1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 * $FreeBSD$ 20 */ 21 #include "opt_ah.h" 22 23 #include "ah.h" 24 #include "ah_internal.h" 25 #include "ah_devid.h" 26 27 #include "ah_eeprom_v14.h" 28 29 #include "ar5416/ar5416.h" 30 #include "ar5416/ar5416reg.h" 31 #include "ar5416/ar5416phy.h" 32 33 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */ 34 #define EEP_MINOR(_ah) \ 35 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK) 36 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2) 37 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3) 38 39 /* Additional Time delay to wait after activiting the Base band */ 40 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */ 41 #define PLL_SETTLE_DELAY 300 /* 300 usec */ 42 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */ 43 44 static void ar5416InitDMA(struct ath_hal *ah); 45 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *); 46 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode); 47 static void ar5416InitQoS(struct ath_hal *ah); 48 static void ar5416InitUserSettings(struct ath_hal *ah); 49 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *); 50 51 #if 0 52 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *); 53 #endif 54 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *); 55 56 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah); 57 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type); 58 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah, 59 struct ar5416eeprom *pEepData, 60 const struct ieee80211_channel *chan, int16_t *ratesArray, 61 uint16_t cfgCtl, uint16_t AntennaReduction, 62 uint16_t twiceMaxRegulatoryPower, 63 uint16_t powerLimit); 64 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan); 65 static void ar5416MarkPhyInactive(struct ath_hal *ah); 66 static void ar5416SetIFSTiming(struct ath_hal *ah, 67 const struct ieee80211_channel *chan); 68 69 /* 70 * Places the device in and out of reset and then places sane 71 * values in the registers based on EEPROM config, initialization 72 * vectors (as determined by the mode), and station configuration 73 * 74 * bChannelChange is used to preserve DMA/PCU registers across 75 * a HW Reset during channel change. 76 */ 77 HAL_BOOL 78 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode, 79 struct ieee80211_channel *chan, 80 HAL_BOOL bChannelChange, 81 HAL_RESET_TYPE resetType, 82 HAL_STATUS *status) 83 { 84 #define N(a) (sizeof (a) / sizeof (a[0])) 85 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 86 struct ath_hal_5212 *ahp = AH5212(ah); 87 HAL_CHANNEL_INTERNAL *ichan; 88 uint32_t saveDefAntenna, saveLedState; 89 uint32_t macStaId1; 90 uint16_t rfXpdGain[2]; 91 HAL_STATUS ecode; 92 uint32_t powerVal, rssiThrReg; 93 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow; 94 int i; 95 uint64_t tsf = 0; 96 97 OS_MARK(ah, AH_MARK_RESET, bChannelChange); 98 99 /* Bring out of sleep mode */ 100 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { 101 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n", 102 __func__); 103 FAIL(HAL_EIO); 104 } 105 106 /* 107 * Map public channel to private. 108 */ 109 ichan = ath_hal_checkchannel(ah, chan); 110 if (ichan == AH_NULL) 111 FAIL(HAL_EINVAL); 112 switch (opmode) { 113 case HAL_M_STA: 114 case HAL_M_IBSS: 115 case HAL_M_HOSTAP: 116 case HAL_M_MONITOR: 117 break; 118 default: 119 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n", 120 __func__, opmode); 121 FAIL(HAL_EINVAL); 122 break; 123 } 124 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 125 126 /* Blank the channel survey statistics */ 127 ath_hal_survey_clear(ah); 128 129 /* XXX Turn on fast channel change for 5416 */ 130 131 /* 132 * Preserve the bmiss rssi threshold and count threshold 133 * across resets 134 */ 135 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR); 136 /* If reg is zero, first time thru set to default val */ 137 if (rssiThrReg == 0) 138 rssiThrReg = INIT_RSSI_THR; 139 140 /* 141 * Preserve the antenna on a channel change 142 */ 143 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA); 144 145 /* 146 * Don't do this for the AR9285 - it breaks RX for single 147 * antenna designs when diversity is disabled. 148 * 149 * I'm not sure what this was working around; it may be 150 * something to do with the AR5416. Certainly this register 151 * isn't supposed to be used by the MIMO chips for anything 152 * except for defining the default antenna when an external 153 * phase array / smart antenna is connected. 154 * 155 * See PR: kern/179269 . 156 */ 157 if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */ 158 saveDefAntenna = 1; 159 160 /* Save hardware flag before chip reset clears the register */ 161 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 162 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT); 163 164 /* Save led state from pci config register */ 165 saveLedState = OS_REG_READ(ah, AR_MAC_LED) & 166 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE | 167 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW); 168 169 /* For chips on which the RTC reset is done, save TSF before it gets cleared */ 170 if (AR_SREV_HOWL(ah) || 171 (AR_SREV_MERLIN(ah) && 172 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) || 173 (resetType == HAL_RESET_FORCE_COLD) || 174 (resetType == HAL_RESET_BBPANIC) || 175 (ah->ah_config.ah_force_full_reset)) 176 tsf = ar5416GetTsf64(ah); 177 178 /* Mark PHY as inactive; marked active in ar5416InitBB() */ 179 ar5416MarkPhyInactive(ah); 180 181 if (!ar5416ChipReset(ah, chan, resetType)) { 182 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); 183 FAIL(HAL_EIO); 184 } 185 186 /* Restore TSF */ 187 if (tsf) 188 ar5416SetTsf64(ah, tsf); 189 190 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 191 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 192 OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 193 194 AH5416(ah)->ah_writeIni(ah, chan); 195 196 if(AR_SREV_KIWI_13_OR_LATER(ah) ) { 197 /* Enable ASYNC FIFO */ 198 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 199 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL); 200 OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO); 201 OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 202 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 203 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3, 204 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET); 205 } 206 207 /* Override ini values (that can be overriden in this fashion) */ 208 ar5416OverrideIni(ah, chan); 209 210 /* Setup 11n MAC/Phy mode registers */ 211 ar5416Set11nRegs(ah, chan); 212 213 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 214 215 /* 216 * Some AR91xx SoC devices frequently fail to accept TSF writes 217 * right after the chip reset. When that happens, write a new 218 * value after the initvals have been applied, with an offset 219 * based on measured time difference 220 */ 221 if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) { 222 tsf += 1500; 223 ar5416SetTsf64(ah, tsf); 224 } 225 226 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n", 227 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK)); 228 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n", 229 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL)); 230 231 /* 232 * This routine swaps the analog chains - it should be done 233 * before any radio register twiddling is done. 234 */ 235 ar5416InitChainMasks(ah); 236 237 /* Setup the open-loop power calibration if required */ 238 if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 239 AH5416(ah)->ah_olcInit(ah); 240 AH5416(ah)->ah_olcTempCompensation(ah); 241 } 242 243 /* Setup the transmit power values. */ 244 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 245 HALDEBUG(ah, HAL_DEBUG_ANY, 246 "%s: error init'ing transmit power\n", __func__); 247 FAIL(HAL_EIO); 248 } 249 250 /* Write the analog registers */ 251 if (!ahp->ah_rfHal->setRfRegs(ah, chan, 252 IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) { 253 HALDEBUG(ah, HAL_DEBUG_ANY, 254 "%s: ar5212SetRfRegs failed\n", __func__); 255 FAIL(HAL_EIO); 256 } 257 258 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 259 if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan)) 260 ar5416SetDeltaSlope(ah, chan); 261 262 AH5416(ah)->ah_spurMitigate(ah, chan); 263 264 /* Setup board specific options for EEPROM version 3 */ 265 if (!ah->ah_setBoardValues(ah, chan)) { 266 HALDEBUG(ah, HAL_DEBUG_ANY, 267 "%s: error setting board options\n", __func__); 268 FAIL(HAL_EIO); 269 } 270 271 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 272 273 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 274 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) 275 | macStaId1 276 | AR_STA_ID1_RTS_USE_DEF 277 | ahp->ah_staId1Defaults 278 ); 279 ar5212SetOperatingMode(ah, opmode); 280 281 /* Set Venice BSSID mask according to current state */ 282 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask)); 283 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4)); 284 285 /* Restore previous led state */ 286 if (AR_SREV_HOWL(ah)) 287 OS_REG_WRITE(ah, AR_MAC_LED, 288 AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ); 289 else 290 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) | 291 saveLedState); 292 293 /* Start TSF2 for generic timer 8-15 */ 294 #ifdef NOTYET 295 if (AR_SREV_KIWI(ah)) 296 ar5416StartTsf2(ah); 297 #endif 298 299 /* 300 * Enable Bluetooth Coexistence if it's enabled. 301 */ 302 if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE) 303 ar5416InitBTCoex(ah); 304 305 /* Restore previous antenna */ 306 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 307 308 /* then our BSSID and associate id */ 309 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 310 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) | 311 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S); 312 313 /* Restore bmiss rssi & count thresholds */ 314 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); 315 316 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ 317 318 /* Restore bmiss rssi & count thresholds */ 319 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg); 320 321 if (!ar5212SetChannel(ah, chan)) 322 FAIL(HAL_EIO); 323 324 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 325 326 /* Set 1:1 QCU to DCU mapping for all queues */ 327 for (i = 0; i < AR_NUM_DCU; i++) 328 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 329 330 ahp->ah_intrTxqs = 0; 331 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) 332 ah->ah_resetTxQueue(ah, i); 333 334 ar5416InitIMR(ah, opmode); 335 ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1); 336 ar5416InitQoS(ah); 337 /* This may override the AR_DIAG_SW register */ 338 ar5416InitUserSettings(ah); 339 340 /* XXX this won't work for AR9287! */ 341 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) { 342 ar5416SetIFSTiming(ah, chan); 343 #if 0 344 /* 345 * AR5413? 346 * Force window_length for 1/2 and 1/4 rate channels, 347 * the ini file sets this to zero otherwise. 348 */ 349 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, 350 AR_PHY_FRAME_CTL_WINLEN, 3); 351 } 352 #endif 353 } 354 355 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 356 /* 357 * Enable ASYNC FIFO 358 * 359 * If Async FIFO is enabled, the following counters change 360 * as MAC now runs at 117 Mhz instead of 88/44MHz when 361 * async FIFO is disabled. 362 * 363 * Overwrite the delay/timeouts initialized in ProcessIni() 364 * above. 