xref: /freebsd/sys/dev/ath/if_ath.c (revision 5dcd9c10612684d1c823670cbb5b4715028784e7)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Atheros Wireless LAN controller.
35  *
36  * This software is derived from work of Atsushi Onoe; his contribution
37  * is greatly appreciated.
38  */
39 
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 #include "opt_wlan.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysctl.h>
47 #include <sys/mbuf.h>
48 #include <sys/malloc.h>
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/errno.h>
55 #include <sys/callout.h>
56 #include <sys/bus.h>
57 #include <sys/endian.h>
58 #include <sys/kthread.h>
59 #include <sys/taskqueue.h>
60 #include <sys/priv.h>
61 
62 #include <machine/bus.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_types.h>
68 #include <net/if_arp.h>
69 #include <net/ethernet.h>
70 #include <net/if_llc.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_regdomain.h>
74 #ifdef IEEE80211_SUPPORT_SUPERG
75 #include <net80211/ieee80211_superg.h>
76 #endif
77 #ifdef IEEE80211_SUPPORT_TDMA
78 #include <net80211/ieee80211_tdma.h>
79 #endif
80 
81 #include <net/bpf.h>
82 
83 #ifdef INET
84 #include <netinet/in.h>
85 #include <netinet/if_ether.h>
86 #endif
87 
88 #include <dev/ath/if_athvar.h>
89 #include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
90 #include <dev/ath/ath_hal/ah_diagcodes.h>
91 
92 #include <dev/ath/if_ath_debug.h>
93 #include <dev/ath/if_ath_misc.h>
94 #include <dev/ath/if_ath_tx.h>
95 #include <dev/ath/if_ath_sysctl.h>
96 
97 #ifdef ATH_TX99_DIAG
98 #include <dev/ath/ath_tx99/ath_tx99.h>
99 #endif
100 
101 /*
102  * ATH_BCBUF determines the number of vap's that can transmit
103  * beacons and also (currently) the number of vap's that can
104  * have unique mac addresses/bssid.  When staggering beacons
105  * 4 is probably a good max as otherwise the beacons become
106  * very closely spaced and there is limited time for cab q traffic
107  * to go out.  You can burst beacons instead but that is not good
108  * for stations in power save and at some point you really want
109  * another radio (and channel).
110  *
111  * The limit on the number of mac addresses is tied to our use of
112  * the U/L bit and tracking addresses in a byte; it would be
113  * worthwhile to allow more for applications like proxy sta.
114  */
115 CTASSERT(ATH_BCBUF <= 8);
116 
117 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
118 		    const char name[IFNAMSIZ], int unit, int opmode,
119 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
120 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
121 static void	ath_vap_delete(struct ieee80211vap *);
122 static void	ath_init(void *);
123 static void	ath_stop_locked(struct ifnet *);
124 static void	ath_stop(struct ifnet *);
125 static void	ath_start(struct ifnet *);
126 static int	ath_reset_vap(struct ieee80211vap *, u_long);
127 static int	ath_media_change(struct ifnet *);
128 static void	ath_watchdog(void *);
129 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
130 static void	ath_fatal_proc(void *, int);
131 static void	ath_bmiss_vap(struct ieee80211vap *);
132 static void	ath_bmiss_proc(void *, int);
133 static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
134 			struct ieee80211_node *);
135 static int	ath_key_alloc(struct ieee80211vap *,
136 			struct ieee80211_key *,
137 			ieee80211_keyix *, ieee80211_keyix *);
138 static int	ath_key_delete(struct ieee80211vap *,
139 			const struct ieee80211_key *);
140 static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
141 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
142 static void	ath_key_update_begin(struct ieee80211vap *);
143 static void	ath_key_update_end(struct ieee80211vap *);
144 static void	ath_update_mcast(struct ifnet *);
145 static void	ath_update_promisc(struct ifnet *);
146 static void	ath_mode_init(struct ath_softc *);
147 static void	ath_setslottime(struct ath_softc *);
148 static void	ath_updateslot(struct ifnet *);
149 static int	ath_beaconq_setup(struct ath_hal *);
150 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
151 static void	ath_beacon_update(struct ieee80211vap *, int item);
152 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
153 static void	ath_beacon_proc(void *, int);
154 static struct ath_buf *ath_beacon_generate(struct ath_softc *,
155 			struct ieee80211vap *);
156 static void	ath_bstuck_proc(void *, int);
157 static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
158 static void	ath_beacon_free(struct ath_softc *);
159 static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
160 static void	ath_descdma_cleanup(struct ath_softc *sc,
161 			struct ath_descdma *, ath_bufhead *);
162 static int	ath_desc_alloc(struct ath_softc *);
163 static void	ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
165 			const uint8_t [IEEE80211_ADDR_LEN]);
166 static void	ath_node_free(struct ieee80211_node *);
167 static void	ath_node_getsignal(const struct ieee80211_node *,
168 			int8_t *, int8_t *);
169 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
171 			int subtype, int rssi, int nf);
172 static void	ath_setdefantenna(struct ath_softc *, u_int);
173 static void	ath_rx_proc(void *, int);
174 static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int	ath_tx_setup(struct ath_softc *, int, int);
177 static int	ath_wme_update(struct ieee80211com *);
178 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void	ath_tx_cleanup(struct ath_softc *);
180 static void	ath_tx_proc_q0(void *, int);
181 static void	ath_tx_proc_q0123(void *, int);
182 static void	ath_tx_proc(void *, int);
183 static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
184 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
185 static void	ath_draintxq(struct ath_softc *);
186 static void	ath_stoprecv(struct ath_softc *);
187 static int	ath_startrecv(struct ath_softc *);
188 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
189 static void	ath_scan_start(struct ieee80211com *);
190 static void	ath_scan_end(struct ieee80211com *);
191 static void	ath_set_channel(struct ieee80211com *);
192 static void	ath_calibrate(void *);
193 static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
194 static void	ath_setup_stationkey(struct ieee80211_node *);
195 static void	ath_newassoc(struct ieee80211_node *, int);
196 static int	ath_setregdomain(struct ieee80211com *,
197 		    struct ieee80211_regdomain *, int,
198 		    struct ieee80211_channel []);
199 static void	ath_getradiocaps(struct ieee80211com *, int, int *,
200 		    struct ieee80211_channel []);
201 static int	ath_getchannels(struct ath_softc *);
202 static void	ath_led_event(struct ath_softc *, int);
203 
204 static int	ath_rate_setup(struct ath_softc *, u_int mode);
205 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
206 
207 static void	ath_announce(struct ath_softc *);
208 
209 #ifdef IEEE80211_SUPPORT_TDMA
210 static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
211 		    u_int32_t bintval);
212 static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
213 		    const struct ieee80211_tdma_state *tdma);
214 static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
215 static void	ath_tdma_update(struct ieee80211_node *ni,
216 		    const struct ieee80211_tdma_param *tdma, int);
217 static void	ath_tdma_beacon_send(struct ath_softc *sc,
218 		    struct ieee80211vap *vap);
219 
220 static __inline void
221 ath_hal_setcca(struct ath_hal *ah, int ena)
222 {
223 	/*
224 	 * NB: fill me in; this is not provided by default because disabling
225 	 *     CCA in most locales violates regulatory.
226 	 */
227 }
228 
229 static __inline int
230 ath_hal_getcca(struct ath_hal *ah)
231 {
232 	u_int32_t diag;
233 	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
234 		return 1;
235 	return ((diag & 0x500000) == 0);
236 }
237 
238 #define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
239 #define	TDMA_LPF_LEN		6
240 #define	TDMA_DUMMY_MARKER	0x127
241 #define	TDMA_EP_MUL(x, mul)	((x) * (mul))
242 #define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
243 #define	TDMA_LPF(x, y, len) \
244     ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
245 #define	TDMA_SAMPLE(x, y) do {					\
246 	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
247 } while (0)
248 #define	TDMA_EP_RND(x,mul) \
249 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
250 #define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
251 #endif /* IEEE80211_SUPPORT_TDMA */
252 
253 SYSCTL_DECL(_hw_ath);
254 
255 /* XXX validate sysctl values */
256 static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
257 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
258 	    0, "long chip calibration interval (secs)");
259 static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
260 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
261 	    0, "short chip calibration interval (msecs)");
262 static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
263 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
264 	    0, "reset chip calibration results (secs)");
265 static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
266 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
267 	    0, "ANI calibration (msecs)");
268 
269 static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
270 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
271 	    0, "rx buffers allocated");
272 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
273 static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
274 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
275 	    0, "tx buffers allocated");
276 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
277 
278 static	int ath_bstuck_threshold = 4;		/* max missed beacons */
279 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
280 	    0, "max missed beacon xmits before chip reset");
281 
282 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
283 
284 #define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
285 #define	HAL_MODE_HT40 \
286 	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
287 	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
288 int
289 ath_attach(u_int16_t devid, struct ath_softc *sc)
290 {
291 	struct ifnet *ifp;
292 	struct ieee80211com *ic;
293 	struct ath_hal *ah = NULL;
294 	HAL_STATUS status;
295 	int error = 0, i;
296 	u_int wmodes;
297 	uint8_t macaddr[IEEE80211_ADDR_LEN];
298 
299 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
300 
301 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
302 	if (ifp == NULL) {
303 		device_printf(sc->sc_dev, "can not if_alloc()\n");
304 		error = ENOSPC;
305 		goto bad;
306 	}
307 	ic = ifp->if_l2com;
308 
309 	/* set these up early for if_printf use */
310 	if_initname(ifp, device_get_name(sc->sc_dev),
311 		device_get_unit(sc->sc_dev));
312 
313 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
314 	if (ah == NULL) {
315 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
316 			status);
317 		error = ENXIO;
318 		goto bad;
319 	}
320 	sc->sc_ah = ah;
321 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
322 #ifdef	ATH_DEBUG
323 	sc->sc_debug = ath_debug;
324 #endif
325 
326 	/*
327 	 * Check if the MAC has multi-rate retry support.
328 	 * We do this by trying to setup a fake extended
329 	 * descriptor.  MAC's that don't have support will
330 	 * return false w/o doing anything.  MAC's that do
331 	 * support it will return true w/o doing anything.
332 	 */
333 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
334 
335 	/*
336 	 * Check if the device has hardware counters for PHY
337 	 * errors.  If so we need to enable the MIB interrupt
338 	 * so we can act on stat triggers.
339 	 */
340 	if (ath_hal_hwphycounters(ah))
341 		sc->sc_needmib = 1;
342 
343 	/*
344 	 * Get the hardware key cache size.
345 	 */
346 	sc->sc_keymax = ath_hal_keycachesize(ah);
347 	if (sc->sc_keymax > ATH_KEYMAX) {
348 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
349 			ATH_KEYMAX, sc->sc_keymax);
350 		sc->sc_keymax = ATH_KEYMAX;
351 	}
352 	/*
353 	 * Reset the key cache since some parts do not
354 	 * reset the contents on initial power up.
355 	 */
356 	for (i = 0; i < sc->sc_keymax; i++)
357 		ath_hal_keyreset(ah, i);
358 
359 	/*
360 	 * Collect the default channel list.
361 	 */
362 	error = ath_getchannels(sc);
363 	if (error != 0)
364 		goto bad;
365 
366 	/*
367 	 * Setup rate tables for all potential media types.
368 	 */
369 	ath_rate_setup(sc, IEEE80211_MODE_11A);
370 	ath_rate_setup(sc, IEEE80211_MODE_11B);
371 	ath_rate_setup(sc, IEEE80211_MODE_11G);
372 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
373 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
374 	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
375 	ath_rate_setup(sc, IEEE80211_MODE_11NA);
376 	ath_rate_setup(sc, IEEE80211_MODE_11NG);
377 	ath_rate_setup(sc, IEEE80211_MODE_HALF);
378 	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
379 
380 	/* NB: setup here so ath_rate_update is happy */
381 	ath_setcurmode(sc, IEEE80211_MODE_11A);
382 
383 	/*
384 	 * Allocate tx+rx descriptors and populate the lists.
385 	 */
386 	error = ath_desc_alloc(sc);
387 	if (error != 0) {
388 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
389 		goto bad;
390 	}
391 	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
392 	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
393 
394 	ATH_TXBUF_LOCK_INIT(sc);
395 
396 	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
397 		taskqueue_thread_enqueue, &sc->sc_tq);
398 	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
399 		"%s taskq", ifp->if_xname);
400 
401 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
402 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
403 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
404 
405 	/*
406 	 * Allocate hardware transmit queues: one queue for
407 	 * beacon frames and one data queue for each QoS
408 	 * priority.  Note that the hal handles resetting
409 	 * these queues at the needed time.
410 	 *
411 	 * XXX PS-Poll
412 	 */
413 	sc->sc_bhalq = ath_beaconq_setup(ah);
414 	if (sc->sc_bhalq == (u_int) -1) {
415 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
416 		error = EIO;
417 		goto bad2;
418 	}
419 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
420 	if (sc->sc_cabq == NULL) {
421 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
422 		error = EIO;
423 		goto bad2;
424 	}
425 	/* NB: insure BK queue is the lowest priority h/w queue */
426 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
427 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
428 			ieee80211_wme_acnames[WME_AC_BK]);
429 		error = EIO;
430 		goto bad2;
431 	}
432 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
433 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
434 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
435 		/*
436 		 * Not enough hardware tx queues to properly do WME;
437 		 * just punt and assign them all to the same h/w queue.
438 		 * We could do a better job of this if, for example,
439 		 * we allocate queues when we switch from station to
440 		 * AP mode.
441 		 */
442 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
443 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
444 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
445 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
446 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
447 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
448 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
449 	}
450 
451 	/*
452 	 * Special case certain configurations.  Note the
453 	 * CAB queue is handled by these specially so don't
454 	 * include them when checking the txq setup mask.
455 	 */
456 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
457 	case 0x01:
458 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
459 		break;
460 	case 0x0f:
461 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
462 		break;
463 	default:
464 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
465 		break;
466 	}
467 
468 	/*
469 	 * Setup rate control.  Some rate control modules
470 	 * call back to change the anntena state so expose
471 	 * the necessary entry points.
472 	 * XXX maybe belongs in struct ath_ratectrl?
473 	 */
474 	sc->sc_setdefantenna = ath_setdefantenna;
475 	sc->sc_rc = ath_rate_attach(sc);
476 	if (sc->sc_rc == NULL) {
477 		error = EIO;
478 		goto bad2;
479 	}
480 
481 	sc->sc_blinking = 0;
482 	sc->sc_ledstate = 1;
483 	sc->sc_ledon = 0;			/* low true */
484 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
485 	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
486 	/*
487 	 * Auto-enable soft led processing for IBM cards and for
488 	 * 5211 minipci cards.  Users can also manually enable/disable
489 	 * support with a sysctl.
490 	 */
491 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
492 	if (sc->sc_softled) {
493 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
494 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
495 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
496 	}
497 
498 	ifp->if_softc = sc;
499 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
500 	ifp->if_start = ath_start;
501 	ifp->if_ioctl = ath_ioctl;
502 	ifp->if_init = ath_init;
503 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
504 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
505 	IFQ_SET_READY(&ifp->if_snd);
506 
507 	ic->ic_ifp = ifp;
508 	/* XXX not right but it's not used anywhere important */
509 	ic->ic_phytype = IEEE80211_T_OFDM;
510 	ic->ic_opmode = IEEE80211_M_STA;
511 	ic->ic_caps =
512 		  IEEE80211_C_STA		/* station mode */
513 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
514 		| IEEE80211_C_HOSTAP		/* hostap mode */
515 		| IEEE80211_C_MONITOR		/* monitor mode */
516 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
517 		| IEEE80211_C_WDS		/* 4-address traffic works */
518 		| IEEE80211_C_MBSS		/* mesh point link mode */
519 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
520 		| IEEE80211_C_SHSLOT		/* short slot time supported */
521 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
522 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
523 		| IEEE80211_C_TXFRAG		/* handle tx frags */
524 		;
525 	/*
526 	 * Query the hal to figure out h/w crypto support.
527 	 */
528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
529 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
531 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
532 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
533 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
534 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
535 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
536 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
537 		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
538 		/*
539 		 * Check if h/w does the MIC and/or whether the
540 		 * separate key cache entries are required to
541 		 * handle both tx+rx MIC keys.
542 		 */
543 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
544 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
545 		/*
546 		 * If the h/w supports storing tx+rx MIC keys
547 		 * in one cache slot automatically enable use.
548 		 */
549 		if (ath_hal_hastkipsplit(ah) ||
550 		    !ath_hal_settkipsplit(ah, AH_FALSE))
551 			sc->sc_splitmic = 1;
552 		/*
553 		 * If the h/w can do TKIP MIC together with WME then
554 		 * we use it; otherwise we force the MIC to be done
555 		 * in software by the net80211 layer.
556 		 */
557 		if (ath_hal_haswmetkipmic(ah))
558 			sc->sc_wmetkipmic = 1;
559 	}
560 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
561 	/*
562 	 * Check for multicast key search support.
563 	 */
564 	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
565 	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
566 		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
567 	}
568 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
569 	/*
570 	 * Mark key cache slots associated with global keys
571 	 * as in use.  If we knew TKIP was not to be used we
572 	 * could leave the +32, +64, and +32+64 slots free.
573 	 */
574 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
575 		setbit(sc->sc_keymap, i);
576 		setbit(sc->sc_keymap, i+64);
577 		if (sc->sc_splitmic) {
578 			setbit(sc->sc_keymap, i+32);
579 			setbit(sc->sc_keymap, i+32+64);
580 		}
581 	}
582 	/*
583 	 * TPC support can be done either with a global cap or
584 	 * per-packet support.  The latter is not available on
585 	 * all parts.  We're a bit pedantic here as all parts
586 	 * support a global cap.
587 	 */
588 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
589 		ic->ic_caps |= IEEE80211_C_TXPMGT;
590 
591 	/*
592 	 * Mark WME capability only if we have sufficient
593 	 * hardware queues to do proper priority scheduling.
594 	 */
595 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
596 		ic->ic_caps |= IEEE80211_C_WME;
597 	/*
598 	 * Check for misc other capabilities.
599 	 */
600 	if (ath_hal_hasbursting(ah))
601 		ic->ic_caps |= IEEE80211_C_BURST;
602 	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
603 	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
604 	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
605 	if (ath_hal_hasfastframes(ah))
606 		ic->ic_caps |= IEEE80211_C_FF;
607 	wmodes = ath_hal_getwirelessmodes(ah);
608 	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
609 		ic->ic_caps |= IEEE80211_C_TURBOP;
610 #ifdef IEEE80211_SUPPORT_TDMA
611 	if (ath_hal_macversion(ah) > 0x78) {
612 		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
613 		ic->ic_tdma_update = ath_tdma_update;
614 	}
615 #endif
616 
617 	/*
618 	 * The if_ath 11n support is completely not ready for normal use.
619 	 * Enabling this option will likely break everything and everything.
620 	 * Don't think of doing that unless you know what you're doing.
621 	 */
622 
623 #ifdef	DO_ATH_11N
624 	/*
625 	 * Query HT capabilities
626 	 */
627 	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
628 	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
629 		int rxs, txs;
630 
631 		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
632 		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
633 			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
634 			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
635 			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
636 		/* At the present time, the hardware doesn't support short-GI in 20mhz mode */
637 #if 0
638 			    | IEEE80211_HTCAP_SHORTGI20		/* short GI in 20MHz */
639 #endif
640 			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
641 			;
642 
643 		if (wmodes & HAL_MODE_HT40)
644 			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
645 			    |  IEEE80211_HTCAP_SHORTGI40;
646 
647 		/*
648 		 * rx/tx stream is not currently used anywhere; it needs to be taken
649 		 * into account when negotiating which MCS rates it'll receive and
650 		 * what MCS rates are available for TX.
651 		 */
652 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
653 		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
654 
655 		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
656 		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
657 
658 		ic->ic_txstream = txs;
659 		ic->ic_rxstream = rxs;
660 
661 		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
662 	}
663 #endif
664 
665 	/*
666 	 * Indicate we need the 802.11 header padded to a
667 	 * 32-bit boundary for 4-address and QoS frames.
668 	 */
669 	ic->ic_flags |= IEEE80211_F_DATAPAD;
670 
671 	/*
672 	 * Query the hal about antenna support.
673 	 */
674 	sc->sc_defant = ath_hal_getdefantenna(ah);
675 
676 	/*
677 	 * Not all chips have the VEOL support we want to
678 	 * use with IBSS beacons; check here for it.
679 	 */
680 	sc->sc_hasveol = ath_hal_hasveol(ah);
681 
682 	/* get mac address from hardware */
683 	ath_hal_getmac(ah, macaddr);
684 	if (sc->sc_hasbmask)
685 		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
686 
687 	/* NB: used to size node table key mapping array */
688 	ic->ic_max_keyix = sc->sc_keymax;
689 	/* call MI attach routine. */
690 	ieee80211_ifattach(ic, macaddr);
691 	ic->ic_setregdomain = ath_setregdomain;
692 	ic->ic_getradiocaps = ath_getradiocaps;
693 	sc->sc_opmode = HAL_M_STA;
694 
695 	/* override default methods */
696 	ic->ic_newassoc = ath_newassoc;
697 	ic->ic_updateslot = ath_updateslot;
698 	ic->ic_wme.wme_update = ath_wme_update;
699 	ic->ic_vap_create = ath_vap_create;
700 	ic->ic_vap_delete = ath_vap_delete;
701 	ic->ic_raw_xmit = ath_raw_xmit;
702 	ic->ic_update_mcast = ath_update_mcast;
703 	ic->ic_update_promisc = ath_update_promisc;
704 	ic->ic_node_alloc = ath_node_alloc;
705 	sc->sc_node_free = ic->ic_node_free;
706 	ic->ic_node_free = ath_node_free;
707 	ic->ic_node_getsignal = ath_node_getsignal;
708 	ic->ic_scan_start = ath_scan_start;
709 	ic->ic_scan_end = ath_scan_end;
710 	ic->ic_set_channel = ath_set_channel;
711 
712 	ieee80211_radiotap_attach(ic,
713 	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
714 		ATH_TX_RADIOTAP_PRESENT,
715 	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
716 		ATH_RX_RADIOTAP_PRESENT);
717 
718 	/*
719 	 * Setup dynamic sysctl's now that country code and
720 	 * regdomain are available from the hal.
721 	 */
722 	ath_sysctlattach(sc);
723 	ath_sysctl_stats_attach(sc);
724 
725 	if (bootverbose)
726 		ieee80211_announce(ic);
727 	ath_announce(sc);
728 	return 0;
729 bad2:
730 	ath_tx_cleanup(sc);
731 	ath_desc_free(sc);
732 bad:
733 	if (ah)
734 		ath_hal_detach(ah);
735 	if (ifp != NULL)
736 		if_free(ifp);
737 	sc->sc_invalid = 1;
738 	return error;
739 }
740 
741 int
742 ath_detach(struct ath_softc *sc)
743 {
744 	struct ifnet *ifp = sc->sc_ifp;
745 
746 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
747 		__func__, ifp->if_flags);
748 
749 	/*
750 	 * NB: the order of these is important:
751 	 * o stop the chip so no more interrupts will fire
752 	 * o call the 802.11 layer before detaching the hal to
753 	 *   insure callbacks into the driver to delete global
754 	 *   key cache entries can be handled
755 	 * o free the taskqueue which drains any pending tasks
756 	 * o reclaim the tx queue data structures after calling
757 	 *   the 802.11 layer as we'll get called back to reclaim
758 	 *   node state and potentially want to use them
759 	 * o to cleanup the tx queues the hal is called, so detach
760 	 *   it last
761 	 * Other than that, it's straightforward...
762 	 */
763 	ath_stop(ifp);
764 	ieee80211_ifdetach(ifp->if_l2com);
765 	taskqueue_free(sc->sc_tq);
766 #ifdef ATH_TX99_DIAG
767 	if (sc->sc_tx99 != NULL)
768 		sc->sc_tx99->detach(sc->sc_tx99);
769 #endif
770 	ath_rate_detach(sc->sc_rc);
771 	ath_desc_free(sc);
772 	ath_tx_cleanup(sc);
773 	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
774 	if_free(ifp);
775 
776 	return 0;
777 }
778 
779 /*
780  * MAC address handling for multiple BSS on the same radio.
781  * The first vap uses the MAC address from the EEPROM.  For
782  * subsequent vap's we set the U/L bit (bit 1) in the MAC
783  * address and use the next six bits as an index.
