1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 18 * NO WARRANTY 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 29 * THE POSSIBILITY OF SUCH DAMAGES. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 /* 36 * Driver for the Atheros Wireless LAN controller. 37 * 38 * This software is derived from work of Atsushi Onoe; his contribution 39 * is greatly appreciated. 40 */ 41 42 #include "opt_inet.h" 43 #include "opt_ath.h" 44 /* 45 * This is needed for register operations which are performed 46 * by the driver - eg, calls to ath_hal_gettsf32(). 47 * 48 * It's also required for any AH_DEBUG checks in here, eg the 49 * module dependencies. 50 */ 51 #include "opt_ah.h" 52 #include "opt_wlan.h" 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/sysctl.h> 57 #include <sys/mbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/lock.h> 60 #include <sys/mutex.h> 61 #include <sys/kernel.h> 62 #include <sys/socket.h> 63 #include <sys/sockio.h> 64 #include <sys/errno.h> 65 #include <sys/callout.h> 66 #include <sys/bus.h> 67 #include <sys/endian.h> 68 #include <sys/kthread.h> 69 #include <sys/taskqueue.h> 70 #include <sys/priv.h> 71 #include <sys/module.h> 72 #include <sys/ktr.h> 73 #include <sys/smp.h> /* for mp_ncpus */ 74 75 #include <machine/bus.h> 76 77 #include <net/if.h> 78 #include <net/if_var.h> 79 #include <net/if_dl.h> 80 #include <net/if_media.h> 81 #include <net/if_types.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_llc.h> 85 86 #include <net80211/ieee80211_var.h> 87 #include <net80211/ieee80211_regdomain.h> 88 #ifdef IEEE80211_SUPPORT_SUPERG 89 #include <net80211/ieee80211_superg.h> 90 #endif 91 #ifdef IEEE80211_SUPPORT_TDMA 92 #include <net80211/ieee80211_tdma.h> 93 #endif 94 95 #include <net/bpf.h> 96 97 #ifdef INET 98 #include <netinet/in.h> 99 #include <netinet/if_ether.h> 100 #endif 101 102 #include <dev/ath/if_athvar.h> 103 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 104 #include <dev/ath/ath_hal/ah_diagcodes.h> 105 106 #include <dev/ath/if_ath_debug.h> 107 #include <dev/ath/if_ath_misc.h> 108 #include <dev/ath/if_ath_tsf.h> 109 #include <dev/ath/if_ath_tx.h> 110 #include <dev/ath/if_ath_sysctl.h> 111 #include <dev/ath/if_ath_led.h> 112 #include <dev/ath/if_ath_keycache.h> 113 #include <dev/ath/if_ath_rx.h> 114 #include <dev/ath/if_ath_rx_edma.h> 115 #include <dev/ath/if_ath_tx_edma.h> 116 #include <dev/ath/if_ath_beacon.h> 117 #include <dev/ath/if_ath_btcoex.h> 118 #include <dev/ath/if_ath_btcoex_mci.h> 119 #include <dev/ath/if_ath_spectral.h> 120 #include <dev/ath/if_ath_lna_div.h> 121 #include <dev/ath/if_athdfs.h> 122 #include <dev/ath/if_ath_ioctl.h> 123 #include <dev/ath/if_ath_descdma.h> 124 125 #ifdef ATH_TX99_DIAG 126 #include <dev/ath/ath_tx99/ath_tx99.h> 127 #endif 128 129 #ifdef ATH_DEBUG_ALQ 130 #include <dev/ath/if_ath_alq.h> 131 #endif 132 133 /* 134 * Only enable this if you're working on PS-POLL support. 135 */ 136 #define ATH_SW_PSQ 137 138 /* 139 * ATH_BCBUF determines the number of vap's that can transmit 140 * beacons and also (currently) the number of vap's that can 141 * have unique mac addresses/bssid. When staggering beacons 142 * 4 is probably a good max as otherwise the beacons become 143 * very closely spaced and there is limited time for cab q traffic 144 * to go out. You can burst beacons instead but that is not good 145 * for stations in power save and at some point you really want 146 * another radio (and channel). 147 * 148 * The limit on the number of mac addresses is tied to our use of 149 * the U/L bit and tracking addresses in a byte; it would be 150 * worthwhile to allow more for applications like proxy sta. 151 */ 152 CTASSERT(ATH_BCBUF <= 8); 153 154 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 155 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 156 const uint8_t [IEEE80211_ADDR_LEN], 157 const uint8_t [IEEE80211_ADDR_LEN]); 158 static void ath_vap_delete(struct ieee80211vap *); 159 static int ath_init(struct ath_softc *); 160 static void ath_stop(struct ath_softc *); 161 static int ath_reset_vap(struct ieee80211vap *, u_long); 162 static int ath_transmit(struct ieee80211com *, struct mbuf *); 163 static void ath_watchdog(void *); 164 static void ath_parent(struct ieee80211com *); 165 static void ath_fatal_proc(void *, int); 166 static void ath_bmiss_vap(struct ieee80211vap *); 167 static void ath_bmiss_proc(void *, int); 168 static void ath_tsfoor_proc(void *, int); 169 static void ath_key_update_begin(struct ieee80211vap *); 170 static void ath_key_update_end(struct ieee80211vap *); 171 static void ath_update_mcast_hw(struct ath_softc *); 172 static void ath_update_mcast(struct ieee80211com *); 173 static void ath_update_promisc(struct ieee80211com *); 174 static void ath_updateslot(struct ieee80211com *); 175 static void ath_bstuck_proc(void *, int); 176 static void ath_reset_proc(void *, int); 177 static int ath_desc_alloc(struct ath_softc *); 178 static void ath_desc_free(struct ath_softc *); 179 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 180 const uint8_t [IEEE80211_ADDR_LEN]); 181 static void ath_node_cleanup(struct ieee80211_node *); 182 static void ath_node_free(struct ieee80211_node *); 183 static void ath_node_getsignal(const struct ieee80211_node *, 184 int8_t *, int8_t *); 185 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 186 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 187 static int ath_tx_setup(struct ath_softc *, int, int); 188 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 189 static void ath_tx_cleanup(struct ath_softc *); 190 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 191 int dosched); 192 static void ath_tx_proc_q0(void *, int); 193 static void ath_tx_proc_q0123(void *, int); 194 static void ath_tx_proc(void *, int); 195 static void ath_txq_sched_tasklet(void *, int); 196 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 197 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 198 static void ath_scan_start(struct ieee80211com *); 199 static void ath_scan_end(struct ieee80211com *); 200 static void ath_set_channel(struct ieee80211com *); 201 #ifdef ATH_ENABLE_11N 202 static void ath_update_chw(struct ieee80211com *); 203 #endif /* ATH_ENABLE_11N */ 204 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *); 205 static void ath_calibrate(void *); 206 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 207 static void ath_setup_stationkey(struct ieee80211_node *); 208 static void ath_newassoc(struct ieee80211_node *, int); 209 static int ath_setregdomain(struct ieee80211com *, 210 struct ieee80211_regdomain *, int, 211 struct ieee80211_channel []); 212 static void ath_getradiocaps(struct ieee80211com *, int, int *, 213 struct ieee80211_channel []); 214 static int ath_getchannels(struct ath_softc *); 215 216 static int ath_rate_setup(struct ath_softc *, u_int mode); 217 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 218 219 static void ath_announce(struct ath_softc *); 220 221 static void ath_dfs_tasklet(void *, int); 222 static void ath_node_powersave(struct ieee80211_node *, int); 223 static int ath_node_set_tim(struct ieee80211_node *, int); 224 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *); 225 226 #ifdef IEEE80211_SUPPORT_TDMA 227 #include <dev/ath/if_ath_tdma.h> 228 #endif 229 230 SYSCTL_DECL(_hw_ath); 231 232 /* XXX validate sysctl values */ 233 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 234 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 235 0, "long chip calibration interval (secs)"); 236 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 238 0, "short chip calibration interval (msecs)"); 239 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 240 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 241 0, "reset chip calibration results (secs)"); 242 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 243 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 244 0, "ANI calibration (msecs)"); 245 246 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 247 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf, 248 0, "rx buffers allocated"); 249 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf, 251 0, "tx buffers allocated"); 252 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 253 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt, 254 0, "tx (mgmt) buffers allocated"); 255 256 int ath_bstuck_threshold = 4; /* max missed beacons */ 257 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 258 0, "max missed beacon xmits before chip reset"); 259 260 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 261 262 void 263 ath_legacy_attach_comp_func(struct ath_softc *sc) 264 { 265 266 /* 267 * Special case certain configurations. Note the 268 * CAB queue is handled by these specially so don't 269 * include them when checking the txq setup mask. 270 */ 271 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 272 case 0x01: 273 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 274 break; 275 case 0x0f: 276 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 277 break; 278 default: 279 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 280 break; 281 } 282 } 283 284 /* 285 * Set the target power mode. 286 * 287 * If this is called during a point in time where 288 * the hardware is being programmed elsewhere, it will 289 * simply store it away and update it when all current 290 * uses of the hardware are completed. 291 * 292 * If the chip is going into network sleep or power off, then 293 * we will wait until all uses of the chip are done before 294 * going into network sleep or power off. 295 * 296 * If the chip is being programmed full-awake, then immediately 297 * program it full-awake so we can actually stay awake rather than 298 * the chip potentially going to sleep underneath us. 299 */ 300 void 301 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen, 302 const char *file, int line) 303 { 304 ATH_LOCK_ASSERT(sc); 305 306 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n", 307 __func__, 308 file, 309 line, 310 power_state, 311 sc->sc_powersave_refcnt, 312 sc->sc_target_powerstate, 313 sc->sc_cur_powerstate); 314 315 sc->sc_target_powerstate = power_state; 316 317 /* 318 * Don't program the chip into network sleep if the chip 319 * is being programmed elsewhere. 320 * 321 * However, if the chip is being programmed /awake/, force 322 * the chip awake so we stay awake. 323 */ 324 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) && 325 power_state != sc->sc_cur_powerstate) { 326 sc->sc_cur_powerstate = power_state; 327 ath_hal_setpower(sc->sc_ah, power_state); 328 329 /* 330 * If the NIC is force-awake, then set the 331 * self-gen frame state appropriately. 332 * 333 * If the nic is in network sleep or full-sleep, 334 * we let the above call leave the self-gen 335 * state as "sleep". 336 */ 337 if (selfgen && 338 sc->sc_cur_powerstate == HAL_PM_AWAKE && 339 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 340 ath_hal_setselfgenpower(sc->sc_ah, 341 sc->sc_target_selfgen_state); 342 } 343 } 344 } 345 346 /* 347 * Set the current self-generated frames state. 348 * 349 * This is separate from the target power mode. The chip may be 350 * awake but the desired state is "sleep", so frames sent to the 351 * destination has PWRMGT=1 in the 802.11 header. The NIC also 352 * needs to know to set PWRMGT=1 in self-generated frames. 353 */ 354 void 355 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line) 356 { 357 358 ATH_LOCK_ASSERT(sc); 359 360 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 361 __func__, 362 file, 363 line, 364 power_state, 365 sc->sc_target_selfgen_state); 366 367 sc->sc_target_selfgen_state = power_state; 368 369 /* 370 * If the NIC is force-awake, then set the power state. 371 * Network-state and full-sleep will already transition it to 372 * mark self-gen frames as sleeping - and we can't 373 * guarantee the NIC is awake to program the self-gen frame 374 * setting anyway. 375 */ 376 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) { 377 ath_hal_setselfgenpower(sc->sc_ah, power_state); 378 } 379 } 380 381 /* 382 * Set the hardware power mode and take a reference. 383 * 384 * This doesn't update the target power mode in the driver; 385 * it just updates the hardware power state. 386 * 387 * XXX it should only ever force the hardware awake; it should 388 * never be called to set it asleep. 389 */ 390 void 391 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line) 392 { 393 ATH_LOCK_ASSERT(sc); 394 395 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n", 396 __func__, 397 file, 398 line, 399 power_state, 400 sc->sc_powersave_refcnt); 401 402 sc->sc_powersave_refcnt++; 403 404 /* 405 * Only do the power state change if we're not programming 406 * it elsewhere. 407 */ 408 if (power_state != sc->sc_cur_powerstate) { 409 ath_hal_setpower(sc->sc_ah, power_state); 410 sc->sc_cur_powerstate = power_state; 411 /* 412 * Adjust the self-gen powerstate if appropriate. 413 */ 414 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 415 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 416 ath_hal_setselfgenpower(sc->sc_ah, 417 sc->sc_target_selfgen_state); 418 } 419 } 420 } 421 422 /* 423 * Restore the power save mode to what it once was. 424 * 425 * This will decrement the reference counter and once it hits 426 * zero, it'll restore the powersave state. 427 */ 428 void 429 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line) 430 { 431 432 ATH_LOCK_ASSERT(sc); 433 434 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n", 435 __func__, 436 file, 437 line, 438 sc->sc_powersave_refcnt, 439 sc->sc_target_powerstate); 440 441 if (sc->sc_powersave_refcnt == 0) 442 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__); 443 else 444 sc->sc_powersave_refcnt--; 445 446 if (sc->sc_powersave_refcnt == 0 && 447 sc->sc_target_powerstate != sc->sc_cur_powerstate) { 448 sc->sc_cur_powerstate = sc->sc_target_powerstate; 449 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate); 450 } 451 452 /* 453 * Adjust the self-gen powerstate if appropriate. 454 */ 455 if (sc->sc_cur_powerstate == HAL_PM_AWAKE && 456 sc->sc_target_selfgen_state != HAL_PM_AWAKE) { 457 ath_hal_setselfgenpower(sc->sc_ah, 458 sc->sc_target_selfgen_state); 459 } 460 461 } 462 463 /* 464 * Configure the initial HAL configuration values based on bus 465 * specific parameters. 466 * 467 * Some PCI IDs and other information may need tweaking. 468 * 469 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable 470 * if BT antenna diversity isn't enabled. 471 * 472 * So, let's also figure out how to enable BT diversity for AR9485. 473 */ 474 static void 475 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config) 476 { 477 /* XXX TODO: only for PCI devices? */ 478 479 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) { 480 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */ 481 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE; 482 ah_config->ath_hal_min_gainidx = AH_TRUE; 483 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88; 484 /* XXX low_rssi_thresh */ 485 /* XXX fast_div_bias */ 486 device_printf(sc->sc_dev, "configuring for %s\n", 487 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ? 488 "CUS198" : "CUS230"); 489 } 490 491 if (sc->sc_pci_devinfo & ATH_PCI_CUS217) 492 device_printf(sc->sc_dev, "CUS217 card detected\n"); 493 494 if (sc->sc_pci_devinfo & ATH_PCI_CUS252) 495 device_printf(sc->sc_dev, "CUS252 card detected\n"); 496 497 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT) 498 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n"); 499 500 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT) 501 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n"); 502 503 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV) 504 device_printf(sc->sc_dev, 505 "Bluetooth Antenna Diversity card detected\n"); 506 507 if (sc->sc_pci_devinfo & ATH_PCI_KILLER) 508 device_printf(sc->sc_dev, "Killer Wireless card detected\n"); 509 510 #if 0 511 /* 512 * Some WB335 cards do not support antenna diversity. Since 513 * we use a hardcoded value for AR9565 instead of using the 514 * EEPROM/OTP data, remove the combining feature from 515 * the HW capabilities bitmap. 516 */ 517 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 518 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV)) 519 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB; 520 } 521 522 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) { 523 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV; 524 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n"); 525 } 526 #endif 527 528 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) { 529 ah_config->ath_hal_pcie_waen = 0x0040473b; 530 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n"); 531 } 532 533 #if 0 534 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) { 535 ah->config.no_pll_pwrsave = true; 536 device_printf(sc->sc_dev, "Disable PLL PowerSave\n"); 537 } 538 #endif 539 540 } 541 542 /* 543 * Attempt to fetch the MAC address from the kernel environment. 544 * 545 * Returns 0, macaddr in macaddr if successful; -1 otherwise. 546 */ 547 static int 548 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr) 549 { 550 char devid_str[32]; 551 int local_mac = 0; 552 char *local_macstr; 553 554 /* 555 * Fetch from the kenv rather than using hints. 556 * 557 * Hints would be nice but the transition to dynamic 558 * hints/kenv doesn't happen early enough for this 559 * to work reliably (eg on anything embedded.) 560 */ 561 snprintf(devid_str, 32, "hint.%s.%d.macaddr", 562 device_get_name(sc->sc_dev), 563 device_get_unit(sc->sc_dev)); 564 565 if ((local_macstr = kern_getenv(devid_str)) != NULL) { 566 uint32_t tmpmac[ETHER_ADDR_LEN]; 567 int count; 568 int i; 569 570 /* Have a MAC address; should use it */ 571 device_printf(sc->sc_dev, 572 "Overriding MAC address from environment: '%s'\n", 573 local_macstr); 574 575 /* Extract out the MAC address */ 576 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x", 577 &tmpmac[0], &tmpmac[1], 578 &tmpmac[2], &tmpmac[3], 579 &tmpmac[4], &tmpmac[5]); 580 if (count == 6) { 581 /* Valid! */ 582 local_mac = 1; 583 for (i = 0; i < ETHER_ADDR_LEN; i++) 584 macaddr[i] = tmpmac[i]; 585 } 586 /* Done! */ 587 freeenv(local_macstr); 588 local_macstr = NULL; 589 } 590 591 if (local_mac) 592 return (0); 593 return (-1); 594 } 595 596 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 597 #define HAL_MODE_HT40 \ 598 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 599 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 600 int 601 ath_attach(u_int16_t devid, struct ath_softc *sc) 602 { 603 struct ieee80211com *ic = &sc->sc_ic; 604 struct ath_hal *ah = NULL; 605 HAL_STATUS status; 606 int error = 0, i; 607 u_int wmodes; 608 int rx_chainmask, tx_chainmask; 609 HAL_OPS_CONFIG ah_config; 610 611 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 612 613 ic->ic_softc = sc; 614 ic->ic_name = device_get_nameunit(sc->sc_dev); 615 616 /* 617 * Configure the initial configuration data. 618 * 619 * This is stuff that may be needed early during attach 620 * rather than done via configuration calls later. 621 */ 622 bzero(&ah_config, sizeof(ah_config)); 623 ath_setup_hal_config(sc, &ah_config); 624 625 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 626 sc->sc_eepromdata, &ah_config, &status); 627 if (ah == NULL) { 628 device_printf(sc->sc_dev, 629 "unable to attach hardware; HAL status %u\n", status); 630 error = ENXIO; 631 goto bad; 632 } 633 sc->sc_ah = ah; 634 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 635 #ifdef ATH_DEBUG 636 sc->sc_debug = ath_debug; 637 #endif 638 639 /* 640 * Force the chip awake during setup, just to keep 641 * the HAL/driver power tracking happy. 642 * 643 * There are some methods (eg ath_hal_setmac()) 644 * that poke the hardware. 645 */ 646 ATH_LOCK(sc); 647 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 648 ATH_UNLOCK(sc); 649 650 /* 651 * Setup the DMA/EDMA functions based on the current 652 * hardware support. 653 * 654 * This is required before the descriptors are allocated. 655 */ 656 if (ath_hal_hasedma(sc->sc_ah)) { 657 sc->sc_isedma = 1; 658 ath_recv_setup_edma(sc); 659 ath_xmit_setup_edma(sc); 660 } else { 661 ath_recv_setup_legacy(sc); 662 ath_xmit_setup_legacy(sc); 663 } 664 665 if (ath_hal_hasmybeacon(sc->sc_ah)) { 666 sc->sc_do_mybeacon = 1; 667 } 668 669 /* 670 * Check if the MAC has multi-rate retry support. 671 * We do this by trying to setup a fake extended 672 * descriptor. MAC's that don't have support will 673 * return false w/o doing anything. MAC's that do 674 * support it will return true w/o doing anything. 675 */ 676 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 677 678 /* 679 * Check if the device has hardware counters for PHY 680 * errors. If so we need to enable the MIB interrupt 681 * so we can act on stat triggers. 682 */ 683 if (ath_hal_hwphycounters(ah)) 684 sc->sc_needmib = 1; 685 686 /* 687 * Get the hardware key cache size. 688 */ 689 sc->sc_keymax = ath_hal_keycachesize(ah); 690 if (sc->sc_keymax > ATH_KEYMAX) { 691 device_printf(sc->sc_dev, 692 "Warning, using only %u of %u key cache slots\n", 693 ATH_KEYMAX, sc->sc_keymax); 694 sc->sc_keymax = ATH_KEYMAX; 695 } 696 /* 697 * Reset the key cache since some parts do not 698 * reset the contents on initial power up. 699 */ 700 for (i = 0; i < sc->sc_keymax; i++) 701 ath_hal_keyreset(ah, i); 702 703 /* 704 * Collect the default channel list. 705 */ 706 error = ath_getchannels(sc); 707 if (error != 0) 708 goto bad; 709 710 /* 711 * Setup rate tables for all potential media types. 712 */ 713 ath_rate_setup(sc, IEEE80211_MODE_11A); 714 ath_rate_setup(sc, IEEE80211_MODE_11B); 715 ath_rate_setup(sc, IEEE80211_MODE_11G); 716 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 717 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 718 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 719 ath_rate_setup(sc, IEEE80211_MODE_11NA); 720 ath_rate_setup(sc, IEEE80211_MODE_11NG); 721 ath_rate_setup(sc, IEEE80211_MODE_HALF); 722 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 723 724 /* NB: setup here so ath_rate_update is happy */ 725 ath_setcurmode(sc, IEEE80211_MODE_11A); 726 727 /* 728 * Allocate TX descriptors and populate the lists. 729 */ 730 error = ath_desc_alloc(sc); 731 if (error != 0) { 732 device_printf(sc->sc_dev, 733 "failed to allocate TX descriptors: %d\n", error); 734 goto bad; 735 } 736 error = ath_txdma_setup(sc); 737 if (error != 0) { 738 device_printf(sc->sc_dev, 739 "failed to allocate TX descriptors: %d\n", error); 740 goto bad; 741 } 742 743 /* 744 * Allocate RX descriptors and populate the lists. 745 */ 746 error = ath_rxdma_setup(sc); 747 if (error != 0) { 748 device_printf(sc->sc_dev, 749 "failed to allocate RX descriptors: %d\n", error); 750 goto bad; 751 } 752 753 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 754 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 755 756 ATH_TXBUF_LOCK_INIT(sc); 757 758 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 759 taskqueue_thread_enqueue, &sc->sc_tq); 760 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq", 761 device_get_nameunit(sc->sc_dev)); 762 763 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 764 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 765 TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc); 766 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 767 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 768 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 769 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 770 771 /* 772 * Allocate hardware transmit queues: one queue for 773 * beacon frames and one data queue for each QoS 774 * priority. Note that the hal handles resetting 775 * these queues at the needed time. 776 * 777 * XXX PS-Poll 778 */ 779 sc->sc_bhalq = ath_beaconq_setup(sc); 780 if (sc->sc_bhalq == (u_int) -1) { 781 device_printf(sc->sc_dev, 782 "unable to setup a beacon xmit queue!\n"); 783 error = EIO; 784 goto bad2; 785 } 786 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 787 if (sc->sc_cabq == NULL) { 788 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n"); 789 error = EIO; 790 goto bad2; 791 } 792 /* NB: insure BK queue is the lowest priority h/w queue */ 793 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 794 device_printf(sc->sc_dev, 795 "unable to setup xmit queue for %s traffic!\n", 796 ieee80211_wme_acnames[WME_AC_BK]); 797 error = EIO; 798 goto bad2; 799 } 800 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 801 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 802 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 803 /* 804 * Not enough hardware tx queues to properly do WME; 805 * just punt and assign them all to the same h/w queue. 806 * We could do a better job of this if, for example, 807 * we allocate queues when we switch from station to 808 * AP mode. 809 */ 810 if (sc->sc_ac2q[WME_AC_VI] != NULL) 811 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 812 if (sc->sc_ac2q[WME_AC_BE] != NULL) 813 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 814 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 815 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 816 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 817 } 818 819 /* 820 * Attach the TX completion function. 821 * 822 * The non-EDMA chips may have some special case optimisations; 823 * this method gives everyone a chance to attach cleanly. 824 */ 825 sc->sc_tx.xmit_attach_comp_func(sc); 826 827 /* 828 * Setup rate control. Some rate control modules 829 * call back to change the anntena state so expose 830 * the necessary entry points. 831 * XXX maybe belongs in struct ath_ratectrl? 832 */ 833 sc->sc_setdefantenna = ath_setdefantenna; 834 sc->sc_rc = ath_rate_attach(sc); 835 if (sc->sc_rc == NULL) { 836 error = EIO; 837 goto bad2; 838 } 839 840 /* Attach DFS module */ 841 if (! ath_dfs_attach(sc)) { 842 device_printf(sc->sc_dev, 843 "%s: unable to attach DFS\n", __func__); 844 error = EIO; 845 goto bad2; 846 } 847 848 /* Attach spectral module */ 849 if (ath_spectral_attach(sc) < 0) { 850 device_printf(sc->sc_dev, 851 "%s: unable to attach spectral\n", __func__); 852 error = EIO; 853 goto bad2; 854 } 855 856 /* Attach bluetooth coexistence module */ 857 if (ath_btcoex_attach(sc) < 0) { 858 device_printf(sc->sc_dev, 859 "%s: unable to attach bluetooth coexistence\n", __func__); 860 error = EIO; 861 goto bad2; 862 } 863 864 /* Attach LNA diversity module */ 865 if (ath_lna_div_attach(sc) < 0) { 866 device_printf(sc->sc_dev, 867 "%s: unable to attach LNA diversity\n", __func__); 868 error = EIO; 869 goto bad2; 870 } 871 872 /* Start DFS processing tasklet */ 873 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 874 875 /* Configure LED state */ 876 sc->sc_blinking = 0; 877 sc->sc_ledstate = 1; 878 sc->sc_ledon = 0; /* low true */ 879 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 880 callout_init(&sc->sc_ledtimer, 1); 881 882 /* 883 * Don't setup hardware-based blinking. 