365 */ 366 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 367 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR); 368 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, 369 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR); 370 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 371 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR); 372 373 OS_REG_WRITE(ah, AR_TIME_OUT, 374 AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR); 375 OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR); 376 377 OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 378 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 379 OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 380 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 381 } 382 383 if (AR_SREV_KIWI_13_OR_LATER(ah)) { 384 /* Enable AGGWEP to accelerate encryption engine */ 385 OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 386 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 387 } 388 389 /* 390 * disable seq number generation in hw 391 */ 392 OS_REG_WRITE(ah, AR_STA_ID1, 393 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 394 395 ar5416InitDMA(ah); 396 397 /* 398 * program OBS bus to see MAC interrupts 399 */ 400 OS_REG_WRITE(ah, AR_OBS, 8); 401 402 /* 403 * Disable the "general" TX/RX mitigation timers. 404 */ 405 OS_REG_WRITE(ah, AR_MIRT, 0); 406 407 #ifdef AH_AR5416_INTERRUPT_MITIGATION 408 /* 409 * This initialises the RX interrupt mitigation timers. 410 * 411 * The mitigation timers begin at idle and are triggered 412 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.) 413 * Then, the RX mitigation interrupt will fire: 414 * 415 * + 250uS after the last RX'ed frame, or 416 * + 700uS after the first RX'ed frame 417 * 418 * Thus, the LAST field dictates the extra latency 419 * induced by the RX mitigation method and the FIRST 420 * field dictates how long to delay before firing an 421 * RX mitigation interrupt. 422 * 423 * Please note this only seems to be for RXOK frames; 424 * not CRC or PHY error frames. 425 * 426 */ 427 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250); 428 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700); 429 #endif 430 ar5416InitBB(ah, chan); 431 432 /* Setup compression registers */ 433 ar5212SetCompRegs(ah); /* XXX not needed? */ 434 435 /* 436 * 5416 baseband will check the per rate power table 437 * and select the lower of the two 438 */ 439 ackTpcPow = 63; 440 ctsTpcPow = 63; 441 chirpTpcPow = 63; 442 powerVal = SM(ackTpcPow, AR_TPC_ACK) | 443 SM(ctsTpcPow, AR_TPC_CTS) | 444 SM(chirpTpcPow, AR_TPC_CHIRP); 445 OS_REG_WRITE(ah, AR_TPC, powerVal); 446 447 if (!ar5416InitCal(ah, chan)) 448 FAIL(HAL_ESELFTEST); 449 450 ar5416RestoreChainMask(ah); 451 452 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 453 454 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 455 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 456 457 if (AR_SREV_HOWL(ah)) { 458 /* 459 * Enable the MBSSID block-ack fix for HOWL. 460 * This feature is only supported on Howl 1.4, but it is safe to 461 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3), 462 * since bit 22 is unused in those Howl revisions. 463 */ 464 unsigned int reg; 465 reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22)); 466 OS_REG_WRITE(ah,AR_STA_ID1, reg); 467 ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg); 468 } 469 470 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__); 471 472 OS_MARK(ah, AH_MARK_RESET_DONE, 0); 473 474 return AH_TRUE; 475 bad: 476 OS_MARK(ah, AH_MARK_RESET_DONE, ecode); 477 if (status != AH_NULL) 478 *status = ecode; 479 return AH_FALSE; 480 #undef FAIL 481 #undef N 482 } 483 484 #if 0 485 /* 486 * This channel change evaluates whether the selected hardware can 487 * perform a synthesizer-only channel change (no reset). If the 488 * TX is not stopped, or the RFBus cannot be granted in the given 489 * time, the function returns false as a reset is necessary 490 */ 491 HAL_BOOL 492 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan) 493 { 494 uint32_t ulCount; 495 uint32_t data, synthDelay, qnum; 496 uint16_t rfXpdGain[4]; 497 struct ath_hal_5212 *ahp = AH5212(ah); 498 HAL_CHANNEL_INTERNAL *ichan; 499 500 /* 501 * Map public channel to private. 502 */ 503 ichan = ath_hal_checkchannel(ah, chan); 504 505 /* TX must be stopped or RF Bus grant will not work */ 506 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) { 507 if (ar5212NumTxPending(ah, qnum)) { 508 HALDEBUG(ah, HAL_DEBUG_ANY, 509 "%s: frames pending on queue %d\n", __func__, qnum); 510 return AH_FALSE; 511 } 512 } 513 514 /* 515 * Kill last Baseband Rx Frame - Request analog bus grant 516 */ 517 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST); 518 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { 519 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n", 520 __func__); 521 return AH_FALSE; 522 } 523 524 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */ 525 526 /* Change the synth */ 527 if (!ar5212SetChannel(ah, chan)) 528 return AH_FALSE; 529 530 /* Setup the transmit power values. */ 531 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) { 532 HALDEBUG(ah, HAL_DEBUG_ANY, 533 "%s: error init'ing transmit power\n", __func__); 534 return AH_FALSE; 535 } 536 537 /* 538 * Wait for the frequency synth to settle (synth goes on 539 * via PHY_ACTIVE_EN). Read the phy active delay register. 540 * Value is in 100ns increments. 541 */ 542 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 543 if (IS_CHAN_CCK(ichan)) { 544 synthDelay = (4 * data) / 22; 545 } else { 546 synthDelay = data / 10; 547 } 548 549 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 550 551 /* Release the RFBus Grant */ 552 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 553 554 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 555 if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) { 556 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3); 557 ar5212SetSpurMitigation(ah, chan); 558 ar5416SetDeltaSlope(ah, chan); 559 } 560 561 /* XXX spur mitigation for Melin */ 562 563 if (!IEEE80211_IS_CHAN_DFS(chan)) 564 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 565 566 ichan->channel_time = 0; 567 ichan->tsf_last = ar5416GetTsf64(ah); 568 ar5212TxEnable(ah, AH_TRUE); 569 return AH_TRUE; 570 } 571 #endif 572 573 static void 574 ar5416InitDMA(struct ath_hal *ah) 575 { 576 struct ath_hal_5212 *ahp = AH5212(ah); 577 578 /* 579 * set AHB_MODE not to do cacheline prefetches 580 */ 581 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 582 583 /* 584 * let mac dma reads be in 128 byte chunks 585 */ 586 OS_REG_WRITE(ah, AR_TXCFG, 587 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B); 588 589 /* 590 * let mac dma writes be in 128 byte chunks 591 */ 592 /* 593 * XXX If you change this, you must change the headroom 594 * assigned in ah_maxTxTrigLev - see ar5416InitState(). 595 */ 596 OS_REG_WRITE(ah, AR_RXCFG, 597 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B); 598 599 /* restore TX trigger level */ 600 OS_REG_WRITE(ah, AR_TXCFG, 601 (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) | 602 SM(ahp->ah_txTrigLev, AR_FTRIG)); 603 604 /* 605 * Setup receive FIFO threshold to hold off TX activities 606 */ 607 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 608 609 /* 610 * reduce the number of usable entries in PCU TXBUF to avoid 611 * wrap around. 612 */ 613 if (AR_SREV_KITE(ah)) 614 /* 615 * For AR9285 the number of Fifos are reduced to half. 616 * So set the usable tx buf size also to half to 617 * avoid data/delimiter underruns 618 */ 619 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 620 else 621 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); 622 } 623 624 static void 625 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan) 626 { 627 uint32_t synthDelay; 628 629 /* 630 * Wait for the frequency synth to settle (synth goes on 631 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 632 * Value is in 100ns increments. 633 */ 634 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 635 if (IEEE80211_IS_CHAN_CCK(chan)) { 636 synthDelay = (4 * synthDelay) / 22; 637 } else { 638 synthDelay /= 10; 639 } 640 641 /* Turn on PLL on 5416 */ 642 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n", 643 __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz"); 644 645 /* Activate the PHY (includes baseband activate and synthesizer on) */ 646 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 647 648 /* 649 * If the AP starts the calibration before the base band timeout 650 * completes we could get rx_clear false triggering. Add an 651 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition 652 * does not happen. 653 */ 654 if (IEEE80211_IS_CHAN_HALF(chan)) { 655 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY); 656 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { 657 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY); 658 } else { 659 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY); 660 } 661 } 662 663 static void 664 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode) 665 { 666 struct ath_hal_5212 *ahp = AH5212(ah); 667 668 /* 669 * Setup interrupt handling. Note that ar5212ResetTxQueue 670 * manipulates the secondary IMR's as queues are enabled 671 * and disabled. This is done with RMW ops to insure the 672 * settings we make here are preserved. 673 */ 674 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN 675 | AR_IMR_RXERR | AR_IMR_RXORN 676 | AR_IMR_BCNMISC; 677 678 #ifdef AH_AR5416_INTERRUPT_MITIGATION 679 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 680 #else 681 ahp->ah_maskReg |= AR_IMR_RXOK; 682 #endif 683 ahp->ah_maskReg |= AR_IMR_TXOK; 684 685 if (opmode == HAL_M_HOSTAP) 686 ahp->ah_maskReg |= AR_IMR_MIB; 687 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); 688 689 #ifdef ADRIAN_NOTYET 690 /* This is straight from ath9k */ 691 if (! AR_SREV_HOWL(ah)) { 692 OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 693 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); 694 OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 695 } 696 #endif 697 698 /* Enable bus errors that are OR'd to set the HIUERR bit */ 699 #if 0 700 OS_REG_WRITE(ah, AR_IMR_S2, 701 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST); 702 #endif 703 } 704 705 static void 706 ar5416InitQoS(struct ath_hal *ah) 707 { 708 /* QoS support */ 709 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */ 710 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */ 711 712 /* Turn on NOACK Support for QoS packets */ 713 OS_REG_WRITE(ah, AR_NOACK, 714 SM(2, AR_NOACK_2BIT_VALUE) | 715 SM(5, AR_NOACK_BIT_OFFSET) | 716 SM(0, AR_NOACK_BYTE_OFFSET)); 717 718 /* 719 * initialize TXOP for all TIDs 720 */ 721 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 722 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 723 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 724 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 725 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 726 } 727 728 static void 729 ar5416InitUserSettings(struct ath_hal *ah) 730 { 731 struct ath_hal_5212 *ahp = AH5212(ah); 732 733 /* Restore user-specified settings */ 734 if (ahp->ah_miscMode != 0) 735 OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) 736 | ahp->ah_miscMode); 737 if (ahp->ah_sifstime != (u_int) -1) 738 ar5212SetSifsTime(ah, ahp->ah_sifstime); 739 if (ahp->ah_slottime != (u_int) -1) 740 ar5212SetSlotTime(ah, ahp->ah_slottime); 741 if (ahp->ah_acktimeout != (u_int) -1) 742 ar5212SetAckTimeout(ah, ahp->ah_acktimeout); 743 if (ahp->ah_ctstimeout != (u_int) -1) 744 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout); 745 if (AH_PRIVATE(ah)->ah_diagreg != 0) 746 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 747 if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1) 748 ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout); 749 } 750 751 static void 752 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan) 753 { 754 uint32_t rfMode; 755 756 if (chan == AH_NULL) 757 return; 758 759 /* treat channel B as channel G , no B mode suport in owl */ 760 rfMode = IEEE80211_IS_CHAN_CCK(chan) ? 761 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 762 763 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { 764 /* phy mode bits for 5GHz channels require Fast Clock */ 765 rfMode |= AR_PHY_MODE_DYNAMIC 766 | AR_PHY_MODE_DYN_CCK_DISABLE; 767 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) { 768 rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ? 