1/*- 2 * Adaptec U320 device driver firmware for Linux and FreeBSD. 3 * 4 * Copyright (c) 1994-2001, 2004 Justin T. Gibbs. 5 * Copyright (c) 2000-2002 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $FreeBSD$ 41 */ 42 43VERSION = "$Id: //depot/aic7xxx/aic7xxx/aic79xx.seq#119 $" 44PATCH_ARG_LIST = "struct ahd_softc *ahd" 45PREFIX = "ahd_" 46 47#include "aic79xx.reg" 48#include "scsi_message.h" 49 50restart: 51if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 52 test SEQINTCODE, 0xFF jz idle_loop; 53 SET_SEQINTCODE(NO_SEQINT) 54} 55 56idle_loop: 57 58 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 59 /* 60 * Convert ERROR status into a sequencer 61 * interrupt to handle the case of an 62 * interrupt collision on the hardware 63 * setting of HWERR. 64 */ 65 test ERROR, 0xFF jz no_error_set; 66 SET_SEQINTCODE(SAW_HWERR) 67no_error_set: 68 } 69 SET_MODE(M_SCSI, M_SCSI) 70 test SCSISEQ0, ENSELO|ENARBO jnz idle_loop_checkbus; 71 test SEQ_FLAGS2, SELECTOUT_QFROZEN jz check_waiting_list; 72 /* 73 * If the kernel has caught up with us, thaw the queue. 74 */ 75 mov A, KERNEL_QFREEZE_COUNT; 76 cmp QFREEZE_COUNT, A jne check_frozen_completions; 77 mov A, KERNEL_QFREEZE_COUNT[1]; 78 cmp QFREEZE_COUNT[1], A jne check_frozen_completions; 79 and SEQ_FLAGS2, ~SELECTOUT_QFROZEN; 80 jmp check_waiting_list; 81check_frozen_completions: 82 test SSTAT0, SELDO|SELINGO jnz idle_loop_checkbus; 83BEGIN_CRITICAL; 84 /* 85 * If we have completions stalled waiting for the qfreeze 86 * to take effect, move them over to the complete_scb list 87 * now that no selections are pending. 88 */ 89 cmp COMPLETE_ON_QFREEZE_HEAD[1],SCB_LIST_NULL je idle_loop_checkbus; 90 /* 91 * Find the end of the qfreeze list. The first element has 92 * to be treated specially. 93 */ 94 bmov SCBPTR, COMPLETE_ON_QFREEZE_HEAD, 2; 95 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je join_lists; 96 /* 97 * Now the normal loop. 98 */ 99 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 100 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . - 1; 101join_lists: 102 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 103 bmov COMPLETE_SCB_HEAD, COMPLETE_ON_QFREEZE_HEAD, 2; 104 mvi COMPLETE_ON_QFREEZE_HEAD[1], SCB_LIST_NULL; 105 jmp idle_loop_checkbus; 106check_waiting_list: 107 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je idle_loop_checkbus; 108 /* 109 * ENSELO is cleared by a SELDO, so we must test for SELDO 110 * one last time. 111 */ 112 test SSTAT0, SELDO jnz select_out; 113 call start_selection; 114idle_loop_checkbus: 115 test SSTAT0, SELDO jnz select_out; 116END_CRITICAL; 117 test SSTAT0, SELDI jnz select_in; 118 test SCSIPHASE, ~DATA_PHASE_MASK jz idle_loop_check_nonpackreq; 119 test SCSISIGO, ATNO jz idle_loop_check_nonpackreq; 120 call unexpected_nonpkt_phase_find_ctxt; 121idle_loop_check_nonpackreq: 122 test SSTAT2, NONPACKREQ jz . + 2; 123 call unexpected_nonpkt_phase_find_ctxt; 124 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 125 /* 126 * On Rev A. hardware, the busy LED is only 127 * turned on automaically during selections 128 * and re-selections. Make the LED status 129 * more useful by forcing it to be on so 130 * long as one of our data FIFOs is active. 131 */ 132 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 133 cmp A, FIFO0FREE|FIFO1FREE jne . + 3; 134 and SBLKCTL, ~DIAGLEDEN|DIAGLEDON; 135 jmp . + 2; 136 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 137 } 138 call idle_loop_gsfifo_in_scsi_mode; 139 call idle_loop_service_fifos; 140 call idle_loop_cchan; 141 jmp idle_loop; 142 143idle_loop_gsfifo: 144 SET_MODE(M_SCSI, M_SCSI) 145BEGIN_CRITICAL; 146idle_loop_gsfifo_in_scsi_mode: 147 test LQISTAT2, LQIGSAVAIL jz return; 148 /* 149 * We have received good status for this transaction. There may 150 * still be data in our FIFOs draining to the host. Complete 151 * the SCB only if all data has transferred to the host. 152 */ 153good_status_IU_done: 154 bmov SCBPTR, GSFIFO, 2; 155 clr SCB_SCSI_STATUS; 156 /* 157 * If a command completed before an attempted task management 158 * function completed, notify the host after disabling any 159 * pending select-outs. 160 */ 161 test SCB_TASK_MANAGEMENT, 0xFF jz gsfifo_complete_normally; 162 test SSTAT0, SELDO|SELINGO jnz . + 2; 163 and SCSISEQ0, ~ENSELO; 164 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 165gsfifo_complete_normally: 166 or SCB_CONTROL, STATUS_RCVD; 167 168 /* 169 * Since this status did not consume a FIFO, we have to 170 * be a bit more dilligent in how we check for FIFOs pertaining 171 * to this transaction. There are two states that a FIFO still 172 * transferring data may be in. 173 * 174 * 1) Configured and draining to the host, with a FIFO handler. 175 * 2) Pending cfg4data, fifo not empty. 176 * 177 * Case 1 can be detected by noticing a non-zero FIFO active 178 * count in the SCB. In this case, we allow the routine servicing 179 * the FIFO to complete the SCB. 180 * 181 * Case 2 implies either a pending or yet to occur save data 182 * pointers for this same context in the other FIFO. So, if 183 * we detect case 1, we will properly defer the post of the SCB 184 * and achieve the desired result. The pending cfg4data will 185 * notice that status has been received and complete the SCB. 186 */ 187 test SCB_FIFO_USE_COUNT, 0xFF jnz idle_loop_gsfifo_in_scsi_mode; 188 call complete; 189END_CRITICAL; 190 jmp idle_loop_gsfifo_in_scsi_mode; 191 192idle_loop_service_fifos: 193 SET_MODE(M_DFF0, M_DFF0) 194BEGIN_CRITICAL; 195 test LONGJMP_ADDR[1], INVALID_ADDR jnz idle_loop_next_fifo; 196 call longjmp; 197END_CRITICAL; 198idle_loop_next_fifo: 199 SET_MODE(M_DFF1, M_DFF1) 200BEGIN_CRITICAL; 201 test LONGJMP_ADDR[1], INVALID_ADDR jz longjmp; 202END_CRITICAL; 203return: 204 ret; 205 206idle_loop_cchan: 207 SET_MODE(M_CCHAN, M_CCHAN) 208 test QOFF_CTLSTA, HS_MAILBOX_ACT jz hs_mailbox_empty; 209 or QOFF_CTLSTA, HS_MAILBOX_ACT; 210 mov LOCAL_HS_MAILBOX, HS_MAILBOX; 211hs_mailbox_empty: 212BEGIN_CRITICAL; 213 test CCSCBCTL, CCARREN|CCSCBEN jz scbdma_idle; 214 test CCSCBCTL, CCSCBDIR jnz fetch_new_scb_inprog; 215 test CCSCBCTL, CCSCBDONE jz return; 216 /* FALLTHROUGH */ 217scbdma_tohost_done: 218 test CCSCBCTL, CCARREN jz fill_qoutfifo_dmadone; 219 /* 220 * An SCB has been successfully uploaded to the host. 221 * If the SCB was uploaded for some reason other than 222 * bad SCSI status (currently only for underruns), we 223 * queue the SCB for normal completion. Otherwise, we 224 * wait until any select-out activity has halted, and 225 * then queue the completion. 226 */ 227 and CCSCBCTL, ~(CCARREN|CCSCBEN); 228 bmov COMPLETE_DMA_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 229 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL jne . + 2; 230 mvi COMPLETE_DMA_SCB_TAIL[1], SCB_LIST_NULL; 231 test SCB_SCSI_STATUS, 0xff jz scbdma_queue_completion; 232 bmov SCB_NEXT_COMPLETE, COMPLETE_ON_QFREEZE_HEAD, 2; 233 bmov COMPLETE_ON_QFREEZE_HEAD, SCBPTR, 2 ret; 234scbdma_queue_completion: 235 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 236 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 237fill_qoutfifo_dmadone: 238 and CCSCBCTL, ~(CCARREN|CCSCBEN); 239 call qoutfifo_updated; 240 mvi COMPLETE_SCB_DMAINPROG_HEAD[1], SCB_LIST_NULL; 241 bmov QOUTFIFO_NEXT_ADDR, SCBHADDR, 4; 242 test QOFF_CTLSTA, SDSCB_ROLLOVR jz return; 243 bmov QOUTFIFO_NEXT_ADDR, SHARED_DATA_ADDR, 4; 244 xor QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID_TOGGLE ret; 245END_CRITICAL; 246 247qoutfifo_updated: 248 /* 249 * If there are more commands waiting to be dma'ed 250 * to the host, always coalesce. Otherwise honor the 251 * host's wishes. 252 */ 253 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 254 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL jne coalesce_by_count; 255 test LOCAL_HS_MAILBOX, ENINT_COALESCE jz issue_cmdcmplt; 256 257 /* 258 * If we have relatively few commands outstanding, don't 259 * bother waiting for another command to complete. 260 */ 261 test CMDS_PENDING[1], 0xFF jnz coalesce_by_count; 262 /* Add -1 so that jnc means <= not just < */ 263 add A, -1, INT_COALESCING_MINCMDS; 264 add NONE, A, CMDS_PENDING; 265 jnc issue_cmdcmplt; 266 267 /* 268 * If coalescing, only coalesce up to the limit 269 * provided by the host driver. 270 */ 271coalesce_by_count: 272 mov A, INT_COALESCING_MAXCMDS; 273 add NONE, A, INT_COALESCING_CMDCOUNT; 274 jc issue_cmdcmplt; 275 /* 276 * If the timer is not currently active, 277 * fire it up. 278 */ 279 test INTCTL, SWTMINTMASK jz return; 280 bmov SWTIMER, INT_COALESCING_TIMER, 2; 281 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 282 or INTCTL, SWTMINTEN|SWTIMER_START; 283 and INTCTL, ~SWTMINTMASK ret; 284 285issue_cmdcmplt: 286 mvi INTSTAT, CMDCMPLT; 287 clr INT_COALESCING_CMDCOUNT; 288 or INTCTL, SWTMINTMASK ret; 289 290BEGIN_CRITICAL; 291fetch_new_scb_inprog: 292 test CCSCBCTL, ARRDONE jz return; 293fetch_new_scb_done: 294 and CCSCBCTL, ~(CCARREN|CCSCBEN); 295 clr A; 296 add CMDS_PENDING, 1; 297 adc CMDS_PENDING[1], A; 298 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 299 /* 300 * "Short Luns" are not placed into outgoing LQ 301 * packets in the correct byte order. Use a full 302 * sized lun field instead and fill it with the 303 * one byte of lun information we support. 304 */ 305 mov SCB_PKT_LUN[6], SCB_LUN; 306 } 307 /* 308 * The FIFO use count field is shared with the 309 * tag set by the host so that our SCB dma engine 310 * knows the correct location to store the SCB. 311 * Set it to zero before processing the SCB. 312 */ 313 clr SCB_FIFO_USE_COUNT; 314 /* Update the next SCB address to download. */ 315 bmov NEXT_QUEUED_SCB_ADDR, SCB_NEXT_SCB_BUSADDR, 4; 316 /* 317 * NULL out the SCB links since these fields 318 * occupy the same location as SCB_NEXT_SCB_BUSADDR. 