return rx_data;
2697 }
2698 
2699 static int
2700 bwi_rxeof64(struct bwi_softc *sc)
2701 {
2702 	/* TODO:64 */
2703 	return 0;
2704 }
2705 
2706 static void
2707 bwi_reset_rx_ring32(struct bwi_softc *sc, uint32_t rx_ctrl)
2708 {
2709 	int i;
2710 
2711 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_CTRL, 0);
2712 
2713 #define NRETRY 10
2714 
2715 	for (i = 0; i < NRETRY; ++i) {
2716 		uint32_t status;
2717 
2718 		status = CSR_READ_4(sc, rx_ctrl + BWI_RX32_STATUS);
2719 		if (__SHIFTOUT(status, BWI_RX32_STATUS_STATE_MASK) ==
2720 		    BWI_RX32_STATUS_STATE_DISABLED)
2721 			break;
2722 
2723 		DELAY(1000);
2724 	}
2725 	if (i == NRETRY)
2726 		device_printf(sc->sc_dev, "reset rx ring timedout\n");
2727 
2728 #undef NRETRY
2729 
2730 	CSR_WRITE_4(sc, rx_ctrl + BWI_RX32_RINGINFO, 0);
2731 }
2732 
2733 static void
2734 bwi_free_txstats32(struct bwi_softc *sc)
2735 {
2736 	bwi_reset_rx_ring32(sc, sc->sc_txstats->stats_ctrl_base);
2737 }
2738 
2739 static void
2740 bwi_free_rx_ring32(struct bwi_softc *sc)
2741 {
2742 	struct bwi_ring_data *rd = &sc->sc_rx_rdata;
2743 	struct bwi_rxbuf_data *rbd = &sc->sc_rx_bdata;
2744 	int i;
2745 
2746 	bwi_reset_rx_ring32(sc, rd->rdata_txrx_ctrl);
2747 
2748 	for (i = 0; i < BWI_RX_NDESC; ++i) {
2749 		struct bwi_rxbuf *rb = &rbd->rbd_buf[i];
2750 
2751 		if (rb->rb_mbuf != NULL) {
2752 			bus_dmamap_unload(sc->sc_buf_dtag, rb->rb_dmap);
2753 			m_freem(rb->rb_mbuf);
2754 			rb->rb_mbuf = NULL;
2755 		}
2756 	}
2757 }
2758 
2759 static void
2760 bwi_free_tx_ring32(struct bwi_softc *sc, int ring_idx)
2761 {
2762 	struct bwi_ring_data *rd;
2763 	struct bwi_txbuf_data *tbd;
2764 	uint32_t state, val;
2765 	int i;
2766 
2767 	KASSERT(ring_idx < BWI_TX_NRING, ("ring_idx %d", ring_idx));
2768 	rd = &sc->sc_tx_rdata[ring_idx];
2769 	tbd = &sc->sc_tx_bdata[ring_idx];
2770 
2771 #define NRETRY 10
2772 
2773 	for (i = 0; i < NRETRY; ++i) {
2774 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2775 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2776 		if (state == BWI_TX32_STATUS_STATE_DISABLED ||
2777 		    state == BWI_TX32_STATUS_STATE_IDLE ||
2778 		    state == BWI_TX32_STATUS_STATE_STOPPED)
2779 			break;
2780 
2781 		DELAY(1000);
2782 	}
2783 	if (i == NRETRY) {
2784 		device_printf(sc->sc_dev,
2785 		    "%s: wait for TX ring(%d) stable timed out\n",
2786 		    __func__, ring_idx);
2787 	}
2788 
2789 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_CTRL, 0);
2790 	for (i = 0; i < NRETRY; ++i) {
2791 		val = CSR_READ_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_STATUS);
2792 		state = __SHIFTOUT(val, BWI_TX32_STATUS_STATE_MASK);
2793 		if (state == BWI_TX32_STATUS_STATE_DISABLED)
2794 			break;
2795 
2796 		DELAY(1000);
2797 	}
2798 	if (i == NRETRY)
2799 		device_printf(sc->sc_dev, "%s: reset TX ring (%d) timed out\n",
2800 		     __func__, ring_idx);
2801 
2802 #undef NRETRY
2803 
2804 	DELAY(1000);
2805 
2806 	CSR_WRITE_4(sc, rd->rdata_txrx_ctrl + BWI_TX32_RINGINFO, 0);
2807 
2808 	for (i = 0; i < BWI_TX_NDESC; ++i) {
2809 		struct bwi_txbuf *tb = &tbd->tbd_buf[i];
2810 
2811 		if (tb->tb_mbuf != NULL) {
2812 			bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
2813 			m_freem(tb->tb_mbuf);
2814 			tb->tb_mbuf = NULL;
2815 		}
2816 		if (tb->tb_ni != NULL) {
2817 			ieee80211_free_node(tb->tb_ni);
2818 			tb->tb_ni = NULL;
2819 		}
2820 	}
2821 }
2822 
2823 static void
2824 bwi_free_txstats64(struct bwi_softc *sc)
2825 {
2826 	/* TODO:64 */
2827 }
2828 
2829 static void
2830 bwi_free_rx_ring64(struct bwi_softc *sc)
2831 {
2832 	/* TODO:64 */
2833 }
2834 
2835 static void
2836 bwi_free_tx_ring64(struct bwi_softc *sc, int ring_idx)
2837 {
2838 	/* TODO:64 */
2839 }
2840 
2841 /* XXX does not belong here */
2842 #define IEEE80211_OFDM_PLCP_RATE_MASK	__BITS(3, 0)
2843 #define IEEE80211_OFDM_PLCP_LEN_MASK	__BITS(16, 5)
2844 
2845 static __inline void
2846 bwi_ofdm_plcp_header(uint32_t *plcp0, int pkt_len, uint8_t rate)
2847 {
2848 	uint32_t plcp;
2849 
2850 	plcp = __SHIFTIN(ieee80211_rate2plcp(rate, IEEE80211_T_OFDM),
2851 		    IEEE80211_OFDM_PLCP_RATE_MASK) |
2852 	       __SHIFTIN(pkt_len, IEEE80211_OFDM_PLCP_LEN_MASK);
2853 	*plcp0 = htole32(plcp);
2854 }
2855 
2856 static __inline void
2857 bwi_ds_plcp_header(struct ieee80211_ds_plcp_hdr *plcp, int pkt_len,
2858 		   uint8_t rate)
2859 {
2860 	int len, service, pkt_bitlen;
2861 
2862 	pkt_bitlen = pkt_len * NBBY;
2863 	len = howmany(pkt_bitlen * 2, rate);
2864 
2865 	service = IEEE80211_PLCP_SERVICE_LOCKED;
2866 	if (rate == (11 * 2)) {
2867 		int pkt_bitlen1;
2868 
2869 		/*
2870 		 * PLCP service field needs to be adjusted,
2871 		 * if TX rate is 11Mbytes/s
2872 		 */
2873 		pkt_bitlen1 = len * 11;
2874 		if (pkt_bitlen1 - pkt_bitlen >= NBBY)
2875 			service |= IEEE80211_PLCP_SERVICE_LENEXT7;
2876 	}
2877 
2878 	plcp->i_signal = ieee80211_rate2plcp(rate, IEEE80211_T_CCK);
