1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 39 /* 40 * Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver 41 * 42 * The Broadcom BCM5700 is based on technology originally developed by 43 * Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet 44 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 45 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 46 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 47 * frames, highly configurable RX filtering, and 16 RX and TX queues 48 * (which, along with RX filter rules, can be used for QOS applications). 49 * Other features, such as TCP segmentation, may be available as part 50 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 51 * firmware images can be stored in hardware and need not be compiled 52 * into the driver. 53 * 54 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 55 * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. 56 * 57 * The BCM5701 is a single-chip solution incorporating both the BCM5700 58 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 59 * does not support external SSRAM. 60 * 61 * Broadcom also produces a variation of the BCM5700 under the "Altima" 62 * brand name, which is functionally similar but lacks PCI-X support. 63 * 64 * Without external SSRAM, you can only have at most 4 TX rings, 65 * and the use of the mini RX ring is disabled. This seems to imply 66 * that these features are simply not available on the BCM5701. As a 67 * result, this driver does not implement any support for the mini RX 68 * ring. 69 */ 70 71 #ifdef HAVE_KERNEL_OPTION_HEADERS 72 #include "opt_device_polling.h" 73 #endif 74 75 #include <sys/param.h> 76 #include <sys/endian.h> 77 #include <sys/systm.h> 78 #include <sys/sockio.h> 79 #include <sys/mbuf.h> 80 #include <sys/malloc.h> 81 #include <sys/kernel.h> 82 #include <sys/module.h> 83 #include <sys/socket.h> 84 #include <sys/sysctl.h> 85 #include <sys/taskqueue.h> 86 87 #include <net/debugnet.h> 88 #include <net/if.h> 89 #include <net/if_var.h> 90 #include <net/if_arp.h> 91 #include <net/ethernet.h> 92 #include <net/if_dl.h> 93 #include <net/if_media.h> 94 95 #include <net/bpf.h> 96 97 #include <net/if_types.h> 98 #include <net/if_vlan_var.h> 99 100 #include <netinet/in_systm.h> 101 #include <netinet/in.h> 102 #include <netinet/ip.h> 103 #include <netinet/tcp.h> 104 105 #include <machine/bus.h> 106 #include <machine/resource.h> 107 #include <sys/bus.h> 108 #include <sys/rman.h> 109 110 #include <dev/mii/mii.h> 111 #include <dev/mii/miivar.h> 112 #include "miidevs.h" 113 #include <dev/mii/brgphyreg.h> 114 115 #include <dev/pci/pcireg.h> 116 #include <dev/pci/pcivar.h> 117 118 #include <dev/bge/if_bgereg.h> 119 120 #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP) 121 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 122 123 MODULE_DEPEND(bge, pci, 1, 1, 1); 124 MODULE_DEPEND(bge, ether, 1, 1, 1); 125 MODULE_DEPEND(bge, miibus, 1, 1, 1); 126 127 /* "device miibus" required. See GENERIC if you get errors here. */ 128 #include "miibus_if.h" 129 130 /* 131 * Various supported device vendors/types and their names. Note: the 132 * spec seems to indicate that the hardware still has Alteon's vendor 133 * ID burned into it, though it will always be overriden by the vendor 134 * ID in the EEPROM. Just to be safe, we cover all possibilities. 135 */ 136 static const struct bge_type { 137 uint16_t bge_vid; 138 uint16_t bge_did; 139 } bge_devs[] = { 140 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 }, 141 { ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 }, 142 143 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 }, 144 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 }, 145 { ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 }, 146 147 { APPLE_VENDORID, APPLE_DEVICE_BCM5701 }, 148 149 { BCOM_VENDORID, BCOM_DEVICEID_BCM5700 }, 150 { BCOM_VENDORID, BCOM_DEVICEID_BCM5701 }, 151 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702 }, 152 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT }, 153 { BCOM_VENDORID, BCOM_DEVICEID_BCM5702X }, 154 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703 }, 155 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT }, 156 { BCOM_VENDORID, BCOM_DEVICEID_BCM5703X }, 157 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704C }, 158 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S }, 159 { BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT }, 160 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705 }, 161 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705F }, 162 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705K }, 163 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M }, 164 { BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT }, 165 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714C }, 166 { BCOM_VENDORID, BCOM_DEVICEID_BCM5714S }, 167 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715 }, 168 { BCOM_VENDORID, BCOM_DEVICEID_BCM5715S }, 169 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717 }, 170 { BCOM_VENDORID, BCOM_DEVICEID_BCM5717C }, 171 { BCOM_VENDORID, BCOM_DEVICEID_BCM5718 }, 172 { BCOM_VENDORID, BCOM_DEVICEID_BCM5719 }, 173 { BCOM_VENDORID, BCOM_DEVICEID_BCM5720 }, 174 { BCOM_VENDORID, BCOM_DEVICEID_BCM5721 }, 175 { BCOM_VENDORID, BCOM_DEVICEID_BCM5722 }, 176 { BCOM_VENDORID, BCOM_DEVICEID_BCM5723 }, 177 { BCOM_VENDORID, BCOM_DEVICEID_BCM5725 }, 178 { BCOM_VENDORID, BCOM_DEVICEID_BCM5727 }, 179 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750 }, 180 { BCOM_VENDORID, BCOM_DEVICEID_BCM5750M }, 181 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751 }, 182 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751F }, 183 { BCOM_VENDORID, BCOM_DEVICEID_BCM5751M }, 184 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752 }, 185 { BCOM_VENDORID, BCOM_DEVICEID_BCM5752M }, 186 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753 }, 187 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753F }, 188 { BCOM_VENDORID, BCOM_DEVICEID_BCM5753M }, 189 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754 }, 190 { BCOM_VENDORID, BCOM_DEVICEID_BCM5754M }, 191 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755 }, 192 { BCOM_VENDORID, BCOM_DEVICEID_BCM5755M }, 193 { BCOM_VENDORID, BCOM_DEVICEID_BCM5756 }, 194 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761 }, 195 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761E }, 196 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761S }, 197 { BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE }, 198 { BCOM_VENDORID, BCOM_DEVICEID_BCM5762 }, 199 { BCOM_VENDORID, BCOM_DEVICEID_BCM5764 }, 200 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780 }, 201 { BCOM_VENDORID, BCOM_DEVICEID_BCM5780S }, 202 { BCOM_VENDORID, BCOM_DEVICEID_BCM5781 }, 203 { BCOM_VENDORID, BCOM_DEVICEID_BCM5782 }, 204 { BCOM_VENDORID, BCOM_DEVICEID_BCM5784 }, 205 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785F }, 206 { BCOM_VENDORID, BCOM_DEVICEID_BCM5785G }, 207 { BCOM_VENDORID, BCOM_DEVICEID_BCM5786 }, 208 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787 }, 209 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787F }, 210 { BCOM_VENDORID, BCOM_DEVICEID_BCM5787M }, 211 { BCOM_VENDORID, BCOM_DEVICEID_BCM5788 }, 212 { BCOM_VENDORID, BCOM_DEVICEID_BCM5789 }, 213 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901 }, 214 { BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 }, 215 { BCOM_VENDORID, BCOM_DEVICEID_BCM5903M }, 216 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906 }, 217 { BCOM_VENDORID, BCOM_DEVICEID_BCM5906M }, 218 { BCOM_VENDORID, BCOM_DEVICEID_BCM57760 }, 219 { BCOM_VENDORID, BCOM_DEVICEID_BCM57761 }, 220 { BCOM_VENDORID, BCOM_DEVICEID_BCM57762 }, 221 { BCOM_VENDORID, BCOM_DEVICEID_BCM57764 }, 222 { BCOM_VENDORID, BCOM_DEVICEID_BCM57765 }, 223 { BCOM_VENDORID, BCOM_DEVICEID_BCM57766 }, 224 { BCOM_VENDORID, BCOM_DEVICEID_BCM57767 }, 225 { BCOM_VENDORID, BCOM_DEVICEID_BCM57780 }, 226 { BCOM_VENDORID, BCOM_DEVICEID_BCM57781 }, 227 { BCOM_VENDORID, BCOM_DEVICEID_BCM57782 }, 228 { BCOM_VENDORID, BCOM_DEVICEID_BCM57785 }, 229 { BCOM_VENDORID, BCOM_DEVICEID_BCM57786 }, 230 { BCOM_VENDORID, BCOM_DEVICEID_BCM57787 }, 231 { BCOM_VENDORID, BCOM_DEVICEID_BCM57788 }, 232 { BCOM_VENDORID, BCOM_DEVICEID_BCM57790 }, 233 { BCOM_VENDORID, BCOM_DEVICEID_BCM57791 }, 234 { BCOM_VENDORID, BCOM_DEVICEID_BCM57795 }, 235 236 { SK_VENDORID, SK_DEVICEID_ALTIMA }, 237 238 { TC_VENDORID, TC_DEVICEID_3C996 }, 239 240 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 }, 241 { FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 }, 242 { 0, 0 } 243 }; 244 245 static const struct bge_vendor { 246 uint16_t v_id; 247 const char *v_name; 248 } bge_vendors[] = { 249 { ALTEON_VENDORID, "Alteon" }, 250 { ALTIMA_VENDORID, "Altima" }, 251 { APPLE_VENDORID, "Apple" }, 252 { BCOM_VENDORID, "Broadcom" }, 253 { SK_VENDORID, "SysKonnect" }, 254 { TC_VENDORID, "3Com" }, 255 { FJTSU_VENDORID, "Fujitsu" }, 256 { 0, NULL } 257 }; 258 259 static const struct bge_revision { 260 uint32_t br_chipid; 261 const char *br_name; 262 } bge_revisions[] = { 263 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 264 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 265 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 266 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 267 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 268 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 269 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 270 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 271 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 272 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 273 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 274 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 275 { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, 276 { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, 277 { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, 278 { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, 279 { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, 280 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 281 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 282 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 283 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 284 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 285 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 286 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 287 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 288 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 289 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 290 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 291 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 292 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 293 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 294 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 295 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 296 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 297 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 298 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 299 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 300 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 301 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 302 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 303 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 304 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 305 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 306 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 307 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 308 { BGE_CHIPID_BCM5717_C0, "BCM5717 C0" }, 309 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 310 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 311 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 312 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 313 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 314 { BGE_CHIPID_BCM5722_A0, "BCM5722 A0" }, 315 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 316 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 317 { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, 318 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 319 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 320 /* 5754 and 5787 share the same ASIC ID */ 321 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 322 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 323 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 324 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 325 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 326 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 327 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 328 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 329 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 330 { 0, NULL } 331 }; 332 333 /* 334 * Some defaults for major revisions, so that newer steppings 335 * that we don't know about have a shot at working. 336 */ 337 static const struct bge_revision bge_majorrevs[] = { 338 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 339 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 340 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 341 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 342 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 343 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 344 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 345 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 346 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 347 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 348 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 349 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 350 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 351 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 352 /* 5754 and 5787 share the same ASIC ID */ 353 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 354 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 355 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 356 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 357 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 358 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 359 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 360 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 361 { BGE_ASICREV_BCM5762, "unknown BCM5762" }, 362 { 0, NULL } 363 }; 364 365 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO) 366 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY) 367 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS) 368 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY) 369 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS) 370 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS) 371 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS) 372 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS) 373 374 static uint32_t bge_chipid(device_t); 375 static const struct bge_vendor * bge_lookup_vendor(uint16_t); 376 static const struct bge_revision * bge_lookup_rev(uint32_t); 377 378 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 379 380 static int bge_probe(device_t); 381 static int bge_attach(device_t); 382 static int bge_detach(device_t); 383 static int bge_suspend(device_t); 384 static int bge_resume(device_t); 385 static void bge_release_resources(struct bge_softc *); 386 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int); 387 static int bge_dma_alloc(struct bge_softc *); 388 static void bge_dma_free(struct bge_softc *); 389 static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t, 390 bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); 391 392 static void bge_devinfo(struct bge_softc *); 393 static int bge_mbox_reorder(struct bge_softc *); 394 395 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]); 396 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 397 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 398 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 399 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 400 401 static void bge_txeof(struct bge_softc *, uint16_t); 402 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 403 static int bge_rxeof(struct bge_softc *, uint16_t, int); 404 405 static void bge_asf_driver_up (struct bge_softc *); 406 static void bge_tick(void *); 407 static void bge_stats_clear_regs(struct bge_softc *); 408 static void bge_stats_update(struct bge_softc *); 409 static void bge_stats_update_regs(struct bge_softc *); 410 static struct mbuf *bge_check_short_dma(struct mbuf *); 411 static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *, 412 uint16_t *, uint16_t *); 413 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *); 414 415 static void bge_intr(void *); 416 static int bge_msi_intr(void *); 417 static void bge_intr_task(void *, int); 418 static void bge_start(if_t); 419 static void bge_start_locked(if_t); 420 static void bge_start_tx(struct bge_softc *, uint32_t); 421 static int bge_ioctl(if_t, u_long, caddr_t); 422 static void bge_init_locked(struct bge_softc *); 423 static void bge_init(void *); 424 static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t); 425 static void bge_stop(struct bge_softc *); 426 static void bge_watchdog(struct bge_softc *); 427 static int bge_shutdown(device_t); 428 static int bge_ifmedia_upd_locked(if_t); 429 static int bge_ifmedia_upd(if_t); 430 static void bge_ifmedia_sts(if_t, struct ifmediareq *); 431 static uint64_t bge_get_counter(if_t, ift_counter); 432 433 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 434 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int); 435 436 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 437 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); 438 439 static void bge_setpromisc(struct bge_softc *); 440 static void bge_setmulti(struct bge_softc *); 441 static void bge_setvlan(struct bge_softc *); 442 443 static __inline void bge_rxreuse_std(struct bge_softc *, int); 444 static __inline void bge_rxreuse_jumbo(struct bge_softc *, int); 445 static int bge_newbuf_std(struct bge_softc *, int); 446 static int bge_newbuf_jumbo(struct bge_softc *, int); 447 static int bge_init_rx_ring_std(struct bge_softc *); 448 static void bge_free_rx_ring_std(struct bge_softc *); 449 static int bge_init_rx_ring_jumbo(struct bge_softc *); 450 static void bge_free_rx_ring_jumbo(struct bge_softc *); 451 static void bge_free_tx_ring(struct bge_softc *); 452 static int bge_init_tx_ring(struct bge_softc *); 453 454 static int bge_chipinit(struct bge_softc *); 455 static int bge_blockinit(struct bge_softc *); 456 static uint32_t bge_dma_swap_options(struct bge_softc *); 457 458 static int bge_has_eaddr(struct bge_softc *); 459 static uint32_t bge_readmem_ind(struct bge_softc *, int); 460 static void bge_writemem_ind(struct bge_softc *, int, int); 461 static void bge_writembx(struct bge_softc *, int, int); 462 #ifdef notdef 463 static uint32_t bge_readreg_ind(struct bge_softc *, int); 464 #endif 465 static void bge_writemem_direct(struct bge_softc *, int, int); 466 static void bge_writereg_ind(struct bge_softc *, int, int); 467 468 static int bge_miibus_readreg(device_t, int, int); 469 static int bge_miibus_writereg(device_t, int, int, int); 470 static void bge_miibus_statchg(device_t); 471 #ifdef DEVICE_POLLING 472 static int bge_poll(if_t ifp, enum poll_cmd cmd, int count); 473 #endif 474 475 #define BGE_RESET_SHUTDOWN 0 476 #define BGE_RESET_START 1 477 #define BGE_RESET_SUSPEND 2 478 static void bge_sig_post_reset(struct bge_softc *, int); 479 static void bge_sig_legacy(struct bge_softc *, int); 480 static void bge_sig_pre_reset(struct bge_softc *, int); 481 static void bge_stop_fw(struct bge_softc *); 482 static int bge_reset(struct bge_softc *); 483 static void bge_link_upd(struct bge_softc *); 484 485 static void bge_ape_lock_init(struct bge_softc *); 486 static void bge_ape_read_fw_ver(struct bge_softc *); 487 static int bge_ape_lock(struct bge_softc *, int); 488 static void bge_ape_unlock(struct bge_softc *, int); 489 static void bge_ape_send_event(struct bge_softc *, uint32_t); 490 static void bge_ape_driver_state_change(struct bge_softc *, int); 491 492 /* 493 * The BGE_REGISTER_DEBUG option is only for low-level debugging. It may 494 * leak information to untrusted users. It is also known to cause alignment 495 * traps on certain architectures. 496 */ 497 #ifdef BGE_REGISTER_DEBUG 498 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS); 499 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS); 500 static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS); 501 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS); 502 #endif 503 static void bge_add_sysctls(struct bge_softc *); 504 static void bge_add_sysctl_stats_regs(struct bge_softc *, 505 struct sysctl_ctx_list *, struct sysctl_oid_list *); 506 static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *, 507 struct sysctl_oid_list *); 508 static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS); 509 510 DEBUGNET_DEFINE(bge); 511 512 static device_method_t bge_methods[] = { 513 /* Device interface */ 514 DEVMETHOD(device_probe, bge_probe), 515 DEVMETHOD(device_attach, bge_attach), 516 DEVMETHOD(device_detach, bge_detach), 517 DEVMETHOD(device_shutdown, bge_shutdown), 518 DEVMETHOD(device_suspend, bge_suspend), 519 DEVMETHOD(device_resume, bge_resume), 520 521 /* MII interface */ 522 DEVMETHOD(miibus_readreg, bge_miibus_readreg), 523 DEVMETHOD(miibus_writereg, bge_miibus_writereg), 524 DEVMETHOD(miibus_statchg, bge_miibus_statchg), 525 526 DEVMETHOD_END 527 }; 528 529 static driver_t bge_driver = { 530 "bge", 531 bge_methods, 532 sizeof(struct bge_softc) 533 }; 534 535 static devclass_t bge_devclass; 536 537 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0); 538 MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs, 539 nitems(bge_devs) - 1); 540 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); 541 542 static int bge_allow_asf = 1; 543 544 static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 545 "BGE driver parameters"); 546 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0, 547 "Allow ASF mode if available"); 548 549 static int 550 bge_has_eaddr(struct bge_softc *sc) 551 { 552 return (1); 553 } 554 555 static uint32_t 556 bge_readmem_ind(struct bge_softc *sc, int off) 557 { 558 device_t dev; 559 uint32_t val; 560 561 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 562 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 563 return (0); 564 565 dev = sc->bge_dev; 566 567 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 568 val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4); 569 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 570 return (val); 571 } 572 573 static void 574 bge_writemem_ind(struct bge_softc *sc, int off, int val) 575 { 576 device_t dev; 577 578 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 579 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 580 return; 581 582 dev = sc->bge_dev; 583 584 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); 585 pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); 586 pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4); 587 } 588 589 #ifdef notdef 590 static uint32_t 591 bge_readreg_ind(struct bge_softc *sc, int off) 592 { 593 device_t dev; 594 595 dev = sc->bge_dev; 596 597 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 598 return (pci_read_config(dev, BGE_PCI_REG_DATA, 4)); 599 } 600 #endif 601 602 static void 603 bge_writereg_ind(struct bge_softc *sc, int off, int val) 604 { 605 device_t dev; 606 607 dev = sc->bge_dev; 608 609 pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); 610 pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); 611 } 612 613 static void 614 bge_writemem_direct(struct bge_softc *sc, int off, int val) 615 { 616 CSR_WRITE_4(sc, off, val); 617 } 618 619 static void 620 bge_writembx(struct bge_softc *sc, int off, int val) 621 { 622 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 623 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 624 625 CSR_WRITE_4(sc, off, val); 626 if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0) 627 CSR_READ_4(sc, off); 628 } 629 630 /* 631 * Clear all stale locks and select the lock for this driver instance. 632 */ 633 static void 634 bge_ape_lock_init(struct bge_softc *sc) 635 { 636 uint32_t bit, regbase; 637 int i; 638 639 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 640 regbase = BGE_APE_LOCK_GRANT; 641 else 642 regbase = BGE_APE_PER_LOCK_GRANT; 643 644 /* Clear any stale locks. */ 645 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 646 switch (i) { 647 case BGE_APE_LOCK_PHY0: 648 case BGE_APE_LOCK_PHY1: 649 case BGE_APE_LOCK_PHY2: 650 case BGE_APE_LOCK_PHY3: 651 bit = BGE_APE_LOCK_GRANT_DRIVER0; 652 break; 653 default: 654 if (sc->bge_func_addr == 0) 655 bit = BGE_APE_LOCK_GRANT_DRIVER0; 656 else 657 bit = (1 << sc->bge_func_addr); 658 } 659 APE_WRITE_4(sc, regbase + 4 * i, bit); 660 } 661 662 /* Select the PHY lock based on the device's function number. */ 663 switch (sc->bge_func_addr) { 664 case 0: 665 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 666 break; 667 case 1: 668 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 669 break; 670 case 2: 671 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 672 break; 673 case 3: 674 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 675 break; 676 default: 677 device_printf(sc->bge_dev, 678 "PHY lock not supported on this function\n"); 679 } 680 } 681 682 /* 683 * Check for APE firmware, set flags, and print version info. 684 */ 685 static void 686 bge_ape_read_fw_ver(struct bge_softc *sc) 687 { 688 const char *fwtype; 689 uint32_t apedata, features; 690 691 /* Check for a valid APE signature in shared memory. */ 692 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 693 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 694 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 695 return; 696 } 697 698 /* Check if APE firmware is running. */ 699 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 700 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 701 device_printf(sc->bge_dev, "APE signature found " 702 "but FW status not ready! 0x%08x\n", apedata); 703 return; 704 } 705 706 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 707 708 /* Fetch the APE firwmare type and version. */ 709 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 710 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 711 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 712 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 713 fwtype = "NCSI"; 714 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 715 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 716 fwtype = "DASH"; 717 } else 718 fwtype = "UNKN"; 719 720 /* Print the APE firmware version. */ 721 device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n", 722 fwtype, 723 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 724 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 725 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 726 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 727 } 728 729 static int 730 bge_ape_lock(struct bge_softc *sc, int locknum) 731 { 732 uint32_t bit, gnt, req, status; 733 int i, off; 734 735 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 736 return (0); 737 738 /* Lock request/grant registers have different bases. */ 739 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) { 740 req = BGE_APE_LOCK_REQ; 741 gnt = BGE_APE_LOCK_GRANT; 742 } else { 743 req = BGE_APE_PER_LOCK_REQ; 744 gnt = BGE_APE_PER_LOCK_GRANT; 745 } 746 747 off = 4 * locknum; 748 749 switch (locknum) { 750 case BGE_APE_LOCK_GPIO: 751 /* Lock required when using GPIO. */ 752 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 753 return (0); 754 if (sc->bge_func_addr == 0) 755 bit = BGE_APE_LOCK_REQ_DRIVER0; 756 else 757 bit = (1 << sc->bge_func_addr); 758 break; 759 case BGE_APE_LOCK_GRC: 760 /* Lock required to reset the device. */ 761 if (sc->bge_func_addr == 0) 762 bit = BGE_APE_LOCK_REQ_DRIVER0; 763 else 764 bit = (1 << sc->bge_func_addr); 765 break; 766 case BGE_APE_LOCK_MEM: 767 /* Lock required when accessing certain APE memory. */ 768 if (sc->bge_func_addr == 0) 769 bit = BGE_APE_LOCK_REQ_DRIVER0; 770 else 771 bit = (1 << sc->bge_func_addr); 772 break; 773 case BGE_APE_LOCK_PHY0: 774 case BGE_APE_LOCK_PHY1: 775 case BGE_APE_LOCK_PHY2: 776 case BGE_APE_LOCK_PHY3: 777 /* Lock required when accessing PHYs. */ 778 bit = BGE_APE_LOCK_REQ_DRIVER0; 779 break; 780 default: 781 return (EINVAL); 782 } 783 784 /* Request a lock. */ 785 APE_WRITE_4(sc, req + off, bit); 786 787 /* Wait up to 1 second to acquire lock. */ 788 for (i = 0; i < 20000; i++) { 789 status = APE_READ_4(sc, gnt + off); 790 if (status == bit) 791 break; 792 DELAY(50); 793 } 794 795 /* Handle any errors. */ 796 if (status != bit) { 797 device_printf(sc->bge_dev, "APE lock %d request failed! " 798 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 799 locknum, req + off, bit & 0xFFFF, gnt + off, 800 status & 0xFFFF); 801 /* Revoke the lock request. */ 802 APE_WRITE_4(sc, gnt + off, bit); 803 return (EBUSY); 804 } 805 806 return (0); 807 } 808 809 static void 810 bge_ape_unlock(struct bge_softc *sc, int locknum) 811 { 812 uint32_t bit, gnt; 813 int off; 814 815 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 816 return; 817 818 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 819 gnt = BGE_APE_LOCK_GRANT; 820 else 821 gnt = BGE_APE_PER_LOCK_GRANT; 822 823 off = 4 * locknum; 824 825 switch (locknum) { 826 case BGE_APE_LOCK_GPIO: 827 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 828 return; 829 if (sc->bge_func_addr == 0) 830 bit = BGE_APE_LOCK_GRANT_DRIVER0; 831 else 832 bit = (1 << sc->bge_func_addr); 833 break; 834 case BGE_APE_LOCK_GRC: 835 if (sc->bge_func_addr == 0) 836 bit = BGE_APE_LOCK_GRANT_DRIVER0; 837 else 838 bit = (1 << sc->bge_func_addr); 839 break; 840 case BGE_APE_LOCK_MEM: 841 if (sc->bge_func_addr == 0) 842 bit = BGE_APE_LOCK_GRANT_DRIVER0; 843 else 844 bit = (1 << sc->bge_func_addr); 845 break; 846 case BGE_APE_LOCK_PHY0: 847 case BGE_APE_LOCK_PHY1: 848 case BGE_APE_LOCK_PHY2: 849 case BGE_APE_LOCK_PHY3: 850 bit = BGE_APE_LOCK_GRANT_DRIVER0; 851 break; 852 default: 853 return; 854 } 855 856 APE_WRITE_4(sc, gnt + off, bit); 857 } 858 859 /* 860 * Send an event to the APE firmware. 