784  */
785 static void
786 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
787 {
788 	int i;
789 
790 	if (clone && sc->sc_hasbmask) {
791 		/* NB: we only do this if h/w supports multiple bssid */
792 		for (i = 0; i < 8; i++)
793 			if ((sc->sc_bssidmask & (1<<i)) == 0)
794 				break;
795 		if (i != 0)
796 			mac[0] |= (i << 2)|0x2;
797 	} else
798 		i = 0;
799 	sc->sc_bssidmask |= 1<<i;
800 	sc->sc_hwbssidmask[0] &= ~mac[0];
801 	if (i == 0)
802 		sc->sc_nbssid0++;
803 }
804 
805 static void
806 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
807 {
808 	int i = mac[0] >> 2;
809 	uint8_t mask;
810 
811 	if (i != 0 || --sc->sc_nbssid0 == 0) {
812 		sc->sc_bssidmask &= ~(1<<i);
813 		/* recalculate bssid mask from remaining addresses */
814 		mask = 0xff;
815 		for (i = 1; i < 8; i++)
816 			if (sc->sc_bssidmask & (1<<i))
817 				mask &= ~((i<<2)|0x2);
818 		sc->sc_hwbssidmask[0] |= mask;
819 	}
820 }
821 
822 /*
823  * Assign a beacon xmit slot.  We try to space out
824  * assignments so when beacons are staggered the
825  * traffic coming out of the cab q has maximal time
826  * to go out before the next beacon is scheduled.
827  */
828 static int
829 assign_bslot(struct ath_softc *sc)
830 {
831 	u_int slot, free;
832 
833 	free = 0;
834 	for (slot = 0; slot < ATH_BCBUF; slot++)
835 		if (sc->sc_bslot[slot] == NULL) {
836 			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
837 			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
838 				return slot;
839 			free = slot;
840 			/* NB: keep looking for a double slot */
841 		}
842 	return free;
843 }
844 
845 static struct ieee80211vap *
846 ath_vap_create(struct ieee80211com *ic,
847 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
848 	const uint8_t bssid[IEEE80211_ADDR_LEN],
849 	const uint8_t mac0[IEEE80211_ADDR_LEN])
850 {
851 	struct ath_softc *sc = ic->ic_ifp->if_softc;
852 	struct ath_vap *avp;
853 	struct ieee80211vap *vap;
854 	uint8_t mac[IEEE80211_ADDR_LEN];
855 	int ic_opmode, needbeacon, error;
856 
857 	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
858 	    M_80211_VAP, M_WAITOK | M_ZERO);
859 	needbeacon = 0;
860 	IEEE80211_ADDR_COPY(mac, mac0);
861 
862 	ATH_LOCK(sc);
863 	ic_opmode = opmode;		/* default to opmode of new vap */
864 	switch (opmode) {
865 	case IEEE80211_M_STA:
866 		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
867 			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
868 			goto bad;
869 		}
870 		if (sc->sc_nvaps) {
871 			/*
872 			 * With multiple vaps we must fall back
873 			 * to s/w beacon miss handling.
874 			 */
875 			flags |= IEEE80211_CLONE_NOBEACONS;
876 		}
877 		if (flags & IEEE80211_CLONE_NOBEACONS) {
878 			/*
879 			 * Station mode w/o beacons are implemented w/ AP mode.
880 			 */
881 			ic_opmode = IEEE80211_M_HOSTAP;
882 		}
883 		break;
884 	case IEEE80211_M_IBSS:
885 		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
886 			device_printf(sc->sc_dev,
887 			    "only 1 ibss vap supported\n");
888 			goto bad;
889 		}
890 		needbeacon = 1;
891 		break;
892 	case IEEE80211_M_AHDEMO:
893 #ifdef IEEE80211_SUPPORT_TDMA
894 		if (flags & IEEE80211_CLONE_TDMA) {
895 			if (sc->sc_nvaps != 0) {
896 				device_printf(sc->sc_dev,
897 				    "only 1 tdma vap supported\n");
898 				goto bad;
899 			}
900 			needbeacon = 1;
901 			flags |= IEEE80211_CLONE_NOBEACONS;
902 		}
903 		/* fall thru... */
904 #endif
905 	case IEEE80211_M_MONITOR:
906 		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
907 			/*
908 			 * Adopt existing mode.  Adding a monitor or ahdemo
909 			 * vap to an existing configuration is of dubious
910 			 * value but should be ok.
911 			 */
912 			/* XXX not right for monitor mode */
913 			ic_opmode = ic->ic_opmode;
914 		}
915 		break;
916 	case IEEE80211_M_HOSTAP:
917 	case IEEE80211_M_MBSS:
918 		needbeacon = 1;
919 		break;
920 	case IEEE80211_M_WDS:
921 		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
922 			device_printf(sc->sc_dev,
923 			    "wds not supported in sta mode\n");
924 			goto bad;
925 		}
926 		/*
927 		 * Silently remove any request for a unique
928 		 * bssid; WDS vap's always share the local
929 		 * mac address.
930 		 */
931 		flags &= ~IEEE80211_CLONE_BSSID;
932 		if (sc->sc_nvaps == 0)
933 			ic_opmode = IEEE80211_M_HOSTAP;
934 		else
935 			ic_opmode = ic->ic_opmode;
936 		break;
937 	default:
938 		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
939 		goto bad;
940 	}
941 	/*
942 	 * Check that a beacon buffer is available; the code below assumes it.
943 	 */
944 	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
945 		device_printf(sc->sc_dev, "no beacon buffer available\n");
946 		goto bad;
947 	}
948 
949 	/* STA, AHDEMO? */
950 	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
951 		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
952 		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
953 	}
954 
955 	vap = &avp->av_vap;
956 	/* XXX can't hold mutex across if_alloc */
957 	ATH_UNLOCK(sc);
958 	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
959 	    bssid, mac);
960 	ATH_LOCK(sc);
961 	if (error != 0) {
962 		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
963 		    __func__, error);
964 		goto bad2;
965 	}
966 
967 	/* h/w crypto support */
968 	vap->iv_key_alloc = ath_key_alloc;
969 	vap->iv_key_delete = ath_key_delete;
970 	vap->iv_key_set = ath_key_set;
971 	vap->iv_key_update_begin = ath_key_update_begin;
972 	vap->iv_key_update_end = ath_key_update_end;
973 
974 	/* override various methods */
975 	avp->av_recv_mgmt = vap->iv_recv_mgmt;
976 	vap->iv_recv_mgmt = ath_recv_mgmt;
977 	vap->iv_reset = ath_reset_vap;
978 	vap->iv_update_beacon = ath_beacon_update;
979 	avp->av_newstate = vap->iv_newstate;
980 	vap->iv_newstate = ath_newstate;
981 	avp->av_bmiss = vap->iv_bmiss;
982 	vap->iv_bmiss = ath_bmiss_vap;
983 
984 	avp->av_bslot = -1;
985 	if (needbeacon) {
986 		/*
987 		 * Allocate beacon state and setup the q for buffered
988 		 * multicast frames.  We know a beacon buffer is
989 		 * available because we checked above.
990 		 */
991 		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
992 		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
993 		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
994 			/*
995 			 * Assign the vap to a beacon xmit slot.  As above
996 			 * this cannot fail to find a free one.
997 			 */
998 			avp->av_bslot = assign_bslot(sc);
999 			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1000 			    ("beacon slot %u not empty", avp->av_bslot));
1001 			sc->sc_bslot[avp->av_bslot] = vap;
1002 			sc->sc_nbcnvaps++;
1003 		}
1004 		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1005 			/*
1006 			 * Multple vaps are to transmit beacons and we
1007 			 * have h/w support for TSF adjusting; enable
1008 			 * use of staggered beacons.
1009 			 */
1010 			sc->sc_stagbeacons = 1;
1011 		}
1012 		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1013 	}
1014 
1015 	ic->ic_opmode = ic_opmode;
1016 	if (opmode != IEEE80211_M_WDS) {
1017 		sc->sc_nvaps++;
1018 		if (opmode == IEEE80211_M_STA)
1019 			sc->sc_nstavaps++;
1020 		if (opmode == IEEE80211_M_MBSS)
1021 			sc->sc_nmeshvaps++;
1022 	}
1023 	switch (ic_opmode) {
1024 	case IEEE80211_M_IBSS:
1025 		sc->sc_opmode = HAL_M_IBSS;
1026 		break;
1027 	case IEEE80211_M_STA:
1028 		sc->sc_opmode = HAL_M_STA;
1029 		break;
1030 	case IEEE80211_M_AHDEMO:
1031 #ifdef IEEE80211_SUPPORT_TDMA
1032 		if (vap->iv_caps & IEEE80211_C_TDMA) {
1033 			sc->sc_tdma = 1;
1034 			/* NB: disable tsf adjust */
1035 			sc->sc_stagbeacons = 0;
1036 		}
1037 		/*
1038 		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1039 		 * just ap mode.
1040 		 */
1041 		/* fall thru... */
1042 #endif
1043 	case IEEE80211_M_HOSTAP:
1044 	case IEEE80211_M_MBSS:
1045 		sc->sc_opmode = HAL_M_HOSTAP;
1046 		break;
1047 	case IEEE80211_M_MONITOR:
1048 		sc->sc_opmode = HAL_M_MONITOR;
1049 		break;
1050 	default:
1051 		/* XXX should not happen */
1052 		break;
1053 	}
1054 	if (sc->sc_hastsfadd) {
1055 		/*
1056 		 * Configure whether or not TSF adjust should be done.
1057 		 */
1058 		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1059 	}
1060 	if (flags & IEEE80211_CLONE_NOBEACONS) {
1061 		/*
1062 		 * Enable s/w beacon miss handling.
1063 		 */
1064 		sc->sc_swbmiss = 1;
1065 	}
1066 	ATH_UNLOCK(sc);
1067 
1068 	/* complete setup */
1069 	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1070 	return vap;
1071 bad2:
1072 	reclaim_address(sc, mac);
1073 	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1074 bad:
1075 	free(avp, M_80211_VAP);
1076 	ATH_UNLOCK(sc);
1077 	return NULL;
1078 }
1079 
1080 static void
1081 ath_vap_delete(struct ieee80211vap *vap)
1082 {
1083 	struct ieee80211com *ic = vap->iv_ic;
1084 	struct ifnet *ifp = ic->ic_ifp;
1085 	struct ath_softc *sc = ifp->if_softc;
1086 	struct ath_hal *ah = sc->sc_ah;
1087 	struct ath_vap *avp = ATH_VAP(vap);
1088 
1089 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1090 		/*
1091 		 * Quiesce the hardware while we remove the vap.  In
1092 		 * particular we need to reclaim all references to
1093 		 * the vap state by any frames pending on the tx queues.
1094 		 */
1095 		ath_hal_intrset(ah, 0);		/* disable interrupts */
1096 		ath_draintxq(sc);		/* stop xmit side */
1097 		ath_stoprecv(sc);		/* stop recv side */
1098 	}
1099 
1100 	ieee80211_vap_detach(vap);
1101 	ATH_LOCK(sc);
1102 	/*
1103 	 * Reclaim beacon state.  Note this must be done before
1104 	 * the vap instance is reclaimed as we may have a reference
1105 	 * to it in the buffer for the beacon frame.
1106 	 */
1107 	if (avp->av_bcbuf != NULL) {
1108 		if (avp->av_bslot != -1) {
1109 			sc->sc_bslot[avp->av_bslot] = NULL;
1110 			sc->sc_nbcnvaps--;
1111 		}
1112 		ath_beacon_return(sc, avp->av_bcbuf);
1113 		avp->av_bcbuf = NULL;
1114 		if (sc->sc_nbcnvaps == 0) {
1115 			sc->sc_stagbeacons = 0;
1116 			if (sc->sc_hastsfadd)
1117 				ath_hal_settsfadjust(sc->sc_ah, 0);
1118 		}
1119 		/*
1120 		 * Reclaim any pending mcast frames for the vap.
1121 		 */
1122 		ath_tx_draintxq(sc, &avp->av_mcastq);
1123 		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1124 	}
1125 	/*
1126 	 * Update bookkeeping.
1127 	 */
1128 	if (vap->iv_opmode == IEEE80211_M_STA) {
1129 		sc->sc_nstavaps--;
1130 		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1131 			sc->sc_swbmiss = 0;
1132 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1133 	    vap->iv_opmode == IEEE80211_M_MBSS) {
1134 		reclaim_address(sc, vap->iv_myaddr);
1135 		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1136 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1137 			sc->sc_nmeshvaps--;
1138 	}
1139 	if (vap->iv_opmode != IEEE80211_M_WDS)
1140 		sc->sc_nvaps--;
1141 #ifdef IEEE80211_SUPPORT_TDMA
1142 	/* TDMA operation ceases when the last vap is destroyed */
1143 	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1144 		sc->sc_tdma = 0;
1145 		sc->sc_swbmiss = 0;
1146 	}
1147 #endif
1148 	ATH_UNLOCK(sc);
1149 	free(avp, M_80211_VAP);
1150 
1151 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1152 		/*
1153 		 * Restart rx+tx machines if still running (RUNNING will
1154 		 * be reset if we just destroyed the last vap).
1155 		 */
1156 		if (ath_startrecv(sc) != 0)
1157 			if_printf(ifp, "%s: unable to restart recv logic\n",
1158 			    __func__);
1159 		if (sc->sc_beacons) {		/* restart beacons */
1160 #ifdef IEEE80211_SUPPORT_TDMA
1161 			if (sc->sc_tdma)
1162 				ath_tdma_config(sc, NULL);
1163 			else
1164 #endif
1165 				ath_beacon_config(sc, NULL);
1166 		}
1167 		ath_hal_intrset(ah, sc->sc_imask);
1168 	}
1169 }
1170 
1171 void
1172 ath_suspend(struct ath_softc *sc)
1173 {
1174 	struct ifnet *ifp = sc->sc_ifp;
1175 	struct ieee80211com *ic = ifp->if_l2com;
1176 
1177 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1178 		__func__, ifp->if_flags);
1179 
1180 	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1181 	if (ic->ic_opmode == IEEE80211_M_STA)
1182 		ath_stop(ifp);
1183 	else
1184 		ieee80211_suspend_all(ic);
1185 	/*
1186 	 * NB: don't worry about putting the chip in low power
1187 	 * mode; pci will power off our socket on suspend and
1188 	 * CardBus detaches the device.
1189 	 */
1190 }
1191 
1192 /*
1193  * Reset the key cache since some parts do not reset the
1194  * contents on resume.  First we clear all entries, then
1195  * re-load keys that the 802.11 layer assumes are setup
1196  * in h/w.
1197  */
1198 static void
1199 ath_reset_keycache(struct ath_softc *sc)
1200 {
1201 	struct ifnet *ifp = sc->sc_ifp;
1202 	struct ieee80211com *ic = ifp->if_l2com;
1203 	struct ath_hal *ah = sc->sc_ah;
1204 	int i;
1205 
1206 	for (i = 0; i < sc->sc_keymax; i++)
1207 		ath_hal_keyreset(ah, i);
1208 	ieee80211_crypto_reload_keys(ic);
1209 }
1210 
1211 void
1212 ath_resume(struct ath_softc *sc)
1213 {
1214 	struct ifnet *ifp = sc->sc_ifp;
1215 	struct ieee80211com *ic = ifp->if_l2com;
1216 	struct ath_hal *ah = sc->sc_ah;
1217 	HAL_STATUS status;
1218 
1219 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1220 		__func__, ifp->if_flags);
1221 
1222 	/*
1223 	 * Must reset the chip before we reload the
1224 	 * keycache as we were powered down on suspend.
1225 	 */
1226 	ath_hal_reset(ah, sc->sc_opmode,
1227 	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1228 	    AH_FALSE, &status);
1229 	ath_reset_keycache(sc);
1230 	if (sc->sc_resume_up) {
1231 		if (ic->ic_opmode == IEEE80211_M_STA) {
1232 			ath_init(sc);
1233 			/*
1234 			 * Program the beacon registers using the last rx'd
1235 			 * beacon frame and enable sync on the next beacon
1236 			 * we see.  This should handle the case where we
1237 			 * wakeup and find the same AP and also the case where
1238 			 * we wakeup and need to roam.  For the latter we
1239 			 * should get bmiss events that trigger a roam.
1240 			 */
1241 			ath_beacon_config(sc, NULL);
1242 			sc->sc_syncbeacon = 1;
1243 		} else
1244 			ieee80211_resume_all(ic);
1245 	}
1246 	if (sc->sc_softled) {
1247 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1248 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1249 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1250 	}
1251 }
1252 
1253 void
1254 ath_shutdown(struct ath_softc *sc)
1255 {
1256 	struct ifnet *ifp = sc->sc_ifp;
1257 
1258 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1259 		__func__, ifp->if_flags);
1260 
1261 	ath_stop(ifp);
1262 	/* NB: no point powering down chip as we're about to reboot */
1263 }
1264 
1265 /*
1266  * Interrupt handler.  Most of the actual processing is deferred.
1267  */
1268 void
1269 ath_intr(void *arg)
1270 {
1271 	struct ath_softc *sc = arg;
1272 	struct ifnet *ifp = sc->sc_ifp;
1273 	struct ath_hal *ah = sc->sc_ah;
1274 	HAL_INT status;
1275 
1276 	if (sc->sc_invalid) {
1277 		/*
1278 		 * The hardware is not ready/present, don't touch anything.
1279 		 * Note this can happen early on if the IRQ is shared.
1280 		 */
1281 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1282 		return;
1283 	}
1284 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1285 		return;
1286 	if ((ifp->if_flags & IFF_UP) == 0 ||
1287 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1288 		HAL_INT status;
1289 
1290 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1291 			__func__, ifp->if_flags);
1292 		ath_hal_getisr(ah, &status);	/* clear ISR */
1293 		ath_hal_intrset(ah, 0);		/* disable further intr's */
1294 		return;
1295 	}
1296 	/*
1297 	 * Figure out the reason(s) for the interrupt.  Note
1298 	 * that the hal returns a pseudo-ISR that may include
1299 	 * bits we haven't explicitly enabled so we mask the
1300 	 * value to insure we only process bits we requested.
1301 	 */
1302 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1303 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1304 	status &= sc->sc_imask;			/* discard unasked for bits */
1305 	if (status & HAL_INT_FATAL) {
1306 		sc->sc_stats.ast_hardware++;
1307 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1308 		ath_fatal_proc(sc, 0);
1309 	} else {
1310 		if (status & HAL_INT_SWBA) {
1311 			/*
1312 			 * Software beacon alert--time to send a beacon.
1313 			 * Handle beacon transmission directly; deferring
1314 			 * this is too slow to meet timing constraints
1315 			 * under load.
1316 			 */
1317 #ifdef IEEE80211_SUPPORT_TDMA
1318 			if (sc->sc_tdma) {
1319 				if (sc->sc_tdmaswba == 0) {
1320 					struct ieee80211com *ic = ifp->if_l2com;
1321 					struct ieee80211vap *vap =
1322 					    TAILQ_FIRST(&ic->ic_vaps);
1323 					ath_tdma_beacon_send(sc, vap);
1324 					sc->sc_tdmaswba =
1325 					    vap->iv_tdma->tdma_bintval;
1326 				} else
1327 					sc->sc_tdmaswba--;
1328 			} else
1329 #endif
1330 			{
1331 				ath_beacon_proc(sc, 0);
1332 #ifdef IEEE80211_SUPPORT_SUPERG
1333 				/*
1334 				 * Schedule the rx taskq in case there's no
1335 				 * traffic so any frames held on the staging
1336 				 * queue are aged and potentially flushed.
1337 				 */
1338 				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1339 #endif
1340 			}
1341 		}
1342 		if (status & HAL_INT_RXEOL) {
1343 			/*
1344 			 * NB: the hardware should re-read the link when
1345 			 *     RXE bit is written, but it doesn't work at
1346 			 *     least on older hardware revs.
1347 			 */
1348 			sc->sc_stats.ast_rxeol++;
1349 			sc->sc_rxlink = NULL;
1350 		}
1351 		if (status & HAL_INT_TXURN) {
1352 			sc->sc_stats.ast_txurn++;
1353 			/* bump tx trigger level */
1354 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1355 		}
1356 		if (status & HAL_INT_RX)
1357 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1358 		if (status & HAL_INT_TX)
1359 			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1360 		if (status & HAL_INT_BMISS) {
1361 			sc->sc_stats.ast_bmiss++;
1362 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1363 		}
1364 		if (status & HAL_INT_MIB) {
1365 			sc->sc_stats.ast_mib++;
1366 			/*
1367 			 * Disable interrupts until we service the MIB
1368 			 * interrupt; otherwise it will continue to fire.
1369 			 */
1370 			ath_hal_intrset(ah, 0);
1371 			/*
1372 			 * Let the hal handle the event.  We assume it will
1373 			 * clear whatever condition caused the interrupt.
1374 			 */
1375 			ath_hal_mibevent(ah, &sc->sc_halstats);
1376 			ath_hal_intrset(ah, sc->sc_imask);
1377 		}
1378 		if (status & HAL_INT_RXORN) {
1379 			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1380 			sc->sc_stats.ast_rxorn++;
1381 		}
1382 	}
1383 }
1384 
1385 static void
1386 ath_fatal_proc(void *arg, int pending)
1387 {
1388 	struct ath_softc *sc = arg;
1389 	struct ifnet *ifp = sc->sc_ifp;
1390 	u_int32_t *state;
1391 	u_int32_t len;
1392 	void *sp;
1393 
1394 	if_printf(ifp, "hardware error; resetting\n");
1395 	/*
1396 	 * Fatal errors are unrecoverable.  Typically these
1397 	 * are caused by DMA errors.  Collect h/w state from
1398 	 * the hal so we can diagnose what's going on.
1399 	 */
1400 	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1401 		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1402 		state = sp;
1403 		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1404 		    state[0], state[1] , state[2], state[3],
1405 		    state[4], state[5]);
1406 	}
1407 	ath_reset(ifp);
1408 }
1409 
1410 static void
1411 ath_bmiss_vap(struct ieee80211vap *vap)
1412 {
1413 	/*
1414 	 * Workaround phantom bmiss interrupts by sanity-checking
1415 	 * the time of our last rx'd frame.  If it is within the
1416 	 * beacon miss interval then ignore the interrupt.  If it's
1417 	 * truly a bmiss we'll get another interrupt soon and that'll
1418 	 * be dispatched up for processing.  Note this applies only
1419 	 * for h/w beacon miss events.
1420 	 */
1421 	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1422 		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1423 		struct ath_softc *sc = ifp->if_softc;
1424 		u_int64_t lastrx = sc->sc_lastrx;
1425 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1426 		u_int bmisstimeout =
1427 			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1428 
1429 		DPRINTF(sc, ATH_DEBUG_BEACON,
1430 		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1431 		    __func__, (unsigned long long) tsf,
1432 		    (unsigned long long)(tsf - lastrx),
1433 		    (unsigned long long) lastrx, bmisstimeout);
1434 
1435 		if (tsf - lastrx <= bmisstimeout) {
1436 			sc->sc_stats.ast_bmiss_phantom++;
1437 			return;
1438 		}
1439 	}
1440 	ATH_VAP(vap)->av_bmiss(vap);
1441 }
1442 
1443 static int
1444 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1445 {
1446 	uint32_t rsize;
1447 	void *sp;
1448 
1449 	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1450 		return 0;
1451 	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1452 	*hangs = *(uint32_t *)sp;
1453 	return 1;
1454 }
1455 
1456 static void
1457 ath_bmiss_proc(void *arg, int pending)
1458 {
1459 	struct ath_softc *sc = arg;
1460 	struct ifnet *ifp = sc->sc_ifp;
1461 	uint32_t hangs;
1462 
1463 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1464 
1465 	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1466 		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1467 		ath_reset(ifp);
1468 	} else
1469 		ieee80211_beacon_miss(ifp->if_l2com);
1470 }
1471 
1472 /*
1473  * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1474  * calcs together with WME.  If necessary disable the crypto
1475  * hardware and mark the 802.11 state so keys will be setup
1476  * with the MIC work done in software.
1477  */
1478 static void
1479 ath_settkipmic(struct ath_softc *sc)
1480 {
1481 	struct ifnet *ifp = sc->sc_ifp;
1482 	struct ieee80211com *ic = ifp->if_l2com;
1483 
1484 	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1485 		if (ic->ic_flags & IEEE80211_F_WME) {
1486 			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1487 			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1488 		} else {
1489 			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1490 			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1491 		}
1492 	}
1493 }
1494 
1495 static void
1496 ath_init(void *arg)
1497 {
1498 	struct ath_softc *sc = (struct ath_softc *) arg;
1499 	struct ifnet *ifp = sc->sc_ifp;
1500 	struct ieee80211com *ic = ifp->if_l2com;
1501 	struct ath_hal *ah = sc->sc_ah;
1502 	HAL_STATUS status;
1503 
1504 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1505 		__func__, ifp->if_flags);
1506 
1507 	ATH_LOCK(sc);
1508 	/*
1509 	 * Stop anything previously setup.  This is safe
1510 	 * whether this is the first time through or not.
1511 	 */
1512 	ath_stop_locked(ifp);
1513 
1514 	/*
1515 	 * The basic interface to setting the hardware in a good
1516 	 * state is ``reset''.  On return the hardware is known to
1517 	 * be powered up and with interrupts disabled.  This must
1518 	 * be followed by initialization of the appropriate bits
1519 	 * and then setup of the interrupt mask.
