1 /*- 2 * SPDX-License-Identifier: ISC 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * Copyright (c) 2002-2008 Atheros Communications, Inc. 6 * 7 * Permission to use, copy, modify, and/or distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 * $FreeBSD$ 20 */ 21 #include "opt_ah.h" 22 23 #include "ah.h" 24 #include "ah_internal.h" 25 26 #include "ar5212/ar5212.h" 27 #include "ar5212/ar5212reg.h" 28 #include "ar5212/ar5212phy.h" 29 30 #include "ah_eeprom_v3.h" 31 32 #define AH_5212_2413 33 #include "ar5212/ar5212.ini" 34 35 #define N(a) (sizeof(a)/sizeof(a[0])) 36 37 struct ar2413State { 38 RF_HAL_FUNCS base; /* public state, must be first */ 39 uint16_t pcdacTable[PWR_TABLE_SIZE_2413]; 40 41 uint32_t Bank1Data[N(ar5212Bank1_2413)]; 42 uint32_t Bank2Data[N(ar5212Bank2_2413)]; 43 uint32_t Bank3Data[N(ar5212Bank3_2413)]; 44 uint32_t Bank6Data[N(ar5212Bank6_2413)]; 45 uint32_t Bank7Data[N(ar5212Bank7_2413)]; 46 47 /* 48 * Private state for reduced stack usage. 49 */ 50 /* filled out Vpd table for all pdGains (chanL) */ 51 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL] 52 [MAX_PWR_RANGE_IN_HALF_DB]; 53 /* filled out Vpd table for all pdGains (chanR) */ 54 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL] 55 [MAX_PWR_RANGE_IN_HALF_DB]; 56 /* filled out Vpd table for all pdGains (interpolated) */ 57 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL] 58 [MAX_PWR_RANGE_IN_HALF_DB]; 59 }; 60 #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal) 61 62 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32, 63 uint32_t numBits, uint32_t firstBit, uint32_t column); 64 65 static void 66 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex, 67 int writes) 68 { 69 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes); 70 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes); 71 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes); 72 } 73 74 /* 75 * Take the MHz channel value and set the Channel value 76 * 77 * ASSUMES: Writes enabled to analog bus 78 */ 79 static HAL_BOOL 80 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) 81 { 82 uint16_t freq = ath_hal_gethwchannel(ah, chan); 83 uint32_t channelSel = 0; 84 uint32_t bModeSynth = 0; 85 uint32_t aModeRefSel = 0; 86 uint32_t reg32 = 0; 87 88 OS_MARK(ah, AH_MARK_SETCHANNEL, freq); 89 90 if (freq < 4800) { 91 uint32_t txctl; 92 93 if (((freq - 2192) % 5) == 0) { 94 channelSel = ((freq - 672) * 2 - 3040)/10; 95 bModeSynth = 0; 96 } else if (((freq - 2224) % 5) == 0) { 97 channelSel = ((freq - 704) * 2 - 3040) / 10; 98 bModeSynth = 1; 99 } else { 100 HALDEBUG(ah, HAL_DEBUG_ANY, 101 "%s: invalid channel %u MHz\n", 102 __func__, freq); 103 return AH_FALSE; 104 } 105 106 channelSel = (channelSel << 2) & 0xff; 107 channelSel = ath_hal_reverseBits(channelSel, 8); 108 109 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); 110 if (freq == 2484) { 111 /* Enable channel spreading for channel 14 */ 112 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 113 txctl | AR_PHY_CCK_TX_CTRL_JAPAN); 114 } else { 115 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, 116 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); 117 } 118 } else if (((freq % 5) == 2) && (freq <= 5435)) { 119 freq = freq - 2; /* Align to even 5MHz raster */ 120 channelSel = ath_hal_reverseBits( 121 (uint32_t)(((freq - 4800)*10)/25 + 1), 8); 122 aModeRefSel = ath_hal_reverseBits(0, 2); 123 } else if ((freq % 20) == 0 && freq >= 5120) { 124 channelSel = ath_hal_reverseBits( 125 ((freq - 4800) / 20 << 2), 8); 126 aModeRefSel = ath_hal_reverseBits(3, 2); 127 } else if ((freq % 10) == 0) { 128 channelSel = ath_hal_reverseBits( 129 ((freq - 4800) / 10 << 1), 8); 130 aModeRefSel = ath_hal_reverseBits(2, 2); 131 } else if ((freq % 5) == 0) { 132 channelSel = ath_hal_reverseBits( 133 (freq - 4800) / 5, 8); 134 aModeRefSel = ath_hal_reverseBits(1, 2); 135 } else { 136 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", 137 __func__, freq); 138 return AH_FALSE; 139 } 140 141 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | 142 (1 << 12) | 0x1; 143 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); 144 145 reg32 >>= 8; 146 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); 147 148 AH_PRIVATE(ah)->ah_curchan = chan; 149 150 return AH_TRUE; 151 } 152 153 /* 154 * Reads EEPROM header info from device structure and programs 155 * all rf registers 156 * 157 * REQUIRES: Access to the analog rf device 158 */ 159 static HAL_BOOL 160 ar2413SetRfRegs(struct ath_hal *ah, 161 const struct ieee80211_channel *chan, 162 uint16_t modesIndex, uint16_t *rfXpdGain) 163 { 164 #define RF_BANK_SETUP(_priv, _ix, _col) do { \ 165 int i; \ 166 for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \ 167 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\ 168 } while (0) 169 struct ath_hal_5212 *ahp = AH5212(ah); 170 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 171 uint16_t ob2GHz = 0, db2GHz = 0; 172 struct ar2413State *priv = AR2413(ah); 173 int regWrites = 0; 174 175 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n", 176 __func__, chan->ic_freq, chan->ic_flags, modesIndex); 177 178 HALASSERT(priv); 179 180 /* Setup rf parameters */ 181 if (IEEE80211_IS_CHAN_B(chan)) { 182 ob2GHz = ee->ee_obFor24; 183 db2GHz = ee->ee_dbFor24; 184 } else { 185 ob2GHz = ee->ee_obFor24g; 186 db2GHz = ee->ee_dbFor24g; 187 } 188 189 /* Bank 1 Write */ 190 RF_BANK_SETUP(priv, 1, 1); 191 192 /* Bank 2 Write */ 193 RF_BANK_SETUP(priv, 2, modesIndex); 194 195 /* Bank 3 Write */ 196 RF_BANK_SETUP(priv, 3, modesIndex); 197 198 /* Bank 6 Write */ 199 RF_BANK_SETUP(priv, 6, modesIndex); 200 201 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0); 202 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0); 203 204 /* Bank 7 Setup */ 205 RF_BANK_SETUP(priv, 7, modesIndex); 206 207 /* Write Analog registers */ 208 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites); 209 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites); 210 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites); 211 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites); 212 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites); 213 214 /* Now that we have reprogrammed rfgain value, clear the flag. */ 215 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE; 216 217 return AH_TRUE; 218 #undef RF_BANK_SETUP 219 } 220 221 /* 222 * Return a reference to the requested RF Bank. 223 */ 224 static uint32_t * 225 ar2413GetRfBank(struct ath_hal *ah, int bank) 226 { 227 struct ar2413State *priv = AR2413(ah); 228 229 HALASSERT(priv != AH_NULL); 230 switch (bank) { 231 case 1: return priv->Bank1Data; 232 case 2: return priv->Bank2Data; 233 case 3: return priv->Bank3Data; 234 case 6: return priv->Bank6Data; 235 case 7: return priv->Bank7Data; 236 } 237 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n", 238 __func__, bank); 239 return AH_NULL; 240 } 241 242 /* 243 * Return indices surrounding the value in sorted integer lists. 244 * 245 * NB: the input list is assumed to be sorted in ascending order 246 */ 247 static void 248 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize, 249 uint32_t *vlo, uint32_t *vhi) 250 { 251 int16_t target = v; 252 const uint16_t *ep = lp+listSize; 253 const uint16_t *tp; 254 255 /* 256 * Check first and last elements for out-of-bounds conditions. 