2879 	plcp->i_service = service;
2880 	plcp->i_length = htole16(len);
2881 	/* NOTE: do NOT touch i_crc */
2882 }
2883 
2884 static __inline void
2885 bwi_plcp_header(const struct ieee80211_rate_table *rt,
2886 	void *plcp, int pkt_len, uint8_t rate)
2887 {
2888 	enum ieee80211_phytype modtype;
2889 
2890 	/*
2891 	 * Assume caller has zeroed 'plcp'
2892 	 */
2893 	modtype = ieee80211_rate2phytype(rt, rate);
2894 	if (modtype == IEEE80211_T_OFDM)
2895 		bwi_ofdm_plcp_header(plcp, pkt_len, rate);
2896 	else if (modtype == IEEE80211_T_DS)
2897 		bwi_ds_plcp_header(plcp, pkt_len, rate);
2898 	else
2899 		panic("unsupport modulation type %u\n", modtype);
2900 }
2901 
2902 static int
2903 bwi_encap(struct bwi_softc *sc, int idx, struct mbuf *m,
2904 	  struct ieee80211_node *ni)
2905 {
2906 	struct ieee80211vap *vap = ni->ni_vap;
2907 	struct ieee80211com *ic = &sc->sc_ic;
2908 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
2909 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
2910 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
2911 	struct bwi_mac *mac;
2912 	struct bwi_txbuf_hdr *hdr;
2913 	struct ieee80211_frame *wh;
2914 	const struct ieee80211_txparam *tp = ni->ni_txparms;
2915 	uint8_t rate, rate_fb;
2916 	uint32_t mac_ctrl;
2917 	uint16_t phy_ctrl;
2918 	bus_addr_t paddr;
2919 	int type, ismcast, pkt_len, error, rix;
2920 #if 0
2921 	const uint8_t *p;
2922 	int i;
2923 #endif
2924 
2925 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
2926 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
2927 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
2928 
2929 	wh = mtod(m, struct ieee80211_frame *);
2930 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2931 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2932 
2933 	/* Get 802.11 frame len before prepending TX header */
2934 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
2935 
2936 	/*
2937 	 * Find TX rate
2938 	 */
2939 	if (type != IEEE80211_FC0_TYPE_DATA || (m->m_flags & M_EAPOL)) {
2940 		rate = rate_fb = tp->mgmtrate;
2941 	} else if (ismcast) {
2942 		rate = rate_fb = tp->mcastrate;
2943 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
2944 		rate = rate_fb = tp->ucastrate;
2945 	} else {
2946 		rix = ieee80211_ratectl_rate(ni, NULL, pkt_len);
2947 		rate = ni->ni_txrate;
2948 
2949 		if (rix > 0) {
2950 			rate_fb = ni->ni_rates.rs_rates[rix-1] &
2951 				  IEEE80211_RATE_VAL;
2952 		} else {
2953 			rate_fb = rate;
2954 		}
2955 	}
2956 	tb->tb_rate[0] = rate;
2957 	tb->tb_rate[1] = rate_fb;
2958 	sc->sc_tx_rate = rate;
2959 
2960 	/*
2961 	 * TX radio tap
2962 	 */
2963 	if (ieee80211_radiotap_active_vap(vap)) {
2964 		sc->sc_tx_th.wt_flags = 0;
2965 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
2966 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2967 		if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_DS &&
2968 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2969 		    rate != (1 * 2)) {
2970 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2971 		}
2972 		sc->sc_tx_th.wt_rate = rate;
2973 
2974 		ieee80211_radiotap_tx(vap, m);
2975 	}
2976 
2977 	/*
2978 	 * Setup the embedded TX header
2979 	 */
2980 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
2981 	if (m == NULL) {
2982 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
2983 		    __func__);
2984 		return ENOBUFS;
2985 	}
2986 	hdr = mtod(m, struct bwi_txbuf_hdr *);
2987 
2988 	bzero(hdr, sizeof(*hdr));
2989 
2990 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
2991 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
2992 
2993 	if (!ismcast) {
2994 		uint16_t dur;
2995 
2996 		dur = ieee80211_ack_duration(sc->sc_rates, rate,
2997 		    ic->ic_flags & ~IEEE80211_F_SHPREAMBLE);
2998 
2999 		hdr->txh_fb_duration = htole16(dur);
3000 	}
3001 
3002 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3003 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3004 
3005 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3006 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3007 
3008 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3009 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3010 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM)
3011 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3012 	else if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && rate != (2 * 1))
3013 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3014 
3015 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3016 	if (!ismcast)
3017 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3018 	if (ieee80211_rate2phytype(sc->sc_rates, rate_fb) == IEEE80211_T_OFDM)
3019 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3020 
3021 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3022 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3023 