884 * 885 * Although some NICs may have this configured in the 886 * default reset register values, the user may wish 887 * to alter which pins have which function. 888 * 889 * The reference driver attaches the MAC network LED to GPIO1 and 890 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 891 * NIC has these reversed. 892 */ 893 sc->sc_hardled = (1 == 0); 894 sc->sc_led_net_pin = -1; 895 sc->sc_led_pwr_pin = -1; 896 /* 897 * Auto-enable soft led processing for IBM cards and for 898 * 5211 minipci cards. Users can also manually enable/disable 899 * support with a sysctl. 900 */ 901 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 902 ath_led_config(sc); 903 ath_hal_setledstate(ah, HAL_LED_INIT); 904 905 /* XXX not right but it's not used anywhere important */ 906 ic->ic_phytype = IEEE80211_T_OFDM; 907 ic->ic_opmode = IEEE80211_M_STA; 908 ic->ic_caps = 909 IEEE80211_C_STA /* station mode */ 910 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 911 | IEEE80211_C_HOSTAP /* hostap mode */ 912 | IEEE80211_C_MONITOR /* monitor mode */ 913 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 914 | IEEE80211_C_WDS /* 4-address traffic works */ 915 | IEEE80211_C_MBSS /* mesh point link mode */ 916 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 917 | IEEE80211_C_SHSLOT /* short slot time supported */ 918 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 919 #ifndef ATH_ENABLE_11N 920 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 921 #endif 922 | IEEE80211_C_TXFRAG /* handle tx frags */ 923 #ifdef ATH_ENABLE_DFS 924 | IEEE80211_C_DFS /* Enable radar detection */ 925 #endif 926 | IEEE80211_C_PMGT /* Station side power mgmt */ 927 | IEEE80211_C_SWSLEEP 928 ; 929 /* 930 * Query the hal to figure out h/w crypto support. 931 */ 932 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 933 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 934 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 935 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 936 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 937 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 938 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 939 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 940 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 941 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 942 /* 943 * Check if h/w does the MIC and/or whether the 944 * separate key cache entries are required to 945 * handle both tx+rx MIC keys. 946 */ 947 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 948 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 949 /* 950 * If the h/w supports storing tx+rx MIC keys 951 * in one cache slot automatically enable use. 952 */ 953 if (ath_hal_hastkipsplit(ah) || 954 !ath_hal_settkipsplit(ah, AH_FALSE)) 955 sc->sc_splitmic = 1; 956 /* 957 * If the h/w can do TKIP MIC together with WME then 958 * we use it; otherwise we force the MIC to be done 959 * in software by the net80211 layer. 960 */ 961 if (ath_hal_haswmetkipmic(ah)) 962 sc->sc_wmetkipmic = 1; 963 } 964 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 965 /* 966 * Check for multicast key search support. 967 */ 968 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 969 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 970 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 971 } 972 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 973 /* 974 * Mark key cache slots associated with global keys 975 * as in use. If we knew TKIP was not to be used we 976 * could leave the +32, +64, and +32+64 slots free. 977 */ 978 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 979 setbit(sc->sc_keymap, i); 980 setbit(sc->sc_keymap, i+64); 981 if (sc->sc_splitmic) { 982 setbit(sc->sc_keymap, i+32); 983 setbit(sc->sc_keymap, i+32+64); 984 } 985 } 986 /* 987 * TPC support can be done either with a global cap or 988 * per-packet support. The latter is not available on 989 * all parts. We're a bit pedantic here as all parts 990 * support a global cap. 991 */ 992 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 993 ic->ic_caps |= IEEE80211_C_TXPMGT; 994 995 /* 996 * Mark WME capability only if we have sufficient 997 * hardware queues to do proper priority scheduling. 998 */ 999 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 1000 ic->ic_caps |= IEEE80211_C_WME; 1001 /* 1002 * Check for misc other capabilities. 1003 */ 1004 if (ath_hal_hasbursting(ah)) 1005 ic->ic_caps |= IEEE80211_C_BURST; 1006 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 1007 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 1008 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 1009 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 1010 1011 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */ 1012 if (ath_hal_get_rx_tsf_prec(ah, &i)) { 1013 if (i == 32) { 1014 sc->sc_rxtsf32 = 1; 1015 } 1016 if (bootverbose) 1017 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i); 1018 } 1019 if (ath_hal_get_tx_tsf_prec(ah, &i)) { 1020 if (bootverbose) 1021 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i); 1022 } 1023 1024 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah); 1025 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah); 1026 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah); 1027 1028 /* 1029 * Some WB335 cards do not support antenna diversity. Since 1030 * we use a hardcoded value for AR9565 instead of using the 1031 * EEPROM/OTP data, remove the combining feature from 1032 * the HW capabilities bitmap. 1033 */ 1034 /* 1035 * XXX TODO: check reference driver and ath9k for what to do 1036 * here for WB335. I think we have to actually disable the 1037 * LNA div processing in the HAL and instead use the hard 1038 * coded values; and then use BT diversity. 1039 * 1040 * .. but also need to setup MCI too for WB335.. 1041 */ 1042 #if 0 1043 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) { 1044 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n", 1045 __func__); 1046 sc->sc_dolnadiv = 0; 1047 } 1048 #endif 1049 1050 if (ath_hal_hasfastframes(ah)) 1051 ic->ic_caps |= IEEE80211_C_FF; 1052 wmodes = ath_hal_getwirelessmodes(ah); 1053 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 1054 ic->ic_caps |= IEEE80211_C_TURBOP; 1055 #ifdef IEEE80211_SUPPORT_TDMA 1056 if (ath_hal_macversion(ah) > 0x78) { 1057 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 1058 ic->ic_tdma_update = ath_tdma_update; 1059 } 1060 #endif 1061 1062 /* 1063 * TODO: enforce that at least this many frames are available 1064 * in the txbuf list before allowing data frames (raw or 1065 * otherwise) to be transmitted. 1066 */ 1067 sc->sc_txq_data_minfree = 10; 1068 1069 /* 1070 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever 1071 * is smaller. 1072 * 1073 * Anything bigger can potentially see the cabq consume 1074 * almost all buffers, starving everything else, only to 1075 * see most fail to transmit in the given beacon interval. 1076 */ 1077 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4); 1078 1079 /* 1080 * How deep can the node software TX queue get whilst it's asleep. 1081 */ 1082 sc->sc_txq_node_psq_maxdepth = 16; 1083 1084 /* 1085 * Default the maximum queue to 1/4'th the TX buffers, or 1086 * 128, whichever is smaller. 1087 * 1088 * Set it to 128 instead of the previous default (64) because 1089 * at 64, two full A-MPDU subframes of 32 frames each is 1090 * enough to treat this node queue as full and all subsequent 1091 * traffic is dropped. Setting it to 128 means there'll 1092 * hopefully be another 64 frames in the software queue 1093 * to begin making A-MPDU frames out of. 1094 */ 1095 sc->sc_txq_node_maxdepth = MIN(128, ath_txbuf / 4); 1096 1097 /* Enable CABQ by default */ 1098 sc->sc_cabq_enable = 1; 1099 1100 /* 1101 * Allow the TX and RX chainmasks to be overridden by 1102 * environment variables and/or device.hints. 1103 * 1104 * This must be done early - before the hardware is 1105 * calibrated or before the 802.11n stream calculation 1106 * is done. 1107 */ 1108 if (resource_int_value(device_get_name(sc->sc_dev), 1109 device_get_unit(sc->sc_dev), "rx_chainmask", 1110 &rx_chainmask) == 0) { 1111 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 1112 rx_chainmask); 1113 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 1114 } 1115 if (resource_int_value(device_get_name(sc->sc_dev), 1116 device_get_unit(sc->sc_dev), "tx_chainmask", 1117 &tx_chainmask) == 0) { 1118 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 1119 tx_chainmask); 1120 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 1121 } 1122 1123 /* 1124 * Query the TX/RX chainmask configuration. 1125 * 1126 * This is only relevant for 11n devices. 1127 */ 1128 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 1129 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 1130 1131 /* 1132 * Disable MRR with protected frames by default. 1133 * Only 802.11n series NICs can handle this. 1134 */ 1135 sc->sc_mrrprot = 0; /* XXX should be a capability */ 1136 1137 /* 1138 * Query the enterprise mode information the HAL. 1139 */ 1140 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 1141 &sc->sc_ent_cfg) == HAL_OK) 1142 sc->sc_use_ent = 1; 1143 1144 #ifdef ATH_ENABLE_11N 1145 /* 1146 * Query HT capabilities 1147 */ 1148 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 1149 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 1150 uint32_t rxs, txs; 1151 uint32_t ldpc; 1152 1153 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 1154 1155 sc->sc_mrrprot = 1; /* XXX should be a capability */ 1156 1157 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 1158 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 1159 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 1160 | IEEE80211_HTCAP_MAXAMSDU_3839 1161 /* max A-MSDU length */ 1162 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 1163 1164 /* 1165 * Enable short-GI for HT20 only if the hardware 1166 * advertises support. 1167 * Notably, anything earlier than the AR9287 doesn't. 1168 */ 1169 if ((ath_hal_getcapability(ah, 1170 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 1171 (wmodes & HAL_MODE_HT20)) { 1172 device_printf(sc->sc_dev, 1173 "[HT] enabling short-GI in 20MHz mode\n"); 1174 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 1175 } 1176 1177 if (wmodes & HAL_MODE_HT40) 1178 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 1179 | IEEE80211_HTCAP_SHORTGI40; 1180 1181 /* 1182 * TX/RX streams need to be taken into account when 1183 * negotiating which MCS rates it'll receive and 1184 * what MCS rates are available for TX. 1185 */ 1186 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 1187 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 1188 ic->ic_txstream = txs; 1189 ic->ic_rxstream = rxs; 1190 1191 /* 1192 * Setup TX and RX STBC based on what the HAL allows and 1193 * the currently configured chainmask set. 1194 * Ie - don't enable STBC TX if only one chain is enabled. 1195 * STBC RX is fine on a single RX chain; it just won't 1196 * provide any real benefit. 1197 */ 1198 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 1199 NULL) == HAL_OK) { 1200 sc->sc_rx_stbc = 1; 1201 device_printf(sc->sc_dev, 1202 "[HT] 1 stream STBC receive enabled\n"); 1203 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 1204 } 1205 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 1206 NULL) == HAL_OK) { 1207 sc->sc_tx_stbc = 1; 1208 device_printf(sc->sc_dev, 1209 "[HT] 1 stream STBC transmit enabled\n"); 1210 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 1211 } 1212 1213 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 1214 &sc->sc_rts_aggr_limit); 1215 if (sc->sc_rts_aggr_limit != (64 * 1024)) 1216 device_printf(sc->sc_dev, 1217 "[HT] RTS aggregates limited to %d KiB\n", 1218 sc->sc_rts_aggr_limit / 1024); 1219 1220 /* 1221 * LDPC 1222 */ 1223 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc)) 1224 == HAL_OK && (ldpc == 1)) { 1225 sc->sc_has_ldpc = 1; 1226 device_printf(sc->sc_dev, 1227 "[HT] LDPC transmit/receive enabled\n"); 1228 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC | 1229 IEEE80211_HTC_TXLDPC; 1230 } 1231 1232 device_printf(sc->sc_dev, 1233 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 1234 } 1235 #endif 1236 1237 /* 1238 * Initial aggregation settings. 1239 */ 1240 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH; 1241 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH; 1242 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 1243 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 1244 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 1245 sc->sc_delim_min_pad = 0; 1246 1247 /* 1248 * Check if the hardware requires PCI register serialisation. 1249 * Some of the Owl based MACs require this. 1250 */ 1251 if (mp_ncpus > 1 && 1252 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 1253 0, NULL) == HAL_OK) { 1254 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 1255 device_printf(sc->sc_dev, 1256 "Enabling register serialisation\n"); 1257 } 1258 1259 /* 1260 * Initialise the deferred completed RX buffer list. 1261 */ 1262 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]); 1263 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]); 1264 1265 /* 1266 * Indicate we need the 802.11 header padded to a 1267 * 32-bit boundary for 4-address and QoS frames. 1268 */ 1269 ic->ic_flags |= IEEE80211_F_DATAPAD; 1270 1271 /* 1272 * Query the hal about antenna support. 1273 */ 1274 sc->sc_defant = ath_hal_getdefantenna(ah); 1275 1276 /* 1277 * Not all chips have the VEOL support we want to 1278 * use with IBSS beacons; check here for it. 1279 */ 1280 sc->sc_hasveol = ath_hal_hasveol(ah); 1281 1282 /* get mac address from kenv first, then hardware */ 1283 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) { 1284 /* Tell the HAL now about the new MAC */ 1285 ath_hal_setmac(ah, ic->ic_macaddr); 1286 } else { 1287 ath_hal_getmac(ah, ic->ic_macaddr); 1288 } 1289 1290 if (sc->sc_hasbmask) 1291 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 1292 1293 /* NB: used to size node table key mapping array */ 1294 ic->ic_max_keyix = sc->sc_keymax; 1295 /* call MI attach routine. */ 1296 ieee80211_ifattach(ic); 1297 ic->ic_setregdomain = ath_setregdomain; 1298 ic->ic_getradiocaps = ath_getradiocaps; 1299 sc->sc_opmode = HAL_M_STA; 1300 1301 /* override default methods */ 1302 ic->ic_ioctl = ath_ioctl; 1303 ic->ic_parent = ath_parent; 1304 ic->ic_transmit = ath_transmit; 1305 ic->ic_newassoc = ath_newassoc; 1306 ic->ic_updateslot = ath_updateslot; 1307 ic->ic_wme.wme_update = ath_wme_update; 1308 ic->ic_vap_create = ath_vap_create; 1309 ic->ic_vap_delete = ath_vap_delete; 1310 ic->ic_raw_xmit = ath_raw_xmit; 1311 ic->ic_update_mcast = ath_update_mcast; 1312 ic->ic_update_promisc = ath_update_promisc; 1313 ic->ic_node_alloc = ath_node_alloc; 1314 sc->sc_node_free = ic->ic_node_free; 1315 ic->ic_node_free = ath_node_free; 1316 sc->sc_node_cleanup = ic->ic_node_cleanup; 1317 ic->ic_node_cleanup = ath_node_cleanup; 1318 ic->ic_node_getsignal = ath_node_getsignal; 1319 ic->ic_scan_start = ath_scan_start; 1320 ic->ic_scan_end = ath_scan_end; 1321 ic->ic_set_channel = ath_set_channel; 1322 #ifdef ATH_ENABLE_11N 1323 /* 802.11n specific - but just override anyway */ 1324 sc->sc_addba_request = ic->ic_addba_request; 1325 sc->sc_addba_response = ic->ic_addba_response; 1326 sc->sc_addba_stop = ic->ic_addba_stop; 1327 sc->sc_bar_response = ic->ic_bar_response; 1328 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 1329 1330 ic->ic_addba_request = ath_addba_request; 1331 ic->ic_addba_response = ath_addba_response; 1332 ic->ic_addba_response_timeout = ath_addba_response_timeout; 1333 ic->ic_addba_stop = ath_addba_stop; 1334 ic->ic_bar_response = ath_bar_response; 1335 1336 ic->ic_update_chw = ath_update_chw; 1337 #endif /* ATH_ENABLE_11N */ 1338 ic->ic_set_quiet = ath_set_quiet_ie; 1339 1340 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 1341 /* 1342 * There's one vendor bitmap entry in the RX radiotap 1343 * header; make sure that's taken into account. 1344 */ 1345 ieee80211_radiotap_attachv(ic, 1346 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 1347 ATH_TX_RADIOTAP_PRESENT, 1348 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 1349 ATH_RX_RADIOTAP_PRESENT); 1350 #else 1351 /* 1352 * No vendor bitmap/extensions are present. 1353 */ 1354 ieee80211_radiotap_attach(ic, 1355 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 1356 ATH_TX_RADIOTAP_PRESENT, 1357 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1358 ATH_RX_RADIOTAP_PRESENT); 1359 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 1360 1361 /* 1362 * Setup the ALQ logging if required 1363 */ 1364 #ifdef ATH_DEBUG_ALQ 1365 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 1366 if_ath_alq_setcfg(&sc->sc_alq, 1367 sc->sc_ah->ah_macVersion, 1368 sc->sc_ah->ah_macRev, 1369 sc->sc_ah->ah_phyRev, 1370 sc->sc_ah->ah_magic); 1371 #endif 1372 1373 /* 1374 * Setup dynamic sysctl's now that country code and 1375 * regdomain are available from the hal. 1376 */ 1377 ath_sysctlattach(sc); 1378 ath_sysctl_stats_attach(sc); 1379 ath_sysctl_hal_attach(sc); 1380 1381 if (bootverbose) 1382 ieee80211_announce(ic); 1383 ath_announce(sc); 1384 1385 /* 1386 * Put it to sleep for now. 1387 */ 1388 ATH_LOCK(sc); 1389 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 1390 ATH_UNLOCK(sc); 1391 1392 return 0; 1393 bad2: 1394 ath_tx_cleanup(sc); 1395 ath_desc_free(sc); 1396 ath_txdma_teardown(sc); 1397 ath_rxdma_teardown(sc); 1398 1399 bad: 1400 if (ah) 1401 ath_hal_detach(ah); 1402 sc->sc_invalid = 1; 1403 return error; 1404 } 1405 1406 int 1407 ath_detach(struct ath_softc *sc) 1408 { 1409 1410 /* 1411 * NB: the order of these is important: 1412 * o stop the chip so no more interrupts will fire 1413 * o call the 802.11 layer before detaching the hal to 1414 * insure callbacks into the driver to delete global 1415 * key cache entries can be handled 1416 * o free the taskqueue which drains any pending tasks 1417 * o reclaim the tx queue data structures after calling 1418 * the 802.11 layer as we'll get called back to reclaim 1419 * node state and potentially want to use them 1420 * o to cleanup the tx queues the hal is called, so detach 1421 * it last 1422 * Other than that, it's straightforward... 1423 */ 1424 1425 /* 1426 * XXX Wake the hardware up first. ath_stop() will still 1427 * wake it up first, but I'd rather do it here just to 1428 * ensure it's awake. 1429 */ 1430 ATH_LOCK(sc); 1431 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1432 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 1433 1434 /* 1435 * Stop things cleanly. 1436 */ 1437 ath_stop(sc); 1438 ATH_UNLOCK(sc); 1439 1440 ieee80211_ifdetach(&sc->sc_ic); 1441 taskqueue_free(sc->sc_tq); 1442 #ifdef ATH_TX99_DIAG 1443 if (sc->sc_tx99 != NULL) 1444 sc->sc_tx99->detach(sc->sc_tx99); 1445 #endif 1446 ath_rate_detach(sc->sc_rc); 1447 #ifdef ATH_DEBUG_ALQ 1448 if_ath_alq_tidyup(&sc->sc_alq); 1449 #endif 1450 ath_lna_div_detach(sc); 1451 ath_btcoex_detach(sc); 1452 ath_spectral_detach(sc); 1453 ath_dfs_detach(sc); 1454 ath_desc_free(sc); 1455 ath_txdma_teardown(sc); 1456 ath_rxdma_teardown(sc); 1457 ath_tx_cleanup(sc); 1458 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1459 1460 return 0; 1461 } 1462 1463 /* 1464 * MAC address handling for multiple BSS on the same radio. 1465 * The first vap uses the MAC address from the EEPROM. For 1466 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1467 * address and use the next six bits as an index. 1468 */ 1469 static void 1470 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1471 { 1472 int i; 1473 1474 if (clone && sc->sc_hasbmask) { 1475 /* NB: we only do this if h/w supports multiple bssid */ 1476 for (i = 0; i < 8; i++) 1477 if ((sc->sc_bssidmask & (1<<i)) == 0) 1478 break; 1479 if (i != 0) 1480 mac[0] |= (i << 2)|0x2; 1481 } else 1482 i = 0; 1483 sc->sc_bssidmask |= 1<<i; 1484 sc->sc_hwbssidmask[0] &= ~mac[0]; 1485 if (i == 0) 1486 sc->sc_nbssid0++; 1487 } 1488 1489 static void 1490 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1491 { 1492 int i = mac[0] >> 2; 1493 uint8_t mask; 1494 1495 if (i != 0 || --sc->sc_nbssid0 == 0) { 1496 sc->sc_bssidmask &= ~(1<<i); 1497 /* recalculate bssid mask from remaining addresses */ 1498 mask = 0xff; 1499 for (i = 1; i < 8; i++) 1500 if (sc->sc_bssidmask & (1<<i)) 1501 mask &= ~((i<<2)|0x2); 1502 sc->sc_hwbssidmask[0] |= mask; 1503 } 1504 } 1505 1506 /* 1507 * Assign a beacon xmit slot. We try to space out 1508 * assignments so when beacons are staggered the 1509 * traffic coming out of the cab q has maximal time 1510 * to go out before the next beacon is scheduled. 1511 */ 1512 static int 1513 assign_bslot(struct ath_softc *sc) 1514 { 1515 u_int slot, free; 1516 1517 free = 0; 1518 for (slot = 0; slot < ATH_BCBUF; slot++) 1519 if (sc->sc_bslot[slot] == NULL) { 1520 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1521 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1522 return slot; 1523 free = slot; 1524 /* NB: keep looking for a double slot */ 1525 } 1526 return free; 1527 } 1528 1529 static struct ieee80211vap * 1530 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1531 enum ieee80211_opmode opmode, int flags, 1532 const uint8_t bssid[IEEE80211_ADDR_LEN], 1533 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1534 { 1535 struct ath_softc *sc = ic->ic_softc; 1536 struct ath_vap *avp; 1537 struct ieee80211vap *vap; 1538 uint8_t mac[IEEE80211_ADDR_LEN]; 1539 int needbeacon, error; 1540 enum ieee80211_opmode ic_opmode; 1541 1542 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1543 needbeacon = 0; 1544 IEEE80211_ADDR_COPY(mac, mac0); 1545 1546 ATH_LOCK(sc); 1547 ic_opmode = opmode; /* default to opmode of new vap */ 1548 switch (opmode) { 1549 case IEEE80211_M_STA: 1550 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1551 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1552 goto bad; 1553 } 1554 if (sc->sc_nvaps) { 1555 /* 1556 * With multiple vaps we must fall back 1557 * to s/w beacon miss handling. 1558 */ 1559 flags |= IEEE80211_CLONE_NOBEACONS; 1560 } 1561 if (flags & IEEE80211_CLONE_NOBEACONS) { 1562 /* 1563 * Station mode w/o beacons are implemented w/ AP mode. 1564 */ 1565 ic_opmode = IEEE80211_M_HOSTAP; 1566 } 1567 break; 1568 case IEEE80211_M_IBSS: 1569 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1570 device_printf(sc->sc_dev, 1571 "only 1 ibss vap supported\n"); 1572 goto bad; 1573 } 1574 needbeacon = 1; 1575 break; 1576 case IEEE80211_M_AHDEMO: 1577 #ifdef IEEE80211_SUPPORT_TDMA 1578 if (flags & IEEE80211_CLONE_TDMA) { 1579 if (sc->sc_nvaps != 0) { 1580 device_printf(sc->sc_dev, 1581 "only 1 tdma vap supported\n"); 1582 goto bad; 1583 } 1584 needbeacon = 1; 1585 flags |= IEEE80211_CLONE_NOBEACONS; 1586 } 1587 /* fall thru... */ 1588 #endif 1589 case IEEE80211_M_MONITOR: 1590 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1591 /* 1592 * Adopt existing mode. Adding a monitor or ahdemo 1593 * vap to an existing configuration is of dubious 1594 * value but should be ok. 1595 */ 1596 /* XXX not right for monitor mode */ 1597 ic_opmode = ic->ic_opmode; 1598 } 1599 break; 1600 case IEEE80211_M_HOSTAP: 1601 case IEEE80211_M_MBSS: 1602 needbeacon = 1; 1603 break; 1604 case IEEE80211_M_WDS: 1605 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1606 device_printf(sc->sc_dev, 1607 "wds not supported in sta mode\n"); 1608 goto bad; 1609 } 1610 /* 1611 * Silently remove any request for a unique 1612 * bssid; WDS vap's always share the local 1613 * mac address. 1614 */ 1615 flags &= ~IEEE80211_CLONE_BSSID; 1616 if (sc->sc_nvaps == 0) 1617 ic_opmode = IEEE80211_M_HOSTAP; 1618 else 1619 ic_opmode = ic->ic_opmode; 1620 break; 1621 default: 1622 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1623 goto bad; 1624 } 1625 /* 1626 * Check that a beacon buffer is available; the code below assumes it. 1627 */ 1628 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1629 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1630 goto bad; 1631 } 1632 1633 /* STA, AHDEMO? */ 1634 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) { 1635 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1636 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1637 } 1638 1639 vap = &avp->av_vap; 1640 /* XXX can't hold mutex across if_alloc */ 1641 ATH_UNLOCK(sc); 1642 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1643 ATH_LOCK(sc); 1644 if (error != 0) { 1645 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1646 __func__, error); 1647 goto bad2; 1648 } 1649 1650 /* h/w crypto support */ 1651 vap->iv_key_alloc = ath_key_alloc; 1652 vap->iv_key_delete = ath_key_delete; 1653 vap->iv_key_set = ath_key_set; 1654 vap->iv_key_update_begin = ath_key_update_begin; 1655 vap->iv_key_update_end = ath_key_update_end; 1656 1657 /* override various methods */ 1658 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1659 vap->iv_recv_mgmt = ath_recv_mgmt; 1660 vap->iv_reset = ath_reset_vap; 1661 vap->iv_update_beacon = ath_beacon_update; 1662 avp->av_newstate = vap->iv_newstate; 1663 vap->iv_newstate = ath_newstate; 1664 avp->av_bmiss = vap->iv_bmiss; 1665 vap->iv_bmiss = ath_bmiss_vap; 1666 1667 avp->av_node_ps = vap->iv_node_ps; 1668 vap->iv_node_ps = ath_node_powersave; 1669 1670 avp->av_set_tim = vap->iv_set_tim; 1671 vap->iv_set_tim = ath_node_set_tim; 1672 1673 avp->av_recv_pspoll = vap->iv_recv_pspoll; 1674 vap->iv_recv_pspoll = ath_node_recv_pspoll; 1675 1676 /* Set default parameters */ 1677 1678 /* 1679 * Anything earlier than some AR9300 series MACs don't 1680 * support a smaller MPDU density. 1681 */ 1682 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1683 /* 1684 * All NICs can handle the maximum size, however 1685 * AR5416 based MACs can only TX aggregates w/ RTS 1686 * protection when the total aggregate size is <= 8k. 1687 * However, for now that's enforced by the TX path. 1688 */ 1689 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1690 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1691 1692 avp->av_bslot = -1; 1693 if (needbeacon) { 1694 /* 1695 * Allocate beacon state and setup the q for buffered 1696 * multicast frames. We know a beacon buffer is 1697 * available because we checked above. 