319 */ 320 mvi SCB_NEXT[1], SCB_LIST_NULL; 321 mvi SCB_NEXT2[1], SCB_LIST_NULL; 322 /* Increment our position in the QINFIFO. */ 323 mov NONE, SNSCB_QOFF; 324 325 /* 326 * Save SCBID of this SCB in REG0 since 327 * SCBPTR will be clobbered during target 328 * list updates. We also record the SCB's 329 * flags so that we can refer to them even 330 * after SCBPTR has been changed. 331 */ 332 bmov REG0, SCBPTR, 2; 333 mov A, SCB_CONTROL; 334 335 /* 336 * Find the tail SCB of the execution queue 337 * for this target. 338 */ 339 shr SINDEX, 3, SCB_SCSIID; 340 and SINDEX, ~0x1; 341 mvi SINDEX[1], (WAITING_SCB_TAILS >> 8); 342 bmov DINDEX, SINDEX, 2; 343 bmov SCBPTR, SINDIR, 2; 344 345 /* 346 * Update the tail to point to the new SCB. 347 */ 348 bmov DINDIR, REG0, 2; 349 350 /* 351 * If the queue was empty, queue this SCB as 352 * the first for this target. 353 */ 354 cmp SCBPTR[1], SCB_LIST_NULL je first_new_target_scb; 355 356 /* 357 * SCBs that want to send messages must always be 358 * at the head of their per-target queue so that 359 * ATN can be asserted even if the current 360 * negotiation agreement is packetized. If the 361 * target queue is empty, the SCB can be queued 362 * immediately. If the queue is not empty, we must 363 * wait for it to empty before entering this SCB 364 * into the waiting for selection queue. Otherwise 365 * our batching and round-robin selection scheme 366 * could allow commands to be queued out of order. 367 * To simplify the implementation, we stop pulling 368 * new commands from the host until the MK_MESSAGE 369 * SCB can be queued to the waiting for selection 370 * list. 371 */ 372 test A, MK_MESSAGE jz batch_scb; 373 374 /* 375 * If the last SCB is also a MK_MESSAGE SCB, then 376 * order is preserved even if we batch. 377 */ 378 test SCB_CONTROL, MK_MESSAGE jz batch_scb; 379 380 /* 381 * Defer this SCB and stop fetching new SCBs until 382 * it can be queued. Since the SCB_SCSIID of the 383 * tail SCB must be the same as that of the newly 384 * queued SCB, there is no need to restore the SCBID 385 * here. 386 */ 387 or SEQ_FLAGS2, PENDING_MK_MESSAGE; 388 bmov MK_MESSAGE_SCB, REG0, 2; 389 mov MK_MESSAGE_SCSIID, SCB_SCSIID ret; 390 391batch_scb: 392 /* 393 * Otherwise just update the previous tail SCB to 394 * point to the new tail. 395 */ 396 bmov SCB_NEXT, REG0, 2 ret; 397 398first_new_target_scb: 399 /* 400 * Append SCB to the tail of the waiting for 401 * selection list. 402 */ 403 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL je first_new_scb; 404 bmov SCBPTR, WAITING_TID_TAIL, 2; 405 bmov SCB_NEXT2, REG0, 2; 406 bmov WAITING_TID_TAIL, REG0, 2 ret; 407first_new_scb: 408 /* 409 * Whole list is empty, so the head of 410 * the list must be initialized too. 411 */ 412 bmov WAITING_TID_HEAD, REG0, 2; 413 bmov WAITING_TID_TAIL, REG0, 2 ret; 414END_CRITICAL; 415 416scbdma_idle: 417 /* 418 * Don't bother downloading new SCBs to execute 419 * if select-outs are currently frozen or we have 420 * a MK_MESSAGE SCB waiting to enter the queue. 421 */ 422 test SEQ_FLAGS2, SELECTOUT_QFROZEN|PENDING_MK_MESSAGE 423 jnz scbdma_no_new_scbs; 424BEGIN_CRITICAL; 425 test QOFF_CTLSTA, NEW_SCB_AVAIL jnz fetch_new_scb; 426scbdma_no_new_scbs: 427 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne dma_complete_scb; 428 cmp COMPLETE_SCB_HEAD[1], SCB_LIST_NULL je return; 429 /* FALLTHROUGH */ 430fill_qoutfifo: 431 /* 432 * Keep track of the SCBs we are dmaing just 433 * in case the DMA fails or is aborted. 434 */ 435 bmov COMPLETE_SCB_DMAINPROG_HEAD, COMPLETE_SCB_HEAD, 2; 436 mvi CCSCBCTL, CCSCBRESET; 437 bmov SCBHADDR, QOUTFIFO_NEXT_ADDR, 4; 438 mov A, QOUTFIFO_NEXT_ADDR; 439 bmov SCBPTR, COMPLETE_SCB_HEAD, 2; 440fill_qoutfifo_loop: 441 bmov CCSCBRAM, SCBPTR, 2; 442 mov CCSCBRAM, SCB_SGPTR[0]; 443 mov CCSCBRAM, QOUTFIFO_ENTRY_VALID_TAG; 444 mov NONE, SDSCB_QOFF; 445 inc INT_COALESCING_CMDCOUNT; 446 add CMDS_PENDING, -1; 447 adc CMDS_PENDING[1], -1; 448 cmp SCB_NEXT_COMPLETE[1], SCB_LIST_NULL je fill_qoutfifo_done; 449 cmp CCSCBADDR, CCSCBADDR_MAX je fill_qoutfifo_done; 450 test QOFF_CTLSTA, SDSCB_ROLLOVR jnz fill_qoutfifo_done; 451 /* 452 * Don't cross an ADB or Cachline boundary when DMA'ing 453 * completion entries. In PCI mode, at least in 32/33 454 * configurations, the SCB DMA engine may lose its place 455 * in the data-stream should the target force a retry on 456 * something other than an 8byte aligned boundary. In 457 * PCI-X mode, we do this to avoid split transactions since 458 * many chipsets seem to be unable to format proper split 459 * completions to continue the data transfer. 460 */ 461 add SINDEX, A, CCSCBADDR; 462 test SINDEX, CACHELINE_MASK jz fill_qoutfifo_done; 463 bmov SCBPTR, SCB_NEXT_COMPLETE, 2; 464 jmp fill_qoutfifo_loop; 465fill_qoutfifo_done: 466 mov SCBHCNT, CCSCBADDR; 467 mvi CCSCBCTL, CCSCBEN|CCSCBRESET; 468 bmov COMPLETE_SCB_HEAD, SCB_NEXT_COMPLETE, 2; 469 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL ret; 470 471fetch_new_scb: 472 bmov SCBHADDR, NEXT_QUEUED_SCB_ADDR, 4; 473 mvi CCARREN|CCSCBEN|CCSCBDIR|CCSCBRESET jmp dma_scb; 474dma_complete_scb: 475 bmov SCBPTR, COMPLETE_DMA_SCB_HEAD, 2; 476 bmov SCBHADDR, SCB_BUSADDR, 4; 477 mvi CCARREN|CCSCBEN|CCSCBRESET jmp dma_scb; 478 479/* 480 * Either post or fetch an SCB from host memory. The caller 481 * is responsible for polling for transfer completion. 482 * 483 * Prerequisits: Mode == M_CCHAN 484 * SINDEX contains CCSCBCTL flags 485 * SCBHADDR set to Host SCB address 486 * SCBPTR set to SCB src location on "push" operations 487 */ 488SET_SRC_MODE M_CCHAN; 489SET_DST_MODE M_CCHAN; 490dma_scb: 491 mvi SCBHCNT, SCB_TRANSFER_SIZE; 492 mov CCSCBCTL, SINDEX ret; 493 494setjmp: 495 /* 496 * At least on the A, a return in the same 497 * instruction as the bmov results in a return 498 * to the caller, not to the new address at the 499 * top of the stack. Since we want the latter 500 * (we use setjmp to register a handler from an 501 * interrupt context but not invoke that handler 502 * until we return to our idle loop), use a 503 * separate ret instruction. 504 */ 505 bmov LONGJMP_ADDR, STACK, 2; 506 ret; 507setjmp_inline: 508 bmov LONGJMP_ADDR, STACK, 2; 509longjmp: 510 bmov STACK, LONGJMP_ADDR, 2 ret; 511END_CRITICAL; 512 513/*************************** Chip Bug Work Arounds ****************************/ 514/* 515 * Must disable interrupts when setting the mode pointer 516 * register as an interrupt occurring mid update will 517 * fail to store the new mode value for restoration on 518 * an iret. 519 */ 520if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 521set_mode_work_around: 522 mvi SEQINTCTL, INTVEC1DSL; 523 mov MODE_PTR, SINDEX; 524 clr SEQINTCTL ret; 525} 526 527 528if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 529set_seqint_work_around: 530 mov SEQINTCODE, SINDEX; 531 mvi SEQINTCODE, NO_SEQINT ret; 532} 533 534/************************ Packetized LongJmp Routines *************************/ 535SET_SRC_MODE M_SCSI; 536SET_DST_MODE M_SCSI; 537start_selection: 538BEGIN_CRITICAL; 539 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 540 /* 541 * Razor #494 542 * Rev A hardware fails to update LAST/CURR/NEXTSCB 543 * correctly after a packetized selection in several 544 * situations: 545 * 546 * 1) If only one command existed in the queue, the 547 * LAST/CURR/NEXTSCB are unchanged. 548 * 549 * 2) In a non QAS, protocol allowed phase change, 550 * the queue is shifted 1 too far. LASTSCB is 551 * the last SCB that was correctly processed. 552 * 553 * 3) In the QAS case, if the full list of commands 554 * was successfully sent, NEXTSCB is NULL and neither 555 * CURRSCB nor LASTSCB can be trusted. We must 556 * manually walk the list counting MAXCMDCNT elements 557 * to find the last SCB that was sent correctly. 558 * 559 * To simplify the workaround for this bug in SELDO 560 * handling, we initialize LASTSCB prior to enabling 561 * selection so we can rely on it even for case #1 above. 562 */ 563 bmov LASTSCB, WAITING_TID_HEAD, 2; 564 } 565 bmov CURRSCB, WAITING_TID_HEAD, 2; 566 bmov SCBPTR, WAITING_TID_HEAD, 2; 567 shr SELOID, 4, SCB_SCSIID; 568 /* 569 * If we want to send a message to the device, ensure 570 * we are selecting with atn irregardless of our packetized 571 * agreement. Since SPI4 only allows target reset or PPR 572 * messages if this is a packetized connection, the change 573 * to our negotiation table entry for this selection will 574 * be cleared when the message is acted on. 575 */ 576 test SCB_CONTROL, MK_MESSAGE jz . + 3; 577 mov NEGOADDR, SELOID; 578 or NEGCONOPTS, ENAUTOATNO; 579 or SCSISEQ0, ENSELO ret; 580END_CRITICAL; 581 582/* 583 * Allocate a FIFO for a non-packetized transaction. 584 * In RevA hardware, both FIFOs must be free before we 585 * can allocate a FIFO for a non-packetized transaction. 586 */ 587allocate_fifo_loop: 588 /* 589 * Do whatever work is required to free a FIFO. 590 */ 591 call idle_loop_service_fifos; 592 SET_MODE(M_SCSI, M_SCSI) 593allocate_fifo: 594 if ((ahd->bugs & AHD_NONPACKFIFO_BUG) != 0) { 595 and A, FIFO0FREE|FIFO1FREE, DFFSTAT; 596 cmp A, FIFO0FREE|FIFO1FREE jne allocate_fifo_loop; 597 } else { 598 test DFFSTAT, FIFO1FREE jnz allocate_fifo1; 599 test DFFSTAT, FIFO0FREE jz allocate_fifo_loop; 600 mvi DFFSTAT, B_CURRFIFO_0; 601 SET_MODE(M_DFF0, M_DFF0) 602 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 603 } 604SET_SRC_MODE M_SCSI; 605SET_DST_MODE M_SCSI; 606allocate_fifo1: 607 mvi DFFSTAT, CURRFIFO_1; 608 SET_MODE(M_DFF1, M_DFF1) 609 bmov SCBPTR, ALLOCFIFO_SCBPTR, 2 ret; 610 611/* 612 * We have been reselected as an initiator 613 * or selected as a target. 