1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_agp.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/conf.h> 41 #include <sys/ioccom.h> 42 #include <sys/agpio.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 48 #include <dev/agp/agppriv.h> 49 #include <dev/agp/agpvar.h> 50 #include <dev/agp/agpreg.h> 51 #include <dev/pci/pcivar.h> 52 #include <dev/pci/pcireg.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vm_param.h> 58 #include <vm/vm_object.h> 59 #include <vm/vm_page.h> 60 #include <vm/vm_pageout.h> 61 #include <vm/pmap.h> 62 63 #include <machine/bus.h> 64 #include <machine/resource.h> 65 #include <sys/rman.h> 66 67 MODULE_VERSION(agp, 1); 68 69 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 70 71 /* agp_drv.c */ 72 static d_open_t agp_open; 73 static d_close_t agp_close; 74 static d_ioctl_t agp_ioctl; 75 static d_mmap_t agp_mmap; 76 77 static struct cdevsw agp_cdevsw = { 78 .d_version = D_VERSION, 79 .d_flags = D_NEEDGIANT, 80 .d_open = agp_open, 81 .d_close = agp_close, 82 .d_ioctl = agp_ioctl, 83 .d_mmap = agp_mmap, 84 .d_name = "agp", 85 }; 86 87 static devclass_t agp_devclass; 88 89 /* Helper functions for implementing chipset mini drivers. */ 90 91 u_int8_t 92 agp_find_caps(device_t dev) 93 { 94 int capreg; 95 96 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 97 capreg = 0; 98 return (capreg); 99 } 100 101 /* 102 * Find an AGP display device (if any). 103 */ 104 static device_t 105 agp_find_display(void) 106 { 107 devclass_t pci = devclass_find("pci"); 108 device_t bus, dev = 0; 109 device_t *kids; 110 int busnum, numkids, i; 111 112 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 113 bus = devclass_get_device(pci, busnum); 114 if (!bus) 115 continue; 116 if (device_get_children(bus, &kids, &numkids) != 0) 117 continue; 118 for (i = 0; i < numkids; i++) { 119 dev = kids[i]; 120 if (pci_get_class(dev) == PCIC_DISPLAY 121 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 122 if (agp_find_caps(dev)) { 123 free(kids, M_TEMP); 124 return dev; 125 } 126 127 } 128 free(kids, M_TEMP); 129 } 130 131 return 0; 132 } 133 134 struct agp_gatt * 135 agp_alloc_gatt(device_t dev) 136 { 137 u_int32_t apsize = AGP_GET_APERTURE(dev); 138 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 139 struct agp_gatt *gatt; 140 141 if (bootverbose) 142 device_printf(dev, 143 "allocating GATT for aperture of size %dM\n", 144 apsize / (1024*1024)); 145 146 if (entries == 0) { 147 device_printf(dev, "bad aperture size\n"); 148 return NULL; 149 } 150 151 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 152 if (!gatt) 153 return 0; 154 155 gatt->ag_entries = entries; 156 gatt->ag_virtual = (void *)kmem_alloc_contig(entries * 157 sizeof(u_int32_t), M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0, 158 VM_MEMATTR_WRITE_COMBINING); 159 if (!gatt->ag_virtual) { 160 if (bootverbose) 161 device_printf(dev, "contiguous allocation failed\n"); 162 free(gatt, M_AGP); 163 return 0; 164 } 165 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 166 167 return gatt; 168 } 169 170 void 171 agp_free_gatt(struct agp_gatt *gatt) 172 { 173 kmem_free((vm_offset_t)gatt->ag_virtual, gatt->ag_entries * 174 sizeof(u_int32_t)); 175 free(gatt, M_AGP); 176 } 177 178 static u_int agp_max[][2] = { 179 {0, 0}, 180 {32, 4}, 181 {64, 28}, 182 {128, 96}, 183 {256, 204}, 184 {512, 440}, 185 {1024, 942}, 186 {2048, 1920}, 187 {4096, 3932} 188 }; 189 #define AGP_MAX_SIZE nitems(agp_max) 190 191 /** 192 * Sets the PCI resource which represents the AGP aperture. 193 * 194 * If not called, the default AGP aperture resource of AGP_APBASE will 195 * be used. Must be called before agp_generic_attach(). 