1698 */ 1699 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1700 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1701 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1702 /* 1703 * Assign the vap to a beacon xmit slot. As above 1704 * this cannot fail to find a free one. 1705 */ 1706 avp->av_bslot = assign_bslot(sc); 1707 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1708 ("beacon slot %u not empty", avp->av_bslot)); 1709 sc->sc_bslot[avp->av_bslot] = vap; 1710 sc->sc_nbcnvaps++; 1711 } 1712 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1713 /* 1714 * Multple vaps are to transmit beacons and we 1715 * have h/w support for TSF adjusting; enable 1716 * use of staggered beacons. 1717 */ 1718 sc->sc_stagbeacons = 1; 1719 } 1720 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1721 } 1722 1723 ic->ic_opmode = ic_opmode; 1724 if (opmode != IEEE80211_M_WDS) { 1725 sc->sc_nvaps++; 1726 if (opmode == IEEE80211_M_STA) 1727 sc->sc_nstavaps++; 1728 if (opmode == IEEE80211_M_MBSS) 1729 sc->sc_nmeshvaps++; 1730 } 1731 switch (ic_opmode) { 1732 case IEEE80211_M_IBSS: 1733 sc->sc_opmode = HAL_M_IBSS; 1734 break; 1735 case IEEE80211_M_STA: 1736 sc->sc_opmode = HAL_M_STA; 1737 break; 1738 case IEEE80211_M_AHDEMO: 1739 #ifdef IEEE80211_SUPPORT_TDMA 1740 if (vap->iv_caps & IEEE80211_C_TDMA) { 1741 sc->sc_tdma = 1; 1742 /* NB: disable tsf adjust */ 1743 sc->sc_stagbeacons = 0; 1744 } 1745 /* 1746 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1747 * just ap mode. 1748 */ 1749 /* fall thru... */ 1750 #endif 1751 case IEEE80211_M_HOSTAP: 1752 case IEEE80211_M_MBSS: 1753 sc->sc_opmode = HAL_M_HOSTAP; 1754 break; 1755 case IEEE80211_M_MONITOR: 1756 sc->sc_opmode = HAL_M_MONITOR; 1757 break; 1758 default: 1759 /* XXX should not happen */ 1760 break; 1761 } 1762 if (sc->sc_hastsfadd) { 1763 /* 1764 * Configure whether or not TSF adjust should be done. 1765 */ 1766 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1767 } 1768 if (flags & IEEE80211_CLONE_NOBEACONS) { 1769 /* 1770 * Enable s/w beacon miss handling. 1771 */ 1772 sc->sc_swbmiss = 1; 1773 } 1774 ATH_UNLOCK(sc); 1775 1776 /* complete setup */ 1777 ieee80211_vap_attach(vap, ieee80211_media_change, 1778 ieee80211_media_status, mac); 1779 return vap; 1780 bad2: 1781 reclaim_address(sc, mac); 1782 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1783 bad: 1784 free(avp, M_80211_VAP); 1785 ATH_UNLOCK(sc); 1786 return NULL; 1787 } 1788 1789 static void 1790 ath_vap_delete(struct ieee80211vap *vap) 1791 { 1792 struct ieee80211com *ic = vap->iv_ic; 1793 struct ath_softc *sc = ic->ic_softc; 1794 struct ath_hal *ah = sc->sc_ah; 1795 struct ath_vap *avp = ATH_VAP(vap); 1796 1797 ATH_LOCK(sc); 1798 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1799 ATH_UNLOCK(sc); 1800 1801 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1802 if (sc->sc_running) { 1803 /* 1804 * Quiesce the hardware while we remove the vap. In 1805 * particular we need to reclaim all references to 1806 * the vap state by any frames pending on the tx queues. 1807 */ 1808 ath_hal_intrset(ah, 0); /* disable interrupts */ 1809 /* XXX Do all frames from all vaps/nodes need draining here? */ 1810 ath_stoprecv(sc, 1); /* stop recv side */ 1811 ath_rx_flush(sc); 1812 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1813 } 1814 1815 /* .. leave the hardware awake for now. */ 1816 1817 ieee80211_vap_detach(vap); 1818 1819 /* 1820 * XXX Danger Will Robinson! Danger! 1821 * 1822 * Because ieee80211_vap_detach() can queue a frame (the station 1823 * diassociate message?) after we've drained the TXQ and 1824 * flushed the software TXQ, we will end up with a frame queued 1825 * to a node whose vap is about to be freed. 1826 * 1827 * To work around this, flush the hardware/software again. 1828 * This may be racy - the ath task may be running and the packet 1829 * may be being scheduled between sw->hw txq. Tsk. 1830 * 1831 * TODO: figure out why a new node gets allocated somewhere around 1832 * here (after the ath_tx_swq() call; and after an ath_stop() 1833 * call!) 1834 */ 1835 1836 ath_draintxq(sc, ATH_RESET_DEFAULT); 1837 1838 ATH_LOCK(sc); 1839 /* 1840 * Reclaim beacon state. Note this must be done before 1841 * the vap instance is reclaimed as we may have a reference 1842 * to it in the buffer for the beacon frame. 1843 */ 1844 if (avp->av_bcbuf != NULL) { 1845 if (avp->av_bslot != -1) { 1846 sc->sc_bslot[avp->av_bslot] = NULL; 1847 sc->sc_nbcnvaps--; 1848 } 1849 ath_beacon_return(sc, avp->av_bcbuf); 1850 avp->av_bcbuf = NULL; 1851 if (sc->sc_nbcnvaps == 0) { 1852 sc->sc_stagbeacons = 0; 1853 if (sc->sc_hastsfadd) 1854 ath_hal_settsfadjust(sc->sc_ah, 0); 1855 } 1856 /* 1857 * Reclaim any pending mcast frames for the vap. 1858 */ 1859 ath_tx_draintxq(sc, &avp->av_mcastq); 1860 } 1861 /* 1862 * Update bookkeeping. 1863 */ 1864 if (vap->iv_opmode == IEEE80211_M_STA) { 1865 sc->sc_nstavaps--; 1866 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1867 sc->sc_swbmiss = 0; 1868 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1869 vap->iv_opmode == IEEE80211_M_STA || 1870 vap->iv_opmode == IEEE80211_M_MBSS) { 1871 reclaim_address(sc, vap->iv_myaddr); 1872 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1873 if (vap->iv_opmode == IEEE80211_M_MBSS) 1874 sc->sc_nmeshvaps--; 1875 } 1876 if (vap->iv_opmode != IEEE80211_M_WDS) 1877 sc->sc_nvaps--; 1878 #ifdef IEEE80211_SUPPORT_TDMA 1879 /* TDMA operation ceases when the last vap is destroyed */ 1880 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1881 sc->sc_tdma = 0; 1882 sc->sc_swbmiss = 0; 1883 } 1884 #endif 1885 free(avp, M_80211_VAP); 1886 1887 if (sc->sc_running) { 1888 /* 1889 * Restart rx+tx machines if still running (RUNNING will 1890 * be reset if we just destroyed the last vap). 1891 */ 1892 if (ath_startrecv(sc) != 0) 1893 device_printf(sc->sc_dev, 1894 "%s: unable to restart recv logic\n", __func__); 1895 if (sc->sc_beacons) { /* restart beacons */ 1896 #ifdef IEEE80211_SUPPORT_TDMA 1897 if (sc->sc_tdma) 1898 ath_tdma_config(sc, NULL); 1899 else 1900 #endif 1901 ath_beacon_config(sc, NULL); 1902 } 1903 ath_hal_intrset(ah, sc->sc_imask); 1904 } 1905 1906 /* Ok, let the hardware asleep. */ 1907 ath_power_restore_power_state(sc); 1908 ATH_UNLOCK(sc); 1909 } 1910 1911 void 1912 ath_suspend(struct ath_softc *sc) 1913 { 1914 struct ieee80211com *ic = &sc->sc_ic; 1915 1916 sc->sc_resume_up = ic->ic_nrunning != 0; 1917 1918 ieee80211_suspend_all(ic); 1919 /* 1920 * NB: don't worry about putting the chip in low power 1921 * mode; pci will power off our socket on suspend and 1922 * CardBus detaches the device. 1923 * 1924 * XXX TODO: well, that's great, except for non-cardbus 1925 * devices! 1926 */ 1927 1928 /* 1929 * XXX This doesn't wait until all pending taskqueue 1930 * items and parallel transmit/receive/other threads 1931 * are running! 1932 */ 1933 ath_hal_intrset(sc->sc_ah, 0); 1934 taskqueue_block(sc->sc_tq); 1935 1936 ATH_LOCK(sc); 1937 callout_stop(&sc->sc_cal_ch); 1938 ATH_UNLOCK(sc); 1939 1940 /* 1941 * XXX ensure sc_invalid is 1 1942 */ 1943 1944 /* Disable the PCIe PHY, complete with workarounds */ 1945 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1946 } 1947 1948 /* 1949 * Reset the key cache since some parts do not reset the 1950 * contents on resume. First we clear all entries, then 1951 * re-load keys that the 802.11 layer assumes are setup 1952 * in h/w. 1953 */ 1954 static void 1955 ath_reset_keycache(struct ath_softc *sc) 1956 { 1957 struct ieee80211com *ic = &sc->sc_ic; 1958 struct ath_hal *ah = sc->sc_ah; 1959 int i; 1960 1961 ATH_LOCK(sc); 1962 ath_power_set_power_state(sc, HAL_PM_AWAKE); 1963 for (i = 0; i < sc->sc_keymax; i++) 1964 ath_hal_keyreset(ah, i); 1965 ath_power_restore_power_state(sc); 1966 ATH_UNLOCK(sc); 1967 ieee80211_crypto_reload_keys(ic); 1968 } 1969 1970 /* 1971 * Fetch the current chainmask configuration based on the current 1972 * operating channel and options. 1973 */ 1974 static void 1975 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1976 { 1977 1978 /* 1979 * Set TX chainmask to the currently configured chainmask; 1980 * the TX chainmask depends upon the current operating mode. 1981 */ 1982 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1983 if (IEEE80211_IS_CHAN_HT(chan)) { 1984 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1985 } else { 1986 sc->sc_cur_txchainmask = 1; 1987 } 1988 1989 DPRINTF(sc, ATH_DEBUG_RESET, 1990 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n", 1991 __func__, 1992 sc->sc_cur_txchainmask, 1993 sc->sc_cur_rxchainmask); 1994 } 1995 1996 void 1997 ath_resume(struct ath_softc *sc) 1998 { 1999 struct ieee80211com *ic = &sc->sc_ic; 2000 struct ath_hal *ah = sc->sc_ah; 2001 HAL_STATUS status; 2002 2003 ath_hal_enablepcie(ah, 0, 0); 2004 2005 /* 2006 * Must reset the chip before we reload the 2007 * keycache as we were powered down on suspend. 2008 */ 2009 ath_update_chainmasks(sc, 2010 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 2011 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2012 sc->sc_cur_rxchainmask); 2013 2014 /* Ensure we set the current power state to on */ 2015 ATH_LOCK(sc); 2016 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2017 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2018 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2019 ATH_UNLOCK(sc); 2020 2021 ath_hal_reset(ah, sc->sc_opmode, 2022 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 2023 AH_FALSE, HAL_RESET_NORMAL, &status); 2024 ath_reset_keycache(sc); 2025 2026 ATH_RX_LOCK(sc); 2027 sc->sc_rx_stopped = 1; 2028 sc->sc_rx_resetted = 1; 2029 ATH_RX_UNLOCK(sc); 2030 2031 /* Let DFS at it in case it's a DFS channel */ 2032 ath_dfs_radar_enable(sc, ic->ic_curchan); 2033 2034 /* Let spectral at in case spectral is enabled */ 2035 ath_spectral_enable(sc, ic->ic_curchan); 2036 2037 /* 2038 * Let bluetooth coexistence at in case it's needed for this channel 2039 */ 2040 ath_btcoex_enable(sc, ic->ic_curchan); 2041 2042 /* 2043 * If we're doing TDMA, enforce the TXOP limitation for chips that 2044 * support it. 2045 */ 2046 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2047 ath_hal_setenforcetxop(sc->sc_ah, 1); 2048 else 2049 ath_hal_setenforcetxop(sc->sc_ah, 0); 2050 2051 /* Restore the LED configuration */ 2052 ath_led_config(sc); 2053 ath_hal_setledstate(ah, HAL_LED_INIT); 2054 2055 if (sc->sc_resume_up) 2056 ieee80211_resume_all(ic); 2057 2058 ATH_LOCK(sc); 2059 ath_power_restore_power_state(sc); 2060 ATH_UNLOCK(sc); 2061 2062 /* XXX beacons ? */ 2063 } 2064 2065 void 2066 ath_shutdown(struct ath_softc *sc) 2067 { 2068 2069 ATH_LOCK(sc); 2070 ath_stop(sc); 2071 ATH_UNLOCK(sc); 2072 /* NB: no point powering down chip as we're about to reboot */ 2073 } 2074 2075 /* 2076 * Interrupt handler. Most of the actual processing is deferred. 2077 */ 2078 void 2079 ath_intr(void *arg) 2080 { 2081 struct ath_softc *sc = arg; 2082 struct ath_hal *ah = sc->sc_ah; 2083 HAL_INT status = 0; 2084 uint32_t txqs; 2085 2086 /* 2087 * If we're inside a reset path, just print a warning and 2088 * clear the ISR. The reset routine will finish it for us. 2089 */ 2090 ATH_PCU_LOCK(sc); 2091 if (sc->sc_inreset_cnt) { 2092 HAL_INT status; 2093 ath_hal_getisr(ah, &status); /* clear ISR */ 2094 ath_hal_intrset(ah, 0); /* disable further intr's */ 2095 DPRINTF(sc, ATH_DEBUG_ANY, 2096 "%s: in reset, ignoring: status=0x%x\n", 2097 __func__, status); 2098 ATH_PCU_UNLOCK(sc); 2099 return; 2100 } 2101 2102 if (sc->sc_invalid) { 2103 /* 2104 * The hardware is not ready/present, don't touch anything. 2105 * Note this can happen early on if the IRQ is shared. 2106 */ 2107 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 2108 ATH_PCU_UNLOCK(sc); 2109 return; 2110 } 2111 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 2112 ATH_PCU_UNLOCK(sc); 2113 return; 2114 } 2115 2116 ATH_LOCK(sc); 2117 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2118 ATH_UNLOCK(sc); 2119 2120 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) { 2121 HAL_INT status; 2122 2123 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n", 2124 __func__, sc->sc_ic.ic_nrunning, sc->sc_running); 2125 ath_hal_getisr(ah, &status); /* clear ISR */ 2126 ath_hal_intrset(ah, 0); /* disable further intr's */ 2127 ATH_PCU_UNLOCK(sc); 2128 2129 ATH_LOCK(sc); 2130 ath_power_restore_power_state(sc); 2131 ATH_UNLOCK(sc); 2132 return; 2133 } 2134 2135 /* 2136 * Figure out the reason(s) for the interrupt. Note 2137 * that the hal returns a pseudo-ISR that may include 2138 * bits we haven't explicitly enabled so we mask the 2139 * value to insure we only process bits we requested. 2140 */ 2141 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 2142 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 2143 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 2144 #ifdef ATH_DEBUG_ALQ 2145 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 2146 ah->ah_syncstate); 2147 #endif /* ATH_DEBUG_ALQ */ 2148 #ifdef ATH_KTR_INTR_DEBUG 2149 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 2150 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 2151 ah->ah_intrstate[0], 2152 ah->ah_intrstate[1], 2153 ah->ah_intrstate[2], 2154 ah->ah_intrstate[3], 2155 ah->ah_intrstate[6]); 2156 #endif 2157 2158 /* Squirrel away SYNC interrupt debugging */ 2159 if (ah->ah_syncstate != 0) { 2160 int i; 2161 for (i = 0; i < 32; i++) 2162 if (ah->ah_syncstate & (1 << i)) 2163 sc->sc_intr_stats.sync_intr[i]++; 2164 } 2165 2166 status &= sc->sc_imask; /* discard unasked for bits */ 2167 2168 /* Short-circuit un-handled interrupts */ 2169 if (status == 0x0) { 2170 ATH_PCU_UNLOCK(sc); 2171 2172 ATH_LOCK(sc); 2173 ath_power_restore_power_state(sc); 2174 ATH_UNLOCK(sc); 2175 2176 return; 2177 } 2178 2179 /* 2180 * Take a note that we're inside the interrupt handler, so 2181 * the reset routines know to wait. 2182 */ 2183 sc->sc_intr_cnt++; 2184 ATH_PCU_UNLOCK(sc); 2185 2186 /* 2187 * Handle the interrupt. We won't run concurrent with the reset 2188 * or channel change routines as they'll wait for sc_intr_cnt 2189 * to be 0 before continuing. 2190 */ 2191 if (status & HAL_INT_FATAL) { 2192 sc->sc_stats.ast_hardware++; 2193 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 2194 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 2195 } else { 2196 if (status & HAL_INT_SWBA) { 2197 /* 2198 * Software beacon alert--time to send a beacon. 2199 * Handle beacon transmission directly; deferring 2200 * this is too slow to meet timing constraints 2201 * under load. 2202 */ 2203 #ifdef IEEE80211_SUPPORT_TDMA 2204 if (sc->sc_tdma) { 2205 if (sc->sc_tdmaswba == 0) { 2206 struct ieee80211com *ic = &sc->sc_ic; 2207 struct ieee80211vap *vap = 2208 TAILQ_FIRST(&ic->ic_vaps); 2209 ath_tdma_beacon_send(sc, vap); 2210 sc->sc_tdmaswba = 2211 vap->iv_tdma->tdma_bintval; 2212 } else 2213 sc->sc_tdmaswba--; 2214 } else 2215 #endif 2216 { 2217 ath_beacon_proc(sc, 0); 2218 #ifdef IEEE80211_SUPPORT_SUPERG 2219 /* 2220 * Schedule the rx taskq in case there's no 2221 * traffic so any frames held on the staging 2222 * queue are aged and potentially flushed. 2223 */ 2224 sc->sc_rx.recv_sched(sc, 1); 2225 #endif 2226 } 2227 } 2228 if (status & HAL_INT_RXEOL) { 2229 int imask; 2230 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 2231 if (! sc->sc_isedma) { 2232 ATH_PCU_LOCK(sc); 2233 /* 2234 * NB: the hardware should re-read the link when 2235 * RXE bit is written, but it doesn't work at 2236 * least on older hardware revs. 2237 */ 2238 sc->sc_stats.ast_rxeol++; 2239 /* 2240 * Disable RXEOL/RXORN - prevent an interrupt 2241 * storm until the PCU logic can be reset. 2242 * In case the interface is reset some other 2243 * way before "sc_kickpcu" is called, don't 2244 * modify sc_imask - that way if it is reset 2245 * by a call to ath_reset() somehow, the 2246 * interrupt mask will be correctly reprogrammed. 2247 */ 2248 imask = sc->sc_imask; 2249 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 2250 ath_hal_intrset(ah, imask); 2251 /* 2252 * Only blank sc_rxlink if we've not yet kicked 2253 * the PCU. 2254 * 2255 * This isn't entirely correct - the correct solution 2256 * would be to have a PCU lock and engage that for 2257 * the duration of the PCU fiddling; which would include 2258 * running the RX process. Otherwise we could end up 2259 * messing up the RX descriptor chain and making the 2260 * RX desc list much shorter. 2261 */ 2262 if (! sc->sc_kickpcu) 2263 sc->sc_rxlink = NULL; 2264 sc->sc_kickpcu = 1; 2265 ATH_PCU_UNLOCK(sc); 2266 } 2267 /* 2268 * Enqueue an RX proc to handle whatever 2269 * is in the RX queue. 2270 * This will then kick the PCU if required. 2271 */ 2272 sc->sc_rx.recv_sched(sc, 1); 2273 } 2274 if (status & HAL_INT_TXURN) { 2275 sc->sc_stats.ast_txurn++; 2276 /* bump tx trigger level */ 2277 ath_hal_updatetxtriglevel(ah, AH_TRUE); 2278 } 2279 /* 2280 * Handle both the legacy and RX EDMA interrupt bits. 2281 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 2282 */ 2283 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 2284 sc->sc_stats.ast_rx_intr++; 2285 sc->sc_rx.recv_sched(sc, 1); 2286 } 2287 if (status & HAL_INT_TX) { 2288 sc->sc_stats.ast_tx_intr++; 2289 /* 2290 * Grab all the currently set bits in the HAL txq bitmap 2291 * and blank them. This is the only place we should be 2292 * doing this. 2293 */ 2294 if (! sc->sc_isedma) { 2295 ATH_PCU_LOCK(sc); 2296 txqs = 0xffffffff; 2297 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 2298 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 2299 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 2300 txqs, 2301 sc->sc_txq_active, 2302 sc->sc_txq_active | txqs); 2303 sc->sc_txq_active |= txqs; 2304 ATH_PCU_UNLOCK(sc); 2305 } 2306 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 2307 } 2308 if (status & HAL_INT_BMISS) { 2309 sc->sc_stats.ast_bmiss++; 2310 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 2311 } 2312 if (status & HAL_INT_GTT) 2313 sc->sc_stats.ast_tx_timeout++; 2314 if (status & HAL_INT_CST) 2315 sc->sc_stats.ast_tx_cst++; 2316 if (status & HAL_INT_MIB) { 2317 sc->sc_stats.ast_mib++; 2318 ATH_PCU_LOCK(sc); 2319 /* 2320 * Disable interrupts until we service the MIB 2321 * interrupt; otherwise it will continue to fire. 2322 */ 2323 ath_hal_intrset(ah, 0); 2324 /* 2325 * Let the hal handle the event. We assume it will 2326 * clear whatever condition caused the interrupt. 2327 */ 2328 ath_hal_mibevent(ah, &sc->sc_halstats); 2329 /* 2330 * Don't reset the interrupt if we've just 2331 * kicked the PCU, or we may get a nested 2332 * RXEOL before the rxproc has had a chance 2333 * to run. 2334 */ 2335 if (sc->sc_kickpcu == 0) 2336 ath_hal_intrset(ah, sc->sc_imask); 2337 ATH_PCU_UNLOCK(sc); 2338 } 2339 if (status & HAL_INT_RXORN) { 2340 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 2341 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 2342 sc->sc_stats.ast_rxorn++; 2343 } 2344 if (status & HAL_INT_TSFOOR) { 2345 /* 2346 * out of range beacon - wake the chip up, 2347 * but don't modify self-gen frame config. 2348 * Do a full reset to clear any potential stuck 2349 * PHY/MAC that generated this condition. 2350 */ 2351 sc->sc_stats.ast_tsfoor++; 2352 ATH_LOCK(sc); 2353 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2354 ATH_UNLOCK(sc); 2355 taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask); 2356 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__); 2357 } 2358 if (status & HAL_INT_MCI) { 2359 ath_btcoex_mci_intr(sc); 2360 } 2361 } 2362 ATH_PCU_LOCK(sc); 2363 sc->sc_intr_cnt--; 2364 ATH_PCU_UNLOCK(sc); 2365 2366 ATH_LOCK(sc); 2367 ath_power_restore_power_state(sc); 2368 ATH_UNLOCK(sc); 2369 } 2370 2371 static void 2372 ath_fatal_proc(void *arg, int pending) 2373 { 2374 struct ath_softc *sc = arg; 2375 u_int32_t *state; 2376 u_int32_t len; 2377 void *sp; 2378 2379 if (sc->sc_invalid) 2380 return; 2381 2382 device_printf(sc->sc_dev, "hardware error; resetting\n"); 2383 /* 2384 * Fatal errors are unrecoverable. Typically these 2385 * are caused by DMA errors. Collect h/w state from 2386 * the hal so we can diagnose what's going on. 2387 */ 2388 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 2389 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 2390 state = sp; 2391 device_printf(sc->sc_dev, 2392 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0], 2393 state[1] , state[2], state[3], state[4], state[5]); 2394 } 2395 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2396 } 2397 2398 static void 2399 ath_bmiss_vap(struct ieee80211vap *vap) 2400 { 2401 struct ath_softc *sc = vap->iv_ic->ic_softc; 2402 2403 /* 2404 * Workaround phantom bmiss interrupts by sanity-checking 2405 * the time of our last rx'd frame. If it is within the 2406 * beacon miss interval then ignore the interrupt. If it's 2407 * truly a bmiss we'll get another interrupt soon and that'll 2408 * be dispatched up for processing. Note this applies only 2409 * for h/w beacon miss events. 2410 */ 2411 2412 /* 2413 * XXX TODO: Just read the TSF during the interrupt path; 2414 * that way we don't have to wake up again just to read it 2415 * again. 2416 */ 2417 ATH_LOCK(sc); 2418 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2419 ATH_UNLOCK(sc); 2420 2421 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2422 u_int64_t lastrx = sc->sc_lastrx; 2423 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 2424 /* XXX should take a locked ref to iv_bss */ 2425 u_int bmisstimeout = 2426 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 2427 2428 DPRINTF(sc, ATH_DEBUG_BEACON, 2429 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 2430 __func__, (unsigned long long) tsf, 2431 (unsigned long long)(tsf - lastrx), 2432 (unsigned long long) lastrx, bmisstimeout); 2433 2434 if (tsf - lastrx <= bmisstimeout) { 2435 sc->sc_stats.ast_bmiss_phantom++; 2436 2437 ATH_LOCK(sc); 2438 ath_power_restore_power_state(sc); 2439 ATH_UNLOCK(sc); 2440 2441 return; 2442 } 2443 } 2444 2445 /* 2446 * Keep the hardware awake if it's asleep (and leave self-gen 2447 * frame config alone) until the next beacon, so we can resync 2448 * against the next beacon. 2449 * 2450 * This handles three common beacon miss cases in STA powersave mode - 2451 * (a) the beacon TBTT isnt a multiple of bintval; 2452 * (b) the beacon was missed; and 2453 * (c) the beacons are being delayed because the AP is busy and 2454 * isn't reliably able to meet its TBTT. 2455 */ 2456 ATH_LOCK(sc); 2457 ath_power_setpower(sc, HAL_PM_AWAKE, 0); 2458 ath_power_restore_power_state(sc); 2459 ATH_UNLOCK(sc); 2460 2461 DPRINTF(sc, ATH_DEBUG_BEACON, 2462 "%s: forced awake; force syncbeacon=1\n", __func__); 2463 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 2464 /* 2465 * Attempt to force a beacon resync. 2466 */ 2467 sc->sc_syncbeacon = 1; 2468 } 2469 2470 ATH_VAP(vap)->av_bmiss(vap); 2471 } 2472 2473 /* XXX this needs a force wakeup! */ 2474 int 2475 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 2476 { 2477 uint32_t rsize; 2478 void *sp; 2479 2480 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 2481 return 0; 2482 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 2483 *hangs = *(uint32_t *)sp; 2484 return 1; 2485 } 2486 2487 static void 2488 ath_bmiss_proc(void *arg, int pending) 2489 { 2490 struct ath_softc *sc = arg; 2491 uint32_t hangs; 2492 2493 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2494 2495 ATH_LOCK(sc); 2496 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2497 ATH_UNLOCK(sc); 2498 2499 ath_beacon_miss(sc); 2500 2501 /* 2502 * Do a reset upon any beacon miss event. 2503 * 2504 * It may be a non-recognised RX clear hang which needs a reset 2505 * to clear. 2506 */ 2507 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 2508 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC); 2509 device_printf(sc->sc_dev, 2510 "bb hang detected (0x%x), resetting\n", hangs); 2511 } else { 2512 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2513 ieee80211_beacon_miss(&sc->sc_ic); 2514 } 2515 2516 /* Force a beacon resync, in case they've drifted */ 2517 sc->sc_syncbeacon = 1; 2518 2519 ATH_LOCK(sc); 2520 ath_power_restore_power_state(sc); 2521 ATH_UNLOCK(sc); 2522 } 2523 2524 /* 2525 * Handle a TSF out of range interrupt in STA mode. 2526 * 2527 * This may be due to a partially deaf looking radio, so 2528 * do a full reset just in case it is indeed deaf and 2529 * resync the beacon. 2530 */ 2531 static void 2532 ath_tsfoor_proc(void *arg, int pending) 2533 { 2534 struct ath_softc *sc = arg; 2535 2536 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 2537 2538 ATH_LOCK(sc); 2539 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2540 ATH_UNLOCK(sc); 2541 2542 /* 2543 * Do a full reset after any TSFOOR. It's possible that 2544 * we've gone deaf or partially deaf (eg due to calibration 2545 * failures) and this should clean things up a bit. 2546 */ 2547 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 2548 2549 /* Force a beacon resync, in case they've drifted */ 2550 sc->sc_syncbeacon = 1; 2551 2552 ATH_LOCK(sc); 2553 ath_power_restore_power_state(sc); 2554 ATH_UNLOCK(sc); 2555 } 2556 2557 /* 2558 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 2559 * calcs together with WME. If necessary disable the crypto 2560 * hardware and mark the 802.11 state so keys will be setup 2561 * with the MIC work done in software. 2562 */ 2563 static void 2564 ath_settkipmic(struct ath_softc *sc) 2565 { 2566 struct ieee80211com *ic = &sc->sc_ic; 2567 2568 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 2569 if (ic->ic_flags & IEEE80211_F_WME) { 2570 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 2571 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 2572 } else { 2573 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 2574 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 2575 } 2576 } 2577 } 2578 2579 static void 2580 ath_vap_clear_quiet_ie(struct ath_softc *sc) 2581 { 2582 struct ieee80211com *ic = &sc->sc_ic; 2583 struct ieee80211vap *vap; 2584 struct ath_vap *avp; 2585 2586 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2587 avp = ATH_VAP(vap); 2588 /* Quiet time handling - ensure we resync */ 2589 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 2590 } 2591 } 2592 2593 static int 2594 ath_init(struct ath_softc *sc) 2595 { 2596 struct ieee80211com *ic = &sc->sc_ic; 2597 struct ath_hal *ah = sc->sc_ah; 2598 HAL_STATUS status; 2599 2600 ATH_LOCK_ASSERT(sc); 2601 2602 /* 2603 * Force the sleep state awake. 