769 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; 770 } 771 772 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode); 773 } 774 775 /* 776 * Places the hardware into reset and then pulls it out of reset 777 */ 778 HAL_BOOL 779 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan, 780 HAL_RESET_TYPE resetType) 781 { 782 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); 783 /* 784 * Warm reset is optimistic for open-loop TX power control. 785 */ 786 if (AR_SREV_MERLIN(ah) && 787 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 788 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 789 return AH_FALSE; 790 } else if (ah->ah_config.ah_force_full_reset) { 791 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 792 return AH_FALSE; 793 } else if ((resetType == HAL_RESET_FORCE_COLD) || 794 (resetType == HAL_RESET_BBPANIC)) { 795 HALDEBUG(ah, HAL_DEBUG_RESET, 796 "%s: full reset; resetType=%d\n", 797 __func__, resetType); 798 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) 799 return AH_FALSE; 800 } else { 801 if (!ar5416SetResetReg(ah, HAL_RESET_WARM)) 802 return AH_FALSE; 803 } 804 805 /* Bring out of sleep mode (AGAIN) */ 806 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 807 return AH_FALSE; 808 809 #ifdef notyet 810 ahp->ah_chipFullSleep = AH_FALSE; 811 #endif 812 813 AH5416(ah)->ah_initPLL(ah, chan); 814 815 /* 816 * Perform warm reset before the mode/PLL/turbo registers 817 * are changed in order to deactivate the radio. Mode changes 818 * with an active radio can result in corrupted shifts to the 819 * radio device. 820 */ 821 ar5416SetRfMode(ah, chan); 822 823 return AH_TRUE; 824 } 825 826 /* 827 * Delta slope coefficient computation. 828 * Required for OFDM operation. 829 */ 830 static void 831 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled, 832 uint32_t *coef_mantissa, uint32_t *coef_exponent) 833 { 834 #define COEF_SCALE_S 24 835 uint32_t coef_exp, coef_man; 836 /* 837 * ALGO -> coef_exp = 14-floor(log2(coef)); 838 * floor(log2(x)) is the highest set bit position 839 */ 840 for (coef_exp = 31; coef_exp > 0; coef_exp--) 841 if ((coef_scaled >> coef_exp) & 0x1) 842 break; 843 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */ 844 HALASSERT(coef_exp); 845 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 846 847 /* 848 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5); 849 * The coefficient is already shifted up for scaling 850 */ 851 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 852 853 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 854 *coef_exponent = coef_exp - 16; 855 856 #undef COEF_SCALE_S 857 } 858 859 void 860 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan) 861 { 862 #define INIT_CLOCKMHZSCALED 0x64000000 863 uint32_t coef_scaled, ds_coef_exp, ds_coef_man; 864 uint32_t clockMhzScaled; 865 866 CHAN_CENTERS centers; 867 868 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */ 869 /* scale for selected channel bandwidth */ 870 clockMhzScaled = INIT_CLOCKMHZSCALED; 871 if (IEEE80211_IS_CHAN_TURBO(chan)) 872 clockMhzScaled <<= 1; 873 else if (IEEE80211_IS_CHAN_HALF(chan)) 874 clockMhzScaled >>= 1; 875 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 876 clockMhzScaled >>= 2; 877 878 /* 879 * ALGO -> coef = 1e8/fcarrier*fclock/40; 880 * scaled coef to provide precision for this floating calculation 881 */ 882 ar5416GetChannelCenters(ah, chan, ¢ers); 883 coef_scaled = clockMhzScaled / centers.synth_center; 884 885 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 886 887 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 888 AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 889 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, 890 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 891 892 /* 893 * For Short GI, 894 * scaled coeff is 9/10 that of normal coeff 895 */ 896 coef_scaled = (9 * coef_scaled)/10; 897 898 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 899 900 /* for short gi */ 901 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 902 AR_PHY_HALFGI_DSC_MAN, ds_coef_man); 903 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI, 904 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); 905 #undef INIT_CLOCKMHZSCALED 906 } 907 908 /* 909 * Set a limit on the overall output power. Used for dynamic 910 * transmit power control and the like. 911 * 912 * NB: limit is in units of 0.5 dbM. 913 */ 914 HAL_BOOL 915 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit) 916 { 917 uint16_t dummyXpdGains[2]; 918 919 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); 920 return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan, 921 dummyXpdGains); 922 } 923 924 HAL_BOOL 925 ar5416GetChipPowerLimits(struct ath_hal *ah, 926 struct ieee80211_channel *chan) 927 { 928 struct ath_hal_5212 *ahp = AH5212(ah); 929 int16_t minPower, maxPower; 930 931 /* 932 * Get Pier table max and min powers. 933 */ 934 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) { 935 /* NB: rf code returns 1/4 dBm units, convert */ 936 chan->ic_maxpower = maxPower / 2; 937 chan->ic_minpower = minPower / 2; 938 } else { 939 HALDEBUG(ah, HAL_DEBUG_ANY, 940 "%s: no min/max power for %u/0x%x\n", 941 __func__, chan->ic_freq, chan->ic_flags); 942 chan->ic_maxpower = AR5416_MAX_RATE_POWER; 943 chan->ic_minpower = 0; 944 } 945 HALDEBUG(ah, HAL_DEBUG_RESET, 946 "Chan %d: MaxPow = %d MinPow = %d\n", 947 chan->ic_freq, chan->ic_maxpower, chan->ic_minpower); 948 return AH_TRUE; 949 } 950 951 /************************************************************** 952 * ar5416WriteTxPowerRateRegisters 953 * 954 * Write the TX power rate registers from the raw values given 955 * in ratesArray[]. 956 * 957 * The CCK and HT40 rate registers are only written if needed. 958 * HT20 and 11g/11a OFDM rate registers are always written. 959 * 960 * The values written are raw values which should be written 961 * to the registers - so it's up to the caller to pre-adjust 962 * them (eg CCK power offset value, or Merlin TX power offset, 963 * etc.) 964 */ 965 void 966 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah, 967 const struct ieee80211_channel *chan, const int16_t ratesArray[]) 968 { 969 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 970 971 /* Write the OFDM power per rate set */ 972 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, 973 POW_SM(ratesArray[rate18mb], 24) 974 | POW_SM(ratesArray[rate12mb], 16) 975 | POW_SM(ratesArray[rate9mb], 8) 976 | POW_SM(ratesArray[rate6mb], 0) 977 ); 978 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, 979 POW_SM(ratesArray[rate54mb], 24) 980 | POW_SM(ratesArray[rate48mb], 16) 981 | POW_SM(ratesArray[rate36mb], 8) 982 | POW_SM(ratesArray[rate24mb], 0) 983 ); 984 985 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 986 /* Write the CCK power per rate set */ 987 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, 988 POW_SM(ratesArray[rate2s], 24) 989 | POW_SM(ratesArray[rate2l], 16) 990 | POW_SM(ratesArray[rateXr], 8) /* XR target power */ 991 | POW_SM(ratesArray[rate1l], 0) 992 ); 993 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, 994 POW_SM(ratesArray[rate11s], 24) 995 | POW_SM(ratesArray[rate11l], 16) 996 | POW_SM(ratesArray[rate5_5s], 8) 997 | POW_SM(ratesArray[rate5_5l], 0) 998 ); 999 HALDEBUG(ah, HAL_DEBUG_RESET, 1000 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n", 1001 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3), 1002 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4)); 1003 } 1004 1005 /* Write the HT20 power per rate set */ 1006 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, 1007 POW_SM(ratesArray[rateHt20_3], 24) 1008 | POW_SM(ratesArray[rateHt20_2], 16) 1009 | POW_SM(ratesArray[rateHt20_1], 8) 1010 | POW_SM(ratesArray[rateHt20_0], 0) 1011 ); 1012 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, 1013 POW_SM(ratesArray[rateHt20_7], 24) 1014 | POW_SM(ratesArray[rateHt20_6], 16) 1015 | POW_SM(ratesArray[rateHt20_5], 8) 1016 | POW_SM(ratesArray[rateHt20_4], 0) 1017 ); 1018 1019 if (IEEE80211_IS_CHAN_HT40(chan)) { 1020 /* Write the HT40 power per rate set */ 1021 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, 1022 POW_SM(ratesArray[rateHt40_3], 24) 1023 | POW_SM(ratesArray[rateHt40_2], 16) 1024 | POW_SM(ratesArray[rateHt40_1], 8) 1025 | POW_SM(ratesArray[rateHt40_0], 0) 1026 ); 1027 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, 1028 POW_SM(ratesArray[rateHt40_7], 24) 1029 | POW_SM(ratesArray[rateHt40_6], 16) 1030 | POW_SM(ratesArray[rateHt40_5], 8) 1031 | POW_SM(ratesArray[rateHt40_4], 0) 1032 ); 1033 /* Write the Dup/Ext 40 power per rate set */ 1034 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, 1035 POW_SM(ratesArray[rateExtOfdm], 24) 1036 | POW_SM(ratesArray[rateExtCck], 16) 1037 | POW_SM(ratesArray[rateDupOfdm], 8) 1038 | POW_SM(ratesArray[rateDupCck], 0) 1039 ); 1040 } 1041 1042 /* 1043 * Set max power to 30 dBm and, optionally, 1044 * enable TPC in tx descriptors. 1045 */ 1046 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER | 1047 (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0)); 1048 #undef POW_SM 1049 } 1050 1051 /************************************************************** 1052 * ar5416SetTransmitPower 1053 * 1054 * Set the transmit power in the baseband for the given 1055 * operating channel and mode. 1056 */ 1057 HAL_BOOL 1058 ar5416SetTransmitPower(struct ath_hal *ah, 1059 const struct ieee80211_channel *chan, uint16_t *rfXpdGain) 1060 { 1061 #define N(a) (sizeof (a) / sizeof (a[0])) 1062 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) 1063 1064 MODAL_EEP_HEADER *pModal; 1065 struct ath_hal_5212 *ahp = AH5212(ah); 1066 int16_t txPowerIndexOffset = 0; 1067 int i; 1068 1069 uint16_t cfgCtl; 1070 uint16_t powerLimit; 1071 uint16_t twiceAntennaReduction; 1072 uint16_t twiceMaxRegulatoryPower; 1073 int16_t maxPower; 1074 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1075 struct ar5416eeprom *pEepData = &ee->ee_base; 1076 1077 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1078 1079 /* 1080 * Default to 2, is overridden based on the EEPROM version / value. 1081 */ 1082 AH5416(ah)->ah_ht40PowerIncForPdadc = 2; 1083 1084 /* Setup info for the actual eeprom */ 1085 OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray)); 1086 cfgCtl = ath_hal_getctl(ah, chan); 1087 powerLimit = chan->ic_maxregpower * 2; 1088 twiceAntennaReduction = chan->ic_maxantgain; 1089 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit); 1090 pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1091 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n", 1092 __func__,chan->ic_freq, cfgCtl ); 1093 1094 if (IS_EEP_MINOR_V2(ah)) { 1095 AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; 1096 } 1097 1098 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan, 1099 &AH5416(ah)->ah_ratesArray[0], 1100 cfgCtl, 1101 twiceAntennaReduction, 1102 twiceMaxRegulatoryPower, powerLimit)) { 1103 HALDEBUG(ah, HAL_DEBUG_ANY, 1104 "%s: unable to set tx power per rate table\n", __func__); 1105 return AH_FALSE; 1106 } 1107 1108 if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) { 1109 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n", 1110 __func__); 1111 return AH_FALSE; 1112 } 1113 1114 maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb], 1115 AH5416(ah)->ah_ratesArray[rateHt20_0]); 1116 1117 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1118 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]); 1119 } 1120 1121 if (IEEE80211_IS_CHAN_HT40(chan)) { 1122 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]); 1123 } 1124 1125 ahp->ah_tx6PowerInHalfDbm = maxPower; 1126 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower; 1127 ahp->ah_txPowerIndexOffset = txPowerIndexOffset; 1128 1129 /* 1130 * txPowerIndexOffset is set by the SetPowerTable() call - 1131 * adjust the rate table (0 offset if rates EEPROM not loaded) 1132 */ 1133 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { 1134 AH5416(ah)->ah_ratesArray[i] = 1135 (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]); 1136 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) 1137 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; 1138 } 1139 1140 #ifdef AH_EEPROM_DUMP 1141 /* 1142 * Dump the rate array whilst it represents the intended dBm*2 1143 * values versus what's being adjusted before being programmed 1144 * in. Keep this in mind if you code up this function and enable 1145 * this debugging; the values won't necessarily be what's being 1146 * programmed into the hardware. 