196 */ 197 void 198 agp_set_aperture_resource(device_t dev, int rid) 199 { 200 struct agp_softc *sc = device_get_softc(dev); 201 202 sc->as_aperture_rid = rid; 203 } 204 205 int 206 agp_generic_attach(device_t dev) 207 { 208 struct agp_softc *sc = device_get_softc(dev); 209 int i; 210 u_int memsize; 211 212 /* 213 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 214 * because the kernel doesn't need to map it. 215 */ 216 217 if (sc->as_aperture_rid != -1) { 218 if (sc->as_aperture_rid == 0) 219 sc->as_aperture_rid = AGP_APBASE; 220 221 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 222 &sc->as_aperture_rid, RF_SHAREABLE); 223 if (!sc->as_aperture) 224 return ENOMEM; 225 } 226 227 /* 228 * Work out an upper bound for agp memory allocation. This 229 * uses a heurisitc table from the Linux driver. 230 */ 231 memsize = ptoa(realmem) >> 20; 232 for (i = 0; i < AGP_MAX_SIZE; i++) { 233 if (memsize <= agp_max[i][0]) 234 break; 235 } 236 if (i == AGP_MAX_SIZE) 237 i = AGP_MAX_SIZE - 1; 238 sc->as_maxmem = agp_max[i][1] << 20U; 239 240 /* 241 * The lock is used to prevent re-entry to 242 * agp_generic_bind_memory() since that function can sleep. 243 */ 244 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 245 246 /* 247 * Initialise stuff for the userland device. 248 */ 249 agp_devclass = devclass_find("agp"); 250 TAILQ_INIT(&sc->as_memory); 251 sc->as_nextid = 1; 252 253 sc->as_devnode = make_dev(&agp_cdevsw, 254 0, UID_ROOT, GID_WHEEL, 0600, "agpgart"); 255 sc->as_devnode->si_drv1 = dev; 256 257 return 0; 258 } 259 260 void 261 agp_free_cdev(device_t dev) 262 { 263 struct agp_softc *sc = device_get_softc(dev); 264 265 destroy_dev(sc->as_devnode); 266 } 267 268 void 269 agp_free_res(device_t dev) 270 { 271 struct agp_softc *sc = device_get_softc(dev); 272 273 if (sc->as_aperture != NULL) 274 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 275 sc->as_aperture); 276 mtx_destroy(&sc->as_lock); 277 } 278 279 int 280 agp_generic_detach(device_t dev) 281 { 282 283 agp_free_cdev(dev); 284 agp_free_res(dev); 285 return 0; 286 } 287 288 /** 289 * Default AGP aperture size detection which simply returns the size of 290 * the aperture's PCI resource. 291 */ 292 u_int32_t 293 agp_generic_get_aperture(device_t dev) 294 { 295 struct agp_softc *sc = device_get_softc(dev); 296 297 return rman_get_size(sc->as_aperture); 298 } 299 300 /** 301 * Default AGP aperture size setting function, which simply doesn't allow 302 * changes to resource size. 303 */ 304 int 305 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 306 { 307 u_int32_t current_aperture; 308 309 current_aperture = AGP_GET_APERTURE(dev); 310 if (current_aperture != aperture) 311 return EINVAL; 312 else 313 return 0; 314 } 315 316 /* 317 * This does the enable logic for v3, with the same topology 318 * restrictions as in place for v2 -- one bus, one device on the bus. 319 */ 320 static int 321 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 322 { 323 u_int32_t tstatus, mstatus; 324 u_int32_t command; 325 int rq, sba, fw, rate, arqsz, cal; 326 327 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 328 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 329 330 /* Set RQ to the min of mode, tstatus and mstatus */ 331 rq = AGP_MODE_GET_RQ(mode); 332 if (AGP_MODE_GET_RQ(tstatus) < rq) 333 rq = AGP_MODE_GET_RQ(tstatus); 334 if (AGP_MODE_GET_RQ(mstatus) < rq) 335 rq = AGP_MODE_GET_RQ(mstatus); 336 337 /* 338 * ARQSZ - Set the value to the maximum one. 339 * Don't allow the mode register to override values. 