861 */ 862 static void 863 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 864 { 865 uint32_t apedata; 866 int i; 867 868 /* NCSI does not support APE events. */ 869 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 870 return; 871 872 /* Wait up to 1ms for APE to service previous event. */ 873 for (i = 10; i > 0; i--) { 874 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 875 break; 876 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 877 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 878 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 879 BGE_APE_EVENT_STATUS_EVENT_PENDING); 880 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 881 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 882 break; 883 } 884 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 885 DELAY(100); 886 } 887 if (i == 0) 888 device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n", 889 event); 890 } 891 892 static void 893 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 894 { 895 uint32_t apedata, event; 896 897 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 898 return; 899 900 switch (kind) { 901 case BGE_RESET_START: 902 /* If this is the first load, clear the load counter. */ 903 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 904 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 905 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 906 else { 907 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 908 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 909 } 910 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 911 BGE_APE_HOST_SEG_SIG_MAGIC); 912 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 913 BGE_APE_HOST_SEG_LEN_MAGIC); 914 915 /* Add some version info if bge(4) supports it. */ 916 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 917 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 918 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 919 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 920 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 921 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 922 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 923 BGE_APE_HOST_DRVR_STATE_START); 924 event = BGE_APE_EVENT_STATUS_STATE_START; 925 break; 926 case BGE_RESET_SHUTDOWN: 927 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 928 BGE_APE_HOST_DRVR_STATE_UNLOAD); 929 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 930 break; 931 case BGE_RESET_SUSPEND: 932 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 933 break; 934 default: 935 return; 936 } 937 938 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 939 BGE_APE_EVENT_STATUS_STATE_CHNGE); 940 } 941 942 /* 943 * Map a single buffer address. 944 */ 945 946 static void 947 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 948 { 949 struct bge_dmamap_arg *ctx; 950 951 if (error) 952 return; 953 954 KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); 955 956 ctx = arg; 957 ctx->bge_busaddr = segs->ds_addr; 958 } 959 960 static uint8_t 961 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 962 { 963 uint32_t access, byte = 0; 964 int i; 965 966 /* Lock. */ 967 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 968 for (i = 0; i < 8000; i++) { 969 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 970 break; 971 DELAY(20); 972 } 973 if (i == 8000) 974 return (1); 975 976 /* Enable access. */ 977 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 978 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 979 980 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 981 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 982 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 983 DELAY(10); 984 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 985 DELAY(10); 986 break; 987 } 988 } 989 990 if (i == BGE_TIMEOUT * 10) { 991 if_printf(sc->bge_ifp, "nvram read timed out\n"); 992 return (1); 993 } 994 995 /* Get result. */ 996 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 997 998 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 999 1000 /* Disable access. */ 1001 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 1002 1003 /* Unlock. */ 1004 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1005 CSR_READ_4(sc, BGE_NVRAM_SWARB); 1006 1007 return (0); 1008 } 1009 1010 /* 1011 * Read a sequence of bytes from NVRAM. 1012 */ 1013 static int 1014 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1015 { 1016 int err = 0, i; 1017 uint8_t byte = 0; 1018 1019 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1020 return (1); 1021 1022 for (i = 0; i < cnt; i++) { 1023 err = bge_nvram_getbyte(sc, off + i, &byte); 1024 if (err) 1025 break; 1026 *(dest + i) = byte; 1027 } 1028 1029 return (err ? 1 : 0); 1030 } 1031 1032 /* 1033 * Read a byte of data stored in the EEPROM at address 'addr.' The 1034 * BCM570x supports both the traditional bitbang interface and an 1035 * auto access interface for reading the EEPROM. We use the auto 1036 * access method. 1037 */ 1038 static uint8_t 1039 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1040 { 1041 int i; 1042 uint32_t byte = 0; 1043 1044 /* 1045 * Enable use of auto EEPROM access so we can avoid 1046 * having to use the bitbang method. 1047 */ 1048 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1049 1050 /* Reset the EEPROM, load the clock period. */ 1051 CSR_WRITE_4(sc, BGE_EE_ADDR, 1052 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1053 DELAY(20); 1054 1055 /* Issue the read EEPROM command. */ 1056 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1057 1058 /* Wait for completion */ 1059 for(i = 0; i < BGE_TIMEOUT * 10; i++) { 1060 DELAY(10); 1061 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1062 break; 1063 } 1064 1065 if (i == BGE_TIMEOUT * 10) { 1066 device_printf(sc->bge_dev, "EEPROM read timed out\n"); 1067 return (1); 1068 } 1069 1070 /* Get result. */ 1071 byte = CSR_READ_4(sc, BGE_EE_DATA); 1072 1073 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1074 1075 return (0); 1076 } 1077 1078 /* 1079 * Read a sequence of bytes from the EEPROM. 1080 */ 1081 static int 1082 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) 1083 { 1084 int i, error = 0; 1085 uint8_t byte = 0; 1086 1087 for (i = 0; i < cnt; i++) { 1088 error = bge_eeprom_getbyte(sc, off + i, &byte); 1089 if (error) 1090 break; 1091 *(dest + i) = byte; 1092 } 1093 1094 return (error ? 1 : 0); 1095 } 1096 1097 static int 1098 bge_miibus_readreg(device_t dev, int phy, int reg) 1099 { 1100 struct bge_softc *sc; 1101 uint32_t val; 1102 int i; 1103 1104 sc = device_get_softc(dev); 1105 1106 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1107 return (0); 1108 1109 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1110 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1111 CSR_WRITE_4(sc, BGE_MI_MODE, 1112 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1113 DELAY(80); 1114 } 1115 1116 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1117 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1118 1119 /* Poll for the PHY register access to complete. */ 1120 for (i = 0; i < BGE_TIMEOUT; i++) { 1121 DELAY(10); 1122 val = CSR_READ_4(sc, BGE_MI_COMM); 1123 if ((val & BGE_MICOMM_BUSY) == 0) { 1124 DELAY(5); 1125 val = CSR_READ_4(sc, BGE_MI_COMM); 1126 break; 1127 } 1128 } 1129 1130 if (i == BGE_TIMEOUT) { 1131 device_printf(sc->bge_dev, 1132 "PHY read timed out (phy %d, reg %d, val 0x%08x)\n", 1133 phy, reg, val); 1134 val = 0; 1135 } 1136 1137 /* Restore the autopoll bit if necessary. */ 1138 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1139 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1140 DELAY(80); 1141 } 1142 1143 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1144 1145 if (val & BGE_MICOMM_READFAIL) 1146 return (0); 1147 1148 return (val & 0xFFFF); 1149 } 1150 1151 static int 1152 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1153 { 1154 struct bge_softc *sc; 1155 int i; 1156 1157 sc = device_get_softc(dev); 1158 1159 if (sc->bge_asicrev == BGE_ASICREV_BCM5906 && 1160 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1161 return (0); 1162 1163 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1164 return (0); 1165 1166 /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */ 1167 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1168 CSR_WRITE_4(sc, BGE_MI_MODE, 1169 sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL); 1170 DELAY(80); 1171 } 1172 1173 CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1174 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1175 1176 for (i = 0; i < BGE_TIMEOUT; i++) { 1177 DELAY(10); 1178 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1179 DELAY(5); 1180 CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */ 1181 break; 1182 } 1183 } 1184 1185 /* Restore the autopoll bit if necessary. */ 1186 if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 1187 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 1188 DELAY(80); 1189 } 1190 1191 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1192 1193 if (i == BGE_TIMEOUT) 1194 device_printf(sc->bge_dev, 1195 "PHY write timed out (phy %d, reg %d, val 0x%04x)\n", 1196 phy, reg, val); 1197 1198 return (0); 1199 } 1200 1201 static void 1202 bge_miibus_statchg(device_t dev) 1203 { 1204 struct bge_softc *sc; 1205 struct mii_data *mii; 1206 uint32_t mac_mode, rx_mode, tx_mode; 1207 1208 sc = device_get_softc(dev); 1209 if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0) 1210 return; 1211 mii = device_get_softc(sc->bge_miibus); 1212 1213 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 1214 (IFM_ACTIVE | IFM_AVALID)) { 1215 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1216 case IFM_10_T: 1217 case IFM_100_TX: 1218 sc->bge_link = 1; 1219 break; 1220 case IFM_1000_T: 1221 case IFM_1000_SX: 1222 case IFM_2500_SX: 1223 if (sc->bge_asicrev != BGE_ASICREV_BCM5906) 1224 sc->bge_link = 1; 1225 else 1226 sc->bge_link = 0; 1227 break; 1228 default: 1229 sc->bge_link = 0; 1230 break; 1231 } 1232 } else 1233 sc->bge_link = 0; 1234 if (sc->bge_link == 0) 1235 return; 1236 1237 /* 1238 * APE firmware touches these registers to keep the MAC 1239 * connected to the outside world. Try to keep the 1240 * accesses atomic. 1241 */ 1242 1243 /* Set the port mode (MII/GMII) to match the link speed. */ 1244 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1245 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1246 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1247 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1248 1249 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1250 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1251 mac_mode |= BGE_PORTMODE_GMII; 1252 else 1253 mac_mode |= BGE_PORTMODE_MII; 1254 1255 /* Set MAC flow control behavior to match link flow control settings. */ 1256 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1257 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1258 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 1259 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 1260 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1261 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 1262 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1263 } else 1264 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1265 1266 CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); 1267 DELAY(40); 1268 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1269 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1270 } 1271 1272 /* 1273 * Intialize a standard receive ring descriptor. 1274 */ 1275 static int 1276 bge_newbuf_std(struct bge_softc *sc, int i) 1277 { 1278 struct mbuf *m; 1279 struct bge_rx_bd *r; 1280 bus_dma_segment_t segs[1]; 1281 bus_dmamap_t map; 1282 int error, nsegs; 1283 1284 if (sc->bge_flags & BGE_FLAG_JUMBO_STD && 1285 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 1286 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) { 1287 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 1288 if (m == NULL) 1289 return (ENOBUFS); 1290 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1291 } else { 1292 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1293 if (m == NULL) 1294 return (ENOBUFS); 1295 m->m_len = m->m_pkthdr.len = MCLBYTES; 1296 } 1297 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1298 m_adj(m, ETHER_ALIGN); 1299 1300 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag, 1301 sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0); 1302 if (error != 0) { 1303 m_freem(m); 1304 return (error); 1305 } 1306 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1307 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1308 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD); 1309 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1310 sc->bge_cdata.bge_rx_std_dmamap[i]); 1311 } 1312 map = sc->bge_cdata.bge_rx_std_dmamap[i]; 1313 sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap; 1314 sc->bge_cdata.bge_rx_std_sparemap = map; 1315 sc->bge_cdata.bge_rx_std_chain[i] = m; 1316 sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len; 1317 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 1318 r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1319 r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1320 r->bge_flags = BGE_RXBDFLAG_END; 1321 r->bge_len = segs[0].ds_len; 1322 r->bge_idx = i; 1323 1324 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1325 sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD); 1326 1327 return (0); 1328 } 1329 1330 /* 1331 * Initialize a jumbo receive ring descriptor. This allocates 1332 * a jumbo buffer from the pool managed internally by the driver. 1333 */ 1334 static int 1335 bge_newbuf_jumbo(struct bge_softc *sc, int i) 1336 { 1337 bus_dma_segment_t segs[BGE_NSEG_JUMBO]; 1338 bus_dmamap_t map; 1339 struct bge_extrx_bd *r; 1340 struct mbuf *m; 1341 int error, nsegs; 1342 1343 MGETHDR(m, M_NOWAIT, MT_DATA); 1344 if (m == NULL) 1345 return (ENOBUFS); 1346 1347 if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) { 1348 m_freem(m); 1349 return (ENOBUFS); 1350 } 1351 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 1352 if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) 1353 m_adj(m, ETHER_ALIGN); 1354 1355 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo, 1356 sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0); 1357 if (error != 0) { 1358 m_freem(m); 1359 return (error); 1360 } 1361 1362 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1363 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1364 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD); 1365 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1366 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1367 } 1368 map = sc->bge_cdata.bge_rx_jumbo_dmamap[i]; 1369 sc->bge_cdata.bge_rx_jumbo_dmamap[i] = 1370 sc->bge_cdata.bge_rx_jumbo_sparemap; 1371 sc->bge_cdata.bge_rx_jumbo_sparemap = map; 1372 sc->bge_cdata.bge_rx_jumbo_chain[i] = m; 1373 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0; 1374 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0; 1375 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0; 1376 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0; 1377 1378 /* 1379 * Fill in the extended RX buffer descriptor. 1380 */ 1381 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 1382 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 1383 r->bge_idx = i; 1384 r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; 1385 switch (nsegs) { 1386 case 4: 1387 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr); 1388 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr); 1389 r->bge_len3 = segs[3].ds_len; 1390 sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len; 1391 case 3: 1392 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr); 1393 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr); 1394 r->bge_len2 = segs[2].ds_len; 1395 sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len; 1396 case 2: 1397 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr); 1398 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr); 1399 r->bge_len1 = segs[1].ds_len; 1400 sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len; 1401 case 1: 1402 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr); 1403 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr); 1404 r->bge_len0 = segs[0].ds_len; 1405 sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len; 1406 break; 1407 default: 1408 panic("%s: %d segments\n", __func__, nsegs); 1409 } 1410 1411 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1412 sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD); 1413 1414 return (0); 1415 } 1416 1417 static int 1418 bge_init_rx_ring_std(struct bge_softc *sc) 1419 { 1420 int error, i; 1421 1422 bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ); 1423 sc->bge_std = 0; 1424 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1425 if ((error = bge_newbuf_std(sc, i)) != 0) 1426 return (error); 1427 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 1428 } 1429 1430 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 1431 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 1432 1433 sc->bge_std = 0; 1434 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1); 1435 1436 return (0); 1437 } 1438 1439 static void 1440 bge_free_rx_ring_std(struct bge_softc *sc) 1441 { 1442 int i; 1443 1444 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1445 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1446 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag, 1447 sc->bge_cdata.bge_rx_std_dmamap[i], 1448 BUS_DMASYNC_POSTREAD); 1449 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag, 1450 sc->bge_cdata.bge_rx_std_dmamap[i]); 1451 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1452 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1453 } 1454 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i], 1455 sizeof(struct bge_rx_bd)); 1456 } 1457 } 1458 1459 static int 1460 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1461 { 1462 struct bge_rcb *rcb; 1463 int error, i; 1464 1465 bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ); 1466 sc->bge_jumbo = 0; 1467 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1468 if ((error = bge_newbuf_jumbo(sc, i)) != 0) 1469 return (error); 1470 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 1471 } 1472 1473 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 1474 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 1475 1476 sc->bge_jumbo = 0; 1477 1478 /* Enable the jumbo receive producer ring. */ 1479 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 1480 rcb->bge_maxlen_flags = 1481 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); 1482 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1483 1484 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1); 1485 1486 return (0); 1487 } 1488 1489 static void 1490 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1491 { 1492 int i; 1493 1494 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1495 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1496 bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo, 1497 sc->bge_cdata.bge_rx_jumbo_dmamap[i], 1498 BUS_DMASYNC_POSTREAD); 1499 bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo, 1500 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 1501 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1502 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1503 } 1504 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i], 1505 sizeof(struct bge_extrx_bd)); 1506 } 1507 } 1508 1509 static void 1510 bge_free_tx_ring(struct bge_softc *sc) 1511 { 1512 int i; 1513 1514 if (sc->bge_ldata.bge_tx_ring == NULL) 1515 return; 1516 1517 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1518 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1519 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 1520 sc->bge_cdata.bge_tx_dmamap[i], 1521 BUS_DMASYNC_POSTWRITE); 1522 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 1523 sc->bge_cdata.bge_tx_dmamap[i]); 1524 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1525 sc->bge_cdata.bge_tx_chain[i] = NULL; 1526 } 1527 bzero((char *)&sc->bge_ldata.bge_tx_ring[i], 1528 sizeof(struct bge_tx_bd)); 1529 } 1530 } 1531 1532 static int 1533 bge_init_tx_ring(struct bge_softc *sc) 1534 { 1535 sc->bge_txcnt = 0; 1536 sc->bge_tx_saved_considx = 0; 1537 1538 bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ); 1539 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 1540 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 1541 1542 /* Initialize transmit producer index for host-memory send ring. */ 1543 sc->bge_tx_prodidx = 0; 1544 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1545 1546 /* 5700 b2 errata */ 1547 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1548 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1549 1550 /* NIC-memory send ring not used; initialize to zero. */ 1551 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1552 /* 5700 b2 errata */ 1553 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 1554 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1555 1556 return (0); 1557 } 1558 1559 static void 1560 bge_setpromisc(struct bge_softc *sc) 1561 { 1562 if_t ifp; 1563 1564 BGE_LOCK_ASSERT(sc); 1565 1566 ifp = sc->bge_ifp; 1567 1568 /* Enable or disable promiscuous mode as needed. */ 1569 if (if_getflags(ifp) & IFF_PROMISC) 1570 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1571 else 1572 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 1573 } 1574 1575 static u_int 1576 bge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 1577 { 1578 uint32_t *hashes = arg; 1579 int h; 1580 1581 h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7F; 1582 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 1583 1584 return (1); 1585 } 1586 1587 static void 1588 bge_setmulti(struct bge_softc *sc) 1589 { 1590 if_t ifp; 1591 uint32_t hashes[4] = { 0, 0, 0, 0 }; 1592 int i; 1593 1594 BGE_LOCK_ASSERT(sc); 1595 1596 ifp = sc->bge_ifp; 1597 1598 if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) { 1599 for (i = 0; i < 4; i++) 1600 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); 1601 return; 1602 } 1603 1604 /* First, zot all the existing filters. */ 1605 for (i = 0; i < 4; i++) 1606 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); 1607 1608 if_foreach_llmaddr(ifp, bge_hash_maddr, hashes); 1609 1610 for (i = 0; i < 4; i++) 1611 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 1612 } 1613 1614 static void 1615 bge_setvlan(struct bge_softc *sc) 1616 { 1617 if_t ifp; 1618 1619 BGE_LOCK_ASSERT(sc); 1620 1621 ifp = sc->bge_ifp; 1622 1623 /* Enable or disable VLAN tag stripping as needed. */ 1624 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) 1625 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1626 else 1627 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); 1628 } 1629 1630 static void 1631 bge_sig_pre_reset(struct bge_softc *sc, int type) 1632 { 1633 1634 /* 1635 * Some chips don't like this so only do this if ASF is enabled 1636 */ 1637 if (sc->bge_asf_mode) 1638 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 1639 1640 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1641 switch (type) { 1642 case BGE_RESET_START: 1643 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1644 BGE_FW_DRV_STATE_START); 1645 break; 1646 case BGE_RESET_SHUTDOWN: 1647 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1648 BGE_FW_DRV_STATE_UNLOAD); 1649 break; 1650 case BGE_RESET_SUSPEND: 1651 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1652 BGE_FW_DRV_STATE_SUSPEND); 1653 break; 1654 } 1655 } 1656 1657 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 1658 bge_ape_driver_state_change(sc, type); 1659 } 1660 1661 static void 1662 bge_sig_post_reset(struct bge_softc *sc, int type) 1663 { 1664 1665 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 1666 switch (type) { 1667 case BGE_RESET_START: 1668 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1669 BGE_FW_DRV_STATE_START_DONE); 1670 /* START DONE */ 1671 break; 1672 case BGE_RESET_SHUTDOWN: 1673 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1674 BGE_FW_DRV_STATE_UNLOAD_DONE); 1675 break; 1676 } 1677 } 1678 if (type == BGE_RESET_SHUTDOWN) 1679 bge_ape_driver_state_change(sc, type); 1680 } 1681 1682 static void 1683 bge_sig_legacy(struct bge_softc *sc, int type) 1684 { 1685 1686 if (sc->bge_asf_mode) { 1687 switch (type) { 1688 case BGE_RESET_START: 1689 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1690 BGE_FW_DRV_STATE_START); 1691 break; 1692 case BGE_RESET_SHUTDOWN: 1693 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 1694 BGE_FW_DRV_STATE_UNLOAD); 1695 break; 1696 } 1697 } 1698 } 1699 1700 static void 1701 bge_stop_fw(struct bge_softc *sc) 1702 { 1703 int i; 1704 1705 if (sc->bge_asf_mode) { 1706 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 1707 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 1708 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 1709 1710 for (i = 0; i < 100; i++ ) { 1711 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 1712 BGE_RX_CPU_DRV_EVENT)) 1713 break; 1714 DELAY(10); 1715 } 1716 } 1717 } 1718 1719 static uint32_t 1720 bge_dma_swap_options(struct bge_softc *sc) 1721 { 1722 uint32_t dma_options; 1723 1724 dma_options = BGE_MODECTL_WORDSWAP_NONFRAME | 1725 BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA; 1726 #if BYTE_ORDER == BIG_ENDIAN 1727 dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME; 1728 #endif 1729 return (dma_options); 1730 } 1731 1732 /* 1733 * Do endian, PCI and DMA initialization. 1734 */ 1735 static int 1736 bge_chipinit(struct bge_softc *sc) 1737 { 1738 uint32_t dma_rw_ctl, misc_ctl, mode_ctl; 1739 uint16_t val; 1740 int i; 1741 1742 /* Set endianness before we access any non-PCI registers. */ 1743 misc_ctl = BGE_INIT; 1744 if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS) 1745 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 1746 pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4); 1747 1748 /* 1749 * Clear the MAC statistics block in the NIC's 1750 * internal memory. 1751 */ 1752 for (i = BGE_STATS_BLOCK; 1753 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 1754 BGE_MEMWIN_WRITE(sc, i, 0); 1755 1756 for (i = BGE_STATUS_BLOCK; 1757 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 1758 BGE_MEMWIN_WRITE(sc, i, 0); 1759 1760 if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) { 1761 /* 1762 * Fix data corruption caused by non-qword write with WB. 1763 * Fix master abort in PCI mode. 1764 * Fix PCI latency timer. 1765 */ 1766 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2); 1767 val |= (1 << 10) | (1 << 12) | (1 << 13); 1768 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2); 1769 } 1770 1771 if (sc->bge_asicrev == BGE_ASICREV_BCM57765 || 1772 sc->bge_asicrev == BGE_ASICREV_BCM57766) { 1773 /* 1774 * For the 57766 and non Ax versions of 57765, bootcode 1775 * needs to setup the PCIE Fast Training Sequence (FTS) 1776 * value to prevent transmit hangs. 1777 */ 1778 if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) { 1779 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 1780 CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) | 1781 BGE_CPMU_PADRNG_CTL_RDIV2); 1782 } 1783 } 1784 1785 /* 1786 * Set up the PCI DMA control register. 