1147 */ 1148 ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray); 1149 #endif 1150 1151 /* 1152 * Merlin and later have a power offset, so subtract 1153 * pwr_table_offset * 2 from each value. The default 1154 * power offset is -5 dBm - ie, a register value of 0 1155 * equates to a TX power of -5 dBm. 1156 */ 1157 if (AR_SREV_MERLIN_20_OR_LATER(ah)) { 1158 int8_t pwr_table_offset; 1159 1160 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, 1161 &pwr_table_offset); 1162 /* Underflow power gets clamped at raw value 0 */ 1163 /* Overflow power gets camped at AR5416_MAX_RATE_POWER */ 1164 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) { 1165 /* 1166 * + pwr_table_offset is in dBm 1167 * + ratesArray is in 1/2 dBm 1168 */ 1169 AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2); 1170 if (AH5416(ah)->ah_ratesArray[i] < 0) 1171 AH5416(ah)->ah_ratesArray[i] = 0; 1172 else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER) 1173 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER; 1174 } 1175 } 1176 1177 /* 1178 * Adjust rates for OLC where needed 1179 * 1180 * The following CCK rates need adjusting when doing 2.4ghz 1181 * CCK transmission. 1182 * 1183 * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l 1184 * + rateExtCck, rateDupCck 1185 * 1186 * They're adjusted here regardless. The hardware then gets 1187 * programmed as needed. 5GHz operation doesn't program in CCK 1188 * rates for legacy mode but they seem to be initialised for 1189 * HT40 regardless of channel type. 1190 */ 1191 if (AR_SREV_MERLIN_20_OR_LATER(ah) && 1192 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) { 1193 int adj[] = { 1194 rate2s, rate2l, rate1l, rate11s, rate11l, 1195 rate5_5s, rate5_5l, rateExtCck, rateDupCck 1196 }; 1197 int cck_ofdm_delta = 2; 1198 int i; 1199 for (i = 0; i < N(adj); i++) { 1200 AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta; 1201 if (AH5416(ah)->ah_ratesArray[adj[i]] < 0) 1202 AH5416(ah)->ah_ratesArray[adj[i]] = 0; 1203 } 1204 } 1205 1206 /* 1207 * Adjust the HT40 power to meet the correct target TX power 1208 * for 40MHz mode, based on TX power curves that are established 1209 * for 20MHz mode. 1210 * 1211 * XXX handle overflow/too high power level? 1212 */ 1213 if (IEEE80211_IS_CHAN_HT40(chan)) { 1214 AH5416(ah)->ah_ratesArray[rateHt40_0] += 1215 AH5416(ah)->ah_ht40PowerIncForPdadc; 1216 AH5416(ah)->ah_ratesArray[rateHt40_1] += 1217 AH5416(ah)->ah_ht40PowerIncForPdadc; 1218 AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1219 AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1220 AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1221 AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1222 AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1223 AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc; 1224 } 1225 1226 /* Write the TX power rate registers */ 1227 ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray); 1228 1229 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */ 1230 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, 1231 POW_SM(pModal->pwrDecreaseFor3Chain, 6) 1232 | POW_SM(pModal->pwrDecreaseFor2Chain, 0) 1233 ); 1234 return AH_TRUE; 1235 #undef POW_SM 1236 #undef N 1237 } 1238 1239 /* 1240 * Exported call to check for a recent gain reading and return 1241 * the current state of the thermal calibration gain engine. 1242 */ 1243 HAL_RFGAIN 1244 ar5416GetRfgain(struct ath_hal *ah) 1245 { 1246 1247 return (HAL_RFGAIN_INACTIVE); 1248 } 1249 1250 /* 1251 * Places all of hardware into reset 1252 */ 1253 HAL_BOOL 1254 ar5416Disable(struct ath_hal *ah) 1255 { 1256 1257 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) 1258 return AH_FALSE; 1259 if (! ar5416SetResetReg(ah, HAL_RESET_COLD)) 1260 return AH_FALSE; 1261 1262 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1263 return (AH_TRUE); 1264 } 1265 1266 /* 1267 * Places the PHY and Radio chips into reset. A full reset 1268 * must be called to leave this state. The PCI/MAC/PCU are 1269 * not placed into reset as we must receive interrupt to 1270 * re-enable the hardware. 1271 */ 1272 HAL_BOOL 1273 ar5416PhyDisable(struct ath_hal *ah) 1274 { 1275 1276 if (! ar5416SetResetReg(ah, HAL_RESET_WARM)) 1277 return AH_FALSE; 1278 1279 AH5416(ah)->ah_initPLL(ah, AH_NULL); 1280 return (AH_TRUE); 1281 } 1282 1283 /* 1284 * Write the given reset bit mask into the reset register 1285 */ 1286 HAL_BOOL 1287 ar5416SetResetReg(struct ath_hal *ah, uint32_t type) 1288 { 1289 /* 1290 * Set force wake 1291 */ 1292 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1293 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1294 1295 switch (type) { 1296 case HAL_RESET_POWER_ON: 1297 return ar5416SetResetPowerOn(ah); 1298 case HAL_RESET_WARM: 1299 case HAL_RESET_COLD: 1300 return ar5416SetReset(ah, type); 1301 default: 1302 HALASSERT(AH_FALSE); 1303 return AH_FALSE; 1304 } 1305 } 1306 1307 static HAL_BOOL 1308 ar5416SetResetPowerOn(struct ath_hal *ah) 1309 { 1310 /* Power On Reset (Hard Reset) */ 1311 1312 /* 1313 * Set force wake 1314 * 1315 * If the MAC was running, previously calling 1316 * reset will wake up the MAC but it may go back to sleep 1317 * before we can start polling. 1318 * Set force wake stops that 1319 * This must be called before initiating a hard reset. 1320 */ 1321 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1322 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1323 1324 /* 1325 * PowerOn reset can be used in open loop power control or failure recovery. 1326 * If we do RTC reset while DMA is still running, hardware may corrupt memory. 1327 * Therefore, we need to reset AHB first to stop DMA. 1328 */ 1329 if (! AR_SREV_HOWL(ah)) 1330 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1331 /* 1332 * RTC reset and clear 1333 */ 1334 OS_REG_WRITE(ah, AR_RTC_RESET, 0); 1335 OS_DELAY(20); 1336 1337 if (! AR_SREV_HOWL(ah)) 1338 OS_REG_WRITE(ah, AR_RC, 0); 1339 1340 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 1341 1342 /* 1343 * Poll till RTC is ON 1344 */ 1345 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) { 1346 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__); 1347 return AH_FALSE; 1348 } 1349 1350 return ar5416SetReset(ah, HAL_RESET_COLD); 1351 } 1352 1353 static HAL_BOOL 1354 ar5416SetReset(struct ath_hal *ah, int type) 1355 { 1356 uint32_t tmpReg, mask; 1357 uint32_t rst_flags; 1358 1359 #ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */ 1360 if (AR_SREV_HOWL(ah)) { 1361 HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n"); 1362 uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1363 val &= ~AR_RTC_DERIVED_CLK_PERIOD; 1364 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD); 1365 OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val); 1366 (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK); 1367 } 1368 #endif /* AH_SUPPORT_AR9130 */ 1369 1370 /* 1371 * Force wake 1372 */ 1373 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1374 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1375 1376 #ifdef AH_SUPPORT_AR9130 1377 if (AR_SREV_HOWL(ah)) { 1378 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1379 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1380 } else { 1381 #endif /* AH_SUPPORT_AR9130 */ 1382 /* 1383 * Reset AHB 1384 * 1385 * (In case the last interrupt source was a bus timeout.) 1386 * XXX TODO: this is not the way to do it! It should be recorded 1387 * XXX by the interrupt handler and passed _into_ the 1388 * XXX reset path routine so this occurs. 1389 */ 1390 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE); 1391 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1392 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1393 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF); 1394 } else { 1395 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB); 1396 } 1397 rst_flags = AR_RTC_RC_MAC_WARM; 1398 if (type == HAL_RESET_COLD) 1399 rst_flags |= AR_RTC_RC_MAC_COLD; 1400 #ifdef AH_SUPPORT_AR9130 1401 } 1402 #endif /* AH_SUPPORT_AR9130 */ 1403 1404 OS_REG_WRITE(ah, AR_RTC_RC, rst_flags); 1405 1406 if (AR_SREV_HOWL(ah)) 1407 OS_DELAY(10000); 1408 else 1409 OS_DELAY(100); 1410 1411 /* 1412 * Clear resets and force wakeup 1413 */ 1414 OS_REG_WRITE(ah, AR_RTC_RC, 0); 1415 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) { 1416 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__); 1417 return AH_FALSE; 1418 } 1419 1420 /* Clear AHB reset */ 1421 if (! AR_SREV_HOWL(ah)) 1422 OS_REG_WRITE(ah, AR_RC, 0); 1423 1424 if (AR_SREV_HOWL(ah)) 1425 OS_DELAY(50); 1426 1427 if (AR_SREV_HOWL(ah)) { 1428 uint32_t mask; 1429 mask = OS_REG_READ(ah, AR_CFG); 1430 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1431 HALDEBUG(ah, HAL_DEBUG_RESET, 1432 "CFG Byte Swap Set 0x%x\n", mask); 1433 } else { 1434 mask = 1435 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1436 OS_REG_WRITE(ah, AR_CFG, mask); 1437 HALDEBUG(ah, HAL_DEBUG_RESET, 1438 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG)); 1439 } 1440 } else { 1441 if (type == HAL_RESET_COLD) { 1442 if (isBigEndian()) { 1443 /* 1444 * Set CFG, little-endian for descriptor accesses. 1445 */ 1446 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD; 1447 #ifndef AH_NEED_DESC_SWAP 1448 mask |= AR_CFG_SWTD; 1449 #endif 1450 HALDEBUG(ah, HAL_DEBUG_RESET, 1451 "%s Applying descriptor swap\n", __func__); 1452 OS_REG_WRITE(ah, AR_CFG, mask); 1453 } else 1454 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS); 1455 } 1456 } 1457 1458 return AH_TRUE; 1459 } 1460 1461 void 1462 ar5416InitChainMasks(struct ath_hal *ah) 1463 { 1464 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1465 1466 /* Flip this for this chainmask regardless of chip */ 1467 if (rx_chainmask == 0x5) 1468 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1469 1470 /* 1471 * Workaround for OWL 1.0 calibration failure; enable multi-chain; 1472 * then set true mask after calibration. 1473 */ 1474 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1475 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); 1476 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); 1477 } else { 1478 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1479 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask); 1480 } 1481 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask); 1482 1483 if (AH5416(ah)->ah_tx_chainmask == 0x5) 1484 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 1485 1486 if (AR_SREV_HOWL(ah)) { 1487 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP, 1488 OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); 1489 } 1490 } 1491 1492 /* 1493 * Work-around for Owl 1.0 calibration failure. 1494 * 1495 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0 1496 * due to init calibration failures. ar5416RestoreChainMask restores 1497 * these registers to the correct setting. 