257 */ 258 if (target < lp[0]) { 259 *vlo = *vhi = 0; 260 return; 261 } 262 if (target >= ep[-1]) { 263 *vlo = *vhi = listSize - 1; 264 return; 265 } 266 267 /* look for value being near or between 2 values in list */ 268 for (tp = lp; tp < ep; tp++) { 269 /* 270 * If value is close to the current value of the list 271 * then target is not between values, it is one of the values 272 */ 273 if (*tp == target) { 274 *vlo = *vhi = tp - (const uint16_t *) lp; 275 return; 276 } 277 /* 278 * Look for value being between current value and next value 279 * if so return these 2 values 280 */ 281 if (target < tp[1]) { 282 *vlo = tp - (const uint16_t *) lp; 283 *vhi = *vlo + 1; 284 return; 285 } 286 } 287 } 288 289 /* 290 * Fill the Vpdlist for indices Pmax-Pmin 291 */ 292 static HAL_BOOL 293 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax, 294 const int16_t *pwrList, const uint16_t *VpdList, 295 uint16_t numIntercepts, uint16_t retVpdList[][64]) 296 { 297 uint16_t ii, jj, kk; 298 int16_t currPwr = (int16_t)(2*Pmin); 299 /* since Pmin is pwr*2 and pwrList is 4*pwr */ 300 uint32_t idxL, idxR; 301 302 ii = 0; 303 jj = 0; 304 305 if (numIntercepts < 2) 306 return AH_FALSE; 307 308 while (ii <= (uint16_t)(Pmax - Pmin)) { 309 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList, 310 numIntercepts, &(idxL), &(idxR)); 311 if (idxR < 1) 312 idxR = 1; /* extrapolate below */ 313 if (idxL == (uint32_t)(numIntercepts - 1)) 314 idxL = numIntercepts - 2; /* extrapolate above */ 315 if (pwrList[idxL] == pwrList[idxR]) 316 kk = VpdList[idxL]; 317 else 318 kk = (uint16_t) 319 (((currPwr - pwrList[idxL])*VpdList[idxR]+ 320 (pwrList[idxR] - currPwr)*VpdList[idxL])/ 321 (pwrList[idxR] - pwrList[idxL])); 322 retVpdList[pdGainIdx][ii] = kk; 323 ii++; 324 currPwr += 2; /* half dB steps */ 325 } 326 327 return AH_TRUE; 328 } 329 330 /* 331 * Returns interpolated or the scaled up interpolated value 332 */ 333 static int16_t 334 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight, 335 int16_t targetLeft, int16_t targetRight) 336 { 337 int16_t rv; 338 339 if (srcRight != srcLeft) { 340 rv = ((target - srcLeft)*targetRight + 341 (srcRight - target)*targetLeft) / (srcRight - srcLeft); 342 } else { 343 rv = targetLeft; 344 } 345 return rv; 346 } 347 348 /* 349 * Uses the data points read from EEPROM to reconstruct the pdadc power table 350 * Called by ar2413SetPowerTable() 351 */ 352 static int 353 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel, 354 const RAW_DATA_STRUCT_2413 *pRawDataset, 355 uint16_t pdGainOverlap_t2, 356 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[], 357 uint16_t pPdGainValues[], uint16_t pPDADCValues[]) 358 { 359 struct ar2413State *priv = AR2413(ah); 360 #define VpdTable_L priv->vpdTable_L 361 #define VpdTable_R priv->vpdTable_R 362 #define VpdTable_I priv->vpdTable_I 363 uint32_t ii, jj, kk; 364 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */ 365 uint32_t idxL, idxR; 366 uint32_t numPdGainsUsed = 0; 367 /* 368 * If desired to support -ve power levels in future, just 369 * change pwr_I_0 to signed 5-bits. 370 */ 371 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 372 /* to accommodate -ve power levels later on. */ 373 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL]; 374 /* to accommodate -ve power levels later on */ 375 uint16_t numVpd = 0; 376 uint16_t Vpd_step; 377 int16_t tmpVal ; 378 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex; 379 380 /* Get upper lower index */ 381 GetLowerUpperIndex(channel, pRawDataset->pChannels, 382 pRawDataset->numChannels, &(idxL), &(idxR)); 383 384 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 385 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 386 /* work backwards 'cause highest pdGain for lowest power */ 387 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd; 388 if (numVpd > 0) { 389 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain; 390 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]; 391 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) { 392 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]; 393 } 394 Pmin_t2[numPdGainsUsed] = (int16_t) 395 (Pmin_t2[numPdGainsUsed] / 2); 396 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 397 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]) 398 Pmax_t2[numPdGainsUsed] = 399 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1]; 400 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2); 401 ar2413FillVpdTable( 402 