340 */ 341 arqsz = AGP_MODE_GET_ARQSZ(mode); 342 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 343 rq = AGP_MODE_GET_ARQSZ(tstatus); 344 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 345 rq = AGP_MODE_GET_ARQSZ(mstatus); 346 347 /* Calibration cycle - don't allow override by mode register */ 348 cal = AGP_MODE_GET_CAL(tstatus); 349 if (AGP_MODE_GET_CAL(mstatus) < cal) 350 cal = AGP_MODE_GET_CAL(mstatus); 351 352 /* SBA must be supported for AGP v3. */ 353 sba = 1; 354 355 /* Set FW if all three support it. */ 356 fw = (AGP_MODE_GET_FW(tstatus) 357 & AGP_MODE_GET_FW(mstatus) 358 & AGP_MODE_GET_FW(mode)); 359 360 /* Figure out the max rate */ 361 rate = (AGP_MODE_GET_RATE(tstatus) 362 & AGP_MODE_GET_RATE(mstatus) 363 & AGP_MODE_GET_RATE(mode)); 364 if (rate & AGP_MODE_V3_RATE_8x) 365 rate = AGP_MODE_V3_RATE_8x; 366 else 367 rate = AGP_MODE_V3_RATE_4x; 368 if (bootverbose) 369 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 370 371 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 372 373 /* Construct the new mode word and tell the hardware */ 374 command = 0; 375 command = AGP_MODE_SET_RQ(0, rq); 376 command = AGP_MODE_SET_ARQSZ(command, arqsz); 377 command = AGP_MODE_SET_CAL(command, cal); 378 command = AGP_MODE_SET_SBA(command, sba); 379 command = AGP_MODE_SET_FW(command, fw); 380 command = AGP_MODE_SET_RATE(command, rate); 381 command = AGP_MODE_SET_MODE_3(command, 1); 382 command = AGP_MODE_SET_AGP(command, 1); 383 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 384 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 385 386 return 0; 387 } 388 389 static int 390 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 391 { 392 u_int32_t tstatus, mstatus; 393 u_int32_t command; 394 int rq, sba, fw, rate; 395 396 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 397 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 398 399 /* Set RQ to the min of mode, tstatus and mstatus */ 400 rq = AGP_MODE_GET_RQ(mode); 401 if (AGP_MODE_GET_RQ(tstatus) < rq) 402 rq = AGP_MODE_GET_RQ(tstatus); 403 if (AGP_MODE_GET_RQ(mstatus) < rq) 404 rq = AGP_MODE_GET_RQ(mstatus); 405 406 /* Set SBA if all three can deal with SBA */ 407 sba = (AGP_MODE_GET_SBA(tstatus) 408 & AGP_MODE_GET_SBA(mstatus) 409 & AGP_MODE_GET_SBA(mode)); 410 411 /* Similar for FW */ 412 fw = (AGP_MODE_GET_FW(tstatus) 413 & AGP_MODE_GET_FW(mstatus) 414 & AGP_MODE_GET_FW(mode)); 415 416 /* Figure out the max rate */ 417 rate = (AGP_MODE_GET_RATE(tstatus) 418 & AGP_MODE_GET_RATE(mstatus) 419 & AGP_MODE_GET_RATE(mode)); 420 if (rate & AGP_MODE_V2_RATE_4x) 421 rate = AGP_MODE_V2_RATE_4x; 422 else if (rate & AGP_MODE_V2_RATE_2x) 423 rate = AGP_MODE_V2_RATE_2x; 424 else 425 rate = AGP_MODE_V2_RATE_1x; 426 if (bootverbose) 427 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 428 429 /* Construct the new mode word and tell the hardware */ 430 command = 0; 431 command = AGP_MODE_SET_RQ(0, rq); 432 command = AGP_MODE_SET_SBA(command, sba); 433 command = AGP_MODE_SET_FW(command, fw); 434 command = AGP_MODE_SET_RATE(command, rate); 435 command = AGP_MODE_SET_AGP(command, 1); 436 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 437 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 438 439 return 0; 440 } 441 442 int 443 agp_generic_enable(device_t dev, u_int32_t mode) 444 { 445 device_t mdev = agp_find_display(); 446 u_int32_t tstatus, mstatus; 447 448 if (!mdev) { 449 AGP_DPF("can't find display\n"); 450 return ENXIO; 451 } 452 453 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 454 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 455 456 /* 457 * Check display and bridge for AGP v3 support. AGP v3 allows 458 * more variety in topology than v2, e.g. multiple AGP devices 459 * attached to one bridge, or multiple AGP bridges in one 460 * system. This doesn't attempt to address those situations, 461 * but should work fine for a classic single AGP slot system 462 * with AGP v3. 