2604 */ 2605 ath_power_setselfgen(sc, HAL_PM_AWAKE); 2606 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2607 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 2608 2609 /* 2610 * Stop anything previously setup. This is safe 2611 * whether this is the first time through or not. 2612 */ 2613 ath_stop(sc); 2614 2615 /* 2616 * The basic interface to setting the hardware in a good 2617 * state is ``reset''. On return the hardware is known to 2618 * be powered up and with interrupts disabled. This must 2619 * be followed by initialization of the appropriate bits 2620 * and then setup of the interrupt mask. 2621 */ 2622 ath_settkipmic(sc); 2623 ath_update_chainmasks(sc, ic->ic_curchan); 2624 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2625 sc->sc_cur_rxchainmask); 2626 2627 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, 2628 HAL_RESET_NORMAL, &status)) { 2629 device_printf(sc->sc_dev, 2630 "unable to reset hardware; hal status %u\n", status); 2631 return (ENODEV); 2632 } 2633 2634 ATH_RX_LOCK(sc); 2635 sc->sc_rx_stopped = 1; 2636 sc->sc_rx_resetted = 1; 2637 ATH_RX_UNLOCK(sc); 2638 2639 /* Clear quiet IE state for each VAP */ 2640 ath_vap_clear_quiet_ie(sc); 2641 2642 ath_chan_change(sc, ic->ic_curchan); 2643 2644 /* Let DFS at it in case it's a DFS channel */ 2645 ath_dfs_radar_enable(sc, ic->ic_curchan); 2646 2647 /* Let spectral at in case spectral is enabled */ 2648 ath_spectral_enable(sc, ic->ic_curchan); 2649 2650 /* 2651 * Let bluetooth coexistence at in case it's needed for this channel 2652 */ 2653 ath_btcoex_enable(sc, ic->ic_curchan); 2654 2655 /* 2656 * If we're doing TDMA, enforce the TXOP limitation for chips that 2657 * support it. 2658 */ 2659 if (sc->sc_hasenforcetxop && sc->sc_tdma) 2660 ath_hal_setenforcetxop(sc->sc_ah, 1); 2661 else 2662 ath_hal_setenforcetxop(sc->sc_ah, 0); 2663 2664 /* 2665 * Likewise this is set during reset so update 2666 * state cached in the driver. 2667 */ 2668 sc->sc_diversity = ath_hal_getdiversity(ah); 2669 sc->sc_lastlongcal = ticks; 2670 sc->sc_resetcal = 1; 2671 sc->sc_lastcalreset = 0; 2672 sc->sc_lastani = ticks; 2673 sc->sc_lastshortcal = ticks; 2674 sc->sc_doresetcal = AH_FALSE; 2675 /* 2676 * Beacon timers were cleared here; give ath_newstate() 2677 * a hint that the beacon timers should be poked when 2678 * things transition to the RUN state. 2679 */ 2680 sc->sc_beacons = 0; 2681 2682 /* 2683 * Setup the hardware after reset: the key cache 2684 * is filled as needed and the receive engine is 2685 * set going. Frame transmit is handled entirely 2686 * in the frame output path; there's nothing to do 2687 * here except setup the interrupt mask. 2688 */ 2689 if (ath_startrecv(sc) != 0) { 2690 device_printf(sc->sc_dev, "unable to start recv logic\n"); 2691 ath_power_restore_power_state(sc); 2692 return (ENODEV); 2693 } 2694 2695 /* 2696 * Enable interrupts. 2697 */ 2698 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2699 | HAL_INT_RXORN | HAL_INT_TXURN 2700 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2701 2702 /* 2703 * Enable RX EDMA bits. Note these overlap with 2704 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2705 */ 2706 if (sc->sc_isedma) 2707 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2708 2709 /* 2710 * If we're an EDMA NIC, we don't care about RXEOL. 2711 * Writing a new descriptor in will simply restart 2712 * RX DMA. 2713 */ 2714 if (! sc->sc_isedma) 2715 sc->sc_imask |= HAL_INT_RXEOL; 2716 2717 /* 2718 * Enable MCI interrupt for MCI devices. 2719 */ 2720 if (sc->sc_btcoex_mci) 2721 sc->sc_imask |= HAL_INT_MCI; 2722 2723 /* 2724 * Enable MIB interrupts when there are hardware phy counters. 2725 * Note we only do this (at the moment) for station mode. 2726 */ 2727 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2728 sc->sc_imask |= HAL_INT_MIB; 2729 2730 /* 2731 * XXX add capability for this. 2732 * 2733 * If we're in STA mode (and maybe IBSS?) then register for 2734 * TSFOOR interrupts. 2735 */ 2736 if (ic->ic_opmode == IEEE80211_M_STA) 2737 sc->sc_imask |= HAL_INT_TSFOOR; 2738 2739 /* Enable global TX timeout and carrier sense timeout if available */ 2740 if (ath_hal_gtxto_supported(ah)) 2741 sc->sc_imask |= HAL_INT_GTT; 2742 2743 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2744 __func__, sc->sc_imask); 2745 2746 sc->sc_running = 1; 2747 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2748 ath_hal_intrset(ah, sc->sc_imask); 2749 2750 ath_power_restore_power_state(sc); 2751 2752 return (0); 2753 } 2754 2755 static void 2756 ath_stop(struct ath_softc *sc) 2757 { 2758 struct ath_hal *ah = sc->sc_ah; 2759 2760 ATH_LOCK_ASSERT(sc); 2761 2762 /* 2763 * Wake the hardware up before fiddling with it. 2764 */ 2765 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2766 2767 if (sc->sc_running) { 2768 /* 2769 * Shutdown the hardware and driver: 2770 * reset 802.11 state machine 2771 * turn off timers 2772 * disable interrupts 2773 * turn off the radio 2774 * clear transmit machinery 2775 * clear receive machinery 2776 * drain and release tx queues 2777 * reclaim beacon resources 2778 * power down hardware 2779 * 2780 * Note that some of this work is not possible if the 2781 * hardware is gone (invalid). 2782 */ 2783 #ifdef ATH_TX99_DIAG 2784 if (sc->sc_tx99 != NULL) 2785 sc->sc_tx99->stop(sc->sc_tx99); 2786 #endif 2787 callout_stop(&sc->sc_wd_ch); 2788 sc->sc_wd_timer = 0; 2789 sc->sc_running = 0; 2790 if (!sc->sc_invalid) { 2791 if (sc->sc_softled) { 2792 callout_stop(&sc->sc_ledtimer); 2793 ath_hal_gpioset(ah, sc->sc_ledpin, 2794 !sc->sc_ledon); 2795 sc->sc_blinking = 0; 2796 } 2797 ath_hal_intrset(ah, 0); 2798 } 2799 /* XXX we should stop RX regardless of whether it's valid */ 2800 if (!sc->sc_invalid) { 2801 ath_stoprecv(sc, 1); 2802 ath_hal_phydisable(ah); 2803 } else 2804 sc->sc_rxlink = NULL; 2805 ath_draintxq(sc, ATH_RESET_DEFAULT); 2806 ath_beacon_free(sc); /* XXX not needed */ 2807 } 2808 2809 /* And now, restore the current power state */ 2810 ath_power_restore_power_state(sc); 2811 } 2812 2813 /* 2814 * Wait until all pending TX/RX has completed. 2815 * 2816 * This waits until all existing transmit, receive and interrupts 2817 * have completed. It's assumed that the caller has first 2818 * grabbed the reset lock so it doesn't try to do overlapping 2819 * chip resets. 2820 */ 2821 #define MAX_TXRX_ITERATIONS 100 2822 static void 2823 ath_txrx_stop_locked(struct ath_softc *sc) 2824 { 2825 int i = MAX_TXRX_ITERATIONS; 2826 2827 ATH_UNLOCK_ASSERT(sc); 2828 ATH_PCU_LOCK_ASSERT(sc); 2829 2830 /* 2831 * Sleep until all the pending operations have completed. 2832 * 2833 * The caller must ensure that reset has been incremented 2834 * or the pending operations may continue being queued. 2835 */ 2836 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2837 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2838 if (i <= 0) 2839 break; 2840 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 2841 msecs_to_ticks(10)); 2842 i--; 2843 } 2844 2845 if (i <= 0) 2846 device_printf(sc->sc_dev, 2847 "%s: didn't finish after %d iterations\n", 2848 __func__, MAX_TXRX_ITERATIONS); 2849 } 2850 #undef MAX_TXRX_ITERATIONS 2851 2852 #if 0 2853 static void 2854 ath_txrx_stop(struct ath_softc *sc) 2855 { 2856 ATH_UNLOCK_ASSERT(sc); 2857 ATH_PCU_UNLOCK_ASSERT(sc); 2858 2859 ATH_PCU_LOCK(sc); 2860 ath_txrx_stop_locked(sc); 2861 ATH_PCU_UNLOCK(sc); 2862 } 2863 #endif 2864 2865 static void 2866 ath_txrx_start(struct ath_softc *sc) 2867 { 2868 2869 taskqueue_unblock(sc->sc_tq); 2870 } 2871 2872 /* 2873 * Grab the reset lock, and wait around until no one else 2874 * is trying to do anything with it. 2875 * 2876 * This is totally horrible but we can't hold this lock for 2877 * long enough to do TX/RX or we end up with net80211/ip stack 2878 * LORs and eventual deadlock. 2879 * 2880 * "dowait" signals whether to spin, waiting for the reset 2881 * lock count to reach 0. This should (for now) only be used 2882 * during the reset path, as the rest of the code may not 2883 * be locking-reentrant enough to behave correctly. 2884 * 2885 * Another, cleaner way should be found to serialise all of 2886 * these operations. 2887 */ 2888 #define MAX_RESET_ITERATIONS 25 2889 static int 2890 ath_reset_grablock(struct ath_softc *sc, int dowait) 2891 { 2892 int w = 0; 2893 int i = MAX_RESET_ITERATIONS; 2894 2895 ATH_PCU_LOCK_ASSERT(sc); 2896 do { 2897 if (sc->sc_inreset_cnt == 0) { 2898 w = 1; 2899 break; 2900 } 2901 if (dowait == 0) { 2902 w = 0; 2903 break; 2904 } 2905 ATH_PCU_UNLOCK(sc); 2906 /* 2907 * 1 tick is likely not enough time for long calibrations 2908 * to complete. So we should wait quite a while. 2909 */ 2910 pause("ath_reset_grablock", msecs_to_ticks(100)); 2911 i--; 2912 ATH_PCU_LOCK(sc); 2913 } while (i > 0); 2914 2915 /* 2916 * We always increment the refcounter, regardless 2917 * of whether we succeeded to get it in an exclusive 2918 * way. 2919 */ 2920 sc->sc_inreset_cnt++; 2921 2922 if (i <= 0) 2923 device_printf(sc->sc_dev, 2924 "%s: didn't finish after %d iterations\n", 2925 __func__, MAX_RESET_ITERATIONS); 2926 2927 if (w == 0) 2928 device_printf(sc->sc_dev, 2929 "%s: warning, recursive reset path!\n", 2930 __func__); 2931 2932 return w; 2933 } 2934 #undef MAX_RESET_ITERATIONS 2935 2936 /* 2937 * Reset the hardware w/o losing operational state. This is 2938 * basically a more efficient way of doing ath_stop, ath_init, 2939 * followed by state transitions to the current 802.11 2940 * operational state. Used to recover from various errors and 2941 * to reset or reload hardware state. 2942 */ 2943 int 2944 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type, 2945 HAL_RESET_TYPE ah_reset_type) 2946 { 2947 struct ieee80211com *ic = &sc->sc_ic; 2948 struct ath_hal *ah = sc->sc_ah; 2949 HAL_STATUS status; 2950 int i; 2951 2952 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2953 2954 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2955 ATH_PCU_UNLOCK_ASSERT(sc); 2956 ATH_UNLOCK_ASSERT(sc); 2957 2958 /* Try to (stop any further TX/RX from occurring */ 2959 taskqueue_block(sc->sc_tq); 2960 2961 /* 2962 * Wake the hardware up. 2963 */ 2964 ATH_LOCK(sc); 2965 ath_power_set_power_state(sc, HAL_PM_AWAKE); 2966 ATH_UNLOCK(sc); 2967 2968 ATH_PCU_LOCK(sc); 2969 2970 /* 2971 * Grab the reset lock before TX/RX is stopped. 2972 * 2973 * This is needed to ensure that when the TX/RX actually does finish, 2974 * no further TX/RX/reset runs in parallel with this. 2975 */ 2976 if (ath_reset_grablock(sc, 1) == 0) { 2977 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2978 __func__); 2979 } 2980 2981 /* disable interrupts */ 2982 ath_hal_intrset(ah, 0); 2983 2984 /* 2985 * Now, ensure that any in progress TX/RX completes before we 2986 * continue. 2987 */ 2988 ath_txrx_stop_locked(sc); 2989 2990 ATH_PCU_UNLOCK(sc); 2991 2992 /* 2993 * Regardless of whether we're doing a no-loss flush or 2994 * not, stop the PCU and handle what's in the RX queue. 2995 * That way frames aren't dropped which shouldn't be. 2996 */ 2997 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2998 ath_rx_flush(sc); 2999 3000 /* 3001 * Should now wait for pending TX/RX to complete 3002 * and block future ones from occurring. This needs to be 3003 * done before the TX queue is drained. 3004 */ 3005 ath_draintxq(sc, reset_type); /* stop xmit side */ 3006 3007 ath_settkipmic(sc); /* configure TKIP MIC handling */ 3008 /* NB: indicate channel change so we do a full reset */ 3009 ath_update_chainmasks(sc, ic->ic_curchan); 3010 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 3011 sc->sc_cur_rxchainmask); 3012 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, 3013 ah_reset_type, &status)) 3014 device_printf(sc->sc_dev, 3015 "%s: unable to reset hardware; hal status %u\n", 3016 __func__, status); 3017 sc->sc_diversity = ath_hal_getdiversity(ah); 3018 3019 ATH_RX_LOCK(sc); 3020 sc->sc_rx_stopped = 1; 3021 sc->sc_rx_resetted = 1; 3022 ATH_RX_UNLOCK(sc); 3023 3024 /* Quiet time handling - ensure we resync */ 3025 ath_vap_clear_quiet_ie(sc); 3026 3027 /* Let DFS at it in case it's a DFS channel */ 3028 ath_dfs_radar_enable(sc, ic->ic_curchan); 3029 3030 /* Let spectral at in case spectral is enabled */ 3031 ath_spectral_enable(sc, ic->ic_curchan); 3032 3033 /* 3034 * Let bluetooth coexistence at in case it's needed for this channel 3035 */ 3036 ath_btcoex_enable(sc, ic->ic_curchan); 3037 3038 /* 3039 * If we're doing TDMA, enforce the TXOP limitation for chips that 3040 * support it. 3041 */ 3042 if (sc->sc_hasenforcetxop && sc->sc_tdma) 3043 ath_hal_setenforcetxop(sc->sc_ah, 1); 3044 else 3045 ath_hal_setenforcetxop(sc->sc_ah, 0); 3046 3047 if (ath_startrecv(sc) != 0) /* restart recv */ 3048 device_printf(sc->sc_dev, 3049 "%s: unable to start recv logic\n", __func__); 3050 /* 3051 * We may be doing a reset in response to an ioctl 3052 * that changes the channel so update any state that 3053 * might change as a result. 3054 */ 3055 ath_chan_change(sc, ic->ic_curchan); 3056 if (sc->sc_beacons) { /* restart beacons */ 3057 #ifdef IEEE80211_SUPPORT_TDMA 3058 if (sc->sc_tdma) 3059 ath_tdma_config(sc, NULL); 3060 else 3061 #endif 3062 ath_beacon_config(sc, NULL); 3063 } 3064 3065 /* 3066 * Release the reset lock and re-enable interrupts here. 3067 * If an interrupt was being processed in ath_intr(), 3068 * it would disable interrupts at this point. So we have 3069 * to atomically enable interrupts and decrement the 3070 * reset counter - this way ath_intr() doesn't end up 3071 * disabling interrupts without a corresponding enable 3072 * in the rest or channel change path. 3073 * 3074 * Grab the TX reference in case we need to transmit. 3075 * That way a parallel transmit doesn't. 3076 */ 3077 ATH_PCU_LOCK(sc); 3078 sc->sc_inreset_cnt--; 3079 sc->sc_txstart_cnt++; 3080 /* XXX only do this if sc_inreset_cnt == 0? */ 3081 ath_hal_intrset(ah, sc->sc_imask); 3082 ATH_PCU_UNLOCK(sc); 3083 3084 /* 3085 * TX and RX can be started here. If it were started with 3086 * sc_inreset_cnt > 0, the TX and RX path would abort. 3087 * Thus if this is a nested call through the reset or 3088 * channel change code, TX completion will occur but 3089 * RX completion and ath_start / ath_tx_start will not 3090 * run. 3091 */ 3092 3093 /* Restart TX/RX as needed */ 3094 ath_txrx_start(sc); 3095 3096 /* XXX TODO: we need to hold the tx refcount here! */ 3097 3098 /* Restart TX completion and pending TX */ 3099 if (reset_type == ATH_RESET_NOLOSS) { 3100 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 3101 if (ATH_TXQ_SETUP(sc, i)) { 3102 ATH_TXQ_LOCK(&sc->sc_txq[i]); 3103 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 3104 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 3105 3106 ATH_TX_LOCK(sc); 3107 ath_txq_sched(sc, &sc->sc_txq[i]); 3108 ATH_TX_UNLOCK(sc); 3109 } 3110 } 3111 } 3112 3113 ATH_LOCK(sc); 3114 ath_power_restore_power_state(sc); 3115 ATH_UNLOCK(sc); 3116 3117 ATH_PCU_LOCK(sc); 3118 sc->sc_txstart_cnt--; 3119 ATH_PCU_UNLOCK(sc); 3120 3121 /* Handle any frames in the TX queue */ 3122 /* 3123 * XXX should this be done by the caller, rather than 3124 * ath_reset() ? 3125 */ 3126 ath_tx_kick(sc); /* restart xmit */ 3127 return 0; 3128 } 3129 3130 static int 3131 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 3132 { 3133 struct ieee80211com *ic = vap->iv_ic; 3134 struct ath_softc *sc = ic->ic_softc; 3135 struct ath_hal *ah = sc->sc_ah; 3136 3137 switch (cmd) { 3138 case IEEE80211_IOC_TXPOWER: 3139 /* 3140 * If per-packet TPC is enabled, then we have nothing 3141 * to do; otherwise we need to force the global limit. 3142 * All this can happen directly; no need to reset. 3143 */ 3144 if (!ath_hal_gettpc(ah)) 3145 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 3146 return 0; 3147 } 3148 /* XXX? Full or NOLOSS? */ 3149 return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL); 3150 } 3151 3152 struct ath_buf * 3153 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 3154 { 3155 struct ath_buf *bf; 3156 3157 ATH_TXBUF_LOCK_ASSERT(sc); 3158 3159 if (btype == ATH_BUFTYPE_MGMT) 3160 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 3161 else 3162 bf = TAILQ_FIRST(&sc->sc_txbuf); 3163 3164 if (bf == NULL) { 3165 sc->sc_stats.ast_tx_getnobuf++; 3166 } else { 3167 if (bf->bf_flags & ATH_BUF_BUSY) { 3168 sc->sc_stats.ast_tx_getbusybuf++; 3169 bf = NULL; 3170 } 3171 } 3172 3173 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 3174 if (btype == ATH_BUFTYPE_MGMT) 3175 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 3176 else { 3177 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 3178 sc->sc_txbuf_cnt--; 3179 3180 /* 3181 * This shuldn't happen; however just to be 3182 * safe print a warning and fudge the txbuf 3183 * count. 3184 */ 3185 if (sc->sc_txbuf_cnt < 0) { 3186 device_printf(sc->sc_dev, 3187 "%s: sc_txbuf_cnt < 0?\n", 3188 __func__); 3189 sc->sc_txbuf_cnt = 0; 3190 } 3191 } 3192 } else 3193 bf = NULL; 3194 3195 if (bf == NULL) { 3196 /* XXX should check which list, mgmt or otherwise */ 3197 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 3198 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 3199 "out of xmit buffers" : "xmit buffer busy"); 3200 return NULL; 3201 } 3202 3203 /* XXX TODO: should do this at buffer list initialisation */ 3204 /* XXX (then, ensure the buffer has the right flag set) */ 3205 bf->bf_flags = 0; 3206 if (btype == ATH_BUFTYPE_MGMT) 3207 bf->bf_flags |= ATH_BUF_MGMT; 3208 else 3209 bf->bf_flags &= (~ATH_BUF_MGMT); 3210 3211 /* Valid bf here; clear some basic fields */ 3212 bf->bf_next = NULL; /* XXX just to be sure */ 3213 bf->bf_last = NULL; /* XXX again, just to be sure */ 3214 bf->bf_comp = NULL; /* XXX again, just to be sure */ 3215 bzero(&bf->bf_state, sizeof(bf->bf_state)); 3216 3217 /* 3218 * Track the descriptor ID only if doing EDMA 3219 */ 3220 if (sc->sc_isedma) { 3221 bf->bf_descid = sc->sc_txbuf_descid; 3222 sc->sc_txbuf_descid++; 3223 } 3224 3225 return bf; 3226 } 3227 3228 /* 3229 * When retrying a software frame, buffers marked ATH_BUF_BUSY 3230 * can't be thrown back on the queue as they could still be 3231 * in use by the hardware. 3232 * 3233 * This duplicates the buffer, or returns NULL. 3234 * 3235 * The descriptor is also copied but the link pointers and 3236 * the DMA segments aren't copied; this frame should thus 3237 * be again passed through the descriptor setup/chain routines 3238 * so the link is correct. 3239 * 3240 * The caller must free the buffer using ath_freebuf(). 3241 */ 3242 struct ath_buf * 3243 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf) 3244 { 3245 struct ath_buf *tbf; 3246 3247 tbf = ath_getbuf(sc, 3248 (bf->bf_flags & ATH_BUF_MGMT) ? 3249 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 3250 if (tbf == NULL) 3251 return NULL; /* XXX failure? Why? */ 3252 3253 /* Copy basics */ 3254 tbf->bf_next = NULL; 3255 tbf->bf_nseg = bf->bf_nseg; 3256 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 3257 tbf->bf_status = bf->bf_status; 3258 tbf->bf_m = bf->bf_m; 3259 tbf->bf_node = bf->bf_node; 3260 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__)); 3261 /* will be setup by the chain/setup function */ 3262 tbf->bf_lastds = NULL; 3263 /* for now, last == self */ 3264 tbf->bf_last = tbf; 3265 tbf->bf_comp = bf->bf_comp; 3266 3267 /* NOTE: DMA segments will be setup by the setup/chain functions */ 3268 3269 /* The caller has to re-init the descriptor + links */ 3270 3271 /* 3272 * Free the DMA mapping here, before we NULL the mbuf. 3273 * We must only call bus_dmamap_unload() once per mbuf chain 3274 * or behaviour is undefined. 3275 */ 3276 if (bf->bf_m != NULL) { 3277 /* 3278 * XXX is this POSTWRITE call required? 3279 */ 3280 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3281 BUS_DMASYNC_POSTWRITE); 3282 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3283 } 3284 3285 bf->bf_m = NULL; 3286 bf->bf_node = NULL; 3287 3288 /* Copy state */ 3289 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 3290 3291 return tbf; 3292 } 3293 3294 struct ath_buf * 3295 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 3296 { 3297 struct ath_buf *bf; 3298 3299 ATH_TXBUF_LOCK(sc); 3300 bf = _ath_getbuf_locked(sc, btype); 3301 /* 3302 * If a mgmt buffer was requested but we're out of those, 3303 * try requesting a normal one. 3304 */ 3305 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 3306 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 3307 ATH_TXBUF_UNLOCK(sc); 3308 if (bf == NULL) { 3309 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 3310 sc->sc_stats.ast_tx_qstop++; 3311 } 3312 return bf; 3313 } 3314 3315 /* 3316 * Transmit a single frame. 3317 * 3318 * net80211 will free the node reference if the transmit 3319 * fails, so don't free the node reference here. 3320 */ 3321 static int 3322 ath_transmit(struct ieee80211com *ic, struct mbuf *m) 3323 { 3324 struct ath_softc *sc = ic->ic_softc; 3325 struct ieee80211_node *ni; 3326 struct mbuf *next; 3327 struct ath_buf *bf; 3328 ath_bufhead frags; 3329 int retval = 0; 3330 3331 /* 3332 * Tell the reset path that we're currently transmitting. 3333 */ 3334 ATH_PCU_LOCK(sc); 3335 if (sc->sc_inreset_cnt > 0) { 3336 DPRINTF(sc, ATH_DEBUG_XMIT, 3337 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 3338 ATH_PCU_UNLOCK(sc); 3339 sc->sc_stats.ast_tx_qstop++; 3340 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 3341 return (ENOBUFS); /* XXX should be EINVAL or? */ 3342 } 3343 sc->sc_txstart_cnt++; 3344 ATH_PCU_UNLOCK(sc); 3345 3346 /* Wake the hardware up already */ 3347 ATH_LOCK(sc); 3348 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3349 ATH_UNLOCK(sc); 3350 3351 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start"); 3352 /* 3353 * Grab the TX lock - it's ok to do this here; we haven't 3354 * yet started transmitting. 3355 */ 3356 ATH_TX_LOCK(sc); 3357 3358 /* 3359 * Node reference, if there's one. 3360 */ 3361 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 3362 3363 /* 3364 * Enforce how deep a node queue can get. 3365 * 3366 * XXX it would be nicer if we kept an mbuf queue per 3367 * node and only whacked them into ath_bufs when we 3368 * are ready to schedule some traffic from them. 3369 * .. that may come later. 3370 * 3371 * XXX we should also track the per-node hardware queue 3372 * depth so it is easy to limit the _SUM_ of the swq and 3373 * hwq frames. Since we only schedule two HWQ frames 3374 * at a time, this should be OK for now. 3375 */ 3376 if ((!(m->m_flags & M_EAPOL)) && 3377 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) { 3378 sc->sc_stats.ast_tx_nodeq_overflow++; 3379 retval = ENOBUFS; 3380 goto finish; 3381 } 3382 3383 /* 3384 * Check how many TX buffers are available. 3385 * 3386 * If this is for non-EAPOL traffic, just leave some 3387 * space free in order for buffer cloning and raw 3388 * frame transmission to occur. 3389 * 3390 * If it's for EAPOL traffic, ignore this for now. 3391 * Management traffic will be sent via the raw transmit 3392 * method which bypasses this check. 3393 * 3394 * This is needed to ensure that EAPOL frames during 3395 * (re) keying have a chance to go out. 3396 * 3397 * See kern/138379 for more information. 3398 */ 3399 if ((!(m->m_flags & M_EAPOL)) && 3400 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) { 3401 sc->sc_stats.ast_tx_nobuf++; 3402 retval = ENOBUFS; 3403 goto finish; 3404 } 3405 3406 /* 3407 * Grab a TX buffer and associated resources. 3408 * 3409 * If it's an EAPOL frame, allocate a MGMT ath_buf. 3410 * That way even with temporary buffer exhaustion due to 3411 * the data path doesn't leave us without the ability 3412 * to transmit management frames. 3413 * 3414 * Otherwise allocate a normal buffer. 3415 */ 3416 if (m->m_flags & M_EAPOL) 3417 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT); 3418 else 3419 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 3420 3421 if (bf == NULL) { 3422 /* 3423 * If we failed to allocate a buffer, fail. 3424 * 3425 * We shouldn't fail normally, due to the check 3426 * above. 3427 */ 3428 sc->sc_stats.ast_tx_nobuf++; 3429 retval = ENOBUFS; 3430 goto finish; 3431 } 3432 3433 /* 3434 * At this point we have a buffer; so we need to free it 3435 * if we hit any error conditions. 3436 */ 3437 3438 /* 3439 * Check for fragmentation. If this frame 3440 * has been broken up verify we have enough 3441 * buffers to send all the fragments so all 3442 * go out or none... 3443 */ 3444 TAILQ_INIT(&frags); 3445 if ((m->m_flags & M_FRAG) && 3446 !ath_txfrag_setup(sc, &frags, m, ni)) { 3447 DPRINTF(sc, ATH_DEBUG_XMIT, 3448 "%s: out of txfrag buffers\n", __func__); 3449 sc->sc_stats.ast_tx_nofrag++; 3450 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3451 /* 3452 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes, 3453 * we shouldn't free it but return back. 3454 */ 3455 ieee80211_free_mbuf(m); 3456 m = NULL; 3457 goto bad; 3458 } 3459 3460 /* 3461 * At this point if we have any TX fragments, then we will 3462 * have bumped the node reference once for each of those. 3463 */ 3464 3465 /* 3466 * XXX Is there anything actually _enforcing_ that the 3467 * fragments are being transmitted in one hit, rather than 3468 * being interleaved with other transmissions on that 3469 * hardware queue? 3470 * 3471 * The ATH TX output lock is the only thing serialising this 3472 * right now. 3473 */ 3474 3475 /* 3476 * Calculate the "next fragment" length field in ath_buf 3477 * in order to let the transmit path know enough about 3478 * what to next write to the hardware. 3479 */ 3480 if (m->m_flags & M_FRAG) { 3481 struct ath_buf *fbf = bf; 3482 struct ath_buf *n_fbf = NULL; 3483 struct mbuf *fm = m->m_nextpkt; 3484 3485 /* 3486 * We need to walk the list of fragments and set 3487 * the next size to the following buffer. 3488 * However, the first buffer isn't in the frag 3489 * list, so we have to do some gymnastics here. 3490 */ 3491 TAILQ_FOREACH(n_fbf, &frags, bf_list) { 3492 fbf->bf_nextfraglen = fm->m_pkthdr.len; 3493 fbf = n_fbf; 3494 fm = fm->m_nextpkt; 3495 } 3496 } 3497 3498 nextfrag: 3499 /* 3500 * Pass the frame to the h/w for transmission. 3501 * Fragmented frames have each frag chained together 3502 * with m_nextpkt. We know there are sufficient ath_buf's 3503 * to send all the frags because of work done by 3504 * ath_txfrag_setup. We leave m_nextpkt set while 3505 * calling ath_tx_start so it can use it to extend the 3506 * the tx duration to cover the subsequent frag and 3507 * so it can reclaim all the mbufs in case of an error; 3508 * ath_tx_start clears m_nextpkt once it commits to 3509 * handing the frame to the hardware. 3510 * 3511 * Note: if this fails, then the mbufs are freed but 3512 * not the node reference. 3513 * 3514 * So, we now have to free the node reference ourselves here 3515 * and return OK up to the stack. 3516 */ 3517 next = m->m_nextpkt; 3518 if (ath_tx_start(sc, ni, bf, m)) { 3519 bad: 3520 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); 3521 reclaim: 3522 bf->bf_m = NULL; 3523 bf->bf_node = NULL; 3524 ATH_TXBUF_LOCK(sc); 3525 ath_returnbuf_head(sc, bf); 3526 /* 3527 * Free the rest of the node references and 3528 * buffers for the fragment list. 3529 */ 3530 ath_txfrag_cleanup(sc, &frags, ni); 3531 ATH_TXBUF_UNLOCK(sc); 3532 3533 /* 3534 * XXX: And free the node/return OK; ath_tx_start() may have 3535 * modified the buffer. We currently have no way to 3536 * signify that the mbuf was freed but there was an error. 