1787 */ 1788 dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | 1789 BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); 1790 if (sc->bge_flags & BGE_FLAG_PCIE) { 1791 if (sc->bge_mps >= 256) 1792 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1793 else 1794 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1795 } else if (sc->bge_flags & BGE_FLAG_PCIX) { 1796 if (BGE_IS_5714_FAMILY(sc)) { 1797 /* 256 bytes for read and write. */ 1798 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 1799 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 1800 dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ? 1801 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL : 1802 BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 1803 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 1804 /* 1805 * In the BCM5703, the DMA read watermark should 1806 * be set to less than or equal to the maximum 1807 * memory read byte count of the PCI-X command 1808 * register. 1809 */ 1810 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 1811 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1812 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1813 /* 1536 bytes for read, 384 bytes for write. */ 1814 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1815 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 1816 } else { 1817 /* 384 bytes for read and write. */ 1818 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 1819 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 1820 0x0F; 1821 } 1822 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1823 sc->bge_asicrev == BGE_ASICREV_BCM5704) { 1824 uint32_t tmp; 1825 1826 /* Set ONE_DMA_AT_ONCE for hardware workaround. */ 1827 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 1828 if (tmp == 6 || tmp == 7) 1829 dma_rw_ctl |= 1830 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 1831 1832 /* Set PCI-X DMA write workaround. */ 1833 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 1834 } 1835 } else { 1836 /* Conventional PCI bus: 256 bytes for read and write. */ 1837 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 1838 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 1839 1840 if (sc->bge_asicrev != BGE_ASICREV_BCM5705 && 1841 sc->bge_asicrev != BGE_ASICREV_BCM5750) 1842 dma_rw_ctl |= 0x0F; 1843 } 1844 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 1845 sc->bge_asicrev == BGE_ASICREV_BCM5701) 1846 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 1847 BGE_PCIDMARWCTL_ASRT_ALL_BE; 1848 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || 1849 sc->bge_asicrev == BGE_ASICREV_BCM5704) 1850 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 1851 if (BGE_IS_5717_PLUS(sc)) { 1852 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 1853 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 1854 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 1855 /* 1856 * Enable HW workaround for controllers that misinterpret 1857 * a status tag update and leave interrupts permanently 1858 * disabled. 1859 */ 1860 if (!BGE_IS_57765_PLUS(sc) && 1861 sc->bge_asicrev != BGE_ASICREV_BCM5717 && 1862 sc->bge_asicrev != BGE_ASICREV_BCM5762) 1863 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 1864 } 1865 pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); 1866 1867 /* 1868 * Set up general mode register. 1869 */ 1870 mode_ctl = bge_dma_swap_options(sc); 1871 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 1872 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 1873 /* Retain Host-2-BMC settings written by APE firmware. */ 1874 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 1875 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 1876 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 1877 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 1878 } 1879 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 1880 BGE_MODECTL_TX_NO_PHDR_CSUM; 1881 1882 /* 1883 * BCM5701 B5 have a bug causing data corruption when using 1884 * 64-bit DMA reads, which can be terminated early and then 1885 * completed later as 32-bit accesses, in combination with 1886 * certain bridges. 1887 */ 1888 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 1889 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 1890 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 1891 1892 /* 1893 * Tell the firmware the driver is running 1894 */ 1895 if (sc->bge_asf_mode & ASF_STACKUP) 1896 mode_ctl |= BGE_MODECTL_STACKUP; 1897 1898 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 1899 1900 /* 1901 * Disable memory write invalidate. Apparently it is not supported 1902 * properly by these devices. 1903 */ 1904 PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); 1905 1906 /* Set the timer prescaler (always 66 MHz). */ 1907 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 1908 1909 /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */ 1910 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1911 DELAY(40); /* XXX */ 1912 1913 /* Put PHY into ready state */ 1914 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 1915 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ 1916 DELAY(40); 1917 } 1918 1919 return (0); 1920 } 1921 1922 static int 1923 bge_blockinit(struct bge_softc *sc) 1924 { 1925 struct bge_rcb *rcb; 1926 bus_size_t vrcb; 1927 bge_hostaddr taddr; 1928 uint32_t dmactl, rdmareg, val; 1929 int i, limit; 1930 1931 /* 1932 * Initialize the memory window pointer register so that 1933 * we can access the first 32K of internal NIC RAM. This will 1934 * allow us to set up the TX send ring RCBs and the RX return 1935 * ring RCBs, plus other things which live in NIC memory. 1936 */ 1937 CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); 1938 1939 /* Note: the BCM5704 has a smaller mbuf space than other chips. */ 1940 1941 if (!(BGE_IS_5705_PLUS(sc))) { 1942 /* Configure mbuf memory pool */ 1943 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); 1944 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) 1945 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 1946 else 1947 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 1948 1949 /* Configure DMA resource pool */ 1950 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 1951 BGE_DMA_DESCRIPTORS); 1952 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 1953 } 1954 1955 /* Configure mbuf pool watermarks */ 1956 if (BGE_IS_5717_PLUS(sc)) { 1957 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1958 if (if_getmtu(sc->bge_ifp) > ETHERMTU) { 1959 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e); 1960 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea); 1961 } else { 1962 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 1963 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 1964 } 1965 } else if (!BGE_IS_5705_PLUS(sc)) { 1966 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 1967 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 1968 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1969 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 1970 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1971 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 1972 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 1973 } else { 1974 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 1975 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 1976 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 1977 } 1978 1979 /* Configure DMA resource watermarks */ 1980 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 1981 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 1982 1983 /* Enable buffer manager */ 1984 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; 1985 /* 1986 * Change the arbitration algorithm of TXMBUF read request to 1987 * round-robin instead of priority based for BCM5719. When 1988 * TXFIFO is almost empty, RDMA will hold its request until 1989 * TXFIFO is not almost empty. 1990 */ 1991 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 1992 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 1993 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 1994 1995 /* Poll for buffer manager start indication */ 1996 for (i = 0; i < BGE_TIMEOUT; i++) { 1997 DELAY(10); 1998 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 1999 break; 2000 } 2001 2002 if (i == BGE_TIMEOUT) { 2003 device_printf(sc->bge_dev, "buffer manager failed to start\n"); 2004 return (ENXIO); 2005 } 2006 2007 /* Enable flow-through queues */ 2008 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2009 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2010 2011 /* Wait until queue initialization is complete */ 2012 for (i = 0; i < BGE_TIMEOUT; i++) { 2013 DELAY(10); 2014 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2015 break; 2016 } 2017 2018 if (i == BGE_TIMEOUT) { 2019 device_printf(sc->bge_dev, "flow-through queue init failed\n"); 2020 return (ENXIO); 2021 } 2022 2023 /* 2024 * Summary of rings supported by the controller: 2025 * 2026 * Standard Receive Producer Ring 2027 * - This ring is used to feed receive buffers for "standard" 2028 * sized frames (typically 1536 bytes) to the controller. 2029 * 2030 * Jumbo Receive Producer Ring 2031 * - This ring is used to feed receive buffers for jumbo sized 2032 * frames (i.e. anything bigger than the "standard" frames) 2033 * to the controller. 2034 * 2035 * Mini Receive Producer Ring 2036 * - This ring is used to feed receive buffers for "mini" 2037 * sized frames to the controller. 2038 * - This feature required external memory for the controller 2039 * but was never used in a production system. Should always 2040 * be disabled. 2041 * 2042 * Receive Return Ring 2043 * - After the controller has placed an incoming frame into a 2044 * receive buffer that buffer is moved into a receive return 2045 * ring. The driver is then responsible to passing the 2046 * buffer up to the stack. Many versions of the controller 2047 * support multiple RR rings. 2048 * 2049 * Send Ring 2050 * - This ring is used for outgoing frames. Many versions of 2051 * the controller support multiple send rings. 2052 */ 2053 2054 /* Initialize the standard receive producer ring control block. */ 2055 rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb; 2056 rcb->bge_hostaddr.bge_addr_lo = 2057 BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr); 2058 rcb->bge_hostaddr.bge_addr_hi = 2059 BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr); 2060 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 2061 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD); 2062 if (BGE_IS_5717_PLUS(sc)) { 2063 /* 2064 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2065 * Bits 15-2 : Maximum RX frame size 2066 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2067 * Bit 0 : Reserved 2068 */ 2069 rcb->bge_maxlen_flags = 2070 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2071 } else if (BGE_IS_5705_PLUS(sc)) { 2072 /* 2073 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2074 * Bits 15-2 : Reserved (should be 0) 2075 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2076 * Bit 0 : Reserved 2077 */ 2078 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2079 } else { 2080 /* 2081 * Ring size is always XXX entries 2082 * Bits 31-16: Maximum RX frame size 2083 * Bits 15-2 : Reserved (should be 0) 2084 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2085 * Bit 0 : Reserved 2086 */ 2087 rcb->bge_maxlen_flags = 2088 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2089 } 2090 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2091 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2092 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2093 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2094 else 2095 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2096 /* Write the standard receive producer ring control block. */ 2097 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2098 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2099 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2100 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2101 2102 /* Reset the standard receive producer ring producer index. */ 2103 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2104 2105 /* 2106 * Initialize the jumbo RX producer ring control 2107 * block. We set the 'ring disabled' bit in the 2108 * flags field until we're actually ready to start 2109 * using this ring (i.e. once we set the MTU 2110 * high enough to require it). 2111 */ 2112 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2113 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb; 2114 /* Get the jumbo receive producer ring RCB parameters. */ 2115 rcb->bge_hostaddr.bge_addr_lo = 2116 BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2117 rcb->bge_hostaddr.bge_addr_hi = 2118 BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr); 2119 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2120 sc->bge_cdata.bge_rx_jumbo_ring_map, 2121 BUS_DMASYNC_PREREAD); 2122 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2123 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2124 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2125 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2126 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2127 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2128 else 2129 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2130 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2131 rcb->bge_hostaddr.bge_addr_hi); 2132 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2133 rcb->bge_hostaddr.bge_addr_lo); 2134 /* Program the jumbo receive producer ring RCB parameters. */ 2135 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2136 rcb->bge_maxlen_flags); 2137 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2138 /* Reset the jumbo receive producer ring producer index. */ 2139 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2140 } 2141 2142 /* Disable the mini receive producer ring RCB. */ 2143 if (BGE_IS_5700_FAMILY(sc)) { 2144 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb; 2145 rcb->bge_maxlen_flags = 2146 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2147 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2148 rcb->bge_maxlen_flags); 2149 /* Reset the mini receive producer ring producer index. */ 2150 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2151 } 2152 2153 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2154 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 2155 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2156 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2157 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2158 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2159 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2160 } 2161 /* 2162 * The BD ring replenish thresholds control how often the 2163 * hardware fetches new BD's from the producer rings in host 2164 * memory. Setting the value too low on a busy system can 2165 * starve the hardware and recue the throughpout. 2166 * 2167 * Set the BD ring replentish thresholds. The recommended 2168 * values are 1/8th the number of descriptors allocated to 2169 * each ring. 2170 * XXX The 5754 requires a lower threshold, so it might be a 2171 * requirement of all 575x family chips. The Linux driver sets 2172 * the lower threshold for all 5705 family chips as well, but there 2173 * are reports that it might not need to be so strict. 2174 * 2175 * XXX Linux does some extra fiddling here for the 5906 parts as 2176 * well. 2177 */ 2178 if (BGE_IS_5705_PLUS(sc)) 2179 val = 8; 2180 else 2181 val = BGE_STD_RX_RING_CNT / 8; 2182 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val); 2183 if (BGE_IS_JUMBO_CAPABLE(sc)) 2184 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 2185 BGE_JUMBO_RX_RING_CNT/8); 2186 if (BGE_IS_5717_PLUS(sc)) { 2187 CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32); 2188 CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16); 2189 } 2190 2191 /* 2192 * Disable all send rings by setting the 'ring disabled' bit 2193 * in the flags field of all the TX send ring control blocks, 2194 * located in NIC memory. 2195 */ 2196 if (!BGE_IS_5705_PLUS(sc)) 2197 /* 5700 to 5704 had 16 send rings. */ 2198 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2199 else if (BGE_IS_57765_PLUS(sc) || 2200 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2201 limit = 2; 2202 else if (BGE_IS_5717_PLUS(sc)) 2203 limit = 4; 2204 else 2205 limit = 1; 2206 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2207 for (i = 0; i < limit; i++) { 2208 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2209 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2210 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2211 vrcb += sizeof(struct bge_rcb); 2212 } 2213 2214 /* Configure send ring RCB 0 (we use only the first ring) */ 2215 vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2216 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr); 2217 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2218 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2219 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2220 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2221 sc->bge_asicrev == BGE_ASICREV_BCM5720) 2222 RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717); 2223 else 2224 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 2225 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2226 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2227 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2228 2229 /* 2230 * Disable all receive return rings by setting the 2231 * 'ring diabled' bit in the flags field of all the receive 2232 * return ring control blocks, located in NIC memory. 2233 */ 2234 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 2235 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 2236 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2237 /* Should be 17, use 16 until we get an SRAM map. */ 2238 limit = 16; 2239 } else if (!BGE_IS_5705_PLUS(sc)) 2240 limit = BGE_RX_RINGS_MAX; 2241 else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 2242 sc->bge_asicrev == BGE_ASICREV_BCM5762 || 2243 BGE_IS_57765_PLUS(sc)) 2244 limit = 4; 2245 else 2246 limit = 1; 2247 /* Disable all receive return rings. */ 2248 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2249 for (i = 0; i < limit; i++) { 2250 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0); 2251 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0); 2252 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2253 BGE_RCB_FLAG_RING_DISABLED); 2254 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2255 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2256 (i * (sizeof(uint64_t))), 0); 2257 vrcb += sizeof(struct bge_rcb); 2258 } 2259 2260 /* 2261 * Set up receive return ring 0. Note that the NIC address 2262 * for RX return rings is 0x0. The return rings live entirely 2263 * within the host, so the nicaddr field in the RCB isn't used. 2264 */ 2265 vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2266 BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr); 2267 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2268 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2269 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0); 2270 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags, 2271 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2272 2273 /* Set random backoff seed for TX */ 2274 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2275 (IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] + 2276 IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] + 2277 IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5]) & 2278 BGE_TX_BACKOFF_SEED_MASK); 2279 2280 /* Set inter-packet gap */ 2281 val = 0x2620; 2282 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2283 sc->bge_asicrev == BGE_ASICREV_BCM5762) 2284 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2285 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2286 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2287 2288 /* 2289 * Specify which ring to use for packets that don't match 2290 * any RX rules. 2291 */ 2292 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2293 2294 /* 2295 * Configure number of RX lists. One interrupt distribution 2296 * list, sixteen active lists, one bad frames class. 2297 */ 2298 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2299 2300 /* Inialize RX list placement stats mask. */ 2301 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2302 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2303 2304 /* Disable host coalescing until we get it set up */ 2305 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2306 2307 /* Poll to make sure it's shut down. */ 2308 for (i = 0; i < BGE_TIMEOUT; i++) { 2309 DELAY(10); 2310 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2311 break; 2312 } 2313 2314 if (i == BGE_TIMEOUT) { 2315 device_printf(sc->bge_dev, 2316 "host coalescing engine failed to idle\n"); 2317 return (ENXIO); 2318 } 2319 2320 /* Set up host coalescing defaults */ 2321 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2322 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2323 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2324 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2325 if (!(BGE_IS_5705_PLUS(sc))) { 2326 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2327 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2328 } 2329 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1); 2330 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1); 2331 2332 /* Set up address of statistics block */ 2333 if (!(BGE_IS_5705_PLUS(sc))) { 2334 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 2335 BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr)); 2336 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, 2337 BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr)); 2338 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2339 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2340 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2341 } 2342 2343 /* Set up address of status block */ 2344 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 2345 BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr)); 2346 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, 2347 BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr)); 2348 2349 /* Set up status block size. */ 2350 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2351 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2352 val = BGE_STATBLKSZ_FULL; 2353 bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ); 2354 } else { 2355 val = BGE_STATBLKSZ_32BYTE; 2356 bzero(sc->bge_ldata.bge_status_block, 32); 2357 } 2358 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 2359 sc->bge_cdata.bge_status_map, 2360 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2361 2362 /* Turn on host coalescing state machine */ 2363 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2364 2365 /* Turn on RX BD completion state machine and enable attentions */ 2366 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2367 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2368 2369 /* Turn on RX list placement state machine */ 2370 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2371 2372 /* Turn on RX list selector state machine. */ 2373 if (!(BGE_IS_5705_PLUS(sc))) 2374 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2375 2376 /* Turn on DMA, clear stats. */ 2377 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2378 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2379 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2380 BGE_MACMODE_FRMHDR_DMA_ENB; 2381 2382 if (sc->bge_flags & BGE_FLAG_TBI) 2383 val |= BGE_PORTMODE_TBI; 2384 else if (sc->bge_flags & BGE_FLAG_MII_SERDES) 2385 val |= BGE_PORTMODE_GMII; 2386 else 2387 val |= BGE_PORTMODE_MII; 2388 2389 /* Allow APE to send/receive frames. */ 2390 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2391 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2392 2393 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 2394 DELAY(40); 2395 2396 /* Set misc. local control, enable interrupts on attentions */ 2397 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 2398 2399 #ifdef notdef 2400 /* Assert GPIO pins for PHY reset */ 2401 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 | 2402 BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2); 2403 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 | 2404 BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2); 2405 #endif 2406 2407 /* Turn on DMA completion state machine */ 2408 if (!(BGE_IS_5705_PLUS(sc))) 2409 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 2410 2411 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 2412 2413 /* Enable host coalescing bug fix. */ 2414 if (BGE_IS_5755_PLUS(sc)) 2415 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 2416 2417 /* Request larger DMA burst size to get better performance. */ 2418 if (sc->bge_asicrev == BGE_ASICREV_BCM5785) 2419 val |= BGE_WDMAMODE_BURST_ALL_DATA; 2420 2421 /* Turn on write DMA state machine */ 2422 CSR_WRITE_4(sc, BGE_WDMA_MODE, val); 2423 DELAY(40); 2424 2425 /* Turn on read DMA state machine */ 2426 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 2427 2428 if (sc->bge_asicrev == BGE_ASICREV_BCM5717) 2429 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 2430 2431 if (sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2432 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2433 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2434 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 2435 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 2436 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 2437 if (sc->bge_flags & BGE_FLAG_PCIE) 2438 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 2439 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 2440 val |= BGE_RDMAMODE_TSO4_ENABLE; 2441 if (sc->bge_flags & BGE_FLAG_TSO3 || 2442 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2443 sc->bge_asicrev == BGE_ASICREV_BCM57780) 2444 val |= BGE_RDMAMODE_TSO6_ENABLE; 2445 } 2446 2447 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 2448 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2449 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 2450 BGE_RDMAMODE_H2BNC_VLAN_DET; 2451 /* 2452 * Allow multiple outstanding read requests from 2453 * non-LSO read DMA engine. 2454 */ 2455 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 2456 } 2457 2458 if (sc->bge_asicrev == BGE_ASICREV_BCM5761 || 2459 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 2460 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 2461 sc->bge_asicrev == BGE_ASICREV_BCM57780 || 2462 BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) { 2463 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 2464 rdmareg = BGE_RDMA_RSRVCTRL_REG2; 2465 else 2466 rdmareg = BGE_RDMA_RSRVCTRL; 2467 dmactl = CSR_READ_4(sc, rdmareg); 2468 /* 2469 * Adjust tx margin to prevent TX data corruption and 2470 * fix internal FIFO overflow. 2471 */ 2472 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2473 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2474 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 2475 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 2476 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 2477 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 2478 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 2479 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 2480 } 2481 /* 2482 * Enable fix for read DMA FIFO overruns. 2483 * The fix is to limit the number of RX BDs 2484 * the hardware would fetch at a fime. 2485 */ 2486 CSR_WRITE_4(sc, rdmareg, dmactl | 2487 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 2488 } 2489 2490 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) { 2491 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2492 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2493 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2494 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2495 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) { 2496 /* 2497 * Allow 4KB burst length reads for non-LSO frames. 2498 * Enable 512B burst length reads for buffer descriptors. 