1520 	 */
1521 	ath_settkipmic(sc);
1522 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1523 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1524 			status);
1525 		ATH_UNLOCK(sc);
1526 		return;
1527 	}
1528 	ath_chan_change(sc, ic->ic_curchan);
1529 
1530 	/*
1531 	 * Likewise this is set during reset so update
1532 	 * state cached in the driver.
1533 	 */
1534 	sc->sc_diversity = ath_hal_getdiversity(ah);
1535 	sc->sc_lastlongcal = 0;
1536 	sc->sc_resetcal = 1;
1537 	sc->sc_lastcalreset = 0;
1538 	sc->sc_lastani = 0;
1539 	sc->sc_lastshortcal = 0;
1540 	sc->sc_doresetcal = AH_FALSE;
1541 
1542 	/*
1543 	 * Setup the hardware after reset: the key cache
1544 	 * is filled as needed and the receive engine is
1545 	 * set going.  Frame transmit is handled entirely
1546 	 * in the frame output path; there's nothing to do
1547 	 * here except setup the interrupt mask.
1548 	 */
1549 	if (ath_startrecv(sc) != 0) {
1550 		if_printf(ifp, "unable to start recv logic\n");
1551 		ATH_UNLOCK(sc);
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * Enable interrupts.
1557 	 */
1558 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1559 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1560 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1561 	/*
1562 	 * Enable MIB interrupts when there are hardware phy counters.
1563 	 * Note we only do this (at the moment) for station mode.
1564 	 */
1565 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1566 		sc->sc_imask |= HAL_INT_MIB;
1567 
1568 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1569 	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1570 	ath_hal_intrset(ah, sc->sc_imask);
1571 
1572 	ATH_UNLOCK(sc);
1573 
1574 #ifdef ATH_TX99_DIAG
1575 	if (sc->sc_tx99 != NULL)
1576 		sc->sc_tx99->start(sc->sc_tx99);
1577 	else
1578 #endif
1579 	ieee80211_start_all(ic);		/* start all vap's */
1580 }
1581 
1582 static void
1583 ath_stop_locked(struct ifnet *ifp)
1584 {
1585 	struct ath_softc *sc = ifp->if_softc;
1586 	struct ath_hal *ah = sc->sc_ah;
1587 
1588 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1589 		__func__, sc->sc_invalid, ifp->if_flags);
1590 
1591 	ATH_LOCK_ASSERT(sc);
1592 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1593 		/*
1594 		 * Shutdown the hardware and driver:
1595 		 *    reset 802.11 state machine
1596 		 *    turn off timers
1597 		 *    disable interrupts
1598 		 *    turn off the radio
1599 		 *    clear transmit machinery
1600 		 *    clear receive machinery
1601 		 *    drain and release tx queues
1602 		 *    reclaim beacon resources
1603 		 *    power down hardware
1604 		 *
1605 		 * Note that some of this work is not possible if the
1606 		 * hardware is gone (invalid).
1607 		 */
1608 #ifdef ATH_TX99_DIAG
1609 		if (sc->sc_tx99 != NULL)
1610 			sc->sc_tx99->stop(sc->sc_tx99);
1611 #endif
1612 		callout_stop(&sc->sc_wd_ch);
1613 		sc->sc_wd_timer = 0;
1614 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1615 		if (!sc->sc_invalid) {
1616 			if (sc->sc_softled) {
1617 				callout_stop(&sc->sc_ledtimer);
1618 				ath_hal_gpioset(ah, sc->sc_ledpin,
1619 					!sc->sc_ledon);
1620 				sc->sc_blinking = 0;
1621 			}
1622 			ath_hal_intrset(ah, 0);
1623 		}
1624 		ath_draintxq(sc);
1625 		if (!sc->sc_invalid) {
1626 			ath_stoprecv(sc);
1627 			ath_hal_phydisable(ah);
1628 		} else
1629 			sc->sc_rxlink = NULL;
1630 		ath_beacon_free(sc);	/* XXX not needed */
1631 	}
1632 }
1633 
1634 static void
1635 ath_stop(struct ifnet *ifp)
1636 {
1637 	struct ath_softc *sc = ifp->if_softc;
1638 
1639 	ATH_LOCK(sc);
1640 	ath_stop_locked(ifp);
1641 	ATH_UNLOCK(sc);
1642 }
1643 
1644 /*
1645  * Reset the hardware w/o losing operational state.  This is
1646  * basically a more efficient way of doing ath_stop, ath_init,
1647  * followed by state transitions to the current 802.11
1648  * operational state.  Used to recover from various errors and
1649  * to reset or reload hardware state.
1650  */
1651 int
1652 ath_reset(struct ifnet *ifp)
1653 {
1654 	struct ath_softc *sc = ifp->if_softc;
1655 	struct ieee80211com *ic = ifp->if_l2com;
1656 	struct ath_hal *ah = sc->sc_ah;
1657 	HAL_STATUS status;
1658 
1659 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1660 	ath_draintxq(sc);		/* stop xmit side */
1661 	ath_stoprecv(sc);		/* stop recv side */
1662 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1663 	/* NB: indicate channel change so we do a full reset */
1664 	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1665 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1666 			__func__, status);
1667 	sc->sc_diversity = ath_hal_getdiversity(ah);
1668 	if (ath_startrecv(sc) != 0)	/* restart recv */
1669 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1670 	/*
1671 	 * We may be doing a reset in response to an ioctl
1672 	 * that changes the channel so update any state that
1673 	 * might change as a result.
1674 	 */
1675 	ath_chan_change(sc, ic->ic_curchan);
1676 	if (sc->sc_beacons) {		/* restart beacons */
1677 #ifdef IEEE80211_SUPPORT_TDMA
1678 		if (sc->sc_tdma)
1679 			ath_tdma_config(sc, NULL);
1680 		else
1681 #endif
1682 			ath_beacon_config(sc, NULL);
1683 	}
1684 	ath_hal_intrset(ah, sc->sc_imask);
1685 
1686 	ath_start(ifp);			/* restart xmit */
1687 	return 0;
1688 }
1689 
1690 static int
1691 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1692 {
1693 	struct ieee80211com *ic = vap->iv_ic;
1694 	struct ifnet *ifp = ic->ic_ifp;
1695 	struct ath_softc *sc = ifp->if_softc;
1696 	struct ath_hal *ah = sc->sc_ah;
1697 
1698 	switch (cmd) {
1699 	case IEEE80211_IOC_TXPOWER:
1700 		/*
1701 		 * If per-packet TPC is enabled, then we have nothing
1702 		 * to do; otherwise we need to force the global limit.
1703 		 * All this can happen directly; no need to reset.
1704 		 */
1705 		if (!ath_hal_gettpc(ah))
1706 			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1707 		return 0;
1708 	}
1709 	return ath_reset(ifp);
1710 }
1711 
1712 struct ath_buf *
1713 _ath_getbuf_locked(struct ath_softc *sc)
1714 {
1715 	struct ath_buf *bf;
1716 
1717 	ATH_TXBUF_LOCK_ASSERT(sc);
1718 
1719 	bf = STAILQ_FIRST(&sc->sc_txbuf);
1720 	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1721 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1722 	else
1723 		bf = NULL;
1724 	if (bf == NULL) {
1725 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1726 		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1727 			"out of xmit buffers" : "xmit buffer busy");
1728 	}
1729 	return bf;
1730 }
1731 
1732 struct ath_buf *
1733 ath_getbuf(struct ath_softc *sc)
1734 {
1735 	struct ath_buf *bf;
1736 
1737 	ATH_TXBUF_LOCK(sc);
1738 	bf = _ath_getbuf_locked(sc);
1739 	if (bf == NULL) {
1740 		struct ifnet *ifp = sc->sc_ifp;
1741 
1742 		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1743 		sc->sc_stats.ast_tx_qstop++;
1744 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1745 	}
1746 	ATH_TXBUF_UNLOCK(sc);
1747 	return bf;
1748 }
1749 
1750 static void
1751 ath_start(struct ifnet *ifp)
1752 {
1753 	struct ath_softc *sc = ifp->if_softc;
1754 	struct ieee80211_node *ni;
1755 	struct ath_buf *bf;
1756 	struct mbuf *m, *next;
1757 	ath_bufhead frags;
1758 
1759 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1760 		return;
1761 	for (;;) {
1762 		/*
1763 		 * Grab a TX buffer and associated resources.
1764 		 */
1765 		bf = ath_getbuf(sc);
1766 		if (bf == NULL)
1767 			break;
1768 
1769 		IFQ_DEQUEUE(&ifp->if_snd, m);
1770 		if (m == NULL) {
1771 			ATH_TXBUF_LOCK(sc);
1772 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1773 			ATH_TXBUF_UNLOCK(sc);
1774 			break;
1775 		}
1776 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1777 		/*
1778 		 * Check for fragmentation.  If this frame
1779 		 * has been broken up verify we have enough
1780 		 * buffers to send all the fragments so all
1781 		 * go out or none...
1782 		 */
1783 		STAILQ_INIT(&frags);
1784 		if ((m->m_flags & M_FRAG) &&
1785 		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1786 			DPRINTF(sc, ATH_DEBUG_XMIT,
1787 			    "%s: out of txfrag buffers\n", __func__);
1788 			sc->sc_stats.ast_tx_nofrag++;
1789 			ifp->if_oerrors++;
1790 			ath_freetx(m);
1791 			goto bad;
1792 		}
1793 		ifp->if_opackets++;
1794 	nextfrag:
1795 		/*
1796 		 * Pass the frame to the h/w for transmission.
1797 		 * Fragmented frames have each frag chained together
1798 		 * with m_nextpkt.  We know there are sufficient ath_buf's
1799 		 * to send all the frags because of work done by
1800 		 * ath_txfrag_setup.  We leave m_nextpkt set while
1801 		 * calling ath_tx_start so it can use it to extend the
1802 		 * the tx duration to cover the subsequent frag and
1803 		 * so it can reclaim all the mbufs in case of an error;
1804 		 * ath_tx_start clears m_nextpkt once it commits to
1805 		 * handing the frame to the hardware.
1806 		 */
1807 		next = m->m_nextpkt;
1808 		if (ath_tx_start(sc, ni, bf, m)) {
1809 	bad:
1810 			ifp->if_oerrors++;
1811 	reclaim:
1812 			bf->bf_m = NULL;
1813 			bf->bf_node = NULL;
1814 			ATH_TXBUF_LOCK(sc);
1815 			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1816 			ath_txfrag_cleanup(sc, &frags, ni);
1817 			ATH_TXBUF_UNLOCK(sc);
1818 			if (ni != NULL)
1819 				ieee80211_free_node(ni);
1820 			continue;
1821 		}
1822 		if (next != NULL) {
1823 			/*
1824 			 * Beware of state changing between frags.
1825 			 * XXX check sta power-save state?
1826 			 */
1827 			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1828 				DPRINTF(sc, ATH_DEBUG_XMIT,
1829 				    "%s: flush fragmented packet, state %s\n",
1830 				    __func__,
1831 				    ieee80211_state_name[ni->ni_vap->iv_state]);
1832 				ath_freetx(next);
1833 				goto reclaim;
1834 			}
1835 			m = next;
1836 			bf = STAILQ_FIRST(&frags);
1837 			KASSERT(bf != NULL, ("no buf for txfrag"));
1838 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1839 			goto nextfrag;
1840 		}
1841 
1842 		sc->sc_wd_timer = 5;
1843 	}
1844 }
1845 
1846 static int
1847 ath_media_change(struct ifnet *ifp)
1848 {
1849 	int error = ieee80211_media_change(ifp);
1850 	/* NB: only the fixed rate can change and that doesn't need a reset */
1851 	return (error == ENETRESET ? 0 : error);
1852 }
1853 
1854 #ifdef ATH_DEBUG
1855 static void
1856 ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1857 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1858 {
1859 	static const char *ciphers[] = {
1860 		"WEP",
1861 		"AES-OCB",
1862 		"AES-CCM",
1863 		"CKIP",
1864 		"TKIP",
1865 		"CLR",
1866 	};
1867 	int i, n;
1868 
1869 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1870 	for (i = 0, n = hk->kv_len; i < n; i++)
1871 		printf("%02x", hk->kv_val[i]);
1872 	printf(" mac %s", ether_sprintf(mac));
1873 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1874 		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1875 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1876 			printf("%02x", hk->kv_mic[i]);
1877 		if (!sc->sc_splitmic) {
1878 			printf(" txmic ");
1879 			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1880 				printf("%02x", hk->kv_txmic[i]);
1881 		}
1882 	}
1883 	printf("\n");
1884 }
1885 #endif
1886 
1887 /*
1888  * Set a TKIP key into the hardware.  This handles the
1889  * potential distribution of key state to multiple key
1890  * cache slots for TKIP.
1891  */
1892 static int
1893 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1894 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1895 {
1896 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1897 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1898 	struct ath_hal *ah = sc->sc_ah;
1899 
1900 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1901 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1902 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1903 		if (sc->sc_splitmic) {
1904 			/*
1905 			 * TX key goes at first index, RX key at the rx index.
1906 			 * The hal handles the MIC keys at index+64.
1907 			 */
1908 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1909 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1910 			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1911 				return 0;
1912 
1913 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1914 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1915 			/* XXX delete tx key on failure? */
1916 			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1917 		} else {
1918 			/*
1919 			 * Room for both TX+RX MIC keys in one key cache
1920 			 * slot, just set key at the first index; the hal
1921 			 * will handle the rest.
1922 			 */
1923 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1924 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1925 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1926 			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1927 		}
1928 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1929 		if (sc->sc_splitmic) {
1930 			/*
1931 			 * NB: must pass MIC key in expected location when
1932 			 * the keycache only holds one MIC key per entry.
1933 			 */
1934 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1935 		} else
1936 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1937 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1938 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1939 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1940 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1941 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1942 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1943 	}
1944 	return 0;
1945 #undef IEEE80211_KEY_XR
1946 }
1947 
1948 /*
1949  * Set a net80211 key into the hardware.  This handles the
1950  * potential distribution of key state to multiple key
1951  * cache slots for TKIP with hardware MIC support.
1952  */
1953 static int
1954 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1955 	struct ieee80211_node *bss)
1956 {
1957 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1958 	static const u_int8_t ciphermap[] = {
1959 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1960 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1961 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1962 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1963 		(u_int8_t) -1,		/* 4 is not allocated */
1964 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1965 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1966 	};
1967 	struct ath_hal *ah = sc->sc_ah;
1968 	const struct ieee80211_cipher *cip = k->wk_cipher;
1969 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1970 	const u_int8_t *mac;
1971 	HAL_KEYVAL hk;
1972 
1973 	memset(&hk, 0, sizeof(hk));
1974 	/*
1975 	 * Software crypto uses a "clear key" so non-crypto
1976 	 * state kept in the key cache are maintained and
1977 	 * so that rx frames have an entry to match.
1978 	 */
1979 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1980 		KASSERT(cip->ic_cipher < N(ciphermap),
1981 			("invalid cipher type %u", cip->ic_cipher));
1982 		hk.kv_type = ciphermap[cip->ic_cipher];
1983 		hk.kv_len = k->wk_keylen;
1984 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1985 	} else
1986 		hk.kv_type = HAL_CIPHER_CLR;
1987 
1988 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1989 		/*
1990 		 * Group keys on hardware that supports multicast frame
1991 		 * key search use a MAC that is the sender's address with
1992 		 * the multicast bit set instead of the app-specified address.
1993 		 */
1994 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1995 		gmac[0] |= 0x01;
1996 		mac = gmac;
1997 	} else
1998 		mac = k->wk_macaddr;
1999 
2000 	if (hk.kv_type == HAL_CIPHER_TKIP &&
2001 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2002 		return ath_keyset_tkip(sc, k, &hk, mac);
2003 	} else {
2004 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2005 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2006 	}
2007 #undef N
2008 }
2009 
2010 /*
2011  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2012  * each key, one for decrypt/encrypt and the other for the MIC.
2013  */
2014 static u_int16_t
2015 key_alloc_2pair(struct ath_softc *sc,
2016 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2017 {
2018 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2019 	u_int i, keyix;
2020 
2021 	KASSERT(sc->sc_splitmic, ("key cache !split"));
2022 	/* XXX could optimize */
2023 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2024 		u_int8_t b = sc->sc_keymap[i];
2025 		if (b != 0xff) {
2026 			/*
2027 			 * One or more slots in this byte are free.
2028 			 */
2029 			keyix = i*NBBY;
2030 			while (b & 1) {
2031 		again:
2032 				keyix++;
2033 				b >>= 1;
2034 			}
2035 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2036 			if (isset(sc->sc_keymap, keyix+32) ||
2037 			    isset(sc->sc_keymap, keyix+64) ||
2038 			    isset(sc->sc_keymap, keyix+32+64)) {
2039 				/* full pair unavailable */
2040 				/* XXX statistic */
2041 				if (keyix == (i+1)*NBBY) {
2042 					/* no slots were appropriate, advance */
2043 					continue;
2044 				}
2045 				goto again;
2046 			}
2047 			setbit(sc->sc_keymap, keyix);
2048 			setbit(sc->sc_keymap, keyix+64);
2049 			setbit(sc->sc_keymap, keyix+32);
2050 			setbit(sc->sc_keymap, keyix+32+64);
2051 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2052 				"%s: key pair %u,%u %u,%u\n",
2053 				__func__, keyix, keyix+64,
2054 				keyix+32, keyix+32+64);
2055 			*txkeyix = keyix;
2056 			*rxkeyix = keyix+32;
2057 			return 1;
2058 		}
2059 	}
2060 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2061 	return 0;
2062 #undef N
2063 }
2064 
2065 /*
2066  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2067  * each key, one for decrypt/encrypt and the other for the MIC.
2068  */
2069 static u_int16_t
2070 key_alloc_pair(struct ath_softc *sc,
2071 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2072 {
2073 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2074 	u_int i, keyix;
2075 
2076 	KASSERT(!sc->sc_splitmic, ("key cache split"));
2077 	/* XXX could optimize */
2078 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2079 		u_int8_t b = sc->sc_keymap[i];
2080 		if (b != 0xff) {
2081 			/*
2082 			 * One or more slots in this byte are free.
2083 			 */
2084 			keyix = i*NBBY;
2085 			while (b & 1) {
2086 		again:
2087 				keyix++;
2088 				b >>= 1;
2089 			}
2090 			if (isset(sc->sc_keymap, keyix+64)) {
2091 				/* full pair unavailable */
2092 				/* XXX statistic */
2093 				if (keyix == (i+1)*NBBY) {
2094 					/* no slots were appropriate, advance */
2095 					continue;
2096 				}
2097 				goto again;
2098 			}
2099 			setbit(sc->sc_keymap, keyix);
2100 			setbit(sc->sc_keymap, keyix+64);
2101 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2102 				"%s: key pair %u,%u\n",
2103 				__func__, keyix, keyix+64);
2104 			*txkeyix = *rxkeyix = keyix;
2105 			return 1;
2106 		}
2107 	}
2108 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2109 	return 0;
2110 #undef N
2111 }
2112 
2113 /*
2114  * Allocate a single key cache slot.
2115  */
2116 static int
2117 key_alloc_single(struct ath_softc *sc,
2118 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2119 {
2120 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2121 	u_int i, keyix;
2122 
2123 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2124 	for (i = 0; i < N(sc->sc_keymap); i++) {
2125 		u_int8_t b = sc->sc_keymap[i];
2126 		if (b != 0xff) {
2127 			/*
2128 			 * One or more slots are free.
2129 			 */
2130 			keyix = i*NBBY;
2131 			while (b & 1)
2132 				keyix++, b >>= 1;
2133 			setbit(sc->sc_keymap, keyix);
2134 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2135 				__func__, keyix);
2136 			*txkeyix = *rxkeyix = keyix;
2137 			return 1;
2138 		}
2139 	}
2140 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2141 	return 0;
2142 #undef N
2143 }
2144 
2145 /*
2146  * Allocate one or more key cache slots for a uniacst key.  The
2147  * key itself is needed only to identify the cipher.  For hardware
2148  * TKIP with split cipher+MIC keys we allocate two key cache slot
2149  * pairs so that we can setup separate TX and RX MIC keys.  Note
2150  * that the MIC key for a TKIP key at slot i is assumed by the
2151  * hardware to be at slot i+64.  This limits TKIP keys to the first
2152  * 64 entries.
2153  */
2154 static int
2155 ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2156 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2157 {
2158 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2159 
2160 	/*
2161 	 * Group key allocation must be handled specially for
2162 	 * parts that do not support multicast key cache search
2163 	 * functionality.  For those parts the key id must match
2164 	 * the h/w key index so lookups find the right key.  On
2165 	 * parts w/ the key search facility we install the sender's
2166 	 * mac address (with the high bit set) and let the hardware
2167 	 * find the key w/o using the key id.  This is preferred as
2168 	 * it permits us to support multiple users for adhoc and/or
2169 	 * multi-station operation.
2170 	 */
2171 	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2172 		/*
2173 		 * Only global keys should have key index assigned.
2174 		 */
2175 		if (!(&vap->iv_nw_keys[0] <= k &&
2176 		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2177 			/* should not happen */
2178 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2179 				"%s: bogus group key\n", __func__);
2180 			return 0;
2181 		}
2182 		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2183 		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2184 		    !sc->sc_mcastkey) {
2185 			/*
2186 			 * XXX we pre-allocate the global keys so
2187 			 * have no way to check if they've already
2188 			 * been allocated.
2189 			 */
2190 			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2191 			return 1;
2192 		}
2193 		/*
2194 		 * Group key and device supports multicast key search.
2195 		 */
2196 		k->wk_keyix = IEEE80211_KEYIX_NONE;
2197 	}
2198 
2199 	/*
2200 	 * We allocate two pair for TKIP when using the h/w to do
2201 	 * the MIC.  For everything else, including software crypto,
2202 	 * we allocate a single entry.  Note that s/w crypto requires
2203 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2204 	 * not support pass-through cache entries and we map all
2205 	 * those requests to slot 0.
2206 	 */
2207 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2208 		return key_alloc_single(sc, keyix, rxkeyix);
2209 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2210 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2211 		if (sc->sc_splitmic)
2212 			return key_alloc_2pair(sc, keyix, rxkeyix);
2213 		else
2214 			return key_alloc_pair(sc, keyix, rxkeyix);
2215 	} else {
2216 		return key_alloc_single(sc, keyix, rxkeyix);
2217 	}
2218 }
2219 
2220 /*
2221  * Delete an entry in the key cache allocated by ath_key_alloc.
2222  */
2223 static int
2224 ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2225 {
2226 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2227 	struct ath_hal *ah = sc->sc_ah;
2228 	const struct ieee80211_cipher *cip = k->wk_cipher;
2229 	u_int keyix = k->wk_keyix;
2230 
2231 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2232 
2233 	ath_hal_keyreset(ah, keyix);
2234 	/*
2235 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2236 	 */
2237 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2238 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2239 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2240 	if (keyix >= IEEE80211_WEP_NKID) {
2241 		/*
2242 		 * Don't touch keymap entries for global keys so
2243 		 * they are never considered for dynamic allocation.
2244 		 */
2245 		clrbit(sc->sc_keymap, keyix);
2246 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2247 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2248 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2249 			if (sc->sc_splitmic) {
2250 				/* +32 for RX key, +32+64 for RX key MIC */
2251 				clrbit(sc->sc_keymap, keyix+32);
2252 				clrbit(sc->sc_keymap, keyix+32+64);
2253 			}
2254 		}
2255 	}
2256 	return 1;
2257 }
2258 
2259 /*
2260  * Set the key cache contents for the specified key.  Key cache
2261  * slot(s) must already have been allocated by ath_key_alloc.
2262  */
2263 static int
2264 ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2265 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2266 {
2267 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2268 
2269 	return ath_keyset(sc, k, vap->iv_bss);
2270 }
2271 
2272 /*
2273  * Block/unblock tx+rx processing while a key change is done.
2274  * We assume the caller serializes key management operations
2275  * so we only need to worry about synchronization with other
2276  * uses that originate in the driver.