614 */ 615SET_SRC_MODE M_SCSI; 616SET_DST_MODE M_SCSI; 617select_in: 618 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 619 /* 620 * On Rev A. hardware, the busy LED is only 621 * turned on automaically during selections 622 * and re-selections. Make the LED status 623 * more useful by forcing it to be on from 624 * the point of selection until our idle 625 * loop determines that neither of our FIFOs 626 * are busy. This handles the non-packetized 627 * case nicely as we will not return to the 628 * idle loop until the busfree at the end of 629 * each transaction. 630 */ 631 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 632 } 633 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 634 /* 635 * Test to ensure that the bus has not 636 * already gone free prior to clearing 637 * any stale busfree status. This avoids 638 * a window whereby a busfree just after 639 * a selection could be missed. 640 */ 641 test SCSISIGI, BSYI jz . + 2; 642 mvi CLRSINT1,CLRBUSFREE; 643 or SIMODE1, ENBUSFREE; 644 } 645 or SXFRCTL0, SPIOEN; 646 and SAVED_SCSIID, SELID_MASK, SELID; 647 and A, OID, IOWNID; 648 or SAVED_SCSIID, A; 649 mvi CLRSINT0, CLRSELDI; 650 jmp ITloop; 651 652/* 653 * We have successfully selected out. 654 * 655 * Clear SELDO. 656 * Dequeue all SCBs sent from the waiting queue 657 * Requeue all SCBs *not* sent to the tail of the waiting queue 658 * Take Razor #494 into account for above. 659 * 660 * In Packetized Mode: 661 * Return to the idle loop. Our interrupt handler will take 662 * care of any incoming L_Qs. 663 * 664 * In Non-Packetize Mode: 665 * Continue to our normal state machine. 666 */ 667SET_SRC_MODE M_SCSI; 668SET_DST_MODE M_SCSI; 669select_out: 670BEGIN_CRITICAL; 671 if ((ahd->bugs & AHD_FAINT_LED_BUG) != 0) { 672 /* 673 * On Rev A. hardware, the busy LED is only 674 * turned on automaically during selections 675 * and re-selections. Make the LED status 676 * more useful by forcing it to be on from 677 * the point of re-selection until our idle 678 * loop determines that neither of our FIFOs 679 * are busy. This handles the non-packetized 680 * case nicely as we will not return to the 681 * idle loop until the busfree at the end of 682 * each transaction. 683 */ 684 or SBLKCTL, DIAGLEDEN|DIAGLEDON; 685 } 686 /* Clear out all SCBs that have been successfully sent. */ 687 if ((ahd->bugs & AHD_SENT_SCB_UPDATE_BUG) != 0) { 688 /* 689 * For packetized, the LQO manager clears ENSELO on 690 * the assertion of SELDO. If we are non-packetized, 691 * LASTSCB and CURRSCB are accurate. 692 */ 693 test SCSISEQ0, ENSELO jnz use_lastscb; 694 695 /* 696 * The update is correct for LQOSTAT1 errors. All 697 * but LQOBUSFREE are handled by kernel interrupts. 698 * If we see LQOBUSFREE, return to the idle loop. 699 * Once we are out of the select_out critical section, 700 * the kernel will cleanup the LQOBUSFREE and we will 701 * eventually restart the selection if appropriate. 702 */ 703 test LQOSTAT1, LQOBUSFREE jnz idle_loop; 704 705 /* 706 * On a phase change oustside of packet boundaries, 707 * LASTSCB points to the currently active SCB context 708 * on the bus. 709 */ 710 test LQOSTAT2, LQOPHACHGOUTPKT jnz use_lastscb; 711 712 /* 713 * If the hardware has traversed the whole list, NEXTSCB 714 * will be NULL, CURRSCB and LASTSCB cannot be trusted, 715 * but MAXCMDCNT is accurate. If we stop part way through 716 * the list or only had one command to issue, NEXTSCB[1] is 717 * not NULL and LASTSCB is the last command to go out. 718 */ 719 cmp NEXTSCB[1], SCB_LIST_NULL jne use_lastscb; 720 721 /* 722 * Brute force walk. 723 */ 724 bmov SCBPTR, WAITING_TID_HEAD, 2; 725 mvi SEQINTCTL, INTVEC1DSL; 726 mvi MODE_PTR, MK_MODE(M_CFG, M_CFG); 727 mov A, MAXCMDCNT; 728 mvi MODE_PTR, MK_MODE(M_SCSI, M_SCSI); 729 clr SEQINTCTL; 730find_lastscb_loop: 731 dec A; 732 test A, 0xFF jz found_last_sent_scb; 733 bmov SCBPTR, SCB_NEXT, 2; 734 jmp find_lastscb_loop; 735use_lastscb: 736 bmov SCBPTR, LASTSCB, 2; 737found_last_sent_scb: 738 bmov CURRSCB, SCBPTR, 2; 739curscb_ww_done: 740 } else { 741 bmov SCBPTR, CURRSCB, 2; 742 } 743 744 /* 745 * The whole list made it. Clear our tail pointer to indicate 746 * that the per-target selection queue is now empty. 747 */ 748 cmp SCB_NEXT[1], SCB_LIST_NULL je select_out_clear_tail; 749 750 /* 751 * Requeue any SCBs not sent, to the tail of the waiting Q. 752 * We know that neither the per-TID list nor the list of 753 * TIDs is empty. Use this knowledge to our advantage and 754 * queue the remainder to the tail of the global execution 755 * queue. 756 */ 757 bmov REG0, SCB_NEXT, 2; 758select_out_queue_remainder: 759 bmov SCBPTR, WAITING_TID_TAIL, 2; 760 bmov SCB_NEXT2, REG0, 2; 761 bmov WAITING_TID_TAIL, REG0, 2; 762 jmp select_out_inc_tid_q; 763 764select_out_clear_tail: 765 /* 766 * Queue any pending MK_MESSAGE SCB for this target now 767 * that the queue is empty. 768 */ 769 test SEQ_FLAGS2, PENDING_MK_MESSAGE jz select_out_no_mk_message_scb; 770 mov A, MK_MESSAGE_SCSIID; 771 cmp SCB_SCSIID, A jne select_out_no_mk_message_scb; 772 and SEQ_FLAGS2, ~PENDING_MK_MESSAGE; 773 bmov REG0, MK_MESSAGE_SCB, 2; 774 jmp select_out_queue_remainder; 775 776select_out_no_mk_message_scb: 777 /* 778 * Clear this target's execution tail and increment the queue. 779 */ 780 shr DINDEX, 3, SCB_SCSIID; 781 or DINDEX, 1; /* Want only the second byte */ 782 mvi DINDEX[1], ((WAITING_SCB_TAILS) >> 8); 783 mvi DINDIR, SCB_LIST_NULL; 784select_out_inc_tid_q: 785 bmov SCBPTR, WAITING_TID_HEAD, 2; 786 bmov WAITING_TID_HEAD, SCB_NEXT2, 2; 787 cmp WAITING_TID_HEAD[1], SCB_LIST_NULL jne . + 2; 788 mvi WAITING_TID_TAIL[1], SCB_LIST_NULL; 789 bmov SCBPTR, CURRSCB, 2; 790 mvi CLRSINT0, CLRSELDO; 791 test LQOSTAT2, LQOPHACHGOUTPKT jnz unexpected_nonpkt_mode_cleared; 792 test LQOSTAT1, LQOPHACHGINPKT jnz unexpected_nonpkt_mode_cleared; 793 794 /* 795 * If this is a packetized connection, return to our 796 * idle_loop and let our interrupt handler deal with 797 * any connection setup/teardown issues. The only 798 * exceptions are the case of MK_MESSAGE and task management 799 * SCBs. 800 */ 801 if ((ahd->bugs & AHD_LQO_ATNO_BUG) != 0) { 802 /* 803 * In the A, the LQO manager transitions to LQOSTOP0 even if 804 * we have selected out with ATN asserted and the target 805 * REQs in a non-packet phase. 806 */ 807 test SCB_CONTROL, MK_MESSAGE jz select_out_no_message; 808 test SCSISIGO, ATNO jnz select_out_non_packetized; 809select_out_no_message: 810 } 811 test LQOSTAT2, LQOSTOP0 jz select_out_non_packetized; 812 test SCB_TASK_MANAGEMENT, 0xFF jz idle_loop; 813 SET_SEQINTCODE(TASKMGMT_FUNC_COMPLETE) 814 jmp idle_loop; 815 816select_out_non_packetized: 817 /* Non packetized request. */ 818 and SCSISEQ0, ~ENSELO; 819 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 820 /* 821 * Test to ensure that the bus has not 822 * already gone free prior to clearing 823 * any stale busfree status. This avoids 824 * a window whereby a busfree just after 825 * a selection could be missed. 826 */ 827 test SCSISIGI, BSYI jz . + 2; 828 mvi CLRSINT1,CLRBUSFREE; 829 or SIMODE1, ENBUSFREE; 830 } 831 mov SAVED_SCSIID, SCB_SCSIID; 832 mov SAVED_LUN, SCB_LUN; 833 mvi SEQ_FLAGS, NO_CDB_SENT; 834END_CRITICAL; 835 or SXFRCTL0, SPIOEN; 836 837 /* 838 * As soon as we get a successful selection, the target 839 * should go into the message out phase since we have ATN 840 * asserted. 841 */ 842 mvi MSG_OUT, MSG_IDENTIFYFLAG; 843 844 /* 845 * Main loop for information transfer phases. Wait for the 846 * target to assert REQ before checking MSG, C/D and I/O for 847 * the bus phase. 848 */ 849mesgin_phasemis: 850ITloop: 851 call phase_lock; 852 853 mov A, LASTPHASE; 854 855 test A, ~P_DATAIN_DT jz p_data; 856 cmp A,P_COMMAND je p_command; 857 cmp A,P_MESGOUT je p_mesgout; 858 cmp A,P_STATUS je p_status; 859 cmp A,P_MESGIN je p_mesgin; 860 861 SET_SEQINTCODE(BAD_PHASE) 862 jmp ITloop; /* Try reading the bus again. */ 863 864/* 865 * Command phase. Set up the DMA registers and let 'er rip. 866 */ 867p_command: 868 test SEQ_FLAGS, NOT_IDENTIFIED jz p_command_okay; 869 SET_SEQINTCODE(PROTO_VIOLATION) 870p_command_okay: 871 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 872 jnz p_command_allocate_fifo; 873 /* 874 * Command retry. Free our current FIFO and 875 * re-allocate a FIFO so transfer state is 876 * reset. 877 */ 878SET_SRC_MODE M_DFF1; 879SET_DST_MODE M_DFF1; 880 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 881 SET_MODE(M_SCSI, M_SCSI) 882p_command_allocate_fifo: 883 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 884 call allocate_fifo; 885SET_SRC_MODE M_DFF1; 886SET_DST_MODE M_DFF1; 887 add NONE, -17, SCB_CDB_LEN; 888 jnc p_command_embedded; 889p_command_from_host: 890 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 891 mvi SG_CACHE_PRE, LAST_SEG; 892 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 893 jmp p_command_xfer; 894p_command_embedded: 895 bmov SHCNT[0], SCB_CDB_LEN, 1; 896 bmov DFDAT, SCB_CDB_STORE, 16; 897 mvi DFCNTRL, SCSIEN; 898p_command_xfer: 899 and SEQ_FLAGS, ~NO_CDB_SENT; 900 if ((ahd->features & AHD_FAST_CDB_DELIVERY) != 0) { 901 /* 902 * To speed up CDB delivery in Rev B, all CDB acks 903 * are "released" to the output sync as soon as the 904 * command phase starts. There is only one problem 905 * with this approach. If the target changes phase 906 * before all data are sent, we have left over acks 907 * that can go out on the bus in a data phase. Due 908 * to other chip contraints, this only happens if 909 * the target goes to data-in, but if the acks go 910 * out before we can test SDONE, we'll think that 911 * the transfer has completed successfully. Work 912 * around this by taking advantage of the 400ns or 913 * 800ns dead time between command phase and the REQ 914 * of the new phase. If the transfer has completed 915 * successfully, SCSIEN should fall *long* before we 916 * see a phase change. We thus treat any phasemiss 917 * that occurs before SCSIEN falls as an incomplete 918 * transfer. 