3537 */ 3538 ieee80211_free_node(ni); 3539 retval = 0; 3540 goto finish; 3541 } 3542 3543 /* 3544 * Check here if the node is in power save state. 3545 */ 3546 ath_tx_update_tim(sc, ni, 1); 3547 3548 if (next != NULL) { 3549 /* 3550 * Beware of state changing between frags. 3551 * XXX check sta power-save state? 3552 */ 3553 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 3554 DPRINTF(sc, ATH_DEBUG_XMIT, 3555 "%s: flush fragmented packet, state %s\n", 3556 __func__, 3557 ieee80211_state_name[ni->ni_vap->iv_state]); 3558 /* XXX dmamap */ 3559 ieee80211_free_mbuf(next); 3560 goto reclaim; 3561 } 3562 m = next; 3563 bf = TAILQ_FIRST(&frags); 3564 KASSERT(bf != NULL, ("no buf for txfrag")); 3565 TAILQ_REMOVE(&frags, bf, bf_list); 3566 goto nextfrag; 3567 } 3568 3569 /* 3570 * Bump watchdog timer. 3571 */ 3572 sc->sc_wd_timer = 5; 3573 3574 finish: 3575 ATH_TX_UNLOCK(sc); 3576 3577 /* 3578 * Finished transmitting! 3579 */ 3580 ATH_PCU_LOCK(sc); 3581 sc->sc_txstart_cnt--; 3582 ATH_PCU_UNLOCK(sc); 3583 3584 /* Sleep the hardware if required */ 3585 ATH_LOCK(sc); 3586 ath_power_restore_power_state(sc); 3587 ATH_UNLOCK(sc); 3588 3589 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished"); 3590 3591 return (retval); 3592 } 3593 3594 /* 3595 * Block/unblock tx+rx processing while a key change is done. 3596 * We assume the caller serializes key management operations 3597 * so we only need to worry about synchronization with other 3598 * uses that originate in the driver. 3599 */ 3600 static void 3601 ath_key_update_begin(struct ieee80211vap *vap) 3602 { 3603 struct ath_softc *sc = vap->iv_ic->ic_softc; 3604 3605 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3606 taskqueue_block(sc->sc_tq); 3607 } 3608 3609 static void 3610 ath_key_update_end(struct ieee80211vap *vap) 3611 { 3612 struct ath_softc *sc = vap->iv_ic->ic_softc; 3613 3614 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 3615 taskqueue_unblock(sc->sc_tq); 3616 } 3617 3618 static void 3619 ath_update_promisc(struct ieee80211com *ic) 3620 { 3621 struct ath_softc *sc = ic->ic_softc; 3622 u_int32_t rfilt; 3623 3624 /* configure rx filter */ 3625 ATH_LOCK(sc); 3626 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3627 rfilt = ath_calcrxfilter(sc); 3628 ath_hal_setrxfilter(sc->sc_ah, rfilt); 3629 ath_power_restore_power_state(sc); 3630 ATH_UNLOCK(sc); 3631 3632 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 3633 } 3634 3635 static u_int 3636 ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 3637 { 3638 uint32_t val, *mfilt = arg; 3639 char *dl; 3640 uint8_t pos; 3641 3642 /* calculate XOR of eight 6bit values */ 3643 dl = LLADDR(sdl); 3644 val = le32dec(dl + 0); 3645 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3646 val = le32dec(dl + 3); 3647 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 3648 pos &= 0x3f; 3649 mfilt[pos / 32] |= (1 << (pos % 32)); 3650 3651 return (1); 3652 } 3653 3654 /* 3655 * Driver-internal mcast update call. 3656 * 3657 * Assumes the hardware is already awake. 3658 */ 3659 static void 3660 ath_update_mcast_hw(struct ath_softc *sc) 3661 { 3662 struct ieee80211com *ic = &sc->sc_ic; 3663 u_int32_t mfilt[2]; 3664 3665 /* calculate and install multicast filter */ 3666 if (ic->ic_allmulti == 0) { 3667 struct ieee80211vap *vap; 3668 3669 /* 3670 * Merge multicast addresses to form the hardware filter. 3671 */ 3672 mfilt[0] = mfilt[1] = 0; 3673 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 3674 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt); 3675 } else 3676 mfilt[0] = mfilt[1] = ~0; 3677 3678 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 3679 3680 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 3681 __func__, mfilt[0], mfilt[1]); 3682 } 3683 3684 /* 3685 * Called from the net80211 layer - force the hardware 3686 * awake before operating. 3687 */ 3688 static void 3689 ath_update_mcast(struct ieee80211com *ic) 3690 { 3691 struct ath_softc *sc = ic->ic_softc; 3692 3693 ATH_LOCK(sc); 3694 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3695 ATH_UNLOCK(sc); 3696 3697 ath_update_mcast_hw(sc); 3698 3699 ATH_LOCK(sc); 3700 ath_power_restore_power_state(sc); 3701 ATH_UNLOCK(sc); 3702 } 3703 3704 void 3705 ath_mode_init(struct ath_softc *sc) 3706 { 3707 struct ieee80211com *ic = &sc->sc_ic; 3708 struct ath_hal *ah = sc->sc_ah; 3709 u_int32_t rfilt; 3710 3711 /* XXX power state? */ 3712 3713 /* configure rx filter */ 3714 rfilt = ath_calcrxfilter(sc); 3715 ath_hal_setrxfilter(ah, rfilt); 3716 3717 /* configure operational mode */ 3718 ath_hal_setopmode(ah); 3719 3720 /* handle any link-level address change */ 3721 ath_hal_setmac(ah, ic->ic_macaddr); 3722 3723 /* calculate and install multicast filter */ 3724 ath_update_mcast_hw(sc); 3725 } 3726 3727 /* 3728 * Set the slot time based on the current setting. 3729 */ 3730 void 3731 ath_setslottime(struct ath_softc *sc) 3732 { 3733 struct ieee80211com *ic = &sc->sc_ic; 3734 struct ath_hal *ah = sc->sc_ah; 3735 u_int usec; 3736 3737 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 3738 usec = 13; 3739 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 3740 usec = 21; 3741 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 3742 /* honor short/long slot time only in 11g */ 3743 /* XXX shouldn't honor on pure g or turbo g channel */ 3744 if (ic->ic_flags & IEEE80211_F_SHSLOT) 3745 usec = HAL_SLOT_TIME_9; 3746 else 3747 usec = HAL_SLOT_TIME_20; 3748 } else 3749 usec = HAL_SLOT_TIME_9; 3750 3751 DPRINTF(sc, ATH_DEBUG_RESET, 3752 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 3753 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 3754 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 3755 3756 /* Wake up the hardware first before updating the slot time */ 3757 ATH_LOCK(sc); 3758 ath_power_set_power_state(sc, HAL_PM_AWAKE); 3759 ath_hal_setslottime(ah, usec); 3760 ath_power_restore_power_state(sc); 3761 sc->sc_updateslot = OK; 3762 ATH_UNLOCK(sc); 3763 } 3764 3765 /* 3766 * Callback from the 802.11 layer to update the 3767 * slot time based on the current setting. 3768 */ 3769 static void 3770 ath_updateslot(struct ieee80211com *ic) 3771 { 3772 struct ath_softc *sc = ic->ic_softc; 3773 3774 /* 3775 * When not coordinating the BSS, change the hardware 3776 * immediately. For other operation we defer the change 3777 * until beacon updates have propagated to the stations. 3778 * 3779 * XXX sc_updateslot isn't changed behind a lock? 3780 */ 3781 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3782 ic->ic_opmode == IEEE80211_M_MBSS) 3783 sc->sc_updateslot = UPDATE; 3784 else 3785 ath_setslottime(sc); 3786 } 3787 3788 /* 3789 * Append the contents of src to dst; both queues 3790 * are assumed to be locked. 3791 */ 3792 void 3793 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 3794 { 3795 3796 ATH_TXQ_LOCK_ASSERT(src); 3797 ATH_TXQ_LOCK_ASSERT(dst); 3798 3799 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 3800 dst->axq_link = src->axq_link; 3801 src->axq_link = NULL; 3802 dst->axq_depth += src->axq_depth; 3803 dst->axq_aggr_depth += src->axq_aggr_depth; 3804 src->axq_depth = 0; 3805 src->axq_aggr_depth = 0; 3806 } 3807 3808 /* 3809 * Reset the hardware, with no loss. 3810 * 3811 * This can't be used for a general case reset. 3812 */ 3813 static void 3814 ath_reset_proc(void *arg, int pending) 3815 { 3816 struct ath_softc *sc = arg; 3817 3818 #if 0 3819 device_printf(sc->sc_dev, "%s: resetting\n", __func__); 3820 #endif 3821 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3822 } 3823 3824 /* 3825 * Reset the hardware after detecting beacons have stopped. 3826 */ 3827 static void 3828 ath_bstuck_proc(void *arg, int pending) 3829 { 3830 struct ath_softc *sc = arg; 3831 uint32_t hangs = 0; 3832 3833 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 3834 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs); 3835 3836 #ifdef ATH_DEBUG_ALQ 3837 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON)) 3838 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL); 3839 #endif 3840 3841 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n", 3842 sc->sc_bmisscount); 3843 sc->sc_stats.ast_bstuck++; 3844 /* 3845 * This assumes that there's no simultaneous channel mode change 3846 * occurring. 3847 */ 3848 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD); 3849 } 3850 3851 static int 3852 ath_desc_alloc(struct ath_softc *sc) 3853 { 3854 int error; 3855 3856 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3857 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER); 3858 if (error != 0) { 3859 return error; 3860 } 3861 sc->sc_txbuf_cnt = ath_txbuf; 3862 3863 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3864 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3865 ATH_TXDESC); 3866 if (error != 0) { 3867 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3868 return error; 3869 } 3870 3871 /* 3872 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3873 * flag doesn't have to be set in ath_getbuf_locked(). 3874 */ 3875 3876 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3877 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3878 if (error != 0) { 3879 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3880 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3881 &sc->sc_txbuf_mgmt); 3882 return error; 3883 } 3884 return 0; 3885 } 3886 3887 static void 3888 ath_desc_free(struct ath_softc *sc) 3889 { 3890 3891 if (sc->sc_bdma.dd_desc_len != 0) 3892 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3893 if (sc->sc_txdma.dd_desc_len != 0) 3894 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3895 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3896 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3897 &sc->sc_txbuf_mgmt); 3898 } 3899 3900 static struct ieee80211_node * 3901 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3902 { 3903 struct ieee80211com *ic = vap->iv_ic; 3904 struct ath_softc *sc = ic->ic_softc; 3905 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3906 struct ath_node *an; 3907 3908 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3909 if (an == NULL) { 3910 /* XXX stat+msg */ 3911 return NULL; 3912 } 3913 ath_rate_node_init(sc, an); 3914 3915 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3916 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3917 device_get_nameunit(sc->sc_dev), an); 3918 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3919 3920 /* XXX setup ath_tid */ 3921 ath_tx_tid_init(sc, an); 3922 3923 an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 3924 an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 3925 an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 3926 3927 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an); 3928 return &an->an_node; 3929 } 3930 3931 static void 3932 ath_node_cleanup(struct ieee80211_node *ni) 3933 { 3934 struct ieee80211com *ic = ni->ni_ic; 3935 struct ath_softc *sc = ic->ic_softc; 3936 3937 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3938 ni->ni_macaddr, ":", ATH_NODE(ni)); 3939 3940 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3941 ath_tx_node_flush(sc, ATH_NODE(ni)); 3942 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3943 sc->sc_node_cleanup(ni); 3944 } 3945 3946 static void 3947 ath_node_free(struct ieee80211_node *ni) 3948 { 3949 struct ieee80211com *ic = ni->ni_ic; 3950 struct ath_softc *sc = ic->ic_softc; 3951 3952 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, 3953 ni->ni_macaddr, ":", ATH_NODE(ni)); 3954 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3955 sc->sc_node_free(ni); 3956 } 3957 3958 static void 3959 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3960 { 3961 struct ieee80211com *ic = ni->ni_ic; 3962 struct ath_softc *sc = ic->ic_softc; 3963 struct ath_hal *ah = sc->sc_ah; 3964 3965 *rssi = ic->ic_node_getrssi(ni); 3966 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3967 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3968 else 3969 *noise = -95; /* nominally correct */ 3970 } 3971 3972 /* 3973 * Set the default antenna. 3974 */ 3975 void 3976 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3977 { 3978 struct ath_hal *ah = sc->sc_ah; 3979 3980 /* XXX block beacon interrupts */ 3981 ath_hal_setdefantenna(ah, antenna); 3982 if (sc->sc_defant != antenna) 3983 sc->sc_stats.ast_ant_defswitch++; 3984 sc->sc_defant = antenna; 3985 sc->sc_rxotherant = 0; 3986 } 3987 3988 static void 3989 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3990 { 3991 txq->axq_qnum = qnum; 3992 txq->axq_ac = 0; 3993 txq->axq_depth = 0; 3994 txq->axq_aggr_depth = 0; 3995 txq->axq_intrcnt = 0; 3996 txq->axq_link = NULL; 3997 txq->axq_softc = sc; 3998 TAILQ_INIT(&txq->axq_q); 3999 TAILQ_INIT(&txq->axq_tidq); 4000 TAILQ_INIT(&txq->fifo.axq_q); 4001 ATH_TXQ_LOCK_INIT(sc, txq); 4002 } 4003 4004 /* 4005 * Setup a h/w transmit queue. 4006 */ 4007 static struct ath_txq * 4008 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 4009 { 4010 struct ath_hal *ah = sc->sc_ah; 4011 HAL_TXQ_INFO qi; 4012 int qnum; 4013 4014 memset(&qi, 0, sizeof(qi)); 4015 qi.tqi_subtype = subtype; 4016 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 4017 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 4018 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 4019 /* 4020 * Enable interrupts only for EOL and DESC conditions. 4021 * We mark tx descriptors to receive a DESC interrupt 4022 * when a tx queue gets deep; otherwise waiting for the 4023 * EOL to reap descriptors. Note that this is done to 4024 * reduce interrupt load and this only defers reaping 4025 * descriptors, never transmitting frames. Aside from 4026 * reducing interrupts this also permits more concurrency. 4027 * The only potential downside is if the tx queue backs 4028 * up in which case the top half of the kernel may backup 4029 * due to a lack of tx descriptors. 4030 */ 4031 if (sc->sc_isedma) 4032 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4033 HAL_TXQ_TXOKINT_ENABLE; 4034 else 4035 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | 4036 HAL_TXQ_TXDESCINT_ENABLE; 4037 4038 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 4039 if (qnum == -1) { 4040 /* 4041 * NB: don't print a message, this happens 4042 * normally on parts with too few tx queues 4043 */ 4044 return NULL; 4045 } 4046 if (qnum >= nitems(sc->sc_txq)) { 4047 device_printf(sc->sc_dev, 4048 "hal qnum %u out of range, max %zu!\n", 4049 qnum, nitems(sc->sc_txq)); 4050 ath_hal_releasetxqueue(ah, qnum); 4051 return NULL; 4052 } 4053 if (!ATH_TXQ_SETUP(sc, qnum)) { 4054 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 4055 sc->sc_txqsetup |= 1<<qnum; 4056 } 4057 return &sc->sc_txq[qnum]; 4058 } 4059 4060 /* 4061 * Setup a hardware data transmit queue for the specified 4062 * access control. The hal may not support all requested 4063 * queues in which case it will return a reference to a 4064 * previously setup queue. We record the mapping from ac's 4065 * to h/w queues for use by ath_tx_start and also track 4066 * the set of h/w queues being used to optimize work in the 4067 * transmit interrupt handler and related routines. 4068 */ 4069 static int 4070 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 4071 { 4072 struct ath_txq *txq; 4073 4074 if (ac >= nitems(sc->sc_ac2q)) { 4075 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 4076 ac, nitems(sc->sc_ac2q)); 4077 return 0; 4078 } 4079 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 4080 if (txq != NULL) { 4081 txq->axq_ac = ac; 4082 sc->sc_ac2q[ac] = txq; 4083 return 1; 4084 } else 4085 return 0; 4086 } 4087 4088 /* 4089 * Update WME parameters for a transmit queue. 4090 */ 4091 static int 4092 ath_txq_update(struct ath_softc *sc, int ac) 4093 { 4094 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 4095 struct ieee80211com *ic = &sc->sc_ic; 4096 struct ath_txq *txq = sc->sc_ac2q[ac]; 4097 struct chanAccParams chp; 4098 struct wmeParams *wmep; 4099 struct ath_hal *ah = sc->sc_ah; 4100 HAL_TXQ_INFO qi; 4101 4102 ieee80211_wme_ic_getparams(ic, &chp); 4103 wmep = &chp.cap_wmeParams[ac]; 4104 4105 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 4106 #ifdef IEEE80211_SUPPORT_TDMA 4107 if (sc->sc_tdma) { 4108 /* 4109 * AIFS is zero so there's no pre-transmit wait. The 4110 * burst time defines the slot duration and is configured 4111 * through net80211. The QCU is setup to not do post-xmit 4112 * back off, lockout all lower-priority QCU's, and fire 4113 * off the DMA beacon alert timer which is setup based 4114 * on the slot configuration. 4115 */ 4116 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4117 | HAL_TXQ_TXERRINT_ENABLE 4118 | HAL_TXQ_TXURNINT_ENABLE 4119 | HAL_TXQ_TXEOLINT_ENABLE 4120 | HAL_TXQ_DBA_GATED 4121 | HAL_TXQ_BACKOFF_DISABLE 4122 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 4123 ; 4124 qi.tqi_aifs = 0; 4125 /* XXX +dbaprep? */ 4126 qi.tqi_readyTime = sc->sc_tdmaslotlen; 4127 qi.tqi_burstTime = qi.tqi_readyTime; 4128 } else { 4129 #endif 4130 /* 4131 * XXX shouldn't this just use the default flags 4132 * used in the previous queue setup? 4133 */ 4134 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 4135 | HAL_TXQ_TXERRINT_ENABLE 4136 | HAL_TXQ_TXDESCINT_ENABLE 4137 | HAL_TXQ_TXURNINT_ENABLE 4138 | HAL_TXQ_TXEOLINT_ENABLE 4139 ; 4140 qi.tqi_aifs = wmep->wmep_aifsn; 4141 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 4142 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 4143 qi.tqi_readyTime = 0; 4144 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit); 4145 #ifdef IEEE80211_SUPPORT_TDMA 4146 } 4147 #endif 4148 4149 DPRINTF(sc, ATH_DEBUG_RESET, 4150 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 4151 __func__, txq->axq_qnum, qi.tqi_qflags, 4152 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 4153 4154 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 4155 device_printf(sc->sc_dev, "unable to update hardware queue " 4156 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]); 4157 return 0; 4158 } else { 4159 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 4160 return 1; 4161 } 4162 #undef ATH_EXPONENT_TO_VALUE 4163 } 4164 4165 /* 4166 * Callback from the 802.11 layer to update WME parameters. 4167 */ 4168 int 4169 ath_wme_update(struct ieee80211com *ic) 4170 { 4171 struct ath_softc *sc = ic->ic_softc; 4172 4173 return !ath_txq_update(sc, WME_AC_BE) || 4174 !ath_txq_update(sc, WME_AC_BK) || 4175 !ath_txq_update(sc, WME_AC_VI) || 4176 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 4177 } 4178 4179 /* 4180 * Reclaim resources for a setup queue. 4181 */ 4182 static void 4183 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 4184 { 4185 4186 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 4187 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 4188 ATH_TXQ_LOCK_DESTROY(txq); 4189 } 4190 4191 /* 4192 * Reclaim all tx queue resources. 4193 */ 4194 static void 4195 ath_tx_cleanup(struct ath_softc *sc) 4196 { 4197 int i; 4198 4199 ATH_TXBUF_LOCK_DESTROY(sc); 4200 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4201 if (ATH_TXQ_SETUP(sc, i)) 4202 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 4203 } 4204 4205 /* 4206 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 4207 * using the current rates in sc_rixmap. 4208 */ 4209 int 4210 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 4211 { 4212 int rix = sc->sc_rixmap[rate]; 4213 /* NB: return lowest rix for invalid rate */ 4214 return (rix == 0xff ? 0 : rix); 4215 } 4216 4217 static void 4218 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 4219 struct ath_buf *bf) 4220 { 4221 struct ieee80211_node *ni = bf->bf_node; 4222 struct ieee80211com *ic = &sc->sc_ic; 4223 int sr, lr, pri; 4224 4225 if (ts->ts_status == 0) { 4226 u_int8_t txant = ts->ts_antenna; 4227 /* 4228 * Handle weird/corrupted tx antenna field 4229 */ 4230 if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA) 4231 txant = 0; 4232 sc->sc_stats.ast_ant_tx[txant]++; 4233 sc->sc_ant_tx[txant]++; 4234 if (ts->ts_finaltsi != 0) 4235 sc->sc_stats.ast_tx_altrate++; 4236 4237 /* XXX TODO: should do per-pri conuters */ 4238 pri = M_WME_GETAC(bf->bf_m); 4239 if (pri >= WME_AC_VO) 4240 ic->ic_wme.wme_hipri_traffic++; 4241 4242 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 4243 ni->ni_inact = ni->ni_inact_reload; 4244 } else { 4245 if (ts->ts_status & HAL_TXERR_XRETRY) 4246 sc->sc_stats.ast_tx_xretries++; 4247 if (ts->ts_status & HAL_TXERR_FIFO) 4248 sc->sc_stats.ast_tx_fifoerr++; 4249 if (ts->ts_status & HAL_TXERR_FILT) 4250 sc->sc_stats.ast_tx_filtered++; 4251 if (ts->ts_status & HAL_TXERR_XTXOP) 4252 sc->sc_stats.ast_tx_xtxop++; 4253 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 4254 sc->sc_stats.ast_tx_timerexpired++; 4255 4256 if (bf->bf_m->m_flags & M_FF) 4257 sc->sc_stats.ast_ff_txerr++; 4258 } 4259 /* XXX when is this valid? */ 4260 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 4261 sc->sc_stats.ast_tx_desccfgerr++; 4262 /* 4263 * This can be valid for successful frame transmission! 4264 * If there's a TX FIFO underrun during aggregate transmission, 4265 * the MAC will pad the rest of the aggregate with delimiters. 4266 * If a BA is returned, the frame is marked as "OK" and it's up 4267 * to the TX completion code to notice which frames weren't 4268 * successfully transmitted. 4269 */ 4270 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 4271 sc->sc_stats.ast_tx_data_underrun++; 4272 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 4273 sc->sc_stats.ast_tx_delim_underrun++; 4274 4275 sr = ts->ts_shortretry; 4276 lr = ts->ts_longretry; 4277 sc->sc_stats.ast_tx_shortretry += sr; 4278 sc->sc_stats.ast_tx_longretry += lr; 4279 4280 } 4281 4282 /* 4283 * The default completion. If fail is 1, this means 4284 * "please don't retry the frame, and just return -1 status 4285 * to the net80211 stack. 4286 */ 4287 void 4288 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 4289 { 4290 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 4291 int st; 4292 4293 if (fail == 1) 4294 st = -1; 4295 else 4296 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 4297 ts->ts_status : HAL_TXERR_XRETRY; 4298 4299 #if 0 4300 if (bf->bf_state.bfs_dobaw) 4301 device_printf(sc->sc_dev, 4302 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 4303 __func__, 4304 bf, 4305 SEQNO(bf->bf_state.bfs_seqno)); 4306 #endif 4307 if (bf->bf_next != NULL) 4308 device_printf(sc->sc_dev, 4309 "%s: bf %p: seqno %d: bf_next not NULL!\n", 4310 __func__, 4311 bf, 4312 SEQNO(bf->bf_state.bfs_seqno)); 4313 4314 /* 4315 * Check if the node software queue is empty; if so 4316 * then clear the TIM. 4317 * 4318 * This needs to be done before the buffer is freed as 4319 * otherwise the node reference will have been released 4320 * and the node may not actually exist any longer. 4321 * 4322 * XXX I don't like this belonging here, but it's cleaner 4323 * to do it here right now then all the other places 4324 * where ath_tx_default_comp() is called. 4325 * 4326 * XXX TODO: during drain, ensure that the callback is 4327 * being called so we get a chance to update the TIM. 4328 */ 4329 if (bf->bf_node) { 4330 ATH_TX_LOCK(sc); 4331 ath_tx_update_tim(sc, bf->bf_node, 0); 4332 ATH_TX_UNLOCK(sc); 4333 } 4334 4335 /* 4336 * Do any tx complete callback. Note this must 4337 * be done before releasing the node reference. 4338 * This will free the mbuf, release the net80211 4339 * node and recycle the ath_buf. 4340 */ 4341 ath_tx_freebuf(sc, bf, st); 4342 } 4343 4344 /* 4345 * Update rate control with the given completion status. 4346 */ 4347 void 4348 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 4349 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 4350 int rc_framelen, int nframes, int nbad) 4351 { 4352 struct ath_node *an; 4353 4354 /* Only for unicast frames */ 4355 if (ni == NULL) 4356 return; 4357 4358 an = ATH_NODE(ni); 4359 ATH_NODE_UNLOCK_ASSERT(an); 4360 4361 /* 4362 * XXX TODO: teach the rate control about TXERR_FILT and 4363 * see about handling it (eg see how many attempts were 4364 * made before it got filtered and account for that.) 4365 */ 4366 4367 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 4368 ATH_NODE_LOCK(an); 4369 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen, 4370 nframes, nbad); 4371 ATH_NODE_UNLOCK(an); 4372 } 4373 } 4374 4375 /* 4376 * Process the completion of the given buffer. 4377 * 4378 * This calls the rate control update and then the buffer completion. 4379 * This will either free the buffer or requeue it. In any case, the 4380 * bf pointer should be treated as invalid after this function is called. 4381 */ 4382 void 4383 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 4384 struct ath_tx_status *ts, struct ath_buf *bf) 4385 { 4386 struct ieee80211_node *ni = bf->bf_node; 4387 4388 ATH_TX_UNLOCK_ASSERT(sc); 4389 ATH_TXQ_UNLOCK_ASSERT(txq); 4390 4391 /* If unicast frame, update general statistics */ 4392 if (ni != NULL) { 4393 /* update statistics */ 4394 ath_tx_update_stats(sc, ts, bf); 4395 } 4396 4397 /* 4398 * Call the completion handler. 4399 * The completion handler is responsible for 4400 * calling the rate control code. 4401 * 4402 * Frames with no completion handler get the 4403 * rate control code called here. 4404 */ 4405 if (bf->bf_comp == NULL) { 4406 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 4407 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 4408 /* 4409 * XXX assume this isn't an aggregate 4410 * frame. 4411 * 4412 * XXX TODO: also do this for filtered frames? 4413 * Once rate control knows about them? 4414 */ 4415 ath_tx_update_ratectrl(sc, ni, 4416 bf->bf_state.bfs_rc, ts, 4417 bf->bf_state.bfs_pktlen, 4418 bf->bf_state.bfs_pktlen, 4419 1, 4420 (ts->ts_status == 0 ? 0 : 1)); 4421 } 4422 ath_tx_default_comp(sc, bf, 0); 4423 } else 4424 bf->bf_comp(sc, bf, 0); 4425 } 4426 4427 /* 4428 * Process completed xmit descriptors from the specified queue. 