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 403 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]), 404 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L 405 ); 406 ar2413FillVpdTable( 407 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed], 408 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]), 409 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R 410 ); 411 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) { 412 VpdTable_I[numPdGainsUsed][kk] = 413 interpolate_signed( 414 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR], 415 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]); 416 } 417 /* fill VpdTable_I for this pdGain */ 418 numPdGainsUsed++; 419 } 420 /* if this pdGain is used */ 421 } 422 423 *pMinCalPower = Pmin_t2[0]; 424 kk = 0; /* index for the final table */ 425 for (ii = 0; ii < numPdGainsUsed; ii++) { 426 if (ii == (numPdGainsUsed - 1)) 427 pPdGainBoundaries[ii] = Pmax_t2[ii] + 428 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB; 429 else 430 pPdGainBoundaries[ii] = (uint16_t) 431 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 ); 432 if (pPdGainBoundaries[ii] > 63) { 433 HALDEBUG(ah, HAL_DEBUG_ANY, 434 "%s: clamp pPdGainBoundaries[%d] %d\n", 435 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/ 436 pPdGainBoundaries[ii] = 63; 437 } 438 439 /* Find starting index for this pdGain */ 440 if (ii == 0) 441 ss = 0; /* for the first pdGain, start from index 0 */ 442 else 443 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) - 444 pdGainOverlap_t2; 445 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]); 446 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 447 /* 448 *-ve ss indicates need to extrapolate data below for this pdGain 449 */ 450 while (ss < 0) { 451 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step); 452 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal); 453 ss++; 454 } 455 456 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii]; 457 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii]; 458 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable; 459 460 while (ss < (int16_t)maxIndex) 461 pPDADCValues[kk++] = VpdTable_I[ii][ss++]; 462 463 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] - 464 VpdTable_I[ii][sizeCurrVpdTable-2]); 465 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step); 466 /* 467 * for last gain, pdGainBoundary == Pmax_t2, so will 468 * have to extrapolate 469 */ 470 if (tgtIndex > maxIndex) { /* need to extrapolate above */ 471 while(ss < (int16_t)tgtIndex) { 472 tmpVal = (uint16_t) 473 (VpdTable_I[ii][sizeCurrVpdTable-1] + 474 (ss-maxIndex)*Vpd_step); 475 pPDADCValues[kk++] = (tmpVal > 127) ? 476 127 : tmpVal; 477 ss++; 478 } 479 } /* extrapolated above */ 480 } /* for all pdGainUsed */ 481 482 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) { 483 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1]; 484 ii++; 485 } 486 while (kk < 128) { 487 pPDADCValues[kk] = pPDADCValues[kk-1]; 488 kk++; 489 } 490 491 return numPdGainsUsed; 492 #undef VpdTable_L 493 #undef VpdTable_R 494 #undef VpdTable_I 495 } 496 497 static HAL_BOOL 498 ar2413SetPowerTable(struct ath_hal *ah, 499 int16_t *minPower, int16_t *maxPower, 500 const struct ieee80211_channel *chan, 501 uint16_t *rfXpdGain) 502 { 503 uint16_t freq = ath_hal_gethwchannel(ah, chan); 504 struct ath_hal_5212 *ahp = AH5212(ah); 505 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 506 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 507 uint16_t pdGainOverlap_t2; 508 int16_t minCalPower2413_t2; 509 uint16_t *pdadcValues = ahp->ah_pcdacTable; 510 uint16_t gainBoundaries[4]; 511 uint32_t reg32, regoffset; 512 int i, numPdGainsUsed; 513 #ifndef AH_USE_INIPDGAIN 514 uint32_t tpcrg1; 515 #endif 516 517 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n", 518 __func__, freq, chan->ic_flags); 519 520 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 521 