2499 */ 2500 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 2501 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 2502 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 2503 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2504 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) { 2505 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, 2506 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | 2507 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 2508 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 2509 } 2510 2511 CSR_WRITE_4(sc, BGE_RDMA_MODE, val); 2512 DELAY(40); 2513 2514 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 2515 for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { 2516 val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); 2517 if ((val & 0xFFFF) > BGE_FRAMELEN) 2518 break; 2519 if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN) 2520 break; 2521 } 2522 if (i != BGE_NUM_RDMA_CHANNELS / 2) { 2523 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 2524 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 2525 val |= BGE_RDMA_TX_LENGTH_WA_5719; 2526 else 2527 val |= BGE_RDMA_TX_LENGTH_WA_5720; 2528 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 2529 } 2530 } 2531 2532 /* Turn on RX data completion state machine */ 2533 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 2534 2535 /* Turn on RX BD initiator state machine */ 2536 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 2537 2538 /* Turn on RX data and RX BD initiator state machine */ 2539 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 2540 2541 /* Turn on Mbuf cluster free state machine */ 2542 if (!(BGE_IS_5705_PLUS(sc))) 2543 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 2544 2545 /* Turn on send BD completion state machine */ 2546 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 2547 2548 /* Turn on send data completion state machine */ 2549 val = BGE_SDCMODE_ENABLE; 2550 if (sc->bge_asicrev == BGE_ASICREV_BCM5761) 2551 val |= BGE_SDCMODE_CDELAY; 2552 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 2553 2554 /* Turn on send data initiator state machine */ 2555 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) 2556 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 2557 BGE_SDIMODE_HW_LSO_PRE_DMA); 2558 else 2559 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 2560 2561 /* Turn on send BD initiator state machine */ 2562 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 2563 2564 /* Turn on send BD selector state machine */ 2565 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 2566 2567 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 2568 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 2569 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 2570 2571 /* ack/clear link change events */ 2572 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2573 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2574 BGE_MACSTAT_LINK_CHANGED); 2575 CSR_WRITE_4(sc, BGE_MI_STS, 0); 2576 2577 /* 2578 * Enable attention when the link has changed state for 2579 * devices that use auto polling. 2580 */ 2581 if (sc->bge_flags & BGE_FLAG_TBI) { 2582 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 2583 } else { 2584 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) { 2585 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode); 2586 DELAY(80); 2587 } 2588 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2589 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) 2590 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 2591 BGE_EVTENB_MI_INTERRUPT); 2592 } 2593 2594 /* 2595 * Clear any pending link state attention. 2596 * Otherwise some link state change events may be lost until attention 2597 * is cleared by bge_intr() -> bge_link_upd() sequence. 2598 * It's not necessary on newer BCM chips - perhaps enabling link 2599 * state change attentions implies clearing pending attention. 2600 */ 2601 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 2602 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 2603 BGE_MACSTAT_LINK_CHANGED); 2604 2605 /* Enable link state change attentions. */ 2606 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 2607 2608 return (0); 2609 } 2610 2611 static const struct bge_revision * 2612 bge_lookup_rev(uint32_t chipid) 2613 { 2614 const struct bge_revision *br; 2615 2616 for (br = bge_revisions; br->br_name != NULL; br++) { 2617 if (br->br_chipid == chipid) 2618 return (br); 2619 } 2620 2621 for (br = bge_majorrevs; br->br_name != NULL; br++) { 2622 if (br->br_chipid == BGE_ASICREV(chipid)) 2623 return (br); 2624 } 2625 2626 return (NULL); 2627 } 2628 2629 static const struct bge_vendor * 2630 bge_lookup_vendor(uint16_t vid) 2631 { 2632 const struct bge_vendor *v; 2633 2634 for (v = bge_vendors; v->v_name != NULL; v++) 2635 if (v->v_id == vid) 2636 return (v); 2637 2638 return (NULL); 2639 } 2640 2641 static uint32_t 2642 bge_chipid(device_t dev) 2643 { 2644 uint32_t id; 2645 2646 id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 2647 BGE_PCIMISCCTL_ASICREV_SHIFT; 2648 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 2649 /* 2650 * Find the ASCI revision. Different chips use different 2651 * registers. 2652 */ 2653 switch (pci_get_device(dev)) { 2654 case BCOM_DEVICEID_BCM5717C: 2655 /* 5717 C0 seems to belong to 5720 line. */ 2656 id = BGE_CHIPID_BCM5720_A0; 2657 break; 2658 case BCOM_DEVICEID_BCM5717: 2659 case BCOM_DEVICEID_BCM5718: 2660 case BCOM_DEVICEID_BCM5719: 2661 case BCOM_DEVICEID_BCM5720: 2662 case BCOM_DEVICEID_BCM5725: 2663 case BCOM_DEVICEID_BCM5727: 2664 case BCOM_DEVICEID_BCM5762: 2665 case BCOM_DEVICEID_BCM57764: 2666 case BCOM_DEVICEID_BCM57767: 2667 case BCOM_DEVICEID_BCM57787: 2668 id = pci_read_config(dev, 2669 BGE_PCI_GEN2_PRODID_ASICREV, 4); 2670 break; 2671 case BCOM_DEVICEID_BCM57761: 2672 case BCOM_DEVICEID_BCM57762: 2673 case BCOM_DEVICEID_BCM57765: 2674 case BCOM_DEVICEID_BCM57766: 2675 case BCOM_DEVICEID_BCM57781: 2676 case BCOM_DEVICEID_BCM57782: 2677 case BCOM_DEVICEID_BCM57785: 2678 case BCOM_DEVICEID_BCM57786: 2679 case BCOM_DEVICEID_BCM57791: 2680 case BCOM_DEVICEID_BCM57795: 2681 id = pci_read_config(dev, 2682 BGE_PCI_GEN15_PRODID_ASICREV, 4); 2683 break; 2684 default: 2685 id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4); 2686 } 2687 } 2688 return (id); 2689 } 2690 2691 /* 2692 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 2693 * against our list and return its name if we find a match. 2694 * 2695 * Note that since the Broadcom controller contains VPD support, we 2696 * try to get the device name string from the controller itself instead 2697 * of the compiled-in string. It guarantees we'll always announce the 2698 * right product name. We fall back to the compiled-in string when 2699 * VPD is unavailable or corrupt. 2700 */ 2701 static int 2702 bge_probe(device_t dev) 2703 { 2704 char buf[96]; 2705 char model[64]; 2706 const struct bge_revision *br; 2707 const char *pname; 2708 struct bge_softc *sc; 2709 const struct bge_type *t = bge_devs; 2710 const struct bge_vendor *v; 2711 uint32_t id; 2712 uint16_t did, vid; 2713 2714 sc = device_get_softc(dev); 2715 sc->bge_dev = dev; 2716 vid = pci_get_vendor(dev); 2717 did = pci_get_device(dev); 2718 while(t->bge_vid != 0) { 2719 if ((vid == t->bge_vid) && (did == t->bge_did)) { 2720 id = bge_chipid(dev); 2721 br = bge_lookup_rev(id); 2722 if (bge_has_eaddr(sc) && 2723 pci_get_vpd_ident(dev, &pname) == 0) 2724 snprintf(model, sizeof(model), "%s", pname); 2725 else { 2726 v = bge_lookup_vendor(vid); 2727 snprintf(model, sizeof(model), "%s %s", 2728 v != NULL ? v->v_name : "Unknown", 2729 br != NULL ? br->br_name : 2730 "NetXtreme/NetLink Ethernet Controller"); 2731 } 2732 snprintf(buf, sizeof(buf), "%s, %sASIC rev. %#08x", 2733 model, br != NULL ? "" : "unknown ", id); 2734 device_set_desc_copy(dev, buf); 2735 return (BUS_PROBE_DEFAULT); 2736 } 2737 t++; 2738 } 2739 2740 return (ENXIO); 2741 } 2742 2743 static void 2744 bge_dma_free(struct bge_softc *sc) 2745 { 2746 int i; 2747 2748 /* Destroy DMA maps for RX buffers. */ 2749 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 2750 if (sc->bge_cdata.bge_rx_std_dmamap[i]) 2751 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2752 sc->bge_cdata.bge_rx_std_dmamap[i]); 2753 } 2754 if (sc->bge_cdata.bge_rx_std_sparemap) 2755 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag, 2756 sc->bge_cdata.bge_rx_std_sparemap); 2757 2758 /* Destroy DMA maps for jumbo RX buffers. */ 2759 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 2760 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i]) 2761 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2762 sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 2763 } 2764 if (sc->bge_cdata.bge_rx_jumbo_sparemap) 2765 bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo, 2766 sc->bge_cdata.bge_rx_jumbo_sparemap); 2767 2768 /* Destroy DMA maps for TX buffers. */ 2769 for (i = 0; i < BGE_TX_RING_CNT; i++) { 2770 if (sc->bge_cdata.bge_tx_dmamap[i]) 2771 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag, 2772 sc->bge_cdata.bge_tx_dmamap[i]); 2773 } 2774 2775 if (sc->bge_cdata.bge_rx_mtag) 2776 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag); 2777 if (sc->bge_cdata.bge_mtag_jumbo) 2778 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo); 2779 if (sc->bge_cdata.bge_tx_mtag) 2780 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag); 2781 2782 /* Destroy standard RX ring. */ 2783 if (sc->bge_ldata.bge_rx_std_ring_paddr) 2784 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag, 2785 sc->bge_cdata.bge_rx_std_ring_map); 2786 if (sc->bge_ldata.bge_rx_std_ring) 2787 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag, 2788 sc->bge_ldata.bge_rx_std_ring, 2789 sc->bge_cdata.bge_rx_std_ring_map); 2790 2791 if (sc->bge_cdata.bge_rx_std_ring_tag) 2792 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag); 2793 2794 /* Destroy jumbo RX ring. */ 2795 if (sc->bge_ldata.bge_rx_jumbo_ring_paddr) 2796 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2797 sc->bge_cdata.bge_rx_jumbo_ring_map); 2798 2799 if (sc->bge_ldata.bge_rx_jumbo_ring) 2800 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag, 2801 sc->bge_ldata.bge_rx_jumbo_ring, 2802 sc->bge_cdata.bge_rx_jumbo_ring_map); 2803 2804 if (sc->bge_cdata.bge_rx_jumbo_ring_tag) 2805 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag); 2806 2807 /* Destroy RX return ring. */ 2808 if (sc->bge_ldata.bge_rx_return_ring_paddr) 2809 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag, 2810 sc->bge_cdata.bge_rx_return_ring_map); 2811 2812 if (sc->bge_ldata.bge_rx_return_ring) 2813 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag, 2814 sc->bge_ldata.bge_rx_return_ring, 2815 sc->bge_cdata.bge_rx_return_ring_map); 2816 2817 if (sc->bge_cdata.bge_rx_return_ring_tag) 2818 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag); 2819 2820 /* Destroy TX ring. */ 2821 if (sc->bge_ldata.bge_tx_ring_paddr) 2822 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag, 2823 sc->bge_cdata.bge_tx_ring_map); 2824 2825 if (sc->bge_ldata.bge_tx_ring) 2826 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag, 2827 sc->bge_ldata.bge_tx_ring, 2828 sc->bge_cdata.bge_tx_ring_map); 2829 2830 if (sc->bge_cdata.bge_tx_ring_tag) 2831 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag); 2832 2833 /* Destroy status block. */ 2834 if (sc->bge_ldata.bge_status_block_paddr) 2835 bus_dmamap_unload(sc->bge_cdata.bge_status_tag, 2836 sc->bge_cdata.bge_status_map); 2837 2838 if (sc->bge_ldata.bge_status_block) 2839 bus_dmamem_free(sc->bge_cdata.bge_status_tag, 2840 sc->bge_ldata.bge_status_block, 2841 sc->bge_cdata.bge_status_map); 2842 2843 if (sc->bge_cdata.bge_status_tag) 2844 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag); 2845 2846 /* Destroy statistics block. */ 2847 if (sc->bge_ldata.bge_stats_paddr) 2848 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag, 2849 sc->bge_cdata.bge_stats_map); 2850 2851 if (sc->bge_ldata.bge_stats) 2852 bus_dmamem_free(sc->bge_cdata.bge_stats_tag, 2853 sc->bge_ldata.bge_stats, 2854 sc->bge_cdata.bge_stats_map); 2855 2856 if (sc->bge_cdata.bge_stats_tag) 2857 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag); 2858 2859 if (sc->bge_cdata.bge_buffer_tag) 2860 bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag); 2861 2862 /* Destroy the parent tag. */ 2863 if (sc->bge_cdata.bge_parent_tag) 2864 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag); 2865 } 2866 2867 static int 2868 bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment, 2869 bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, 2870 bus_addr_t *paddr, const char *msg) 2871 { 2872 struct bge_dmamap_arg ctx; 2873 bus_addr_t lowaddr; 2874 bus_size_t ring_end; 2875 int error; 2876 2877 lowaddr = BUS_SPACE_MAXADDR; 2878 again: 2879 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 2880 alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2881 NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); 2882 if (error != 0) { 2883 device_printf(sc->bge_dev, 2884 "could not create %s dma tag\n", msg); 2885 return (ENOMEM); 2886 } 2887 /* Allocate DMA'able memory for ring. */ 2888 error = bus_dmamem_alloc(*tag, (void **)ring, 2889 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); 2890 if (error != 0) { 2891 device_printf(sc->bge_dev, 2892 "could not allocate DMA'able memory for %s\n", msg); 2893 return (ENOMEM); 2894 } 2895 /* Load the address of the ring. */ 2896 ctx.bge_busaddr = 0; 2897 error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr, 2898 &ctx, BUS_DMA_NOWAIT); 2899 if (error != 0) { 2900 device_printf(sc->bge_dev, 2901 "could not load DMA'able memory for %s\n", msg); 2902 return (ENOMEM); 2903 } 2904 *paddr = ctx.bge_busaddr; 2905 ring_end = *paddr + maxsize; 2906 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 && 2907 BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) { 2908 /* 2909 * 4GB boundary crossed. Limit maximum allowable DMA 2910 * address space to 32bit and try again. 2911 */ 2912 bus_dmamap_unload(*tag, *map); 2913 bus_dmamem_free(*tag, *ring, *map); 2914 bus_dma_tag_destroy(*tag); 2915 if (bootverbose) 2916 device_printf(sc->bge_dev, "4GB boundary crossed, " 2917 "limit DMA address space to 32bit for %s\n", msg); 2918 *ring = NULL; 2919 *tag = NULL; 2920 *map = NULL; 2921 lowaddr = BUS_SPACE_MAXADDR_32BIT; 2922 goto again; 2923 } 2924 return (0); 2925 } 2926 2927 static int 2928 bge_dma_alloc(struct bge_softc *sc) 2929 { 2930 bus_addr_t lowaddr; 2931 bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz; 2932 int i, error; 2933 2934 lowaddr = BUS_SPACE_MAXADDR; 2935 if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0) 2936 lowaddr = BGE_DMA_MAXADDR; 2937 /* 2938 * Allocate the parent bus DMA tag appropriate for PCI. 2939 */ 2940 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 2941 1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL, 2942 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 2943 0, NULL, NULL, &sc->bge_cdata.bge_parent_tag); 2944 if (error != 0) { 2945 device_printf(sc->bge_dev, 2946 "could not allocate parent dma tag\n"); 2947 return (ENOMEM); 2948 } 2949 2950 /* Create tag for standard RX ring. */ 2951 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ, 2952 &sc->bge_cdata.bge_rx_std_ring_tag, 2953 (uint8_t **)&sc->bge_ldata.bge_rx_std_ring, 2954 &sc->bge_cdata.bge_rx_std_ring_map, 2955 &sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring"); 2956 if (error) 2957 return (error); 2958 2959 /* Create tag for RX return ring. */ 2960 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc), 2961 &sc->bge_cdata.bge_rx_return_ring_tag, 2962 (uint8_t **)&sc->bge_ldata.bge_rx_return_ring, 2963 &sc->bge_cdata.bge_rx_return_ring_map, 2964 &sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring"); 2965 if (error) 2966 return (error); 2967 2968 /* Create tag for TX ring. */ 2969 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ, 2970 &sc->bge_cdata.bge_tx_ring_tag, 2971 (uint8_t **)&sc->bge_ldata.bge_tx_ring, 2972 &sc->bge_cdata.bge_tx_ring_map, 2973 &sc->bge_ldata.bge_tx_ring_paddr, "TX ring"); 2974 if (error) 2975 return (error); 2976 2977 /* 2978 * Create tag for status block. 2979 * Because we only use single Tx/Rx/Rx return ring, use 2980 * minimum status block size except BCM5700 AX/BX which 2981 * seems to want to see full status block size regardless 2982 * of configured number of ring. 2983 */ 2984 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 2985 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 2986 sbsz = BGE_STATUS_BLK_SZ; 2987 else 2988 sbsz = 32; 2989 error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz, 2990 &sc->bge_cdata.bge_status_tag, 2991 (uint8_t **)&sc->bge_ldata.bge_status_block, 2992 &sc->bge_cdata.bge_status_map, 2993 &sc->bge_ldata.bge_status_block_paddr, "status block"); 2994 if (error) 2995 return (error); 2996 2997 /* Create tag for statistics block. */ 2998 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ, 2999 &sc->bge_cdata.bge_stats_tag, 3000 (uint8_t **)&sc->bge_ldata.bge_stats, 3001 &sc->bge_cdata.bge_stats_map, 3002 &sc->bge_ldata.bge_stats_paddr, "statistics block"); 3003 if (error) 3004 return (error); 3005 3006 /* Create tag for jumbo RX ring. */ 3007 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3008 error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ, 3009 &sc->bge_cdata.bge_rx_jumbo_ring_tag, 3010 (uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring, 3011 &sc->bge_cdata.bge_rx_jumbo_ring_map, 3012 &sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring"); 3013 if (error) 3014 return (error); 3015 } 3016 3017 /* Create parent tag for buffers. */ 3018 boundary = 0; 3019 if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) { 3020 boundary = BGE_DMA_BNDRY; 3021 /* 3022 * XXX 3023 * watchdog timeout issue was observed on BCM5704 which 3024 * lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge). 3025 * Both limiting DMA address space to 32bits and flushing 3026 * mailbox write seem to address the issue. 3027 */ 3028 if (sc->bge_pcixcap != 0) 3029 lowaddr = BUS_SPACE_MAXADDR_32BIT; 3030 } 3031 error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev), 3032 1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL, 3033 NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 3034 0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag); 3035 if (error != 0) { 3036 device_printf(sc->bge_dev, 3037 "could not allocate buffer dma tag\n"); 3038 return (ENOMEM); 3039 } 3040 /* Create tag for Tx mbufs. */ 3041 if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) { 3042 txsegsz = BGE_TSOSEG_SZ; 3043 txmaxsegsz = 65535 + sizeof(struct ether_vlan_header); 3044 } else { 3045 txsegsz = MCLBYTES; 3046 txmaxsegsz = MCLBYTES * BGE_NSEG_NEW; 3047 } 3048 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 3049 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 3050 txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL, 3051 &sc->bge_cdata.bge_tx_mtag); 3052 3053 if (error) { 3054 device_printf(sc->bge_dev, "could not allocate TX dma tag\n"); 3055 return (ENOMEM); 3056 } 3057 3058 /* Create tag for Rx mbufs. */ 3059 if (sc->bge_flags & BGE_FLAG_JUMBO_STD) 3060 rxmaxsegsz = MJUM9BYTES; 3061 else 3062 rxmaxsegsz = MCLBYTES; 3063 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0, 3064 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1, 3065 rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag); 3066 3067 if (error) { 3068 device_printf(sc->bge_dev, "could not allocate RX dma tag\n"); 3069 return (ENOMEM); 3070 } 3071 3072 /* Create DMA maps for RX buffers. */ 3073 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3074 &sc->bge_cdata.bge_rx_std_sparemap); 3075 if (error) { 3076 device_printf(sc->bge_dev, 3077 "can't create spare DMA map for RX\n"); 3078 return (ENOMEM); 3079 } 3080 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 3081 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0, 3082 &sc->bge_cdata.bge_rx_std_dmamap[i]); 3083 if (error) { 3084 device_printf(sc->bge_dev, 3085 "can't create DMA map for RX\n"); 3086 return (ENOMEM); 3087 } 3088 } 3089 3090 /* Create DMA maps for TX buffers. */ 3091 for (i = 0; i < BGE_TX_RING_CNT; i++) { 3092 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0, 3093 &sc->bge_cdata.bge_tx_dmamap[i]); 3094 if (error) { 3095 device_printf(sc->bge_dev, 3096 "can't create DMA map for TX\n"); 3097 return (ENOMEM); 3098 } 3099 } 3100 3101 /* Create tags for jumbo RX buffers. */ 3102 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3103 error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 3104 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 3105 NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE, 3106 0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo); 3107 if (error) { 3108 device_printf(sc->bge_dev, 3109 "could not allocate jumbo dma tag\n"); 3110 return (ENOMEM); 3111 } 3112 /* Create DMA maps for jumbo RX buffers. */ 3113 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3114 0, &sc->bge_cdata.bge_rx_jumbo_sparemap); 3115 if (error) { 3116 device_printf(sc->bge_dev, 3117 "can't create spare DMA map for jumbo RX\n"); 3118 return (ENOMEM); 3119 } 3120 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 3121 error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo, 3122 0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]); 3123 if (error) { 3124 device_printf(sc->bge_dev, 3125 "can't create DMA map for jumbo RX\n"); 3126 return (ENOMEM); 3127 } 3128 } 3129 } 3130 3131 return (0); 3132 } 3133 3134 /* 3135 * Return true if this device has more than one port. 3136 */ 3137 static int 3138 bge_has_multiple_ports(struct bge_softc *sc) 3139 { 3140 device_t dev = sc->bge_dev; 3141 u_int b, d, f, fscan, s; 3142 3143 d = pci_get_domain(dev); 3144 b = pci_get_bus(dev); 3145 s = pci_get_slot(dev); 3146 f = pci_get_function(dev); 3147 for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++) 3148 if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL) 3149 return (1); 3150 return (0); 3151 } 3152 3153 /* 3154 * Return true if MSI can be used with this device. 3155 */ 3156 static int 3157 bge_can_use_msi(struct bge_softc *sc) 3158 { 3159 int can_use_msi = 0; 3160 3161 if (sc->bge_msi == 0) 3162 return (0); 3163 3164 /* Disable MSI for polling(4). */ 3165 #ifdef DEVICE_POLLING 3166 return (0); 3167 #endif 3168 switch (sc->bge_asicrev) { 3169 case BGE_ASICREV_BCM5714_A0: 3170 case BGE_ASICREV_BCM5714: 3171 /* 3172 * Apparently, MSI doesn't work when these chips are 3173 * configured in single-port mode. 3174 */ 3175 if (bge_has_multiple_ports(sc)) 3176 can_use_msi = 1; 3177 break; 3178 case BGE_ASICREV_BCM5750: 3179 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX && 3180 sc->bge_chiprev != BGE_CHIPREV_5750_BX) 3181 can_use_msi = 1; 3182 break; 3183 case BGE_ASICREV_BCM5784: 3184 /* 3185 * Prevent infinite "watchdog timeout" errors 3186 * in some MacBook Pro and make it work out-of-the-box. 3187 */ 3188 if (sc->bge_chiprev == BGE_CHIPREV_5784_AX) 3189 break; 3190 /* FALLTHROUGH */ 3191 default: 3192 if (BGE_IS_575X_PLUS(sc)) 3193 can_use_msi = 1; 3194 } 3195 return (can_use_msi); 3196 } 3197 3198 static int 3199 bge_mbox_reorder(struct bge_softc *sc) 3200 { 3201 /* Lists of PCI bridges that are known to reorder mailbox writes. */ 3202 static const struct mbox_reorder { 3203 const uint16_t vendor; 3204 const uint16_t device; 3205 const char *desc; 3206 } mbox_reorder_lists[] = { 3207 { 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" }, 3208 }; 3209 devclass_t pci, pcib; 3210 device_t bus, dev; 3211 int i; 3212 3213 pci = devclass_find("pci"); 3214 pcib = devclass_find("pcib"); 3215 dev = sc->bge_dev; 3216 bus = device_get_parent(dev); 3217 for (;;) { 3218 dev = device_get_parent(bus); 3219 bus = device_get_parent(dev); 3220 if (device_get_devclass(dev) != pcib) 3221 break; 3222 if (device_get_devclass(bus) != pci) 3223 break; 3224 for (i = 0; i < nitems(mbox_reorder_lists); i++) { 3225 if (pci_get_vendor(dev) == 3226 mbox_reorder_lists[i].vendor && 3227 pci_get_device(dev) == 3228 mbox_reorder_lists[i].device) { 3229 device_printf(sc->bge_dev, 3230 "enabling MBOX workaround for %s\n", 3231 mbox_reorder_lists[i].desc); 3232 return (1); 3233 } 3234 } 3235 } 3236 return (0); 3237 } 3238 3239 static void 3240 bge_devinfo(struct bge_softc *sc) 3241 { 3242 uint32_t cfg, clk; 3243 3244 device_printf(sc->bge_dev, 3245 "CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ", 3246 sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev); 3247 if (sc->bge_flags & BGE_FLAG_PCIE) 3248 printf("PCI-E\n"); 3249 else if (sc->bge_flags & BGE_FLAG_PCIX) { 3250 printf("PCI-X "); 3251 cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3252 if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE) 3253 clk = 133; 3254 else { 3255 clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F; 3256 switch (clk) { 3257 case 0: 3258 clk = 33; 3259 break; 3260 case 2: 3261 clk = 50; 3262 break; 3263 case 4: 3264 clk = 66; 3265 break; 3266 case 6: 3267 clk = 100; 3268 break; 3269 case 7: 3270 clk = 133; 3271 break; 3272 } 3273 } 3274 printf("%u MHz\n", clk); 3275 } else { 3276 if (sc->bge_pcixcap != 0) 3277 printf("PCI on PCI-X "); 3278 else 3279 printf("PCI "); 3280 cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4); 3281 if (cfg & BGE_PCISTATE_PCI_BUSSPEED) 3282 clk = 66; 3283 else 3284 clk = 33; 3285 if (cfg & BGE_PCISTATE_32BIT_BUS) 3286 printf("%u MHz; 32bit\n", clk); 3287 else 3288 printf("%u MHz; 64bit\n", clk); 3289 } 3290 } 3291 3292 static int 3293 bge_attach(device_t dev) 3294 { 3295 if_t ifp; 3296 struct bge_softc *sc; 3297 uint32_t hwcfg = 0, misccfg, pcistate; 3298 u_char eaddr[ETHER_ADDR_LEN]; 3299 int capmask, error, reg, rid, trys; 3300 3301 sc = device_get_softc(dev); 3302 sc->bge_dev = dev; 3303 3304 BGE_LOCK_INIT(sc, device_get_nameunit(dev)); 3305 NET_TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc); 3306 callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0); 3307 3308 pci_enable_busmaster(dev); 3309 3310 /* 3311 * Allocate control/status registers. 3312 */ 3313 rid = PCIR_BAR(0); 3314 sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3315 RF_ACTIVE); 3316 3317 if (sc->bge_res == NULL) { 3318 device_printf (sc->bge_dev, "couldn't map BAR0 memory\n"); 3319 error = ENXIO; 3320 goto fail; 3321 } 3322 3323 /* Save various chip information. */ 3324 sc->bge_func_addr = pci_get_function(dev); 3325 sc->bge_chipid = bge_chipid(dev); 3326 sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); 3327 sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); 3328 3329 /* Set default PHY address. */ 3330 sc->bge_phy_addr = 1; 3331 /* 3332 * PHY address mapping for various devices. 3333 * 3334 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 3335 * ---------+-------+-------+-------+-------+ 3336 * BCM57XX | 1 | X | X | X | 3337 * BCM5704 | 1 | X | 1 | X | 3338 * BCM5717 | 1 | 8 | 2 | 9 | 3339 * BCM5719 | 1 | 8 | 2 | 9 | 3340 * BCM5720 | 1 | 8 | 2 | 9 | 3341 * 3342 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 3343 * ---------+-------+-------+-------+-------+ 3344 * BCM57XX | X | X | X | X | 3345 * BCM5704 | X | X | X | X | 3346 * BCM5717 | X | X | X | X | 3347 * BCM5719 | 3 | 10 | 4 | 11 | 3348 * BCM5720 | X | X | X | X | 3349 * 3350 * Other addresses may respond but they are not 3351 * IEEE compliant PHYs and should be ignored. 3352 */ 3353 if (sc->bge_asicrev == BGE_ASICREV_BCM5717 || 3354 sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3355 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3356 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 3357 if (CSR_READ_4(sc, BGE_SGDIG_STS) & 3358 BGE_SGDIGSTS_IS_SERDES) 3359 sc->bge_phy_addr = sc->bge_func_addr + 8; 3360 else 3361 sc->bge_phy_addr = sc->bge_func_addr + 1; 3362 } else { 3363 if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 3364 BGE_CPMU_PHY_STRAP_IS_SERDES) 3365 sc->bge_phy_addr = sc->bge_func_addr + 8; 3366 else 3367 sc->bge_phy_addr = sc->bge_func_addr + 1; 3368 } 3369 } 3370 3371 if (bge_has_eaddr(sc)) 3372 sc->bge_flags |= BGE_FLAG_EADDR; 3373 3374 /* Save chipset family. */ 3375 switch (sc->bge_asicrev) { 3376 case BGE_ASICREV_BCM5762: 3377 case BGE_ASICREV_BCM57765: 3378 case BGE_ASICREV_BCM57766: 3379 sc->bge_flags |= BGE_FLAG_57765_PLUS; 3380 /* FALLTHROUGH */ 3381 case BGE_ASICREV_BCM5717: 3382 case BGE_ASICREV_BCM5719: 3383 case BGE_ASICREV_BCM5720: 3384 sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS | 3385 BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO | 3386 BGE_FLAG_JUMBO_FRAME; 3387 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3388 sc->bge_asicrev == BGE_ASICREV_BCM5720) { 3389 /* 3390 * Enable work around for DMA engine miscalculation 3391 * of TXMBUF available space. 