1498 */ 1499 void 1500 ar5416RestoreChainMask(struct ath_hal *ah) 1501 { 1502 int rx_chainmask = AH5416(ah)->ah_rx_chainmask; 1503 1504 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) { 1505 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 1506 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 1507 } 1508 } 1509 1510 void 1511 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan) 1512 { 1513 uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; 1514 if (chan != AH_NULL) { 1515 if (IEEE80211_IS_CHAN_HALF(chan)) 1516 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 1517 else if (IEEE80211_IS_CHAN_QUARTER(chan)) 1518 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 1519 1520 if (IEEE80211_IS_CHAN_5GHZ(chan)) 1521 pll |= SM(0xa, AR_RTC_PLL_DIV); 1522 else 1523 pll |= SM(0xb, AR_RTC_PLL_DIV); 1524 } else 1525 pll |= SM(0xb, AR_RTC_PLL_DIV); 1526 1527 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 1528 1529 /* TODO: 1530 * For multi-band owl, switch between bands by reiniting the PLL. 1531 */ 1532 1533 OS_DELAY(RTC_PLL_SETTLE_DELAY); 1534 1535 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK); 1536 } 1537 1538 static void 1539 ar5416SetDefGainValues(struct ath_hal *ah, 1540 const MODAL_EEP_HEADER *pModal, 1541 const struct ar5416eeprom *eep, 1542 uint8_t txRxAttenLocal, int regChainOffset, int i) 1543 { 1544 1545 if (IS_EEP_MINOR_V3(ah)) { 1546 txRxAttenLocal = pModal->txRxAttenCh[i]; 1547 1548 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1549 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1550 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 1551 pModal->bswMargin[i]); 1552 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1553 AR_PHY_GAIN_2GHZ_XATTEN1_DB, 1554 pModal->bswAtten[i]); 1555 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1556 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 1557 pModal->xatten2Margin[i]); 1558 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1559 AR_PHY_GAIN_2GHZ_XATTEN2_DB, 1560 pModal->xatten2Db[i]); 1561 } else { 1562 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1563 AR_PHY_GAIN_2GHZ_BSW_MARGIN, 1564 pModal->bswMargin[i]); 1565 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, 1566 AR_PHY_GAIN_2GHZ_BSW_ATTEN, 1567 pModal->bswAtten[i]); 1568 } 1569 } 1570 1571 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1572 OS_REG_RMW_FIELD(ah, 1573 AR_PHY_RXGAIN + regChainOffset, 1574 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1575 OS_REG_RMW_FIELD(ah, 1576 AR_PHY_RXGAIN + regChainOffset, 1577 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); 1578 } else { 1579 OS_REG_RMW_FIELD(ah, 1580 AR_PHY_RXGAIN + regChainOffset, 1581 AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); 1582 OS_REG_RMW_FIELD(ah, 1583 AR_PHY_GAIN_2GHZ + regChainOffset, 1584 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]); 1585 } 1586 } 1587 1588 /* 1589 * Get the register chain offset for the given chain. 1590 * 1591 * Take into account the register chain swapping with AR5416 v2.0. 1592 * 1593 * XXX make sure that the reg chain swapping is only done for 1594 * XXX AR5416 v2.0 or greater, and not later chips? 1595 */ 1596 int 1597 ar5416GetRegChainOffset(struct ath_hal *ah, int i) 1598 { 1599 int regChainOffset; 1600 1601 if (AR_SREV_5416_V20_OR_LATER(ah) && 1602 (AH5416(ah)->ah_rx_chainmask == 0x5 || 1603 AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) { 1604 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with 1605 * only chains 0 and 2 populated 1606 */ 1607 regChainOffset = (i == 1) ? 0x2000 : 0x1000; 1608 } else { 1609 regChainOffset = i * 0x1000; 1610 } 1611 1612 return regChainOffset; 1613 } 1614 1615 /* 1616 * Read EEPROM header info and program the device for correct operation 1617 * given the channel value. 1618 */ 1619 HAL_BOOL 1620 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan) 1621 { 1622 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 1623 const struct ar5416eeprom *eep = &ee->ee_base; 1624 const MODAL_EEP_HEADER *pModal; 1625 int i, regChainOffset; 1626 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */ 1627 1628 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1); 1629 pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]; 1630 1631 /* NB: workaround for eeprom versions <= 14.2 */ 1632 txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44; 1633 1634 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); 1635 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 1636 if (AR_SREV_MERLIN(ah)) { 1637 if (i >= 2) break; 1638 } 1639 regChainOffset = ar5416GetRegChainOffset(ah, i); 1640 1641 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); 1642 1643 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset, 1644 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) & 1645 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | 1646 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | 1647 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); 1648 1649 /* 1650 * Large signal upgrade, 1651 * If 14.3 or later EEPROM, use 1652 * txRxAttenLocal = pModal->txRxAttenCh[i] 1653 * else txRxAttenLocal is fixed value above. 1654 */ 1655 1656 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) 1657 ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i); 1658 } 1659 1660 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1661 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1662 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob); 1663 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db); 1664 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1); 1665 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1); 1666 } else { 1667 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob); 1668 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db); 1669 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1); 1670 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1); 1671 } 1672 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl); 1673 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS, 1674 !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS)); 1675 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG, 1676 !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON)); 1677 } 1678 1679 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); 1680 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); 1681 1682 if (! AR_SREV_MERLIN_10_OR_LATER(ah)) 1683 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize); 1684 1685 OS_REG_WRITE(ah, AR_PHY_RF_CTL4, 1686 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) 1687 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) 1688 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) 1689 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); 1690 1691 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, 1692 pModal->txEndToRxOn); 1693 1694 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 1695 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, 1696 pModal->thresh62); 1697 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, 1698 pModal->thresh62); 1699 } else { 1700 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62, 1701 pModal->thresh62); 1702 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62, 1703 pModal->thresh62); 1704 } 1705 1706 /* Minor Version Specific application */ 1707 if (IS_EEP_MINOR_V2(ah)) { 1708 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START, 1709 pModal->txFrameToDataStart); 1710 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON, 1711 pModal->txFrameToPaOn); 1712 } 1713 1714 if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan)) 1715 /* Overwrite switch settling with HT40 value */ 1716 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, 1717 pModal->swSettleHt40); 1718 1719 if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19) 1720 OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits); 1721 1722 if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) { 1723 if (IEEE80211_IS_CHAN_2GHZ(chan)) 1724 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1725 eep->baseEepHeader.dacLpMode); 1726 else if (eep->baseEepHeader.dacHiPwrMode_5G) 1727 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0); 1728 else 1729 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 1730 eep->baseEepHeader.dacLpMode); 1731 1732 OS_DELAY(100); 1733 1734 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP, 1735 pModal->miscBits >> 2); 1736 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK, 1737 eep->baseEepHeader.desiredScaleCCK); 1738 } 1739 1740 return (AH_TRUE); 1741 } 1742 1743 /* 1744 * Helper functions common for AP/CB/XB 1745 */ 1746 1747 /* 1748 * Set the target power array "ratesArray" from the 1749 * given set of target powers. 1750 * 1751 * This is used by the various chipset/EEPROM TX power 1752 * setup routines. 1753 */ 1754 void 1755 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah, 1756 const struct ieee80211_channel *chan, 1757 int16_t *ratesArray, 1758 const CAL_TARGET_POWER_LEG *targetPowerCck, 1759 const CAL_TARGET_POWER_LEG *targetPowerCckExt, 1760 const CAL_TARGET_POWER_LEG *targetPowerOfdm, 1761 const CAL_TARGET_POWER_LEG *targetPowerOfdmExt, 1762 const CAL_TARGET_POWER_HT *targetPowerHt20, 1763 const CAL_TARGET_POWER_HT *targetPowerHt40) 1764 { 1765 #define N(a) (sizeof(a)/sizeof(a[0])) 1766 int i; 1767 1768 /* Blank the rates array, to be consistent */ 1769 for (i = 0; i < Ar5416RateSize; i++) 1770 ratesArray[i] = 0; 1771 1772 /* Set rates Array from collected data */ 1773 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = 1774 ratesArray[rate18mb] = ratesArray[rate24mb] = 1775 targetPowerOfdm->tPow2x[0]; 1776 ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1]; 1777 ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2]; 1778 ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3]; 1779 ratesArray[rateXr] = targetPowerOfdm->tPow2x[0]; 1780 1781 for (i = 0; i < N(targetPowerHt20->tPow2x); i++) { 1782 ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i]; 1783 } 1784 1785 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1786 ratesArray[rate1l] = targetPowerCck->tPow2x[0]; 1787 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1]; 1788 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2]; 1789 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3]; 1790 } 1791 if (IEEE80211_IS_CHAN_HT40(chan)) { 1792 for (i = 0; i < N(targetPowerHt40->tPow2x); i++) { 1793 ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i]; 1794 } 1795 ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0]; 1796 ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0]; 1797 ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0]; 1798 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1799 ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0]; 1800 } 1801 } 1802 #undef N 1803 } 1804 1805 /* 1806 * ar5416SetPowerPerRateTable 1807 * 1808 * Sets the transmit power in the baseband for the given 1809 * operating channel and mode. 1810 */ 1811 static HAL_BOOL 1812 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 1813 const struct ieee80211_channel *chan, 1814 int16_t *ratesArray, uint16_t cfgCtl, 1815 uint16_t AntennaReduction, 1816 uint16_t twiceMaxRegulatoryPower, 1817 uint16_t powerLimit) 1818 { 1819 #define N(a) (sizeof(a)/sizeof(a[0])) 1820 /* Local defines to distinguish between extension and control CTL's */ 1821 #define EXT_ADDITIVE (0x8000) 1822 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) 1823 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) 1824 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) 1825 1826 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 1827 int i; 1828 int16_t twiceLargestAntenna; 1829 CAL_CTL_DATA *rep; 1830 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}}; 1831 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}}; 1832 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}}; 1833 int16_t scaledPower, minCtlPower; 1834 1835 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ 1836 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ 1837 static const uint16_t ctlModesFor11a[] = { 1838 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 1839 }; 1840 static const uint16_t ctlModesFor11g[] = { 1841 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 1842 }; 1843 const uint16_t *pCtlMode; 1844 uint16_t numCtlModes, ctlMode, freq; 1845 CHAN_CENTERS centers; 1846 1847 ar5416GetChannelCenters(ah, chan, ¢ers); 1848 1849 /* Compute TxPower reduction due to Antenna Gain */ 1850 1851 twiceLargestAntenna = AH_MAX(AH_MAX( 1852 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0], 1853 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]), 1854 