463 */ 464 if (AGP_MODE_GET_MODE_3(mode) && 465 AGP_MODE_GET_MODE_3(tstatus) && 466 AGP_MODE_GET_MODE_3(mstatus)) 467 return (agp_v3_enable(dev, mdev, mode)); 468 else 469 return (agp_v2_enable(dev, mdev, mode)); 470 } 471 472 struct agp_memory * 473 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 474 { 475 struct agp_softc *sc = device_get_softc(dev); 476 struct agp_memory *mem; 477 478 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 479 return 0; 480 481 if (size > sc->as_maxmem - sc->as_allocated) 482 return 0; 483 484 if (type != 0) { 485 printf("agp_generic_alloc_memory: unsupported type %d\n", 486 type); 487 return 0; 488 } 489 490 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 491 mem->am_id = sc->as_nextid++; 492 mem->am_size = size; 493 mem->am_type = 0; 494 mem->am_obj = vm_object_allocate(OBJT_DEFAULT, atop(round_page(size))); 495 mem->am_physical = 0; 496 mem->am_offset = 0; 497 mem->am_is_bound = 0; 498 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 499 sc->as_allocated += size; 500 501 return mem; 502 } 503 504 int 505 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 506 { 507 struct agp_softc *sc = device_get_softc(dev); 508 509 if (mem->am_is_bound) 510 return EBUSY; 511 512 sc->as_allocated -= mem->am_size; 513 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 514 vm_object_deallocate(mem->am_obj); 515 free(mem, M_AGP); 516 return 0; 517 } 518 519 int 520 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 521 vm_offset_t offset) 522 { 523 struct agp_softc *sc = device_get_softc(dev); 524 vm_offset_t i, j, k; 525 vm_page_t m; 526 int error; 527 528 /* Do some sanity checks first. */ 529 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 530 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 531 device_printf(dev, "binding memory at bad offset %#x\n", 532 (int)offset); 533 return EINVAL; 534 } 535 536 /* 537 * Allocate the pages early, before acquiring the lock, 538 * because vm_page_grab() may sleep and we can't hold a mutex 539 * while sleeping. 540 */ 541 VM_OBJECT_WLOCK(mem->am_obj); 542 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 543 /* 544 * Find a page from the object and wire it 545 * down. This page will be mapped using one or more 546 * entries in the GATT (assuming that PAGE_SIZE >= 547 * AGP_PAGE_SIZE. If this is the first call to bind, 548 * the pages will be allocated and zeroed. 549 */ 550 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 551 VM_ALLOC_WIRED | VM_ALLOC_ZERO); 552 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 553 } 554 VM_OBJECT_WUNLOCK(mem->am_obj); 555 556 mtx_lock(&sc->as_lock); 557 558 if (mem->am_is_bound) { 559 device_printf(dev, "memory already bound\n"); 560 error = EINVAL; 561 VM_OBJECT_WLOCK(mem->am_obj); 562 i = 0; 563 goto bad; 564 } 565 566 /* 567 * Bind the individual pages and flush the chipset's 568 * TLB. 569 */ 570 VM_OBJECT_WLOCK(mem->am_obj); 571 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 572 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 573 574 /* 575 * Install entries in the GATT, making sure that if 576 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 577 * aligned to PAGE_SIZE, we don't modify too many GATT 578 * entries. 