3392 */ 3393 sc->bge_flags |= BGE_FLAG_RDMA_BUG; 3394 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3395 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3396 /* Jumbo frame on BCM5719 A0 does not work. */ 3397 sc->bge_flags &= ~BGE_FLAG_JUMBO; 3398 } 3399 } 3400 break; 3401 case BGE_ASICREV_BCM5755: 3402 case BGE_ASICREV_BCM5761: 3403 case BGE_ASICREV_BCM5784: 3404 case BGE_ASICREV_BCM5785: 3405 case BGE_ASICREV_BCM5787: 3406 case BGE_ASICREV_BCM57780: 3407 sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS | 3408 BGE_FLAG_5705_PLUS; 3409 break; 3410 case BGE_ASICREV_BCM5700: 3411 case BGE_ASICREV_BCM5701: 3412 case BGE_ASICREV_BCM5703: 3413 case BGE_ASICREV_BCM5704: 3414 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO; 3415 break; 3416 case BGE_ASICREV_BCM5714_A0: 3417 case BGE_ASICREV_BCM5780: 3418 case BGE_ASICREV_BCM5714: 3419 sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD; 3420 /* FALLTHROUGH */ 3421 case BGE_ASICREV_BCM5750: 3422 case BGE_ASICREV_BCM5752: 3423 case BGE_ASICREV_BCM5906: 3424 sc->bge_flags |= BGE_FLAG_575X_PLUS; 3425 /* FALLTHROUGH */ 3426 case BGE_ASICREV_BCM5705: 3427 sc->bge_flags |= BGE_FLAG_5705_PLUS; 3428 break; 3429 } 3430 3431 /* Identify chips with APE processor. */ 3432 switch (sc->bge_asicrev) { 3433 case BGE_ASICREV_BCM5717: 3434 case BGE_ASICREV_BCM5719: 3435 case BGE_ASICREV_BCM5720: 3436 case BGE_ASICREV_BCM5761: 3437 case BGE_ASICREV_BCM5762: 3438 sc->bge_flags |= BGE_FLAG_APE; 3439 break; 3440 } 3441 3442 /* Chips with APE need BAR2 access for APE registers/memory. */ 3443 if ((sc->bge_flags & BGE_FLAG_APE) != 0) { 3444 rid = PCIR_BAR(2); 3445 sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 3446 RF_ACTIVE); 3447 if (sc->bge_res2 == NULL) { 3448 device_printf (sc->bge_dev, 3449 "couldn't map BAR2 memory\n"); 3450 error = ENXIO; 3451 goto fail; 3452 } 3453 3454 /* Enable APE register/memory access by host driver. */ 3455 pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); 3456 pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3457 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3458 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3459 pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4); 3460 3461 bge_ape_lock_init(sc); 3462 bge_ape_read_fw_ver(sc); 3463 } 3464 3465 /* Add SYSCTLs, requires the chipset family to be set. */ 3466 bge_add_sysctls(sc); 3467 3468 /* Identify the chips that use an CPMU. */ 3469 if (BGE_IS_5717_PLUS(sc) || 3470 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3471 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3472 sc->bge_asicrev == BGE_ASICREV_BCM5785 || 3473 sc->bge_asicrev == BGE_ASICREV_BCM57780) 3474 sc->bge_flags |= BGE_FLAG_CPMU_PRESENT; 3475 if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0) 3476 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST; 3477 else 3478 sc->bge_mi_mode = BGE_MIMODE_BASE; 3479 /* Enable auto polling for BCM570[0-5]. */ 3480 if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) 3481 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL; 3482 3483 /* 3484 * All Broadcom controllers have 4GB boundary DMA bug. 3485 * Whenever an address crosses a multiple of the 4GB boundary 3486 * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition 3487 * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA 3488 * state machine will lockup and cause the device to hang. 3489 */ 3490 sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG; 3491 3492 /* BCM5755 or higher and BCM5906 have short DMA bug. */ 3493 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 3494 sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG; 3495 3496 /* 3497 * BCM5719 cannot handle DMA requests for DMA segments that 3498 * have larger than 4KB in size. However the maximum DMA 3499 * segment size created in DMA tag is 4KB for TSO, so we 3500 * wouldn't encounter the issue here. 3501 */ 3502 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 3503 sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG; 3504 3505 misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK; 3506 if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { 3507 if (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3508 misccfg == BGE_MISCCFG_BOARD_ID_5788M) 3509 sc->bge_flags |= BGE_FLAG_5788; 3510 } 3511 3512 capmask = BMSR_DEFCAPMASK; 3513 if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 && 3514 (misccfg == 0x4000 || misccfg == 0x8000)) || 3515 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3516 pci_get_vendor(dev) == BCOM_VENDORID && 3517 (pci_get_device(dev) == BCOM_DEVICEID_BCM5901 || 3518 pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 || 3519 pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) || 3520 (pci_get_vendor(dev) == BCOM_VENDORID && 3521 (pci_get_device(dev) == BCOM_DEVICEID_BCM5751F || 3522 pci_get_device(dev) == BCOM_DEVICEID_BCM5753F || 3523 pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) || 3524 pci_get_device(dev) == BCOM_DEVICEID_BCM57790 || 3525 pci_get_device(dev) == BCOM_DEVICEID_BCM57791 || 3526 pci_get_device(dev) == BCOM_DEVICEID_BCM57795 || 3527 sc->bge_asicrev == BGE_ASICREV_BCM5906) { 3528 /* These chips are 10/100 only. */ 3529 capmask &= ~BMSR_EXTSTAT; 3530 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3531 } 3532 3533 /* 3534 * Some controllers seem to require a special firmware to use 3535 * TSO. But the firmware is not available to FreeBSD and Linux 3536 * claims that the TSO performed by the firmware is slower than 3537 * hardware based TSO. Moreover the firmware based TSO has one 3538 * known bug which can't handle TSO if Ethernet header + IP/TCP 3539 * header is greater than 80 bytes. A workaround for the TSO 3540 * bug exist but it seems it's too expensive than not using 3541 * TSO at all. Some hardwares also have the TSO bug so limit 3542 * the TSO to the controllers that are not affected TSO issues 3543 * (e.g. 5755 or higher). 3544 */ 3545 if (BGE_IS_5717_PLUS(sc)) { 3546 /* BCM5717 requires different TSO configuration. */ 3547 sc->bge_flags |= BGE_FLAG_TSO3; 3548 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 && 3549 sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3550 /* TSO on BCM5719 A0 does not work. */ 3551 sc->bge_flags &= ~BGE_FLAG_TSO3; 3552 } 3553 } else if (BGE_IS_5755_PLUS(sc)) { 3554 /* 3555 * BCM5754 and BCM5787 shares the same ASIC id so 3556 * explicit device id check is required. 3557 * Due to unknown reason TSO does not work on BCM5755M. 3558 */ 3559 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 && 3560 pci_get_device(dev) != BCOM_DEVICEID_BCM5754M && 3561 pci_get_device(dev) != BCOM_DEVICEID_BCM5755M) 3562 sc->bge_flags |= BGE_FLAG_TSO; 3563 } 3564 3565 /* 3566 * Check if this is a PCI-X or PCI Express device. 3567 */ 3568 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 3569 /* 3570 * Found a PCI Express capabilities register, this 3571 * must be a PCI Express device. 3572 */ 3573 sc->bge_flags |= BGE_FLAG_PCIE; 3574 sc->bge_expcap = reg; 3575 /* Extract supported maximum payload size. */ 3576 sc->bge_mps = pci_read_config(dev, sc->bge_expcap + 3577 PCIER_DEVICE_CAP, 2); 3578 sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD); 3579 if (sc->bge_asicrev == BGE_ASICREV_BCM5719 || 3580 sc->bge_asicrev == BGE_ASICREV_BCM5720) 3581 sc->bge_expmrq = 2048; 3582 else 3583 sc->bge_expmrq = 4096; 3584 pci_set_max_read_req(dev, sc->bge_expmrq); 3585 } else { 3586 /* 3587 * Check if the device is in PCI-X Mode. 3588 * (This bit is not valid on PCI Express controllers.) 3589 */ 3590 if (pci_find_cap(dev, PCIY_PCIX, ®) == 0) 3591 sc->bge_pcixcap = reg; 3592 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & 3593 BGE_PCISTATE_PCI_BUSMODE) == 0) 3594 sc->bge_flags |= BGE_FLAG_PCIX; 3595 } 3596 3597 /* 3598 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3599 * not actually a MAC controller bug but an issue with the embedded 3600 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3601 */ 3602 if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX)) 3603 sc->bge_flags |= BGE_FLAG_40BIT_BUG; 3604 /* 3605 * Some PCI-X bridges are known to trigger write reordering to 3606 * the mailbox registers. Typical phenomena is watchdog timeouts 3607 * caused by out-of-order TX completions. Enable workaround for 3608 * PCI-X devices that live behind these bridges. 3609 * Note, PCI-X controllers can run in PCI mode so we can't use 3610 * BGE_FLAG_PCIX flag to detect PCI-X controllers. 3611 */ 3612 if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0) 3613 sc->bge_flags |= BGE_FLAG_MBOX_REORDER; 3614 /* 3615 * Allocate the interrupt, using MSI if possible. These devices 3616 * support 8 MSI messages, but only the first one is used in 3617 * normal operation. 3618 */ 3619 rid = 0; 3620 if (pci_find_cap(sc->bge_dev, PCIY_MSI, ®) == 0) { 3621 sc->bge_msicap = reg; 3622 reg = 1; 3623 if (bge_can_use_msi(sc) && pci_alloc_msi(dev, ®) == 0) { 3624 rid = 1; 3625 sc->bge_flags |= BGE_FLAG_MSI; 3626 } 3627 } 3628 3629 /* 3630 * All controllers except BCM5700 supports tagged status but 3631 * we use tagged status only for MSI case on BCM5717. Otherwise 3632 * MSI on BCM5717 does not work. 3633 */ 3634 #ifndef DEVICE_POLLING 3635 if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc)) 3636 sc->bge_flags |= BGE_FLAG_TAGGED_STATUS; 3637 #endif 3638 3639 sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 3640 RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE)); 3641 3642 if (sc->bge_irq == NULL) { 3643 device_printf(sc->bge_dev, "couldn't map interrupt\n"); 3644 error = ENXIO; 3645 goto fail; 3646 } 3647 3648 bge_devinfo(sc); 3649 3650 sc->bge_asf_mode = 0; 3651 /* No ASF if APE present. */ 3652 if ((sc->bge_flags & BGE_FLAG_APE) == 0) { 3653 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3654 BGE_SRAM_DATA_SIG_MAGIC)) { 3655 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3656 BGE_HWCFG_ASF) { 3657 sc->bge_asf_mode |= ASF_ENABLE; 3658 sc->bge_asf_mode |= ASF_STACKUP; 3659 if (BGE_IS_575X_PLUS(sc)) 3660 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3661 } 3662 } 3663 } 3664 3665 bge_stop_fw(sc); 3666 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 3667 if (bge_reset(sc)) { 3668 device_printf(sc->bge_dev, "chip reset failed\n"); 3669 error = ENXIO; 3670 goto fail; 3671 } 3672 3673 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 3674 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 3675 3676 if (bge_chipinit(sc)) { 3677 device_printf(sc->bge_dev, "chip initialization failed\n"); 3678 error = ENXIO; 3679 goto fail; 3680 } 3681 3682 error = bge_get_eaddr(sc, eaddr); 3683 if (error) { 3684 device_printf(sc->bge_dev, 3685 "failed to read station address\n"); 3686 error = ENXIO; 3687 goto fail; 3688 } 3689 3690 /* 5705 limits RX return ring to 512 entries. */ 3691 if (BGE_IS_5717_PLUS(sc)) 3692 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3693 else if (BGE_IS_5705_PLUS(sc)) 3694 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3695 else 3696 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3697 3698 if (bge_dma_alloc(sc)) { 3699 device_printf(sc->bge_dev, 3700 "failed to allocate DMA resources\n"); 3701 error = ENXIO; 3702 goto fail; 3703 } 3704 3705 /* Set default tuneable values. */ 3706 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3707 sc->bge_rx_coal_ticks = 150; 3708 sc->bge_tx_coal_ticks = 150; 3709 sc->bge_rx_max_coal_bds = 10; 3710 sc->bge_tx_max_coal_bds = 10; 3711 3712 /* Initialize checksum features to use. */ 3713 sc->bge_csum_features = BGE_CSUM_FEATURES; 3714 if (sc->bge_forced_udpcsum != 0) 3715 sc->bge_csum_features |= CSUM_UDP; 3716 3717 /* Set up ifnet structure */ 3718 ifp = sc->bge_ifp = if_alloc(IFT_ETHER); 3719 if (ifp == NULL) { 3720 device_printf(sc->bge_dev, "failed to if_alloc()\n"); 3721 error = ENXIO; 3722 goto fail; 3723 } 3724 if_setsoftc(ifp, sc); 3725 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 3726 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 3727 if_setioctlfn(ifp, bge_ioctl); 3728 if_setstartfn(ifp, bge_start); 3729 if_setinitfn(ifp, bge_init); 3730 if_setgetcounterfn(ifp, bge_get_counter); 3731 if_setsendqlen(ifp, BGE_TX_RING_CNT - 1); 3732 if_setsendqready(ifp); 3733 if_sethwassist(ifp, sc->bge_csum_features); 3734 if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | 3735 IFCAP_VLAN_MTU); 3736 if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) { 3737 if_sethwassistbits(ifp, CSUM_TSO, 0); 3738 if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0); 3739 } 3740 #ifdef IFCAP_VLAN_HWCSUM 3741 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0); 3742 #endif 3743 if_setcapenable(ifp, if_getcapabilities(ifp)); 3744 #ifdef DEVICE_POLLING 3745 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 3746 #endif 3747 3748 /* 3749 * 5700 B0 chips do not support checksumming correctly due 3750 * to hardware bugs. 3751 */ 3752 if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { 3753 if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM); 3754 if_setcapenablebit(ifp, 0, IFCAP_HWCSUM); 3755 if_sethwassist(ifp, 0); 3756 } 3757 3758 /* 3759 * Figure out what sort of media we have by checking the 3760 * hardware config word in the first 32k of NIC internal memory, 3761 * or fall back to examining the EEPROM if necessary. 3762 * Note: on some BCM5700 cards, this value appears to be unset. 3763 * If that's the case, we have to rely on identifying the NIC 3764 * by its PCI subsystem ID, as we do below for the SysKonnect 3765 * SK-9D41. 3766 */ 3767 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) 3768 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3769 else if ((sc->bge_flags & BGE_FLAG_EADDR) && 3770 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 3771 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, 3772 sizeof(hwcfg))) { 3773 device_printf(sc->bge_dev, "failed to read EEPROM\n"); 3774 error = ENXIO; 3775 goto fail; 3776 } 3777 hwcfg = ntohl(hwcfg); 3778 } 3779 3780 /* The SysKonnect SK-9D41 is a 1000baseSX card. */ 3781 if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == 3782 SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3783 if (BGE_IS_5705_PLUS(sc)) { 3784 sc->bge_flags |= BGE_FLAG_MII_SERDES; 3785 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3786 } else 3787 sc->bge_flags |= BGE_FLAG_TBI; 3788 } 3789 3790 /* Set various PHY bug flags. */ 3791 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3792 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3793 sc->bge_phy_flags |= BGE_PHY_CRC_BUG; 3794 if (sc->bge_chiprev == BGE_CHIPREV_5703_AX || 3795 sc->bge_chiprev == BGE_CHIPREV_5704_AX) 3796 sc->bge_phy_flags |= BGE_PHY_ADC_BUG; 3797 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3798 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; 3799 if (pci_get_subvendor(dev) == DELL_VENDORID) 3800 sc->bge_phy_flags |= BGE_PHY_NO_3LED; 3801 if ((BGE_IS_5705_PLUS(sc)) && 3802 sc->bge_asicrev != BGE_ASICREV_BCM5906 && 3803 sc->bge_asicrev != BGE_ASICREV_BCM5785 && 3804 sc->bge_asicrev != BGE_ASICREV_BCM57780 && 3805 !BGE_IS_5717_PLUS(sc)) { 3806 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 || 3807 sc->bge_asicrev == BGE_ASICREV_BCM5761 || 3808 sc->bge_asicrev == BGE_ASICREV_BCM5784 || 3809 sc->bge_asicrev == BGE_ASICREV_BCM5787) { 3810 if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 && 3811 pci_get_device(dev) != BCOM_DEVICEID_BCM5756) 3812 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; 3813 if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M) 3814 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; 3815 } else 3816 sc->bge_phy_flags |= BGE_PHY_BER_BUG; 3817 } 3818 3819 /* 3820 * Don't enable Ethernet@WireSpeed for the 5700 or the 3821 * 5705 A0 and A1 chips. 3822 */ 3823 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 3824 (sc->bge_asicrev == BGE_ASICREV_BCM5705 && 3825 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3826 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3827 sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; 3828 3829 if (sc->bge_flags & BGE_FLAG_TBI) { 3830 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3831 bge_ifmedia_sts); 3832 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); 3833 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 3834 0, NULL); 3835 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3836 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3837 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3838 } else { 3839 /* 3840 * Do transceiver setup and tell the firmware the 3841 * driver is down so we can try to get access the 3842 * probe if ASF is running. Retry a couple of times 3843 * if we get a conflict with the ASF firmware accessing 3844 * the PHY. 3845 */ 3846 trys = 0; 3847 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3848 again: 3849 bge_asf_driver_up(sc); 3850 3851 error = mii_attach(dev, &sc->bge_miibus, ifp, 3852 (ifm_change_cb_t)bge_ifmedia_upd, 3853 (ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr, 3854 MII_OFFSET_ANY, MIIF_DOPAUSE); 3855 if (error != 0) { 3856 if (trys++ < 4) { 3857 device_printf(sc->bge_dev, "Try again\n"); 3858 bge_miibus_writereg(sc->bge_dev, 3859 sc->bge_phy_addr, MII_BMCR, BMCR_RESET); 3860 goto again; 3861 } 3862 device_printf(sc->bge_dev, "attaching PHYs failed\n"); 3863 goto fail; 3864 } 3865 3866 /* 3867 * Now tell the firmware we are going up after probing the PHY 3868 */ 3869 if (sc->bge_asf_mode & ASF_STACKUP) 3870 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3871 } 3872 3873 /* 3874 * When using the BCM5701 in PCI-X mode, data corruption has 3875 * been observed in the first few bytes of some received packets. 3876 * Aligning the packet buffer in memory eliminates the corruption. 3877 * Unfortunately, this misaligns the packet payloads. On platforms 3878 * which do not support unaligned accesses, we will realign the 3879 * payloads by copying the received packets. 3880 */ 3881 if (sc->bge_asicrev == BGE_ASICREV_BCM5701 && 3882 sc->bge_flags & BGE_FLAG_PCIX) 3883 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG; 3884 3885 /* 3886 * Call MI attach routine. 3887 */ 3888 ether_ifattach(ifp, eaddr); 3889 3890 /* Tell upper layer we support long frames. */ 3891 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 3892 3893 /* 3894 * Hookup IRQ last. 3895 */ 3896 if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) { 3897 /* Take advantage of single-shot MSI. */ 3898 CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & 3899 ~BGE_MSIMODE_ONE_SHOT_DISABLE); 3900 sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK, 3901 taskqueue_thread_enqueue, &sc->bge_tq); 3902 if (sc->bge_tq == NULL) { 3903 device_printf(dev, "could not create taskqueue.\n"); 3904 ether_ifdetach(ifp); 3905 error = ENOMEM; 3906 goto fail; 3907 } 3908 error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET, 3909 "%s taskq", device_get_nameunit(sc->bge_dev)); 3910 if (error != 0) { 3911 device_printf(dev, "could not start threads.\n"); 3912 ether_ifdetach(ifp); 3913 goto fail; 3914 } 3915 error = bus_setup_intr(dev, sc->bge_irq, 3916 INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc, 3917 &sc->bge_intrhand); 3918 } else 3919 error = bus_setup_intr(dev, sc->bge_irq, 3920 INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc, 3921 &sc->bge_intrhand); 3922 3923 if (error) { 3924 ether_ifdetach(ifp); 3925 device_printf(sc->bge_dev, "couldn't set up irq\n"); 3926 goto fail; 3927 } 3928 3929 /* Attach driver debugnet methods. */ 3930 DEBUGNET_SET(ifp, bge); 3931 3932 fail: 3933 if (error) 3934 bge_detach(dev); 3935 return (error); 3936 } 3937 3938 static int 3939 bge_detach(device_t dev) 3940 { 3941 struct bge_softc *sc; 3942 if_t ifp; 3943 3944 sc = device_get_softc(dev); 3945 ifp = sc->bge_ifp; 3946 3947 #ifdef DEVICE_POLLING 3948 if (if_getcapenable(ifp) & IFCAP_POLLING) 3949 ether_poll_deregister(ifp); 3950 #endif 3951 3952 if (device_is_attached(dev)) { 3953 ether_ifdetach(ifp); 3954 BGE_LOCK(sc); 3955 bge_stop(sc); 3956 BGE_UNLOCK(sc); 3957 callout_drain(&sc->bge_stat_ch); 3958 } 3959 3960 if (sc->bge_tq) 3961 taskqueue_drain(sc->bge_tq, &sc->bge_intr_task); 3962 3963 if (sc->bge_flags & BGE_FLAG_TBI) 3964 ifmedia_removeall(&sc->bge_ifmedia); 3965 else if (sc->bge_miibus != NULL) { 3966 bus_generic_detach(dev); 3967 device_delete_child(dev, sc->bge_miibus); 3968 } 3969 3970 bge_release_resources(sc); 3971 3972 return (0); 3973 } 3974 3975 static void 3976 bge_release_resources(struct bge_softc *sc) 3977 { 3978 device_t dev; 3979 3980 dev = sc->bge_dev; 3981 3982 if (sc->bge_tq != NULL) 3983 taskqueue_free(sc->bge_tq); 3984 3985 if (sc->bge_intrhand != NULL) 3986 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); 3987 3988 if (sc->bge_irq != NULL) { 3989 bus_release_resource(dev, SYS_RES_IRQ, 3990 rman_get_rid(sc->bge_irq), sc->bge_irq); 3991 pci_release_msi(dev); 3992 } 3993 3994 if (sc->bge_res != NULL) 3995 bus_release_resource(dev, SYS_RES_MEMORY, 3996 rman_get_rid(sc->bge_res), sc->bge_res); 3997 3998 if (sc->bge_res2 != NULL) 3999 bus_release_resource(dev, SYS_RES_MEMORY, 4000 rman_get_rid(sc->bge_res2), sc->bge_res2); 4001 4002 if (sc->bge_ifp != NULL) 4003 if_free(sc->bge_ifp); 4004 4005 bge_dma_free(sc); 4006 4007 if (mtx_initialized(&sc->bge_mtx)) /* XXX */ 4008 BGE_LOCK_DESTROY(sc); 4009 } 4010 4011 static int 4012 bge_reset(struct bge_softc *sc) 4013 { 4014 device_t dev; 4015 uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val; 4016 void (*write_op)(struct bge_softc *, int, int); 4017 uint16_t devctl; 4018 int i; 4019 4020 dev = sc->bge_dev; 4021 4022 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4023 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4024 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4025 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4026 4027 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4028 (sc->bge_asicrev != BGE_ASICREV_BCM5906)) { 4029 if (sc->bge_flags & BGE_FLAG_PCIE) 4030 write_op = bge_writemem_direct; 4031 else 4032 write_op = bge_writemem_ind; 4033 } else 4034 write_op = bge_writereg_ind; 4035 4036 if (sc->bge_asicrev != BGE_ASICREV_BCM5700 && 4037 sc->bge_asicrev != BGE_ASICREV_BCM5701) { 4038 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4039 for (i = 0; i < 8000; i++) { 4040 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4041 BGE_NVRAMSWARB_GNT1) 4042 break; 4043 DELAY(20); 4044 } 4045 if (i == 8000) { 4046 if (bootverbose) 4047 device_printf(dev, "NVRAM lock timedout!\n"); 4048 } 4049 } 4050 /* Take APE lock when performing reset. */ 4051 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4052 4053 /* Save some important PCI state. */ 4054 cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); 4055 command = pci_read_config(dev, BGE_PCI_CMD, 4); 4056 4057 pci_write_config(dev, BGE_PCI_MISC_CTL, 4058 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4059 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4060 4061 /* Disable fastboot on controllers that support it. */ 4062 if (sc->bge_asicrev == BGE_ASICREV_BCM5752 || 4063 BGE_IS_5755_PLUS(sc)) { 4064 if (bootverbose) 4065 device_printf(dev, "Disabling fastboot\n"); 4066 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0); 4067 } 4068 4069 /* 4070 * Write the magic number to SRAM at offset 0xB50. 4071 * When firmware finishes its initialization it will 4072 * write ~BGE_SRAM_FW_MB_MAGIC to the same location. 4073 */ 4074 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4075 4076 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4077 4078 /* XXX: Broadcom Linux driver. */ 4079 if (sc->bge_flags & BGE_FLAG_PCIE) { 4080 if (sc->bge_asicrev != BGE_ASICREV_BCM5785 && 4081 (sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) { 4082 if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */ 4083 CSR_WRITE_4(sc, 0x7E2C, 0x20); 4084 } 4085 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4086 /* Prevent PCIE link training during global reset */ 4087 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4088 reset |= 1 << 29; 4089 } 4090 } 4091 4092 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4093 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4094 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4095 val | BGE_VCPU_STATUS_DRV_RESET); 4096 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4097 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4098 val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4099 } 4100 4101 /* 4102 * Set GPHY Power Down Override to leave GPHY 4103 * powered up in D0 uninitialized. 4104 */ 4105 if (BGE_IS_5705_PLUS(sc) && 4106 (sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0) 4107 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4108 4109 /* Issue global reset */ 4110 write_op(sc, BGE_MISC_CFG, reset); 4111 4112 if (sc->bge_flags & BGE_FLAG_PCIE) 4113 DELAY(100 * 1000); 4114 else 4115 DELAY(1000); 4116 4117 /* XXX: Broadcom Linux driver. */ 4118 if (sc->bge_flags & BGE_FLAG_PCIE) { 4119 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4120 DELAY(500000); /* wait for link training to complete */ 4121 val = pci_read_config(dev, 0xC4, 4); 4122 pci_write_config(dev, 0xC4, val | (1 << 15), 4); 4123 } 4124 devctl = pci_read_config(dev, 4125 sc->bge_expcap + PCIER_DEVICE_CTL, 2); 4126 /* Clear enable no snoop and disable relaxed ordering. */ 4127 devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE | 4128 PCIEM_CTL_NOSNOOP_ENABLE); 4129 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL, 4130 devctl, 2); 4131 pci_set_max_read_req(dev, sc->bge_expmrq); 4132 /* Clear error status. */ 4133 pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA, 4134 PCIEM_STA_CORRECTABLE_ERROR | 4135 PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR | 4136 PCIEM_STA_UNSUPPORTED_REQ, 2); 4137 } 4138 4139 /* Reset some of the PCI state that got zapped by reset. */ 4140 pci_write_config(dev, BGE_PCI_MISC_CTL, 4141 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4142 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4); 4143 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4144 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4145 (sc->bge_flags & BGE_FLAG_PCIX) != 0) 4146 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4147 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4148 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4149 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4150 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4151 pci_write_config(dev, BGE_PCI_PCISTATE, val, 4); 4152 pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); 4153 pci_write_config(dev, BGE_PCI_CMD, command, 4); 4154 /* 4155 * Disable PCI-X relaxed ordering to ensure status block update 4156 * comes first then packet buffer DMA. Otherwise driver may 4157 * read stale status block. 4158 */ 4159 if (sc->bge_flags & BGE_FLAG_PCIX) { 4160 devctl = pci_read_config(dev, 4161 sc->bge_pcixcap + PCIXR_COMMAND, 2); 4162 devctl &= ~PCIXM_COMMAND_ERO; 4163 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) { 4164 devctl &= ~PCIXM_COMMAND_MAX_READ; 4165 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4166 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 4167 devctl &= ~(PCIXM_COMMAND_MAX_SPLITS | 4168 PCIXM_COMMAND_MAX_READ); 4169 devctl |= PCIXM_COMMAND_MAX_READ_2048; 4170 } 4171 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND, 4172 devctl, 2); 4173 } 4174 /* Re-enable MSI, if necessary, and enable the memory arbiter. */ 4175 if (BGE_IS_5714_FAMILY(sc)) { 4176 /* This chip disables MSI on reset. */ 4177 if (sc->bge_flags & BGE_FLAG_MSI) { 4178 val = pci_read_config(dev, 4179 sc->bge_msicap + PCIR_MSI_CTRL, 2); 4180 pci_write_config(dev, 4181 sc->bge_msicap + PCIR_MSI_CTRL, 4182 val | PCIM_MSICTRL_MSI_ENABLE, 2); 4183 val = CSR_READ_4(sc, BGE_MSI_MODE); 4184 CSR_WRITE_4(sc, BGE_MSI_MODE, 4185 val | BGE_MSIMODE_ENABLE); 4186 } 4187 val = CSR_READ_4(sc, BGE_MARB_MODE); 4188 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4189 } else 4190 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4191 4192 /* Fix up byte swapping. */ 4193 CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); 4194 4195 val = CSR_READ_4(sc, BGE_MAC_MODE); 4196 val = (val & ~mac_mode_mask) | mac_mode; 4197 CSR_WRITE_4(sc, BGE_MAC_MODE, val); 4198 DELAY(40); 4199 4200 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4201 4202 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) { 4203 for (i = 0; i < BGE_TIMEOUT; i++) { 4204 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 4205 if (val & BGE_VCPU_STATUS_INIT_DONE) 4206 break; 4207 DELAY(100); 4208 } 4209 if (i == BGE_TIMEOUT) { 4210 device_printf(dev, "reset timed out\n"); 4211 return (1); 4212 } 4213 } else { 4214 /* 4215 * Poll until we see the 1's complement of the magic number. 4216 * This indicates that the firmware initialization is complete. 4217 * We expect this to fail if no chip containing the Ethernet 4218 * address is fitted though. 