919 */ 920 test SSTAT1, PHASEMIS jnz p_command_xfer_failed; 921 test DFCNTRL, SCSIEN jnz . - 1; 922 } else { 923 test DFCNTRL, SCSIEN jnz .; 924 } 925 /* 926 * DMA Channel automatically disabled. 927 * Don't allow a data phase if the command 928 * was not fully transferred. 929 */ 930 test SSTAT2, SDONE jnz ITloop; 931p_command_xfer_failed: 932 or SEQ_FLAGS, NO_CDB_SENT; 933 jmp ITloop; 934 935 936/* 937 * Status phase. Wait for the data byte to appear, then read it 938 * and store it into the SCB. 939 */ 940SET_SRC_MODE M_SCSI; 941SET_DST_MODE M_SCSI; 942p_status: 943 test SEQ_FLAGS,NOT_IDENTIFIED jnz mesgin_proto_violation; 944p_status_okay: 945 mov SCB_SCSI_STATUS, SCSIDAT; 946 or SCB_CONTROL, STATUS_RCVD; 947 jmp ITloop; 948 949/* 950 * Message out phase. If MSG_OUT is MSG_IDENTIFYFLAG, build a full 951 * indentify message sequence and send it to the target. The host may 952 * override this behavior by setting the MK_MESSAGE bit in the SCB 953 * control byte. This will cause us to interrupt the host and allow 954 * it to handle the message phase completely on its own. If the bit 955 * associated with this target is set, we will also interrupt the host, 956 * thereby allowing it to send a message on the next selection regardless 957 * of the transaction being sent. 958 * 959 * If MSG_OUT is == HOST_MSG, also interrupt the host and take a message. 960 * This is done to allow the host to send messages outside of an identify 961 * sequence while protecting the seqencer from testing the MK_MESSAGE bit 962 * on an SCB that might not be for the current nexus. (For example, a 963 * BDR message in response to a bad reselection would leave us pointed to 964 * an SCB that doesn't have anything to do with the current target). 965 * 966 * Otherwise, treat MSG_OUT as a 1 byte message to send (abort, abort tag, 967 * bus device reset). 968 * 969 * When there are no messages to send, MSG_OUT should be set to MSG_NOOP, 970 * in case the target decides to put us in this phase for some strange 971 * reason. 972 */ 973p_mesgout_retry: 974 /* Turn on ATN for the retry */ 975 mvi SCSISIGO, ATNO; 976p_mesgout: 977 mov SINDEX, MSG_OUT; 978 cmp SINDEX, MSG_IDENTIFYFLAG jne p_mesgout_from_host; 979 test SCB_CONTROL,MK_MESSAGE jnz host_message_loop; 980p_mesgout_identify: 981 or SINDEX, MSG_IDENTIFYFLAG|DISCENB, SCB_LUN; 982 test SCB_CONTROL, DISCENB jnz . + 2; 983 and SINDEX, ~DISCENB; 984/* 985 * Send a tag message if TAG_ENB is set in the SCB control block. 986 * Use SCB_NONPACKET_TAG as the tag value. 987 */ 988p_mesgout_tag: 989 test SCB_CONTROL,TAG_ENB jz p_mesgout_onebyte; 990 mov SCSIDAT, SINDEX; /* Send the identify message */ 991 call phase_lock; 992 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 993 and SCSIDAT,TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL; 994 call phase_lock; 995 cmp LASTPHASE, P_MESGOUT jne p_mesgout_done; 996 mov SCBPTR jmp p_mesgout_onebyte; 997/* 998 * Interrupt the driver, and allow it to handle this message 999 * phase and any required retries. 1000 */ 1001p_mesgout_from_host: 1002 cmp SINDEX, HOST_MSG jne p_mesgout_onebyte; 1003 jmp host_message_loop; 1004 1005p_mesgout_onebyte: 1006 mvi CLRSINT1, CLRATNO; 1007 mov SCSIDAT, SINDEX; 1008 1009/* 1010 * If the next bus phase after ATN drops is message out, it means 1011 * that the target is requesting that the last message(s) be resent. 1012 */ 1013 call phase_lock; 1014 cmp LASTPHASE, P_MESGOUT je p_mesgout_retry; 1015 1016p_mesgout_done: 1017 mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */ 1018 mov LAST_MSG, MSG_OUT; 1019 mvi MSG_OUT, MSG_NOOP; /* No message left */ 1020 jmp ITloop; 1021 1022/* 1023 * Message in phase. Bytes are read using Automatic PIO mode. 1024 */ 1025p_mesgin: 1026 /* read the 1st message byte */ 1027 mvi ACCUM call inb_first; 1028 1029 test A,MSG_IDENTIFYFLAG jnz mesgin_identify; 1030 cmp A,MSG_DISCONNECT je mesgin_disconnect; 1031 cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs; 1032 cmp ALLZEROS,A je mesgin_complete; 1033 cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs; 1034 cmp A,MSG_IGN_WIDE_RESIDUE je mesgin_ign_wide_residue; 1035 cmp A,MSG_NOOP je mesgin_done; 1036 1037/* 1038 * Pushed message loop to allow the kernel to 1039 * run it's own message state engine. To avoid an 1040 * extra nop instruction after signaling the kernel, 1041 * we perform the phase_lock before checking to see 1042 * if we should exit the loop and skip the phase_lock 1043 * in the ITloop. Performing back to back phase_locks 1044 * shouldn't hurt, but why do it twice... 1045 */ 1046host_message_loop: 1047 call phase_lock; /* Benign the first time through. */ 1048 SET_SEQINTCODE(HOST_MSG_LOOP) 1049 cmp RETURN_1, EXIT_MSG_LOOP je ITloop; 1050 cmp RETURN_1, CONT_MSG_LOOP_WRITE jne . + 3; 1051 mov SCSIDAT, RETURN_2; 1052 jmp host_message_loop; 1053 /* Must be CONT_MSG_LOOP_READ */ 1054 mov NONE, SCSIDAT; /* ACK Byte */ 1055 jmp host_message_loop; 1056 1057mesgin_ign_wide_residue: 1058 mov SAVED_MODE, MODE_PTR; 1059 SET_MODE(M_SCSI, M_SCSI) 1060 shr NEGOADDR, 4, SAVED_SCSIID; 1061 mov A, NEGCONOPTS; 1062 RESTORE_MODE(SAVED_MODE) 1063 test A, WIDEXFER jz mesgin_reject; 1064 /* Pull the residue byte */ 1065 mvi REG0 call inb_next; 1066 cmp REG0, 0x01 jne mesgin_reject; 1067 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz . + 2; 1068 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jnz mesgin_done; 1069 SET_SEQINTCODE(IGN_WIDE_RES) 1070 jmp mesgin_done; 1071 1072mesgin_proto_violation: 1073 SET_SEQINTCODE(PROTO_VIOLATION) 1074 jmp mesgin_done; 1075mesgin_reject: 1076 mvi MSG_MESSAGE_REJECT call mk_mesg; 1077mesgin_done: 1078 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1079 jmp ITloop; 1080 1081#define INDEX_DISC_LIST(scsiid, lun) \ 1082 and A, 0xC0, scsiid; \ 1083 or SCBPTR, A, lun; \ 1084 clr SCBPTR[1]; \ 1085 and SINDEX, 0x30, scsiid; \ 1086 shr SINDEX, 3; /* Multiply by 2 */ \ 1087 add SINDEX, (SCB_DISCONNECTED_LISTS & 0xFF); \ 1088 mvi SINDEX[1], ((SCB_DISCONNECTED_LISTS >> 8) & 0xFF) 1089 1090mesgin_identify: 1091 /* 1092 * Determine whether a target is using tagged or non-tagged 1093 * transactions by first looking at the transaction stored in 1094 * the per-device, disconnected array. If there is no untagged 1095 * transaction for this target, this must be a tagged transaction. 1096 */ 1097 and SAVED_LUN, MSG_IDENTIFY_LUNMASK, A; 1098 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1099 bmov DINDEX, SINDEX, 2; 1100 bmov REG0, SINDIR, 2; 1101 cmp REG0[1], SCB_LIST_NULL je snoop_tag; 1102 /* Untagged. Clear the busy table entry and setup the SCB. */ 1103 bmov DINDIR, ALLONES, 2; 1104 bmov SCBPTR, REG0, 2; 1105 jmp setup_SCB; 1106 1107/* 1108 * Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message. 1109 * If we get one, we use the tag returned to find the proper 1110 * SCB. After receiving the tag, look for the SCB at SCB locations tag and 1111 * tag + 256. 1112 */ 1113snoop_tag: 1114 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1115 or SEQ_FLAGS, 0x80; 1116 } 1117 mov NONE, SCSIDAT; /* ACK Identify MSG */ 1118 call phase_lock; 1119 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1120 or SEQ_FLAGS, 0x1; 1121 } 1122 cmp LASTPHASE, P_MESGIN jne not_found_ITloop; 1123 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1124 or SEQ_FLAGS, 0x2; 1125 } 1126 cmp SCSIBUS, MSG_SIMPLE_Q_TAG jne not_found; 1127get_tag: 1128 clr SCBPTR[1]; 1129 mvi SCBPTR call inb_next; /* tag value */ 1130verify_scb: 1131 test SCB_CONTROL,DISCONNECTED jz verify_other_scb; 1132 mov A, SAVED_SCSIID; 1133 cmp SCB_SCSIID, A jne verify_other_scb; 1134 mov A, SAVED_LUN; 1135 cmp SCB_LUN, A je setup_SCB_disconnected; 1136verify_other_scb: 1137 xor SCBPTR[1], 1; 1138 test SCBPTR[1], 0xFF jnz verify_scb; 1139 jmp not_found; 1140 1141/* 1142 * Ensure that the SCB the tag points to is for 1143 * an SCB transaction to the reconnecting target. 1144 */ 1145setup_SCB: 1146 if ((ahd->flags & AHD_SEQUENCER_DEBUG) != 0) { 1147 or SEQ_FLAGS, 0x10; 1148 } 1149 test SCB_CONTROL,DISCONNECTED jz not_found; 1150setup_SCB_disconnected: 1151 and SCB_CONTROL,~DISCONNECTED; 1152 clr SEQ_FLAGS; /* make note of IDENTIFY */ 1153 test SCB_SGPTR, SG_LIST_NULL jnz . + 3; 1154 bmov ALLOCFIFO_SCBPTR, SCBPTR, 2; 1155 call allocate_fifo; 1156 /* See if the host wants to send a message upon reconnection */ 1157 test SCB_CONTROL, MK_MESSAGE jz mesgin_done; 1158 mvi HOST_MSG call mk_mesg; 1159 jmp mesgin_done; 1160 1161not_found: 1162 SET_SEQINTCODE(NO_MATCH) 1163 jmp mesgin_done; 1164 1165not_found_ITloop: 1166 SET_SEQINTCODE(NO_MATCH) 1167 jmp ITloop; 1168 1169/* 1170 * We received a "command complete" message. Put the SCB on the complete 1171 * queue and trigger a completion interrupt via the idle loop. Before doing 1172 * so, check to see if there is a residual or the status byte is something 1173 * other than STATUS_GOOD (0). In either of these conditions, we upload the 1174 * SCB back to the host so it can process this information. 1175 */ 1176mesgin_complete: 1177 1178 /* 1179 * If ATN is raised, we still want to give the target a message. 1180 * Perhaps there was a parity error on this last message byte. 1181 * Either way, the target should take us to message out phase 1182 * and then attempt to complete the command again. We should use a 1183 * critical section here to guard against a timeout triggering 1184 * for this command and setting ATN while we are still processing 1185 * the completion. 1186 test SCSISIGI, ATNI jnz mesgin_done; 1187 */ 1188 1189 /* 1190 * If we are identified and have successfully sent the CDB, 1191 * any status will do. Optimize this fast path. 1192 */ 1193 test SCB_CONTROL, STATUS_RCVD jz mesgin_proto_violation; 1194 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz complete_accepted; 1195 1196 /* 1197 * If the target never sent an identify message but instead went 1198 * to mesgin to give an invalid message, let the host abort us. 1199 */ 1200 test SEQ_FLAGS, NOT_IDENTIFIED jnz mesgin_proto_violation; 1201 1202 /* 1203 * If we recevied good status but never successfully sent the 1204 * cdb, abort the command. 