3024 	/* Catch any further usage */
3025 	hdr = NULL;
3026 	wh = NULL;
3027 
3028 	/* DMA load */
3029 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3030 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3031 	if (error && error != EFBIG) {
3032 		device_printf(sc->sc_dev, "%s: can't load TX buffer (1) %d\n",
3033 		    __func__, error);
3034 		goto back;
3035 	}
3036 
3037 	if (error) {	/* error == EFBIG */
3038 		struct mbuf *m_new;
3039 
3040 		m_new = m_defrag(m, M_NOWAIT);
3041 		if (m_new == NULL) {
3042 			device_printf(sc->sc_dev,
3043 			    "%s: can't defrag TX buffer\n", __func__);
3044 			error = ENOBUFS;
3045 			goto back;
3046 		} else {
3047 			m = m_new;
3048 		}
3049 
3050 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3051 					     bwi_dma_buf_addr, &paddr,
3052 					     BUS_DMA_NOWAIT);
3053 		if (error) {
3054 			device_printf(sc->sc_dev,
3055 			    "%s: can't load TX buffer (2) %d\n",
3056 			    __func__, error);
3057 			goto back;
3058 		}
3059 	}
3060 	error = 0;
3061 
3062 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3063 
3064 	tb->tb_mbuf = m;
3065 	tb->tb_ni = ni;
3066 
3067 #if 0
3068 	p = mtod(m, const uint8_t *);
3069 	for (i = 0; i < m->m_pkthdr.len; ++i) {
3070 		if (i != 0 && i % 8 == 0)
3071 			printf("\n");
3072 		printf("%02x ", p[i]);
3073 	}
3074 	printf("\n");
3075 #endif
3076 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3077 		idx, pkt_len, m->m_pkthdr.len);
3078 
3079 	/* Setup TX descriptor */
3080 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3081 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3082 			BUS_DMASYNC_PREWRITE);
3083 
3084 	/* Kick start */
3085 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3086 
3087 back:
3088 	if (error)
3089 		m_freem(m);
3090 	return error;
3091 }
3092 
3093 static int
3094 bwi_encap_raw(struct bwi_softc *sc, int idx, struct mbuf *m,
3095 	  struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3096 {
3097 	struct ieee80211vap *vap = ni->ni_vap;
3098 	struct ieee80211com *ic = ni->ni_ic;
3099 	struct bwi_ring_data *rd = &sc->sc_tx_rdata[BWI_TX_DATA_RING];
3100 	struct bwi_txbuf_data *tbd = &sc->sc_tx_bdata[BWI_TX_DATA_RING];
3101 	struct bwi_txbuf *tb = &tbd->tbd_buf[idx];
3102 	struct bwi_mac *mac;
3103 	struct bwi_txbuf_hdr *hdr;
3104 	struct ieee80211_frame *wh;
3105 	uint8_t rate, rate_fb;
3106 	uint32_t mac_ctrl;
3107 	uint16_t phy_ctrl;
3108 	bus_addr_t paddr;
3109 	int ismcast, pkt_len, error;
3110 
3111 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3112 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3113 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3114 
3115 	wh = mtod(m, struct ieee80211_frame *);
3116 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3117 
3118 	/* Get 802.11 frame len before prepending TX header */
3119 	pkt_len = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3120 
3121 	/*
3122 	 * Find TX rate
3123 	 */
3124 	rate = params->ibp_rate0;
3125 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3126 		/* XXX fall back to mcast/mgmt rate? */
3127 		m_freem(m);
3128 		return EINVAL;
3129 	}
3130 	if (params->ibp_try1 != 0) {
3131 		rate_fb = params->ibp_rate1;
3132 		if (!ieee80211_isratevalid(ic->ic_rt, rate_fb)) {
3133 			/* XXX fall back to rate0? */
3134 			m_freem(m);
3135 			return EINVAL;
3136 		}
3137 	} else
3138 		rate_fb = rate;
3139 	tb->tb_rate[0] = rate;
3140 	tb->tb_rate[1] = rate_fb;
3141 	sc->sc_tx_rate = rate;
3142 
3143 	/*
3144 	 * TX radio tap
3145 	 */
3146 	if (ieee80211_radiotap_active_vap(vap)) {
3147 		sc->sc_tx_th.wt_flags = 0;
3148 		/* XXX IEEE80211_BPF_CRYPTO */
3149 		if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3150 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3151 		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3152 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3153 		sc->sc_tx_th.wt_rate = rate;
3154 
3155 		ieee80211_radiotap_tx(vap, m);
3156 	}
3157 
3158 	/*
3159 	 * Setup the embedded TX header
3160 	 */
3161 	M_PREPEND(m, sizeof(*hdr), M_NOWAIT);
3162 	if (m == NULL) {
3163 		device_printf(sc->sc_dev, "%s: prepend TX header failed\n",
3164 		    __func__);
3165 		return ENOBUFS;
3166 	}
3167 	hdr = mtod(m, struct bwi_txbuf_hdr *);
3168 
3169 	bzero(hdr, sizeof(*hdr));
3170 
3171 	bcopy(wh->i_fc, hdr->txh_fc, sizeof(hdr->txh_fc));
3172 	bcopy(wh->i_addr1, hdr->txh_addr1, sizeof(hdr->txh_addr1));
3173 
3174 	mac_ctrl = BWI_TXH_MAC_C_HWSEQ | BWI_TXH_MAC_C_FIRST_FRAG;
3175 	if (!ismcast && (params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
3176 		uint16_t dur;
3177 
3178 		dur = ieee80211_ack_duration(sc->sc_rates, rate_fb, 0);
3179 
3180 		hdr->txh_fb_duration = htole16(dur);
3181 		mac_ctrl |= BWI_TXH_MAC_C_ACK;
3182 	}
3183 
3184 	hdr->txh_id = __SHIFTIN(BWI_TX_DATA_RING, BWI_TXH_ID_RING_MASK) |