2277  */
2278 static void
2279 ath_key_update_begin(struct ieee80211vap *vap)
2280 {
2281 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2282 	struct ath_softc *sc = ifp->if_softc;
2283 
2284 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2285 	taskqueue_block(sc->sc_tq);
2286 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2287 }
2288 
2289 static void
2290 ath_key_update_end(struct ieee80211vap *vap)
2291 {
2292 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2293 	struct ath_softc *sc = ifp->if_softc;
2294 
2295 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2296 	IF_UNLOCK(&ifp->if_snd);
2297 	taskqueue_unblock(sc->sc_tq);
2298 }
2299 
2300 /*
2301  * Calculate the receive filter according to the
2302  * operating mode and state:
2303  *
2304  * o always accept unicast, broadcast, and multicast traffic
2305  * o accept PHY error frames when hardware doesn't have MIB support
2306  *   to count and we need them for ANI (sta mode only until recently)
2307  *   and we are not scanning (ANI is disabled)
2308  *   NB: older hal's add rx filter bits out of sight and we need to
2309  *	 blindly preserve them
2310  * o probe request frames are accepted only when operating in
2311  *   hostap, adhoc, mesh, or monitor modes
2312  * o enable promiscuous mode
2313  *   - when in monitor mode
2314  *   - if interface marked PROMISC (assumes bridge setting is filtered)
2315  * o accept beacons:
2316  *   - when operating in station mode for collecting rssi data when
2317  *     the station is otherwise quiet, or
2318  *   - when operating in adhoc mode so the 802.11 layer creates
2319  *     node table entries for peers,
2320  *   - when scanning
2321  *   - when doing s/w beacon miss (e.g. for ap+sta)
2322  *   - when operating in ap mode in 11g to detect overlapping bss that
2323  *     require protection
2324  *   - when operating in mesh mode to detect neighbors
2325  * o accept control frames:
2326  *   - when in monitor mode
2327  * XXX HT protection for 11n
2328  */
2329 static u_int32_t
2330 ath_calcrxfilter(struct ath_softc *sc)
2331 {
2332 	struct ifnet *ifp = sc->sc_ifp;
2333 	struct ieee80211com *ic = ifp->if_l2com;
2334 	u_int32_t rfilt;
2335 
2336 	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2337 	if (!sc->sc_needmib && !sc->sc_scanning)
2338 		rfilt |= HAL_RX_FILTER_PHYERR;
2339 	if (ic->ic_opmode != IEEE80211_M_STA)
2340 		rfilt |= HAL_RX_FILTER_PROBEREQ;
2341 	/* XXX ic->ic_monvaps != 0? */
2342 	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2343 		rfilt |= HAL_RX_FILTER_PROM;
2344 	if (ic->ic_opmode == IEEE80211_M_STA ||
2345 	    ic->ic_opmode == IEEE80211_M_IBSS ||
2346 	    sc->sc_swbmiss || sc->sc_scanning)
2347 		rfilt |= HAL_RX_FILTER_BEACON;
2348 	/*
2349 	 * NB: We don't recalculate the rx filter when
2350 	 * ic_protmode changes; otherwise we could do
2351 	 * this only when ic_protmode != NONE.
2352 	 */
2353 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2354 	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2355 		rfilt |= HAL_RX_FILTER_BEACON;
2356 	if (sc->sc_nmeshvaps) {
2357 		rfilt |= HAL_RX_FILTER_BEACON;
2358 		if (sc->sc_hasbmatch)
2359 			rfilt |= HAL_RX_FILTER_BSSID;
2360 		else
2361 			rfilt |= HAL_RX_FILTER_PROM;
2362 	}
2363 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2364 		rfilt |= HAL_RX_FILTER_CONTROL;
2365 	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2366 		rfilt |= HAL_RX_FILTER_COMPBAR;
2367 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2368 	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2369 	return rfilt;
2370 }
2371 
2372 static void
2373 ath_update_promisc(struct ifnet *ifp)
2374 {
2375 	struct ath_softc *sc = ifp->if_softc;
2376 	u_int32_t rfilt;
2377 
2378 	/* configure rx filter */
2379 	rfilt = ath_calcrxfilter(sc);
2380 	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2381 
2382 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2383 }
2384 
2385 static void
2386 ath_update_mcast(struct ifnet *ifp)
2387 {
2388 	struct ath_softc *sc = ifp->if_softc;
2389 	u_int32_t mfilt[2];
2390 
2391 	/* calculate and install multicast filter */
2392 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2393 		struct ifmultiaddr *ifma;
2394 		/*
2395 		 * Merge multicast addresses to form the hardware filter.
2396 		 */
2397 		mfilt[0] = mfilt[1] = 0;
2398 		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2399 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2400 			caddr_t dl;
2401 			u_int32_t val;
2402 			u_int8_t pos;
2403 
2404 			/* calculate XOR of eight 6bit values */
2405 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2406 			val = LE_READ_4(dl + 0);
2407 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2408 			val = LE_READ_4(dl + 3);
2409 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2410 			pos &= 0x3f;
2411 			mfilt[pos / 32] |= (1 << (pos % 32));
2412 		}
2413 		if_maddr_runlock(ifp);
2414 	} else
2415 		mfilt[0] = mfilt[1] = ~0;
2416 	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2417 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2418 		__func__, mfilt[0], mfilt[1]);
2419 }
2420 
2421 static void
2422 ath_mode_init(struct ath_softc *sc)
2423 {
2424 	struct ifnet *ifp = sc->sc_ifp;
2425 	struct ath_hal *ah = sc->sc_ah;
2426 	u_int32_t rfilt;
2427 
2428 	/* configure rx filter */
2429 	rfilt = ath_calcrxfilter(sc);
2430 	ath_hal_setrxfilter(ah, rfilt);
2431 
2432 	/* configure operational mode */
2433 	ath_hal_setopmode(ah);
2434 
2435 	/* handle any link-level address change */
2436 	ath_hal_setmac(ah, IF_LLADDR(ifp));
2437 
2438 	/* calculate and install multicast filter */
2439 	ath_update_mcast(ifp);
2440 }
2441 
2442 /*
2443  * Set the slot time based on the current setting.
2444  */
2445 static void
2446 ath_setslottime(struct ath_softc *sc)
2447 {
2448 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2449 	struct ath_hal *ah = sc->sc_ah;
2450 	u_int usec;
2451 
2452 	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2453 		usec = 13;
2454 	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2455 		usec = 21;
2456 	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2457 		/* honor short/long slot time only in 11g */
2458 		/* XXX shouldn't honor on pure g or turbo g channel */
2459 		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2460 			usec = HAL_SLOT_TIME_9;
2461 		else
2462 			usec = HAL_SLOT_TIME_20;
2463 	} else
2464 		usec = HAL_SLOT_TIME_9;
2465 
2466 	DPRINTF(sc, ATH_DEBUG_RESET,
2467 	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2468 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2469 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2470 
2471 	ath_hal_setslottime(ah, usec);
2472 	sc->sc_updateslot = OK;
2473 }
2474 
2475 /*
2476  * Callback from the 802.11 layer to update the
2477  * slot time based on the current setting.
2478  */
2479 static void
2480 ath_updateslot(struct ifnet *ifp)
2481 {
2482 	struct ath_softc *sc = ifp->if_softc;
2483 	struct ieee80211com *ic = ifp->if_l2com;
2484 
2485 	/*
2486 	 * When not coordinating the BSS, change the hardware
2487 	 * immediately.  For other operation we defer the change
2488 	 * until beacon updates have propagated to the stations.
2489 	 */
2490 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2491 	    ic->ic_opmode == IEEE80211_M_MBSS)
2492 		sc->sc_updateslot = UPDATE;
2493 	else
2494 		ath_setslottime(sc);
2495 }
2496 
2497 /*
2498  * Setup a h/w transmit queue for beacons.
2499  */
2500 static int
2501 ath_beaconq_setup(struct ath_hal *ah)
2502 {
2503 	HAL_TXQ_INFO qi;
2504 
2505 	memset(&qi, 0, sizeof(qi));
2506 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2507 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2508 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2509 	/* NB: for dynamic turbo, don't enable any other interrupts */
2510 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2511 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2512 }
2513 
2514 /*
2515  * Setup the transmit queue parameters for the beacon queue.
2516  */
2517 static int
2518 ath_beaconq_config(struct ath_softc *sc)
2519 {
2520 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2521 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2522 	struct ath_hal *ah = sc->sc_ah;
2523 	HAL_TXQ_INFO qi;
2524 
2525 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2526 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2527 	    ic->ic_opmode == IEEE80211_M_MBSS) {
2528 		/*
2529 		 * Always burst out beacon and CAB traffic.
2530 		 */
2531 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2532 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2533 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2534 	} else {
2535 		struct wmeParams *wmep =
2536 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2537 		/*
2538 		 * Adhoc mode; important thing is to use 2x cwmin.
2539 		 */
2540 		qi.tqi_aifs = wmep->wmep_aifsn;
2541 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2542 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2543 	}
2544 
2545 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2546 		device_printf(sc->sc_dev, "unable to update parameters for "
2547 			"beacon hardware queue!\n");
2548 		return 0;
2549 	} else {
2550 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2551 		return 1;
2552 	}
2553 #undef ATH_EXPONENT_TO_VALUE
2554 }
2555 
2556 /*
2557  * Allocate and setup an initial beacon frame.
2558  */
2559 static int
2560 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2561 {
2562 	struct ieee80211vap *vap = ni->ni_vap;
2563 	struct ath_vap *avp = ATH_VAP(vap);
2564 	struct ath_buf *bf;
2565 	struct mbuf *m;
2566 	int error;
2567 
2568 	bf = avp->av_bcbuf;
2569 	if (bf->bf_m != NULL) {
2570 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2571 		m_freem(bf->bf_m);
2572 		bf->bf_m = NULL;
2573 	}
2574 	if (bf->bf_node != NULL) {
2575 		ieee80211_free_node(bf->bf_node);
2576 		bf->bf_node = NULL;
2577 	}
2578 
2579 	/*
2580 	 * NB: the beacon data buffer must be 32-bit aligned;
2581 	 * we assume the mbuf routines will return us something
2582 	 * with this alignment (perhaps should assert).
2583 	 */
2584 	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2585 	if (m == NULL) {
2586 		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2587 		sc->sc_stats.ast_be_nombuf++;
2588 		return ENOMEM;
2589 	}
2590 	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2591 				     bf->bf_segs, &bf->bf_nseg,
2592 				     BUS_DMA_NOWAIT);
2593 	if (error != 0) {
2594 		device_printf(sc->sc_dev,
2595 		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2596 		    __func__, error);
2597 		m_freem(m);
2598 		return error;
2599 	}
2600 
2601 	/*
2602 	 * Calculate a TSF adjustment factor required for staggered
2603 	 * beacons.  Note that we assume the format of the beacon
2604 	 * frame leaves the tstamp field immediately following the
2605 	 * header.
2606 	 */
2607 	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2608 		uint64_t tsfadjust;
2609 		struct ieee80211_frame *wh;
2610 
2611 		/*
2612 		 * The beacon interval is in TU's; the TSF is in usecs.
2613 		 * We figure out how many TU's to add to align the timestamp
2614 		 * then convert to TSF units and handle byte swapping before
2615 		 * inserting it in the frame.  The hardware will then add this
2616 		 * each time a beacon frame is sent.  Note that we align vap's
2617 		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2618 		 * timestamp in one beacon interval while the others get a
2619 		 * timstamp aligned to the next interval.
2620 		 */
2621 		tsfadjust = ni->ni_intval *
2622 		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2623 		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2624 
2625 		DPRINTF(sc, ATH_DEBUG_BEACON,
2626 		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2627 		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2628 		    avp->av_bslot, ni->ni_intval,
2629 		    (long long unsigned) le64toh(tsfadjust));
2630 
2631 		wh = mtod(m, struct ieee80211_frame *);
2632 		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2633 	}
2634 	bf->bf_m = m;
2635 	bf->bf_node = ieee80211_ref_node(ni);
2636 
2637 	return 0;
2638 }
2639 
2640 /*
2641  * Setup the beacon frame for transmit.
2642  */
2643 static void
2644 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2645 {
2646 #define	USE_SHPREAMBLE(_ic) \
2647 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2648 		== IEEE80211_F_SHPREAMBLE)
2649 	struct ieee80211_node *ni = bf->bf_node;
2650 	struct ieee80211com *ic = ni->ni_ic;
2651 	struct mbuf *m = bf->bf_m;
2652 	struct ath_hal *ah = sc->sc_ah;
2653 	struct ath_desc *ds;
2654 	int flags, antenna;
2655 	const HAL_RATE_TABLE *rt;
2656 	u_int8_t rix, rate;
2657 
2658 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2659 		__func__, m, m->m_len);
2660 
2661 	/* setup descriptors */
2662 	ds = bf->bf_desc;
2663 
2664 	flags = HAL_TXDESC_NOACK;
2665 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2666 		ds->ds_link = bf->bf_daddr;	/* self-linked */
2667 		flags |= HAL_TXDESC_VEOL;
2668 		/*
2669 		 * Let hardware handle antenna switching.
2670 		 */
2671 		antenna = sc->sc_txantenna;
2672 	} else {
2673 		ds->ds_link = 0;
2674 		/*
2675 		 * Switch antenna every 4 beacons.
2676 		 * XXX assumes two antenna
2677 		 */
2678 		if (sc->sc_txantenna != 0)
2679 			antenna = sc->sc_txantenna;
2680 		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2681 			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2682 		else
2683 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2684 	}
2685 
2686 	KASSERT(bf->bf_nseg == 1,
2687 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2688 	ds->ds_data = bf->bf_segs[0].ds_addr;
2689 	/*
2690 	 * Calculate rate code.
2691 	 * XXX everything at min xmit rate
2692 	 */
2693 	rix = 0;
2694 	rt = sc->sc_currates;
2695 	rate = rt->info[rix].rateCode;
2696 	if (USE_SHPREAMBLE(ic))
2697 		rate |= rt->info[rix].shortPreamble;
2698 	ath_hal_setuptxdesc(ah, ds
2699 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2700 		, sizeof(struct ieee80211_frame)/* header length */
2701 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2702 		, ni->ni_txpower		/* txpower XXX */
2703 		, rate, 1			/* series 0 rate/tries */
2704 		, HAL_TXKEYIX_INVALID		/* no encryption */
2705 		, antenna			/* antenna mode */
2706 		, flags				/* no ack, veol for beacons */
2707 		, 0				/* rts/cts rate */
2708 		, 0				/* rts/cts duration */
2709 	);
2710 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2711 	ath_hal_filltxdesc(ah, ds
2712 		, roundup(m->m_len, 4)		/* buffer length */
2713 		, AH_TRUE			/* first segment */
2714 		, AH_TRUE			/* last segment */
2715 		, ds				/* first descriptor */
2716 	);
2717 #if 0
2718 	ath_desc_swap(ds);
2719 #endif
2720 #undef USE_SHPREAMBLE
2721 }
2722 
2723 static void
2724 ath_beacon_update(struct ieee80211vap *vap, int item)
2725 {
2726 	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2727 
2728 	setbit(bo->bo_flags, item);
2729 }
2730 
2731 /*
2732  * Append the contents of src to dst; both queues
2733  * are assumed to be locked.
2734  */
2735 static void
2736 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2737 {
2738 	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2739 	dst->axq_link = src->axq_link;
2740 	src->axq_link = NULL;
2741 	dst->axq_depth += src->axq_depth;
2742 	src->axq_depth = 0;
2743 }
2744 
2745 /*
2746  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2747  * frame contents are done as needed and the slot time is
2748  * also adjusted based on current state.
2749  */
2750 static void
2751 ath_beacon_proc(void *arg, int pending)
2752 {
2753 	struct ath_softc *sc = arg;
2754 	struct ath_hal *ah = sc->sc_ah;
2755 	struct ieee80211vap *vap;
2756 	struct ath_buf *bf;
2757 	int slot, otherant;
2758 	uint32_t bfaddr;
2759 
2760 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2761 		__func__, pending);
2762 	/*
2763 	 * Check if the previous beacon has gone out.  If
2764 	 * not don't try to post another, skip this period
2765 	 * and wait for the next.  Missed beacons indicate
2766 	 * a problem and should not occur.  If we miss too
2767 	 * many consecutive beacons reset the device.
2768 	 */
2769 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2770 		sc->sc_bmisscount++;
2771 		sc->sc_stats.ast_be_missed++;
2772 		DPRINTF(sc, ATH_DEBUG_BEACON,
2773 			"%s: missed %u consecutive beacons\n",
2774 			__func__, sc->sc_bmisscount);
2775 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2776 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2777 		return;
2778 	}
2779 	if (sc->sc_bmisscount != 0) {
2780 		DPRINTF(sc, ATH_DEBUG_BEACON,
2781 			"%s: resume beacon xmit after %u misses\n",
2782 			__func__, sc->sc_bmisscount);
2783 		sc->sc_bmisscount = 0;
2784 	}
2785 
2786 	if (sc->sc_stagbeacons) {			/* staggered beacons */
2787 		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2788 		uint32_t tsftu;
2789 
2790 		tsftu = ath_hal_gettsf32(ah) >> 10;
2791 		/* XXX lintval */
2792 		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2793 		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2794 		bfaddr = 0;
2795 		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2796 			bf = ath_beacon_generate(sc, vap);
2797 			if (bf != NULL)
2798 				bfaddr = bf->bf_daddr;
2799 		}
2800 	} else {					/* burst'd beacons */
2801 		uint32_t *bflink = &bfaddr;
2802 
2803 		for (slot = 0; slot < ATH_BCBUF; slot++) {
2804 			vap = sc->sc_bslot[slot];
2805 			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2806 				bf = ath_beacon_generate(sc, vap);
2807 				if (bf != NULL) {
2808 					*bflink = bf->bf_daddr;
2809 					bflink = &bf->bf_desc->ds_link;
2810 				}
2811 			}
2812 		}
2813 		*bflink = 0;				/* terminate list */
2814 	}
2815 
2816 	/*
2817 	 * Handle slot time change when a non-ERP station joins/leaves
2818 	 * an 11g network.  The 802.11 layer notifies us via callback,
2819 	 * we mark updateslot, then wait one beacon before effecting
2820 	 * the change.  This gives associated stations at least one
2821 	 * beacon interval to note the state change.
2822 	 */
2823 	/* XXX locking */
2824 	if (sc->sc_updateslot == UPDATE) {
2825 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2826 		sc->sc_slotupdate = slot;
2827 	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2828 		ath_setslottime(sc);		/* commit change to h/w */
2829 
2830 	/*
2831 	 * Check recent per-antenna transmit statistics and flip
2832 	 * the default antenna if noticeably more frames went out
2833 	 * on the non-default antenna.
2834 	 * XXX assumes 2 anntenae
2835 	 */
2836 	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2837 		otherant = sc->sc_defant & 1 ? 2 : 1;
2838 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2839 			ath_setdefantenna(sc, otherant);
2840 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2841 	}
2842 
2843 	if (bfaddr != 0) {
2844 		/*
2845 		 * Stop any current dma and put the new frame on the queue.
2846 		 * This should never fail since we check above that no frames
2847 		 * are still pending on the queue.
2848 		 */
2849 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2850 			DPRINTF(sc, ATH_DEBUG_ANY,
2851 				"%s: beacon queue %u did not stop?\n",
2852 				__func__, sc->sc_bhalq);
2853 		}
2854 		/* NB: cabq traffic should already be queued and primed */
2855 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2856 		ath_hal_txstart(ah, sc->sc_bhalq);
2857 
2858 		sc->sc_stats.ast_be_xmit++;
2859 	}
2860 }
2861 
2862 static struct ath_buf *
2863 ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2864 {
2865 	struct ath_vap *avp = ATH_VAP(vap);
2866 	struct ath_txq *cabq = sc->sc_cabq;
2867 	struct ath_buf *bf;
2868 	struct mbuf *m;
2869 	int nmcastq, error;
2870 
2871 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2872 	    ("not running, state %d", vap->iv_state));
2873 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2874 
2875 	/*
2876 	 * Update dynamic beacon contents.  If this returns
2877 	 * non-zero then we need to remap the memory because
2878 	 * the beacon frame changed size (probably because
2879 	 * of the TIM bitmap).
2880 	 */
2881 	bf = avp->av_bcbuf;
2882 	m = bf->bf_m;
2883 	nmcastq = avp->av_mcastq.axq_depth;
2884 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2885 		/* XXX too conservative? */
2886 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2887 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2888 					     bf->bf_segs, &bf->bf_nseg,
2889 					     BUS_DMA_NOWAIT);
2890 		if (error != 0) {
2891 			if_printf(vap->iv_ifp,
2892 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2893 			    __func__, error);
2894 			return NULL;
2895 		}
2896 	}
2897 	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2898 		DPRINTF(sc, ATH_DEBUG_BEACON,
2899 		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2900 		    __func__, nmcastq, cabq->axq_depth);
2901 		sc->sc_stats.ast_cabq_busy++;
2902 		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2903 			/*
2904 			 * CABQ traffic from a previous vap is still pending.
2905 			 * We must drain the q before this beacon frame goes
2906 			 * out as otherwise this vap's stations will get cab
2907 			 * frames from a different vap.
2908 			 * XXX could be slow causing us to miss DBA
2909 			 */
2910 			ath_tx_draintxq(sc, cabq);
2911 		}
2912 	}
2913 	ath_beacon_setup(sc, bf);
2914 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2915 
2916 	/*
2917 	 * Enable the CAB queue before the beacon queue to
2918 	 * insure cab frames are triggered by this beacon.
2919 	 */
2920 	if (avp->av_boff.bo_tim[4] & 1) {
2921 		struct ath_hal *ah = sc->sc_ah;
2922 
2923 		/* NB: only at DTIM */
2924 		ATH_TXQ_LOCK(cabq);
2925 		ATH_TXQ_LOCK(&avp->av_mcastq);
2926 		if (nmcastq) {
2927 			struct ath_buf *bfm;
2928 
2929 			/*
2930 			 * Move frames from the s/w mcast q to the h/w cab q.
2931 			 * XXX MORE_DATA bit
2932 			 */
2933 			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2934 			if (cabq->axq_link != NULL) {
2935 				*cabq->axq_link = bfm->bf_daddr;
2936 			} else
2937 				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2938 					bfm->bf_daddr);
2939 			ath_txqmove(cabq, &avp->av_mcastq);
2940 
2941 			sc->sc_stats.ast_cabq_xmit += nmcastq;
2942 		}
2943 		/* NB: gated by beacon so safe to start here */
2944 		ath_hal_txstart(ah, cabq->axq_qnum);
2945 		ATH_TXQ_UNLOCK(cabq);
2946 		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2947 	}
2948 	return bf;
2949 }
2950 
2951 static void
2952 ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2953 {
2954 	struct ath_vap *avp = ATH_VAP(vap);
2955 	struct ath_hal *ah = sc->sc_ah;
2956 	struct ath_buf *bf;
2957 	struct mbuf *m;
2958 	int error;
2959 
2960 	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2961 
2962 	/*
2963 	 * Update dynamic beacon contents.  If this returns
2964 	 * non-zero then we need to remap the memory because
2965 	 * the beacon frame changed size (probably because
2966 	 * of the TIM bitmap).
2967 	 */
2968 	bf = avp->av_bcbuf;
2969 	m = bf->bf_m;
2970 	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
2971 		/* XXX too conservative? */
2972 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2973 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2974 					     bf->bf_segs, &bf->bf_nseg,
2975 					     BUS_DMA_NOWAIT);
2976 		if (error != 0) {
2977 			if_printf(vap->iv_ifp,
2978 			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2979 			    __func__, error);
2980 			return;
2981 		}
2982 	}
2983 	ath_beacon_setup(sc, bf);
2984 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2985 
2986 	/* NB: caller is known to have already stopped tx dma */
2987 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2988 	ath_hal_txstart(ah, sc->sc_bhalq);
2989 }
2990 
2991 /*
2992  * Reset the hardware after detecting beacons have stopped.
2993  */
2994 static void
2995 ath_bstuck_proc(void *arg, int pending)
2996 {
2997 	struct ath_softc *sc = arg;
2998 	struct ifnet *ifp = sc->sc_ifp;
2999 
3000 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3001 		sc->sc_bmisscount);
3002 	sc->sc_stats.ast_bstuck++;
3003 	ath_reset(ifp);
3004 }
3005 
3006 /*
3007  * Reclaim beacon resources and return buffer to the pool.
3008  */
3009 static void
3010 ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3011 {
3012 
3013 	if (bf->bf_m != NULL) {
3014 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3015 		m_freem(bf->bf_m);
3016 		bf->bf_m = NULL;
3017 	}
3018 	if (bf->bf_node != NULL) {
3019 		ieee80211_free_node(bf->bf_node);
3020 		bf->bf_node = NULL;
3021 	}
3022 	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3023 }
3024 
3025 /*
3026  * Reclaim beacon resources.
3027  */
3028 static void
3029 ath_beacon_free(struct ath_softc *sc)
3030 {
3031 	struct ath_buf *bf;
3032 
3033 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3034 		if (bf->bf_m != NULL) {
3035 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3036 			m_freem(bf->bf_m);
3037 			bf->bf_m = NULL;
3038 		}
3039 		if (bf->bf_node != NULL) {
3040 			ieee80211_free_node(bf->bf_node);
3041 			bf->bf_node = NULL;
3042 		}
3043 	}
3044 }
3045 
3046 /*
3047  * Configure the beacon and sleep timers.
3048  *
3049  * When operating as an AP this resets the TSF and sets
3050  * up the hardware to notify us when we need to issue beacons.
3051  *
3052  * When operating in station mode this sets up the beacon
3053  * timers according to the timestamp of the last received
3054  * beacon and the current TSF, configures PCF and DTIM
3055  * handling, programs the sleep registers so the hardware
3056  * will wakeup in time to receive beacons, and configures
3057  * the beacon miss handling so we'll receive a BMISS
3058  * interrupt when we stop seeing beacons from the AP
3059  * we've associated with.