1205 */ 1206 test SCB_SCSI_STATUS,0xff jnz complete_accepted; 1207 test SEQ_FLAGS, NO_CDB_SENT jnz mesgin_proto_violation; 1208complete_accepted: 1209 1210 /* 1211 * See if we attempted to deliver a message but the target ingnored us. 1212 */ 1213 test SCB_CONTROL, MK_MESSAGE jz complete_nomsg; 1214 SET_SEQINTCODE(MKMSG_FAILED) 1215complete_nomsg: 1216 call queue_scb_completion; 1217 jmp await_busfree; 1218 1219BEGIN_CRITICAL; 1220freeze_queue: 1221 /* Cancel any pending select-out. */ 1222 test SSTAT0, SELDO|SELINGO jnz . + 2; 1223 and SCSISEQ0, ~ENSELO; 1224 mov ACCUM_SAVE, A; 1225 clr A; 1226 add QFREEZE_COUNT, 1; 1227 adc QFREEZE_COUNT[1], A; 1228 or SEQ_FLAGS2, SELECTOUT_QFROZEN; 1229 mov A, ACCUM_SAVE ret; 1230END_CRITICAL; 1231 1232/* 1233 * Complete the current FIFO's SCB if data for this same 1234 * SCB is not transferring in the other FIFO. 1235 */ 1236SET_SRC_MODE M_DFF1; 1237SET_DST_MODE M_DFF1; 1238pkt_complete_scb_if_fifos_idle: 1239 bmov ARG_1, SCBPTR, 2; 1240 mvi DFFSXFRCTL, CLRCHN; 1241 SET_MODE(M_SCSI, M_SCSI) 1242 bmov SCBPTR, ARG_1, 2; 1243 test SCB_FIFO_USE_COUNT, 0xFF jnz return; 1244queue_scb_completion: 1245 test SCB_SCSI_STATUS,0xff jnz bad_status; 1246 /* 1247 * Check for residuals 1248 */ 1249 test SCB_SGPTR, SG_LIST_NULL jnz complete; /* No xfer */ 1250 test SCB_SGPTR, SG_FULL_RESID jnz upload_scb;/* Never xfered */ 1251 test SCB_RESIDUAL_SGPTR, SG_LIST_NULL jz upload_scb; 1252complete: 1253BEGIN_CRITICAL; 1254 bmov SCB_NEXT_COMPLETE, COMPLETE_SCB_HEAD, 2; 1255 bmov COMPLETE_SCB_HEAD, SCBPTR, 2 ret; 1256END_CRITICAL; 1257bad_status: 1258 cmp SCB_SCSI_STATUS, STATUS_PKT_SENSE je upload_scb; 1259 call freeze_queue; 1260upload_scb: 1261 /* 1262 * Restore SCB TAG since we reuse this field 1263 * in the sequencer. We don't want to corrupt 1264 * it on the host. 1265 */ 1266 bmov SCB_TAG, SCBPTR, 2; 1267BEGIN_CRITICAL; 1268 or SCB_SGPTR, SG_STATUS_VALID; 1269 mvi SCB_NEXT_COMPLETE[1], SCB_LIST_NULL; 1270 cmp COMPLETE_DMA_SCB_HEAD[1], SCB_LIST_NULL jne add_dma_scb_tail; 1271 bmov COMPLETE_DMA_SCB_HEAD, SCBPTR, 2; 1272 bmov COMPLETE_DMA_SCB_TAIL, SCBPTR, 2 ret; 1273add_dma_scb_tail: 1274 bmov REG0, SCBPTR, 2; 1275 bmov SCBPTR, COMPLETE_DMA_SCB_TAIL, 2; 1276 bmov SCB_NEXT_COMPLETE, REG0, 2; 1277 bmov COMPLETE_DMA_SCB_TAIL, REG0, 2 ret; 1278END_CRITICAL; 1279 1280/* 1281 * Is it a disconnect message? Set a flag in the SCB to remind us 1282 * and await the bus going free. If this is an untagged transaction 1283 * store the SCB id for it in our untagged target table for lookup on 1284 * a reselction. 1285 */ 1286mesgin_disconnect: 1287 /* 1288 * If ATN is raised, we still want to give the target a message. 1289 * Perhaps there was a parity error on this last message byte 1290 * or we want to abort this command. Either way, the target 1291 * should take us to message out phase and then attempt to 1292 * disconnect again. 1293 * XXX - Wait for more testing. 1294 test SCSISIGI, ATNI jnz mesgin_done; 1295 */ 1296 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT 1297 jnz mesgin_proto_violation; 1298 or SCB_CONTROL,DISCONNECTED; 1299 test SCB_CONTROL, TAG_ENB jnz await_busfree; 1300queue_disc_scb: 1301 bmov REG0, SCBPTR, 2; 1302 INDEX_DISC_LIST(SAVED_SCSIID, SAVED_LUN); 1303 bmov DINDEX, SINDEX, 2; 1304 bmov DINDIR, REG0, 2; 1305 bmov SCBPTR, REG0, 2; 1306 /* FALLTHROUGH */ 1307await_busfree: 1308 and SIMODE1, ~ENBUSFREE; 1309 if ((ahd->bugs & AHD_BUSFREEREV_BUG) == 0) { 1310 /* 1311 * In the BUSFREEREV_BUG case, the 1312 * busfree status was cleared at the 1313 * beginning of the connection. 1314 */ 1315 mvi CLRSINT1,CLRBUSFREE; 1316 } 1317 mov NONE, SCSIDAT; /* Ack the last byte */ 1318 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1319 jnz await_busfree_not_m_dff; 1320SET_SRC_MODE M_DFF1; 1321SET_DST_MODE M_DFF1; 1322await_busfree_clrchn: 1323 mvi DFFSXFRCTL, CLRCHN; 1324await_busfree_not_m_dff: 1325 /* clear target specific flags */ 1326 mvi SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT; 1327 test SSTAT1,REQINIT|BUSFREE jz .; 1328 /* 1329 * We only set BUSFREE status once either a new 1330 * phase has been detected or we are really 1331 * BUSFREE. This allows the driver to know 1332 * that we are active on the bus even though 1333 * no identified transaction exists should a 1334 * timeout occur while awaiting busfree. 1335 */ 1336 mvi LASTPHASE, P_BUSFREE; 1337 test SSTAT1, BUSFREE jnz idle_loop; 1338 SET_SEQINTCODE(MISSED_BUSFREE) 1339 1340 1341/* 1342 * Save data pointers message: 1343 * Copying RAM values back to SCB, for Save Data Pointers message, but 1344 * only if we've actually been into a data phase to change them. This 1345 * protects against bogus data in scratch ram and the residual counts 1346 * since they are only initialized when we go into data_in or data_out. 1347 * Ack the message as soon as possible. 1348 */ 1349SET_SRC_MODE M_DFF1; 1350SET_DST_MODE M_DFF1; 1351mesgin_sdptrs: 1352 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1353 test SEQ_FLAGS, DPHASE jz ITloop; 1354 call save_pointers; 1355 jmp ITloop; 1356 1357save_pointers: 1358 /* 1359 * If we are asked to save our position at the end of the 1360 * transfer, just mark us at the end rather than perform a 1361 * full save. 1362 */ 1363 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz save_pointers_full; 1364 or SCB_SGPTR, SG_LIST_NULL ret; 1365 1366save_pointers_full: 1367 /* 1368 * The SCB_DATAPTR becomes the current SHADDR. 1369 * All other information comes directly from our residual 1370 * state. 1371 */ 1372 bmov SCB_DATAPTR, SHADDR, 8; 1373 bmov SCB_DATACNT, SCB_RESIDUAL_DATACNT, 8 ret; 1374 1375/* 1376 * Restore pointers message? Data pointers are recopied from the 1377 * SCB anytime we enter a data phase for the first time, so all 1378 * we need to do is clear the DPHASE flag and let the data phase 1379 * code do the rest. We also reset/reallocate the FIFO to make 1380 * sure we have a clean start for the next data or command phase. 1381 */ 1382mesgin_rdptrs: 1383 and SEQ_FLAGS, ~DPHASE; 1384 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) jnz msgin_rdptrs_get_fifo; 1385 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1386 SET_MODE(M_SCSI, M_SCSI) 1387msgin_rdptrs_get_fifo: 1388 call allocate_fifo; 1389 jmp mesgin_done; 1390 1391phase_lock: 1392 if ((ahd->bugs & AHD_EARLY_REQ_BUG) != 0) { 1393 /* 1394 * Don't ignore persistent REQ assertions just because 1395 * they were asserted within the bus settle delay window. 1396 * This allows us to tolerate devices like the GEM318 1397 * that violate the SCSI spec. We are careful not to 1398 * count REQ while we are waiting for it to fall during 1399 * an async phase due to our asserted ACK. Each 1400 * sequencer instruction takes ~25ns, so the REQ must 1401 * last at least 100ns in order to be counted as a true 1402 * REQ. 1403 */ 1404 test SCSIPHASE, 0xFF jnz phase_locked; 1405 test SCSISIGI, ACKI jnz phase_lock; 1406 test SCSISIGI, REQI jz phase_lock; 1407 test SCSIPHASE, 0xFF jnz phase_locked; 1408 test SCSISIGI, ACKI jnz phase_lock; 1409 test SCSISIGI, REQI jz phase_lock; 1410phase_locked: 1411 } else { 1412 test SCSIPHASE, 0xFF jz .; 1413 } 1414 test SSTAT1, SCSIPERR jnz phase_lock; 1415phase_lock_latch_phase: 1416 and LASTPHASE, PHASE_MASK, SCSISIGI ret; 1417 1418/* 1419 * Functions to read data in Automatic PIO mode. 1420 * 1421 * An ACK is not sent on input from the target until SCSIDATL is read from. 1422 * So we wait until SCSIDATL is latched (the usual way), then read the data 1423 * byte directly off the bus using SCSIBUSL. When we have pulled the ATN 1424 * line, or we just want to acknowledge the byte, then we do a dummy read 1425 * from SCISDATL. The SCSI spec guarantees that the target will hold the 1426 * data byte on the bus until we send our ACK. 1427 * 1428 * The assumption here is that these are called in a particular sequence, 1429 * and that REQ is already set when inb_first is called. inb_{first,next} 1430 * use the same calling convention as inb. 1431 */ 1432inb_next: 1433 mov NONE,SCSIDAT; /*dummy read from latch to ACK*/ 1434inb_next_wait: 1435 /* 1436 * If there is a parity error, wait for the kernel to 1437 * see the interrupt and prepare our message response 1438 * before continuing. 1439 */ 1440 test SCSIPHASE, 0xFF jz .; 1441 test SSTAT1, SCSIPERR jnz inb_next_wait; 1442inb_next_check_phase: 1443 and LASTPHASE, PHASE_MASK, SCSISIGI; 1444 cmp LASTPHASE, P_MESGIN jne mesgin_phasemis; 1445inb_first: 1446 clr DINDEX[1]; 1447 mov DINDEX,SINDEX; 1448 mov DINDIR,SCSIBUS ret; /*read byte directly from bus*/ 1449inb_last: 1450 mov NONE,SCSIDAT ret; /*dummy read from latch to ACK*/ 1451 1452mk_mesg: 1453 mvi SCSISIGO, ATNO; 1454 mov MSG_OUT,SINDEX ret; 1455 1456SET_SRC_MODE M_DFF1; 1457SET_DST_MODE M_DFF1; 1458disable_ccsgen: 1459 test SG_STATE, FETCH_INPROG jz disable_ccsgen_fetch_done; 1460 clr CCSGCTL; 1461disable_ccsgen_fetch_done: 1462 clr SG_STATE ret; 1463 1464service_fifo: 1465 /* 1466 * Do we have any prefetch left??? 1467 */ 1468 test SG_STATE, SEGS_AVAIL jnz idle_sg_avail; 1469 1470 /* 1471 * Can this FIFO have access to the S/G cache yet? 1472 */ 1473 test CCSGCTL, SG_CACHE_AVAIL jz return; 1474 1475 /* Did we just finish fetching segs? */ 1476 test CCSGCTL, CCSGDONE jnz idle_sgfetch_complete; 1477 1478 /* Are we actively fetching segments? */ 1479 test CCSGCTL, CCSGENACK jnz return; 1480 1481 /* 1482 * Should the other FIFO get the S/G cache first? If 1483 * both FIFOs have been allocated since we last checked 1484 * any FIFO, it is important that we service a FIFO 1485 * that is not actively on the bus first. This guarantees 1486 * that a FIFO will be freed to handle snapshot requests for 1487 * any FIFO that is still on the bus. Chips with RTI do not 1488 * perform snapshots, so don't bother with this test there. 