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 522 else if (IEEE80211_IS_CHAN_B(chan)) 523 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 524 else { 525 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__); 526 return AH_FALSE; 527 } 528 529 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5), 530 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 531 532 numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah, 533 freq, pRawDataset, pdGainOverlap_t2, 534 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues); 535 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3); 536 537 #ifdef AH_USE_INIPDGAIN 538 /* 539 * Use pd_gains curve from eeprom; Atheros always uses 540 * the default curve from the ini file but some vendors 541 * (e.g. Zcomax) want to override this curve and not 542 * honoring their settings results in tx power 5dBm low. 543 */ 544 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, 545 (pRawDataset->pDataPerChannel[0].numPdGains - 1)); 546 #else 547 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1); 548 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN) 549 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN); 550 switch (numPdGainsUsed) { 551 case 3: 552 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3; 553 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3); 554 /* fall thru... */ 555 case 2: 556 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2; 557 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2); 558 /* fall thru... */ 559 case 1: 560 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1; 561 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1); 562 break; 563 } 564 #ifdef AH_DEBUG 565 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1)) 566 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default " 567 "pd_gains (default 0x%x, calculated 0x%x)\n", 568 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1); 569 #endif 570 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1); 571 #endif 572 573 /* 574 * Note the pdadc table may not start at 0 dBm power, could be 575 * negative or greater than 0. Need to offset the power 576 * values by the amount of minPower for griffin 577 */ 578 if (minCalPower2413_t2 != 0) 579 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2); 580 else 581 ahp->ah_txPowerIndexOffset = 0; 582 583 /* Finally, write the power values into the baseband power table */ 584 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */ 585 for (i = 0; i < 32; i++) { 586 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) | 587 ((pdadcValues[4*i + 1] & 0xFF) << 8) | 588 ((pdadcValues[4*i + 2] & 0xFF) << 16) | 589 ((pdadcValues[4*i + 3] & 0xFF) << 24) ; 590 OS_REG_WRITE(ah, regoffset, reg32); 591 regoffset += 4; 592 } 593 594 OS_REG_WRITE(ah, AR_PHY_TPCRG5, 595 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | 596 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | 597 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | 598 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | 599 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4)); 600 601 return AH_TRUE; 602 } 603 604 static int16_t 605 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 606 { 607 uint32_t ii,jj; 608 uint16_t Pmin=0,numVpd; 609 610 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 611 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1; 612 /* work backwards 'cause highest pdGain for lowest power */ 613 numVpd = data->pDataPerPDGain[jj].numVpd; 614 if (numVpd > 0) { 615 Pmin = data->pDataPerPDGain[jj].pwr_t4[0]; 616 return(Pmin); 617 } 618 } 619 return(Pmin); 620 } 621 622 static int16_t 623 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data) 624 { 625 uint32_t ii; 626 uint16_t Pmax=0,numVpd; 627 628 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) { 629 /* work forwards cuase lowest pdGain for highest power */ 630 numVpd = data->pDataPerPDGain[ii].numVpd; 631 if (numVpd > 0) { 