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1855 #if 0 1856 /* Turn it back on if we need to calculate per chain antenna gain reduction */ 1857 /* Use only if the expected gain > 6dbi */ 1858 /* Chain 0 is always used */ 1859 twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0]; 1860 1861 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */ 1862 if (ahp->ah_tx_chainmask & 0x2) 1863 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1864 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]); 1865 1866 if (ahp->ah_tx_chainmask & 0x4) 1867 twiceLargestAntenna = AH_MAX(twiceLargestAntenna, 1868 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]); 1869 #endif 1870 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0); 1871 1872 /* XXX setup for 5212 use (really used?) */ 1873 ath_hal_eepromSet(ah, 1874 IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5, 1875 twiceLargestAntenna); 1876 1877 /* 1878 * scaledPower is the minimum of the user input power level and 1879 * the regulatory allowed power level 1880 */ 1881 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna); 1882 1883 /* Reduce scaled Power by number of chains active to get to per chain tx power level */ 1884 /* TODO: better value than these? */ 1885 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) { 1886 case 1: 1887 break; 1888 case 2: 1889 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain; 1890 break; 1891 case 3: 1892 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain; 1893 break; 1894 default: 1895 return AH_FALSE; /* Unsupported number of chains */ 1896 } 1897 1898 scaledPower = AH_MAX(0, scaledPower); 1899 1900 /* Get target powers from EEPROM - our baseline for TX Power */ 1901 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 1902 /* Setup for CTL modes */ 1903 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */ 1904 pCtlMode = ctlModesFor11g; 1905 1906 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1907 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE); 1908 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1909 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1910 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20, 1911 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1912 1913 if (IEEE80211_IS_CHAN_HT40(chan)) { 1914 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */ 1915 1916 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40, 1917 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1918 /* Get target powers for extension channels */ 1919 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck, 1920 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE); 1921 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G, 1922 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1923 } 1924 } else { 1925 /* Setup for CTL modes */ 1926 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */ 1927 pCtlMode = ctlModesFor11a; 1928 1929 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1930 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE); 1931 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20, 1932 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE); 1933 1934 if (IEEE80211_IS_CHAN_HT40(chan)) { 1935 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */ 1936 1937 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40, 1938 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE); 1939 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G, 1940 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE); 1941 } 1942 } 1943 1944 /* 1945 * For MIMO, need to apply regulatory caps individually across dynamically 1946 * running modes: CCK, OFDM, HT20, HT40 1947 * 1948 * The outer loop walks through each possible applicable runtime mode. 1949 * The inner loop walks through each ctlIndex entry in EEPROM. 1950 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. 1951 * 1952 */ 1953 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { 1954 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) || 1955 (pCtlMode[ctlMode] == CTL_2GHT40); 1956 if (isHt40CtlMode) { 1957 freq = centers.ctl_center; 1958 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) { 1959 freq = centers.ext_center; 1960 } else { 1961 freq = centers.ctl_center; 1962 } 1963 1964 /* walk through each CTL index stored in EEPROM */ 1965 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { 1966 uint16_t twiceMinEdgePower; 1967 1968 /* compare test group from regulatory channel list with test mode from pCtlMode list */ 1969 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) || 1970 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == 1971 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) { 1972 rep = &(pEepData->ctlData[i]); 1973 twiceMinEdgePower = ar5416GetMaxEdgePower(freq, 1974 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], 1975 IEEE80211_IS_CHAN_2GHZ(chan)); 1976 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { 1977 /* Find the minimum of all CTL edge powers that apply to this channel */ 1978 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower); 1979 } else { 1980 /* specific */ 1981 twiceMaxEdgePower = twiceMinEdgePower; 1982 break; 1983 } 1984 } 1985 } 1986 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower); 1987 /* Apply ctl mode to correct target power set */ 1988 switch(pCtlMode[ctlMode]) { 1989 case CTL_11B: 1990 for (i = 0; i < N(targetPowerCck.tPow2x); i++) { 1991 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower); 1992 } 1993 break; 1994 case CTL_11A: 1995 case CTL_11G: 1996 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) { 1997 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower); 1998 } 1999 break; 2000 case CTL_5GHT20: 2001 case CTL_2GHT20: 2002 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) { 2003 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower); 2004 } 2005 break; 2006 case CTL_11B_EXT: 2007 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower); 2008 break; 2009 case CTL_11A_EXT: 2010 case CTL_11G_EXT: 2011 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower); 2012 break; 2013 case CTL_5GHT40: 2014 case CTL_2GHT40: 2015 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) { 2016 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower); 2017 } 2018 break; 2019 default: 2020 return AH_FALSE; 2021 break; 2022 } 2023 } /* end ctl mode checking */ 2024 2025 /* Set rates Array from collected data */ 2026 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray, 2027 &targetPowerCck, 2028 &targetPowerCckExt, 2029 &targetPowerOfdm, 2030 &targetPowerOfdmExt, 2031 &targetPowerHt20, 2032 &targetPowerHt40); 2033 return AH_TRUE; 2034 #undef EXT_ADDITIVE 2035 #undef CTL_11A_EXT 2036 #undef CTL_11G_EXT 2037 #undef CTL_11B_EXT 2038 #undef SUB_NUM_CTL_MODES_AT_5G_40 2039 #undef SUB_NUM_CTL_MODES_AT_2G_40 2040 #undef N 2041 } 2042 2043 /************************************************************************** 2044 * fbin2freq 2045 * 2046 * Get channel value from binary representation held in eeprom 2047 * RETURNS: the frequency in MHz 2048 */ 2049 static uint16_t 2050 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz) 2051 { 2052 /* 2053 * Reserved value 0xFF provides an empty definition both as 2054 * an fbin and as a frequency - do not convert 2055 */ 2056 if (fbin == AR5416_BCHAN_UNUSED) { 2057 return fbin; 2058 } 2059 2060 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)); 2061 } 2062 2063 /* 2064 * ar5416GetMaxEdgePower 2065 * 2066 * Find the maximum conformance test limit for the given channel and CTL info 2067 */ 2068 uint16_t 2069 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz) 2070 { 2071 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER; 2072 int i; 2073 2074 /* Get the edge power */ 2075 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) { 2076 /* 2077 * If there's an exact channel match or an inband flag set 2078 * on the lower channel use the given rdEdgePower 2079 */ 2080 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) { 2081 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER); 2082 break; 2083 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) { 2084 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) { 2085 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER); 2086 } 2087 /* Leave loop - no more affecting edges possible in this monotonic increasing list */ 2088 break; 2089 } 2090 } 2091 HALASSERT(twiceMaxEdgePower > 0); 2092 return twiceMaxEdgePower; 2093 } 2094 2095 /************************************************************** 2096 * ar5416GetTargetPowers 2097 * 2098 * Return the rates of target power for the given target power table 2099 * channel, and number of channels 2100 */ 2101 void 2102 ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan, 2103 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels, 2104 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates, 2105 HAL_BOOL isHt40Target) 2106 { 2107 uint16_t clo, chi; 2108 int i; 2109 int matchIndex = -1, lowIndex = -1; 2110 uint16_t freq; 2111 CHAN_CENTERS centers; 2112 2113 ar5416GetChannelCenters(ah, chan, ¢ers); 2114 freq = isHt40Target ? centers.synth_center : centers.ctl_center; 2115 2116 /* Copy the target powers into the temp channel list */ 2117 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2118 matchIndex = 0; 2119 } else { 2120 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2121 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2122 matchIndex = i; 2123 break; 2124 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2125 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2126 { 2127 lowIndex = i - 1; 2128 break; 2129 } 2130 } 2131 if ((matchIndex == -1) && (lowIndex == -1)) { 2132 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2133 matchIndex = i - 1; 2134 } 2135 } 2136 2137 if (matchIndex != -1) { 2138 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2139 } else { 2140 HALASSERT(lowIndex != -1); 2141 /* 2142 * Get the lower and upper channels, target powers, 2143 * and interpolate between them. 2144 */ 2145 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2146 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2147 2148 for (i = 0; i < numRates; i++) { 2149 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2150 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2151 } 2152 } 2153 } 2154 /************************************************************** 2155 * ar5416GetTargetPowersLeg 2156 * 2157 * Return the four rates of target power for the given target power table 2158 * channel, and number of channels 2159 */ 2160 void 2161 ar5416GetTargetPowersLeg(struct ath_hal *ah, 2162 const struct ieee80211_channel *chan, 2163 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels, 2164 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates, 2165 HAL_BOOL isExtTarget) 2166 { 2167 uint16_t clo, chi; 2168 int i; 2169 int matchIndex = -1, lowIndex = -1; 2170 uint16_t freq; 2171 CHAN_CENTERS centers; 2172 2173 ar5416GetChannelCenters(ah, chan, ¢ers); 2174 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center; 2175 2176 /* Copy the target powers into the temp channel list */ 2177 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2178 matchIndex = 0; 2179 } else { 2180 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) { 2181 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) { 2182 matchIndex = i; 2183 break; 2184 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) && 2185 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)))) 2186 { 2187 lowIndex = i - 1; 2188 break; 2189 } 2190 } 2191 if ((matchIndex == -1) && (lowIndex == -1)) { 2192 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))); 2193 matchIndex = i - 1; 2194 } 2195 } 2196 2197 if (matchIndex != -1) { 2198 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower)); 2199 } else { 2200 HALASSERT(lowIndex != -1); 2201 /* 2202 * Get the lower and upper channels, target powers, 2203 * and interpolate between them. 2204 */ 2205 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2206 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)); 2207 2208 for (i = 0; i < numRates; i++) { 2209 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi, 2210 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]); 2211 } 2212 } 2213 } 2214 2215 /* 2216 * Set the gain boundaries for the given radio chain. 