3185 		      __SHIFTIN(idx, BWI_TXH_ID_IDX_MASK);
3186 
3187 	bwi_plcp_header(sc->sc_rates, hdr->txh_plcp, pkt_len, rate);
3188 	bwi_plcp_header(sc->sc_rates, hdr->txh_fb_plcp, pkt_len, rate_fb);
3189 
3190 	phy_ctrl = __SHIFTIN(mac->mac_rf.rf_ant_mode,
3191 			     BWI_TXH_PHY_C_ANTMODE_MASK);
3192 	if (ieee80211_rate2phytype(sc->sc_rates, rate) == IEEE80211_T_OFDM) {
3193 		phy_ctrl |= BWI_TXH_PHY_C_OFDM;
3194 		mac_ctrl |= BWI_TXH_MAC_C_FB_OFDM;
3195 	} else if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
3196 		phy_ctrl |= BWI_TXH_PHY_C_SHPREAMBLE;
3197 
3198 	hdr->txh_mac_ctrl = htole32(mac_ctrl);
3199 	hdr->txh_phy_ctrl = htole16(phy_ctrl);
3200 
3201 	/* Catch any further usage */
3202 	hdr = NULL;
3203 	wh = NULL;
3204 
3205 	/* DMA load */
3206 	error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3207 				     bwi_dma_buf_addr, &paddr, BUS_DMA_NOWAIT);
3208 	if (error != 0) {
3209 		struct mbuf *m_new;
3210 
3211 		if (error != EFBIG) {
3212 			device_printf(sc->sc_dev,
3213 			    "%s: can't load TX buffer (1) %d\n",
3214 			    __func__, error);
3215 			goto back;
3216 		}
3217 		m_new = m_defrag(m, M_NOWAIT);
3218 		if (m_new == NULL) {
3219 			device_printf(sc->sc_dev,
3220 			    "%s: can't defrag TX buffer\n", __func__);
3221 			error = ENOBUFS;
3222 			goto back;
3223 		}
3224 		m = m_new;
3225 		error = bus_dmamap_load_mbuf(sc->sc_buf_dtag, tb->tb_dmap, m,
3226 					     bwi_dma_buf_addr, &paddr,
3227 					     BUS_DMA_NOWAIT);
3228 		if (error) {
3229 			device_printf(sc->sc_dev,
3230 			    "%s: can't load TX buffer (2) %d\n",
3231 			    __func__, error);
3232 			goto back;
3233 		}
3234 	}
3235 
3236 	bus_dmamap_sync(sc->sc_buf_dtag, tb->tb_dmap, BUS_DMASYNC_PREWRITE);
3237 
3238 	tb->tb_mbuf = m;
3239 	tb->tb_ni = ni;
3240 
3241 	DPRINTF(sc, BWI_DBG_TX, "idx %d, pkt_len %d, buflen %d\n",
3242 		idx, pkt_len, m->m_pkthdr.len);
3243 
3244 	/* Setup TX descriptor */
3245 	sc->sc_setup_txdesc(sc, rd, idx, paddr, m->m_pkthdr.len);
3246 	bus_dmamap_sync(sc->sc_txring_dtag, rd->rdata_dmap,
3247 			BUS_DMASYNC_PREWRITE);
3248 
3249 	/* Kick start */
3250 	sc->sc_start_tx(sc, rd->rdata_txrx_ctrl, idx);
3251 back:
3252 	if (error)
3253 		m_freem(m);
3254 	return error;
3255 }
3256 
3257 static void
3258 bwi_start_tx32(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3259 {
3260 	idx = (idx + 1) % BWI_TX_NDESC;
3261 	CSR_WRITE_4(sc, tx_ctrl + BWI_TX32_INDEX,
3262 		    idx * sizeof(struct bwi_desc32));
3263 }
3264 
3265 static void
3266 bwi_start_tx64(struct bwi_softc *sc, uint32_t tx_ctrl, int idx)
3267 {
3268 	/* TODO:64 */
3269 }
3270 
3271 static void
3272 bwi_txeof_status32(struct bwi_softc *sc)
3273 {
3274 	uint32_t val, ctrl_base;
3275 	int end_idx;
3276 
3277 	ctrl_base = sc->sc_txstats->stats_ctrl_base;
3278 
3279 	val = CSR_READ_4(sc, ctrl_base + BWI_RX32_STATUS);
3280 	end_idx = __SHIFTOUT(val, BWI_RX32_STATUS_INDEX_MASK) /
3281 		  sizeof(struct bwi_desc32);
3282 
3283 	bwi_txeof_status(sc, end_idx);
3284 
3285 	CSR_WRITE_4(sc, ctrl_base + BWI_RX32_INDEX,
3286 		    end_idx * sizeof(struct bwi_desc32));
3287 
3288 	bwi_start_locked(sc);
3289 }
3290 
3291 static void
3292 bwi_txeof_status64(struct bwi_softc *sc)
3293 {
3294 	/* TODO:64 */
3295 }
3296 
3297 static void
3298 _bwi_txeof(struct bwi_softc *sc, uint16_t tx_id, int acked, int data_txcnt)
3299 {
3300 	struct bwi_txbuf_data *tbd;
3301 	struct bwi_txbuf *tb;
3302 	int ring_idx, buf_idx;
3303 	struct ieee80211_node *ni;
3304 
3305 	if (tx_id == 0) {
3306 		device_printf(sc->sc_dev, "%s: zero tx id\n", __func__);
3307 		return;
3308 	}
3309 
3310 	ring_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_RING_MASK);
3311 	buf_idx = __SHIFTOUT(tx_id, BWI_TXH_ID_IDX_MASK);
3312 
3313 	KASSERT(ring_idx == BWI_TX_DATA_RING, ("ring_idx %d", ring_idx));
3314 	KASSERT(buf_idx < BWI_TX_NDESC, ("buf_idx %d", buf_idx));
3315 
3316 	tbd = &sc->sc_tx_bdata[ring_idx];
3317 	KASSERT(tbd->tbd_used > 0, ("tbd_used %d", tbd->tbd_used));
3318 	tbd->tbd_used--;
3319 
3320 	tb = &tbd->tbd_buf[buf_idx];
3321 	DPRINTF(sc, BWI_DBG_TXEOF, "txeof idx %d, "
3322 		"acked %d, data_txcnt %d, ni %p\n",
3323 		buf_idx, acked, data_txcnt, tb->tb_ni);
3324 
3325 	bus_dmamap_unload(sc->sc_buf_dtag, tb->tb_dmap);
3326 
3327 	if ((ni = tb->tb_ni) != NULL) {
3328 		const struct bwi_txbuf_hdr *hdr =
3329 		    mtod(tb->tb_mbuf, const struct bwi_txbuf_hdr *);
3330 		struct ieee80211_ratectl_tx_status txs;
3331 
3332 		/* NB: update rate control only for unicast frames */
3333 		if (hdr->txh_mac_ctrl & htole32(BWI_TXH_MAC_C_ACK)) {
3334 			/*
3335 			 * Feed back 'acked and data_txcnt'.  Note that the
3336 			 * generic AMRR code only understands one tx rate
3337 			 * and the estimator doesn't handle real retry counts
3338 			 * well so to avoid over-aggressive downshifting we
3339 			 * treat any number of retries as "1".