3060  */
3061 static void
3062 ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3063 {
3064 #define	TSF_TO_TU(_h,_l) \
3065 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3066 #define	FUDGE	2
3067 	struct ath_hal *ah = sc->sc_ah;
3068 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3069 	struct ieee80211_node *ni;
3070 	u_int32_t nexttbtt, intval, tsftu;
3071 	u_int64_t tsf;
3072 
3073 	if (vap == NULL)
3074 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3075 	ni = vap->iv_bss;
3076 
3077 	/* extract tstamp from last beacon and convert to TU */
3078 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3079 			     LE_READ_4(ni->ni_tstamp.data));
3080 	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3081 	    ic->ic_opmode == IEEE80211_M_MBSS) {
3082 		/*
3083 		 * For multi-bss ap/mesh support beacons are either staggered
3084 		 * evenly over N slots or burst together.  For the former
3085 		 * arrange for the SWBA to be delivered for each slot.
3086 		 * Slots that are not occupied will generate nothing.
3087 		 */
3088 		/* NB: the beacon interval is kept internally in TU's */
3089 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3090 		if (sc->sc_stagbeacons)
3091 			intval /= ATH_BCBUF;
3092 	} else {
3093 		/* NB: the beacon interval is kept internally in TU's */
3094 		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3095 	}
3096 	if (nexttbtt == 0)		/* e.g. for ap mode */
3097 		nexttbtt = intval;
3098 	else if (intval)		/* NB: can be 0 for monitor mode */
3099 		nexttbtt = roundup(nexttbtt, intval);
3100 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3101 		__func__, nexttbtt, intval, ni->ni_intval);
3102 	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3103 		HAL_BEACON_STATE bs;
3104 		int dtimperiod, dtimcount;
3105 		int cfpperiod, cfpcount;
3106 
3107 		/*
3108 		 * Setup dtim and cfp parameters according to
3109 		 * last beacon we received (which may be none).
3110 		 */
3111 		dtimperiod = ni->ni_dtim_period;
3112 		if (dtimperiod <= 0)		/* NB: 0 if not known */
3113 			dtimperiod = 1;
3114 		dtimcount = ni->ni_dtim_count;
3115 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3116 			dtimcount = 0;		/* XXX? */
3117 		cfpperiod = 1;			/* NB: no PCF support yet */
3118 		cfpcount = 0;
3119 		/*
3120 		 * Pull nexttbtt forward to reflect the current
3121 		 * TSF and calculate dtim+cfp state for the result.
3122 		 */
3123 		tsf = ath_hal_gettsf64(ah);
3124 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3125 		do {
3126 			nexttbtt += intval;
3127 			if (--dtimcount < 0) {
3128 				dtimcount = dtimperiod - 1;
3129 				if (--cfpcount < 0)
3130 					cfpcount = cfpperiod - 1;
3131 			}
3132 		} while (nexttbtt < tsftu);
3133 		memset(&bs, 0, sizeof(bs));
3134 		bs.bs_intval = intval;
3135 		bs.bs_nexttbtt = nexttbtt;
3136 		bs.bs_dtimperiod = dtimperiod*intval;
3137 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3138 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3139 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3140 		bs.bs_cfpmaxduration = 0;
3141 #if 0
3142 		/*
3143 		 * The 802.11 layer records the offset to the DTIM
3144 		 * bitmap while receiving beacons; use it here to
3145 		 * enable h/w detection of our AID being marked in
3146 		 * the bitmap vector (to indicate frames for us are
3147 		 * pending at the AP).
3148 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3149 		 * XXX enable based on h/w rev for newer chips
3150 		 */
3151 		bs.bs_timoffset = ni->ni_timoff;
3152 #endif
3153 		/*
3154 		 * Calculate the number of consecutive beacons to miss
3155 		 * before taking a BMISS interrupt.
3156 		 * Note that we clamp the result to at most 10 beacons.
3157 		 */
3158 		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3159 		if (bs.bs_bmissthreshold > 10)
3160 			bs.bs_bmissthreshold = 10;
3161 		else if (bs.bs_bmissthreshold <= 0)
3162 			bs.bs_bmissthreshold = 1;
3163 
3164 		/*
3165 		 * Calculate sleep duration.  The configuration is
3166 		 * given in ms.  We insure a multiple of the beacon
3167 		 * period is used.  Also, if the sleep duration is
3168 		 * greater than the DTIM period then it makes senses
3169 		 * to make it a multiple of that.
3170 		 *
3171 		 * XXX fixed at 100ms
3172 		 */
3173 		bs.bs_sleepduration =
3174 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3175 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3176 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3177 
3178 		DPRINTF(sc, ATH_DEBUG_BEACON,
3179 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3180 			, __func__
3181 			, tsf, tsftu
3182 			, bs.bs_intval
3183 			, bs.bs_nexttbtt
3184 			, bs.bs_dtimperiod
3185 			, bs.bs_nextdtim
3186 			, bs.bs_bmissthreshold
3187 			, bs.bs_sleepduration
3188 			, bs.bs_cfpperiod
3189 			, bs.bs_cfpmaxduration
3190 			, bs.bs_cfpnext
3191 			, bs.bs_timoffset
3192 		);
3193 		ath_hal_intrset(ah, 0);
3194 		ath_hal_beacontimers(ah, &bs);
3195 		sc->sc_imask |= HAL_INT_BMISS;
3196 		ath_hal_intrset(ah, sc->sc_imask);
3197 	} else {
3198 		ath_hal_intrset(ah, 0);
3199 		if (nexttbtt == intval)
3200 			intval |= HAL_BEACON_RESET_TSF;
3201 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3202 			/*
3203 			 * In IBSS mode enable the beacon timers but only
3204 			 * enable SWBA interrupts if we need to manually
3205 			 * prepare beacon frames.  Otherwise we use a
3206 			 * self-linked tx descriptor and let the hardware
3207 			 * deal with things.
3208 			 */
3209 			intval |= HAL_BEACON_ENA;
3210 			if (!sc->sc_hasveol)
3211 				sc->sc_imask |= HAL_INT_SWBA;
3212 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3213 				/*
3214 				 * Pull nexttbtt forward to reflect
3215 				 * the current TSF.
3216 				 */
3217 				tsf = ath_hal_gettsf64(ah);
3218 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3219 				do {
3220 					nexttbtt += intval;
3221 				} while (nexttbtt < tsftu);
3222 			}
3223 			ath_beaconq_config(sc);
3224 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3225 		    ic->ic_opmode == IEEE80211_M_MBSS) {
3226 			/*
3227 			 * In AP/mesh mode we enable the beacon timers
3228 			 * and SWBA interrupts to prepare beacon frames.
3229 			 */
3230 			intval |= HAL_BEACON_ENA;
3231 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3232 			ath_beaconq_config(sc);
3233 		}
3234 		ath_hal_beaconinit(ah, nexttbtt, intval);
3235 		sc->sc_bmisscount = 0;
3236 		ath_hal_intrset(ah, sc->sc_imask);
3237 		/*
3238 		 * When using a self-linked beacon descriptor in
3239 		 * ibss mode load it once here.
3240 		 */
3241 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3242 			ath_beacon_start_adhoc(sc, vap);
3243 	}
3244 	sc->sc_syncbeacon = 0;
3245 #undef FUDGE
3246 #undef TSF_TO_TU
3247 }
3248 
3249 static void
3250 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3251 {
3252 	bus_addr_t *paddr = (bus_addr_t*) arg;
3253 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3254 	*paddr = segs->ds_addr;
3255 }
3256 
3257 static int
3258 ath_descdma_setup(struct ath_softc *sc,
3259 	struct ath_descdma *dd, ath_bufhead *head,
3260 	const char *name, int nbuf, int ndesc)
3261 {
3262 #define	DS2PHYS(_dd, _ds) \
3263 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3264 	struct ifnet *ifp = sc->sc_ifp;
3265 	struct ath_desc *ds;
3266 	struct ath_buf *bf;
3267 	int i, bsize, error;
3268 
3269 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3270 	    __func__, name, nbuf, ndesc);
3271 
3272 	dd->dd_name = name;
3273 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3274 
3275 	/*
3276 	 * Setup DMA descriptor area.
3277 	 */
3278 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3279 		       PAGE_SIZE, 0,		/* alignment, bounds */
3280 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3281 		       BUS_SPACE_MAXADDR,	/* highaddr */
3282 		       NULL, NULL,		/* filter, filterarg */
3283 		       dd->dd_desc_len,		/* maxsize */
3284 		       1,			/* nsegments */
3285 		       dd->dd_desc_len,		/* maxsegsize */
3286 		       BUS_DMA_ALLOCNOW,	/* flags */
3287 		       NULL,			/* lockfunc */
3288 		       NULL,			/* lockarg */
3289 		       &dd->dd_dmat);
3290 	if (error != 0) {
3291 		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3292 		return error;
3293 	}
3294 
3295 	/* allocate descriptors */
3296 	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3297 	if (error != 0) {
3298 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3299 			"error %u\n", dd->dd_name, error);
3300 		goto fail0;
3301 	}
3302 
3303 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3304 				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3305 				 &dd->dd_dmamap);
3306 	if (error != 0) {
3307 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3308 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3309 		goto fail1;
3310 	}
3311 
3312 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3313 				dd->dd_desc, dd->dd_desc_len,
3314 				ath_load_cb, &dd->dd_desc_paddr,
3315 				BUS_DMA_NOWAIT);
3316 	if (error != 0) {
3317 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3318 			dd->dd_name, error);
3319 		goto fail2;
3320 	}
3321 
3322 	ds = dd->dd_desc;
3323 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3324 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3325 	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3326 
3327 	/* allocate rx buffers */
3328 	bsize = sizeof(struct ath_buf) * nbuf;
3329 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3330 	if (bf == NULL) {
3331 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3332 			dd->dd_name, bsize);
3333 		goto fail3;
3334 	}
3335 	dd->dd_bufptr = bf;
3336 
3337 	STAILQ_INIT(head);
3338 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3339 		bf->bf_desc = ds;
3340 		bf->bf_daddr = DS2PHYS(dd, ds);
3341 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3342 				&bf->bf_dmamap);
3343 		if (error != 0) {
3344 			if_printf(ifp, "unable to create dmamap for %s "
3345 				"buffer %u, error %u\n", dd->dd_name, i, error);
3346 			ath_descdma_cleanup(sc, dd, head);
3347 			return error;
3348 		}
3349 		STAILQ_INSERT_TAIL(head, bf, bf_list);
3350 	}
3351 	return 0;
3352 fail3:
3353 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3354 fail2:
3355 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3356 fail1:
3357 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3358 fail0:
3359 	bus_dma_tag_destroy(dd->dd_dmat);
3360 	memset(dd, 0, sizeof(*dd));
3361 	return error;
3362 #undef DS2PHYS
3363 }
3364 
3365 static void
3366 ath_descdma_cleanup(struct ath_softc *sc,
3367 	struct ath_descdma *dd, ath_bufhead *head)
3368 {
3369 	struct ath_buf *bf;
3370 	struct ieee80211_node *ni;
3371 
3372 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3373 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3374 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3375 	bus_dma_tag_destroy(dd->dd_dmat);
3376 
3377 	STAILQ_FOREACH(bf, head, bf_list) {
3378 		if (bf->bf_m) {
3379 			m_freem(bf->bf_m);
3380 			bf->bf_m = NULL;
3381 		}
3382 		if (bf->bf_dmamap != NULL) {
3383 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3384 			bf->bf_dmamap = NULL;
3385 		}
3386 		ni = bf->bf_node;
3387 		bf->bf_node = NULL;
3388 		if (ni != NULL) {
3389 			/*
3390 			 * Reclaim node reference.
3391 			 */
3392 			ieee80211_free_node(ni);
3393 		}
3394 	}
3395 
3396 	STAILQ_INIT(head);
3397 	free(dd->dd_bufptr, M_ATHDEV);
3398 	memset(dd, 0, sizeof(*dd));
3399 }
3400 
3401 static int
3402 ath_desc_alloc(struct ath_softc *sc)
3403 {
3404 	int error;
3405 
3406 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3407 			"rx", ath_rxbuf, 1);
3408 	if (error != 0)
3409 		return error;
3410 
3411 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3412 			"tx", ath_txbuf, ATH_TXDESC);
3413 	if (error != 0) {
3414 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3415 		return error;
3416 	}
3417 
3418 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3419 			"beacon", ATH_BCBUF, 1);
3420 	if (error != 0) {
3421 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3422 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3423 		return error;
3424 	}
3425 	return 0;
3426 }
3427 
3428 static void
3429 ath_desc_free(struct ath_softc *sc)
3430 {
3431 
3432 	if (sc->sc_bdma.dd_desc_len != 0)
3433 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3434 	if (sc->sc_txdma.dd_desc_len != 0)
3435 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3436 	if (sc->sc_rxdma.dd_desc_len != 0)
3437 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3438 }
3439 
3440 static struct ieee80211_node *
3441 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3442 {
3443 	struct ieee80211com *ic = vap->iv_ic;
3444 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3445 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3446 	struct ath_node *an;
3447 
3448 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3449 	if (an == NULL) {
3450 		/* XXX stat+msg */
3451 		return NULL;
3452 	}
3453 	ath_rate_node_init(sc, an);
3454 
3455 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3456 	return &an->an_node;
3457 }
3458 
3459 static void
3460 ath_node_free(struct ieee80211_node *ni)
3461 {
3462 	struct ieee80211com *ic = ni->ni_ic;
3463         struct ath_softc *sc = ic->ic_ifp->if_softc;
3464 
3465 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3466 
3467 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3468 	sc->sc_node_free(ni);
3469 }
3470 
3471 static void
3472 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3473 {
3474 	struct ieee80211com *ic = ni->ni_ic;
3475 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3476 	struct ath_hal *ah = sc->sc_ah;
3477 
3478 	*rssi = ic->ic_node_getrssi(ni);
3479 	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3480 		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3481 	else
3482 		*noise = -95;		/* nominally correct */
3483 }
3484 
3485 static int
3486 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3487 {
3488 	struct ath_hal *ah = sc->sc_ah;
3489 	int error;
3490 	struct mbuf *m;
3491 	struct ath_desc *ds;
3492 
3493 	m = bf->bf_m;
3494 	if (m == NULL) {
3495 		/*
3496 		 * NB: by assigning a page to the rx dma buffer we
3497 		 * implicitly satisfy the Atheros requirement that
3498 		 * this buffer be cache-line-aligned and sized to be
3499 		 * multiple of the cache line size.  Not doing this
3500 		 * causes weird stuff to happen (for the 5210 at least).
3501 		 */
3502 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3503 		if (m == NULL) {
3504 			DPRINTF(sc, ATH_DEBUG_ANY,
3505 				"%s: no mbuf/cluster\n", __func__);
3506 			sc->sc_stats.ast_rx_nombuf++;
3507 			return ENOMEM;
3508 		}
3509 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3510 
3511 		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3512 					     bf->bf_dmamap, m,
3513 					     bf->bf_segs, &bf->bf_nseg,
3514 					     BUS_DMA_NOWAIT);
3515 		if (error != 0) {
3516 			DPRINTF(sc, ATH_DEBUG_ANY,
3517 			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3518 			    __func__, error);
3519 			sc->sc_stats.ast_rx_busdma++;
3520 			m_freem(m);
3521 			return error;
3522 		}
3523 		KASSERT(bf->bf_nseg == 1,
3524 			("multi-segment packet; nseg %u", bf->bf_nseg));
3525 		bf->bf_m = m;
3526 	}
3527 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3528 
3529 	/*
3530 	 * Setup descriptors.  For receive we always terminate
3531 	 * the descriptor list with a self-linked entry so we'll
3532 	 * not get overrun under high load (as can happen with a
3533 	 * 5212 when ANI processing enables PHY error frames).
3534 	 *
3535 	 * To insure the last descriptor is self-linked we create
3536 	 * each descriptor as self-linked and add it to the end.  As
3537 	 * each additional descriptor is added the previous self-linked
3538 	 * entry is ``fixed'' naturally.  This should be safe even
3539 	 * if DMA is happening.  When processing RX interrupts we
3540 	 * never remove/process the last, self-linked, entry on the
3541 	 * descriptor list.  This insures the hardware always has
3542 	 * someplace to write a new frame.
3543 	 */
3544 	ds = bf->bf_desc;
3545 	ds->ds_link = bf->bf_daddr;	/* link to self */
3546 	ds->ds_data = bf->bf_segs[0].ds_addr;
3547 	ath_hal_setuprxdesc(ah, ds
3548 		, m->m_len		/* buffer size */
3549 		, 0
3550 	);
3551 
3552 	if (sc->sc_rxlink != NULL)
3553 		*sc->sc_rxlink = bf->bf_daddr;
3554 	sc->sc_rxlink = &ds->ds_link;
3555 	return 0;
3556 }
3557 
3558 /*
3559  * Extend 15-bit time stamp from rx descriptor to
3560  * a full 64-bit TSF using the specified TSF.
3561  */
3562 static __inline u_int64_t
3563 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3564 {
3565 	if ((tsf & 0x7fff) < rstamp)
3566 		tsf -= 0x8000;
3567 	return ((tsf &~ 0x7fff) | rstamp);
3568 }
3569 
3570 /*
3571  * Intercept management frames to collect beacon rssi data
3572  * and to do ibss merges.
3573  */
3574 static void
3575 ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3576 	int subtype, int rssi, int nf)
3577 {
3578 	struct ieee80211vap *vap = ni->ni_vap;
3579 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3580 
3581 	/*
3582 	 * Call up first so subsequent work can use information
3583 	 * potentially stored in the node (e.g. for ibss merge).
3584 	 */
3585 	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3586 	switch (subtype) {
3587 	case IEEE80211_FC0_SUBTYPE_BEACON:
3588 		/* update rssi statistics for use by the hal */
3589 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3590 		if (sc->sc_syncbeacon &&
3591 		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3592 			/*
3593 			 * Resync beacon timers using the tsf of the beacon
3594 			 * frame we just received.
3595 			 */
3596 			ath_beacon_config(sc, vap);
3597 		}
3598 		/* fall thru... */
3599 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3600 		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3601 		    vap->iv_state == IEEE80211_S_RUN) {
3602 			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3603 			uint64_t tsf = ath_extend_tsf(rstamp,
3604 				ath_hal_gettsf64(sc->sc_ah));
3605 			/*
3606 			 * Handle ibss merge as needed; check the tsf on the
3607 			 * frame before attempting the merge.  The 802.11 spec
3608 			 * says the station should change it's bssid to match
3609 			 * the oldest station with the same ssid, where oldest
3610 			 * is determined by the tsf.  Note that hardware
3611 			 * reconfiguration happens through callback to
3612 			 * ath_newstate as the state machine will go from
3613 			 * RUN -> RUN when this happens.
3614 			 */
3615 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3616 				DPRINTF(sc, ATH_DEBUG_STATE,
3617 				    "ibss merge, rstamp %u tsf %ju "
3618 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3619 				    (uintmax_t)ni->ni_tstamp.tsf);
3620 				(void) ieee80211_ibss_merge(ni);
3621 			}
3622 		}
3623 		break;
3624 	}
3625 }
3626 
3627 /*
3628  * Set the default antenna.
3629  */
3630 static void
3631 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3632 {
3633 	struct ath_hal *ah = sc->sc_ah;
3634 
3635 	/* XXX block beacon interrupts */
3636 	ath_hal_setdefantenna(ah, antenna);
3637 	if (sc->sc_defant != antenna)
3638 		sc->sc_stats.ast_ant_defswitch++;
3639 	sc->sc_defant = antenna;
3640 	sc->sc_rxotherant = 0;
3641 }
3642 
3643 static void
3644 ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3645 	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3646 {
3647 #define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3648 #define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3649 #define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3650 #define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3651 	struct ath_softc *sc = ifp->if_softc;
3652 	const HAL_RATE_TABLE *rt;
3653 	uint8_t rix;
3654 
3655 	rt = sc->sc_currates;
3656 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3657 	rix = rt->rateCodeToIndex[rs->rs_rate];
3658 	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3659 	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3660 #ifdef AH_SUPPORT_AR5416
3661 	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3662 	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3663 		struct ieee80211com *ic = ifp->if_l2com;
3664 
3665 		if ((rs->rs_flags & HAL_RX_2040) == 0)
3666 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3667 		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3668 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3669 		else
3670 			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3671 		if ((rs->rs_flags & HAL_RX_GI) == 0)
3672 			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3673 	}
3674 #endif
3675 	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3676 	if (rs->rs_status & HAL_RXERR_CRC)
3677 		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3678 	/* XXX propagate other error flags from descriptor */
3679 	sc->sc_rx_th.wr_antnoise = nf;
3680 	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3681 	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3682 #undef CHAN_HT
3683 #undef CHAN_HT20
3684 #undef CHAN_HT40U
3685 #undef CHAN_HT40D
3686 }
3687 
3688 static void
3689 ath_handle_micerror(struct ieee80211com *ic,
3690 	struct ieee80211_frame *wh, int keyix)
3691 {
3692 	struct ieee80211_node *ni;
3693 
3694 	/* XXX recheck MIC to deal w/ chips that lie */
3695 	/* XXX discard MIC errors on !data frames */
3696 	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3697 	if (ni != NULL) {
3698 		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3699 		ieee80211_free_node(ni);
3700 	}
3701 }
3702 
3703 static void
3704 ath_rx_proc(void *arg, int npending)
3705 {
3706 #define	PA2DESC(_sc, _pa) \
3707 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3708 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3709 	struct ath_softc *sc = arg;
3710 	struct ath_buf *bf;
3711 	struct ifnet *ifp = sc->sc_ifp;
3712 	struct ieee80211com *ic = ifp->if_l2com;
3713 	struct ath_hal *ah = sc->sc_ah;
3714 	struct ath_desc *ds;
3715 	struct ath_rx_status *rs;
3716 	struct mbuf *m;
3717 	struct ieee80211_node *ni;
3718 	int len, type, ngood;
3719 	HAL_STATUS status;
3720 	int16_t nf;
3721 	u_int64_t tsf;
3722 
3723 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3724 	ngood = 0;
3725 	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3726 	sc->sc_stats.ast_rx_noise = nf;
3727 	tsf = ath_hal_gettsf64(ah);
3728 	do {
3729 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3730 		if (bf == NULL) {		/* NB: shouldn't happen */
3731 			if_printf(ifp, "%s: no buffer!\n", __func__);
3732 			break;
3733 		}
3734 		m = bf->bf_m;
3735 		if (m == NULL) {		/* NB: shouldn't happen */
3736 			/*
3737 			 * If mbuf allocation failed previously there
3738 			 * will be no mbuf; try again to re-populate it.
3739 			 */
3740 			/* XXX make debug msg */
3741 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3742 			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3743 			goto rx_next;
3744 		}
3745 		ds = bf->bf_desc;
3746 		if (ds->ds_link == bf->bf_daddr) {
3747 			/* NB: never process the self-linked entry at the end */
3748 			break;
3749 		}
3750 		/* XXX sync descriptor memory */
3751 		/*
3752 		 * Must provide the virtual address of the current
3753 		 * descriptor, the physical address, and the virtual
3754 		 * address of the next descriptor in the h/w chain.
3755 		 * This allows the HAL to look ahead to see if the
3756 		 * hardware is done with a descriptor by checking the
3757 		 * done bit in the following descriptor and the address
3758 		 * of the current descriptor the DMA engine is working
3759 		 * on.  All this is necessary because of our use of
3760 		 * a self-linked list to avoid rx overruns.
3761 		 */
3762 		rs = &bf->bf_status.ds_rxstat;
3763 		status = ath_hal_rxprocdesc(ah, ds,
3764 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3765 #ifdef ATH_DEBUG
3766 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3767 			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3768 #endif
3769 		if (status == HAL_EINPROGRESS)
3770 			break;
3771 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3772 
3773 		/* These aren't specifically errors */
3774 		if (rs->rs_flags & HAL_RX_GI)
3775 			sc->sc_stats.ast_rx_halfgi++;
3776 		if (rs->rs_flags & HAL_RX_2040)
3777 			sc->sc_stats.ast_rx_2040++;
3778 		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
3779 			sc->sc_stats.ast_rx_pre_crc_err++;
3780 		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
3781 			sc->sc_stats.ast_rx_post_crc_err++;
3782 		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
3783 			sc->sc_stats.ast_rx_decrypt_busy_err++;
3784 		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
3785 			sc->sc_stats.ast_rx_hi_rx_chain++;
3786 
3787 		if (rs->rs_status != 0) {
3788 			if (rs->rs_status & HAL_RXERR_CRC)
3789 				sc->sc_stats.ast_rx_crcerr++;
3790 			if (rs->rs_status & HAL_RXERR_FIFO)
3791 				sc->sc_stats.ast_rx_fifoerr++;
3792 			if (rs->rs_status & HAL_RXERR_PHY) {
3793 				sc->sc_stats.ast_rx_phyerr++;
3794 				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
3795 				if (rs->rs_phyerr < 64)
3796 					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
3797 				goto rx_error;	/* NB: don't count in ierrors */
3798 			}
3799 			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3800 				/*
3801 				 * Decrypt error.  If the error occurred
3802 				 * because there was no hardware key, then
3803 				 * let the frame through so the upper layers
3804 				 * can process it.  This is necessary for 5210
3805 				 * parts which have no way to setup a ``clear''
3806 				 * key cache entry.