4429 * Kick the packet scheduler if needed. This can occur from this 4430 * particular task. 4431 */ 4432 static int 4433 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 4434 { 4435 struct ath_hal *ah = sc->sc_ah; 4436 struct ath_buf *bf; 4437 struct ath_desc *ds; 4438 struct ath_tx_status *ts; 4439 struct ieee80211_node *ni; 4440 #ifdef IEEE80211_SUPPORT_SUPERG 4441 struct ieee80211com *ic = &sc->sc_ic; 4442 #endif /* IEEE80211_SUPPORT_SUPERG */ 4443 int nacked; 4444 HAL_STATUS status; 4445 4446 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4447 __func__, txq->axq_qnum, 4448 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4449 txq->axq_link); 4450 4451 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 4452 "ath_tx_processq: txq=%u head %p link %p depth %p", 4453 txq->axq_qnum, 4454 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4455 txq->axq_link, 4456 txq->axq_depth); 4457 4458 nacked = 0; 4459 for (;;) { 4460 ATH_TXQ_LOCK(txq); 4461 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4462 bf = TAILQ_FIRST(&txq->axq_q); 4463 if (bf == NULL) { 4464 ATH_TXQ_UNLOCK(txq); 4465 break; 4466 } 4467 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 4468 ts = &bf->bf_status.ds_txstat; 4469 4470 status = ath_hal_txprocdesc(ah, ds, ts); 4471 #ifdef ATH_DEBUG 4472 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4473 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4474 status == HAL_OK); 4475 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 4476 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 4477 status == HAL_OK); 4478 #endif 4479 #ifdef ATH_DEBUG_ALQ 4480 if (if_ath_alq_checkdebug(&sc->sc_alq, 4481 ATH_ALQ_EDMA_TXSTATUS)) { 4482 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 4483 sc->sc_tx_statuslen, 4484 (char *) ds); 4485 } 4486 #endif 4487 4488 if (status == HAL_EINPROGRESS) { 4489 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 4490 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 4491 txq->axq_qnum, bf, ds); 4492 ATH_TXQ_UNLOCK(txq); 4493 break; 4494 } 4495 ATH_TXQ_REMOVE(txq, bf, bf_list); 4496 4497 /* 4498 * Sanity check. 4499 */ 4500 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) { 4501 device_printf(sc->sc_dev, 4502 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n", 4503 __func__, 4504 txq->axq_qnum, 4505 bf, 4506 bf->bf_state.bfs_tx_queue); 4507 } 4508 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) { 4509 device_printf(sc->sc_dev, 4510 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n", 4511 __func__, 4512 txq->axq_qnum, 4513 bf->bf_last, 4514 bf->bf_last->bf_state.bfs_tx_queue); 4515 } 4516 4517 #if 0 4518 if (txq->axq_depth > 0) { 4519 /* 4520 * More frames follow. Mark the buffer busy 4521 * so it's not re-used while the hardware may 4522 * still re-read the link field in the descriptor. 4523 * 4524 * Use the last buffer in an aggregate as that 4525 * is where the hardware may be - intermediate 4526 * descriptors won't be "busy". 4527 */ 4528 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4529 } else 4530 txq->axq_link = NULL; 4531 #else 4532 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 4533 #endif 4534 if (bf->bf_state.bfs_aggr) 4535 txq->axq_aggr_depth--; 4536 4537 ni = bf->bf_node; 4538 4539 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 4540 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 4541 txq->axq_qnum, bf, ds, ni, ts->ts_status); 4542 /* 4543 * If unicast frame was ack'd update RSSI, 4544 * including the last rx time used to 4545 * workaround phantom bmiss interrupts. 4546 */ 4547 if (ni != NULL && ts->ts_status == 0 && 4548 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 4549 nacked++; 4550 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 4551 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4552 ts->ts_rssi); 4553 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi, 4554 ts->ts_rssi); 4555 } 4556 ATH_TXQ_UNLOCK(txq); 4557 4558 /* 4559 * Update statistics and call completion 4560 */ 4561 ath_tx_process_buf_completion(sc, txq, ts, bf); 4562 4563 /* XXX at this point, bf and ni may be totally invalid */ 4564 } 4565 #ifdef IEEE80211_SUPPORT_SUPERG 4566 /* 4567 * Flush fast-frame staging queue when traffic slows. 4568 */ 4569 if (txq->axq_depth <= 1) 4570 ieee80211_ff_flush(ic, txq->axq_ac); 4571 #endif 4572 4573 /* Kick the software TXQ scheduler */ 4574 if (dosched) { 4575 ATH_TX_LOCK(sc); 4576 ath_txq_sched(sc, txq); 4577 ATH_TX_UNLOCK(sc); 4578 } 4579 4580 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4581 "ath_tx_processq: txq=%u: done", 4582 txq->axq_qnum); 4583 4584 return nacked; 4585 } 4586 4587 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 4588 4589 /* 4590 * Deferred processing of transmit interrupt; special-cased 4591 * for a single hardware transmit queue (e.g. 5210 and 5211). 4592 */ 4593 static void 4594 ath_tx_proc_q0(void *arg, int npending) 4595 { 4596 struct ath_softc *sc = arg; 4597 uint32_t txqs; 4598 4599 ATH_PCU_LOCK(sc); 4600 sc->sc_txproc_cnt++; 4601 txqs = sc->sc_txq_active; 4602 sc->sc_txq_active &= ~txqs; 4603 ATH_PCU_UNLOCK(sc); 4604 4605 ATH_LOCK(sc); 4606 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4607 ATH_UNLOCK(sc); 4608 4609 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4610 "ath_tx_proc_q0: txqs=0x%08x", txqs); 4611 4612 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 4613 /* XXX why is lastrx updated in tx code? */ 4614 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4615 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4616 ath_tx_processq(sc, sc->sc_cabq, 1); 4617 sc->sc_wd_timer = 0; 4618 4619 if (sc->sc_softled) 4620 ath_led_event(sc, sc->sc_txrix); 4621 4622 ATH_PCU_LOCK(sc); 4623 sc->sc_txproc_cnt--; 4624 ATH_PCU_UNLOCK(sc); 4625 4626 ATH_LOCK(sc); 4627 ath_power_restore_power_state(sc); 4628 ATH_UNLOCK(sc); 4629 4630 ath_tx_kick(sc); 4631 } 4632 4633 /* 4634 * Deferred processing of transmit interrupt; special-cased 4635 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4636 */ 4637 static void 4638 ath_tx_proc_q0123(void *arg, int npending) 4639 { 4640 struct ath_softc *sc = arg; 4641 int nacked; 4642 uint32_t txqs; 4643 4644 ATH_PCU_LOCK(sc); 4645 sc->sc_txproc_cnt++; 4646 txqs = sc->sc_txq_active; 4647 sc->sc_txq_active &= ~txqs; 4648 ATH_PCU_UNLOCK(sc); 4649 4650 ATH_LOCK(sc); 4651 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4652 ATH_UNLOCK(sc); 4653 4654 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4655 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4656 4657 /* 4658 * Process each active queue. 4659 */ 4660 nacked = 0; 4661 if (TXQACTIVE(txqs, 0)) 4662 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4663 if (TXQACTIVE(txqs, 1)) 4664 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4665 if (TXQACTIVE(txqs, 2)) 4666 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4667 if (TXQACTIVE(txqs, 3)) 4668 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4669 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4670 ath_tx_processq(sc, sc->sc_cabq, 1); 4671 if (nacked) 4672 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4673 4674 sc->sc_wd_timer = 0; 4675 4676 if (sc->sc_softled) 4677 ath_led_event(sc, sc->sc_txrix); 4678 4679 ATH_PCU_LOCK(sc); 4680 sc->sc_txproc_cnt--; 4681 ATH_PCU_UNLOCK(sc); 4682 4683 ATH_LOCK(sc); 4684 ath_power_restore_power_state(sc); 4685 ATH_UNLOCK(sc); 4686 4687 ath_tx_kick(sc); 4688 } 4689 4690 /* 4691 * Deferred processing of transmit interrupt. 4692 */ 4693 static void 4694 ath_tx_proc(void *arg, int npending) 4695 { 4696 struct ath_softc *sc = arg; 4697 int i, nacked; 4698 uint32_t txqs; 4699 4700 ATH_PCU_LOCK(sc); 4701 sc->sc_txproc_cnt++; 4702 txqs = sc->sc_txq_active; 4703 sc->sc_txq_active &= ~txqs; 4704 ATH_PCU_UNLOCK(sc); 4705 4706 ATH_LOCK(sc); 4707 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4708 ATH_UNLOCK(sc); 4709 4710 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4711 4712 /* 4713 * Process each active queue. 4714 */ 4715 nacked = 0; 4716 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4717 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4718 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4719 if (nacked) 4720 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4721 4722 sc->sc_wd_timer = 0; 4723 4724 if (sc->sc_softled) 4725 ath_led_event(sc, sc->sc_txrix); 4726 4727 ATH_PCU_LOCK(sc); 4728 sc->sc_txproc_cnt--; 4729 ATH_PCU_UNLOCK(sc); 4730 4731 ATH_LOCK(sc); 4732 ath_power_restore_power_state(sc); 4733 ATH_UNLOCK(sc); 4734 4735 ath_tx_kick(sc); 4736 } 4737 #undef TXQACTIVE 4738 4739 /* 4740 * Deferred processing of TXQ rescheduling. 4741 */ 4742 static void 4743 ath_txq_sched_tasklet(void *arg, int npending) 4744 { 4745 struct ath_softc *sc = arg; 4746 int i; 4747 4748 /* XXX is skipping ok? */ 4749 ATH_PCU_LOCK(sc); 4750 #if 0 4751 if (sc->sc_inreset_cnt > 0) { 4752 device_printf(sc->sc_dev, 4753 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4754 ATH_PCU_UNLOCK(sc); 4755 return; 4756 } 4757 #endif 4758 sc->sc_txproc_cnt++; 4759 ATH_PCU_UNLOCK(sc); 4760 4761 ATH_LOCK(sc); 4762 ath_power_set_power_state(sc, HAL_PM_AWAKE); 4763 ATH_UNLOCK(sc); 4764 4765 ATH_TX_LOCK(sc); 4766 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4767 if (ATH_TXQ_SETUP(sc, i)) { 4768 ath_txq_sched(sc, &sc->sc_txq[i]); 4769 } 4770 } 4771 ATH_TX_UNLOCK(sc); 4772 4773 ATH_LOCK(sc); 4774 ath_power_restore_power_state(sc); 4775 ATH_UNLOCK(sc); 4776 4777 ATH_PCU_LOCK(sc); 4778 sc->sc_txproc_cnt--; 4779 ATH_PCU_UNLOCK(sc); 4780 } 4781 4782 void 4783 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4784 { 4785 4786 ATH_TXBUF_LOCK_ASSERT(sc); 4787 4788 if (bf->bf_flags & ATH_BUF_MGMT) 4789 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4790 else { 4791 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4792 sc->sc_txbuf_cnt++; 4793 if (sc->sc_txbuf_cnt > ath_txbuf) { 4794 device_printf(sc->sc_dev, 4795 "%s: sc_txbuf_cnt > %d?\n", 4796 __func__, 4797 ath_txbuf); 4798 sc->sc_txbuf_cnt = ath_txbuf; 4799 } 4800 } 4801 } 4802 4803 void 4804 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4805 { 4806 4807 ATH_TXBUF_LOCK_ASSERT(sc); 4808 4809 if (bf->bf_flags & ATH_BUF_MGMT) 4810 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4811 else { 4812 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4813 sc->sc_txbuf_cnt++; 4814 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4815 device_printf(sc->sc_dev, 4816 "%s: sc_txbuf_cnt > %d?\n", 4817 __func__, 4818 ATH_TXBUF); 4819 sc->sc_txbuf_cnt = ATH_TXBUF; 4820 } 4821 } 4822 } 4823 4824 /* 4825 * Free the holding buffer if it exists 4826 */ 4827 void 4828 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4829 { 4830 ATH_TXBUF_UNLOCK_ASSERT(sc); 4831 ATH_TXQ_LOCK_ASSERT(txq); 4832 4833 if (txq->axq_holdingbf == NULL) 4834 return; 4835 4836 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4837 4838 ATH_TXBUF_LOCK(sc); 4839 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4840 ATH_TXBUF_UNLOCK(sc); 4841 4842 txq->axq_holdingbf = NULL; 4843 } 4844 4845 /* 4846 * Add this buffer to the holding queue, freeing the previous 4847 * one if it exists. 4848 */ 4849 static void 4850 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4851 { 4852 struct ath_txq *txq; 4853 4854 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4855 4856 ATH_TXBUF_UNLOCK_ASSERT(sc); 4857 ATH_TXQ_LOCK_ASSERT(txq); 4858 4859 /* XXX assert ATH_BUF_BUSY is set */ 4860 4861 /* XXX assert the tx queue is under the max number */ 4862 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4863 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4864 __func__, 4865 bf, 4866 bf->bf_state.bfs_tx_queue); 4867 bf->bf_flags &= ~ATH_BUF_BUSY; 4868 ath_returnbuf_tail(sc, bf); 4869 return; 4870 } 4871 ath_txq_freeholdingbuf(sc, txq); 4872 txq->axq_holdingbf = bf; 4873 } 4874 4875 /* 4876 * Return a buffer to the pool and update the 'busy' flag on the 4877 * previous 'tail' entry. 4878 * 4879 * This _must_ only be called when the buffer is involved in a completed 4880 * TX. The logic is that if it was part of an active TX, the previous 4881 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4882 * for restart (eg for TDMA.) 4883 * 4884 * The caller must free the mbuf and recycle the node reference. 4885 * 4886 * XXX This method of handling busy / holding buffers is insanely stupid. 4887 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would 4888 * be much nicer if buffers in the processq() methods would instead be 4889 * always completed there (pushed onto a txq or ath_bufhead) so we knew 4890 * exactly what hardware queue they came from in the first place. 4891 */ 4892 void 4893 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4894 { 4895 struct ath_txq *txq; 4896 4897 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4898 4899 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4900 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4901 4902 /* 4903 * If this buffer is busy, push it onto the holding queue. 4904 */ 4905 if (bf->bf_flags & ATH_BUF_BUSY) { 4906 ATH_TXQ_LOCK(txq); 4907 ath_txq_addholdingbuf(sc, bf); 4908 ATH_TXQ_UNLOCK(txq); 4909 return; 4910 } 4911 4912 /* 4913 * Not a busy buffer, so free normally 4914 */ 4915 ATH_TXBUF_LOCK(sc); 4916 ath_returnbuf_tail(sc, bf); 4917 ATH_TXBUF_UNLOCK(sc); 4918 } 4919 4920 /* 4921 * This is currently used by ath_tx_draintxq() and 4922 * ath_tx_tid_free_pkts(). 4923 * 4924 * It recycles a single ath_buf. 4925 */ 4926 void 4927 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4928 { 4929 struct ieee80211_node *ni = bf->bf_node; 4930 struct mbuf *m0 = bf->bf_m; 4931 4932 /* 4933 * Make sure that we only sync/unload if there's an mbuf. 4934 * If not (eg we cloned a buffer), the unload will have already 4935 * occurred. 4936 */ 4937 if (bf->bf_m != NULL) { 4938 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 4939 BUS_DMASYNC_POSTWRITE); 4940 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4941 } 4942 4943 bf->bf_node = NULL; 4944 bf->bf_m = NULL; 4945 4946 /* Free the buffer, it's not needed any longer */ 4947 ath_freebuf(sc, bf); 4948 4949 /* Pass the buffer back to net80211 - completing it */ 4950 ieee80211_tx_complete(ni, m0, status); 4951 } 4952 4953 static struct ath_buf * 4954 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4955 { 4956 struct ath_buf *bf; 4957 4958 ATH_TXQ_LOCK_ASSERT(txq); 4959 4960 /* 4961 * Drain the FIFO queue first, then if it's 4962 * empty, move to the normal frame queue. 4963 */ 4964 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4965 if (bf != NULL) { 4966 /* 4967 * Is it the last buffer in this set? 4968 * Decrement the FIFO counter. 4969 */ 4970 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4971 if (txq->axq_fifo_depth == 0) { 4972 device_printf(sc->sc_dev, 4973 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4974 __func__, 4975 txq->axq_qnum, 4976 txq->fifo.axq_depth); 4977 } else 4978 txq->axq_fifo_depth--; 4979 } 4980 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4981 return (bf); 4982 } 4983 4984 /* 4985 * Debugging! 4986 */ 4987 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4988 device_printf(sc->sc_dev, 4989 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4990 __func__, 4991 txq->axq_qnum, 4992 txq->axq_fifo_depth, 4993 txq->fifo.axq_depth); 4994 } 4995 4996 /* 4997 * Now drain the pending queue. 4998 */ 4999 bf = TAILQ_FIRST(&txq->axq_q); 5000 if (bf == NULL) { 5001 txq->axq_link = NULL; 5002 return (NULL); 5003 } 5004 ATH_TXQ_REMOVE(txq, bf, bf_list); 5005 return (bf); 5006 } 5007 5008 void 5009 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 5010 { 5011 #ifdef ATH_DEBUG 5012 struct ath_hal *ah = sc->sc_ah; 5013 #endif 5014 struct ath_buf *bf; 5015 u_int ix; 5016 5017 /* 5018 * NB: this assumes output has been stopped and 5019 * we do not need to block ath_tx_proc 5020 */ 5021 for (ix = 0;; ix++) { 5022 ATH_TXQ_LOCK(txq); 5023 bf = ath_tx_draintxq_get_one(sc, txq); 5024 if (bf == NULL) { 5025 ATH_TXQ_UNLOCK(txq); 5026 break; 5027 } 5028 if (bf->bf_state.bfs_aggr) 5029 txq->axq_aggr_depth--; 5030 #ifdef ATH_DEBUG 5031 if (sc->sc_debug & ATH_DEBUG_RESET) { 5032 struct ieee80211com *ic = &sc->sc_ic; 5033 int status = 0; 5034 5035 /* 5036 * EDMA operation has a TX completion FIFO 5037 * separate from the TX descriptor, so this 5038 * method of checking the "completion" status 5039 * is wrong. 5040 */ 5041 if (! sc->sc_isedma) { 5042 status = (ath_hal_txprocdesc(ah, 5043 bf->bf_lastds, 5044 &bf->bf_status.ds_txstat) == HAL_OK); 5045 } 5046 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 5047 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 5048 bf->bf_m->m_len, 0, -1); 5049 } 5050 #endif /* ATH_DEBUG */ 5051 /* 5052 * Since we're now doing magic in the completion 5053 * functions, we -must- call it for aggregation 5054 * destinations or BAW tracking will get upset. 5055 */ 5056 /* 5057 * Clear ATH_BUF_BUSY; the completion handler 5058 * will free the buffer. 5059 */ 5060 ATH_TXQ_UNLOCK(txq); 5061 bf->bf_flags &= ~ATH_BUF_BUSY; 5062 if (bf->bf_comp) 5063 bf->bf_comp(sc, bf, 1); 5064 else 5065 ath_tx_default_comp(sc, bf, 1); 5066 } 5067 5068 /* 5069 * Free the holding buffer if it exists 5070 */ 5071 ATH_TXQ_LOCK(txq); 5072 ath_txq_freeholdingbuf(sc, txq); 5073 ATH_TXQ_UNLOCK(txq); 5074 5075 /* 5076 * Drain software queued frames which are on 5077 * active TIDs. 5078 */ 5079 ath_tx_txq_drain(sc, txq); 5080 } 5081 5082 static void 5083 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 5084 { 5085 struct ath_hal *ah = sc->sc_ah; 5086 5087 ATH_TXQ_LOCK_ASSERT(txq); 5088 5089 DPRINTF(sc, ATH_DEBUG_RESET, 5090 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, " 5091 "link %p, holdingbf=%p\n", 5092 __func__, 5093 txq->axq_qnum, 5094 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 5095 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)), 5096 (int) ath_hal_numtxpending(ah, txq->axq_qnum), 5097 txq->axq_flags, 5098 txq->axq_link, 5099 txq->axq_holdingbf); 5100 5101 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 5102 /* We've stopped TX DMA, so mark this as stopped. */ 5103 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING; 5104 5105 #ifdef ATH_DEBUG 5106 if ((sc->sc_debug & ATH_DEBUG_RESET) 5107 && (txq->axq_holdingbf != NULL)) { 5108 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0); 5109 } 5110 #endif 5111 } 5112 5113 int 5114 ath_stoptxdma(struct ath_softc *sc) 5115 { 5116 struct ath_hal *ah = sc->sc_ah; 5117 int i; 5118 5119 /* XXX return value */ 5120 if (sc->sc_invalid) 5121 return 0; 5122 5123 if (!sc->sc_invalid) { 5124 /* don't touch the hardware if marked invalid */ 5125 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 5126 __func__, sc->sc_bhalq, 5127 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 5128 NULL); 5129 5130 /* stop the beacon queue */ 5131 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 5132 5133 /* Stop the data queues */ 5134 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5135 if (ATH_TXQ_SETUP(sc, i)) { 5136 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5137 ath_tx_stopdma(sc, &sc->sc_txq[i]); 5138 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5139 } 5140 } 5141 } 5142 5143 return 1; 5144 } 5145 5146 #ifdef ATH_DEBUG 5147 void 5148 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq) 5149 { 5150 struct ath_hal *ah = sc->sc_ah; 5151 struct ath_buf *bf; 5152 int i = 0; 5153 5154 if (! (sc->sc_debug & ATH_DEBUG_RESET)) 5155 return; 5156 5157 device_printf(sc->sc_dev, "%s: Q%d: begin\n", 5158 __func__, txq->axq_qnum); 5159 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) { 5160 ath_printtxbuf(sc, bf, txq->axq_qnum, i, 5161 ath_hal_txprocdesc(ah, bf->bf_lastds, 5162 &bf->bf_status.ds_txstat) == HAL_OK); 5163 i++; 5164 } 5165 device_printf(sc->sc_dev, "%s: Q%d: end\n", 5166 __func__, txq->axq_qnum); 5167 } 5168 #endif /* ATH_DEBUG */ 5169 5170 /* 5171 * Drain the transmit queues and reclaim resources. 5172 */ 5173 void 5174 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 5175 { 5176 struct ath_hal *ah = sc->sc_ah; 5177 struct ath_buf *bf_last; 5178 int i; 5179 5180 (void) ath_stoptxdma(sc); 5181 5182 /* 5183 * Dump the queue contents 5184 */ 5185 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5186 /* 5187 * XXX TODO: should we just handle the completed TX frames 5188 * here, whether or not the reset is a full one or not? 5189 */ 5190 if (ATH_TXQ_SETUP(sc, i)) { 5191 #ifdef ATH_DEBUG 5192 if (sc->sc_debug & ATH_DEBUG_RESET) 5193 ath_tx_dump(sc, &sc->sc_txq[i]); 5194 #endif /* ATH_DEBUG */ 5195 if (reset_type == ATH_RESET_NOLOSS) { 5196 ath_tx_processq(sc, &sc->sc_txq[i], 0); 5197 ATH_TXQ_LOCK(&sc->sc_txq[i]); 5198 /* 5199 * Free the holding buffer; DMA is now 5200 * stopped. 5201 */ 5202 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]); 5203 /* 5204 * Setup the link pointer to be the 5205 * _last_ buffer/descriptor in the list. 5206 * If there's nothing in the list, set it 5207 * to NULL. 5208 */ 5209 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i], 5210 axq_q_s); 5211 if (bf_last != NULL) { 5212 ath_hal_gettxdesclinkptr(ah, 5213 bf_last->bf_lastds, 5214 &sc->sc_txq[i].axq_link); 5215 } else { 5216 sc->sc_txq[i].axq_link = NULL; 5217 } 5218 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 5219 } else 5220 ath_tx_draintxq(sc, &sc->sc_txq[i]); 5221 } 5222 } 5223 #ifdef ATH_DEBUG 5224 if (sc->sc_debug & ATH_DEBUG_RESET) { 5225 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 5226 if (bf != NULL && bf->bf_m != NULL) { 5227 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 5228 ath_hal_txprocdesc(ah, bf->bf_lastds, 5229 &bf->bf_status.ds_txstat) == HAL_OK); 5230 ieee80211_dump_pkt(&sc->sc_ic, 5231 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 5232 0, -1); 5233 } 5234 } 5235 #endif /* ATH_DEBUG */ 5236 sc->sc_wd_timer = 0; 5237 } 5238 5239 /* 5240 * Update internal state after a channel change. 5241 */ 5242 static void 5243 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 5244 { 5245 enum ieee80211_phymode mode; 5246 5247 /* 5248 * Change channels and update the h/w rate map 5249 * if we're switching; e.g. 11a to 11b/g. 5250 */ 5251 mode = ieee80211_chan2mode(chan); 5252 if (mode != sc->sc_curmode) 5253 ath_setcurmode(sc, mode); 5254 sc->sc_curchan = chan; 5255 } 5256 5257 /* 5258 * Set/change channels. If the channel is really being changed, 5259 * it's done by resetting the chip. To accomplish this we must 5260 * first cleanup any pending DMA, then restart stuff after a la 5261 * ath_init. 5262 */ 5263 static int 5264 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 5265 { 5266 struct ieee80211com *ic = &sc->sc_ic; 5267 struct ath_hal *ah = sc->sc_ah; 5268 int ret = 0; 5269 5270 /* Treat this as an interface reset */ 5271 ATH_PCU_UNLOCK_ASSERT(sc); 5272 ATH_UNLOCK_ASSERT(sc); 5273 5274 /* (Try to) stop TX/RX from occurring */ 5275 taskqueue_block(sc->sc_tq); 5276 5277 ATH_PCU_LOCK(sc); 5278 5279 /* Disable interrupts */ 5280 ath_hal_intrset(ah, 0); 5281 5282 /* Stop new RX/TX/interrupt completion */ 5283 if (ath_reset_grablock(sc, 1) == 0) { 5284 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 5285 __func__); 5286 } 5287 5288 /* Stop pending RX/TX completion */ 5289 ath_txrx_stop_locked(sc); 5290 5291 ATH_PCU_UNLOCK(sc); 5292 5293 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 5294 __func__, ieee80211_chan2ieee(ic, chan), 5295 chan->ic_freq, chan->ic_flags); 5296 if (chan != sc->sc_curchan) { 5297 HAL_STATUS status; 5298 /* 5299 * To switch channels clear any pending DMA operations; 5300 * wait long enough for the RX fifo to drain, reset the 5301 * hardware at the new frequency, and then re-enable 5302 * the relevant bits of the h/w. 5303 */ 5304 #if 0 5305 ath_hal_intrset(ah, 0); /* disable interrupts */ 5306 #endif 5307 ath_stoprecv(sc, 1); /* turn off frame recv */ 5308 /* 5309 * First, handle completed TX/RX frames. 5310 */ 5311 ath_rx_flush(sc); 5312 ath_draintxq(sc, ATH_RESET_NOLOSS); 5313 /* 5314 * Next, flush the non-scheduled frames. 5315 */ 5316 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 5317 5318 ath_update_chainmasks(sc, chan); 5319 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 5320 sc->sc_cur_rxchainmask); 5321 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, 5322 HAL_RESET_NORMAL, &status)) { 5323 device_printf(sc->sc_dev, "%s: unable to reset " 5324 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 5325 __func__, ieee80211_chan2ieee(ic, chan), 5326 chan->ic_freq, chan->ic_flags, status); 5327 ret = EIO; 5328 goto finish; 5329 } 5330 sc->sc_diversity = ath_hal_getdiversity(ah); 5331 5332 ATH_RX_LOCK(sc); 5333 sc->sc_rx_stopped = 1; 5334 sc->sc_rx_resetted = 1; 5335 ATH_RX_UNLOCK(sc); 5336 5337 /* Quiet time handling - ensure we resync */ 5338 ath_vap_clear_quiet_ie(sc); 5339 5340 /* Let DFS at it in case it's a DFS channel */ 5341 ath_dfs_radar_enable(sc, chan); 5342 5343 /* Let spectral at in case spectral is enabled */ 5344 ath_spectral_enable(sc, chan); 5345 5346 /* 5347 * Let bluetooth coexistence at in case it's needed for this 5348 * channel 5349 */ 5350 ath_btcoex_enable(sc, ic->ic_curchan); 5351 5352 /* 5353 * If we're doing TDMA, enforce the TXOP limitation for chips 5354 * that support it. 5355 */ 5356 if (sc->sc_hasenforcetxop && sc->sc_tdma) 5357 ath_hal_setenforcetxop(sc->sc_ah, 1); 5358 else 5359 ath_hal_setenforcetxop(sc->sc_ah, 0); 5360 5361 /* 5362 * Re-enable rx framework. 5363 */ 5364 if (ath_startrecv(sc) != 0) { 5365 device_printf(sc->sc_dev, 5366 "%s: unable to restart recv logic\n", __func__); 5367 ret = EIO; 5368 goto finish; 5369 } 5370 5371 /* 5372 * Change channels and update the h/w rate map 5373 * if we're switching; e.g. 11a to 11b/g. 5374 */ 5375 ath_chan_change(sc, chan); 5376 5377 /* 5378 * Reset clears the beacon timers; reset them 5379 * here if needed. 5380 */ 5381 if (sc->sc_beacons) { /* restart beacons */ 5382 #ifdef IEEE80211_SUPPORT_TDMA 5383 if (sc->sc_tdma) 5384 ath_tdma_config(sc, NULL); 5385 else 5386 #endif 5387 ath_beacon_config(sc, NULL); 5388 } 5389 5390 /* 5391 * Re-enable interrupts. 5392 */ 5393 #if 0 5394 ath_hal_intrset(ah, sc->sc_imask); 5395 #endif 5396 } 5397 5398 finish: 5399 ATH_PCU_LOCK(sc); 5400 sc->sc_inreset_cnt--; 5401 /* XXX only do this if sc_inreset_cnt == 0? */ 5402 ath_hal_intrset(ah, sc->sc_imask); 5403 ATH_PCU_UNLOCK(sc); 5404 5405 ath_txrx_start(sc); 5406 /* XXX ath_start? */ 5407 5408 return ret; 5409 } 5410 5411 /* 5412 * Periodically recalibrate the PHY to account 5413 * for temperature/environment changes. 5414 */ 5415 static void 5416 ath_calibrate(void *arg) 5417 { 5418 struct ath_softc *sc = arg; 5419 struct ath_hal *ah = sc->sc_ah; 5420 struct ieee80211com *ic = &sc->sc_ic; 5421 HAL_BOOL longCal, isCalDone = AH_TRUE; 5422 HAL_BOOL aniCal, shortCal = AH_FALSE; 5423 int nextcal; 5424 5425 ATH_LOCK_ASSERT(sc); 5426 5427 /* 5428 * Force the hardware awake for ANI work. 5429 */ 5430 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5431 5432 /* Skip trying to do this if we're in reset */ 5433 if (sc->sc_inreset_cnt) 5434 goto restart; 5435 5436 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 5437 goto restart; 5438 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 5439 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 5440 if (sc->sc_doresetcal) 5441 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 5442 5443 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 5444 if (aniCal) { 5445 sc->sc_stats.ast_ani_cal++; 5446 sc->sc_lastani = ticks; 5447 ath_hal_ani_poll(ah, sc->sc_curchan); 5448 } 5449 5450 if (longCal) { 5451 sc->sc_stats.ast_per_cal++; 5452 sc->sc_lastlongcal = ticks; 5453 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 5454 /* 5455 * Rfgain is out of bounds, reset the chip 5456 * to load new gain values. 