3340 			 */
3341 			txs.flags = IEEE80211_RATECTL_STATUS_LONG_RETRY;
3342 			txs.long_retries = acked;
3343 			if (data_txcnt > 1)
3344 				txs.status = IEEE80211_RATECTL_TX_SUCCESS;
3345 			else {
3346 				txs.status =
3347 				    IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3348 			}
3349 			ieee80211_ratectl_tx_complete(ni, &txs);
3350 		}
3351 		ieee80211_tx_complete(ni, tb->tb_mbuf, !acked);
3352 		tb->tb_ni = NULL;
3353 	} else
3354 		m_freem(tb->tb_mbuf);
3355 	tb->tb_mbuf = NULL;
3356 
3357 	if (tbd->tbd_used == 0)
3358 		sc->sc_tx_timer = 0;
3359 }
3360 
3361 static void
3362 bwi_txeof_status(struct bwi_softc *sc, int end_idx)
3363 {
3364 	struct bwi_txstats_data *st = sc->sc_txstats;
3365 	int idx;
3366 
3367 	bus_dmamap_sync(st->stats_dtag, st->stats_dmap, BUS_DMASYNC_POSTREAD);
3368 
3369 	idx = st->stats_idx;
3370 	while (idx != end_idx) {
3371 		const struct bwi_txstats *stats = &st->stats[idx];
3372 
3373 		if ((stats->txs_flags & BWI_TXS_F_PENDING) == 0) {
3374 			int data_txcnt;
3375 
3376 			data_txcnt = __SHIFTOUT(stats->txs_txcnt,
3377 						BWI_TXS_TXCNT_DATA);
3378 			_bwi_txeof(sc, le16toh(stats->txs_id),
3379 				   stats->txs_flags & BWI_TXS_F_ACKED,
3380 				   data_txcnt);
3381 		}
3382 		idx = (idx + 1) % BWI_TXSTATS_NDESC;
3383 	}
3384 	st->stats_idx = idx;
3385 }
3386 
3387 static void
3388 bwi_txeof(struct bwi_softc *sc)
3389 {
3390 
3391 	for (;;) {
3392 		uint32_t tx_status0, tx_status1 __unused;
3393 		uint16_t tx_id;
3394 		int data_txcnt;
3395 
3396 		tx_status0 = CSR_READ_4(sc, BWI_TXSTATUS0);
3397 		if ((tx_status0 & BWI_TXSTATUS0_VALID) == 0)
3398 			break;
3399 		tx_status1 = CSR_READ_4(sc, BWI_TXSTATUS1);
3400 
3401 		tx_id = __SHIFTOUT(tx_status0, BWI_TXSTATUS0_TXID_MASK);
3402 		data_txcnt = __SHIFTOUT(tx_status0,
3403 				BWI_TXSTATUS0_DATA_TXCNT_MASK);
3404 
3405 		if (tx_status0 & (BWI_TXSTATUS0_AMPDU | BWI_TXSTATUS0_PENDING))
3406 			continue;
3407 
3408 		_bwi_txeof(sc, le16toh(tx_id), tx_status0 & BWI_TXSTATUS0_ACKED,
3409 		    data_txcnt);
3410 	}
3411 
3412 	bwi_start_locked(sc);
3413 }
3414 
3415 static int
3416 bwi_bbp_power_on(struct bwi_softc *sc, enum bwi_clock_mode clk_mode)
3417 {
3418 	bwi_power_on(sc, 1);
3419 	return bwi_set_clock_mode(sc, clk_mode);
3420 }
3421 
3422 static void
3423 bwi_bbp_power_off(struct bwi_softc *sc)
3424 {
3425 	bwi_set_clock_mode(sc, BWI_CLOCK_MODE_SLOW);
3426 	bwi_power_off(sc, 1);
3427 }
3428 
3429 static int
3430 bwi_get_pwron_delay(struct bwi_softc *sc)
3431 {
3432 	struct bwi_regwin *com, *old;
3433 	struct bwi_clock_freq freq;
3434 	uint32_t val;
3435 	int error;
3436 
3437 	com = &sc->sc_com_regwin;
3438 	KASSERT(BWI_REGWIN_EXIST(com), ("no regwin"));
3439 
3440 	if ((sc->sc_cap & BWI_CAP_CLKMODE) == 0)
3441 		return 0;
3442 
3443 	error = bwi_regwin_switch(sc, com, &old);
3444 	if (error)
3445 		return error;
3446 
3447 	bwi_get_clock_freq(sc, &freq);
3448 
3449 	val = CSR_READ_4(sc, BWI_PLL_ON_DELAY);
3450 	sc->sc_pwron_delay = howmany((val + 2) * 1000000, freq.clkfreq_min);
3451 	DPRINTF(sc, BWI_DBG_ATTACH, "power on delay %u\n", sc->sc_pwron_delay);
3452 
3453 	return bwi_regwin_switch(sc, old, NULL);
3454 }
3455 
3456 static int
3457 bwi_bus_attach(struct bwi_softc *sc)
3458 {
3459 	struct bwi_regwin *bus, *old;
3460 	int error;
3461 
3462 	bus = &sc->sc_bus_regwin;
3463 
3464 	error = bwi_regwin_switch(sc, bus, &old);
3465 	if (error)
3466 		return error;
3467 
3468 	if (!bwi_regwin_is_enabled(sc, bus))
3469 		bwi_regwin_enable(sc, bus, 0);
3470 
3471 	/* Disable interripts */
3472 	CSR_WRITE_4(sc, BWI_INTRVEC, 0);
3473 
3474 	return bwi_regwin_switch(sc, old, NULL);
3475 }
3476 
3477 static const char *
3478 bwi_regwin_name(const struct bwi_regwin *rw)
3479 {
3480 	switch (rw->rw_type) {
3481 	case BWI_REGWIN_T_COM:
3482 		return "COM";
3483 	case BWI_REGWIN_T_BUSPCI:
3484 		return "PCI";
3485 	case BWI_REGWIN_T_MAC:
3486 		return "MAC";
3487 	case BWI_REGWIN_T_BUSPCIE:
3488 		return "PCIE";
3489 	}
3490 	panic("unknown regwin type 0x%04x\n", rw->rw_type);
3491 	return NULL;
3492 }
3493 
3494 static uint32_t
3495 bwi_regwin_disable_bits(struct bwi_softc *sc)
3496 {
3497 	uint32_t busrev;
3498 
3499 	/* XXX cache this */
3500 	busrev = __SHIFTOUT(CSR_READ_4(sc, BWI_ID_LO), BWI_ID_LO_BUSREV_MASK);
3501 	DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT | BWI_DBG_MISC,
3502 		"bus rev %u\n", busrev);
3503 
3504 	if (busrev == BWI_BUSREV_0)
3505 		return BWI_STATE_LO_DISABLE1;
3506 	else if (busrev == BWI_BUSREV_1)
3507 		return BWI_STATE_LO_DISABLE2;
3508 	else
3509 		return (BWI_STATE_LO_DISABLE1 | BWI_STATE_LO_DISABLE2);
3510 }
3511 
3512 int
3513 bwi_regwin_is_enabled(struct bwi_softc *sc, struct bwi_regwin *rw)
3514 {
3515 	uint32_t val, disable_bits;
3516 
3517 	disable_bits = bwi_regwin_disable_bits(sc);
3518 	val = CSR_READ_4(sc, BWI_STATE_LO);
3519 
3520 	if ((val & (BWI_STATE_LO_CLOCK |
3521 		    BWI_STATE_LO_RESET |
3522 		    disable_bits)) == BWI_STATE_LO_CLOCK) {
3523 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is enabled\n",
3524 			bwi_regwin_name(rw));
3525 		return 1;
3526 	} else {
3527 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT, "%s is disabled\n",
3528 			bwi_regwin_name(rw));
3529 		return 0;
3530 	}
3531 }
3532 
3533 void
3534 bwi_regwin_disable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3535 {
3536 	uint32_t state_lo, disable_bits;
3537 	int i;
3538 
3539 	state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3540 
3541 	/*
3542 	 * If current regwin is in 'reset' state, it was already disabled.