1489 */ 1490 if ((ahd->features & AHD_RTI) == 0) { 1491 /* 1492 * If we're not still receiving SCSI data, 1493 * it is safe to allocate the S/G cache to 1494 * this FIFO. 1495 */ 1496 test DFCNTRL, SCSIEN jz idle_sgfetch_start; 1497 1498 /* 1499 * Switch to the other FIFO. Non-RTI chips 1500 * also have the "set mode" bug, so we must 1501 * disable interrupts during the switch. 1502 */ 1503 mvi SEQINTCTL, INTVEC1DSL; 1504 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1505 1506 /* 1507 * If the other FIFO needs loading, then it 1508 * must not have claimed the S/G cache yet 1509 * (SG_CACHE_AVAIL would have been cleared in 1510 * the original FIFO mode and we test this above). 1511 * Return to the idle loop so we can process the 1512 * FIFO not currently on the bus first. 1513 */ 1514 test SG_STATE, LOADING_NEEDED jz idle_sgfetch_okay; 1515 clr SEQINTCTL ret; 1516idle_sgfetch_okay: 1517 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1518 clr SEQINTCTL; 1519 } 1520 1521idle_sgfetch_start: 1522 /* 1523 * We fetch a "cacheline aligned" and sized amount of data 1524 * so we don't end up referencing a non-existant page. 1525 * Cacheline aligned is in quotes because the kernel will 1526 * set the prefetch amount to a reasonable level if the 1527 * cacheline size is unknown. 1528 */ 1529 bmov SGHADDR, SCB_RESIDUAL_SGPTR, 4; 1530 mvi SGHCNT, SG_PREFETCH_CNT; 1531 if ((ahd->bugs & AHD_REG_SLOW_SETTLE_BUG) != 0) { 1532 /* 1533 * Need two instructions between "touches" of SGHADDR. 1534 */ 1535 nop; 1536 } 1537 and SGHADDR[0], SG_PREFETCH_ALIGN_MASK, SCB_RESIDUAL_SGPTR; 1538 mvi CCSGCTL, CCSGEN|CCSGRESET; 1539 or SG_STATE, FETCH_INPROG ret; 1540idle_sgfetch_complete: 1541 /* 1542 * Guard against SG_CACHE_AVAIL activating during sg fetch 1543 * request in the other FIFO. 1544 */ 1545 test SG_STATE, FETCH_INPROG jz return; 1546 clr CCSGCTL; 1547 and CCSGADDR, SG_PREFETCH_ADDR_MASK, SCB_RESIDUAL_SGPTR; 1548 mvi SG_STATE, SEGS_AVAIL|LOADING_NEEDED; 1549idle_sg_avail: 1550 /* Does the hardware have space for another SG entry? */ 1551 test DFSTATUS, PRELOAD_AVAIL jz return; 1552 /* 1553 * On the A, preloading a segment before HDMAENACK 1554 * comes true can clobber the shadow address of the 1555 * first segment in the S/G FIFO. Wait until it is 1556 * safe to proceed. 1557 */ 1558 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) == 0) { 1559 test DFCNTRL, HDMAENACK jz return; 1560 } 1561 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1562 bmov HADDR, CCSGRAM, 8; 1563 } else { 1564 bmov HADDR, CCSGRAM, 4; 1565 } 1566 bmov HCNT, CCSGRAM, 3; 1567 bmov SCB_RESIDUAL_DATACNT[3], CCSGRAM, 1; 1568 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 1569 and HADDR[4], SG_HIGH_ADDR_BITS, SCB_RESIDUAL_DATACNT[3]; 1570 } 1571 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1572 /* Skip 4 bytes of pad. */ 1573 add CCSGADDR, 4; 1574 } 1575sg_advance: 1576 clr A; /* add sizeof(struct scatter) */ 1577 add SCB_RESIDUAL_SGPTR[0],SG_SIZEOF; 1578 adc SCB_RESIDUAL_SGPTR[1],A; 1579 adc SCB_RESIDUAL_SGPTR[2],A; 1580 adc SCB_RESIDUAL_SGPTR[3],A; 1581 mov SINDEX, SCB_RESIDUAL_SGPTR[0]; 1582 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jz . + 3; 1583 or SINDEX, LAST_SEG; 1584 clr SG_STATE; 1585 mov SG_CACHE_PRE, SINDEX; 1586 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1587 /* 1588 * Use SCSIENWRDIS so that SCSIEN is never 1589 * modified by this operation. 1590 */ 1591 or DFCNTRL, PRELOADEN|HDMAEN|SCSIENWRDIS; 1592 } else { 1593 or DFCNTRL, PRELOADEN|HDMAEN; 1594 } 1595 /* 1596 * Do we have another segment in the cache? 1597 */ 1598 add NONE, SG_PREFETCH_CNT_LIMIT, CCSGADDR; 1599 jnc return; 1600 and SG_STATE, ~SEGS_AVAIL ret; 1601 1602/* 1603 * Initialize the DMA address and counter from the SCB. 1604 */ 1605load_first_seg: 1606 bmov HADDR, SCB_DATAPTR, 11; 1607 and REG_ISR, ~SG_FULL_RESID, SCB_SGPTR[0]; 1608 test SCB_DATACNT[3], SG_LAST_SEG jz . + 2; 1609 or REG_ISR, LAST_SEG; 1610 mov SG_CACHE_PRE, REG_ISR; 1611 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1612 /* 1613 * Since we've are entering a data phase, we will 1614 * rely on the SCB_RESID* fields. Initialize the 1615 * residual and clear the full residual flag. 1616 */ 1617 and SCB_SGPTR[0], ~SG_FULL_RESID; 1618 bmov SCB_RESIDUAL_DATACNT[3], SCB_DATACNT[3], 5; 1619 /* If we need more S/G elements, tell the idle loop */ 1620 test SCB_RESIDUAL_DATACNT[3], SG_LAST_SEG jnz . + 2; 1621 mvi SG_STATE, LOADING_NEEDED ret; 1622 clr SG_STATE ret; 1623 1624p_data_handle_xfer: 1625 call setjmp; 1626 test SG_STATE, LOADING_NEEDED jnz service_fifo; 1627p_data_clear_handler: 1628 or LONGJMP_ADDR[1], INVALID_ADDR ret; 1629 1630p_data: 1631 test SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT jz p_data_allowed; 1632 SET_SEQINTCODE(PROTO_VIOLATION) 1633p_data_allowed: 1634 1635 test SEQ_FLAGS, DPHASE jz data_phase_initialize; 1636 1637 /* 1638 * If we re-enter the data phase after going through another 1639 * phase, our transfer location has almost certainly been 1640 * corrupted by the interveining, non-data, transfers. Ask 1641 * the host driver to fix us up based on the transfer residual 1642 * unless we already know that we should be bitbucketing. 1643 */ 1644 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1645 SET_SEQINTCODE(PDATA_REINIT) 1646 jmp data_phase_inbounds; 1647 1648p_data_bitbucket: 1649 /* 1650 * Turn on `Bit Bucket' mode, wait until the target takes 1651 * us to another phase, and then notify the host. 1652 */ 1653 mov SAVED_MODE, MODE_PTR; 1654 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 1655 jnz bitbucket_not_m_dff; 1656 /* 1657 * Ensure that any FIFO contents are cleared out and the 1658 * FIFO free'd prior to starting the BITBUCKET. BITBUCKET 1659 * doesn't discard data already in the FIFO. 1660 */ 1661 mvi DFFSXFRCTL, RSTCHN|CLRSHCNT; 1662 SET_MODE(M_SCSI, M_SCSI) 1663bitbucket_not_m_dff: 1664 or SXFRCTL1,BITBUCKET; 1665 /* Wait for non-data phase. */ 1666 test SCSIPHASE, ~DATA_PHASE_MASK jz .; 1667 and SXFRCTL1, ~BITBUCKET; 1668 RESTORE_MODE(SAVED_MODE) 1669SET_SRC_MODE M_DFF1; 1670SET_DST_MODE M_DFF1; 1671 SET_SEQINTCODE(DATA_OVERRUN) 1672 jmp ITloop; 1673 1674data_phase_initialize: 1675 test SCB_SGPTR[0], SG_LIST_NULL jnz p_data_bitbucket; 1676 call load_first_seg; 1677data_phase_inbounds: 1678 /* We have seen a data phase at least once. */ 1679 or SEQ_FLAGS, DPHASE; 1680 mov SAVED_MODE, MODE_PTR; 1681 test SG_STATE, LOADING_NEEDED jz data_group_dma_loop; 1682 call p_data_handle_xfer; 1683data_group_dma_loop: 1684 /* 1685 * The transfer is complete if either the last segment 1686 * completes or the target changes phase. Both conditions 1687 * will clear SCSIEN. 1688 */ 1689 call idle_loop_service_fifos; 1690 call idle_loop_cchan; 1691 call idle_loop_gsfifo; 1692 RESTORE_MODE(SAVED_MODE) 1693 test DFCNTRL, SCSIEN jnz data_group_dma_loop; 1694 1695data_group_dmafinish: 1696 /* 1697 * The transfer has terminated either due to a phase 1698 * change, and/or the completion of the last segment. 1699 * We have two goals here. Do as much other work 1700 * as possible while the data fifo drains on a read 1701 * and respond as quickly as possible to the standard 1702 * messages (save data pointers/disconnect and command 1703 * complete) that usually follow a data phase. 1704 */ 1705 call calc_residual; 1706 1707 /* 1708 * Go ahead and shut down the DMA engine now. 1709 */ 1710 test DFCNTRL, DIRECTION jnz data_phase_finish; 1711data_group_fifoflush: 1712 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 1713 or DFCNTRL, FIFOFLUSH; 1714 } 1715 /* 1716 * We have enabled the auto-ack feature. This means 1717 * that the controller may have already transferred 1718 * some overrun bytes into the data FIFO and acked them 1719 * on the bus. The only way to detect this situation is 1720 * to wait for LAST_SEG_DONE to come true on a completed 1721 * transfer and then test to see if the data FIFO is 1722 * non-empty. We know there is more data yet to transfer 1723 * if SG_LIST_NULL is not yet set, thus there cannot be 1724 * an overrun. 1725 */ 1726 test SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL jz data_phase_finish; 1727 test SG_CACHE_SHADOW, LAST_SEG_DONE jz .; 1728 test DFSTATUS, FIFOEMP jnz data_phase_finish; 1729 /* Overrun */ 1730 jmp p_data; 1731data_phase_finish: 1732 /* 1733 * If the target has left us in data phase, loop through 1734 * the dma code again. We will only loop if there is a 1735 * data overrun. 1736 */ 1737 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1738 test SSTAT0, TARGET jnz data_phase_done; 1739 } 1740 if ((ahd->flags & AHD_INITIATORROLE) != 0) { 1741 test SSTAT1, REQINIT jz .; 1742 test SCSIPHASE, DATA_PHASE_MASK jnz p_data; 1743 } 1744 1745data_phase_done: 1746 /* Kill off any pending prefetch */ 1747 call disable_ccsgen; 1748 or LONGJMP_ADDR[1], INVALID_ADDR; 1749 1750 if ((ahd->flags & AHD_TARGETROLE) != 0) { 1751 test SEQ_FLAGS, DPHASE_PENDING jz ITloop; 1752 /* 1753 and SEQ_FLAGS, ~DPHASE_PENDING; 1754 * For data-in phases, wait for any pending acks from the 1755 * initiator before changing phase. We only need to 1756 * send Ignore Wide Residue messages for data-in phases. 1757 test DFCNTRL, DIRECTION jz target_ITloop; 1758 test SSTAT1, REQINIT jnz .; 1759 test SCB_TASK_ATTRIBUTE, SCB_XFERLEN_ODD jz target_ITloop; 1760 SET_MODE(M_SCSI, M_SCSI) 1761 test NEGCONOPTS, WIDEXFER jz target_ITloop; 1762 */ 1763 /* 1764 * Issue an Ignore Wide Residue Message. 