4219 */ 4220 for (i = 0; i < BGE_TIMEOUT; i++) { 4221 DELAY(10); 4222 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 4223 if (val == ~BGE_SRAM_FW_MB_MAGIC) 4224 break; 4225 } 4226 4227 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT) 4228 device_printf(dev, 4229 "firmware handshake timed out, found 0x%08x\n", 4230 val); 4231 /* BCM57765 A0 needs additional time before accessing. */ 4232 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 4233 DELAY(10 * 1000); /* XXX */ 4234 } 4235 4236 /* 4237 * The 5704 in TBI mode apparently needs some special 4238 * adjustment to insure the SERDES drive level is set 4239 * to 1.2V. 4240 */ 4241 if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && 4242 sc->bge_flags & BGE_FLAG_TBI) { 4243 val = CSR_READ_4(sc, BGE_SERDES_CFG); 4244 val = (val & ~0xFFF) | 0x880; 4245 CSR_WRITE_4(sc, BGE_SERDES_CFG, val); 4246 } 4247 4248 /* XXX: Broadcom Linux driver. */ 4249 if (sc->bge_flags & BGE_FLAG_PCIE && 4250 !BGE_IS_5717_PLUS(sc) && 4251 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4252 sc->bge_asicrev != BGE_ASICREV_BCM5785) { 4253 /* Enable Data FIFO protection. */ 4254 val = CSR_READ_4(sc, 0x7C00); 4255 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25)); 4256 } 4257 4258 if (sc->bge_asicrev == BGE_ASICREV_BCM5720) 4259 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4260 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4261 4262 return (0); 4263 } 4264 4265 static __inline void 4266 bge_rxreuse_std(struct bge_softc *sc, int i) 4267 { 4268 struct bge_rx_bd *r; 4269 4270 r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std]; 4271 r->bge_flags = BGE_RXBDFLAG_END; 4272 r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i]; 4273 r->bge_idx = i; 4274 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4275 } 4276 4277 static __inline void 4278 bge_rxreuse_jumbo(struct bge_softc *sc, int i) 4279 { 4280 struct bge_extrx_bd *r; 4281 4282 r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo]; 4283 r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; 4284 r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0]; 4285 r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1]; 4286 r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2]; 4287 r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3]; 4288 r->bge_idx = i; 4289 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4290 } 4291 4292 /* 4293 * Frame reception handling. This is called if there's a frame 4294 * on the receive return list. 4295 * 4296 * Note: we have to be able to handle two possibilities here: 4297 * 1) the frame is from the jumbo receive ring 4298 * 2) the frame is from the standard receive ring 4299 */ 4300 4301 static int 4302 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck) 4303 { 4304 if_t ifp; 4305 int rx_npkts = 0, stdcnt = 0, jumbocnt = 0; 4306 uint16_t rx_cons; 4307 4308 rx_cons = sc->bge_rx_saved_considx; 4309 4310 /* Nothing to do. */ 4311 if (rx_cons == rx_prod) 4312 return (rx_npkts); 4313 4314 ifp = sc->bge_ifp; 4315 4316 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4317 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD); 4318 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4319 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE); 4320 if (BGE_IS_JUMBO_CAPABLE(sc) && 4321 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 4322 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) 4323 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4324 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE); 4325 4326 while (rx_cons != rx_prod) { 4327 struct bge_rx_bd *cur_rx; 4328 uint32_t rxidx; 4329 struct mbuf *m = NULL; 4330 uint16_t vlan_tag = 0; 4331 int have_tag = 0; 4332 4333 #ifdef DEVICE_POLLING 4334 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4335 if (sc->rxcycles <= 0) 4336 break; 4337 sc->rxcycles--; 4338 } 4339 #endif 4340 4341 cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons]; 4342 4343 rxidx = cur_rx->bge_idx; 4344 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4345 4346 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING && 4347 cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4348 have_tag = 1; 4349 vlan_tag = cur_rx->bge_vlan_tag; 4350 } 4351 4352 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4353 jumbocnt++; 4354 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4355 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4356 bge_rxreuse_jumbo(sc, rxidx); 4357 continue; 4358 } 4359 if (bge_newbuf_jumbo(sc, rxidx) != 0) { 4360 bge_rxreuse_jumbo(sc, rxidx); 4361 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4362 continue; 4363 } 4364 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4365 } else { 4366 stdcnt++; 4367 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4368 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4369 bge_rxreuse_std(sc, rxidx); 4370 continue; 4371 } 4372 if (bge_newbuf_std(sc, rxidx) != 0) { 4373 bge_rxreuse_std(sc, rxidx); 4374 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 4375 continue; 4376 } 4377 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4378 } 4379 4380 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 4381 #ifndef __NO_STRICT_ALIGNMENT 4382 /* 4383 * For architectures with strict alignment we must make sure 4384 * the payload is aligned. 4385 */ 4386 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) { 4387 bcopy(m->m_data, m->m_data + ETHER_ALIGN, 4388 cur_rx->bge_len); 4389 m->m_data += ETHER_ALIGN; 4390 } 4391 #endif 4392 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4393 m->m_pkthdr.rcvif = ifp; 4394 4395 if (if_getcapenable(ifp) & IFCAP_RXCSUM) 4396 bge_rxcsum(sc, cur_rx, m); 4397 4398 /* 4399 * If we received a packet with a vlan tag, 4400 * attach that information to the packet. 4401 */ 4402 if (have_tag) { 4403 m->m_pkthdr.ether_vtag = vlan_tag; 4404 m->m_flags |= M_VLANTAG; 4405 } 4406 4407 if (holdlck != 0) { 4408 BGE_UNLOCK(sc); 4409 if_input(ifp, m); 4410 BGE_LOCK(sc); 4411 } else 4412 if_input(ifp, m); 4413 rx_npkts++; 4414 4415 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 4416 return (rx_npkts); 4417 } 4418 4419 bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag, 4420 sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD); 4421 if (stdcnt > 0) 4422 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag, 4423 sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE); 4424 4425 if (jumbocnt > 0) 4426 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag, 4427 sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE); 4428 4429 sc->bge_rx_saved_considx = rx_cons; 4430 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4431 if (stdcnt) 4432 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std + 4433 BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT); 4434 if (jumbocnt) 4435 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo + 4436 BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT); 4437 #ifdef notyet 4438 /* 4439 * This register wraps very quickly under heavy packet drops. 4440 * If you need correct statistics, you can enable this check. 4441 */ 4442 if (BGE_IS_5705_PLUS(sc)) 4443 if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS)); 4444 #endif 4445 return (rx_npkts); 4446 } 4447 4448 static void 4449 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4450 { 4451 4452 if (BGE_IS_5717_PLUS(sc)) { 4453 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4454 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4455 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4456 if ((cur_rx->bge_error_flag & 4457 BGE_RXERRFLAG_IP_CSUM_NOK) == 0) 4458 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4459 } 4460 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4461 m->m_pkthdr.csum_data = 4462 cur_rx->bge_tcp_udp_csum; 4463 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4464 CSUM_PSEUDO_HDR; 4465 } 4466 } 4467 } else { 4468 if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) { 4469 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 4470 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0) 4471 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 4472 } 4473 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4474 m->m_pkthdr.len >= ETHER_MIN_NOPAD) { 4475 m->m_pkthdr.csum_data = 4476 cur_rx->bge_tcp_udp_csum; 4477 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | 4478 CSUM_PSEUDO_HDR; 4479 } 4480 } 4481 } 4482 4483 static void 4484 bge_txeof(struct bge_softc *sc, uint16_t tx_cons) 4485 { 4486 struct bge_tx_bd *cur_tx; 4487 if_t ifp; 4488 4489 BGE_LOCK_ASSERT(sc); 4490 4491 /* Nothing to do. */ 4492 if (sc->bge_tx_saved_considx == tx_cons) 4493 return; 4494 4495 ifp = sc->bge_ifp; 4496 4497 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 4498 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE); 4499 /* 4500 * Go through our tx ring and free mbufs for those 4501 * frames that have been sent. 4502 */ 4503 while (sc->bge_tx_saved_considx != tx_cons) { 4504 uint32_t idx; 4505 4506 idx = sc->bge_tx_saved_considx; 4507 cur_tx = &sc->bge_ldata.bge_tx_ring[idx]; 4508 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4509 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 4510 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { 4511 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, 4512 sc->bge_cdata.bge_tx_dmamap[idx], 4513 BUS_DMASYNC_POSTWRITE); 4514 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, 4515 sc->bge_cdata.bge_tx_dmamap[idx]); 4516 m_freem(sc->bge_cdata.bge_tx_chain[idx]); 4517 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4518 } 4519 sc->bge_txcnt--; 4520 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4521 } 4522 4523 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 4524 if (sc->bge_txcnt == 0) 4525 sc->bge_timer = 0; 4526 } 4527 4528 #ifdef DEVICE_POLLING 4529 static int 4530 bge_poll(if_t ifp, enum poll_cmd cmd, int count) 4531 { 4532 struct bge_softc *sc = if_getsoftc(ifp); 4533 uint16_t rx_prod, tx_cons; 4534 uint32_t statusword; 4535 int rx_npkts = 0; 4536 4537 BGE_LOCK(sc); 4538 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4539 BGE_UNLOCK(sc); 4540 return (rx_npkts); 4541 } 4542 4543 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4544 sc->bge_cdata.bge_status_map, 4545 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4546 /* Fetch updates from the status block. */ 4547 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4548 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4549 4550 statusword = sc->bge_ldata.bge_status_block->bge_status; 4551 /* Clear the status so the next pass only sees the changes. */ 4552 sc->bge_ldata.bge_status_block->bge_status = 0; 4553 4554 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4555 sc->bge_cdata.bge_status_map, 4556 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4557 4558 /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */ 4559 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) 4560 sc->bge_link_evt++; 4561 4562 if (cmd == POLL_AND_CHECK_STATUS) 4563 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4564 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4565 sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI)) 4566 bge_link_upd(sc); 4567 4568 sc->rxcycles = count; 4569 rx_npkts = bge_rxeof(sc, rx_prod, 1); 4570 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 4571 BGE_UNLOCK(sc); 4572 return (rx_npkts); 4573 } 4574 bge_txeof(sc, tx_cons); 4575 if (!if_sendq_empty(ifp)) 4576 bge_start_locked(ifp); 4577 4578 BGE_UNLOCK(sc); 4579 return (rx_npkts); 4580 } 4581 #endif /* DEVICE_POLLING */ 4582 4583 static int 4584 bge_msi_intr(void *arg) 4585 { 4586 struct bge_softc *sc; 4587 4588 sc = (struct bge_softc *)arg; 4589 /* 4590 * This interrupt is not shared and controller already 4591 * disabled further interrupt. 4592 */ 4593 taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task); 4594 return (FILTER_HANDLED); 4595 } 4596 4597 static void 4598 bge_intr_task(void *arg, int pending) 4599 { 4600 struct bge_softc *sc; 4601 if_t ifp; 4602 uint32_t status, status_tag; 4603 uint16_t rx_prod, tx_cons; 4604 4605 sc = (struct bge_softc *)arg; 4606 ifp = sc->bge_ifp; 4607 4608 BGE_LOCK(sc); 4609 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 4610 BGE_UNLOCK(sc); 4611 return; 4612 } 4613 4614 /* Get updated status block. */ 4615 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4616 sc->bge_cdata.bge_status_map, 4617 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4618 4619 /* Save producer/consumer indices. */ 4620 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4621 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4622 status = sc->bge_ldata.bge_status_block->bge_status; 4623 status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24; 4624 /* Dirty the status flag. */ 4625 sc->bge_ldata.bge_status_block->bge_status = 0; 4626 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4627 sc->bge_cdata.bge_status_map, 4628 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4629 if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0) 4630 status_tag = 0; 4631 4632 if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0) 4633 bge_link_upd(sc); 4634 4635 /* Let controller work. */ 4636 bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag); 4637 4638 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4639 sc->bge_rx_saved_considx != rx_prod) { 4640 /* Check RX return ring producer/consumer. */ 4641 BGE_UNLOCK(sc); 4642 bge_rxeof(sc, rx_prod, 0); 4643 BGE_LOCK(sc); 4644 } 4645 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4646 /* Check TX ring producer/consumer. */ 4647 bge_txeof(sc, tx_cons); 4648 if (!if_sendq_empty(ifp)) 4649 bge_start_locked(ifp); 4650 } 4651 BGE_UNLOCK(sc); 4652 } 4653 4654 static void 4655 bge_intr(void *xsc) 4656 { 4657 struct bge_softc *sc; 4658 if_t ifp; 4659 uint32_t statusword; 4660 uint16_t rx_prod, tx_cons; 4661 4662 sc = xsc; 4663 4664 BGE_LOCK(sc); 4665 4666 ifp = sc->bge_ifp; 4667 4668 #ifdef DEVICE_POLLING 4669 if (if_getcapenable(ifp) & IFCAP_POLLING) { 4670 BGE_UNLOCK(sc); 4671 return; 4672 } 4673 #endif 4674 4675 /* 4676 * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't 4677 * disable interrupts by writing nonzero like we used to, since with 4678 * our current organization this just gives complications and 4679 * pessimizations for re-enabling interrupts. We used to have races 4680 * instead of the necessary complications. Disabling interrupts 4681 * would just reduce the chance of a status update while we are 4682 * running (by switching to the interrupt-mode coalescence 4683 * parameters), but this chance is already very low so it is more 4684 * efficient to get another interrupt than prevent it. 4685 * 4686 * We do the ack first to ensure another interrupt if there is a 4687 * status update after the ack. We don't check for the status 4688 * changing later because it is more efficient to get another 4689 * interrupt than prevent it, not quite as above (not checking is 4690 * a smaller optimization than not toggling the interrupt enable, 4691 * since checking doesn't involve PCI accesses and toggling require 4692 * the status check). So toggling would probably be a pessimization 4693 * even with MSI. It would only be needed for using a task queue. 4694 */ 4695 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 4696 4697 /* 4698 * Do the mandatory PCI flush as well as get the link status. 4699 */ 4700 statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED; 4701 4702 /* Make sure the descriptor ring indexes are coherent. */ 4703 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4704 sc->bge_cdata.bge_status_map, 4705 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4706 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 4707 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 4708 sc->bge_ldata.bge_status_block->bge_status = 0; 4709 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 4710 sc->bge_cdata.bge_status_map, 4711 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4712 4713 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 && 4714 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) || 4715 statusword || sc->bge_link_evt) 4716 bge_link_upd(sc); 4717 4718 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4719 /* Check RX return ring producer/consumer. */ 4720 bge_rxeof(sc, rx_prod, 1); 4721 } 4722 4723 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 4724 /* Check TX ring producer/consumer. */ 4725 bge_txeof(sc, tx_cons); 4726 } 4727 4728 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING && 4729 !if_sendq_empty(ifp)) 4730 bge_start_locked(ifp); 4731 4732 BGE_UNLOCK(sc); 4733 } 4734 4735 static void 4736 bge_asf_driver_up(struct bge_softc *sc) 4737 { 4738 if (sc->bge_asf_mode & ASF_STACKUP) { 4739 /* Send ASF heartbeat aprox. every 2s */ 4740 if (sc->bge_asf_count) 4741 sc->bge_asf_count --; 4742 else { 4743 sc->bge_asf_count = 2; 4744 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4745 BGE_FW_CMD_DRV_ALIVE); 4746 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4747 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4748 BGE_FW_HB_TIMEOUT_SEC); 4749 CSR_WRITE_4(sc, BGE_RX_CPU_EVENT, 4750 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4751 BGE_RX_CPU_DRV_EVENT); 4752 } 4753 } 4754 } 4755 4756 static void 4757 bge_tick(void *xsc) 4758 { 4759 struct bge_softc *sc = xsc; 4760 struct mii_data *mii = NULL; 4761 4762 BGE_LOCK_ASSERT(sc); 4763 4764 /* Synchronize with possible callout reset/stop. */ 4765 if (callout_pending(&sc->bge_stat_ch) || 4766 !callout_active(&sc->bge_stat_ch)) 4767 return; 4768 4769 if (BGE_IS_5705_PLUS(sc)) 4770 bge_stats_update_regs(sc); 4771 else 4772 bge_stats_update(sc); 4773 4774 /* XXX Add APE heartbeat check here? */ 4775 4776 if ((sc->bge_flags & BGE_FLAG_TBI) == 0) { 4777 mii = device_get_softc(sc->bge_miibus); 4778 /* 4779 * Do not touch PHY if we have link up. This could break 4780 * IPMI/ASF mode or produce extra input errors 4781 * (extra errors was reported for bcm5701 & bcm5704). 4782 */ 4783 if (!sc->bge_link) 4784 mii_tick(mii); 4785 } else { 4786 /* 4787 * Since in TBI mode auto-polling can't be used we should poll 4788 * link status manually. Here we register pending link event 4789 * and trigger interrupt. 4790 */ 4791 #ifdef DEVICE_POLLING 4792 /* In polling mode we poll link state in bge_poll(). */ 4793 if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING)) 4794 #endif 4795 { 4796 sc->bge_link_evt++; 4797 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 4798 sc->bge_flags & BGE_FLAG_5788) 4799 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4800 else 4801 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 4802 } 4803 } 4804 4805 bge_asf_driver_up(sc); 4806 bge_watchdog(sc); 4807 4808 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 4809 } 4810 4811 static void 4812 bge_stats_update_regs(struct bge_softc *sc) 4813 { 4814 if_t ifp; 4815 struct bge_mac_stats *stats; 4816 uint32_t val; 4817 4818 ifp = sc->bge_ifp; 4819 stats = &sc->bge_mac_stats; 4820 4821 stats->ifHCOutOctets += 4822 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4823 stats->etherStatsCollisions += 4824 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4825 stats->outXonSent += 4826 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4827 stats->outXoffSent += 4828 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4829 stats->dot3StatsInternalMacTransmitErrors += 4830 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4831 stats->dot3StatsSingleCollisionFrames += 4832 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4833 stats->dot3StatsMultipleCollisionFrames += 4834 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4835 stats->dot3StatsDeferredTransmissions += 4836 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4837 stats->dot3StatsExcessiveCollisions += 4838 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4839 stats->dot3StatsLateCollisions += 4840 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4841 stats->ifHCOutUcastPkts += 4842 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4843 stats->ifHCOutMulticastPkts += 4844 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4845 stats->ifHCOutBroadcastPkts += 4846 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4847 4848 stats->ifHCInOctets += 4849 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4850 stats->etherStatsFragments += 4851 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4852 stats->ifHCInUcastPkts += 4853 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4854 stats->ifHCInMulticastPkts += 4855 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4856 stats->ifHCInBroadcastPkts += 4857 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4858 stats->dot3StatsFCSErrors += 4859 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4860 stats->dot3StatsAlignmentErrors += 4861 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4862 stats->xonPauseFramesReceived += 4863 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4864 stats->xoffPauseFramesReceived += 4865 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4866 stats->macControlFramesReceived += 4867 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4868 stats->xoffStateEntered += 4869 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4870 stats->dot3StatsFramesTooLong += 4871 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4872 stats->etherStatsJabbers += 4873 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4874 stats->etherStatsUndersizePkts += 4875 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4876 4877 stats->FramesDroppedDueToFilters += 4878 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4879 stats->DmaWriteQueueFull += 4880 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4881 stats->DmaWriteHighPriQueueFull += 4882 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4883 stats->NoMoreRxBDs += 4884 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4885 /* 4886 * XXX 4887 * Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS 4888 * counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0 4889 * includes number of unwanted multicast frames. This comes 4890 * from silicon bug and known workaround to get rough(not 4891 * exact) counter is to enable interrupt on MBUF low water 4892 * attention. This can be accomplished by setting 4893 * BGE_HCCMODE_ATTN bit of BGE_HCC_MODE, 4894 * BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and 4895 * BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. 4896 * However that change would generate more interrupts and 4897 * there are still possibilities of losing multiple frames 4898 * during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. 4899 * Given that the workaround still would not get correct 4900 * counter I don't think it's worth to implement it. So 4901 * ignore reading the counter on controllers that have the 4902 * silicon bug. 4903 */ 4904 if (sc->bge_asicrev != BGE_ASICREV_BCM5717 && 4905 sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && 4906 sc->bge_chipid != BGE_CHIPID_BCM5720_A0) 4907 stats->InputDiscards += 4908 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4909 stats->InputErrors += 4910 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4911 stats->RecvThresholdHit += 4912 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4913 4914 if (sc->bge_flags & BGE_FLAG_RDMA_BUG) { 4915 /* 4916 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS 4917 * frames, it's safe to disable workaround for DMA engine's 4918 * miscalculation of TXMBUF space. 4919 */ 4920 if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts + 4921 stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) { 4922 val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); 4923 if (sc->bge_asicrev == BGE_ASICREV_BCM5719) 4924 val &= ~BGE_RDMA_TX_LENGTH_WA_5719; 4925 else 4926 val &= ~BGE_RDMA_TX_LENGTH_WA_5720; 4927 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); 4928 sc->bge_flags &= ~BGE_FLAG_RDMA_BUG; 4929 } 4930 } 4931 } 4932 4933 static void 4934 bge_stats_clear_regs(struct bge_softc *sc) 4935 { 4936 4937 CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS); 4938 CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS); 4939 CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT); 4940 CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT); 4941 CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS); 4942 CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL); 4943 CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL); 4944 CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED); 4945 CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL); 4946 CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL); 4947 CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST); 4948 CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST); 4949 CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST); 4950 4951 CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS); 4952 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS); 4953 CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST); 4954 CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST); 4955 CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST); 4956 CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS); 4957 CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS); 4958 CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD); 4959 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD); 4960 CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD); 4961 CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED); 4962 CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG); 4963 CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS); 4964 CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE); 4965 4966 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP); 4967 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL); 4968 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL); 4969 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4970 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4971 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4972 CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT); 4973 } 4974 4975 static void 4976 bge_stats_update(struct bge_softc *sc) 4977 { 4978 if_t ifp; 4979 bus_size_t stats; 4980 uint32_t cnt; /* current register value */ 4981 4982 ifp = sc->bge_ifp; 4983 4984 stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4985 4986 #define READ_STAT(sc, stats, stat) \ 4987 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4988 4989 cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); 4990 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions); 4991 sc->bge_tx_collisions = cnt; 4992 4993 cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); 4994 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds); 4995 sc->bge_rx_nobds = cnt; 4996 cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); 4997 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs); 4998 sc->bge_rx_inerrs = cnt; 4999 cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); 5000 if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards); 5001 sc->bge_rx_discards = cnt; 5002 5003 cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); 5004 if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards); 5005 sc->bge_tx_discards = cnt; 5006 5007 #undef READ_STAT 5008 } 5009 5010 /* 5011 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 5012 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 5013 * but when such padded frames employ the bge IP/TCP checksum offload, 5014 * the hardware checksum assist gives incorrect results (possibly 5015 * from incorporating its own padding into the UDP/TCP checksum; who knows). 5016 * If we pad such runts with zeros, the onboard checksum comes out correct. 5017 */ 5018 static __inline int 5019 bge_cksum_pad(struct mbuf *m) 5020 { 5021 int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; 5022 struct mbuf *last; 5023 5024 /* If there's only the packet-header and we can pad there, use it. */ 5025 if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) && 5026 M_TRAILINGSPACE(m) >= padlen) { 5027 last = m; 5028 } else { 5029 /* 5030 * Walk packet chain to find last mbuf. We will either 5031 * pad there, or append a new mbuf and pad it. 5032 */ 5033 for (last = m; last->m_next != NULL; last = last->m_next); 5034 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) { 5035 /* Allocate new empty mbuf, pad it. Compact later. */ 5036 struct mbuf *n; 5037 5038 MGET(n, M_NOWAIT, MT_DATA); 5039 if (n == NULL) 5040 return (ENOBUFS); 5041 n->m_len = 0; 5042 last->m_next = n; 5043 last = n; 5044 } 5045 } 5046 5047 /* Now zero the pad area, to avoid the bge cksum-assist bug. */ 5048 memset(mtod(last, caddr_t) + last->m_len, 0, padlen); 5049 last->m_len += padlen; 5050 m->m_pkthdr.len += padlen; 5051 5052 return (0); 5053 } 5054 5055 static struct mbuf * 5056 bge_check_short_dma(struct mbuf *m) 5057 { 5058 struct mbuf *n; 5059 int found; 5060 5061 /* 5062 * If device receive two back-to-back send BDs with less than 5063 * or equal to 8 total bytes then the device may hang. The two 5064 * back-to-back send BDs must in the same frame for this failure 5065 * to occur. Scan mbuf chains and see whether two back-to-back 5066 * send BDs are there. If this is the case, allocate new mbuf 5067 * and copy the frame to workaround the silicon bug. 5068 */ 5069 for (n = m, found = 0; n != NULL; n = n->m_next) { 5070 if (n->m_len < 8) { 5071 found++; 5072 if (found > 1) 5073 break; 5074 continue; 5075 } 5076 found = 0; 5077 } 5078 5079 if (found > 1) { 5080 n = m_defrag(m, M_NOWAIT); 5081 if (n == NULL) 5082 m_freem(m); 5083 } else 5084 n = m; 5085 return (n); 5086 } 5087 5088 static struct mbuf * 5089 bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss, 5090 uint16_t *flags) 5091 { 5092 struct ip *ip; 5093 struct tcphdr *tcp; 5094 struct mbuf *n; 5095 uint16_t hlen; 5096 uint32_t poff; 5097 5098 if (M_WRITABLE(m) == 0) { 5099 /* Get a writable copy. */ 5100 n = m_dup(m, M_NOWAIT); 5101 m_freem(m); 5102 if (n == NULL) 5103 return (NULL); 5104 m = n; 5105 } 5106 m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip)); 5107 if (m == NULL) 5108 return (NULL); 5109 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5110 poff = sizeof(struct ether_header) + (ip->ip_hl << 2); 5111 m = m_pullup(m, poff + sizeof(struct tcphdr)); 5112 if (m == NULL) 5113 return (NULL); 5114 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5115 m = m_pullup(m, poff + (tcp->th_off << 2)); 5116 if (m == NULL) 5117 return (NULL); 5118 /* 5119 * It seems controller doesn't modify IP length and TCP pseudo 5120 * checksum. These checksum computed by upper stack should be 0. 