3807 				 *
3808 				 * XXX do key cache faulting
3809 				 */
3810 				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3811 					goto rx_accept;
3812 				sc->sc_stats.ast_rx_badcrypt++;
3813 			}
3814 			if (rs->rs_status & HAL_RXERR_MIC) {
3815 				sc->sc_stats.ast_rx_badmic++;
3816 				/*
3817 				 * Do minimal work required to hand off
3818 				 * the 802.11 header for notification.
3819 				 */
3820 				/* XXX frag's and qos frames */
3821 				len = rs->rs_datalen;
3822 				if (len >= sizeof (struct ieee80211_frame)) {
3823 					bus_dmamap_sync(sc->sc_dmat,
3824 					    bf->bf_dmamap,
3825 					    BUS_DMASYNC_POSTREAD);
3826 					ath_handle_micerror(ic,
3827 					    mtod(m, struct ieee80211_frame *),
3828 					    sc->sc_splitmic ?
3829 						rs->rs_keyix-32 : rs->rs_keyix);
3830 				}
3831 			}
3832 			ifp->if_ierrors++;
3833 rx_error:
3834 			/*
3835 			 * Cleanup any pending partial frame.
3836 			 */
3837 			if (sc->sc_rxpending != NULL) {
3838 				m_freem(sc->sc_rxpending);
3839 				sc->sc_rxpending = NULL;
3840 			}
3841 			/*
3842 			 * When a tap is present pass error frames
3843 			 * that have been requested.  By default we
3844 			 * pass decrypt+mic errors but others may be
3845 			 * interesting (e.g. crc).
3846 			 */
3847 			if (ieee80211_radiotap_active(ic) &&
3848 			    (rs->rs_status & sc->sc_monpass)) {
3849 				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3850 				    BUS_DMASYNC_POSTREAD);
3851 				/* NB: bpf needs the mbuf length setup */
3852 				len = rs->rs_datalen;
3853 				m->m_pkthdr.len = m->m_len = len;
3854 				ath_rx_tap(ifp, m, rs, tsf, nf);
3855 				ieee80211_radiotap_rx_all(ic, m);
3856 			}
3857 			/* XXX pass MIC errors up for s/w reclaculation */
3858 			goto rx_next;
3859 		}
3860 rx_accept:
3861 		/*
3862 		 * Sync and unmap the frame.  At this point we're
3863 		 * committed to passing the mbuf somewhere so clear
3864 		 * bf_m; this means a new mbuf must be allocated
3865 		 * when the rx descriptor is setup again to receive
3866 		 * another frame.
3867 		 */
3868 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3869 		    BUS_DMASYNC_POSTREAD);
3870 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3871 		bf->bf_m = NULL;
3872 
3873 		len = rs->rs_datalen;
3874 		m->m_len = len;
3875 
3876 		if (rs->rs_more) {
3877 			/*
3878 			 * Frame spans multiple descriptors; save
3879 			 * it for the next completed descriptor, it
3880 			 * will be used to construct a jumbogram.
3881 			 */
3882 			if (sc->sc_rxpending != NULL) {
3883 				/* NB: max frame size is currently 2 clusters */
3884 				sc->sc_stats.ast_rx_toobig++;
3885 				m_freem(sc->sc_rxpending);
3886 			}
3887 			m->m_pkthdr.rcvif = ifp;
3888 			m->m_pkthdr.len = len;
3889 			sc->sc_rxpending = m;
3890 			goto rx_next;
3891 		} else if (sc->sc_rxpending != NULL) {
3892 			/*
3893 			 * This is the second part of a jumbogram,
3894 			 * chain it to the first mbuf, adjust the
3895 			 * frame length, and clear the rxpending state.
3896 			 */
3897 			sc->sc_rxpending->m_next = m;
3898 			sc->sc_rxpending->m_pkthdr.len += len;
3899 			m = sc->sc_rxpending;
3900 			sc->sc_rxpending = NULL;
3901 		} else {
3902 			/*
3903 			 * Normal single-descriptor receive; setup
3904 			 * the rcvif and packet length.
3905 			 */
3906 			m->m_pkthdr.rcvif = ifp;
3907 			m->m_pkthdr.len = len;
3908 		}
3909 
3910 		ifp->if_ipackets++;
3911 		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3912 
3913 		/*
3914 		 * Populate the rx status block.  When there are bpf
3915 		 * listeners we do the additional work to provide
3916 		 * complete status.  Otherwise we fill in only the
3917 		 * material required by ieee80211_input.  Note that
3918 		 * noise setting is filled in above.
3919 		 */
3920 		if (ieee80211_radiotap_active(ic))
3921 			ath_rx_tap(ifp, m, rs, tsf, nf);
3922 
3923 		/*
3924 		 * From this point on we assume the frame is at least
3925 		 * as large as ieee80211_frame_min; verify that.
3926 		 */
3927 		if (len < IEEE80211_MIN_LEN) {
3928 			if (!ieee80211_radiotap_active(ic)) {
3929 				DPRINTF(sc, ATH_DEBUG_RECV,
3930 				    "%s: short packet %d\n", __func__, len);
3931 				sc->sc_stats.ast_rx_tooshort++;
3932 			} else {
3933 				/* NB: in particular this captures ack's */
3934 				ieee80211_radiotap_rx_all(ic, m);
3935 			}
3936 			m_freem(m);
3937 			goto rx_next;
3938 		}
3939 
3940 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3941 			const HAL_RATE_TABLE *rt = sc->sc_currates;
3942 			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3943 
3944 			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3945 			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3946 		}
3947 
3948 		m_adj(m, -IEEE80211_CRC_LEN);
3949 
3950 		/*
3951 		 * Locate the node for sender, track state, and then
3952 		 * pass the (referenced) node up to the 802.11 layer
3953 		 * for its use.
3954 		 */
3955 		ni = ieee80211_find_rxnode_withkey(ic,
3956 			mtod(m, const struct ieee80211_frame_min *),
3957 			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3958 				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3959 		sc->sc_lastrs = rs;
3960 		/* tag AMPDU aggregates for reorder processing */
3961 #if 0
3962 		/*
3963 		 * Just make sure all frames are tagged for AMPDU reorder checking.
3964 		 * As there seems to be some situations where single frames aren't
3965 		 * matching a node but bump the seqno. This needs to be investigated.
3966 		 */
3967 		m->m_flags |= M_AMPDU;
3968 #endif
3969 
3970 		/* Keep statistics on the number of aggregate packets received */
3971 		if (rs->rs_isaggr)
3972 			sc->sc_stats.ast_rx_agg++;
3973 
3974 		if (ni != NULL) {
3975 			/*
3976  			 * Only punt packets for ampdu reorder processing for 11n nodes;
3977  			 * net80211 enforces that M_AMPDU is only set for 11n nodes.
3978  			 */
3979 			if (ni->ni_flags & IEEE80211_NODE_HT)
3980 				m->m_flags |= M_AMPDU;
3981 
3982 			/*
3983 			 * Sending station is known, dispatch directly.
3984 			 */
3985 			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3986 			ieee80211_free_node(ni);
3987 			/*
3988 			 * Arrange to update the last rx timestamp only for
3989 			 * frames from our ap when operating in station mode.
3990 			 * This assumes the rx key is always setup when
3991 			 * associated.
3992 			 */
3993 			if (ic->ic_opmode == IEEE80211_M_STA &&
3994 			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3995 				ngood++;
3996 		} else {
3997 			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
3998 		}
3999 		/*
4000 		 * Track rx rssi and do any rx antenna management.
4001 		 */
4002 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4003 		if (sc->sc_diversity) {
4004 			/*
4005 			 * When using fast diversity, change the default rx
4006 			 * antenna if diversity chooses the other antenna 3
4007 			 * times in a row.
4008 			 */
4009 			if (sc->sc_defant != rs->rs_antenna) {
4010 				if (++sc->sc_rxotherant >= 3)
4011 					ath_setdefantenna(sc, rs->rs_antenna);
4012 			} else
4013 				sc->sc_rxotherant = 0;
4014 		}
4015 		if (sc->sc_softled) {
4016 			/*
4017 			 * Blink for any data frame.  Otherwise do a
4018 			 * heartbeat-style blink when idle.  The latter
4019 			 * is mainly for station mode where we depend on
4020 			 * periodic beacon frames to trigger the poll event.
4021 			 */
4022 			if (type == IEEE80211_FC0_TYPE_DATA) {
4023 				const HAL_RATE_TABLE *rt = sc->sc_currates;
4024 				ath_led_event(sc,
4025 				    rt->rateCodeToIndex[rs->rs_rate]);
4026 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4027 				ath_led_event(sc, 0);
4028 		}
4029 rx_next:
4030 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4031 	} while (ath_rxbuf_init(sc, bf) == 0);
4032 
4033 	/* rx signal state monitoring */
4034 	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4035 	if (ngood)
4036 		sc->sc_lastrx = tsf;
4037 
4038 	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4039 #ifdef IEEE80211_SUPPORT_SUPERG
4040 		ieee80211_ff_age_all(ic, 100);
4041 #endif
4042 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4043 			ath_start(ifp);
4044 	}
4045 #undef PA2DESC
4046 }
4047 
4048 static void
4049 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4050 {
4051 	txq->axq_qnum = qnum;
4052 	txq->axq_ac = 0;
4053 	txq->axq_depth = 0;
4054 	txq->axq_intrcnt = 0;
4055 	txq->axq_link = NULL;
4056 	STAILQ_INIT(&txq->axq_q);
4057 	ATH_TXQ_LOCK_INIT(sc, txq);
4058 }
4059 
4060 /*
4061  * Setup a h/w transmit queue.
4062  */
4063 static struct ath_txq *
4064 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4065 {
4066 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4067 	struct ath_hal *ah = sc->sc_ah;
4068 	HAL_TXQ_INFO qi;
4069 	int qnum;
4070 
4071 	memset(&qi, 0, sizeof(qi));
4072 	qi.tqi_subtype = subtype;
4073 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4074 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4075 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4076 	/*
4077 	 * Enable interrupts only for EOL and DESC conditions.
4078 	 * We mark tx descriptors to receive a DESC interrupt
4079 	 * when a tx queue gets deep; otherwise waiting for the
4080 	 * EOL to reap descriptors.  Note that this is done to
4081 	 * reduce interrupt load and this only defers reaping
4082 	 * descriptors, never transmitting frames.  Aside from
4083 	 * reducing interrupts this also permits more concurrency.
4084 	 * The only potential downside is if the tx queue backs
4085 	 * up in which case the top half of the kernel may backup
4086 	 * due to a lack of tx descriptors.
4087 	 */
4088 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4089 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4090 	if (qnum == -1) {
4091 		/*
4092 		 * NB: don't print a message, this happens
4093 		 * normally on parts with too few tx queues
4094 		 */
4095 		return NULL;
4096 	}
4097 	if (qnum >= N(sc->sc_txq)) {
4098 		device_printf(sc->sc_dev,
4099 			"hal qnum %u out of range, max %zu!\n",
4100 			qnum, N(sc->sc_txq));
4101 		ath_hal_releasetxqueue(ah, qnum);
4102 		return NULL;
4103 	}
4104 	if (!ATH_TXQ_SETUP(sc, qnum)) {
4105 		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4106 		sc->sc_txqsetup |= 1<<qnum;
4107 	}
4108 	return &sc->sc_txq[qnum];
4109 #undef N
4110 }
4111 
4112 /*
4113  * Setup a hardware data transmit queue for the specified
4114  * access control.  The hal may not support all requested
4115  * queues in which case it will return a reference to a
4116  * previously setup queue.  We record the mapping from ac's
4117  * to h/w queues for use by ath_tx_start and also track
4118  * the set of h/w queues being used to optimize work in the
4119  * transmit interrupt handler and related routines.
4120  */
4121 static int
4122 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4123 {
4124 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4125 	struct ath_txq *txq;
4126 
4127 	if (ac >= N(sc->sc_ac2q)) {
4128 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4129 			ac, N(sc->sc_ac2q));
4130 		return 0;
4131 	}
4132 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4133 	if (txq != NULL) {
4134 		txq->axq_ac = ac;
4135 		sc->sc_ac2q[ac] = txq;
4136 		return 1;
4137 	} else
4138 		return 0;
4139 #undef N
4140 }
4141 
4142 /*
4143  * Update WME parameters for a transmit queue.
4144  */
4145 static int
4146 ath_txq_update(struct ath_softc *sc, int ac)
4147 {
4148 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4149 #define	ATH_TXOP_TO_US(v)		(v<<5)
4150 	struct ifnet *ifp = sc->sc_ifp;
4151 	struct ieee80211com *ic = ifp->if_l2com;
4152 	struct ath_txq *txq = sc->sc_ac2q[ac];
4153 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4154 	struct ath_hal *ah = sc->sc_ah;
4155 	HAL_TXQ_INFO qi;
4156 
4157 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4158 #ifdef IEEE80211_SUPPORT_TDMA
4159 	if (sc->sc_tdma) {
4160 		/*
4161 		 * AIFS is zero so there's no pre-transmit wait.  The
4162 		 * burst time defines the slot duration and is configured
4163 		 * through net80211.  The QCU is setup to not do post-xmit
4164 		 * back off, lockout all lower-priority QCU's, and fire
4165 		 * off the DMA beacon alert timer which is setup based
4166 		 * on the slot configuration.
4167 		 */
4168 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4169 			      | HAL_TXQ_TXERRINT_ENABLE
4170 			      | HAL_TXQ_TXURNINT_ENABLE
4171 			      | HAL_TXQ_TXEOLINT_ENABLE
4172 			      | HAL_TXQ_DBA_GATED
4173 			      | HAL_TXQ_BACKOFF_DISABLE
4174 			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4175 			      ;
4176 		qi.tqi_aifs = 0;
4177 		/* XXX +dbaprep? */
4178 		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4179 		qi.tqi_burstTime = qi.tqi_readyTime;
4180 	} else {
4181 #endif
4182 		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4183 			      | HAL_TXQ_TXERRINT_ENABLE
4184 			      | HAL_TXQ_TXDESCINT_ENABLE
4185 			      | HAL_TXQ_TXURNINT_ENABLE
4186 			      ;
4187 		qi.tqi_aifs = wmep->wmep_aifsn;
4188 		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4189 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4190 		qi.tqi_readyTime = 0;
4191 		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4192 #ifdef IEEE80211_SUPPORT_TDMA
4193 	}
4194 #endif
4195 
4196 	DPRINTF(sc, ATH_DEBUG_RESET,
4197 	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4198 	    __func__, txq->axq_qnum, qi.tqi_qflags,
4199 	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4200 
4201 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4202 		if_printf(ifp, "unable to update hardware queue "
4203 			"parameters for %s traffic!\n",
4204 			ieee80211_wme_acnames[ac]);
4205 		return 0;
4206 	} else {
4207 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4208 		return 1;
4209 	}
4210 #undef ATH_TXOP_TO_US
4211 #undef ATH_EXPONENT_TO_VALUE
4212 }
4213 
4214 /*
4215  * Callback from the 802.11 layer to update WME parameters.
4216  */
4217 static int
4218 ath_wme_update(struct ieee80211com *ic)
4219 {
4220 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4221 
4222 	return !ath_txq_update(sc, WME_AC_BE) ||
4223 	    !ath_txq_update(sc, WME_AC_BK) ||
4224 	    !ath_txq_update(sc, WME_AC_VI) ||
4225 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4226 }
4227 
4228 /*
4229  * Reclaim resources for a setup queue.
4230  */
4231 static void
4232 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4233 {
4234 
4235 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4236 	ATH_TXQ_LOCK_DESTROY(txq);
4237 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4238 }
4239 
4240 /*
4241  * Reclaim all tx queue resources.
4242  */
4243 static void
4244 ath_tx_cleanup(struct ath_softc *sc)
4245 {
4246 	int i;
4247 
4248 	ATH_TXBUF_LOCK_DESTROY(sc);
4249 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4250 		if (ATH_TXQ_SETUP(sc, i))
4251 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4252 }
4253 
4254 /*
4255  * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4256  * using the current rates in sc_rixmap.
4257  */
4258 int
4259 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4260 {
4261 	int rix = sc->sc_rixmap[rate];
4262 	/* NB: return lowest rix for invalid rate */
4263 	return (rix == 0xff ? 0 : rix);
4264 }
4265 
4266 /*
4267  * Process completed xmit descriptors from the specified queue.
4268  */
4269 static int
4270 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4271 {
4272 	struct ath_hal *ah = sc->sc_ah;
4273 	struct ifnet *ifp = sc->sc_ifp;
4274 	struct ieee80211com *ic = ifp->if_l2com;
4275 	struct ath_buf *bf, *last;
4276 	struct ath_desc *ds, *ds0;
4277 	struct ath_tx_status *ts;
4278 	struct ieee80211_node *ni;
4279 	struct ath_node *an;
4280 	int sr, lr, pri, nacked;
4281 	HAL_STATUS status;
4282 
4283 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4284 		__func__, txq->axq_qnum,
4285 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4286 		txq->axq_link);
4287 	nacked = 0;
4288 	for (;;) {
4289 		ATH_TXQ_LOCK(txq);
4290 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4291 		bf = STAILQ_FIRST(&txq->axq_q);
4292 		if (bf == NULL) {
4293 			ATH_TXQ_UNLOCK(txq);
4294 			break;
4295 		}
4296 		ds0 = &bf->bf_desc[0];
4297 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4298 		ts = &bf->bf_status.ds_txstat;
4299 		status = ath_hal_txprocdesc(ah, ds, ts);
4300 #ifdef ATH_DEBUG
4301 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4302 			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4303 			    status == HAL_OK);
4304 #endif
4305 		if (status == HAL_EINPROGRESS) {
4306 			ATH_TXQ_UNLOCK(txq);
4307 			break;
4308 		}
4309 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4310 #ifdef IEEE80211_SUPPORT_TDMA
4311 		if (txq->axq_depth > 0) {
4312 			/*
4313 			 * More frames follow.  Mark the buffer busy
4314 			 * so it's not re-used while the hardware may
4315 			 * still re-read the link field in the descriptor.
4316 			 */
4317 			bf->bf_flags |= ATH_BUF_BUSY;
4318 		} else
4319 #else
4320 		if (txq->axq_depth == 0)
4321 #endif
4322 			txq->axq_link = NULL;
4323 		ATH_TXQ_UNLOCK(txq);
4324 
4325 		ni = bf->bf_node;
4326 		if (ni != NULL) {
4327 			an = ATH_NODE(ni);
4328 			if (ts->ts_status == 0) {
4329 				u_int8_t txant = ts->ts_antenna;
4330 				sc->sc_stats.ast_ant_tx[txant]++;
4331 				sc->sc_ant_tx[txant]++;
4332 				if (ts->ts_finaltsi != 0)
4333 					sc->sc_stats.ast_tx_altrate++;
4334 				pri = M_WME_GETAC(bf->bf_m);
4335 				if (pri >= WME_AC_VO)
4336 					ic->ic_wme.wme_hipri_traffic++;
4337 				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4338 					ni->ni_inact = ni->ni_inact_reload;
4339 			} else {
4340 				if (ts->ts_status & HAL_TXERR_XRETRY)
4341 					sc->sc_stats.ast_tx_xretries++;
4342 				if (ts->ts_status & HAL_TXERR_FIFO)
4343 					sc->sc_stats.ast_tx_fifoerr++;
4344 				if (ts->ts_status & HAL_TXERR_FILT)
4345 					sc->sc_stats.ast_tx_filtered++;
4346 				if (bf->bf_m->m_flags & M_FF)
4347 					sc->sc_stats.ast_ff_txerr++;
4348 			}
4349 			sr = ts->ts_shortretry;
4350 			lr = ts->ts_longretry;
4351 			sc->sc_stats.ast_tx_shortretry += sr;
4352 			sc->sc_stats.ast_tx_longretry += lr;
4353 			/*
4354 			 * Hand the descriptor to the rate control algorithm.
4355 			 */
4356 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4357 			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4358 				/*
4359 				 * If frame was ack'd update statistics,
4360 				 * including the last rx time used to
4361 				 * workaround phantom bmiss interrupts.
4362 				 */
4363 				if (ts->ts_status == 0) {
4364 					nacked++;
4365 					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4366 					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4367 						ts->ts_rssi);
4368 				}
4369 				ath_rate_tx_complete(sc, an, bf);
4370 			}
4371 			/*
4372 			 * Do any tx complete callback.  Note this must
4373 			 * be done before releasing the node reference.
4374 			 */
4375 			if (bf->bf_m->m_flags & M_TXCB)
4376 				ieee80211_process_callback(ni, bf->bf_m,
4377 				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4378 				        ts->ts_status : HAL_TXERR_XRETRY);
4379 			ieee80211_free_node(ni);
4380 		}
4381 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4382 		    BUS_DMASYNC_POSTWRITE);
4383 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4384 
4385 		m_freem(bf->bf_m);
4386 		bf->bf_m = NULL;
4387 		bf->bf_node = NULL;
4388 
4389 		ATH_TXBUF_LOCK(sc);
4390 		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4391 		if (last != NULL)
4392 			last->bf_flags &= ~ATH_BUF_BUSY;
4393 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4394 		ATH_TXBUF_UNLOCK(sc);
4395 	}
4396 #ifdef IEEE80211_SUPPORT_SUPERG
4397 	/*
4398 	 * Flush fast-frame staging queue when traffic slows.
4399 	 */
4400 	if (txq->axq_depth <= 1)
4401 		ieee80211_ff_flush(ic, txq->axq_ac);
4402 #endif
4403 	return nacked;
4404 }
4405 
4406 static __inline int
4407 txqactive(struct ath_hal *ah, int qnum)
4408 {
4409 	u_int32_t txqs = 1<<qnum;
4410 	ath_hal_gettxintrtxqs(ah, &txqs);
4411 	return (txqs & (1<<qnum));
4412 }
4413 
4414 /*
4415  * Deferred processing of transmit interrupt; special-cased
4416  * for a single hardware transmit queue (e.g. 5210 and 5211).
4417  */
4418 static void
4419 ath_tx_proc_q0(void *arg, int npending)
4420 {
4421 	struct ath_softc *sc = arg;
4422 	struct ifnet *ifp = sc->sc_ifp;
4423 
4424 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4425 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4426 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4427 		ath_tx_processq(sc, sc->sc_cabq);
4428 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4429 	sc->sc_wd_timer = 0;
4430 
4431 	if (sc->sc_softled)
4432 		ath_led_event(sc, sc->sc_txrix);
4433 
4434 	ath_start(ifp);
4435 }
4436 
4437 /*
4438  * Deferred processing of transmit interrupt; special-cased
4439  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4440  */
4441 static void
4442 ath_tx_proc_q0123(void *arg, int npending)
4443 {
4444 	struct ath_softc *sc = arg;
4445 	struct ifnet *ifp = sc->sc_ifp;
4446 	int nacked;
4447 
4448 	/*
4449 	 * Process each active queue.
4450 	 */
4451 	nacked = 0;
4452 	if (txqactive(sc->sc_ah, 0))
4453 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4454 	if (txqactive(sc->sc_ah, 1))
4455 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4456 	if (txqactive(sc->sc_ah, 2))
4457 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4458 	if (txqactive(sc->sc_ah, 3))
4459 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4460 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4461 		ath_tx_processq(sc, sc->sc_cabq);
4462 	if (nacked)
4463 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4464 
4465 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4466 	sc->sc_wd_timer = 0;
4467 
4468 	if (sc->sc_softled)
4469 		ath_led_event(sc, sc->sc_txrix);
4470 
4471 	ath_start(ifp);
4472 }
4473 
4474 /*
4475  * Deferred processing of transmit interrupt.
4476  */
4477 static void
4478 ath_tx_proc(void *arg, int npending)
4479 {
4480 	struct ath_softc *sc = arg;
4481 	struct ifnet *ifp = sc->sc_ifp;
4482 	int i, nacked;
4483 
4484 	/*
4485 	 * Process each active queue.