1765 mvi P_MESGIN|BSYO call change_phase; 1766 mvi MSG_IGN_WIDE_RESIDUE call target_outb; 1767 mvi 1 call target_outb; 1768 jmp target_ITloop; 1769 */ 1770 } else { 1771 jmp ITloop; 1772 } 1773 1774/* 1775 * We assume that, even though data may still be 1776 * transferring to the host, that the SCSI side of 1777 * the DMA engine is now in a static state. This 1778 * allows us to update our notion of where we are 1779 * in this transfer. 1780 * 1781 * If, by chance, we stopped before being able 1782 * to fetch additional segments for this transfer, 1783 * yet the last S/G was completely exhausted, 1784 * call our idle loop until it is able to load 1785 * another segment. This will allow us to immediately 1786 * pickup on the next segment on the next data phase. 1787 * 1788 * If we happened to stop on the last segment, then 1789 * our residual information is still correct from 1790 * the idle loop and there is no need to perform 1791 * any fixups. 1792 */ 1793residual_before_last_seg: 1794 test MDFFSTAT, SHVALID jnz sgptr_fixup; 1795 /* 1796 * Can never happen from an interrupt as the packetized 1797 * hardware will only interrupt us once SHVALID or 1798 * LAST_SEG_DONE. 1799 */ 1800 call idle_loop_service_fifos; 1801 RESTORE_MODE(SAVED_MODE) 1802 /* FALLTHROUGH */ 1803calc_residual: 1804 test SG_CACHE_SHADOW, LAST_SEG jz residual_before_last_seg; 1805 /* Record if we've consumed all S/G entries */ 1806 test MDFFSTAT, SHVALID jz . + 2; 1807 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1808 or SCB_RESIDUAL_SGPTR[0], SG_LIST_NULL ret; 1809 1810sgptr_fixup: 1811 /* 1812 * Fixup the residual next S/G pointer. The S/G preload 1813 * feature of the chip allows us to load two elements 1814 * in addition to the currently active element. We 1815 * store the bottom byte of the next S/G pointer in 1816 * the SG_CACHE_PTR register so we can restore the 1817 * correct value when the DMA completes. If the next 1818 * sg ptr value has advanced to the point where higher 1819 * bytes in the address have been affected, fix them 1820 * too. 1821 */ 1822 test SG_CACHE_SHADOW, 0x80 jz sgptr_fixup_done; 1823 test SCB_RESIDUAL_SGPTR[0], 0x80 jnz sgptr_fixup_done; 1824 add SCB_RESIDUAL_SGPTR[1], -1; 1825 adc SCB_RESIDUAL_SGPTR[2], -1; 1826 adc SCB_RESIDUAL_SGPTR[3], -1; 1827sgptr_fixup_done: 1828 and SCB_RESIDUAL_SGPTR[0], SG_ADDR_MASK, SG_CACHE_SHADOW; 1829 clr SCB_RESIDUAL_DATACNT[3]; /* We are not the last seg */ 1830 bmov SCB_RESIDUAL_DATACNT, SHCNT, 3 ret; 1831 1832export timer_isr: 1833 call issue_cmdcmplt; 1834 mvi CLRSEQINTSTAT, CLRSEQ_SWTMRTO; 1835 if ((ahd->bugs & AHD_SET_MODE_BUG) != 0) { 1836 /* 1837 * In H2A4, the mode pointer is not saved 1838 * for intvec2, but is restored on iret. 1839 * This can lead to the restoration of a 1840 * bogus mode ptr. Manually clear the 1841 * intmask bits and do a normal return 1842 * to compensate. 1843 */ 1844 and SEQINTCTL, ~(INTMASK2|INTMASK1) ret; 1845 } else { 1846 or SEQINTCTL, IRET ret; 1847 } 1848 1849export seq_isr: 1850 if ((ahd->features & AHD_RTI) == 0) { 1851 /* 1852 * On RevA Silicon, if the target returns us to data-out 1853 * after we have already trained for data-out, it is 1854 * possible for us to transition the free running clock to 1855 * data-valid before the required 100ns P1 setup time (8 P1 1856 * assertions in fast-160 mode). This will only happen if 1857 * this L-Q is a continuation of a data transfer for which 1858 * we have already prefetched data into our FIFO (LQ/Data 1859 * followed by LQ/Data for the same write transaction). 1860 * This can cause some target implementations to miss the 1861 * first few data transfers on the bus. We detect this 1862 * situation by noticing that this is the first data transfer 1863 * after an LQ (LQIWORKONLQ true), that the data transfer is 1864 * a continuation of a transfer already setup in our FIFO 1865 * (SAVEPTRS interrupt), and that the transaction is a write 1866 * (DIRECTION set in DFCNTRL). The delay is performed by 1867 * disabling SCSIEN until we see the first REQ from the 1868 * target. 1869 * 1870 * First instruction in an ISR cannot be a branch on 1871 * Rev A. Snapshot LQISTAT2 so the status is not missed 1872 * and deffer the test by one instruction. 1873 */ 1874 mov REG_ISR, LQISTAT2; 1875 test REG_ISR, LQIWORKONLQ jz main_isr; 1876 test SEQINTSRC, SAVEPTRS jz main_isr; 1877 test LONGJMP_ADDR[1], INVALID_ADDR jz saveptr_active_fifo; 1878 /* 1879 * Switch to the active FIFO after clearing the snapshot 1880 * savepointer in the current FIFO. We do this so that 1881 * a pending CTXTDONE or SAVEPTR is visible in the active 1882 * FIFO. This status is the only way we can detect if we 1883 * have lost the race (e.g. host paused us) and our attempts 1884 * to disable the channel occurred after all REQs were 1885 * already seen and acked (REQINIT never comes true). 1886 */ 1887 mvi DFFSXFRCTL, CLRCHN; 1888 xor MODE_PTR, MK_MODE(M_DFF1, M_DFF1); 1889 test DFCNTRL, DIRECTION jz interrupt_return; 1890 and DFCNTRL, ~SCSIEN; 1891snapshot_wait_data_valid: 1892 test SEQINTSRC, (CTXTDONE|SAVEPTRS) jnz interrupt_return; 1893 test SSTAT1, REQINIT jz snapshot_wait_data_valid; 1894snapshot_data_valid: 1895 or DFCNTRL, SCSIEN; 1896 or SEQINTCTL, IRET ret; 1897snapshot_saveptr: 1898 mvi DFFSXFRCTL, CLRCHN; 1899 or SEQINTCTL, IRET ret; 1900main_isr: 1901 } 1902 test SEQINTSRC, CFG4DATA jnz cfg4data_intr; 1903 test SEQINTSRC, CFG4ISTAT jnz cfg4istat_intr; 1904 test SEQINTSRC, SAVEPTRS jnz saveptr_intr; 1905 test SEQINTSRC, CFG4ICMD jnz cfg4icmd_intr; 1906 SET_SEQINTCODE(INVALID_SEQINT) 1907 1908/* 1909 * There are two types of save pointers interrupts: 1910 * The first is a snapshot save pointers where the current FIFO is not 1911 * active and contains a snapshot of the current poniter information. 1912 * This happens between packets in a stream for a single L_Q. Since we 1913 * are not performing a pointer save, we can safely clear the channel 1914 * so it can be used for other transactions. On RTI capable controllers, 1915 * where snapshots can, and are, disabled, the code to handle this type 1916 * of snapshot is not active. 1917 * 1918 * The second case is a save pointers on an active FIFO which occurs 1919 * if the target changes to a new L_Q or busfrees/QASes and the transfer 1920 * has a residual. This should occur coincident with a ctxtdone. We 1921 * disable the interrupt and allow our active routine to handle the 1922 * save. 1923 */ 1924saveptr_intr: 1925 if ((ahd->features & AHD_RTI) == 0) { 1926 test LONGJMP_ADDR[1], INVALID_ADDR jnz snapshot_saveptr; 1927 } 1928saveptr_active_fifo: 1929 and SEQIMODE, ~ENSAVEPTRS; 1930 or SEQINTCTL, IRET ret; 1931 1932cfg4data_intr: 1933 test SCB_SGPTR[0], SG_LIST_NULL jnz pkt_handle_overrun_inc_use_count; 1934 call load_first_seg; 1935 call pkt_handle_xfer; 1936 inc SCB_FIFO_USE_COUNT; 1937interrupt_return: 1938 or SEQINTCTL, IRET ret; 1939 1940cfg4istat_intr: 1941 call freeze_queue; 1942 add NONE, -13, SCB_CDB_LEN; 1943 jnc cfg4istat_have_sense_addr; 1944 test SCB_CDB_LEN, SCB_CDB_LEN_PTR jnz cfg4istat_have_sense_addr; 1945 /* 1946 * Host sets up address/count and enables transfer. 1947 */ 1948 SET_SEQINTCODE(CFG4ISTAT_INTR) 1949 jmp cfg4istat_setup_handler; 1950cfg4istat_have_sense_addr: 1951 bmov HADDR, SCB_SENSE_BUSADDR, 4; 1952 mvi HCNT[1], (AHD_SENSE_BUFSIZE >> 8); 1953 mvi SG_CACHE_PRE, LAST_SEG; 1954 mvi DFCNTRL, PRELOADEN|SCSIEN|HDMAEN; 1955cfg4istat_setup_handler: 1956 /* 1957 * Status pkt is transferring to host. 1958 * Wait in idle loop for transfer to complete. 1959 * If a command completed before an attempted 1960 * task management function completed, notify the host. 1961 */ 1962 test SCB_TASK_MANAGEMENT, 0xFF jz cfg4istat_no_taskmgmt_func; 1963 SET_SEQINTCODE(TASKMGMT_CMD_CMPLT_OKAY) 1964cfg4istat_no_taskmgmt_func: 1965 call pkt_handle_status; 1966 or SEQINTCTL, IRET ret; 1967 1968cfg4icmd_intr: 1969 /* 1970 * In the case of DMAing a CDB from the host, the normal 1971 * CDB buffer is formatted with an 8 byte address followed 1972 * by a 1 byte count. 1973 */ 1974 bmov HADDR[0], SCB_HOST_CDB_PTR, 9; 1975 mvi SG_CACHE_PRE, LAST_SEG; 1976 mvi DFCNTRL, (PRELOADEN|SCSIEN|HDMAEN); 1977 call pkt_handle_cdb; 1978 or SEQINTCTL, IRET ret; 1979 1980/* 1981 * See if the target has gone on in this context creating an 1982 * overrun condition. For the write case, the hardware cannot 1983 * ack bytes until data are provided. So, if the target begins 1984 * another packet without changing contexts, implying we are 1985 * not sitting on a packet boundary, we are in an overrun 1986 * situation. For the read case, the hardware will continue to 1987 * ack bytes into the FIFO, and may even ack the last overrun packet 1988 * into the FIFO. If the FIFO should become non-empty, we are in 1989 * a read overrun case. 1990 */ 1991#define check_overrun \ 1992 /* Not on a packet boundary. */ \ 1993 test MDFFSTAT, DLZERO jz pkt_handle_overrun; \ 1994 test DFSTATUS, FIFOEMP jz pkt_handle_overrun 1995 1996pkt_handle_xfer: 1997 test SG_STATE, LOADING_NEEDED jz pkt_last_seg; 1998 call setjmp; 1999 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 2000 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 2001 test SCSISIGO, ATNO jnz . + 2; 2002 test SSTAT2, NONPACKREQ jz pkt_service_fifo; 2003 /* 2004 * Defer handling of this NONPACKREQ until we 2005 * can be sure it pertains to this FIFO. SAVEPTRS 2006 * will not be asserted if the NONPACKREQ is for us, 2007 * so we must simulate it if shadow is valid. If 2008 * shadow is not valid, keep running this FIFO until we 2009 * have satisfied the transfer by loading segments and 2010 * waiting for either shadow valid or last_seg_done. 2011 */ 2012 test MDFFSTAT, SHVALID jnz pkt_saveptrs; 2013pkt_service_fifo: 2014 test SG_STATE, LOADING_NEEDED jnz service_fifo; 2015pkt_last_seg: 2016 call setjmp; 2017 test SEQINTSRC, SAVEPTRS jnz pkt_saveptrs; 2018 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_last_seg_done; 2019 test SCSIPHASE, ~DATA_PHASE_MASK jz . + 2; 2020 test SCSISIGO, ATNO jnz . + 2; 2021 test SSTAT2, NONPACKREQ jz return; 2022 test MDFFSTAT, SHVALID jz return; 2023 /* FALLTHROUGH */ 2024 2025/* 2026 * Either a SAVEPTRS interrupt condition is pending for this FIFO 2027 * or we have a pending NONPACKREQ for this FIFO. We differentiate 2028 * between the two by capturing the state of the SAVEPTRS interrupt 2029 * prior to clearing this status and executing the common code for 2030 * these two cases. 