2217 * 2218 * The gain boundaries tell the hardware at what point in the 2219 * PDADC array to "switch over" from one PD gain setting 2220 * to another. There's also a gain overlap between two 2221 * PDADC array gain curves where there's valid PD values 2222 * for 2 gain settings. 2223 * 2224 * The hardware uses the gain overlap and gain boundaries 2225 * to determine which gain curve to use for the given 2226 * target TX power. 2227 */ 2228 void 2229 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i, 2230 uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[]) 2231 { 2232 int regChainOffset; 2233 2234 regChainOffset = ar5416GetRegChainOffset(ah, i); 2235 2236 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d," 2237 " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2, 2238 gainBoundaries[0], gainBoundaries[1], gainBoundaries[2], 2239 gainBoundaries[3]); 2240 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, 2241 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 2242 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 2243 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 2244 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 2245 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 2246 } 2247 2248 /* 2249 * Get the gain values and the number of gain levels given 2250 * in xpdMask. 2251 * 2252 * The EEPROM xpdMask determines which power detector gain 2253 * levels were used during calibration. Each of these mask 2254 * bits maps to a fixed gain level in hardware. 2255 */ 2256 uint16_t 2257 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask, 2258 uint16_t xpdGainValues[]) 2259 { 2260 int i; 2261 uint16_t numXpdGain = 0; 2262 2263 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { 2264 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { 2265 if (numXpdGain >= AR5416_NUM_PD_GAINS) { 2266 HALASSERT(0); 2267 break; 2268 } 2269 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i); 2270 numXpdGain++; 2271 } 2272 } 2273 return numXpdGain; 2274 } 2275 2276 /* 2277 * Write the detector gain and biases. 2278 * 2279 * There are four power detector gain levels. The xpdMask in the EEPROM 2280 * determines which power detector gain levels have TX power calibration 2281 * data associated with them. This function writes the number of 2282 * PD gain levels and their values into the hardware. 2283 * 2284 * This is valid for all TX chains - the calibration data itself however 2285 * will likely differ per-chain. 2286 */ 2287 void 2288 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain, 2289 uint16_t xpdGainValues[]) 2290 { 2291 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d," 2292 " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain, 2293 xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]); 2294 2295 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) & 2296 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 | 2297 AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) | 2298 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) | 2299 SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) | 2300 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) | 2301 SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3)); 2302 } 2303 2304 /* 2305 * Write the PDADC array to the given radio chain i. 2306 * 2307 * The 32 PDADC registers are written without any care about 2308 * their contents - so if various chips treat values as "special", 2309 * this routine will not care. 2310 */ 2311 void 2312 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[]) 2313 { 2314 int regOffset, regChainOffset; 2315 int j; 2316 int reg32; 2317 2318 regChainOffset = ar5416GetRegChainOffset(ah, i); 2319 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; 2320 2321 for (j = 0; j < 32; j++) { 2322 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) | 2323 ((pdadcValues[4*j + 1] & 0xFF) << 8) | 2324 ((pdadcValues[4*j + 2] & 0xFF) << 16) | 2325 ((pdadcValues[4*j + 3] & 0xFF) << 24) ; 2326 OS_REG_WRITE(ah, regOffset, reg32); 2327 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |" 2328 " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d" 2329 " Value %3d | PDADC %3d Value %3d |\n", 2330 i, 2331 4*j, pdadcValues[4*j], 2332 4*j+1, pdadcValues[4*j + 1], 2333 4*j+2, pdadcValues[4*j + 2], 2334 4*j+3, pdadcValues[4*j + 3]); 2335 regOffset += 4; 2336 } 2337 } 2338 2339 /************************************************************** 2340 * ar5416SetPowerCalTable 2341 * 2342 * Pull the PDADC piers from cal data and interpolate them across the given 2343 * points as well as from the nearest pier(s) to get a power detector 2344 * linear voltage to power level table. 2345 */ 2346 HAL_BOOL 2347 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData, 2348 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset) 2349 { 2350 CAL_DATA_PER_FREQ *pRawDataset; 2351 uint8_t *pCalBChans = AH_NULL; 2352 uint16_t pdGainOverlap_t2; 2353 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES]; 2354 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK]; 2355 uint16_t numPiers, i; 2356 int16_t tMinCalPower; 2357 uint16_t numXpdGain, xpdMask; 2358 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS]; 2359 uint32_t regChainOffset; 2360 2361 OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues)); 2362 2363 xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain; 2364 2365 if (IS_EEP_MINOR_V2(ah)) { 2366 pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap; 2367 } else { 2368 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); 2369 } 2370 2371 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2372 pCalBChans = pEepData->calFreqPier2G; 2373 numPiers = AR5416_NUM_2G_CAL_PIERS; 2374 } else { 2375 pCalBChans = pEepData->calFreqPier5G; 2376 numPiers = AR5416_NUM_5G_CAL_PIERS; 2377 } 2378 2379 /* Calculate the value of xpdgains from the xpdGain Mask */ 2380 numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues); 2381 2382 /* Write the detector gain biases and their number */ 2383 ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues); 2384 2385 for (i = 0; i < AR5416_MAX_CHAINS; i++) { 2386 regChainOffset = ar5416GetRegChainOffset(ah, i); 2387 2388 if (pEepData->baseEepHeader.txMask & (1 << i)) { 2389 if (IEEE80211_IS_CHAN_2GHZ(chan)) { 2390 pRawDataset = pEepData->calPierData2G[i]; 2391 } else { 2392 pRawDataset = pEepData->calPierData5G[i]; 2393 } 2394 2395 /* Fetch the gain boundaries and the PDADC values */ 2396 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset, 2397 pCalBChans, numPiers, 2398 pdGainOverlap_t2, 2399 &tMinCalPower, gainBoundaries, 2400 pdadcValues, numXpdGain); 2401 2402 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) { 2403 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, 2404 gainBoundaries); 2405 } 2406 2407 /* Write the power values into the baseband power table */ 2408 ar5416WritePdadcValues(ah, i, pdadcValues); 2409 } 2410 } 2411 *pTxPowerIndexOffset = 0; 2412 2413 return AH_TRUE; 2414 } 2415 2416 /************************************************************** 2417 * ar5416GetGainBoundariesAndPdadcs 2418 * 2419 * Uses the data points read from EEPROM to reconstruct the pdadc power table 2420 * Called by ar5416SetPowerCalTable only. 2421 */ 2422 void 2423 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah, 2424 const struct ieee80211_channel *chan, 2425 CAL_DATA_PER_FREQ *pRawDataSet, 2426 uint8_t * bChans, uint16_t availPiers, 2427 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries, 2428 uint8_t * pPDADCValues, uint16_t numXpdGains) 2429 { 2430 2431 int i, j, k; 2432 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */ 2433 uint16_t idxL, idxR, numPiers; /* Pier indexes */ 2434 2435 /* filled out Vpd table for all pdGains (chanL) */ 2436 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2437 2438 /* filled out Vpd table for all pdGains (chanR) */ 2439 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2440 2441 /* filled out Vpd table for all pdGains (interpolated) */ 2442 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB]; 2443 2444 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR; 2445 uint8_t minPwrT4[AR5416_NUM_PD_GAINS]; 2446 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS]; 2447 int16_t vpdStep; 2448 int16_t tmpVal; 2449 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex; 2450 HAL_BOOL match; 2451 int16_t minDelta = 0; 2452 CHAN_CENTERS centers; 2453 2454 ar5416GetChannelCenters(ah, chan, ¢ers); 2455 2456 /* Trim numPiers for the number of populated channel Piers */ 2457 for (numPiers = 0; numPiers < availPiers; numPiers++) { 2458 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) { 2459 break; 2460 } 2461 } 2462 2463 /* Find pier indexes around the current channel */ 2464 match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center, 2465 IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR); 2466 2467 if (match) { 2468 /* Directly fill both vpd tables from the matching index */ 2469 for (i = 0; i < numXpdGains; i++) { 2470 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0]; 2471 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4]; 2472 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i], 2473 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]); 2474 } 2475 } else { 2476 for (i = 0; i < numXpdGains; i++) { 2477 pVpdL = pRawDataSet[idxL].vpdPdg[i]; 2478 pPwrL = pRawDataSet[idxL].pwrPdg[i]; 2479 pVpdR = pRawDataSet[idxR].vpdPdg[i]; 2480 pPwrR = pRawDataSet[idxR].pwrPdg[i]; 2481 2482 /* Start Vpd interpolation from the max of the minimum powers */ 2483 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]); 2484 2485 /* End Vpd interpolation from the min of the max powers */ 2486 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]); 2487 HALASSERT(maxPwrT4[i] > minPwrT4[i]); 2488 2489 /* Fill pier Vpds */ 2490 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]); 2491 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]); 2492 2493 /* Interpolate the final vpd */ 2494 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) { 2495 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center, 2496 IEEE80211_IS_CHAN_2GHZ(chan)), 2497 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j])); 2498 } 2499 } 2500 } 2501 *pMinCalPower = (int16_t)(minPwrT4[0] / 2); 2502 2503 k = 0; /* index for the final table */ 2504 for (i = 0; i < numXpdGains; i++) { 2505 if (i == (numXpdGains - 1)) { 2506 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2); 2507 } else { 2508 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4); 2509 } 2510 2511 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]); 2512 2513 /* NB: only applies to owl 1.0 */ 2514 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) { 2515 /* 2516 * fix the gain delta, but get a delta that can be applied to min to 2517 * keep the upper power values accurate, don't think max needs to 2518 * be adjusted because should not be at that area of the table? 