4486 	 */
4487 	nacked = 0;
4488 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4489 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4490 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4491 	if (nacked)
4492 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4493 
4494 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4495 	sc->sc_wd_timer = 0;
4496 
4497 	if (sc->sc_softled)
4498 		ath_led_event(sc, sc->sc_txrix);
4499 
4500 	ath_start(ifp);
4501 }
4502 
4503 static void
4504 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4505 {
4506 #ifdef ATH_DEBUG
4507 	struct ath_hal *ah = sc->sc_ah;
4508 #endif
4509 	struct ieee80211_node *ni;
4510 	struct ath_buf *bf;
4511 	u_int ix;
4512 
4513 	/*
4514 	 * NB: this assumes output has been stopped and
4515 	 *     we do not need to block ath_tx_proc
4516 	 */
4517 	ATH_TXBUF_LOCK(sc);
4518 	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4519 	if (bf != NULL)
4520 		bf->bf_flags &= ~ATH_BUF_BUSY;
4521 	ATH_TXBUF_UNLOCK(sc);
4522 	for (ix = 0;; ix++) {
4523 		ATH_TXQ_LOCK(txq);
4524 		bf = STAILQ_FIRST(&txq->axq_q);
4525 		if (bf == NULL) {
4526 			txq->axq_link = NULL;
4527 			ATH_TXQ_UNLOCK(txq);
4528 			break;
4529 		}
4530 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4531 		ATH_TXQ_UNLOCK(txq);
4532 #ifdef ATH_DEBUG
4533 		if (sc->sc_debug & ATH_DEBUG_RESET) {
4534 			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4535 
4536 			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
4537 				ath_hal_txprocdesc(ah, bf->bf_desc,
4538 				    &bf->bf_status.ds_txstat) == HAL_OK);
4539 			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4540 			    bf->bf_m->m_len, 0, -1);
4541 		}
4542 #endif /* ATH_DEBUG */
4543 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4544 		ni = bf->bf_node;
4545 		bf->bf_node = NULL;
4546 		if (ni != NULL) {
4547 			/*
4548 			 * Do any callback and reclaim the node reference.
4549 			 */
4550 			if (bf->bf_m->m_flags & M_TXCB)
4551 				ieee80211_process_callback(ni, bf->bf_m, -1);
4552 			ieee80211_free_node(ni);
4553 		}
4554 		m_freem(bf->bf_m);
4555 		bf->bf_m = NULL;
4556 		bf->bf_flags &= ~ATH_BUF_BUSY;
4557 
4558 		ATH_TXBUF_LOCK(sc);
4559 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4560 		ATH_TXBUF_UNLOCK(sc);
4561 	}
4562 }
4563 
4564 static void
4565 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4566 {
4567 	struct ath_hal *ah = sc->sc_ah;
4568 
4569 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4570 	    __func__, txq->axq_qnum,
4571 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4572 	    txq->axq_link);
4573 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4574 }
4575 
4576 /*
4577  * Drain the transmit queues and reclaim resources.
4578  */
4579 static void
4580 ath_draintxq(struct ath_softc *sc)
4581 {
4582 	struct ath_hal *ah = sc->sc_ah;
4583 	struct ifnet *ifp = sc->sc_ifp;
4584 	int i;
4585 
4586 	/* XXX return value */
4587 	if (!sc->sc_invalid) {
4588 		/* don't touch the hardware if marked invalid */
4589 		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4590 		    __func__, sc->sc_bhalq,
4591 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4592 		    NULL);
4593 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4594 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4595 			if (ATH_TXQ_SETUP(sc, i))
4596 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4597 	}
4598 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4599 		if (ATH_TXQ_SETUP(sc, i))
4600 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4601 #ifdef ATH_DEBUG
4602 	if (sc->sc_debug & ATH_DEBUG_RESET) {
4603 		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4604 		if (bf != NULL && bf->bf_m != NULL) {
4605 			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4606 				ath_hal_txprocdesc(ah, bf->bf_desc,
4607 				    &bf->bf_status.ds_txstat) == HAL_OK);
4608 			ieee80211_dump_pkt(ifp->if_l2com,
4609 			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4610 			    0, -1);
4611 		}
4612 	}
4613 #endif /* ATH_DEBUG */
4614 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4615 	sc->sc_wd_timer = 0;
4616 }
4617 
4618 /*
4619  * Disable the receive h/w in preparation for a reset.
4620  */
4621 static void
4622 ath_stoprecv(struct ath_softc *sc)
4623 {
4624 #define	PA2DESC(_sc, _pa) \
4625 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4626 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4627 	struct ath_hal *ah = sc->sc_ah;
4628 
4629 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4630 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4631 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4632 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4633 #ifdef ATH_DEBUG
4634 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4635 		struct ath_buf *bf;
4636 		u_int ix;
4637 
4638 		printf("%s: rx queue %p, link %p\n", __func__,
4639 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4640 		ix = 0;
4641 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4642 			struct ath_desc *ds = bf->bf_desc;
4643 			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4644 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4645 				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4646 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4647 				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
4648 			ix++;
4649 		}
4650 	}
4651 #endif
4652 	if (sc->sc_rxpending != NULL) {
4653 		m_freem(sc->sc_rxpending);
4654 		sc->sc_rxpending = NULL;
4655 	}
4656 	sc->sc_rxlink = NULL;		/* just in case */
4657 #undef PA2DESC
4658 }
4659 
4660 /*
4661  * Enable the receive h/w following a reset.
4662  */
4663 static int
4664 ath_startrecv(struct ath_softc *sc)
4665 {
4666 	struct ath_hal *ah = sc->sc_ah;
4667 	struct ath_buf *bf;
4668 
4669 	sc->sc_rxlink = NULL;
4670 	sc->sc_rxpending = NULL;
4671 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4672 		int error = ath_rxbuf_init(sc, bf);
4673 		if (error != 0) {
4674 			DPRINTF(sc, ATH_DEBUG_RECV,
4675 				"%s: ath_rxbuf_init failed %d\n",
4676 				__func__, error);
4677 			return error;
4678 		}
4679 	}
4680 
4681 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4682 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4683 	ath_hal_rxena(ah);		/* enable recv descriptors */
4684 	ath_mode_init(sc);		/* set filters, etc. */
4685 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4686 	return 0;
4687 }
4688 
4689 /*
4690  * Update internal state after a channel change.
4691  */
4692 static void
4693 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4694 {
4695 	enum ieee80211_phymode mode;
4696 
4697 	/*
4698 	 * Change channels and update the h/w rate map
4699 	 * if we're switching; e.g. 11a to 11b/g.
4700 	 */
4701 	mode = ieee80211_chan2mode(chan);
4702 	if (mode != sc->sc_curmode)
4703 		ath_setcurmode(sc, mode);
4704 	sc->sc_curchan = chan;
4705 }
4706 
4707 /*
4708  * Set/change channels.  If the channel is really being changed,
4709  * it's done by resetting the chip.  To accomplish this we must
4710  * first cleanup any pending DMA, then restart stuff after a la
4711  * ath_init.
4712  */
4713 static int
4714 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4715 {
4716 	struct ifnet *ifp = sc->sc_ifp;
4717 	struct ieee80211com *ic = ifp->if_l2com;
4718 	struct ath_hal *ah = sc->sc_ah;
4719 
4720 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4721 	    __func__, ieee80211_chan2ieee(ic, chan),
4722 	    chan->ic_freq, chan->ic_flags);
4723 	if (chan != sc->sc_curchan) {
4724 		HAL_STATUS status;
4725 		/*
4726 		 * To switch channels clear any pending DMA operations;
4727 		 * wait long enough for the RX fifo to drain, reset the
4728 		 * hardware at the new frequency, and then re-enable
4729 		 * the relevant bits of the h/w.
4730 		 */
4731 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4732 		ath_draintxq(sc);		/* clear pending tx frames */
4733 		ath_stoprecv(sc);		/* turn off frame recv */
4734 		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4735 			if_printf(ifp, "%s: unable to reset "
4736 			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4737 			    __func__, ieee80211_chan2ieee(ic, chan),
4738 			    chan->ic_freq, chan->ic_flags, status);
4739 			return EIO;
4740 		}
4741 		sc->sc_diversity = ath_hal_getdiversity(ah);
4742 
4743 		/*
4744 		 * Re-enable rx framework.
4745 		 */
4746 		if (ath_startrecv(sc) != 0) {
4747 			if_printf(ifp, "%s: unable to restart recv logic\n",
4748 			    __func__);
4749 			return EIO;
4750 		}
4751 
4752 		/*
4753 		 * Change channels and update the h/w rate map
4754 		 * if we're switching; e.g. 11a to 11b/g.
4755 		 */
4756 		ath_chan_change(sc, chan);
4757 
4758 		/*
4759 		 * Re-enable interrupts.
4760 		 */
4761 		ath_hal_intrset(ah, sc->sc_imask);
4762 	}
4763 	return 0;
4764 }
4765 
4766 /*
4767  * Periodically recalibrate the PHY to account
4768  * for temperature/environment changes.
4769  */
4770 static void
4771 ath_calibrate(void *arg)
4772 {
4773 	struct ath_softc *sc = arg;
4774 	struct ath_hal *ah = sc->sc_ah;
4775 	struct ifnet *ifp = sc->sc_ifp;
4776 	struct ieee80211com *ic = ifp->if_l2com;
4777 	HAL_BOOL longCal, isCalDone;
4778 	HAL_BOOL aniCal, shortCal = AH_FALSE;
4779 	int nextcal;
4780 
4781 	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4782 		goto restart;
4783 	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4784 	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4785 	if (sc->sc_doresetcal)
4786 		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4787 
4788 	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4789 	if (aniCal) {
4790 		sc->sc_stats.ast_ani_cal++;
4791 		sc->sc_lastani = ticks;
4792 		ath_hal_ani_poll(ah, sc->sc_curchan);
4793 	}
4794 
4795 	if (longCal) {
4796 		sc->sc_stats.ast_per_cal++;
4797 		sc->sc_lastlongcal = ticks;
4798 		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4799 			/*
4800 			 * Rfgain is out of bounds, reset the chip
4801 			 * to load new gain values.
4802 			 */
4803 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4804 				"%s: rfgain change\n", __func__);
4805 			sc->sc_stats.ast_per_rfgain++;
4806 			ath_reset(ifp);
4807 		}
4808 		/*
4809 		 * If this long cal is after an idle period, then
4810 		 * reset the data collection state so we start fresh.
4811 		 */
4812 		if (sc->sc_resetcal) {
4813 			(void) ath_hal_calreset(ah, sc->sc_curchan);
4814 			sc->sc_lastcalreset = ticks;
4815 			sc->sc_lastshortcal = ticks;
4816 			sc->sc_resetcal = 0;
4817 			sc->sc_doresetcal = AH_TRUE;
4818 		}
4819 	}
4820 
4821 	/* Only call if we're doing a short/long cal, not for ANI calibration */
4822 	if (shortCal || longCal) {
4823 		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4824 			if (longCal) {
4825 				/*
4826 				 * Calibrate noise floor data again in case of change.
4827 				 */
4828 				ath_hal_process_noisefloor(ah);
4829 			}
4830 		} else {
4831 			DPRINTF(sc, ATH_DEBUG_ANY,
4832 				"%s: calibration of channel %u failed\n",
4833 				__func__, sc->sc_curchan->ic_freq);
4834 			sc->sc_stats.ast_per_calfail++;
4835 		}
4836 		if (shortCal)
4837 			sc->sc_lastshortcal = ticks;
4838 	}
4839 	if (!isCalDone) {
4840 restart:
4841 		/*
4842 		 * Use a shorter interval to potentially collect multiple
4843 		 * data samples required to complete calibration.  Once
4844 		 * we're told the work is done we drop back to a longer
4845 		 * interval between requests.  We're more aggressive doing
4846 		 * work when operating as an AP to improve operation right
4847 		 * after startup.
4848 		 */
4849 		sc->sc_lastshortcal = ticks;
4850 		nextcal = ath_shortcalinterval*hz/1000;
4851 		if (sc->sc_opmode != HAL_M_HOSTAP)
4852 			nextcal *= 10;
4853 		sc->sc_doresetcal = AH_TRUE;
4854 	} else {
4855 		/* nextcal should be the shortest time for next event */
4856 		nextcal = ath_longcalinterval*hz;
4857 		if (sc->sc_lastcalreset == 0)
4858 			sc->sc_lastcalreset = sc->sc_lastlongcal;
4859 		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4860 			sc->sc_resetcal = 1;	/* setup reset next trip */
4861 		sc->sc_doresetcal = AH_FALSE;
4862 	}
4863 	/* ANI calibration may occur more often than short/long/resetcal */
4864 	if (ath_anicalinterval > 0)
4865 		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4866 
4867 	if (nextcal != 0) {
4868 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4869 		    __func__, nextcal, isCalDone ? "" : "!");
4870 		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4871 	} else {
4872 		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4873 		    __func__);
4874 		/* NB: don't rearm timer */
4875 	}
4876 }
4877 
4878 static void
4879 ath_scan_start(struct ieee80211com *ic)
4880 {
4881 	struct ifnet *ifp = ic->ic_ifp;
4882 	struct ath_softc *sc = ifp->if_softc;
4883 	struct ath_hal *ah = sc->sc_ah;
4884 	u_int32_t rfilt;
4885 
4886 	/* XXX calibration timer? */
4887 
4888 	sc->sc_scanning = 1;
4889 	sc->sc_syncbeacon = 0;
4890 	rfilt = ath_calcrxfilter(sc);
4891 	ath_hal_setrxfilter(ah, rfilt);
4892 	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4893 
4894 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4895 		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4896 }
4897 
4898 static void
4899 ath_scan_end(struct ieee80211com *ic)
4900 {
4901 	struct ifnet *ifp = ic->ic_ifp;
4902 	struct ath_softc *sc = ifp->if_softc;
4903 	struct ath_hal *ah = sc->sc_ah;
4904 	u_int32_t rfilt;
4905 
4906 	sc->sc_scanning = 0;
4907 	rfilt = ath_calcrxfilter(sc);
4908 	ath_hal_setrxfilter(ah, rfilt);
4909 	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4910 
4911 	ath_hal_process_noisefloor(ah);
4912 
4913 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4914 		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4915 		 sc->sc_curaid);
4916 }
4917 
4918 static void
4919 ath_set_channel(struct ieee80211com *ic)
4920 {
4921 	struct ifnet *ifp = ic->ic_ifp;
4922 	struct ath_softc *sc = ifp->if_softc;
4923 
4924 	(void) ath_chan_set(sc, ic->ic_curchan);
4925 	/*
4926 	 * If we are returning to our bss channel then mark state
4927 	 * so the next recv'd beacon's tsf will be used to sync the
4928 	 * beacon timers.  Note that since we only hear beacons in
4929 	 * sta/ibss mode this has no effect in other operating modes.
4930 	 */
4931 	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4932 		sc->sc_syncbeacon = 1;
4933 }
4934 
4935 /*
4936  * Walk the vap list and check if there any vap's in RUN state.
4937  */
4938 static int
4939 ath_isanyrunningvaps(struct ieee80211vap *this)
4940 {
4941 	struct ieee80211com *ic = this->iv_ic;
4942 	struct ieee80211vap *vap;
4943 
4944 	IEEE80211_LOCK_ASSERT(ic);
4945 
4946 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4947 		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4948 			return 1;
4949 	}
4950 	return 0;
4951 }
4952 
4953 static int
4954 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4955 {
4956 	struct ieee80211com *ic = vap->iv_ic;
4957 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4958 	struct ath_vap *avp = ATH_VAP(vap);
4959 	struct ath_hal *ah = sc->sc_ah;
4960 	struct ieee80211_node *ni = NULL;
4961 	int i, error, stamode;
4962 	u_int32_t rfilt;
4963 	static const HAL_LED_STATE leds[] = {
4964 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4965 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4966 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4967 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4968 	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4969 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4970 	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4971 	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4972 	};
4973 
4974 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4975 		ieee80211_state_name[vap->iv_state],
4976 		ieee80211_state_name[nstate]);
4977 
4978 	callout_drain(&sc->sc_cal_ch);
4979 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4980 
4981 	if (nstate == IEEE80211_S_SCAN) {
4982 		/*
4983 		 * Scanning: turn off beacon miss and don't beacon.
4984 		 * Mark beacon state so when we reach RUN state we'll
4985 		 * [re]setup beacons.  Unblock the task q thread so
4986 		 * deferred interrupt processing is done.
4987 		 */
4988 		ath_hal_intrset(ah,
4989 		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4990 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4991 		sc->sc_beacons = 0;
4992 		taskqueue_unblock(sc->sc_tq);
4993 	}
4994 
4995 	ni = vap->iv_bss;
4996 	rfilt = ath_calcrxfilter(sc);
4997 	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4998 		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4999 		   vap->iv_opmode == IEEE80211_M_IBSS);
5000 	if (stamode && nstate == IEEE80211_S_RUN) {
5001 		sc->sc_curaid = ni->ni_associd;
5002 		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5003 		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5004 	}
5005 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5006 	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5007 	ath_hal_setrxfilter(ah, rfilt);
5008 
5009 	/* XXX is this to restore keycache on resume? */
5010 	if (vap->iv_opmode != IEEE80211_M_STA &&
5011 	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5012 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5013 			if (ath_hal_keyisvalid(ah, i))
5014 				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5015 	}
5016 
5017 	/*
5018 	 * Invoke the parent method to do net80211 work.
5019 	 */
5020 	error = avp->av_newstate(vap, nstate, arg);
5021 	if (error != 0)
5022 		goto bad;
5023 
5024 	if (nstate == IEEE80211_S_RUN) {
5025 		/* NB: collect bss node again, it may have changed */
5026 		ni = vap->iv_bss;
5027 
5028 		DPRINTF(sc, ATH_DEBUG_STATE,
5029 		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5030 		    "capinfo 0x%04x chan %d\n", __func__,
5031 		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5032 		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5033 
5034 		switch (vap->iv_opmode) {
5035 #ifdef IEEE80211_SUPPORT_TDMA
5036 		case IEEE80211_M_AHDEMO:
5037 			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5038 				break;
5039 			/* fall thru... */
5040 #endif
5041 		case IEEE80211_M_HOSTAP:
5042 		case IEEE80211_M_IBSS:
5043 		case IEEE80211_M_MBSS:
5044 			/*
5045 			 * Allocate and setup the beacon frame.
5046 			 *
5047 			 * Stop any previous beacon DMA.  This may be
5048 			 * necessary, for example, when an ibss merge
5049 			 * causes reconfiguration; there will be a state
5050 			 * transition from RUN->RUN that means we may
5051 			 * be called with beacon transmission active.
5052 			 */
5053 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5054 
5055 			error = ath_beacon_alloc(sc, ni);
5056 			if (error != 0)
5057 				goto bad;
5058 			/*
5059 			 * If joining an adhoc network defer beacon timer
5060 			 * configuration to the next beacon frame so we
5061 			 * have a current TSF to use.  Otherwise we're
5062 			 * starting an ibss/bss so there's no need to delay;
5063 			 * if this is the first vap moving to RUN state, then
5064 			 * beacon state needs to be [re]configured.
5065 			 */
5066 			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5067 			    ni->ni_tstamp.tsf != 0) {
5068 				sc->sc_syncbeacon = 1;
5069 			} else if (!sc->sc_beacons) {
5070 #ifdef IEEE80211_SUPPORT_TDMA
5071 				if (vap->iv_caps & IEEE80211_C_TDMA)
5072 					ath_tdma_config(sc, vap);
5073 				else
5074 #endif
5075 					ath_beacon_config(sc, vap);
5076 				sc->sc_beacons = 1;
5077 			}
5078 			break;
5079 		case IEEE80211_M_STA:
5080 			/*
5081 			 * Defer beacon timer configuration to the next
5082 			 * beacon frame so we have a current TSF to use
5083 			 * (any TSF collected when scanning is likely old).
5084 			 */
5085 			sc->sc_syncbeacon = 1;
5086 			break;
5087 		case IEEE80211_M_MONITOR:
5088 			/*
5089 			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5090 			 * transitions so we must re-enable interrupts here to
5091 			 * handle the case of a single monitor mode vap.
5092 			 */
5093 			ath_hal_intrset(ah, sc->sc_imask);
5094 			break;
5095 		case IEEE80211_M_WDS:
5096 			break;
5097 		default:
5098 			break;
5099 		}
5100 		/*
5101 		 * Let the hal process statistics collected during a
5102 		 * scan so it can provide calibrated noise floor data.
5103 		 */
5104 		ath_hal_process_noisefloor(ah);
5105 		/*
5106 		 * Reset rssi stats; maybe not the best place...
5107 		 */
5108 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5109 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5110 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5111 		/*
5112 		 * Finally, start any timers and the task q thread
5113 		 * (in case we didn't go through SCAN state).
5114 		 */
5115 		if (ath_longcalinterval != 0) {
5116 			/* start periodic recalibration timer */
5117 			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5118 		} else {
5119 			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5120 			    "%s: calibration disabled\n", __func__);
5121 		}
5122 		taskqueue_unblock(sc->sc_tq);
5123 	} else if (nstate == IEEE80211_S_INIT) {
5124 		/*
5125 		 * If there are no vaps left in RUN state then
5126 		 * shutdown host/driver operation:
5127 		 * o disable interrupts
5128 		 * o disable the task queue thread
5129 		 * o mark beacon processing as stopped
5130 		 */
5131 		if (!ath_isanyrunningvaps(vap)) {
5132 			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5133 			/* disable interrupts  */
5134 			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5135 			taskqueue_block(sc->sc_tq);
5136 			sc->sc_beacons = 0;
5137 		}
5138 #ifdef IEEE80211_SUPPORT_TDMA
5139 		ath_hal_setcca(ah, AH_TRUE);
5140 #endif
5141 	}
5142 bad:
5143 	return error;
5144 }
5145 
5146 /*
5147  * Allocate a key cache slot to the station so we can
5148  * setup a mapping from key index to node. The key cache
5149  * slot is needed for managing antenna state and for
5150  * compression when stations do not use crypto.  We do
5151  * it uniliaterally here; if crypto is employed this slot
5152  * will be reassigned.
5153  */
5154 static void
5155 ath_setup_stationkey(struct ieee80211_node *ni)
5156 {
5157 	struct ieee80211vap *vap = ni->ni_vap;
5158 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5159 	ieee80211_keyix keyix, rxkeyix;
5160 
5161 	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5162 		/*
5163 		 * Key cache is full; we'll fall back to doing
5164 		 * the more expensive lookup in software.  Note
5165 		 * this also means no h/w compression.
5166 		 */
5167 		/* XXX msg+statistic */
5168 	} else {
5169 		/* XXX locking? */
5170 		ni->ni_ucastkey.wk_keyix = keyix;
5171 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5172 		/* NB: must mark device key to get called back on delete */
5173 		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5174 		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5175 		/* NB: this will create a pass-thru key entry */
5176 		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5177 	}
5178 }
5179 
5180 /*
5181  * Setup driver-specific state for a newly associated node.
5182  * Note that we're called also on a re-associate, the isnew
5183  * param tells us if this is the first time or not.
5184  */
5185 static void
5186 ath_newassoc(struct ieee80211_node *ni, int isnew)
5187 {
5188 	struct ath_node *an = ATH_NODE(ni);
5189 	struct ieee80211vap *vap = ni->ni_vap;
5190 	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5191 	const struct ieee80211_txparam *tp = ni->ni_txparms;
5192 
5193 	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5194 	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5195 
5196 	ath_rate_newassoc(sc, an, isnew);
5197 	if (isnew &&
5198 	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5199 	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5200 		ath_setup_stationkey(ni);
5201 }
5202 
5203 static int
5204 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5205 	int nchans, struct ieee80211_channel chans[])
5206 {
5207 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5208 	struct ath_hal *ah = sc->sc_ah;
5209 	HAL_STATUS status;
5210 
5211 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5212 	    "%s: rd %u cc %u location %c%s\n",
5213 	    __func__, reg->regdomain, reg->country, reg->location,
5214 	    reg->ecm ? " ecm" : "");
5215 
5216 	status = ath_hal_set_channels(ah, chans, nchans,
5217 	    reg->country, reg->regdomain);
5218 	if (status != HAL_OK) {
5219 		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5220 		    __func__, status);
5221 		return EINVAL;		/* XXX */
5222 	}
5223 	return 0;
5224 }
5225 
5226 static void
5227 ath_getradiocaps(struct ieee80211com *ic,
5228 	int maxchans, int *nchans, struct ieee80211_channel chans[])
5229 {
5230 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5231 	struct ath_hal *ah = sc->sc_ah;
5232 
5233 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5234 	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5235 
5236 	/* XXX check return */
5237 	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5238 	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5239 
5240 }
5241 
5242 static int
5243 ath_getchannels(struct ath_softc *sc)
5244 {
5245 	struct ifnet *ifp = sc->sc_ifp;
5246 	struct ieee80211com *ic = ifp->if_l2com;
5247 	struct ath_hal *ah = sc->sc_ah;
5248 	HAL_STATUS status;
5249 
5250 	/*
5251 	 * Collect channel set based on EEPROM contents.
5252 	 */
5253 	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5254 	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5255 	if (status != HAL_OK) {
5256 		if_printf(ifp, "%s: unable to collect channel list from hal, "
5257 		    "status %d\n", __func__, status);
5258 		return EINVAL;
5259 	}
5260 	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5261 	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5262 	/* XXX map Atheros sku's to net80211 SKU's */
5263 	/* XXX net80211 types too small */
5264 	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5265 	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5266 	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5267 	ic->ic_regdomain.isocc[1] = ' ';
5268 
5269 	ic->ic_regdomain.ecm = 1;
5270 	ic->ic_regdomain.location = 'I';
5271 
5272 	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5273 	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5274 	    __func__, sc->sc_eerd, sc->sc_eecc,
5275 	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5276 	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5277 	return 0;
5278 }
5279 
5280 static void
5281 ath_led_done(void *arg)
5282 {
5283 	struct ath_softc *sc = arg;
5284 
5285 	sc->sc_blinking = 0;
5286 }
5287 
5288 /*
5289  * Turn the LED off: flip the pin and then set a timer so no
5290  * update will happen for the specified duration.