2031 */ 2032pkt_saveptrs: 2033BEGIN_CRITICAL; 2034 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2035 or DFCNTRL, FIFOFLUSH; 2036 } 2037 mov REG0, SEQINTSRC; 2038 call calc_residual; 2039 call save_pointers; 2040 mvi CLRSEQINTSRC, CLRSAVEPTRS; 2041 call disable_ccsgen; 2042 or SEQIMODE, ENSAVEPTRS; 2043 test DFCNTRL, DIRECTION jnz pkt_saveptrs_check_status; 2044 test DFSTATUS, FIFOEMP jnz pkt_saveptrs_check_status; 2045 /* 2046 * Keep a handler around for this FIFO until it drains 2047 * to the host to guarantee that we don't complete the 2048 * command to the host before the data arrives. 2049 */ 2050pkt_saveptrs_wait_fifoemp: 2051 call setjmp; 2052 test DFSTATUS, FIFOEMP jz return; 2053pkt_saveptrs_check_status: 2054 or LONGJMP_ADDR[1], INVALID_ADDR; 2055 test REG0, SAVEPTRS jz unexpected_nonpkt_phase; 2056 dec SCB_FIFO_USE_COUNT; 2057 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2058 mvi DFFSXFRCTL, CLRCHN ret; 2059 2060/* 2061 * LAST_SEG_DONE status has been seen in the current FIFO. 2062 * This indicates that all of the allowed data for this 2063 * command has transferred across the SCSI and host buses. 2064 * Check for overrun and see if we can complete this command. 2065 */ 2066pkt_last_seg_done: 2067 /* 2068 * Mark transfer as completed. 2069 */ 2070 or SCB_SGPTR, SG_LIST_NULL; 2071 2072 /* 2073 * Wait for the current context to finish to verify that 2074 * no overrun condition has occurred. 2075 */ 2076 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 2077 call setjmp; 2078pkt_wait_ctxt_done_loop: 2079 test SEQINTSRC, CTXTDONE jnz pkt_ctxt_done; 2080 /* 2081 * A sufficiently large overrun or a NONPACKREQ may 2082 * prevent CTXTDONE from ever asserting, so we must 2083 * poll for these statuses too. 2084 */ 2085 check_overrun; 2086 test SSTAT2, NONPACKREQ jz return; 2087 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2088 /* FALLTHROUGH */ 2089 2090pkt_ctxt_done: 2091 check_overrun; 2092 or LONGJMP_ADDR[1], INVALID_ADDR; 2093 /* 2094 * If status has been received, it is safe to skip 2095 * the check to see if another FIFO is active because 2096 * LAST_SEG_DONE has been observed. However, we check 2097 * the FIFO anyway since it costs us only one extra 2098 * instruction to leverage common code to perform the 2099 * SCB completion. 2100 */ 2101 dec SCB_FIFO_USE_COUNT; 2102 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2103 mvi DFFSXFRCTL, CLRCHN ret; 2104END_CRITICAL; 2105 2106/* 2107 * Must wait until CDB xfer is over before issuing the 2108 * clear channel. 2109 */ 2110pkt_handle_cdb: 2111 call setjmp; 2112 test SG_CACHE_SHADOW, LAST_SEG_DONE jz return; 2113 or LONGJMP_ADDR[1], INVALID_ADDR; 2114 mvi DFFSXFRCTL, CLRCHN ret; 2115 2116/* 2117 * Watch over the status transfer. Our host sense buffer is 2118 * large enough to take the maximum allowed status packet. 2119 * None-the-less, we must still catch and report overruns to 2120 * the host. Additionally, properly catch unexpected non-packet 2121 * phases that are typically caused by CRC errors in status packet 2122 * transmission. 2123 */ 2124pkt_handle_status: 2125 call setjmp; 2126 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2127 test SEQINTSRC, CTXTDONE jz pkt_status_check_nonpackreq; 2128 test SG_CACHE_SHADOW, LAST_SEG_DONE jnz pkt_status_check_overrun; 2129pkt_status_IU_done: 2130 if ((ahd->bugs & AHD_AUTOFLUSH_BUG) != 0) { 2131 or DFCNTRL, FIFOFLUSH; 2132 } 2133 test DFSTATUS, FIFOEMP jz return; 2134BEGIN_CRITICAL; 2135 or LONGJMP_ADDR[1], INVALID_ADDR; 2136 mvi SCB_SCSI_STATUS, STATUS_PKT_SENSE; 2137 or SCB_CONTROL, STATUS_RCVD; 2138 jmp pkt_complete_scb_if_fifos_idle; 2139END_CRITICAL; 2140pkt_status_check_overrun: 2141 /* 2142 * Status PKT overruns are unceremoniously recovered with a 2143 * bus reset. If we've overrun, let the host know so that 2144 * recovery can be performed. 2145 * 2146 * LAST_SEG_DONE has been observed. If either CTXTDONE or 2147 * a NONPACKREQ phase change have occurred and the FIFO is 2148 * empty, there is no overrun. 2149 */ 2150 test DFSTATUS, FIFOEMP jz pkt_status_report_overrun; 2151 test SEQINTSRC, CTXTDONE jz . + 2; 2152 test DFSTATUS, FIFOEMP jnz pkt_status_IU_done; 2153 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2154 test DFSTATUS, FIFOEMP jnz pkt_status_check_nonpackreq; 2155pkt_status_report_overrun: 2156 SET_SEQINTCODE(STATUS_OVERRUN) 2157 /* SEQUENCER RESTARTED */ 2158pkt_status_check_nonpackreq: 2159 /* 2160 * CTXTDONE may be held off if a NONPACKREQ is associated with 2161 * the current context. If a NONPACKREQ is observed, decide 2162 * if it is for the current context. If it is for the current 2163 * context, we must defer NONPACKREQ processing until all data 2164 * has transferred to the host. 2165 */ 2166 test SCSIPHASE, ~DATA_PHASE_MASK jz return; 2167 test SCSISIGO, ATNO jnz . + 2; 2168 test SSTAT2, NONPACKREQ jz return; 2169 test SEQINTSRC, CTXTDONE jnz pkt_status_IU_done; 2170 test DFSTATUS, FIFOEMP jz return; 2171 /* 2172 * The unexpected nonpkt phase handler assumes that any 2173 * data channel use will have a FIFO reference count. It 2174 * turns out that the status handler doesn't need a references 2175 * count since the status received flag, and thus completion 2176 * processing, cannot be set until the handler is finished. 2177 * We increment the count here to make the nonpkt handler 2178 * happy. 2179 */ 2180 inc SCB_FIFO_USE_COUNT; 2181 /* FALLTHROUGH */ 2182 2183/* 2184 * Nonpackreq is a polled status. It can come true in three situations: 2185 * we have received an L_Q, we have sent one or more L_Qs, or there is no 2186 * L_Q context associated with this REQ (REQ occurs immediately after a 2187 * (re)selection). Routines that know that the context responsible for this 2188 * nonpackreq call directly into unexpected_nonpkt_phase. In the case of the 2189 * top level idle loop, we exhaust all active contexts prior to determining that 2190 * we simply do not have the full I_T_L_Q for this phase. 2191 */ 2192unexpected_nonpkt_phase_find_ctxt: 2193 /* 2194 * This nonpackreq is most likely associated with one of the tags 2195 * in a FIFO or an outgoing LQ. Only treat it as an I_T only 2196 * nonpackreq if we've cleared out the FIFOs and handled any 2197 * pending SELDO. 2198 */ 2199SET_SRC_MODE M_SCSI; 2200SET_DST_MODE M_SCSI; 2201 and A, FIFO1FREE|FIFO0FREE, DFFSTAT; 2202 cmp A, FIFO1FREE|FIFO0FREE jne return; 2203 test SSTAT0, SELDO jnz return; 2204 mvi SCBPTR[1], SCB_LIST_NULL; 2205unexpected_nonpkt_phase: 2206 test MODE_PTR, ~(MK_MODE(M_DFF1, M_DFF1)) 2207 jnz unexpected_nonpkt_mode_cleared; 2208SET_SRC_MODE M_DFF0; 2209SET_DST_MODE M_DFF0; 2210 or LONGJMP_ADDR[1], INVALID_ADDR; 2211 dec SCB_FIFO_USE_COUNT; 2212 mvi DFFSXFRCTL, CLRCHN; 2213unexpected_nonpkt_mode_cleared: 2214 mvi CLRSINT2, CLRNONPACKREQ; 2215 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 2216 /* 2217 * Test to ensure that the bus has not 2218 * already gone free prior to clearing 2219 * any stale busfree status. This avoids 2220 * a window whereby a busfree just after 2221 * a selection could be missed. 2222 */ 2223 test SCSISIGI, BSYI jz . + 2; 2224 mvi CLRSINT1,CLRBUSFREE; 2225 or SIMODE1, ENBUSFREE; 2226 } 2227 test SCSIPHASE, ~(MSG_IN_PHASE|MSG_OUT_PHASE) jnz illegal_phase; 2228 SET_SEQINTCODE(ENTERING_NONPACK) 2229 jmp ITloop; 2230 2231illegal_phase: 2232 SET_SEQINTCODE(ILLEGAL_PHASE) 2233 jmp ITloop; 2234 2235/* 2236 * We have entered an overrun situation. If we have working 2237 * BITBUCKET, flip that on and let the hardware eat any overrun 2238 * data. Otherwise use an overrun buffer in the host to simulate 2239 * BITBUCKET. 2240 */ 2241pkt_handle_overrun_inc_use_count: 2242 inc SCB_FIFO_USE_COUNT; 2243pkt_handle_overrun: 2244 SET_SEQINTCODE(CFG4OVERRUN) 2245 call freeze_queue; 2246 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) == 0) { 2247 or DFFSXFRCTL, DFFBITBUCKET; 2248SET_SRC_MODE M_DFF1; 2249SET_DST_MODE M_DFF1; 2250 } else { 2251 call load_overrun_buf; 2252 mvi DFCNTRL, (HDMAEN|SCSIEN|PRELOADEN); 2253 } 2254 call setjmp; 2255 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2256 test DFSTATUS, PRELOAD_AVAIL jz overrun_load_done; 2257 call load_overrun_buf; 2258 or DFCNTRL, PRELOADEN; 2259overrun_load_done: 2260 test SEQINTSRC, CTXTDONE jnz pkt_overrun_end; 2261 } else { 2262 test DFFSXFRCTL, DFFBITBUCKET jz pkt_overrun_end; 2263 } 2264 test SSTAT2, NONPACKREQ jz return; 2265pkt_overrun_end: 2266 or SCB_RESIDUAL_SGPTR, SG_OVERRUN_RESID; 2267 test SEQINTSRC, CTXTDONE jz unexpected_nonpkt_phase; 2268 dec SCB_FIFO_USE_COUNT; 2269 or LONGJMP_ADDR[1], INVALID_ADDR; 2270 test SCB_CONTROL, STATUS_RCVD jnz pkt_complete_scb_if_fifos_idle; 2271 mvi DFFSXFRCTL, CLRCHN ret; 2272 2273if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 2274load_overrun_buf: 2275 /* 2276 * Load a dummy segment if preload space is available. 2277 */ 2278 mov HADDR[0], SHARED_DATA_ADDR; 2279 add HADDR[1], PKT_OVERRUN_BUFOFFSET, SHARED_DATA_ADDR[1]; 2280 mov ACCUM_SAVE, A; 2281 clr A; 2282 adc HADDR[2], A, SHARED_DATA_ADDR[2]; 2283 adc HADDR[3], A, SHARED_DATA_ADDR[3]; 2284 mov A, ACCUM_SAVE; 2285 bmov HADDR[4], ALLZEROS, 4; 2286 /* PKT_OVERRUN_BUFSIZE is a multiple of 256 */ 2287 clr HCNT[0]; 2288 mvi HCNT[1], ((PKT_OVERRUN_BUFSIZE >> 8) & 0xFF); 2289 clr HCNT[2] ret; 2290} 2291