5121 */ 5122 *mss = m->m_pkthdr.tso_segsz; 5123 ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header)); 5124 ip->ip_sum = 0; 5125 ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2)); 5126 /* Clear pseudo checksum computed by TCP stack. */ 5127 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 5128 tcp->th_sum = 0; 5129 /* 5130 * Broadcom controllers uses different descriptor format for 5131 * TSO depending on ASIC revision. Due to TSO-capable firmware 5132 * license issue and lower performance of firmware based TSO 5133 * we only support hardware based TSO. 5134 */ 5135 /* Calculate header length, incl. TCP/IP options, in 32 bit units. */ 5136 hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2; 5137 if (sc->bge_flags & BGE_FLAG_TSO3) { 5138 /* 5139 * For BCM5717 and newer controllers, hardware based TSO 5140 * uses the 14 lower bits of the bge_mss field to store the 5141 * MSS and the upper 2 bits to store the lowest 2 bits of 5142 * the IP/TCP header length. The upper 6 bits of the header 5143 * length are stored in the bge_flags[14:10,4] field. Jumbo 5144 * frames are supported. 5145 */ 5146 *mss |= ((hlen & 0x3) << 14); 5147 *flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2); 5148 } else { 5149 /* 5150 * For BCM5755 and newer controllers, hardware based TSO uses 5151 * the lower 11 bits to store the MSS and the upper 5 bits to 5152 * store the IP/TCP header length. Jumbo frames are not 5153 * supported. 5154 */ 5155 *mss |= (hlen << 11); 5156 } 5157 return (m); 5158 } 5159 5160 /* 5161 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5162 * pointers to descriptors. 5163 */ 5164 static int 5165 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx) 5166 { 5167 bus_dma_segment_t segs[BGE_NSEG_NEW]; 5168 bus_dmamap_t map; 5169 struct bge_tx_bd *d; 5170 struct mbuf *m = *m_head; 5171 uint32_t idx = *txidx; 5172 uint16_t csum_flags, mss, vlan_tag; 5173 int nsegs, i, error; 5174 5175 csum_flags = 0; 5176 mss = 0; 5177 vlan_tag = 0; 5178 if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 && 5179 m->m_next != NULL) { 5180 *m_head = bge_check_short_dma(m); 5181 if (*m_head == NULL) 5182 return (ENOBUFS); 5183 m = *m_head; 5184 } 5185 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5186 *m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags); 5187 if (*m_head == NULL) 5188 return (ENOBUFS); 5189 csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA | 5190 BGE_TXBDFLAG_CPU_POST_DMA; 5191 } else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) { 5192 if (m->m_pkthdr.csum_flags & CSUM_IP) 5193 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5194 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) { 5195 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5196 if (m->m_pkthdr.len < ETHER_MIN_NOPAD && 5197 (error = bge_cksum_pad(m)) != 0) { 5198 m_freem(m); 5199 *m_head = NULL; 5200 return (error); 5201 } 5202 } 5203 } 5204 5205 if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { 5206 if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME && 5207 m->m_pkthdr.len > ETHER_MAX_LEN) 5208 csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; 5209 if (sc->bge_forced_collapse > 0 && 5210 (sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) { 5211 /* 5212 * Forcedly collapse mbuf chains to overcome hardware 5213 * limitation which only support a single outstanding 5214 * DMA read operation. 5215 */ 5216 if (sc->bge_forced_collapse == 1) 5217 m = m_defrag(m, M_NOWAIT); 5218 else 5219 m = m_collapse(m, M_NOWAIT, 5220 sc->bge_forced_collapse); 5221 if (m == NULL) 5222 m = *m_head; 5223 *m_head = m; 5224 } 5225 } 5226 5227 map = sc->bge_cdata.bge_tx_dmamap[idx]; 5228 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs, 5229 &nsegs, BUS_DMA_NOWAIT); 5230 if (error == EFBIG) { 5231 m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW); 5232 if (m == NULL) { 5233 m_freem(*m_head); 5234 *m_head = NULL; 5235 return (ENOBUFS); 5236 } 5237 *m_head = m; 5238 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, 5239 m, segs, &nsegs, BUS_DMA_NOWAIT); 5240 if (error) { 5241 m_freem(m); 5242 *m_head = NULL; 5243 return (error); 5244 } 5245 } else if (error != 0) 5246 return (error); 5247 5248 /* Check if we have enough free send BDs. */ 5249 if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) { 5250 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5251 return (ENOBUFS); 5252 } 5253 5254 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE); 5255 5256 if (m->m_flags & M_VLANTAG) { 5257 csum_flags |= BGE_TXBDFLAG_VLAN_TAG; 5258 vlan_tag = m->m_pkthdr.ether_vtag; 5259 } 5260 5261 if (sc->bge_asicrev == BGE_ASICREV_BCM5762 && 5262 (m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 5263 /* 5264 * 5725 family of devices corrupts TSO packets when TSO DMA 5265 * buffers cross into regions which are within MSS bytes of 5266 * a 4GB boundary. If we encounter the condition, drop the 5267 * packet. 5268 */ 5269 for (i = 0; ; i++) { 5270 d = &sc->bge_ldata.bge_tx_ring[idx]; 5271 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5272 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5273 d->bge_len = segs[i].ds_len; 5274 if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss < 5275 d->bge_addr.bge_addr_lo) 5276 break; 5277 d->bge_flags = csum_flags; 5278 d->bge_vlan_tag = vlan_tag; 5279 d->bge_mss = mss; 5280 if (i == nsegs - 1) 5281 break; 5282 BGE_INC(idx, BGE_TX_RING_CNT); 5283 } 5284 if (i != nsegs - 1) { 5285 bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, 5286 BUS_DMASYNC_POSTWRITE); 5287 bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map); 5288 m_freem(*m_head); 5289 *m_head = NULL; 5290 return (EIO); 5291 } 5292 } else { 5293 for (i = 0; ; i++) { 5294 d = &sc->bge_ldata.bge_tx_ring[idx]; 5295 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr); 5296 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr); 5297 d->bge_len = segs[i].ds_len; 5298 d->bge_flags = csum_flags; 5299 d->bge_vlan_tag = vlan_tag; 5300 d->bge_mss = mss; 5301 if (i == nsegs - 1) 5302 break; 5303 BGE_INC(idx, BGE_TX_RING_CNT); 5304 } 5305 } 5306 5307 /* Mark the last segment as end of packet... */ 5308 d->bge_flags |= BGE_TXBDFLAG_END; 5309 5310 /* 5311 * Insure that the map for this transmission 5312 * is placed at the array index of the last descriptor 5313 * in this chain. 5314 */ 5315 sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx]; 5316 sc->bge_cdata.bge_tx_dmamap[idx] = map; 5317 sc->bge_cdata.bge_tx_chain[idx] = m; 5318 sc->bge_txcnt += nsegs; 5319 5320 BGE_INC(idx, BGE_TX_RING_CNT); 5321 *txidx = idx; 5322 5323 return (0); 5324 } 5325 5326 /* 5327 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5328 * to the mbuf data regions directly in the transmit descriptors. 5329 */ 5330 static void 5331 bge_start_locked(if_t ifp) 5332 { 5333 struct bge_softc *sc; 5334 struct mbuf *m_head; 5335 uint32_t prodidx; 5336 int count; 5337 5338 sc = if_getsoftc(ifp); 5339 BGE_LOCK_ASSERT(sc); 5340 5341 if (!sc->bge_link || 5342 (if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 5343 IFF_DRV_RUNNING) 5344 return; 5345 5346 prodidx = sc->bge_tx_prodidx; 5347 5348 for (count = 0; !if_sendq_empty(ifp);) { 5349 if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) { 5350 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5351 break; 5352 } 5353 m_head = if_dequeue(ifp); 5354 if (m_head == NULL) 5355 break; 5356 5357 /* 5358 * Pack the data into the transmit ring. If we 5359 * don't have room, set the OACTIVE flag and wait 5360 * for the NIC to drain the ring. 5361 */ 5362 if (bge_encap(sc, &m_head, &prodidx)) { 5363 if (m_head == NULL) 5364 break; 5365 if_sendq_prepend(ifp, m_head); 5366 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 5367 break; 5368 } 5369 ++count; 5370 5371 /* 5372 * If there's a BPF listener, bounce a copy of this frame 5373 * to him. 5374 */ 5375 if_bpfmtap(ifp, m_head); 5376 } 5377 5378 if (count > 0) 5379 bge_start_tx(sc, prodidx); 5380 } 5381 5382 static void 5383 bge_start_tx(struct bge_softc *sc, uint32_t prodidx) 5384 { 5385 5386 bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag, 5387 sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE); 5388 /* Transmit. */ 5389 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5390 /* 5700 b2 errata */ 5391 if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) 5392 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5393 5394 sc->bge_tx_prodidx = prodidx; 5395 5396 /* Set a timeout in case the chip goes out to lunch. */ 5397 sc->bge_timer = BGE_TX_TIMEOUT; 5398 } 5399 5400 /* 5401 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5402 * to the mbuf data regions directly in the transmit descriptors. 5403 */ 5404 static void 5405 bge_start(if_t ifp) 5406 { 5407 struct bge_softc *sc; 5408 5409 sc = if_getsoftc(ifp); 5410 BGE_LOCK(sc); 5411 bge_start_locked(ifp); 5412 BGE_UNLOCK(sc); 5413 } 5414 5415 static void 5416 bge_init_locked(struct bge_softc *sc) 5417 { 5418 if_t ifp; 5419 uint16_t *m; 5420 uint32_t mode; 5421 5422 BGE_LOCK_ASSERT(sc); 5423 5424 ifp = sc->bge_ifp; 5425 5426 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 5427 return; 5428 5429 /* Cancel pending I/O and flush buffers. */ 5430 bge_stop(sc); 5431 5432 bge_stop_fw(sc); 5433 bge_sig_pre_reset(sc, BGE_RESET_START); 5434 bge_reset(sc); 5435 bge_sig_legacy(sc, BGE_RESET_START); 5436 bge_sig_post_reset(sc, BGE_RESET_START); 5437 5438 bge_chipinit(sc); 5439 5440 /* 5441 * Init the various state machines, ring 5442 * control blocks and firmware. 5443 */ 5444 if (bge_blockinit(sc)) { 5445 device_printf(sc->bge_dev, "initialization failure\n"); 5446 return; 5447 } 5448 5449 ifp = sc->bge_ifp; 5450 5451 /* Specify MTU. */ 5452 CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) + 5453 ETHER_HDR_LEN + ETHER_CRC_LEN + 5454 (if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0)); 5455 5456 /* Load our MAC address. */ 5457 m = (uint16_t *)IF_LLADDR(sc->bge_ifp); 5458 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5459 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5460 5461 /* Program promiscuous mode. */ 5462 bge_setpromisc(sc); 5463 5464 /* Program multicast filter. */ 5465 bge_setmulti(sc); 5466 5467 /* Program VLAN tag stripping. */ 5468 bge_setvlan(sc); 5469 5470 /* Override UDP checksum offloading. */ 5471 if (sc->bge_forced_udpcsum == 0) 5472 sc->bge_csum_features &= ~CSUM_UDP; 5473 else 5474 sc->bge_csum_features |= CSUM_UDP; 5475 if (if_getcapabilities(ifp) & IFCAP_TXCSUM && 5476 if_getcapenable(ifp) & IFCAP_TXCSUM) { 5477 if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP)); 5478 if_sethwassistbits(ifp, sc->bge_csum_features, 0); 5479 } 5480 5481 /* Init RX ring. */ 5482 if (bge_init_rx_ring_std(sc) != 0) { 5483 device_printf(sc->bge_dev, "no memory for std Rx buffers.\n"); 5484 bge_stop(sc); 5485 return; 5486 } 5487 5488 /* 5489 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5490 * memory to insure that the chip has in fact read the first 5491 * entry of the ring. 5492 */ 5493 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5494 uint32_t v, i; 5495 for (i = 0; i < 10; i++) { 5496 DELAY(20); 5497 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5498 if (v == (MCLBYTES - ETHER_ALIGN)) 5499 break; 5500 } 5501 if (i == 10) 5502 device_printf (sc->bge_dev, 5503 "5705 A0 chip failed to load RX ring\n"); 5504 } 5505 5506 /* Init jumbo RX ring. */ 5507 if (BGE_IS_JUMBO_CAPABLE(sc) && 5508 if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 5509 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) { 5510 if (bge_init_rx_ring_jumbo(sc) != 0) { 5511 device_printf(sc->bge_dev, 5512 "no memory for jumbo Rx buffers.\n"); 5513 bge_stop(sc); 5514 return; 5515 } 5516 } 5517 5518 /* Init our RX return ring index. */ 5519 sc->bge_rx_saved_considx = 0; 5520 5521 /* Init our RX/TX stat counters. */ 5522 sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0; 5523 5524 /* Init TX ring. */ 5525 bge_init_tx_ring(sc); 5526 5527 /* Enable TX MAC state machine lockup fix. */ 5528 mode = CSR_READ_4(sc, BGE_TX_MODE); 5529 if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906) 5530 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5531 if (sc->bge_asicrev == BGE_ASICREV_BCM5720 || 5532 sc->bge_asicrev == BGE_ASICREV_BCM5762) { 5533 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5534 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5535 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5536 } 5537 /* Turn on transmitter. */ 5538 CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5539 DELAY(100); 5540 5541 /* Turn on receiver. */ 5542 mode = CSR_READ_4(sc, BGE_RX_MODE); 5543 if (BGE_IS_5755_PLUS(sc)) 5544 mode |= BGE_RXMODE_IPV6_ENABLE; 5545 if (sc->bge_asicrev == BGE_ASICREV_BCM5762) 5546 mode |= BGE_RXMODE_IPV4_FRAG_FIX; 5547 CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5548 DELAY(10); 5549 5550 /* 5551 * Set the number of good frames to receive after RX MBUF 5552 * Low Watermark has been reached. After the RX MAC receives 5553 * this number of frames, it will drop subsequent incoming 5554 * frames until the MBUF High Watermark is reached. 5555 */ 5556 if (BGE_IS_57765_PLUS(sc)) 5557 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); 5558 else 5559 CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); 5560 5561 /* Clear MAC statistics. */ 5562 if (BGE_IS_5705_PLUS(sc)) 5563 bge_stats_clear_regs(sc); 5564 5565 /* Tell firmware we're alive. */ 5566 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5567 5568 #ifdef DEVICE_POLLING 5569 /* Disable interrupts if we are polling. */ 5570 if (if_getcapenable(ifp) & IFCAP_POLLING) { 5571 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5572 BGE_PCIMISCCTL_MASK_PCI_INTR); 5573 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5574 } else 5575 #endif 5576 5577 /* Enable host interrupts. */ 5578 { 5579 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5580 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5581 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5582 } 5583 5584 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 5585 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 5586 5587 bge_ifmedia_upd_locked(ifp); 5588 5589 callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc); 5590 } 5591 5592 static void 5593 bge_init(void *xsc) 5594 { 5595 struct bge_softc *sc = xsc; 5596 5597 BGE_LOCK(sc); 5598 bge_init_locked(sc); 5599 BGE_UNLOCK(sc); 5600 } 5601 5602 /* 5603 * Set media options. 5604 */ 5605 static int 5606 bge_ifmedia_upd(if_t ifp) 5607 { 5608 struct bge_softc *sc = if_getsoftc(ifp); 5609 int res; 5610 5611 BGE_LOCK(sc); 5612 res = bge_ifmedia_upd_locked(ifp); 5613 BGE_UNLOCK(sc); 5614 5615 return (res); 5616 } 5617 5618 static int 5619 bge_ifmedia_upd_locked(if_t ifp) 5620 { 5621 struct bge_softc *sc = if_getsoftc(ifp); 5622 struct mii_data *mii; 5623 struct mii_softc *miisc; 5624 struct ifmedia *ifm; 5625 5626 BGE_LOCK_ASSERT(sc); 5627 5628 ifm = &sc->bge_ifmedia; 5629 5630 /* If this is a 1000baseX NIC, enable the TBI port. */ 5631 if (sc->bge_flags & BGE_FLAG_TBI) { 5632 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5633 return (EINVAL); 5634 switch(IFM_SUBTYPE(ifm->ifm_media)) { 5635 case IFM_AUTO: 5636 /* 5637 * The BCM5704 ASIC appears to have a special 5638 * mechanism for programming the autoneg 5639 * advertisement registers in TBI mode. 5640 */ 5641 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 5642 uint32_t sgdig; 5643 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5644 if (sgdig & BGE_SGDIGSTS_DONE) { 5645 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5646 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5647 sgdig |= BGE_SGDIGCFG_AUTO | 5648 BGE_SGDIGCFG_PAUSE_CAP | 5649 BGE_SGDIGCFG_ASYM_PAUSE; 5650 CSR_WRITE_4(sc, BGE_SGDIG_CFG, 5651 sgdig | BGE_SGDIGCFG_SEND); 5652 DELAY(5); 5653 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); 5654 } 5655 } 5656 break; 5657 case IFM_1000_SX: 5658 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5659 BGE_CLRBIT(sc, BGE_MAC_MODE, 5660 BGE_MACMODE_HALF_DUPLEX); 5661 } else { 5662 BGE_SETBIT(sc, BGE_MAC_MODE, 5663 BGE_MACMODE_HALF_DUPLEX); 5664 } 5665 DELAY(40); 5666 break; 5667 default: 5668 return (EINVAL); 5669 } 5670 return (0); 5671 } 5672 5673 sc->bge_link_evt++; 5674 mii = device_get_softc(sc->bge_miibus); 5675 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 5676 PHY_RESET(miisc); 5677 mii_mediachg(mii); 5678 5679 /* 5680 * Force an interrupt so that we will call bge_link_upd 5681 * if needed and clear any pending link state attention. 5682 * Without this we are not getting any further interrupts 5683 * for link state changes and thus will not UP the link and 5684 * not be able to send in bge_start_locked. The only 5685 * way to get things working was to receive a packet and 5686 * get an RX intr. 5687 * bge_tick should help for fiber cards and we might not 5688 * need to do this here if BGE_FLAG_TBI is set but as 5689 * we poll for fiber anyway it should not harm. 5690 */ 5691 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 || 5692 sc->bge_flags & BGE_FLAG_5788) 5693 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5694 else 5695 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5696 5697 return (0); 5698 } 5699 5700 /* 5701 * Report current media status. 5702 */ 5703 static void 5704 bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 5705 { 5706 struct bge_softc *sc = if_getsoftc(ifp); 5707 struct mii_data *mii; 5708 5709 BGE_LOCK(sc); 5710 5711 if ((if_getflags(ifp) & IFF_UP) == 0) { 5712 BGE_UNLOCK(sc); 5713 return; 5714 } 5715 if (sc->bge_flags & BGE_FLAG_TBI) { 5716 ifmr->ifm_status = IFM_AVALID; 5717 ifmr->ifm_active = IFM_ETHER; 5718 if (CSR_READ_4(sc, BGE_MAC_STS) & 5719 BGE_MACSTAT_TBI_PCS_SYNCHED) 5720 ifmr->ifm_status |= IFM_ACTIVE; 5721 else { 5722 ifmr->ifm_active |= IFM_NONE; 5723 BGE_UNLOCK(sc); 5724 return; 5725 } 5726 ifmr->ifm_active |= IFM_1000_SX; 5727 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5728 ifmr->ifm_active |= IFM_HDX; 5729 else 5730 ifmr->ifm_active |= IFM_FDX; 5731 BGE_UNLOCK(sc); 5732 return; 5733 } 5734 5735 mii = device_get_softc(sc->bge_miibus); 5736 mii_pollstat(mii); 5737 ifmr->ifm_active = mii->mii_media_active; 5738 ifmr->ifm_status = mii->mii_media_status; 5739 5740 BGE_UNLOCK(sc); 5741 } 5742 5743 static int 5744 bge_ioctl(if_t ifp, u_long command, caddr_t data) 5745 { 5746 struct bge_softc *sc = if_getsoftc(ifp); 5747 struct ifreq *ifr = (struct ifreq *) data; 5748 struct mii_data *mii; 5749 int flags, mask, error = 0; 5750 5751 switch (command) { 5752 case SIOCSIFMTU: 5753 if (BGE_IS_JUMBO_CAPABLE(sc) || 5754 (sc->bge_flags & BGE_FLAG_JUMBO_STD)) { 5755 if (ifr->ifr_mtu < ETHERMIN || 5756 ifr->ifr_mtu > BGE_JUMBO_MTU) { 5757 error = EINVAL; 5758 break; 5759 } 5760 } else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) { 5761 error = EINVAL; 5762 break; 5763 } 5764 BGE_LOCK(sc); 5765 if (if_getmtu(ifp) != ifr->ifr_mtu) { 5766 if_setmtu(ifp, ifr->ifr_mtu); 5767 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5768 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5769 bge_init_locked(sc); 5770 } 5771 } 5772 BGE_UNLOCK(sc); 5773 break; 5774 case SIOCSIFFLAGS: 5775 BGE_LOCK(sc); 5776 if (if_getflags(ifp) & IFF_UP) { 5777 /* 5778 * If only the state of the PROMISC flag changed, 5779 * then just use the 'set promisc mode' command 5780 * instead of reinitializing the entire NIC. Doing 5781 * a full re-init means reloading the firmware and 5782 * waiting for it to start up, which may take a 5783 * second or two. Similarly for ALLMULTI. 5784 */ 5785 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5786 flags = if_getflags(ifp) ^ sc->bge_if_flags; 5787 if (flags & IFF_PROMISC) 5788 bge_setpromisc(sc); 5789 if (flags & IFF_ALLMULTI) 5790 bge_setmulti(sc); 5791 } else 5792 bge_init_locked(sc); 5793 } else { 5794 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5795 bge_stop(sc); 5796 } 5797 } 5798 sc->bge_if_flags = if_getflags(ifp); 5799 BGE_UNLOCK(sc); 5800 error = 0; 5801 break; 5802 case SIOCADDMULTI: 5803 case SIOCDELMULTI: 5804 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 5805 BGE_LOCK(sc); 5806 bge_setmulti(sc); 5807 BGE_UNLOCK(sc); 5808 error = 0; 5809 } 5810 break; 5811 case SIOCSIFMEDIA: 5812 case SIOCGIFMEDIA: 5813 if (sc->bge_flags & BGE_FLAG_TBI) { 5814 error = ifmedia_ioctl(ifp, ifr, 5815 &sc->bge_ifmedia, command); 5816 } else { 5817 mii = device_get_softc(sc->bge_miibus); 5818 error = ifmedia_ioctl(ifp, ifr, 5819 &mii->mii_media, command); 5820 } 5821 break; 5822 case SIOCSIFCAP: 5823 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 5824 #ifdef DEVICE_POLLING 5825 if (mask & IFCAP_POLLING) { 5826 if (ifr->ifr_reqcap & IFCAP_POLLING) { 5827 error = ether_poll_register(bge_poll, ifp); 5828 if (error) 5829 return (error); 5830 BGE_LOCK(sc); 5831 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, 5832 BGE_PCIMISCCTL_MASK_PCI_INTR); 5833 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5834 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 5835 BGE_UNLOCK(sc); 5836 } else { 5837 error = ether_poll_deregister(ifp); 5838 /* Enable interrupt even in error case */ 5839 BGE_LOCK(sc); 5840 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, 5841 BGE_PCIMISCCTL_MASK_PCI_INTR); 5842 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); 5843 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 5844 BGE_UNLOCK(sc); 5845 } 5846 } 5847 #endif 5848 if ((mask & IFCAP_TXCSUM) != 0 && 5849 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 5850 if_togglecapenable(ifp, IFCAP_TXCSUM); 5851 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 5852 if_sethwassistbits(ifp, 5853 sc->bge_csum_features, 0); 5854 else 5855 if_sethwassistbits(ifp, 0, 5856 sc->bge_csum_features); 5857 } 5858 5859 if ((mask & IFCAP_RXCSUM) != 0 && 5860 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) 5861 if_togglecapenable(ifp, IFCAP_RXCSUM); 5862 5863 if ((mask & IFCAP_TSO4) != 0 && 5864 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 5865 if_togglecapenable(ifp, IFCAP_TSO4); 5866 if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) 5867 if_sethwassistbits(ifp, CSUM_TSO, 0); 5868 else 5869 if_sethwassistbits(ifp, 0, CSUM_TSO); 5870 } 5871 5872 if (mask & IFCAP_VLAN_MTU) { 5873 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 5874 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5875 bge_init(sc); 5876 } 5877 5878 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 5879 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 5880 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 5881 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 5882 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 5883 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 5884 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 5885 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 5886 BGE_LOCK(sc); 5887 bge_setvlan(sc); 5888 BGE_UNLOCK(sc); 5889 } 5890 #ifdef VLAN_CAPABILITIES 5891 if_vlancap(ifp); 5892 #endif 5893 break; 5894 default: 5895 error = ether_ioctl(ifp, command, data); 5896 break; 5897 } 5898 5899 return (error); 5900 } 5901 5902 static void 5903 bge_watchdog(struct bge_softc *sc) 5904 { 5905 if_t ifp; 5906 uint32_t status; 5907 5908 BGE_LOCK_ASSERT(sc); 5909 5910 if (sc->bge_timer == 0 || --sc->bge_timer) 5911 return; 5912 5913 /* If pause frames are active then don't reset the hardware. */ 5914 if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) { 5915 status = CSR_READ_4(sc, BGE_RX_STS); 5916 if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) { 5917 /* 5918 * If link partner has us in XOFF state then wait for 5919 * the condition to clear. 5920 */ 5921 CSR_WRITE_4(sc, BGE_RX_STS, status); 5922 sc->bge_timer = BGE_TX_TIMEOUT; 5923 return; 5924 } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 && 5925 (status & BGE_RXSTAT_RCVD_XON) != 0) { 5926 /* 5927 * If link partner has us in XOFF state then wait for 5928 * the condition to clear. 5929 */ 5930 CSR_WRITE_4(sc, BGE_RX_STS, status); 5931 sc->bge_timer = BGE_TX_TIMEOUT; 5932 return; 5933 } 5934 /* 5935 * Any other condition is unexpected and the controller 5936 * should be reset. 5937 */ 5938 } 5939 5940 ifp = sc->bge_ifp; 5941 5942 if_printf(ifp, "watchdog timeout -- resetting\n"); 5943 5944 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 5945 bge_init_locked(sc); 5946 5947 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 5948 } 5949 5950 static void 5951 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit) 5952 { 5953 int i; 5954 5955 BGE_CLRBIT(sc, reg, bit); 5956 5957 for (i = 0; i < BGE_TIMEOUT; i++) { 5958 if ((CSR_READ_4(sc, reg) & bit) == 0) 5959 return; 5960 DELAY(100); 5961 } 5962 } 5963 5964 /* 5965 * Stop the adapter and free any mbufs allocated to the 5966 * RX and TX lists. 5967 */ 5968 static void 5969 bge_stop(struct bge_softc *sc) 5970 { 5971 if_t ifp; 5972 5973 BGE_LOCK_ASSERT(sc); 5974 5975 ifp = sc->bge_ifp; 5976 5977 callout_stop(&sc->bge_stat_ch); 5978 5979 /* Disable host interrupts. */ 5980 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5981 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); 5982 5983 /* 5984 * Tell firmware we're shutting down. 5985 */ 5986 bge_stop_fw(sc); 5987 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 5988 5989 /* 5990 * Disable all of the receiver blocks. 5991 */ 5992 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5993 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5994 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5995 if (BGE_IS_5700_FAMILY(sc)) 5996 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5997 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5998 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5999 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 6000 6001 /* 6002 * Disable all of the transmit blocks. 6003 */ 6004 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 6005 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 6006 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 6007 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 6008 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 6009 if (BGE_IS_5700_FAMILY(sc)) 6010 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 6011 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 6012 6013 /* 6014 * Shut down all of the memory managers and related 6015 * state machines. 6016 */ 6017 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 6018 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 6019 if (BGE_IS_5700_FAMILY(sc)) 6020 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 6021 6022 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 6023 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 6024 if (!(BGE_IS_5705_PLUS(sc))) { 6025 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 6026 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 6027 } 6028 /* Update MAC statistics. */ 6029 if (BGE_IS_5705_PLUS(sc)) 6030 bge_stats_update_regs(sc); 6031 6032 bge_reset(sc); 6033 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 6034 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 6035 6036 /* 6037 * Keep the ASF firmware running if up. 6038 */ 6039 if (sc->bge_asf_mode & ASF_STACKUP) 6040 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6041 else 6042 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 6043 6044 /* Free the RX lists. */ 6045 bge_free_rx_ring_std(sc); 6046 6047 /* Free jumbo RX list. */ 6048 if (BGE_IS_JUMBO_CAPABLE(sc)) 6049 bge_free_rx_ring_jumbo(sc); 6050 6051 /* Free TX buffers. */ 6052 bge_free_tx_ring(sc); 6053 6054 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 6055 6056 /* Clear MAC's link state (PHY may still have link UP). */ 6057 if (bootverbose && sc->bge_link) 6058 if_printf(sc->bge_ifp, "link DOWN\n"); 6059 sc->bge_link = 0; 6060 6061 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 6062 } 6063 6064 /* 6065 * Stop all chip I/O so that the kernel's probe routines don't 6066 * get confused by errant DMAs when rebooting. 