2519 */ 2520 minDelta = pPdGainBoundaries[0] - 23; 2521 pPdGainBoundaries[0] = 23; 2522 } 2523 else { 2524 minDelta = 0; 2525 } 2526 2527 /* Find starting index for this pdGain */ 2528 if (i == 0) { 2529 if (AR_SREV_MERLIN_10_OR_LATER(ah)) 2530 ss = (int16_t)(0 - (minPwrT4[i] / 2)); 2531 else 2532 ss = 0; /* for the first pdGain, start from index 0 */ 2533 } else { 2534 /* need overlap entries extrapolated below. */ 2535 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta); 2536 } 2537 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]); 2538 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2539 /* 2540 *-ve ss indicates need to extrapolate data below for this pdGain 2541 */ 2542 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2543 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep); 2544 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal); 2545 ss++; 2546 } 2547 2548 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1); 2549 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2)); 2550 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 2551 2552 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2553 pPDADCValues[k++] = vpdTableI[i][ss++]; 2554 } 2555 2556 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]); 2557 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep); 2558 /* 2559 * for last gain, pdGainBoundary == Pmax_t2, so will 2560 * have to extrapolate 2561 */ 2562 if (tgtIndex >= maxIndex) { /* need to extrapolate above */ 2563 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) { 2564 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] + 2565 (ss - maxIndex +1) * vpdStep)); 2566 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal); 2567 ss++; 2568 } 2569 } /* extrapolated above */ 2570 } /* for all pdGainUsed */ 2571 2572 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */ 2573 while (i < AR5416_PD_GAINS_IN_MASK) { 2574 pPdGainBoundaries[i] = pPdGainBoundaries[i-1]; 2575 i++; 2576 } 2577 2578 while (k < AR5416_NUM_PDADC_VALUES) { 2579 pPDADCValues[k] = pPDADCValues[k-1]; 2580 k++; 2581 } 2582 return; 2583 } 2584 2585 /* 2586 * The linux ath9k driver and (from what I've been told) the reference 2587 * Atheros driver enables the 11n PHY by default whether or not it's 2588 * configured. 2589 */ 2590 static void 2591 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan) 2592 { 2593 uint32_t phymode; 2594 uint32_t enableDacFifo = 0; 2595 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */ 2596 2597 if (AR_SREV_KITE_10_OR_LATER(ah)) 2598 enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO); 2599 2600 /* Enable 11n HT, 20 MHz */ 2601 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 2602 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo; 2603 2604 /* Configure baseband for dynamic 20/40 operation */ 2605 if (IEEE80211_IS_CHAN_HT40(chan)) { 2606 phymode |= AR_PHY_FC_DYN2040_EN; 2607 2608 /* Configure control (primary) channel at +-10MHz */ 2609 if (IEEE80211_IS_CHAN_HT40U(chan)) 2610 phymode |= AR_PHY_FC_DYN2040_PRI_CH; 2611 #if 0 2612 /* Configure 20/25 spacing */ 2613 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25) 2614 phymode |= AR_PHY_FC_DYN2040_EXT_CH; 2615 #endif 2616 macmode = HAL_HT_MACMODE_2040; 2617 } else 2618 macmode = HAL_HT_MACMODE_20; 2619 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode); 2620 2621 /* Configure MAC for 20/40 operation */ 2622 ar5416Set11nMac2040(ah, macmode); 2623 2624 /* global transmit timeout (25 TUs default)*/ 2625 /* XXX - put this elsewhere??? */ 2626 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ; 2627 2628 /* carrier sense timeout */ 2629 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC); 2630 OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 2631 } 2632 2633 void 2634 ar5416GetChannelCenters(struct ath_hal *ah, 2635 const struct ieee80211_channel *chan, CHAN_CENTERS *centers) 2636 { 2637 uint16_t freq = ath_hal_gethwchannel(ah, chan); 2638 2639 centers->ctl_center = freq; 2640 centers->synth_center = freq; 2641 /* 2642 * In 20/40 phy mode, the center frequency is 2643 * "between" the control and extension channels. 2644 */ 2645 if (IEEE80211_IS_CHAN_HT40U(chan)) { 2646 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT; 2647 centers->ext_center = 2648 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT; 2649 } else if (IEEE80211_IS_CHAN_HT40D(chan)) { 2650 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT; 2651 centers->ext_center = 2652 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT; 2653 } else { 2654 centers->ext_center = freq; 2655 } 2656 } 2657 2658 /* 2659 * Override the INI vals being programmed. 2660 */ 2661 static void 2662 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan) 2663 { 2664 uint32_t val; 2665 2666 /* 2667 * Set the RX_ABORT and RX_DIS and clear if off only after 2668 * RXE is set for MAC. This prevents frames with corrupted 2669 * descriptor status. 2670 */ 2671 OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 2672 2673 if (AR_SREV_MERLIN_10_OR_LATER(ah)) { 2674 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2); 2675 val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE); 2676 if (!AR_SREV_9271(ah)) 2677 val &= ~AR_PCU_MISC_MODE2_HWWAR1; 2678 2679 if (AR_SREV_KIWI_10_OR_LATER(ah)) 2680 val = val & (~AR_PCU_MISC_MODE2_HWWAR2); 2681 2682 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val); 2683 } 2684 2685 /* 2686 * Disable RIFS search on some chips to avoid baseband 2687 * hang issues. 2688 */ 2689 if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) 2690 (void) ar5416SetRifsDelay(ah, chan, AH_FALSE); 2691 2692 if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah)) 2693 return; 2694 2695 /* 2696 * Disable BB clock gating 2697 * Necessary to avoid issues on AR5416 2.0 2698 */ 2699 OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); 2700 } 2701 2702 struct ini { 2703 uint32_t *data; /* NB: !const */ 2704 int rows, cols; 2705 }; 2706 2707 /* 2708 * Override XPA bias level based on operating frequency. 2709 * This is a v14 EEPROM specific thing for the AR9160. 2710 */ 2711 void 2712 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan) 2713 { 2714 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt]) 2715 MODAL_EEP_HEADER *pModal; 2716 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom; 2717 struct ar5416eeprom *eep = &ee->ee_base; 2718 uint8_t biaslevel; 2719 2720 if (! AR_SREV_SOWL(ah)) 2721 return; 2722 2723 if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7) 2724 return; 2725 2726 pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]); 2727 2728 if (pModal->xpaBiasLvl != 0xff) 2729 biaslevel = pModal->xpaBiasLvl; 2730 else { 2731 uint16_t resetFreqBin, freqBin, freqCount = 0; 2732 CHAN_CENTERS centers; 2733 2734 ar5416GetChannelCenters(ah, chan, ¢ers); 2735 2736 resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)); 2737 freqBin = XPA_LVL_FREQ(0) & 0xff; 2738 biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14); 2739 2740 freqCount++; 2741 2742 while (freqCount < 3) { 2743 if (XPA_LVL_FREQ(freqCount) == 0x0) 2744 break; 2745 2746 freqBin = XPA_LVL_FREQ(freqCount) & 0xff; 2747 if (resetFreqBin >= freqBin) 2748 biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14); 2749 else 2750 break; 2751 freqCount++; 2752 } 2753 } 2754 2755 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n", 2756 __func__, biaslevel); 2757 2758 /* 2759 * This is a dirty workaround for the const initval data, 2760 * which will upset multiple AR9160's on the same board. 2761 * 2762 * The HAL should likely just have a private copy of the addac 2763 * data per instance. 2764 */ 2765 if (IEEE80211_IS_CHAN_2GHZ(chan)) 2766 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) = 2767 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3; 2768 else 2769 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) = 2770 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6; 2771 #undef XPA_LVL_FREQ 2772 } 2773 2774 static void 2775 ar5416MarkPhyInactive(struct ath_hal *ah) 2776 { 2777 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 2778 } 2779 2780 #define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */ 2781 #define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */ 2782 #define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */ 2783 2784 #define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */ 2785 #define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */ 2786 #define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */ 2787 2788 #define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */ 2789 #define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */ 2790 #define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */ 2791 2792 #define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */ 2793 #define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */ 2794 #define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */ 2795 2796 #define AR5416_INIT_USEC_40 40 2797 #define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */ 2798 #define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */ 2799 2800 #define AR5416_INIT_USEC_44 44 2801 #define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */ 2802 #define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */ 2803 2804 /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */ 2805 #define AR5416_RX_NON_FULL_RATE_LATENCY 63 2806 #define AR5416_TX_HALF_RATE_LATENCY 108 2807 #define AR5416_TX_QUARTER_RATE_LATENCY 216 2808 2809 /* 2810 * Adjust various register settings based on half/quarter rate clock setting. 2811 * This includes: 2812 * 2813 * + USEC, TX/RX latency, 2814 * + IFS params: slot, eifs, misc etc. 2815 * 2816 * TODO: 2817 * 2818 * + Verify which other registers need to be tweaked; 2819 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode; 2820 * + This just plain won't work for long distance links - the coverage class 2821 * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to 2822 * change; 2823 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n 2824 * series chips? 2825 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock 2826 */ 2827 static void 2828 ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan) 2829 { 2830 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec; 2831 int clk_44 = 0; 2832 2833 HALASSERT(IEEE80211_IS_CHAN_HALF(chan) || 2834 IEEE80211_IS_CHAN_QUARTER(chan)); 2835 2836 /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */ 2837 if (IEEE80211_IS_CHAN_2GHZ(chan)) 2838 clk_44 = 1; 2839 else if (IEEE80211_IS_CHAN_5GHZ(chan) && 2840 IS_5GHZ_FAST_CLOCK_EN(ah, chan)) 2841 clk_44 = 1; 2842 2843 /* XXX does this need save/restoring for the 11n chips? */ 2844 /* 2845 * XXX TODO: should mask out the txlat/rxlat/usec values? 2846 */ 2847 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32; 2848 2849 /* 2850 * XXX This really should calculate things, not use 2851 * hard coded values! Ew. 2852 */ 2853 if (IEEE80211_IS_CHAN_HALF(chan)) { 2854 if (clk_44) { 2855 slot = AR5416_IFS_SLOT_HALF_RATE_44; 2856 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2857 AR5416_USEC_RX_LAT_S; 2858 txLat = AR5416_TX_HALF_RATE_LATENCY << 2859 AR5416_USEC_TX_LAT_S; 2860 usec = AR5416_HALF_RATE_USEC_44; 2861 eifs = AR5416_IFS_EIFS_HALF_RATE_44; 2862 init_usec = AR5416_INIT_USEC_44 >> 1; 2863 } else { 2864 slot = AR5416_IFS_SLOT_HALF_RATE_40; 2865 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2866 AR5416_USEC_RX_LAT_S; 2867 txLat = AR5416_TX_HALF_RATE_LATENCY << 2868 AR5416_USEC_TX_LAT_S; 2869 usec = AR5416_HALF_RATE_USEC_40; 2870 eifs = AR5416_IFS_EIFS_HALF_RATE_40; 2871 init_usec = AR5416_INIT_USEC_40 >> 1; 2872 } 2873 } else { /* quarter rate */ 2874 if (clk_44) { 2875 slot = AR5416_IFS_SLOT_QUARTER_RATE_44; 2876 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2877 AR5416_USEC_RX_LAT_S; 2878 txLat = AR5416_TX_QUARTER_RATE_LATENCY << 2879 AR5416_USEC_TX_LAT_S; 2880 usec = AR5416_QUARTER_RATE_USEC_44; 2881 eifs = AR5416_IFS_EIFS_QUARTER_RATE_44; 2882 init_usec = AR5416_INIT_USEC_44 >> 2; 2883 } else { 2884 slot = AR5416_IFS_SLOT_QUARTER_RATE_40; 2885 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY << 2886 AR5416_USEC_RX_LAT_S; 2887 txLat = AR5416_TX_QUARTER_RATE_LATENCY << 2888 AR5416_USEC_TX_LAT_S; 2889 usec = AR5416_QUARTER_RATE_USEC_40; 2890 eifs = AR5416_IFS_EIFS_QUARTER_RATE_40; 2891 init_usec = AR5416_INIT_USEC_40 >> 2; 2892 } 2893 } 2894 2895 /* XXX verify these! */ 2896 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat)); 2897 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot); 2898 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs); 2899 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC, 2900 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec); 2901 } 2902