3543 	 */
3544 	if (state_lo & BWI_STATE_LO_RESET) {
3545 		DPRINTF(sc, BWI_DBG_ATTACH | BWI_DBG_INIT,
3546 			"%s was already disabled\n", bwi_regwin_name(rw));
3547 		return;
3548 	}
3549 
3550 	disable_bits = bwi_regwin_disable_bits(sc);
3551 
3552 	/*
3553 	 * Disable normal clock
3554 	 */
3555 	state_lo = BWI_STATE_LO_CLOCK | disable_bits;
3556 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3557 
3558 	/*
3559 	 * Wait until normal clock is disabled
3560 	 */
3561 #define NRETRY	1000
3562 	for (i = 0; i < NRETRY; ++i) {
3563 		state_lo = CSR_READ_4(sc, BWI_STATE_LO);
3564 		if (state_lo & disable_bits)
3565 			break;
3566 		DELAY(10);
3567 	}
3568 	if (i == NRETRY) {
3569 		device_printf(sc->sc_dev, "%s disable clock timeout\n",
3570 			      bwi_regwin_name(rw));
3571 	}
3572 
3573 	for (i = 0; i < NRETRY; ++i) {
3574 		uint32_t state_hi;
3575 
3576 		state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3577 		if ((state_hi & BWI_STATE_HI_BUSY) == 0)
3578 			break;
3579 		DELAY(10);
3580 	}
3581 	if (i == NRETRY) {
3582 		device_printf(sc->sc_dev, "%s wait BUSY unset timeout\n",
3583 			      bwi_regwin_name(rw));
3584 	}
3585 #undef NRETRY
3586 
3587 	/*
3588 	 * Reset and disable regwin with gated clock
3589 	 */
3590 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3591 		   BWI_STATE_LO_CLOCK | BWI_STATE_LO_GATED_CLOCK |
3592 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3593 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3594 
3595 	/* Flush pending bus write */
3596 	CSR_READ_4(sc, BWI_STATE_LO);
3597 	DELAY(1);
3598 
3599 	/* Reset and disable regwin */
3600 	state_lo = BWI_STATE_LO_RESET | disable_bits |
3601 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3602 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3603 
3604 	/* Flush pending bus write */
3605 	CSR_READ_4(sc, BWI_STATE_LO);
3606 	DELAY(1);
3607 }
3608 
3609 void
3610 bwi_regwin_enable(struct bwi_softc *sc, struct bwi_regwin *rw, uint32_t flags)
3611 {
3612 	uint32_t state_lo, state_hi, imstate;
3613 
3614 	bwi_regwin_disable(sc, rw, flags);
3615 
3616 	/* Reset regwin with gated clock */
3617 	state_lo = BWI_STATE_LO_RESET |
3618 		   BWI_STATE_LO_CLOCK |
3619 		   BWI_STATE_LO_GATED_CLOCK |
3620 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3621 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3622 
3623 	/* Flush pending bus write */
3624 	CSR_READ_4(sc, BWI_STATE_LO);
3625 	DELAY(1);
3626 
3627 	state_hi = CSR_READ_4(sc, BWI_STATE_HI);
3628 	if (state_hi & BWI_STATE_HI_SERROR)
3629 		CSR_WRITE_4(sc, BWI_STATE_HI, 0);
3630 
3631 	imstate = CSR_READ_4(sc, BWI_IMSTATE);
3632 	if (imstate & (BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT)) {
3633 		imstate &= ~(BWI_IMSTATE_INBAND_ERR | BWI_IMSTATE_TIMEOUT);
3634 		CSR_WRITE_4(sc, BWI_IMSTATE, imstate);
3635 	}
3636 
3637 	/* Enable regwin with gated clock */
3638 	state_lo = BWI_STATE_LO_CLOCK |
3639 		   BWI_STATE_LO_GATED_CLOCK |
3640 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3641 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3642 
3643 	/* Flush pending bus write */
3644 	CSR_READ_4(sc, BWI_STATE_LO);
3645 	DELAY(1);
3646 
3647 	/* Enable regwin with normal clock */
3648 	state_lo = BWI_STATE_LO_CLOCK |
3649 		   __SHIFTIN(flags, BWI_STATE_LO_FLAGS_MASK);
3650 	CSR_WRITE_4(sc, BWI_STATE_LO, state_lo);
3651 
3652 	/* Flush pending bus write */
3653 	CSR_READ_4(sc, BWI_STATE_LO);
3654 	DELAY(1);
3655 }
3656 
3657 static void
3658 bwi_set_bssid(struct bwi_softc *sc, const uint8_t *bssid)
3659 {
3660 	struct bwi_mac *mac;
3661 	struct bwi_myaddr_bssid buf;
3662 	const uint8_t *p;
3663 	uint32_t val;
3664 	int n, i;
3665 
3666 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3667 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3668 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3669 
3670 	bwi_set_addr_filter(sc, BWI_ADDR_FILTER_BSSID, bssid);
3671 
3672 	bcopy(sc->sc_ic.ic_macaddr, buf.myaddr, sizeof(buf.myaddr));
3673 	bcopy(bssid, buf.bssid, sizeof(buf.bssid));
3674 
3675 	n = sizeof(buf) / sizeof(val);
3676 	p = (const uint8_t *)&buf;
3677 	for (i = 0; i < n; ++i) {
3678 		int j;
3679 
3680 		val = 0;
3681 		for (j = 0; j < sizeof(val); ++j)
3682 			val |= ((uint32_t)(*p++)) << (j * 8);
3683 
3684 		TMPLT_WRITE_4(mac, 0x20 + (i * sizeof(val)), val);
3685 	}
3686 }
3687 
3688 static void
3689 bwi_updateslot(struct ieee80211com *ic)
3690 {
3691 	struct bwi_softc *sc = ic->ic_softc;