6067 */ 6068 static int 6069 bge_shutdown(device_t dev) 6070 { 6071 struct bge_softc *sc; 6072 6073 sc = device_get_softc(dev); 6074 BGE_LOCK(sc); 6075 bge_stop(sc); 6076 BGE_UNLOCK(sc); 6077 6078 return (0); 6079 } 6080 6081 static int 6082 bge_suspend(device_t dev) 6083 { 6084 struct bge_softc *sc; 6085 6086 sc = device_get_softc(dev); 6087 BGE_LOCK(sc); 6088 bge_stop(sc); 6089 BGE_UNLOCK(sc); 6090 6091 return (0); 6092 } 6093 6094 static int 6095 bge_resume(device_t dev) 6096 { 6097 struct bge_softc *sc; 6098 if_t ifp; 6099 6100 sc = device_get_softc(dev); 6101 BGE_LOCK(sc); 6102 ifp = sc->bge_ifp; 6103 if (if_getflags(ifp) & IFF_UP) { 6104 bge_init_locked(sc); 6105 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6106 bge_start_locked(ifp); 6107 } 6108 BGE_UNLOCK(sc); 6109 6110 return (0); 6111 } 6112 6113 static void 6114 bge_link_upd(struct bge_softc *sc) 6115 { 6116 struct mii_data *mii; 6117 uint32_t link, status; 6118 6119 BGE_LOCK_ASSERT(sc); 6120 6121 /* Clear 'pending link event' flag. */ 6122 sc->bge_link_evt = 0; 6123 6124 /* 6125 * Process link state changes. 6126 * Grrr. The link status word in the status block does 6127 * not work correctly on the BCM5700 rev AX and BX chips, 6128 * according to all available information. Hence, we have 6129 * to enable MII interrupts in order to properly obtain 6130 * async link changes. Unfortunately, this also means that 6131 * we have to read the MAC status register to detect link 6132 * changes, thereby adding an additional register access to 6133 * the interrupt handler. 6134 * 6135 * XXX: perhaps link state detection procedure used for 6136 * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions. 6137 */ 6138 6139 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6140 sc->bge_chipid != BGE_CHIPID_BCM5700_B2) { 6141 status = CSR_READ_4(sc, BGE_MAC_STS); 6142 if (status & BGE_MACSTAT_MI_INTERRUPT) { 6143 mii = device_get_softc(sc->bge_miibus); 6144 mii_pollstat(mii); 6145 if (!sc->bge_link && 6146 mii->mii_media_status & IFM_ACTIVE && 6147 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6148 sc->bge_link++; 6149 if (bootverbose) 6150 if_printf(sc->bge_ifp, "link UP\n"); 6151 } else if (sc->bge_link && 6152 (!(mii->mii_media_status & IFM_ACTIVE) || 6153 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6154 sc->bge_link = 0; 6155 if (bootverbose) 6156 if_printf(sc->bge_ifp, "link DOWN\n"); 6157 } 6158 6159 /* Clear the interrupt. */ 6160 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 6161 BGE_EVTENB_MI_INTERRUPT); 6162 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 6163 BRGPHY_MII_ISR); 6164 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 6165 BRGPHY_MII_IMR, BRGPHY_INTRS); 6166 } 6167 return; 6168 } 6169 6170 if (sc->bge_flags & BGE_FLAG_TBI) { 6171 status = CSR_READ_4(sc, BGE_MAC_STS); 6172 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6173 if (!sc->bge_link) { 6174 sc->bge_link++; 6175 if (sc->bge_asicrev == BGE_ASICREV_BCM5704) { 6176 BGE_CLRBIT(sc, BGE_MAC_MODE, 6177 BGE_MACMODE_TBI_SEND_CFGS); 6178 DELAY(40); 6179 } 6180 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6181 if (bootverbose) 6182 if_printf(sc->bge_ifp, "link UP\n"); 6183 if_link_state_change(sc->bge_ifp, 6184 LINK_STATE_UP); 6185 } 6186 } else if (sc->bge_link) { 6187 sc->bge_link = 0; 6188 if (bootverbose) 6189 if_printf(sc->bge_ifp, "link DOWN\n"); 6190 if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN); 6191 } 6192 } else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) { 6193 /* 6194 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit 6195 * in status word always set. Workaround this bug by reading 6196 * PHY link status directly. 6197 */ 6198 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0; 6199 6200 if (link != sc->bge_link || 6201 sc->bge_asicrev == BGE_ASICREV_BCM5700) { 6202 mii = device_get_softc(sc->bge_miibus); 6203 mii_pollstat(mii); 6204 if (!sc->bge_link && 6205 mii->mii_media_status & IFM_ACTIVE && 6206 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 6207 sc->bge_link++; 6208 if (bootverbose) 6209 if_printf(sc->bge_ifp, "link UP\n"); 6210 } else if (sc->bge_link && 6211 (!(mii->mii_media_status & IFM_ACTIVE) || 6212 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) { 6213 sc->bge_link = 0; 6214 if (bootverbose) 6215 if_printf(sc->bge_ifp, "link DOWN\n"); 6216 } 6217 } 6218 } else { 6219 /* 6220 * For controllers that call mii_tick, we have to poll 6221 * link status. 6222 */ 6223 mii = device_get_softc(sc->bge_miibus); 6224 mii_pollstat(mii); 6225 bge_miibus_statchg(sc->bge_dev); 6226 } 6227 6228 /* Disable MAC attention when link is up. */ 6229 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 6230 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 6231 BGE_MACSTAT_LINK_CHANGED); 6232 } 6233 6234 static void 6235 bge_add_sysctls(struct bge_softc *sc) 6236 { 6237 struct sysctl_ctx_list *ctx; 6238 struct sysctl_oid_list *children; 6239 int unit; 6240 6241 ctx = device_get_sysctl_ctx(sc->bge_dev); 6242 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev)); 6243 6244 #ifdef BGE_REGISTER_DEBUG 6245 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info", 6246 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6247 bge_sysctl_debug_info, "I", "Debug Information"); 6248 6249 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read", 6250 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6251 bge_sysctl_reg_read, "I", "MAC Register Read"); 6252 6253 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read", 6254 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6255 bge_sysctl_ape_read, "I", "APE Register Read"); 6256 6257 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read", 6258 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 6259 bge_sysctl_mem_read, "I", "Memory Read"); 6260 6261 #endif 6262 6263 unit = device_get_unit(sc->bge_dev); 6264 /* 6265 * A common design characteristic for many Broadcom client controllers 6266 * is that they only support a single outstanding DMA read operation 6267 * on the PCIe bus. This means that it will take twice as long to fetch 6268 * a TX frame that is split into header and payload buffers as it does 6269 * to fetch a single, contiguous TX frame (2 reads vs. 1 read). For 6270 * these controllers, coalescing buffers to reduce the number of memory 6271 * reads is effective way to get maximum performance(about 940Mbps). 6272 * Without collapsing TX buffers the maximum TCP bulk transfer 6273 * performance is about 850Mbps. However forcing coalescing mbufs 6274 * consumes a lot of CPU cycles, so leave it off by default. 6275 */ 6276 sc->bge_forced_collapse = 0; 6277 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse", 6278 CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0, 6279 "Number of fragmented TX buffers of a frame allowed before " 6280 "forced collapsing"); 6281 6282 sc->bge_msi = 1; 6283 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi", 6284 CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI"); 6285 6286 /* 6287 * It seems all Broadcom controllers have a bug that can generate UDP 6288 * datagrams with checksum value 0 when TX UDP checksum offloading is 6289 * enabled. Generating UDP checksum value 0 is RFC 768 violation. 6290 * Even though the probability of generating such UDP datagrams is 6291 * low, I don't want to see FreeBSD boxes to inject such datagrams 6292 * into network so disable UDP checksum offloading by default. Users 6293 * still override this behavior by setting a sysctl variable, 6294 * dev.bge.0.forced_udpcsum. 6295 */ 6296 sc->bge_forced_udpcsum = 0; 6297 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum", 6298 CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0, 6299 "Enable UDP checksum offloading even if controller can " 6300 "generate UDP checksum value 0"); 6301 6302 if (BGE_IS_5705_PLUS(sc)) 6303 bge_add_sysctl_stats_regs(sc, ctx, children); 6304 else 6305 bge_add_sysctl_stats(sc, ctx, children); 6306 } 6307 6308 #define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \ 6309 SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, \ 6310 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, \ 6311 offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", desc) 6312 6313 static void 6314 bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6315 struct sysctl_oid_list *parent) 6316 { 6317 struct sysctl_oid *tree; 6318 struct sysctl_oid_list *children, *schildren; 6319 6320 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", 6321 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics"); 6322 schildren = children = SYSCTL_CHILDREN(tree); 6323 BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters", 6324 children, COSFramesDroppedDueToFilters, 6325 "FramesDroppedDueToFilters"); 6326 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full", 6327 children, nicDmaWriteQueueFull, "DmaWriteQueueFull"); 6328 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full", 6329 children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull"); 6330 BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors", 6331 children, nicNoMoreRxBDs, "NoMoreRxBDs"); 6332 BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames", 6333 children, ifInDiscards, "InputDiscards"); 6334 BGE_SYSCTL_STAT(sc, ctx, "Input Errors", 6335 children, ifInErrors, "InputErrors"); 6336 BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit", 6337 children, nicRecvThresholdHit, "RecvThresholdHit"); 6338 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full", 6339 children, nicDmaReadQueueFull, "DmaReadQueueFull"); 6340 BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full", 6341 children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull"); 6342 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full", 6343 children, nicSendDataCompQueueFull, "SendDataCompQueueFull"); 6344 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index", 6345 children, nicRingSetSendProdIndex, "RingSetSendProdIndex"); 6346 BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update", 6347 children, nicRingStatusUpdate, "RingStatusUpdate"); 6348 BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts", 6349 children, nicInterrupts, "Interrupts"); 6350 BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts", 6351 children, nicAvoidedInterrupts, "AvoidedInterrupts"); 6352 BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit", 6353 children, nicSendThresholdHit, "SendThresholdHit"); 6354 6355 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx", 6356 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics"); 6357 children = SYSCTL_CHILDREN(tree); 6358 BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets", 6359 children, rxstats.ifHCInOctets, "ifHCInOctets"); 6360 BGE_SYSCTL_STAT(sc, ctx, "Fragments", 6361 children, rxstats.etherStatsFragments, "Fragments"); 6362 BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets", 6363 children, rxstats.ifHCInUcastPkts, "UnicastPkts"); 6364 BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets", 6365 children, rxstats.ifHCInMulticastPkts, "MulticastPkts"); 6366 BGE_SYSCTL_STAT(sc, ctx, "FCS Errors", 6367 children, rxstats.dot3StatsFCSErrors, "FCSErrors"); 6368 BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors", 6369 children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors"); 6370 BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received", 6371 children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived"); 6372 BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received", 6373 children, rxstats.xoffPauseFramesReceived, 6374 "xoffPauseFramesReceived"); 6375 BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received", 6376 children, rxstats.macControlFramesReceived, 6377 "ControlFramesReceived"); 6378 BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered", 6379 children, rxstats.xoffStateEntered, "xoffStateEntered"); 6380 BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long", 6381 children, rxstats.dot3StatsFramesTooLong, "FramesTooLong"); 6382 BGE_SYSCTL_STAT(sc, ctx, "Jabbers", 6383 children, rxstats.etherStatsJabbers, "Jabbers"); 6384 BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets", 6385 children, rxstats.etherStatsUndersizePkts, "UndersizePkts"); 6386 BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors", 6387 children, rxstats.inRangeLengthError, "inRangeLengthError"); 6388 BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors", 6389 children, rxstats.outRangeLengthError, "outRangeLengthError"); 6390 6391 tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx", 6392 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics"); 6393 children = SYSCTL_CHILDREN(tree); 6394 BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets", 6395 children, txstats.ifHCOutOctets, "ifHCOutOctets"); 6396 BGE_SYSCTL_STAT(sc, ctx, "TX Collisions", 6397 children, txstats.etherStatsCollisions, "Collisions"); 6398 BGE_SYSCTL_STAT(sc, ctx, "XON Sent", 6399 children, txstats.outXonSent, "XonSent"); 6400 BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent", 6401 children, txstats.outXoffSent, "XoffSent"); 6402 BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done", 6403 children, txstats.flowControlDone, "flowControlDone"); 6404 BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors", 6405 children, txstats.dot3StatsInternalMacTransmitErrors, 6406 "InternalMacTransmitErrors"); 6407 BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames", 6408 children, txstats.dot3StatsSingleCollisionFrames, 6409 "SingleCollisionFrames"); 6410 BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames", 6411 children, txstats.dot3StatsMultipleCollisionFrames, 6412 "MultipleCollisionFrames"); 6413 BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions", 6414 children, txstats.dot3StatsDeferredTransmissions, 6415 "DeferredTransmissions"); 6416 BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions", 6417 children, txstats.dot3StatsExcessiveCollisions, 6418 "ExcessiveCollisions"); 6419 BGE_SYSCTL_STAT(sc, ctx, "Late Collisions", 6420 children, txstats.dot3StatsLateCollisions, 6421 "LateCollisions"); 6422 BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets", 6423 children, txstats.ifHCOutUcastPkts, "UnicastPkts"); 6424 BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets", 6425 children, txstats.ifHCOutMulticastPkts, "MulticastPkts"); 6426 BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets", 6427 children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts"); 6428 BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors", 6429 children, txstats.dot3StatsCarrierSenseErrors, 6430 "CarrierSenseErrors"); 6431 BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards", 6432 children, txstats.ifOutDiscards, "Discards"); 6433 BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors", 6434 children, txstats.ifOutErrors, "Errors"); 6435 } 6436 6437 #undef BGE_SYSCTL_STAT 6438 6439 #define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \ 6440 SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) 6441 6442 static void 6443 bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx, 6444 struct sysctl_oid_list *parent) 6445 { 6446 struct sysctl_oid *tree; 6447 struct sysctl_oid_list *child, *schild; 6448 struct bge_mac_stats *stats; 6449 6450 stats = &sc->bge_mac_stats; 6451 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats", 6452 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics"); 6453 schild = child = SYSCTL_CHILDREN(tree); 6454 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters", 6455 &stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters"); 6456 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull", 6457 &stats->DmaWriteQueueFull, "NIC DMA Write Queue Full"); 6458 BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull", 6459 &stats->DmaWriteHighPriQueueFull, 6460 "NIC DMA Write High Priority Queue Full"); 6461 BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs", 6462 &stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors"); 6463 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards", 6464 &stats->InputDiscards, "Discarded Input Frames"); 6465 BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors", 6466 &stats->InputErrors, "Input Errors"); 6467 BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit", 6468 &stats->RecvThresholdHit, "NIC Recv Threshold Hit"); 6469 6470 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", 6471 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics"); 6472 child = SYSCTL_CHILDREN(tree); 6473 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets", 6474 &stats->ifHCInOctets, "Inbound Octets"); 6475 BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments", 6476 &stats->etherStatsFragments, "Fragments"); 6477 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6478 &stats->ifHCInUcastPkts, "Inbound Unicast Packets"); 6479 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6480 &stats->ifHCInMulticastPkts, "Inbound Multicast Packets"); 6481 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6482 &stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets"); 6483 BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors", 6484 &stats->dot3StatsFCSErrors, "FCS Errors"); 6485 BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors", 6486 &stats->dot3StatsAlignmentErrors, "Alignment Errors"); 6487 BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived", 6488 &stats->xonPauseFramesReceived, "XON Pause Frames Received"); 6489 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived", 6490 &stats->xoffPauseFramesReceived, "XOFF Pause Frames Received"); 6491 BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived", 6492 &stats->macControlFramesReceived, "MAC Control Frames Received"); 6493 BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered", 6494 &stats->xoffStateEntered, "XOFF State Entered"); 6495 BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong", 6496 &stats->dot3StatsFramesTooLong, "Frames Too Long"); 6497 BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers", 6498 &stats->etherStatsJabbers, "Jabbers"); 6499 BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts", 6500 &stats->etherStatsUndersizePkts, "Undersized Packets"); 6501 6502 tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", 6503 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics"); 6504 child = SYSCTL_CHILDREN(tree); 6505 BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets", 6506 &stats->ifHCOutOctets, "Outbound Octets"); 6507 BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions", 6508 &stats->etherStatsCollisions, "TX Collisions"); 6509 BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent", 6510 &stats->outXonSent, "XON Sent"); 6511 BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent", 6512 &stats->outXoffSent, "XOFF Sent"); 6513 BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors", 6514 &stats->dot3StatsInternalMacTransmitErrors, 6515 "Internal MAC TX Errors"); 6516 BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames", 6517 &stats->dot3StatsSingleCollisionFrames, "Single Collision Frames"); 6518 BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames", 6519 &stats->dot3StatsMultipleCollisionFrames, 6520 "Multiple Collision Frames"); 6521 BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions", 6522 &stats->dot3StatsDeferredTransmissions, "Deferred Transmissions"); 6523 BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions", 6524 &stats->dot3StatsExcessiveCollisions, "Excessive Collisions"); 6525 BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions", 6526 &stats->dot3StatsLateCollisions, "Late Collisions"); 6527 BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts", 6528 &stats->ifHCOutUcastPkts, "Outbound Unicast Packets"); 6529 BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts", 6530 &stats->ifHCOutMulticastPkts, "Outbound Multicast Packets"); 6531 BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts", 6532 &stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets"); 6533 } 6534 6535 #undef BGE_SYSCTL_STAT_ADD64 6536 6537 static int 6538 bge_sysctl_stats(SYSCTL_HANDLER_ARGS) 6539 { 6540 struct bge_softc *sc; 6541 uint32_t result; 6542 int offset; 6543 6544 sc = (struct bge_softc *)arg1; 6545 offset = arg2; 6546 result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset + 6547 offsetof(bge_hostaddr, bge_addr_lo)); 6548 return (sysctl_handle_int(oidp, &result, 0, req)); 6549 } 6550 6551 #ifdef BGE_REGISTER_DEBUG 6552 static int 6553 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS) 6554 { 6555 struct bge_softc *sc; 6556 uint16_t *sbdata; 6557 int error, result, sbsz; 6558 int i, j; 6559 6560 result = -1; 6561 error = sysctl_handle_int(oidp, &result, 0, req); 6562 if (error || (req->newptr == NULL)) 6563 return (error); 6564 6565 if (result == 1) { 6566 sc = (struct bge_softc *)arg1; 6567 6568 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 && 6569 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) 6570 sbsz = BGE_STATUS_BLK_SZ; 6571 else 6572 sbsz = 32; 6573 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block; 6574 printf("Status Block:\n"); 6575 BGE_LOCK(sc); 6576 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6577 sc->bge_cdata.bge_status_map, 6578 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6579 for (i = 0x0; i < sbsz / sizeof(uint16_t); ) { 6580 printf("%06x:", i); 6581 for (j = 0; j < 8; j++) 6582 printf(" %04x", sbdata[i++]); 6583 printf("\n"); 6584 } 6585 6586 printf("Registers:\n"); 6587 for (i = 0x800; i < 0xA00; ) { 6588 printf("%06x:", i); 6589 for (j = 0; j < 8; j++) { 6590 printf(" %08x", CSR_READ_4(sc, i)); 6591 i += 4; 6592 } 6593 printf("\n"); 6594 } 6595 BGE_UNLOCK(sc); 6596 6597 printf("Hardware Flags:\n"); 6598 if (BGE_IS_5717_PLUS(sc)) 6599 printf(" - 5717 Plus\n"); 6600 if (BGE_IS_5755_PLUS(sc)) 6601 printf(" - 5755 Plus\n"); 6602 if (BGE_IS_575X_PLUS(sc)) 6603 printf(" - 575X Plus\n"); 6604 if (BGE_IS_5705_PLUS(sc)) 6605 printf(" - 5705 Plus\n"); 6606 if (BGE_IS_5714_FAMILY(sc)) 6607 printf(" - 5714 Family\n"); 6608 if (BGE_IS_5700_FAMILY(sc)) 6609 printf(" - 5700 Family\n"); 6610 if (sc->bge_flags & BGE_FLAG_JUMBO) 6611 printf(" - Supports Jumbo Frames\n"); 6612 if (sc->bge_flags & BGE_FLAG_PCIX) 6613 printf(" - PCI-X Bus\n"); 6614 if (sc->bge_flags & BGE_FLAG_PCIE) 6615 printf(" - PCI Express Bus\n"); 6616 if (sc->bge_phy_flags & BGE_PHY_NO_3LED) 6617 printf(" - No 3 LEDs\n"); 6618 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) 6619 printf(" - RX Alignment Bug\n"); 6620 } 6621 6622 return (error); 6623 } 6624 6625 static int 6626 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS) 6627 { 6628 struct bge_softc *sc; 6629 int error; 6630 uint16_t result; 6631 uint32_t val; 6632 6633 result = -1; 6634 error = sysctl_handle_int(oidp, &result, 0, req); 6635 if (error || (req->newptr == NULL)) 6636 return (error); 6637 6638 if (result < 0x8000) { 6639 sc = (struct bge_softc *)arg1; 6640 val = CSR_READ_4(sc, result); 6641 printf("reg 0x%06X = 0x%08X\n", result, val); 6642 } 6643 6644 return (error); 6645 } 6646 6647 static int 6648 bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS) 6649 { 6650 struct bge_softc *sc; 6651 int error; 6652 uint16_t result; 6653 uint32_t val; 6654 6655 result = -1; 6656 error = sysctl_handle_int(oidp, &result, 0, req); 6657 if (error || (req->newptr == NULL)) 6658 return (error); 6659 6660 if (result < 0x8000) { 6661 sc = (struct bge_softc *)arg1; 6662 val = APE_READ_4(sc, result); 6663 printf("reg 0x%06X = 0x%08X\n", result, val); 6664 } 6665 6666 return (error); 6667 } 6668 6669 static int 6670 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS) 6671 { 6672 struct bge_softc *sc; 6673 int error; 6674 uint16_t result; 6675 uint32_t val; 6676 6677 result = -1; 6678 error = sysctl_handle_int(oidp, &result, 0, req); 6679 if (error || (req->newptr == NULL)) 6680 return (error); 6681 6682 if (result < 0x8000) { 6683 sc = (struct bge_softc *)arg1; 6684 val = bge_readmem_ind(sc, result); 6685 printf("mem 0x%06X = 0x%08X\n", result, val); 6686 } 6687 6688 return (error); 6689 } 6690 #endif 6691 6692 static int 6693 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6694 { 6695 return (1); 6696 } 6697 6698 static int 6699 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6700 { 6701 uint32_t mac_addr; 6702 6703 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6704 if ((mac_addr >> 16) == 0x484b) { 6705 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6706 ether_addr[1] = (uint8_t)mac_addr; 6707 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6708 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6709 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6710 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6711 ether_addr[5] = (uint8_t)mac_addr; 6712 return (0); 6713 } 6714 return (1); 6715 } 6716 6717 static int 6718 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6719 { 6720 int mac_offset = BGE_EE_MAC_OFFSET; 6721 6722 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6723 mac_offset = BGE_EE_MAC_OFFSET_5906; 6724 6725 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6726 ETHER_ADDR_LEN)); 6727 } 6728 6729 static int 6730 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6731 { 6732 6733 if (sc->bge_asicrev == BGE_ASICREV_BCM5906) 6734 return (1); 6735 6736 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6737 ETHER_ADDR_LEN)); 6738 } 6739 6740 static int 6741 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6742 { 6743 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6744 /* NOTE: Order is critical */ 6745 bge_get_eaddr_fw, 6746 bge_get_eaddr_mem, 6747 bge_get_eaddr_nvram, 6748 bge_get_eaddr_eeprom, 6749 NULL 6750 }; 6751 const bge_eaddr_fcn_t *func; 6752 6753 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6754 if ((*func)(sc, eaddr) == 0) 6755 break; 6756 } 6757 return (*func == NULL ? ENXIO : 0); 6758 } 6759 6760 static uint64_t 6761 bge_get_counter(if_t ifp, ift_counter cnt) 6762 { 6763 struct bge_softc *sc; 6764 struct bge_mac_stats *stats; 6765 6766 sc = if_getsoftc(ifp); 6767 if (!BGE_IS_5705_PLUS(sc)) 6768 return (if_get_counter_default(ifp, cnt)); 6769 stats = &sc->bge_mac_stats; 6770 6771 switch (cnt) { 6772 case IFCOUNTER_IERRORS: 6773 return (stats->NoMoreRxBDs + stats->InputDiscards + 6774 stats->InputErrors); 6775 case IFCOUNTER_COLLISIONS: 6776 return (stats->etherStatsCollisions); 6777 default: 6778 return (if_get_counter_default(ifp, cnt)); 6779 } 6780 } 6781 6782 #ifdef DEBUGNET 6783 static void 6784 bge_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 6785 { 6786 struct bge_softc *sc; 6787 6788 sc = if_getsoftc(ifp); 6789 BGE_LOCK(sc); 6790 *nrxr = sc->bge_return_ring_cnt; 6791 *ncl = DEBUGNET_MAX_IN_FLIGHT; 6792 if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 && 6793 (if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN + 6794 ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) 6795 *clsize = MJUM9BYTES; 6796 else 6797 *clsize = MCLBYTES; 6798 BGE_UNLOCK(sc); 6799 } 6800 6801 static void 6802 bge_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 6803 { 6804 } 6805 6806 static int 6807 bge_debugnet_transmit(if_t ifp, struct mbuf *m) 6808 { 6809 struct bge_softc *sc; 6810 uint32_t prodidx; 6811 int error; 6812 6813 sc = if_getsoftc(ifp); 6814 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6815 IFF_DRV_RUNNING) 6816 return (1); 6817 6818 prodidx = sc->bge_tx_prodidx; 6819 error = bge_encap(sc, &m, &prodidx); 6820 if (error == 0) 6821 bge_start_tx(sc, prodidx); 6822 return (error); 6823 } 6824 6825 static int 6826 bge_debugnet_poll(if_t ifp, int count) 6827 { 6828 struct bge_softc *sc; 6829 uint32_t rx_prod, tx_cons; 6830 6831 sc = if_getsoftc(ifp); 6832 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 6833 IFF_DRV_RUNNING) 6834 return (1); 6835 6836 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6837 sc->bge_cdata.bge_status_map, 6838 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 6839 6840 rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx; 6841 tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx; 6842 6843 bus_dmamap_sync(sc->bge_cdata.bge_status_tag, 6844 sc->bge_cdata.bge_status_map, 6845 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 6846 6847 (void)bge_rxeof(sc, rx_prod, 0); 6848 bge_txeof(sc, tx_cons); 6849 return (0); 6850 } 6851 #endif /* DEBUGNET */ 6852