5457 */ 5458 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5459 "%s: rfgain change\n", __func__); 5460 sc->sc_stats.ast_per_rfgain++; 5461 sc->sc_resetcal = 0; 5462 sc->sc_doresetcal = AH_TRUE; 5463 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5464 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5465 ath_power_restore_power_state(sc); 5466 return; 5467 } 5468 /* 5469 * If this long cal is after an idle period, then 5470 * reset the data collection state so we start fresh. 5471 */ 5472 if (sc->sc_resetcal) { 5473 (void) ath_hal_calreset(ah, sc->sc_curchan); 5474 sc->sc_lastcalreset = ticks; 5475 sc->sc_lastshortcal = ticks; 5476 sc->sc_resetcal = 0; 5477 sc->sc_doresetcal = AH_TRUE; 5478 } 5479 } 5480 5481 /* Only call if we're doing a short/long cal, not for ANI calibration */ 5482 if (shortCal || longCal) { 5483 isCalDone = AH_FALSE; 5484 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 5485 if (longCal) { 5486 /* 5487 * Calibrate noise floor data again in case of change. 5488 */ 5489 ath_hal_process_noisefloor(ah); 5490 } 5491 } else { 5492 DPRINTF(sc, ATH_DEBUG_ANY, 5493 "%s: calibration of channel %u failed\n", 5494 __func__, sc->sc_curchan->ic_freq); 5495 sc->sc_stats.ast_per_calfail++; 5496 } 5497 /* 5498 * XXX TODO: get the NF calibration results from the HAL. 5499 * If we failed NF cal then schedule a hard reset to potentially 5500 * un-freeze the PHY. 5501 * 5502 * Note we have to be careful here to not get stuck in an 5503 * infinite NIC restart. Ideally we'd not restart if we 5504 * failed the first NF cal - that /can/ fail sometimes in 5505 * a noisy environment. 5506 * 5507 * Instead, we should likely temporarily shorten the longCal 5508 * period to happen pretty quickly and if a subsequent one 5509 * fails, do a full reset. 5510 */ 5511 if (shortCal) 5512 sc->sc_lastshortcal = ticks; 5513 } 5514 if (!isCalDone) { 5515 restart: 5516 /* 5517 * Use a shorter interval to potentially collect multiple 5518 * data samples required to complete calibration. Once 5519 * we're told the work is done we drop back to a longer 5520 * interval between requests. We're more aggressive doing 5521 * work when operating as an AP to improve operation right 5522 * after startup. 5523 */ 5524 sc->sc_lastshortcal = ticks; 5525 nextcal = ath_shortcalinterval*hz/1000; 5526 if (sc->sc_opmode != HAL_M_HOSTAP) 5527 nextcal *= 10; 5528 sc->sc_doresetcal = AH_TRUE; 5529 } else { 5530 /* nextcal should be the shortest time for next event */ 5531 nextcal = ath_longcalinterval*hz; 5532 if (sc->sc_lastcalreset == 0) 5533 sc->sc_lastcalreset = sc->sc_lastlongcal; 5534 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 5535 sc->sc_resetcal = 1; /* setup reset next trip */ 5536 sc->sc_doresetcal = AH_FALSE; 5537 } 5538 /* ANI calibration may occur more often than short/long/resetcal */ 5539 if (ath_anicalinterval > 0) 5540 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 5541 5542 if (nextcal != 0) { 5543 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 5544 __func__, nextcal, isCalDone ? "" : "!"); 5545 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 5546 } else { 5547 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 5548 __func__); 5549 /* NB: don't rearm timer */ 5550 } 5551 /* 5552 * Restore power state now that we're done. 5553 */ 5554 ath_power_restore_power_state(sc); 5555 } 5556 5557 static void 5558 ath_scan_start(struct ieee80211com *ic) 5559 { 5560 struct ath_softc *sc = ic->ic_softc; 5561 struct ath_hal *ah = sc->sc_ah; 5562 u_int32_t rfilt; 5563 5564 /* XXX calibration timer? */ 5565 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */ 5566 5567 ATH_LOCK(sc); 5568 sc->sc_scanning = 1; 5569 sc->sc_syncbeacon = 0; 5570 rfilt = ath_calcrxfilter(sc); 5571 ATH_UNLOCK(sc); 5572 5573 ATH_PCU_LOCK(sc); 5574 ath_hal_setrxfilter(ah, rfilt); 5575 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0); 5576 ATH_PCU_UNLOCK(sc); 5577 5578 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 5579 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr)); 5580 } 5581 5582 static void 5583 ath_scan_end(struct ieee80211com *ic) 5584 { 5585 struct ath_softc *sc = ic->ic_softc; 5586 struct ath_hal *ah = sc->sc_ah; 5587 u_int32_t rfilt; 5588 5589 ATH_LOCK(sc); 5590 sc->sc_scanning = 0; 5591 rfilt = ath_calcrxfilter(sc); 5592 ATH_UNLOCK(sc); 5593 5594 ATH_PCU_LOCK(sc); 5595 ath_hal_setrxfilter(ah, rfilt); 5596 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5597 5598 ath_hal_process_noisefloor(ah); 5599 ATH_PCU_UNLOCK(sc); 5600 5601 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5602 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 5603 sc->sc_curaid); 5604 } 5605 5606 #ifdef ATH_ENABLE_11N 5607 /* 5608 * For now, just do a channel change. 5609 * 5610 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 5611 * control state and resetting the hardware without dropping frames out 5612 * of the queue. 5613 * 5614 * The unfortunate trouble here is making absolutely sure that the 5615 * channel width change has propagated enough so the hardware 5616 * absolutely isn't handed bogus frames for it's current operating 5617 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 5618 * does occur in parallel, we need to make certain we've blocked 5619 * any further ongoing TX (and RX, that can cause raw TX) 5620 * before we do this. 5621 */ 5622 static void 5623 ath_update_chw(struct ieee80211com *ic) 5624 { 5625 struct ath_softc *sc = ic->ic_softc; 5626 5627 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 5628 device_printf(sc->sc_dev, "%s: called\n", __func__); 5629 5630 /* 5631 * XXX TODO: schedule a tasklet that stops things without freeing, 5632 * walks the now stopped TX queue(s) looking for frames to retry 5633 * as if we TX filtered them (whch may mean dropping non-ampdu frames!) 5634 * but okay) then place them back on the software queue so they 5635 * can have the rate control lookup done again. 5636 */ 5637 ath_set_channel(ic); 5638 } 5639 #endif /* ATH_ENABLE_11N */ 5640 5641 /* 5642 * This is called by the beacon parsing routine in the receive 5643 * path to update the current quiet time information provided by 5644 * an AP. 5645 * 5646 * This is STA specific, it doesn't take the AP TBTT/beacon slot 5647 * offset into account. 5648 * 5649 * The quiet IE doesn't control the /now/ beacon interval - it 5650 * controls the upcoming beacon interval. So, when tbtt=1, 5651 * the quiet element programming shall be for the next beacon 5652 * interval. There's no tbtt=0 behaviour defined, so don't. 5653 * 5654 * Since we're programming the next quiet interval, we have 5655 * to keep in mind what we will see when the next beacon 5656 * is received with potentially a quiet IE. For example, if 5657 * quiet_period is 1, then we are always getting a quiet interval 5658 * each TBTT - so if we just program it in upon each beacon received, 5659 * it will constantly reflect the "next" TBTT and we will never 5660 * let the counter stay programmed correctly. 5661 * 5662 * So: 5663 * + the first time we see the quiet IE, program it and store 5664 * the details somewhere; 5665 * + if the quiet parameters don't change (ie, period/duration/offset) 5666 * then just leave the programming enabled; 5667 * + (we can "skip" beacons, so don't try to enforce tbttcount unless 5668 * you're willing to also do the skipped beacon math); 5669 * + if the quiet IE is removed, then halt quiet time. 5670 */ 5671 static int 5672 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie) 5673 { 5674 struct ieee80211_quiet_ie *q; 5675 struct ieee80211vap *vap = ni->ni_vap; 5676 struct ath_vap *avp = ATH_VAP(vap); 5677 struct ieee80211com *ic = vap->iv_ic; 5678 struct ath_softc *sc = ic->ic_softc; 5679 5680 if (vap->iv_opmode != IEEE80211_M_STA) 5681 return (0); 5682 5683 /* Verify we have a quiet time IE */ 5684 if (ie == NULL) { 5685 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5686 "%s: called; NULL IE, disabling\n", __func__); 5687 5688 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE); 5689 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 5690 return (0); 5691 } 5692 5693 /* If we do, verify it's actually legit */ 5694 if (ie[0] != IEEE80211_ELEMID_QUIET) 5695 return 0; 5696 if (ie[1] != 6) 5697 return 0; 5698 5699 /* Note: this belongs in net80211, parsed out and everything */ 5700 q = (void *) ie; 5701 5702 /* 5703 * Compare what we have stored to what we last saw. 5704 * If they're the same then don't program in anything. 5705 */ 5706 if ((q->period == avp->quiet_ie.period) && 5707 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) && 5708 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset))) 5709 return (0); 5710 5711 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5712 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n", 5713 __func__, 5714 (int) q->tbttcount, 5715 (int) q->period, 5716 (int) le16dec(&q->duration), 5717 (int) le16dec(&q->offset)); 5718 5719 /* 5720 * Don't program in garbage values. 5721 */ 5722 if ((le16dec(&q->duration) == 0) || 5723 (le16dec(&q->duration) >= ni->ni_intval)) { 5724 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5725 "%s: invalid duration (%d)\n", __func__, 5726 le16dec(&q->duration)); 5727 return (0); 5728 } 5729 /* 5730 * Can have a 0 offset, but not a duration - so just check 5731 * they don't exceed the intval. 5732 */ 5733 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) { 5734 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5735 "%s: invalid duration + offset (%d+%d)\n", __func__, 5736 le16dec(&q->duration), 5737 le16dec(&q->offset)); 5738 return (0); 5739 } 5740 if (q->tbttcount == 0) { 5741 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5742 "%s: invalid tbttcount (0)\n", __func__); 5743 return (0); 5744 } 5745 if (q->period == 0) { 5746 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5747 "%s: invalid period (0)\n", __func__); 5748 return (0); 5749 } 5750 5751 /* 5752 * This is a new quiet time IE config, so wait until tbttcount 5753 * is equal to 1, and program it in. 5754 */ 5755 if (q->tbttcount == 1) { 5756 DPRINTF(sc, ATH_DEBUG_QUIETIE, 5757 "%s: programming\n", __func__); 5758 ath_hal_set_quiet(sc->sc_ah, 5759 q->period * ni->ni_intval, /* convert to TU */ 5760 le16dec(&q->duration), /* already in TU */ 5761 le16dec(&q->offset) + ni->ni_intval, 5762 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF); 5763 /* 5764 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for 5765 * STA mode 5766 */ 5767 5768 /* Update local state */ 5769 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie)); 5770 } 5771 5772 return (0); 5773 } 5774 5775 static void 5776 ath_set_channel(struct ieee80211com *ic) 5777 { 5778 struct ath_softc *sc = ic->ic_softc; 5779 5780 ATH_LOCK(sc); 5781 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5782 ATH_UNLOCK(sc); 5783 5784 (void) ath_chan_set(sc, ic->ic_curchan); 5785 /* 5786 * If we are returning to our bss channel then mark state 5787 * so the next recv'd beacon's tsf will be used to sync the 5788 * beacon timers. Note that since we only hear beacons in 5789 * sta/ibss mode this has no effect in other operating modes. 5790 */ 5791 ATH_LOCK(sc); 5792 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 5793 sc->sc_syncbeacon = 1; 5794 ath_power_restore_power_state(sc); 5795 ATH_UNLOCK(sc); 5796 } 5797 5798 /* 5799 * Walk the vap list and check if there any vap's in RUN state. 5800 */ 5801 static int 5802 ath_isanyrunningvaps(struct ieee80211vap *this) 5803 { 5804 struct ieee80211com *ic = this->iv_ic; 5805 struct ieee80211vap *vap; 5806 5807 IEEE80211_LOCK_ASSERT(ic); 5808 5809 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 5810 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 5811 return 1; 5812 } 5813 return 0; 5814 } 5815 5816 static int 5817 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 5818 { 5819 struct ieee80211com *ic = vap->iv_ic; 5820 struct ath_softc *sc = ic->ic_softc; 5821 struct ath_vap *avp = ATH_VAP(vap); 5822 struct ath_hal *ah = sc->sc_ah; 5823 struct ieee80211_node *ni = NULL; 5824 int i, error, stamode; 5825 u_int32_t rfilt; 5826 int csa_run_transition = 0; 5827 enum ieee80211_state ostate = vap->iv_state; 5828 5829 static const HAL_LED_STATE leds[] = { 5830 HAL_LED_INIT, /* IEEE80211_S_INIT */ 5831 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 5832 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 5833 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 5834 HAL_LED_RUN, /* IEEE80211_S_CAC */ 5835 HAL_LED_RUN, /* IEEE80211_S_RUN */ 5836 HAL_LED_RUN, /* IEEE80211_S_CSA */ 5837 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 5838 }; 5839 5840 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 5841 ieee80211_state_name[ostate], 5842 ieee80211_state_name[nstate]); 5843 5844 /* 5845 * net80211 _should_ have the comlock asserted at this point. 5846 * There are some comments around the calls to vap->iv_newstate 5847 * which indicate that it (newstate) may end up dropping the 5848 * lock. This and the subsequent lock assert check after newstate 5849 * are an attempt to catch these and figure out how/why. 5850 */ 5851 IEEE80211_LOCK_ASSERT(ic); 5852 5853 /* Before we touch the hardware - wake it up */ 5854 ATH_LOCK(sc); 5855 /* 5856 * If the NIC is in anything other than SLEEP state, 5857 * we need to ensure that self-generated frames are 5858 * set for PWRMGT=0. Otherwise we may end up with 5859 * strange situations. 5860 * 5861 * XXX TODO: is this actually the case? :-) 5862 */ 5863 if (nstate != IEEE80211_S_SLEEP) 5864 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5865 5866 /* 5867 * Now, wake the thing up. 5868 */ 5869 ath_power_set_power_state(sc, HAL_PM_AWAKE); 5870 5871 /* 5872 * And stop the calibration callout whilst we have 5873 * ATH_LOCK held. 5874 */ 5875 callout_stop(&sc->sc_cal_ch); 5876 ATH_UNLOCK(sc); 5877 5878 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 5879 csa_run_transition = 1; 5880 5881 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 5882 5883 if (nstate == IEEE80211_S_SCAN) { 5884 /* 5885 * Scanning: turn off beacon miss and don't beacon. 5886 * Mark beacon state so when we reach RUN state we'll 5887 * [re]setup beacons. Unblock the task q thread so 5888 * deferred interrupt processing is done. 5889 */ 5890 5891 /* Ensure we stay awake during scan */ 5892 ATH_LOCK(sc); 5893 ath_power_setselfgen(sc, HAL_PM_AWAKE); 5894 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 5895 ATH_UNLOCK(sc); 5896 5897 ath_hal_intrset(ah, 5898 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 5899 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5900 sc->sc_beacons = 0; 5901 taskqueue_unblock(sc->sc_tq); 5902 } 5903 5904 ni = ieee80211_ref_node(vap->iv_bss); 5905 rfilt = ath_calcrxfilter(sc); 5906 stamode = (vap->iv_opmode == IEEE80211_M_STA || 5907 vap->iv_opmode == IEEE80211_M_AHDEMO || 5908 vap->iv_opmode == IEEE80211_M_IBSS); 5909 5910 /* 5911 * XXX Dont need to do this (and others) if we've transitioned 5912 * from SLEEP->RUN. 5913 */ 5914 if (stamode && nstate == IEEE80211_S_RUN) { 5915 sc->sc_curaid = ni->ni_associd; 5916 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 5917 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 5918 } 5919 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 5920 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 5921 ath_hal_setrxfilter(ah, rfilt); 5922 5923 /* XXX is this to restore keycache on resume? */ 5924 if (vap->iv_opmode != IEEE80211_M_STA && 5925 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 5926 for (i = 0; i < IEEE80211_WEP_NKID; i++) 5927 if (ath_hal_keyisvalid(ah, i)) 5928 ath_hal_keysetmac(ah, i, ni->ni_bssid); 5929 } 5930 5931 /* 5932 * Invoke the parent method to do net80211 work. 5933 */ 5934 error = avp->av_newstate(vap, nstate, arg); 5935 if (error != 0) 5936 goto bad; 5937 5938 /* 5939 * See above: ensure av_newstate() doesn't drop the lock 5940 * on us. 5941 */ 5942 IEEE80211_LOCK_ASSERT(ic); 5943 5944 /* 5945 * XXX TODO: if nstate is _S_CAC, then we should disable 5946 * ACK processing until CAC is completed. 5947 */ 5948 5949 /* 5950 * XXX TODO: if we're on a passive channel, then we should 5951 * not allow any ACKs or self-generated frames until we hear 5952 * a beacon. Unfortunately there isn't a notification from 5953 * net80211 so perhaps we could slot that particular check 5954 * into the mgmt receive path and just ensure that we clear 5955 * it on RX of beacons in passive mode (and only clear it 5956 * once, obviously.) 5957 */ 5958 5959 /* 5960 * XXX TODO: net80211 should be tracking whether channels 5961 * have heard beacons and are thus considered "OK" for 5962 * transmitting - and then inform the driver about this 5963 * state change. That way if we hear an AP go quiet 5964 * (and nothing else is beaconing on a channel) the 5965 * channel can go back to being passive until another 5966 * beacon is heard. 5967 */ 5968 5969 /* 5970 * XXX TODO: if nstate is _S_CAC, then we should disable 5971 * ACK processing until CAC is completed. 5972 */ 5973 5974 /* 5975 * XXX TODO: if we're on a passive channel, then we should 5976 * not allow any ACKs or self-generated frames until we hear 5977 * a beacon. Unfortunately there isn't a notification from 5978 * net80211 so perhaps we could slot that particular check 5979 * into the mgmt receive path and just ensure that we clear 5980 * it on RX of beacons in passive mode (and only clear it 5981 * once, obviously.) 5982 */ 5983 5984 /* 5985 * XXX TODO: net80211 should be tracking whether channels 5986 * have heard beacons and are thus considered "OK" for 5987 * transmitting - and then inform the driver about this 5988 * state change. That way if we hear an AP go quiet 5989 * (and nothing else is beaconing on a channel) the 5990 * channel can go back to being passive until another 5991 * beacon is heard. 5992 */ 5993 5994 if (nstate == IEEE80211_S_RUN) { 5995 /* NB: collect bss node again, it may have changed */ 5996 ieee80211_free_node(ni); 5997 ni = ieee80211_ref_node(vap->iv_bss); 5998 5999 DPRINTF(sc, ATH_DEBUG_STATE, 6000 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 6001 "capinfo 0x%04x chan %d\n", __func__, 6002 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 6003 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 6004 6005 switch (vap->iv_opmode) { 6006 #ifdef IEEE80211_SUPPORT_TDMA 6007 case IEEE80211_M_AHDEMO: 6008 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 6009 break; 6010 /* fall thru... */ 6011 #endif 6012 case IEEE80211_M_HOSTAP: 6013 case IEEE80211_M_IBSS: 6014 case IEEE80211_M_MBSS: 6015 6016 /* 6017 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.) 6018 * For channels that are in CAC, we may have disabled 6019 * this during CAC to ensure we don't ACK frames 6020 * sent to us. 6021 */ 6022 6023 /* 6024 * Allocate and setup the beacon frame. 6025 * 6026 * Stop any previous beacon DMA. This may be 6027 * necessary, for example, when an ibss merge 6028 * causes reconfiguration; there will be a state 6029 * transition from RUN->RUN that means we may 6030 * be called with beacon transmission active. 6031 */ 6032 ath_hal_stoptxdma(ah, sc->sc_bhalq); 6033 6034 error = ath_beacon_alloc(sc, ni); 6035 if (error != 0) 6036 goto bad; 6037 /* 6038 * If joining an adhoc network defer beacon timer 6039 * configuration to the next beacon frame so we 6040 * have a current TSF to use. Otherwise we're 6041 * starting an ibss/bss so there's no need to delay; 6042 * if this is the first vap moving to RUN state, then 6043 * beacon state needs to be [re]configured. 6044 */ 6045 if (vap->iv_opmode == IEEE80211_M_IBSS && 6046 ni->ni_tstamp.tsf != 0) { 6047 sc->sc_syncbeacon = 1; 6048 } else if (!sc->sc_beacons) { 6049 #ifdef IEEE80211_SUPPORT_TDMA 6050 if (vap->iv_caps & IEEE80211_C_TDMA) 6051 ath_tdma_config(sc, vap); 6052 else 6053 #endif 6054 ath_beacon_config(sc, vap); 6055 sc->sc_beacons = 1; 6056 } 6057 break; 6058 case IEEE80211_M_STA: 6059 /* 6060 * Defer beacon timer configuration to the next 6061 * beacon frame so we have a current TSF to use 6062 * (any TSF collected when scanning is likely old). 6063 * However if it's due to a CSA -> RUN transition, 6064 * force a beacon update so we pick up a lack of 6065 * beacons from an AP in CAC and thus force a 6066 * scan. 6067 * 6068 * And, there's also corner cases here where 6069 * after a scan, the AP may have disappeared. 6070 * In that case, we may not receive an actual 6071 * beacon to update the beacon timer and thus we 6072 * won't get notified of the missing beacons. 6073 * 6074 * Also, don't do any of this if we're not running 6075 * with hardware beacon support, as that'll interfere 6076 * with an AP VAP. 6077 */ 6078 if (ostate != IEEE80211_S_RUN && 6079 ostate != IEEE80211_S_SLEEP) { 6080 6081 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 6082 DPRINTF(sc, ATH_DEBUG_BEACON, 6083 "%s: STA; syncbeacon=1\n", __func__); 6084 sc->sc_syncbeacon = 1; 6085 if (csa_run_transition) 6086 ath_beacon_config(sc, vap); 6087 } 6088 6089 /* Quiet time handling - ensure we resync */ 6090 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6091 6092 /* 6093 * PR: kern/175227 6094 * 6095 * Reconfigure beacons during reset; as otherwise 6096 * we won't get the beacon timers reprogrammed 6097 * after a reset and thus we won't pick up a 6098 * beacon miss interrupt. 6099 * 6100 * Hopefully we'll see a beacon before the BMISS 6101 * timer fires (too often), leading to a STA 6102 * disassociation. 6103 */ 6104 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 6105 sc->sc_beacons = 1; 6106 } 6107 } 6108 break; 6109 case IEEE80211_M_MONITOR: 6110 /* 6111 * Monitor mode vaps have only INIT->RUN and RUN->RUN 6112 * transitions so we must re-enable interrupts here to 6113 * handle the case of a single monitor mode vap. 6114 */ 6115 ath_hal_intrset(ah, sc->sc_imask); 6116 break; 6117 case IEEE80211_M_WDS: 6118 break; 6119 default: 6120 break; 6121 } 6122 /* 6123 * Let the hal process statistics collected during a 6124 * scan so it can provide calibrated noise floor data. 6125 */ 6126 ath_hal_process_noisefloor(ah); 6127 /* 6128 * Reset rssi stats; maybe not the best place... 6129 */ 6130 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 6131 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 6132 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 6133 6134 /* 6135 * Force awake for RUN mode. 6136 */ 6137 ATH_LOCK(sc); 6138 ath_power_setselfgen(sc, HAL_PM_AWAKE); 6139 ath_power_setpower(sc, HAL_PM_AWAKE, 1); 6140 6141 /* 6142 * Finally, start any timers and the task q thread 6143 * (in case we didn't go through SCAN state). 6144 */ 6145 if (ath_longcalinterval != 0) { 6146 /* start periodic recalibration timer */ 6147 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6148 } else { 6149 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6150 "%s: calibration disabled\n", __func__); 6151 } 6152 ATH_UNLOCK(sc); 6153 6154 taskqueue_unblock(sc->sc_tq); 6155 } else if (nstate == IEEE80211_S_INIT) { 6156 /* Quiet time handling - ensure we resync */ 6157 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6158 6159 /* 6160 * If there are no vaps left in RUN state then 6161 * shutdown host/driver operation: 6162 * o disable interrupts 6163 * o disable the task queue thread 6164 * o mark beacon processing as stopped 6165 */ 6166 if (!ath_isanyrunningvaps(vap)) { 6167 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 6168 /* disable interrupts */ 6169 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 6170 taskqueue_block(sc->sc_tq); 6171 sc->sc_beacons = 0; 6172 } 6173 6174 /* 6175 * For at least STA mode we likely should clear the ANI 6176 * and NF calibration state and allow the NIC/HAL to figure 6177 * out optimal parameters at runtime. Otherwise if we 6178 * disassociate due to interference / deafness it may persist 6179 * when we reconnect. 6180 * 6181 * Note: may need to do this for other states too, not just 6182 * _S_INIT. 6183 */ 6184 #ifdef IEEE80211_SUPPORT_TDMA 6185 ath_hal_setcca(ah, AH_TRUE); 6186 #endif 6187 } else if (nstate == IEEE80211_S_SLEEP) { 6188 /* We're going to sleep, so transition appropriately */ 6189 /* For now, only do this if we're a single STA vap */ 6190 if (sc->sc_nvaps == 1 && 6191 vap->iv_opmode == IEEE80211_M_STA) { 6192 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon); 6193 ATH_LOCK(sc); 6194 /* 6195 * Always at least set the self-generated 6196 * frame config to set PWRMGT=1. 6197 */ 6198 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP); 6199 6200 /* 6201 * If we're not syncing beacons, transition 6202 * to NETWORK_SLEEP. 6203 * 6204 * We stay awake if syncbeacon > 0 in case 6205 * we need to listen for some beacons otherwise 6206 * our beacon timer config may be wrong. 6207 */ 6208 if (sc->sc_syncbeacon == 0) { 6209 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1); 6210 } 6211 ATH_UNLOCK(sc); 6212 } 6213 6214 /* 6215 * Note - the ANI/calibration timer isn't re-enabled during 6216 * network sleep for now. One unfortunate side-effect is that 6217 * the PHY/airtime statistics aren't gathered on the channel 6218 * but I haven't yet tested to see if reading those registers 6219 * CAN occur during network sleep. 6220 * 6221 * This should be revisited in a future commit, even if it's 6222 * just to split out the airtime polling from ANI/calibration. 6223 */ 6224 } else if (nstate == IEEE80211_S_SCAN) { 6225 /* Quiet time handling - ensure we resync */ 6226 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie)); 6227 6228 /* 6229 * If we're in scan mode then startpcureceive() is 6230 * hopefully being called with "reset ANI" for this channel; 6231 * but once we attempt to reassociate we program in the previous 6232 * ANI values and.. not do any calibration until we're running. 6233 * This may mean we stay deaf unless we can associate successfully. 6234 * 6235 * So do kick off the cal timer to get NF/ANI going. 6236 */ 6237 ATH_LOCK(sc); 6238 if (ath_longcalinterval != 0) { 6239 /* start periodic recalibration timer */ 6240 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 6241 } else { 6242 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 6243 "%s: calibration disabled\n", __func__); 6244 } 6245 ATH_UNLOCK(sc); 6246 } 6247 bad: 6248 ieee80211_free_node(ni); 6249 6250 /* 6251 * Restore the power state - either to what it was, or 6252 * to network_sleep if it's alright. 6253 */ 6254 ATH_LOCK(sc); 6255 ath_power_restore_power_state(sc); 6256 ATH_UNLOCK(sc); 6257 return error; 6258 } 6259 6260 /* 6261 * Allocate a key cache slot to the station so we can 6262 * setup a mapping from key index to node. The key cache 6263 * slot is needed for managing antenna state and for 6264 * compression when stations do not use crypto. We do 6265 * it uniliaterally here; if crypto is employed this slot 6266 * will be reassigned. 