3692 	struct bwi_mac *mac;
3693 
3694 	BWI_LOCK(sc);
3695 	if (sc->sc_flags & BWI_F_RUNNING) {
3696 		DPRINTF(sc, BWI_DBG_80211, "%s\n", __func__);
3697 
3698 		KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3699 		    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3700 		mac = (struct bwi_mac *)sc->sc_cur_regwin;
3701 
3702 		bwi_mac_updateslot(mac, (ic->ic_flags & IEEE80211_F_SHSLOT));
3703 	}
3704 	BWI_UNLOCK(sc);
3705 }
3706 
3707 static void
3708 bwi_calibrate(void *xsc)
3709 {
3710 	struct bwi_softc *sc = xsc;
3711 	struct bwi_mac *mac;
3712 
3713 	BWI_ASSERT_LOCKED(sc);
3714 
3715 	KASSERT(sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR,
3716 	    ("opmode %d", sc->sc_ic.ic_opmode));
3717 
3718 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3719 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3720 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3721 
3722 	bwi_mac_calibrate_txpower(mac, sc->sc_txpwrcb_type);
3723 	sc->sc_txpwrcb_type = BWI_TXPWR_CALIB;
3724 
3725 	/* XXX 15 seconds */
3726 	callout_reset(&sc->sc_calib_ch, hz * 15, bwi_calibrate, sc);
3727 }
3728 
3729 static int
3730 bwi_calc_rssi(struct bwi_softc *sc, const struct bwi_rxbuf_hdr *hdr)
3731 {
3732 	struct bwi_mac *mac;
3733 
3734 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3735 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3736 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3737 
3738 	return bwi_rf_calc_rssi(mac, hdr);
3739 }
3740 
3741 static int
3742 bwi_calc_noise(struct bwi_softc *sc)
3743 {
3744 	struct bwi_mac *mac;
3745 
3746 	KASSERT(sc->sc_cur_regwin->rw_type == BWI_REGWIN_T_MAC,
3747 	    ("current regwin type %d", sc->sc_cur_regwin->rw_type));
3748 	mac = (struct bwi_mac *)sc->sc_cur_regwin;
3749 
3750 	return bwi_rf_calc_noise(mac);
3751 }
3752 
3753 static __inline uint8_t
3754 bwi_plcp2rate(const uint32_t plcp0, enum ieee80211_phytype type)
3755 {
3756 	uint32_t plcp = le32toh(plcp0) & IEEE80211_OFDM_PLCP_RATE_MASK;
3757 	return (ieee80211_plcp2rate(plcp, type));
3758 }
3759 
3760 static void
3761 bwi_rx_radiotap(struct bwi_softc *sc, struct mbuf *m,
3762     struct bwi_rxbuf_hdr *hdr, const void *plcp, int rate, int rssi, int noise)
3763 {
3764 	const struct ieee80211_frame_min *wh;
3765 
3766 	sc->sc_rx_th.wr_flags = IEEE80211_RADIOTAP_F_FCS;
3767 	if (htole16(hdr->rxh_flags1) & BWI_RXH_F1_SHPREAMBLE)
3768 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3769 
3770 	wh = mtod(m, const struct ieee80211_frame_min *);
3771 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)
3772 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_WEP;
3773 
3774 	sc->sc_rx_th.wr_tsf = hdr->rxh_tsf; /* No endian conversion */
3775 	sc->sc_rx_th.wr_rate = rate;
3776 	sc->sc_rx_th.wr_antsignal = rssi;
3777 	sc->sc_rx_th.wr_antnoise = noise;
3778 }
3779 
3780 static void
3781 bwi_led_attach(struct bwi_softc *sc)
3782 {
3783 	const uint8_t *led_act = NULL;
3784 	uint16_t gpio, val[BWI_LED_MAX];
3785 	int i;
3786 
3787 	for (i = 0; i < nitems(bwi_vendor_led_act); ++i) {
3788 		if (sc->sc_pci_subvid == bwi_vendor_led_act[i].vid) {
3789 			led_act = bwi_vendor_led_act[i].led_act;
3790 			break;
3791 		}
3792 	}
3793 	if (led_act == NULL)
3794 		led_act = bwi_default_led_act;
3795 
3796 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO01);
3797 	val[0] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_0);
3798 	val[1] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_1);
3799 
3800 	gpio = bwi_read_sprom(sc, BWI_SPROM_GPIO23);
3801 	val[2] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_2);
3802 	val[3] = __SHIFTOUT(gpio, BWI_SPROM_GPIO_3);
3803 
3804 	for (i = 0; i < BWI_LED_MAX; ++i) {
3805 		struct bwi_led *led = &sc->sc_leds[i];
3806 
3807 		if (val[i] == 0xff) {
3808 			led->l_act = led_act[i];
3809 		} else {
3810 			if (val[i] & BWI_LED_ACT_LOW)
3811 				led->l_flags |= BWI_LED_F_ACTLOW;
3812 			led->l_act = __SHIFTOUT(val[i], BWI_LED_ACT_MASK);
3813 		}
3814 		led->l_mask = (1 << i);
3815 
3816 		if (led->l_act == BWI_LED_ACT_BLINK_SLOW ||
3817 		    led->l_act == BWI_LED_ACT_BLINK_POLL ||
3818 		    led->l_act == BWI_LED_ACT_BLINK) {
3819 			led->l_flags |= BWI_LED_F_BLINK;
3820 			if (led->l_act == BWI_LED_ACT_BLINK_POLL)
3821 				led->l_flags |= BWI_LED_F_POLLABLE;
3822 			else if (led->l_act == BWI_LED_ACT_BLINK_SLOW)
3823 				led->l_flags |= BWI_LED_F_SLOW;
3824 
3825 			if (sc->sc_blink_led == NULL) {
3826 				sc->sc_blink_led = led;