632 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1]; 633 return(Pmax); 634 } 635 } 636 return(Pmax); 637 } 638 639 static HAL_BOOL 640 ar2413GetChannelMaxMinPower(struct ath_hal *ah, 641 const struct ieee80211_channel *chan, 642 int16_t *maxPow, int16_t *minPow) 643 { 644 uint16_t freq = chan->ic_freq; /* NB: never mapped */ 645 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom; 646 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL; 647 const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL; 648 uint16_t numChannels; 649 int totalD,totalF, totalMin,last, i; 650 651 *maxPow = 0; 652 653 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) 654 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G]; 655 else if (IEEE80211_IS_CHAN_B(chan)) 656 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B]; 657 else 658 return(AH_FALSE); 659 660 numChannels = pRawDataset->numChannels; 661 data = pRawDataset->pDataPerChannel; 662 663 /* Make sure the channel is in the range of the TP values 664 * (freq piers) 665 */ 666 if (numChannels < 1) 667 return(AH_FALSE); 668 669 if ((freq < data[0].channelValue) || 670 (freq > data[numChannels-1].channelValue)) { 671 if (freq < data[0].channelValue) { 672 *maxPow = ar2413GetMaxPower(ah, &data[0]); 673 *minPow = ar2413GetMinPower(ah, &data[0]); 674 return(AH_TRUE); 675 } else { 676 *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]); 677 *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]); 678 return(AH_TRUE); 679 } 680 } 681 682 /* Linearly interpolate the power value now */ 683 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue); 684 last = i++); 685 totalD = data[i].channelValue - data[last].channelValue; 686 if (totalD > 0) { 687 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]); 688 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + 689 ar2413GetMaxPower(ah, &data[last])*totalD)/totalD); 690 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]); 691 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + 692 ar2413GetMinPower(ah, &data[last])*totalD)/totalD); 693 return(AH_TRUE); 694 } else { 695 if (freq == data[i].channelValue) { 696 *maxPow = ar2413GetMaxPower(ah, &data[i]); 697 *minPow = ar2413GetMinPower(ah, &data[i]); 698 return(AH_TRUE); 699 } else 700 return(AH_FALSE); 701 } 702 } 703 704 /* 705 * Free memory for analog bank scratch buffers 706 */ 707 static void 708 ar2413RfDetach(struct ath_hal *ah) 709 { 710 struct ath_hal_5212 *ahp = AH5212(ah); 711 712 HALASSERT(ahp->ah_rfHal != AH_NULL); 713 ath_hal_free(ahp->ah_rfHal); 714 ahp->ah_rfHal = AH_NULL; 715 } 716 717 /* 718 * Allocate memory for analog bank scratch buffers 719 * Scratch Buffer will be reinitialized every reset so no need to zero now 720 */ 721 static HAL_BOOL 722 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status) 723 { 724 struct ath_hal_5212 *ahp = AH5212(ah); 725 struct ar2413State *priv; 726 727 HALASSERT(ah->ah_magic == AR5212_MAGIC); 728 729 HALASSERT(ahp->ah_rfHal == AH_NULL); 730 priv = ath_hal_malloc(sizeof(struct ar2413State)); 731 if (priv == AH_NULL) { 732 HALDEBUG(ah, HAL_DEBUG_ANY, 733 "%s: cannot allocate private state\n", __func__); 734 *status = HAL_ENOMEM; /* XXX */ 735 return AH_FALSE; 736 } 737 priv->base.rfDetach = ar2413RfDetach; 738 priv->base.writeRegs = ar2413WriteRegs; 739 priv->base.getRfBank = ar2413GetRfBank; 740 priv->base.setChannel = ar2413SetChannel; 741 priv->base.setRfRegs = ar2413SetRfRegs; 742 priv->base.setPowerTable = ar2413SetPowerTable; 743 priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower; 744 priv->base.getNfAdjust = ar5212GetNfAdjust; 745 746 ahp->ah_pcdacTable = priv->pcdacTable; 747 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable); 748 ahp->ah_rfHal = &priv->base; 749 750 return AH_TRUE; 751 } 752 753 static HAL_BOOL 754 ar2413Probe(struct ath_hal *ah) 755 { 756 return IS_2413(ah); 757 } 758 AH_RF(RF2413, ar2413Probe, ar2413RfAttach); 759