6267 */ 6268 static void 6269 ath_setup_stationkey(struct ieee80211_node *ni) 6270 { 6271 struct ieee80211vap *vap = ni->ni_vap; 6272 struct ath_softc *sc = vap->iv_ic->ic_softc; 6273 ieee80211_keyix keyix, rxkeyix; 6274 6275 /* XXX should take a locked ref to vap->iv_bss */ 6276 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 6277 /* 6278 * Key cache is full; we'll fall back to doing 6279 * the more expensive lookup in software. Note 6280 * this also means no h/w compression. 6281 */ 6282 /* XXX msg+statistic */ 6283 } else { 6284 /* XXX locking? */ 6285 ni->ni_ucastkey.wk_keyix = keyix; 6286 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 6287 /* NB: must mark device key to get called back on delete */ 6288 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 6289 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 6290 /* NB: this will create a pass-thru key entry */ 6291 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 6292 } 6293 } 6294 6295 /* 6296 * Setup driver-specific state for a newly associated node. 6297 * Note that we're called also on a re-associate, the isnew 6298 * param tells us if this is the first time or not. 6299 */ 6300 static void 6301 ath_newassoc(struct ieee80211_node *ni, int isnew) 6302 { 6303 struct ath_node *an = ATH_NODE(ni); 6304 struct ieee80211vap *vap = ni->ni_vap; 6305 struct ath_softc *sc = vap->iv_ic->ic_softc; 6306 const struct ieee80211_txparam *tp = ni->ni_txparms; 6307 6308 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 6309 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 6310 6311 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n", 6312 __func__, 6313 ni->ni_macaddr, 6314 ":", 6315 isnew, 6316 an->an_is_powersave); 6317 6318 ATH_NODE_LOCK(an); 6319 ath_rate_newassoc(sc, an, isnew); 6320 ATH_NODE_UNLOCK(an); 6321 6322 if (isnew && 6323 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 6324 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 6325 ath_setup_stationkey(ni); 6326 6327 /* 6328 * If we're reassociating, make sure that any paused queues 6329 * get unpaused. 6330 * 6331 * Now, we may have frames in the hardware queue for this node. 6332 * So if we are reassociating and there are frames in the queue, 6333 * we need to go through the cleanup path to ensure that they're 6334 * marked as non-aggregate. 6335 */ 6336 if (! isnew) { 6337 DPRINTF(sc, ATH_DEBUG_NODE, 6338 "%s: %6D: reassoc; is_powersave=%d\n", 6339 __func__, 6340 ni->ni_macaddr, 6341 ":", 6342 an->an_is_powersave); 6343 6344 /* XXX for now, we can't hold the lock across assoc */ 6345 ath_tx_node_reassoc(sc, an); 6346 6347 /* XXX for now, we can't hold the lock across wakeup */ 6348 if (an->an_is_powersave) 6349 ath_tx_node_wakeup(sc, an); 6350 } 6351 } 6352 6353 static int 6354 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 6355 int nchans, struct ieee80211_channel chans[]) 6356 { 6357 struct ath_softc *sc = ic->ic_softc; 6358 struct ath_hal *ah = sc->sc_ah; 6359 HAL_STATUS status; 6360 6361 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6362 "%s: rd %u cc %u location %c%s\n", 6363 __func__, reg->regdomain, reg->country, reg->location, 6364 reg->ecm ? " ecm" : ""); 6365 6366 status = ath_hal_set_channels(ah, chans, nchans, 6367 reg->country, reg->regdomain); 6368 if (status != HAL_OK) { 6369 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 6370 __func__, status); 6371 return EINVAL; /* XXX */ 6372 } 6373 6374 return 0; 6375 } 6376 6377 static void 6378 ath_getradiocaps(struct ieee80211com *ic, 6379 int maxchans, int *nchans, struct ieee80211_channel chans[]) 6380 { 6381 struct ath_softc *sc = ic->ic_softc; 6382 struct ath_hal *ah = sc->sc_ah; 6383 6384 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 6385 __func__, SKU_DEBUG, CTRY_DEFAULT); 6386 6387 /* XXX check return */ 6388 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 6389 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 6390 6391 } 6392 6393 static int 6394 ath_getchannels(struct ath_softc *sc) 6395 { 6396 struct ieee80211com *ic = &sc->sc_ic; 6397 struct ath_hal *ah = sc->sc_ah; 6398 HAL_STATUS status; 6399 6400 /* 6401 * Collect channel set based on EEPROM contents. 6402 */ 6403 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 6404 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 6405 if (status != HAL_OK) { 6406 device_printf(sc->sc_dev, 6407 "%s: unable to collect channel list from hal, status %d\n", 6408 __func__, status); 6409 return EINVAL; 6410 } 6411 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 6412 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 6413 /* XXX map Atheros sku's to net80211 SKU's */ 6414 /* XXX net80211 types too small */ 6415 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 6416 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 6417 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 6418 ic->ic_regdomain.isocc[1] = ' '; 6419 6420 ic->ic_regdomain.ecm = 1; 6421 ic->ic_regdomain.location = 'I'; 6422 6423 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 6424 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 6425 __func__, sc->sc_eerd, sc->sc_eecc, 6426 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 6427 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 6428 return 0; 6429 } 6430 6431 static int 6432 ath_rate_setup(struct ath_softc *sc, u_int mode) 6433 { 6434 struct ath_hal *ah = sc->sc_ah; 6435 const HAL_RATE_TABLE *rt; 6436 6437 switch (mode) { 6438 case IEEE80211_MODE_11A: 6439 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 6440 break; 6441 case IEEE80211_MODE_HALF: 6442 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 6443 break; 6444 case IEEE80211_MODE_QUARTER: 6445 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 6446 break; 6447 case IEEE80211_MODE_11B: 6448 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 6449 break; 6450 case IEEE80211_MODE_11G: 6451 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 6452 break; 6453 case IEEE80211_MODE_TURBO_A: 6454 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 6455 break; 6456 case IEEE80211_MODE_TURBO_G: 6457 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 6458 break; 6459 case IEEE80211_MODE_STURBO_A: 6460 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 6461 break; 6462 case IEEE80211_MODE_11NA: 6463 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 6464 break; 6465 case IEEE80211_MODE_11NG: 6466 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 6467 break; 6468 default: 6469 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 6470 __func__, mode); 6471 return 0; 6472 } 6473 sc->sc_rates[mode] = rt; 6474 return (rt != NULL); 6475 } 6476 6477 static void 6478 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 6479 { 6480 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 6481 static const struct { 6482 u_int rate; /* tx/rx 802.11 rate */ 6483 u_int16_t timeOn; /* LED on time (ms) */ 6484 u_int16_t timeOff; /* LED off time (ms) */ 6485 } blinkrates[] = { 6486 { 108, 40, 10 }, 6487 { 96, 44, 11 }, 6488 { 72, 50, 13 }, 6489 { 48, 57, 14 }, 6490 { 36, 67, 16 }, 6491 { 24, 80, 20 }, 6492 { 22, 100, 25 }, 6493 { 18, 133, 34 }, 6494 { 12, 160, 40 }, 6495 { 10, 200, 50 }, 6496 { 6, 240, 58 }, 6497 { 4, 267, 66 }, 6498 { 2, 400, 100 }, 6499 { 0, 500, 130 }, 6500 /* XXX half/quarter rates */ 6501 }; 6502 const HAL_RATE_TABLE *rt; 6503 int i, j; 6504 6505 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 6506 rt = sc->sc_rates[mode]; 6507 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 6508 for (i = 0; i < rt->rateCount; i++) { 6509 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6510 if (rt->info[i].phy != IEEE80211_T_HT) 6511 sc->sc_rixmap[ieeerate] = i; 6512 else 6513 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 6514 } 6515 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 6516 for (i = 0; i < nitems(sc->sc_hwmap); i++) { 6517 if (i >= rt->rateCount) { 6518 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 6519 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 6520 continue; 6521 } 6522 sc->sc_hwmap[i].ieeerate = 6523 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 6524 if (rt->info[i].phy == IEEE80211_T_HT) 6525 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 6526 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 6527 if (rt->info[i].shortPreamble || 6528 rt->info[i].phy == IEEE80211_T_OFDM) 6529 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 6530 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 6531 for (j = 0; j < nitems(blinkrates)-1; j++) 6532 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 6533 break; 6534 /* NB: this uses the last entry if the rate isn't found */ 6535 /* XXX beware of overlow */ 6536 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 6537 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 6538 } 6539 sc->sc_currates = rt; 6540 sc->sc_curmode = mode; 6541 /* 6542 * All protection frames are transmitted at 2Mb/s for 6543 * 11g, otherwise at 1Mb/s. 6544 */ 6545 if (mode == IEEE80211_MODE_11G) 6546 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 6547 else 6548 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 6549 /* NB: caller is responsible for resetting rate control state */ 6550 } 6551 6552 static void 6553 ath_watchdog(void *arg) 6554 { 6555 struct ath_softc *sc = arg; 6556 struct ieee80211com *ic = &sc->sc_ic; 6557 int do_reset = 0; 6558 6559 ATH_LOCK_ASSERT(sc); 6560 6561 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 6562 uint32_t hangs; 6563 6564 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6565 6566 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 6567 hangs != 0) { 6568 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n", 6569 hangs & 0xff ? "bb" : "mac", hangs); 6570 } else 6571 device_printf(sc->sc_dev, "device timeout\n"); 6572 do_reset = 1; 6573 counter_u64_add(ic->ic_oerrors, 1); 6574 sc->sc_stats.ast_watchdog++; 6575 6576 ath_power_restore_power_state(sc); 6577 } 6578 6579 /* 6580 * We can't hold the lock across the ath_reset() call. 6581 * 6582 * And since this routine can't hold a lock and sleep, 6583 * do the reset deferred. 6584 */ 6585 if (do_reset) { 6586 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 6587 } 6588 6589 callout_schedule(&sc->sc_wd_ch, hz); 6590 } 6591 6592 static void 6593 ath_parent(struct ieee80211com *ic) 6594 { 6595 struct ath_softc *sc = ic->ic_softc; 6596 int error = EDOOFUS; 6597 6598 ATH_LOCK(sc); 6599 if (ic->ic_nrunning > 0) { 6600 /* 6601 * To avoid rescanning another access point, 6602 * do not call ath_init() here. Instead, 6603 * only reflect promisc mode settings. 6604 */ 6605 if (sc->sc_running) { 6606 ath_power_set_power_state(sc, HAL_PM_AWAKE); 6607 ath_mode_init(sc); 6608 ath_power_restore_power_state(sc); 6609 } else if (!sc->sc_invalid) { 6610 /* 6611 * Beware of being called during attach/detach 6612 * to reset promiscuous mode. In that case we 6613 * will still be marked UP but not RUNNING. 6614 * However trying to re-init the interface 6615 * is the wrong thing to do as we've already 6616 * torn down much of our state. There's 6617 * probably a better way to deal with this. 6618 */ 6619 error = ath_init(sc); 6620 } 6621 } else { 6622 ath_stop(sc); 6623 if (!sc->sc_invalid) 6624 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1); 6625 } 6626 ATH_UNLOCK(sc); 6627 6628 if (error == 0) { 6629 #ifdef ATH_TX99_DIAG 6630 if (sc->sc_tx99 != NULL) 6631 sc->sc_tx99->start(sc->sc_tx99); 6632 else 6633 #endif 6634 ieee80211_start_all(ic); 6635 } 6636 } 6637 6638 /* 6639 * Announce various information on device/driver attach. 6640 */ 6641 static void 6642 ath_announce(struct ath_softc *sc) 6643 { 6644 struct ath_hal *ah = sc->sc_ah; 6645 6646 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n", 6647 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 6648 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 6649 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 6650 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 6651 if (bootverbose) { 6652 int i; 6653 for (i = 0; i <= WME_AC_VO; i++) { 6654 struct ath_txq *txq = sc->sc_ac2q[i]; 6655 device_printf(sc->sc_dev, 6656 "Use hw queue %u for %s traffic\n", 6657 txq->axq_qnum, ieee80211_wme_acnames[i]); 6658 } 6659 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n", 6660 sc->sc_cabq->axq_qnum); 6661 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n", 6662 sc->sc_bhalq); 6663 } 6664 if (ath_rxbuf != ATH_RXBUF) 6665 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf); 6666 if (ath_txbuf != ATH_TXBUF) 6667 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf); 6668 if (sc->sc_mcastkey && bootverbose) 6669 device_printf(sc->sc_dev, "using multicast key search\n"); 6670 } 6671 6672 static void 6673 ath_dfs_tasklet(void *p, int npending) 6674 { 6675 struct ath_softc *sc = (struct ath_softc *) p; 6676 struct ieee80211com *ic = &sc->sc_ic; 6677 6678 /* 6679 * If previous processing has found a radar event, 6680 * signal this to the net80211 layer to begin DFS 6681 * processing. 6682 */ 6683 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 6684 /* DFS event found, initiate channel change */ 6685 6686 /* 6687 * XXX TODO: immediately disable ACK processing 6688 * on the current channel. This would be done 6689 * by setting AR_DIAG_ACK_DIS (AR5212; may be 6690 * different for others) until we are out of 6691 * CAC. 6692 */ 6693 6694 /* 6695 * XXX doesn't currently tell us whether the event 6696 * XXX was found in the primary or extension 6697 * XXX channel! 6698 */ 6699 IEEE80211_LOCK(ic); 6700 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 6701 IEEE80211_UNLOCK(ic); 6702 } 6703 } 6704 6705 /* 6706 * Enable/disable power save. This must be called with 6707 * no TX driver locks currently held, so it should only 6708 * be called from the RX path (which doesn't hold any 6709 * TX driver locks.) 6710 */ 6711 static void 6712 ath_node_powersave(struct ieee80211_node *ni, int enable) 6713 { 6714 #ifdef ATH_SW_PSQ 6715 struct ath_node *an = ATH_NODE(ni); 6716 struct ieee80211com *ic = ni->ni_ic; 6717 struct ath_softc *sc = ic->ic_softc; 6718 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6719 6720 /* XXX and no TXQ locks should be held here */ 6721 6722 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n", 6723 __func__, 6724 ni->ni_macaddr, 6725 ":", 6726 !! enable); 6727 6728 /* Suspend or resume software queue handling */ 6729 if (enable) 6730 ath_tx_node_sleep(sc, an); 6731 else 6732 ath_tx_node_wakeup(sc, an); 6733 6734 /* Update net80211 state */ 6735 avp->av_node_ps(ni, enable); 6736 #else 6737 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6738 6739 /* Update net80211 state */ 6740 avp->av_node_ps(ni, enable); 6741 #endif/* ATH_SW_PSQ */ 6742 } 6743 6744 /* 6745 * Notification from net80211 that the powersave queue state has 6746 * changed. 6747 * 6748 * Since the software queue also may have some frames: 6749 * 6750 * + if the node software queue has frames and the TID state 6751 * is 0, we set the TIM; 6752 * + if the node and the stack are both empty, we clear the TIM bit. 6753 * + If the stack tries to set the bit, always set it. 6754 * + If the stack tries to clear the bit, only clear it if the 6755 * software queue in question is also cleared. 6756 * 6757 * TODO: this is called during node teardown; so let's ensure this 6758 * is all correctly handled and that the TIM bit is cleared. 6759 * It may be that the node flush is called _AFTER_ the net80211 6760 * stack clears the TIM. 6761 * 6762 * Here is the racy part. Since it's possible >1 concurrent, 6763 * overlapping TXes will appear complete with a TX completion in 6764 * another thread, it's possible that the concurrent TIM calls will 6765 * clash. We can't hold the node lock here because setting the 6766 * TIM grabs the net80211 comlock and this may cause a LOR. 6767 * The solution is either to totally serialise _everything_ at 6768 * this point (ie, all TX, completion and any reset/flush go into 6769 * one taskqueue) or a new "ath TIM lock" needs to be created that 6770 * just wraps the driver state change and this call to avp->av_set_tim(). 6771 * 6772 * The same race exists in the net80211 power save queue handling 6773 * as well. Since multiple transmitting threads may queue frames 6774 * into the driver, as well as ps-poll and the driver transmitting 6775 * frames (and thus clearing the psq), it's quite possible that 6776 * a packet entering the PSQ and a ps-poll being handled will 6777 * race, causing the TIM to be cleared and not re-set. 6778 */ 6779 static int 6780 ath_node_set_tim(struct ieee80211_node *ni, int enable) 6781 { 6782 #ifdef ATH_SW_PSQ 6783 struct ieee80211com *ic = ni->ni_ic; 6784 struct ath_softc *sc = ic->ic_softc; 6785 struct ath_node *an = ATH_NODE(ni); 6786 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6787 int changed = 0; 6788 6789 ATH_TX_LOCK(sc); 6790 an->an_stack_psq = enable; 6791 6792 /* 6793 * This will get called for all operating modes, 6794 * even if avp->av_set_tim is unset. 6795 * It's currently set for hostap/ibss modes; but 6796 * the same infrastructure is used for both STA 6797 * and AP/IBSS node power save. 6798 */ 6799 if (avp->av_set_tim == NULL) { 6800 ATH_TX_UNLOCK(sc); 6801 return (0); 6802 } 6803 6804 /* 6805 * If setting the bit, always set it here. 6806 * If clearing the bit, only clear it if the 6807 * software queue is also empty. 6808 * 6809 * If the node has left power save, just clear the TIM 6810 * bit regardless of the state of the power save queue. 6811 * 6812 * XXX TODO: although atomics are used, it's quite possible 6813 * that a race will occur between this and setting/clearing 6814 * in another thread. TX completion will occur always in 6815 * one thread, however setting/clearing the TIM bit can come 6816 * from a variety of different process contexts! 6817 */ 6818 if (enable && an->an_tim_set == 1) { 6819 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6820 "%s: %6D: enable=%d, tim_set=1, ignoring\n", 6821 __func__, 6822 ni->ni_macaddr, 6823 ":", 6824 enable); 6825 ATH_TX_UNLOCK(sc); 6826 } else if (enable) { 6827 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6828 "%s: %6D: enable=%d, enabling TIM\n", 6829 __func__, 6830 ni->ni_macaddr, 6831 ":", 6832 enable); 6833 an->an_tim_set = 1; 6834 ATH_TX_UNLOCK(sc); 6835 changed = avp->av_set_tim(ni, enable); 6836 } else if (an->an_swq_depth == 0) { 6837 /* disable */ 6838 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6839 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n", 6840 __func__, 6841 ni->ni_macaddr, 6842 ":", 6843 enable); 6844 an->an_tim_set = 0; 6845 ATH_TX_UNLOCK(sc); 6846 changed = avp->av_set_tim(ni, enable); 6847 } else if (! an->an_is_powersave) { 6848 /* 6849 * disable regardless; the node isn't in powersave now 6850 */ 6851 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6852 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n", 6853 __func__, 6854 ni->ni_macaddr, 6855 ":", 6856 enable); 6857 an->an_tim_set = 0; 6858 ATH_TX_UNLOCK(sc); 6859 changed = avp->av_set_tim(ni, enable); 6860 } else { 6861 /* 6862 * psq disable, node is currently in powersave, node 6863 * software queue isn't empty, so don't clear the TIM bit 6864 * for now. 6865 */ 6866 ATH_TX_UNLOCK(sc); 6867 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6868 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n", 6869 __func__, 6870 ni->ni_macaddr, 6871 ":", 6872 enable); 6873 changed = 0; 6874 } 6875 6876 return (changed); 6877 #else 6878 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 6879 6880 /* 6881 * Some operating modes don't set av_set_tim(), so don't 6882 * update it here. 6883 */ 6884 if (avp->av_set_tim == NULL) 6885 return (0); 6886 6887 return (avp->av_set_tim(ni, enable)); 6888 #endif /* ATH_SW_PSQ */ 6889 } 6890 6891 /* 6892 * Set or update the TIM from the software queue. 6893 * 6894 * Check the software queue depth before attempting to do lock 6895 * anything; that avoids trying to obtain the lock. Then, 6896 * re-check afterwards to ensure nothing has changed in the 6897 * meantime. 6898 * 6899 * set: This is designed to be called from the TX path, after 6900 * a frame has been queued; to see if the swq > 0. 6901 * 6902 * clear: This is designed to be called from the buffer completion point 6903 * (right now it's ath_tx_default_comp()) where the state of 6904 * a software queue has changed. 6905 * 6906 * It makes sense to place it at buffer free / completion rather 6907 * than after each software queue operation, as there's no real 6908 * point in churning the TIM bit as the last frames in the software 6909 * queue are transmitted. If they fail and we retry them, we'd 6910 * just be setting the TIM bit again anyway. 6911 */ 6912 void 6913 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 6914 int enable) 6915 { 6916 #ifdef ATH_SW_PSQ 6917 struct ath_node *an; 6918 struct ath_vap *avp; 6919 6920 /* Don't do this for broadcast/etc frames */ 6921 if (ni == NULL) 6922 return; 6923 6924 an = ATH_NODE(ni); 6925 avp = ATH_VAP(ni->ni_vap); 6926 6927 /* 6928 * And for operating modes without the TIM handler set, let's 6929 * just skip those. 6930 */ 6931 if (avp->av_set_tim == NULL) 6932 return; 6933 6934 ATH_TX_LOCK_ASSERT(sc); 6935 6936 if (enable) { 6937 if (an->an_is_powersave && 6938 an->an_tim_set == 0 && 6939 an->an_swq_depth != 0) { 6940 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6941 "%s: %6D: swq_depth>0, tim_set=0, set!\n", 6942 __func__, 6943 ni->ni_macaddr, 6944 ":"); 6945 an->an_tim_set = 1; 6946 (void) avp->av_set_tim(ni, 1); 6947 } 6948 } else { 6949 /* 6950 * Don't bother grabbing the lock unless the queue is empty. 6951 */ 6952 if (an->an_swq_depth != 0) 6953 return; 6954 6955 if (an->an_is_powersave && 6956 an->an_stack_psq == 0 && 6957 an->an_tim_set == 1 && 6958 an->an_swq_depth == 0) { 6959 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 6960 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0," 6961 " clear!\n", 6962 __func__, 6963 ni->ni_macaddr, 6964 ":"); 6965 an->an_tim_set = 0; 6966 (void) avp->av_set_tim(ni, 0); 6967 } 6968 } 6969 #else 6970 return; 6971 #endif /* ATH_SW_PSQ */ 6972 } 6973 6974 /* 6975 * Received a ps-poll frame from net80211. 6976 * 6977 * Here we get a chance to serve out a software-queued frame ourselves 6978 * before we punt it to net80211 to transmit us one itself - either 6979 * because there's traffic in the net80211 psq, or a NULL frame to 6980 * indicate there's nothing else. 6981 */ 6982 static void 6983 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m) 6984 { 6985 #ifdef ATH_SW_PSQ 6986 struct ath_node *an; 6987 struct ath_vap *avp; 6988 struct ieee80211com *ic = ni->ni_ic; 6989 struct ath_softc *sc = ic->ic_softc; 6990 int tid; 6991 6992 /* Just paranoia */ 6993 if (ni == NULL) 6994 return; 6995 6996 /* 6997 * Unassociated (temporary node) station. 6998 */ 6999 if (ni->ni_associd == 0) 7000 return; 7001 7002 /* 7003 * We do have an active node, so let's begin looking into it. 7004 */ 7005 an = ATH_NODE(ni); 7006 avp = ATH_VAP(ni->ni_vap); 7007 7008 /* 7009 * For now, we just call the original ps-poll method. 7010 * Once we're ready to flip this on: 7011 * 7012 * + Set leak to 1, as no matter what we're going to have 7013 * to send a frame; 7014 * + Check the software queue and if there's something in it, 7015 * schedule the highest TID thas has traffic from this node. 7016 * Then make sure we schedule the software scheduler to 7017 * run so it picks up said frame. 7018 * 7019 * That way whatever happens, we'll at least send _a_ frame 7020 * to the given node. 7021 * 7022 * Again, yes, it's crappy QoS if the node has multiple 7023 * TIDs worth of traffic - but let's get it working first 7024 * before we optimise it. 7025 * 7026 * Also yes, there's definitely latency here - we're not 7027 * direct dispatching to the hardware in this path (and 7028 * we're likely being called from the packet receive path, 7029 * so going back into TX may be a little hairy!) but again 7030 * I'd like to get this working first before optimising 7031 * turn-around time. 7032 */ 7033 7034 ATH_TX_LOCK(sc); 7035 7036 /* 7037 * Legacy - we're called and the node isn't asleep. 7038 * Immediately punt. 7039 */ 7040 if (! an->an_is_powersave) { 7041 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7042 "%s: %6D: not in powersave?\n", 7043 __func__, 7044 ni->ni_macaddr, 7045 ":"); 7046 ATH_TX_UNLOCK(sc); 7047 avp->av_recv_pspoll(ni, m); 7048 return; 7049 } 7050 7051 /* 7052 * We're in powersave. 7053 * 7054 * Leak a frame. 7055 */ 7056 an->an_leak_count = 1; 7057 7058 /* 7059 * Now, if there's no frames in the node, just punt to 7060 * recv_pspoll. 7061 * 7062 * Don't bother checking if the TIM bit is set, we really 7063 * only care if there are any frames here! 7064 */ 7065 if (an->an_swq_depth == 0) { 7066 ATH_TX_UNLOCK(sc); 7067 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7068 "%s: %6D: SWQ empty; punting to net80211\n", 7069 __func__, 7070 ni->ni_macaddr, 7071 ":"); 7072 avp->av_recv_pspoll(ni, m); 7073 return; 7074 } 7075 7076 /* 7077 * Ok, let's schedule the highest TID that has traffic 7078 * and then schedule something. 7079 */ 7080 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) { 7081 struct ath_tid *atid = &an->an_tid[tid]; 7082 /* 7083 * No frames? Skip. 7084 */ 7085 if (atid->axq_depth == 0) 7086 continue; 7087 ath_tx_tid_sched(sc, atid); 7088 /* 7089 * XXX we could do a direct call to the TXQ 7090 * scheduler code here to optimise latency 7091 * at the expense of a REALLY deep callstack. 7092 */ 7093 ATH_TX_UNLOCK(sc); 7094 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask); 7095 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7096 "%s: %6D: leaking frame to TID %d\n", 7097 __func__, 7098 ni->ni_macaddr, 7099 ":", 7100 tid); 7101 return; 7102 } 7103 7104 ATH_TX_UNLOCK(sc); 7105 7106 /* 7107 * XXX nothing in the TIDs at this point? Eek. 7108 */ 7109 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 7110 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n", 7111 __func__, 7112 ni->ni_macaddr, 7113 ":"); 7114 avp->av_recv_pspoll(ni, m); 7115 #else 7116 avp->av_recv_pspoll(ni, m); 7117 #endif /* ATH_SW_PSQ */ 7118 } 7119 7120 MODULE_VERSION(ath_main, 1); 7121 MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */ 7122 MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1); 7123 MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1); 7124 MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1); 7125 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ) 7126 MODULE_DEPEND(ath_main, alq, 1, 1, 1); 7127 #endif 7128