3827 				if (led->l_flags & BWI_LED_F_SLOW)
3828 					BWI_LED_SLOWDOWN(sc->sc_led_idle);
3829 			}
3830 		}
3831 
3832 		DPRINTF(sc, BWI_DBG_LED | BWI_DBG_ATTACH,
3833 			"%dth led, act %d, lowact %d\n", i,
3834 			led->l_act, led->l_flags & BWI_LED_F_ACTLOW);
3835 	}
3836 	callout_init_mtx(&sc->sc_led_blink_ch, &sc->sc_mtx, 0);
3837 }
3838 
3839 static __inline uint16_t
3840 bwi_led_onoff(const struct bwi_led *led, uint16_t val, int on)
3841 {
3842 	if (led->l_flags & BWI_LED_F_ACTLOW)
3843 		on = !on;
3844 	if (on)
3845 		val |= led->l_mask;
3846 	else
3847 		val &= ~led->l_mask;
3848 	return val;
3849 }
3850 
3851 static void
3852 bwi_led_newstate(struct bwi_softc *sc, enum ieee80211_state nstate)
3853 {
3854 	struct ieee80211com *ic = &sc->sc_ic;
3855 	uint16_t val;
3856 	int i;
3857 
3858 	if (nstate == IEEE80211_S_INIT) {
3859 		callout_stop(&sc->sc_led_blink_ch);
3860 		sc->sc_led_blinking = 0;
3861 	}
3862 
3863 	if ((sc->sc_flags & BWI_F_RUNNING) == 0)
3864 		return;
3865 
3866 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3867 	for (i = 0; i < BWI_LED_MAX; ++i) {
3868 		struct bwi_led *led = &sc->sc_leds[i];
3869 		int on;
3870 
3871 		if (led->l_act == BWI_LED_ACT_UNKN ||
3872 		    led->l_act == BWI_LED_ACT_NULL)
3873 			continue;
3874 
3875 		if ((led->l_flags & BWI_LED_F_BLINK) &&
3876 		    nstate != IEEE80211_S_INIT)
3877 		    	continue;
3878 
3879 		switch (led->l_act) {
3880 		case BWI_LED_ACT_ON:	/* Always on */
3881 			on = 1;
3882 			break;
3883 		case BWI_LED_ACT_OFF:	/* Always off */
3884 		case BWI_LED_ACT_5GHZ:	/* TODO: 11A */
3885 			on = 0;
3886 			break;
3887 		default:
3888 			on = 1;
3889 			switch (nstate) {
3890 			case IEEE80211_S_INIT:
3891 				on = 0;
3892 				break;
3893 			case IEEE80211_S_RUN:
3894 				if (led->l_act == BWI_LED_ACT_11G &&
3895 				    ic->ic_curmode != IEEE80211_MODE_11G)
3896 					on = 0;
3897 				break;
3898 			default:
3899 				if (led->l_act == BWI_LED_ACT_ASSOC)
3900 					on = 0;
3901 				break;
3902 			}
3903 			break;
3904 		}
3905 
3906 		val = bwi_led_onoff(led, val, on);
3907 	}
3908 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3909 }
3910 static void
3911 bwi_led_event(struct bwi_softc *sc, int event)
3912 {
3913 	struct bwi_led *led = sc->sc_blink_led;
3914 	int rate;
3915 
3916 	if (event == BWI_LED_EVENT_POLL) {
3917 		if ((led->l_flags & BWI_LED_F_POLLABLE) == 0)
3918 			return;
3919 		if (ticks - sc->sc_led_ticks < sc->sc_led_idle)
3920 			return;
3921 	}
3922 
3923 	sc->sc_led_ticks = ticks;
3924 	if (sc->sc_led_blinking)
3925 		return;
3926 
3927 	switch (event) {
3928 	case BWI_LED_EVENT_RX:
3929 		rate = sc->sc_rx_rate;
3930 		break;
3931 	case BWI_LED_EVENT_TX:
3932 		rate = sc->sc_tx_rate;
3933 		break;
3934 	case BWI_LED_EVENT_POLL:
3935 		rate = 0;
3936 		break;
3937 	default:
3938 		panic("unknown LED event %d\n", event);
3939 		break;
3940 	}
3941 	bwi_led_blink_start(sc, bwi_led_duration[rate].on_dur,
3942 	    bwi_led_duration[rate].off_dur);
3943 }
3944 
3945 static void
3946 bwi_led_blink_start(struct bwi_softc *sc, int on_dur, int off_dur)
3947 {
3948 	struct bwi_led *led = sc->sc_blink_led;
3949 	uint16_t val;
3950 
3951 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3952 	val = bwi_led_onoff(led, val, 1);
3953 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3954 
3955 	if (led->l_flags & BWI_LED_F_SLOW) {
3956 		BWI_LED_SLOWDOWN(on_dur);
3957 		BWI_LED_SLOWDOWN(off_dur);
3958 	}
3959 
3960 	sc->sc_led_blinking = 1;
3961 	sc->sc_led_blink_offdur = off_dur;
3962 
3963 	callout_reset(&sc->sc_led_blink_ch, on_dur, bwi_led_blink_next, sc);
3964 }
3965 
3966 static void
3967 bwi_led_blink_next(void *xsc)
3968 {
3969 	struct bwi_softc *sc = xsc;
3970 	uint16_t val;
3971 
3972 	val = CSR_READ_2(sc, BWI_MAC_GPIO_CTRL);
3973 	val = bwi_led_onoff(sc->sc_blink_led, val, 0);
3974 	CSR_WRITE_2(sc, BWI_MAC_GPIO_CTRL, val);
3975 
3976 	callout_reset(&sc->sc_led_blink_ch, sc->sc_led_blink_offdur,
3977 	    bwi_led_blink_end, sc);
3978 }
3979 
3980 static void
3981 bwi_led_blink_end(void *xsc)
3982 {
3983 	struct bwi_softc *sc = xsc;
3984 	sc->sc_led_blinking = 0;
3985 }
3986 
3987 static void
3988 bwi_restart(void *xsc, int pending)
3989 {
3990 	struct bwi_softc *sc = xsc;
3991 
3992 	device_printf(sc->sc_dev, "%s begin, help!\n", __func__);
3993 	BWI_LOCK(sc);
3994 	bwi_init_statechg(sc, 0);
3995 #if 0
3996 	bwi_start_locked(sc);
3997 #endif
3998 	BWI_UNLOCK(sc);
3999 }
4000