5291  */
5292 static void
5293 ath_led_off(void *arg)
5294 {
5295 	struct ath_softc *sc = arg;
5296 
5297 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5298 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5299 }
5300 
5301 /*
5302  * Blink the LED according to the specified on/off times.
5303  */
5304 static void
5305 ath_led_blink(struct ath_softc *sc, int on, int off)
5306 {
5307 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5308 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5309 	sc->sc_blinking = 1;
5310 	sc->sc_ledoff = off;
5311 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5312 }
5313 
5314 static void
5315 ath_led_event(struct ath_softc *sc, int rix)
5316 {
5317 	sc->sc_ledevent = ticks;	/* time of last event */
5318 	if (sc->sc_blinking)		/* don't interrupt active blink */
5319 		return;
5320 	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5321 }
5322 
5323 static int
5324 ath_rate_setup(struct ath_softc *sc, u_int mode)
5325 {
5326 	struct ath_hal *ah = sc->sc_ah;
5327 	const HAL_RATE_TABLE *rt;
5328 
5329 	switch (mode) {
5330 	case IEEE80211_MODE_11A:
5331 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5332 		break;
5333 	case IEEE80211_MODE_HALF:
5334 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5335 		break;
5336 	case IEEE80211_MODE_QUARTER:
5337 		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5338 		break;
5339 	case IEEE80211_MODE_11B:
5340 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5341 		break;
5342 	case IEEE80211_MODE_11G:
5343 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5344 		break;
5345 	case IEEE80211_MODE_TURBO_A:
5346 		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5347 		break;
5348 	case IEEE80211_MODE_TURBO_G:
5349 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5350 		break;
5351 	case IEEE80211_MODE_STURBO_A:
5352 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5353 		break;
5354 	case IEEE80211_MODE_11NA:
5355 		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5356 		break;
5357 	case IEEE80211_MODE_11NG:
5358 		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5359 		break;
5360 	default:
5361 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5362 			__func__, mode);
5363 		return 0;
5364 	}
5365 	sc->sc_rates[mode] = rt;
5366 	return (rt != NULL);
5367 }
5368 
5369 static void
5370 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5371 {
5372 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5373 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5374 	static const struct {
5375 		u_int		rate;		/* tx/rx 802.11 rate */
5376 		u_int16_t	timeOn;		/* LED on time (ms) */
5377 		u_int16_t	timeOff;	/* LED off time (ms) */
5378 	} blinkrates[] = {
5379 		{ 108,  40,  10 },
5380 		{  96,  44,  11 },
5381 		{  72,  50,  13 },
5382 		{  48,  57,  14 },
5383 		{  36,  67,  16 },
5384 		{  24,  80,  20 },
5385 		{  22, 100,  25 },
5386 		{  18, 133,  34 },
5387 		{  12, 160,  40 },
5388 		{  10, 200,  50 },
5389 		{   6, 240,  58 },
5390 		{   4, 267,  66 },
5391 		{   2, 400, 100 },
5392 		{   0, 500, 130 },
5393 		/* XXX half/quarter rates */
5394 	};
5395 	const HAL_RATE_TABLE *rt;
5396 	int i, j;
5397 
5398 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5399 	rt = sc->sc_rates[mode];
5400 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5401 	for (i = 0; i < rt->rateCount; i++) {
5402 		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5403 		if (rt->info[i].phy != IEEE80211_T_HT)
5404 			sc->sc_rixmap[ieeerate] = i;
5405 		else
5406 			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5407 	}
5408 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5409 	for (i = 0; i < N(sc->sc_hwmap); i++) {
5410 		if (i >= rt->rateCount) {
5411 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5412 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5413 			continue;
5414 		}
5415 		sc->sc_hwmap[i].ieeerate =
5416 			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5417 		if (rt->info[i].phy == IEEE80211_T_HT)
5418 			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5419 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5420 		if (rt->info[i].shortPreamble ||
5421 		    rt->info[i].phy == IEEE80211_T_OFDM)
5422 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5423 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5424 		for (j = 0; j < N(blinkrates)-1; j++)
5425 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5426 				break;
5427 		/* NB: this uses the last entry if the rate isn't found */
5428 		/* XXX beware of overlow */
5429 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5430 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5431 	}
5432 	sc->sc_currates = rt;
5433 	sc->sc_curmode = mode;
5434 	/*
5435 	 * All protection frames are transmited at 2Mb/s for
5436 	 * 11g, otherwise at 1Mb/s.
5437 	 */
5438 	if (mode == IEEE80211_MODE_11G)
5439 		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5440 	else
5441 		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5442 	/* NB: caller is responsible for resetting rate control state */
5443 #undef N
5444 }
5445 
5446 static void
5447 ath_watchdog(void *arg)
5448 {
5449 	struct ath_softc *sc = arg;
5450 
5451 	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5452 		struct ifnet *ifp = sc->sc_ifp;
5453 		uint32_t hangs;
5454 
5455 		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5456 		    hangs != 0) {
5457 			if_printf(ifp, "%s hang detected (0x%x)\n",
5458 			    hangs & 0xff ? "bb" : "mac", hangs);
5459 		} else
5460 			if_printf(ifp, "device timeout\n");
5461 		ath_reset(ifp);
5462 		ifp->if_oerrors++;
5463 		sc->sc_stats.ast_watchdog++;
5464 	}
5465 	callout_schedule(&sc->sc_wd_ch, hz);
5466 }
5467 
5468 #ifdef ATH_DIAGAPI
5469 /*
5470  * Diagnostic interface to the HAL.  This is used by various
5471  * tools to do things like retrieve register contents for
5472  * debugging.  The mechanism is intentionally opaque so that
5473  * it can change frequently w/o concern for compatiblity.
5474  */
5475 static int
5476 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5477 {
5478 	struct ath_hal *ah = sc->sc_ah;
5479 	u_int id = ad->ad_id & ATH_DIAG_ID;
5480 	void *indata = NULL;
5481 	void *outdata = NULL;
5482 	u_int32_t insize = ad->ad_in_size;
5483 	u_int32_t outsize = ad->ad_out_size;
5484 	int error = 0;
5485 
5486 	if (ad->ad_id & ATH_DIAG_IN) {
5487 		/*
5488 		 * Copy in data.
5489 		 */
5490 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5491 		if (indata == NULL) {
5492 			error = ENOMEM;
5493 			goto bad;
5494 		}
5495 		error = copyin(ad->ad_in_data, indata, insize);
5496 		if (error)
5497 			goto bad;
5498 	}
5499 	if (ad->ad_id & ATH_DIAG_DYN) {
5500 		/*
5501 		 * Allocate a buffer for the results (otherwise the HAL
5502 		 * returns a pointer to a buffer where we can read the
5503 		 * results).  Note that we depend on the HAL leaving this
5504 		 * pointer for us to use below in reclaiming the buffer;
5505 		 * may want to be more defensive.
5506 		 */
5507 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5508 		if (outdata == NULL) {
5509 			error = ENOMEM;
5510 			goto bad;
5511 		}
5512 	}
5513 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5514 		if (outsize < ad->ad_out_size)
5515 			ad->ad_out_size = outsize;
5516 		if (outdata != NULL)
5517 			error = copyout(outdata, ad->ad_out_data,
5518 					ad->ad_out_size);
5519 	} else {
5520 		error = EINVAL;
5521 	}
5522 bad:
5523 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5524 		free(indata, M_TEMP);
5525 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5526 		free(outdata, M_TEMP);
5527 	return error;
5528 }
5529 #endif /* ATH_DIAGAPI */
5530 
5531 static int
5532 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5533 {
5534 #define	IS_RUNNING(ifp) \
5535 	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5536 	struct ath_softc *sc = ifp->if_softc;
5537 	struct ieee80211com *ic = ifp->if_l2com;
5538 	struct ifreq *ifr = (struct ifreq *)data;
5539 	const HAL_RATE_TABLE *rt;
5540 	int error = 0;
5541 
5542 	switch (cmd) {
5543 	case SIOCSIFFLAGS:
5544 		ATH_LOCK(sc);
5545 		if (IS_RUNNING(ifp)) {
5546 			/*
5547 			 * To avoid rescanning another access point,
5548 			 * do not call ath_init() here.  Instead,
5549 			 * only reflect promisc mode settings.
5550 			 */
5551 			ath_mode_init(sc);
5552 		} else if (ifp->if_flags & IFF_UP) {
5553 			/*
5554 			 * Beware of being called during attach/detach
5555 			 * to reset promiscuous mode.  In that case we
5556 			 * will still be marked UP but not RUNNING.
5557 			 * However trying to re-init the interface
5558 			 * is the wrong thing to do as we've already
5559 			 * torn down much of our state.  There's
5560 			 * probably a better way to deal with this.
5561 			 */
5562 			if (!sc->sc_invalid)
5563 				ath_init(sc);	/* XXX lose error */
5564 		} else {
5565 			ath_stop_locked(ifp);
5566 #ifdef notyet
5567 			/* XXX must wakeup in places like ath_vap_delete */
5568 			if (!sc->sc_invalid)
5569 				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5570 #endif
5571 		}
5572 		ATH_UNLOCK(sc);
5573 		break;
5574 	case SIOCGIFMEDIA:
5575 	case SIOCSIFMEDIA:
5576 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5577 		break;
5578 	case SIOCGATHSTATS:
5579 		/* NB: embed these numbers to get a consistent view */
5580 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5581 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5582 		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5583 		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5584 #ifdef IEEE80211_SUPPORT_TDMA
5585 		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5586 		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5587 #endif
5588 		rt = sc->sc_currates;
5589 		/* XXX HT rates */
5590 		sc->sc_stats.ast_tx_rate =
5591 		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5592 		return copyout(&sc->sc_stats,
5593 		    ifr->ifr_data, sizeof (sc->sc_stats));
5594 	case SIOCZATHSTATS:
5595 		error = priv_check(curthread, PRIV_DRIVER);
5596 		if (error == 0)
5597 			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5598 		break;
5599 #ifdef ATH_DIAGAPI
5600 	case SIOCGATHDIAG:
5601 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5602 		break;
5603 #endif
5604 	case SIOCGIFADDR:
5605 		error = ether_ioctl(ifp, cmd, data);
5606 		break;
5607 	default:
5608 		error = EINVAL;
5609 		break;
5610 	}
5611 	return error;
5612 #undef IS_RUNNING
5613 }
5614 
5615 /*
5616  * Announce various information on device/driver attach.
5617  */
5618 static void
5619 ath_announce(struct ath_softc *sc)
5620 {
5621 	struct ifnet *ifp = sc->sc_ifp;
5622 	struct ath_hal *ah = sc->sc_ah;
5623 
5624 	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5625 		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5626 		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5627 	if (bootverbose) {
5628 		int i;
5629 		for (i = 0; i <= WME_AC_VO; i++) {
5630 			struct ath_txq *txq = sc->sc_ac2q[i];
5631 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5632 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5633 		}
5634 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5635 			sc->sc_cabq->axq_qnum);
5636 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5637 	}
5638 	if (ath_rxbuf != ATH_RXBUF)
5639 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5640 	if (ath_txbuf != ATH_TXBUF)
5641 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5642 	if (sc->sc_mcastkey && bootverbose)
5643 		if_printf(ifp, "using multicast key search\n");
5644 }
5645 
5646 #ifdef IEEE80211_SUPPORT_TDMA
5647 static __inline uint32_t
5648 ath_hal_getnexttbtt(struct ath_hal *ah)
5649 {
5650 #define	AR_TIMER0	0x8028
5651 	return OS_REG_READ(ah, AR_TIMER0);
5652 }
5653 
5654 static __inline void
5655 ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
5656 {
5657 	/* XXX handle wrap/overflow */
5658 	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
5659 }
5660 
5661 static void
5662 ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
5663 {
5664 	struct ath_hal *ah = sc->sc_ah;
5665 	HAL_BEACON_TIMERS bt;
5666 
5667 	bt.bt_intval = bintval | HAL_BEACON_ENA;
5668 	bt.bt_nexttbtt = nexttbtt;
5669 	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
5670 	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
5671 	bt.bt_nextatim = nexttbtt+1;
5672 	ath_hal_beaconsettimers(ah, &bt);
5673 }
5674 
5675 /*
5676  * Calculate the beacon interval.  This is periodic in the
5677  * superframe for the bss.  We assume each station is configured
5678  * identically wrt transmit rate so the guard time we calculate
5679  * above will be the same on all stations.  Note we need to
5680  * factor in the xmit time because the hardware will schedule
5681  * a frame for transmit if the start of the frame is within
5682  * the burst time.  When we get hardware that properly kills
5683  * frames in the PCU we can reduce/eliminate the guard time.
5684  *
5685  * Roundup to 1024 is so we have 1 TU buffer in the guard time
5686  * to deal with the granularity of the nexttbtt timer.  11n MAC's
5687  * with 1us timer granularity should allow us to reduce/eliminate
5688  * this.
5689  */
5690 static void
5691 ath_tdma_bintvalsetup(struct ath_softc *sc,
5692 	const struct ieee80211_tdma_state *tdma)
5693 {
5694 	/* copy from vap state (XXX check all vaps have same value?) */
5695 	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
5696 
5697 	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
5698 		tdma->tdma_slotcnt, 1024);
5699 	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
5700 	if (sc->sc_tdmabintval & 1)
5701 		sc->sc_tdmabintval++;
5702 
5703 	if (tdma->tdma_slot == 0) {
5704 		/*
5705 		 * Only slot 0 beacons; other slots respond.
5706 		 */
5707 		sc->sc_imask |= HAL_INT_SWBA;
5708 		sc->sc_tdmaswba = 0;		/* beacon immediately */
5709 	} else {
5710 		/* XXX all vaps must be slot 0 or slot !0 */
5711 		sc->sc_imask &= ~HAL_INT_SWBA;
5712 	}
5713 }
5714 
5715 /*
5716  * Max 802.11 overhead.  This assumes no 4-address frames and
5717  * the encapsulation done by ieee80211_encap (llc).  We also
5718  * include potential crypto overhead.
5719  */
5720 #define	IEEE80211_MAXOVERHEAD \
5721 	(sizeof(struct ieee80211_qosframe) \
5722 	 + sizeof(struct llc) \
5723 	 + IEEE80211_ADDR_LEN \
5724 	 + IEEE80211_WEP_IVLEN \
5725 	 + IEEE80211_WEP_KIDLEN \
5726 	 + IEEE80211_WEP_CRCLEN \
5727 	 + IEEE80211_WEP_MICLEN \
5728 	 + IEEE80211_CRC_LEN)
5729 
5730 /*
5731  * Setup initially for tdma operation.  Start the beacon
5732  * timers and enable SWBA if we are slot 0.  Otherwise
5733  * we wait for slot 0 to arrive so we can sync up before
5734  * starting to transmit.
5735  */
5736 static void
5737 ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
5738 {
5739 	struct ath_hal *ah = sc->sc_ah;
5740 	struct ifnet *ifp = sc->sc_ifp;
5741 	struct ieee80211com *ic = ifp->if_l2com;
5742 	const struct ieee80211_txparam *tp;
5743 	const struct ieee80211_tdma_state *tdma = NULL;
5744 	int rix;
5745 
5746 	if (vap == NULL) {
5747 		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
5748 		if (vap == NULL) {
5749 			if_printf(ifp, "%s: no vaps?\n", __func__);
5750 			return;
5751 		}
5752 	}
5753 	tp = vap->iv_bss->ni_txparms;
5754 	/*
5755 	 * Calculate the guard time for each slot.  This is the
5756 	 * time to send a maximal-size frame according to the
5757 	 * fixed/lowest transmit rate.  Note that the interface
5758 	 * mtu does not include the 802.11 overhead so we must
5759 	 * tack that on (ath_hal_computetxtime includes the
5760 	 * preamble and plcp in it's calculation).
5761 	 */
5762 	tdma = vap->iv_tdma;
5763 	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
5764 		rix = ath_tx_findrix(sc, tp->ucastrate);
5765 	else
5766 		rix = ath_tx_findrix(sc, tp->mcastrate);
5767 	/* XXX short preamble assumed */
5768 	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
5769 		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
5770 
5771 	ath_hal_intrset(ah, 0);
5772 
5773 	ath_beaconq_config(sc);			/* setup h/w beacon q */
5774 	if (sc->sc_setcca)
5775 		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
5776 	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
5777 	ath_tdma_settimers(sc, sc->sc_tdmabintval,
5778 		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
5779 	sc->sc_syncbeacon = 0;
5780 
5781 	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
5782 	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
5783 
5784 	ath_hal_intrset(ah, sc->sc_imask);
5785 
5786 	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
5787 	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
5788 	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
5789 	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
5790 	    sc->sc_tdmadbaprep);
5791 }
5792 
5793 /*
5794  * Update tdma operation.  Called from the 802.11 layer
5795  * when a beacon is received from the TDMA station operating
5796  * in the slot immediately preceding us in the bss.  Use
5797  * the rx timestamp for the beacon frame to update our
5798  * beacon timers so we follow their schedule.  Note that
5799  * by using the rx timestamp we implicitly include the
5800  * propagation delay in our schedule.
5801  */
5802 static void
5803 ath_tdma_update(struct ieee80211_node *ni,
5804 	const struct ieee80211_tdma_param *tdma, int changed)
5805 {
5806 #define	TSF_TO_TU(_h,_l) \
5807 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
5808 #define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
5809 	struct ieee80211vap *vap = ni->ni_vap;
5810 	struct ieee80211com *ic = ni->ni_ic;
5811 	struct ath_softc *sc = ic->ic_ifp->if_softc;
5812 	struct ath_hal *ah = sc->sc_ah;
5813 	const HAL_RATE_TABLE *rt = sc->sc_currates;
5814 	u_int64_t tsf, rstamp, nextslot;
5815 	u_int32_t txtime, nextslottu, timer0;
5816 	int32_t tudelta, tsfdelta;
5817 	const struct ath_rx_status *rs;
5818 	int rix;
5819 
5820 	sc->sc_stats.ast_tdma_update++;
5821 
5822 	/*
5823 	 * Check for and adopt configuration changes.
5824 	 */
5825 	if (changed != 0) {
5826 		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
5827 
5828 		ath_tdma_bintvalsetup(sc, ts);
5829 		if (changed & TDMA_UPDATE_SLOTLEN)
5830 			ath_wme_update(ic);
5831 
5832 		DPRINTF(sc, ATH_DEBUG_TDMA,
5833 		    "%s: adopt slot %u slotcnt %u slotlen %u us "
5834 		    "bintval %u TU\n", __func__,
5835 		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
5836 		    sc->sc_tdmabintval);
5837 
5838 		/* XXX right? */
5839 		ath_hal_intrset(ah, sc->sc_imask);
5840 		/* NB: beacon timers programmed below */
5841 	}
5842 
5843 	/* extend rx timestamp to 64 bits */
5844 	rs = sc->sc_lastrs;
5845 	tsf = ath_hal_gettsf64(ah);
5846 	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
5847 	/*
5848 	 * The rx timestamp is set by the hardware on completing
5849 	 * reception (at the point where the rx descriptor is DMA'd
5850 	 * to the host).  To find the start of our next slot we
5851 	 * must adjust this time by the time required to send
5852 	 * the packet just received.
5853 	 */
5854 	rix = rt->rateCodeToIndex[rs->rs_rate];
5855 	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
5856 	    rt->info[rix].shortPreamble);
5857 	/* NB: << 9 is to cvt to TU and /2 */
5858 	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
5859 	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
5860 
5861 	/*
5862 	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
5863 	 * to usecs and calculate the difference between what the
5864 	 * other station thinks and what we have programmed.  This
5865 	 * lets us figure how to adjust our timers to match.  The
5866 	 * adjustments are done by pulling the TSF forward and possibly
5867 	 * rewriting the beacon timers.
5868 	 */
5869 	timer0 = ath_hal_getnexttbtt(ah);
5870 	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
5871 
5872 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5873 	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
5874 	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
5875 
5876 	if (tsfdelta < 0) {
5877 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5878 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
5879 		tsfdelta = -tsfdelta % 1024;
5880 		nextslottu++;
5881 	} else if (tsfdelta > 0) {
5882 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
5883 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5884 		tsfdelta = 1024 - (tsfdelta % 1024);
5885 		nextslottu++;
5886 	} else {
5887 		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5888 		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5889 	}
5890 	tudelta = nextslottu - timer0;
5891 
5892 	/*
5893 	 * Copy sender's timetstamp into tdma ie so they can
5894 	 * calculate roundtrip time.  We submit a beacon frame
5895 	 * below after any timer adjustment.  The frame goes out
5896 	 * at the next TBTT so the sender can calculate the
5897 	 * roundtrip by inspecting the tdma ie in our beacon frame.
5898 	 *
5899 	 * NB: This tstamp is subtlely preserved when
5900 	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
5901 	 *     slot position changes) because ieee80211_add_tdma
5902 	 *     skips over the data.
5903 	 */
5904 	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
5905 		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
5906 		&ni->ni_tstamp.data, 8);
5907 #if 0
5908 	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5909 	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
5910 	    (unsigned long long) tsf, (unsigned long long) nextslot,
5911 	    (int)(nextslot - tsf), tsfdelta,
5912 	    nextslottu, timer0, tudelta);
5913 #endif
5914 	/*
5915 	 * Adjust the beacon timers only when pulling them forward
5916 	 * or when going back by less than the beacon interval.
5917 	 * Negative jumps larger than the beacon interval seem to
5918 	 * cause the timers to stop and generally cause instability.
5919 	 * This basically filters out jumps due to missed beacons.
5920 	 */
5921 	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
5922 		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
5923 		sc->sc_stats.ast_tdma_timers++;
5924 	}
5925 	if (tsfdelta > 0) {
5926 		ath_hal_adjusttsf(ah, tsfdelta);
5927 		sc->sc_stats.ast_tdma_tsf++;
5928 	}
5929 	ath_tdma_beacon_send(sc, vap);		/* prepare response */
5930 #undef TU_TO_TSF
5931 #undef TSF_TO_TU
5932 }
5933 
5934 /*
5935  * Transmit a beacon frame at SWBA.  Dynamic updates
5936  * to the frame contents are done as needed.
5937  */
5938 static void
5939 ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
5940 {
5941 	struct ath_hal *ah = sc->sc_ah;
5942 	struct ath_buf *bf;
5943 	int otherant;
5944 
5945 	/*
5946 	 * Check if the previous beacon has gone out.  If
5947 	 * not don't try to post another, skip this period
5948 	 * and wait for the next.  Missed beacons indicate
5949 	 * a problem and should not occur.  If we miss too
5950 	 * many consecutive beacons reset the device.
5951 	 */
5952 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
5953 		sc->sc_bmisscount++;
5954 		DPRINTF(sc, ATH_DEBUG_BEACON,
5955 			"%s: missed %u consecutive beacons\n",
5956 			__func__, sc->sc_bmisscount);
5957 		if (sc->sc_bmisscount >= ath_bstuck_threshold)
5958 			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
5959 		return;
5960 	}
5961 	if (sc->sc_bmisscount != 0) {
5962 		DPRINTF(sc, ATH_DEBUG_BEACON,
5963 			"%s: resume beacon xmit after %u misses\n",
5964 			__func__, sc->sc_bmisscount);
5965 		sc->sc_bmisscount = 0;
5966 	}
5967 
5968 	/*
5969 	 * Check recent per-antenna transmit statistics and flip
5970 	 * the default antenna if noticeably more frames went out
5971 	 * on the non-default antenna.
5972 	 * XXX assumes 2 anntenae
5973 	 */
5974 	if (!sc->sc_diversity) {
5975 		otherant = sc->sc_defant & 1 ? 2 : 1;
5976 		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
5977 			ath_setdefantenna(sc, otherant);
5978 		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
5979 	}
5980 
5981 	bf = ath_beacon_generate(sc, vap);
5982 	if (bf != NULL) {
5983 		/*
5984 		 * Stop any current dma and put the new frame on the queue.
5985 		 * This should never fail since we check above that no frames
5986 		 * are still pending on the queue.
5987 		 */
5988 		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
5989 			DPRINTF(sc, ATH_DEBUG_ANY,
5990 				"%s: beacon queue %u did not stop?\n",
5991 				__func__, sc->sc_bhalq);
5992 			/* NB: the HAL still stops DMA, so proceed */
5993 		}
5994 		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
5995 		ath_hal_txstart(ah, sc->sc_bhalq);
5996 
5997 		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
5998 
5999 		/*
6000 		 * Record local TSF for our last send for use
6001 		 * in arbitrating slot collisions.
6002 		 */
6003 		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
6004 	}
6005 }
6006 #endif /* IEEE80211_SUPPORT_TDMA */
6007 
6008