579 */ 580 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 581 j += AGP_PAGE_SIZE) { 582 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 583 AGP_DPF("binding offset %#jx to pa %#jx\n", 584 (uintmax_t)offset + i + j, (uintmax_t)pa); 585 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 586 if (error) { 587 /* 588 * Bail out. Reverse all the mappings 589 * and unwire the pages. 590 */ 591 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 592 AGP_UNBIND_PAGE(dev, offset + k); 593 goto bad; 594 } 595 } 596 vm_page_xunbusy(m); 597 } 598 VM_OBJECT_WUNLOCK(mem->am_obj); 599 600 /* 601 * Make sure the chipset gets the new mappings. 602 */ 603 AGP_FLUSH_TLB(dev); 604 605 mem->am_offset = offset; 606 mem->am_is_bound = 1; 607 608 mtx_unlock(&sc->as_lock); 609 610 return 0; 611 bad: 612 mtx_unlock(&sc->as_lock); 613 VM_OBJECT_ASSERT_WLOCKED(mem->am_obj); 614 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 615 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 616 if (k >= i) 617 vm_page_xunbusy(m); 618 vm_page_unwire(m, PQ_INACTIVE); 619 } 620 VM_OBJECT_WUNLOCK(mem->am_obj); 621 622 return error; 623 } 624 625 int 626 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 627 { 628 struct agp_softc *sc = device_get_softc(dev); 629 vm_page_t m; 630 int i; 631 632 mtx_lock(&sc->as_lock); 633 634 if (!mem->am_is_bound) { 635 device_printf(dev, "memory is not bound\n"); 636 mtx_unlock(&sc->as_lock); 637 return EINVAL; 638 } 639 640 /* 641 * Unbind the individual pages and flush the chipset's 642 * TLB. Unwire the pages so they can be swapped. 643 */ 644 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 645 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 646 647 AGP_FLUSH_TLB(dev); 648 649 VM_OBJECT_WLOCK(mem->am_obj); 650 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 651 m = vm_page_lookup(mem->am_obj, atop(i)); 652 vm_page_unwire(m, PQ_INACTIVE); 653 } 654 VM_OBJECT_WUNLOCK(mem->am_obj); 655 656 mem->am_offset = 0; 657 mem->am_is_bound = 0; 658 659 mtx_unlock(&sc->as_lock); 660 661 return 0; 662 } 663 664 /* Helper functions for implementing user/kernel api */ 665 666 static int 667 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 668 { 669 struct agp_softc *sc = device_get_softc(dev); 670 671 if (sc->as_state != AGP_ACQUIRE_FREE) 672 return EBUSY; 673 sc->as_state = state; 674 675 return 0; 676 } 677 678 static int 679 agp_release_helper(device_t dev, enum agp_acquire_state state) 680 { 681 struct agp_softc *sc = device_get_softc(dev); 682 683 if (sc->as_state == AGP_ACQUIRE_FREE) 684 return 0; 685 686 if (sc->as_state != state) 687 return EBUSY; 688 689 sc->as_state = AGP_ACQUIRE_FREE; 690 return 0; 691 } 692 693 static struct agp_memory * 694 agp_find_memory(device_t dev, int id) 695 { 696 struct agp_softc *sc = device_get_softc(dev); 697 struct agp_memory *mem; 698 699 AGP_DPF("searching for memory block %d\n", id); 700 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 701 AGP_DPF("considering memory block %d\n", mem->am_id); 702 if (mem->am_id == id) 703 return mem; 704 } 705 return 0; 706 } 707 708 /* Implementation of the userland ioctl api */ 709 710 static int 711 agp_info_user(device_t dev, agp_info *info) 712 { 713 struct agp_softc *sc = device_get_softc(dev); 714 715 bzero(info, sizeof *info); 716 info->bridge_id = pci_get_devid(dev); 717 info->agp_mode = 718 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 719 if (sc->as_aperture) 720 info->aper_base = rman_get_start(sc->as_aperture); 721 else 722 info->aper_base = 0; 723 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 724 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 725 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 726 727 return 0; 728 } 729 730 static int 731 agp_setup_user(device_t dev, agp_setup *setup) 732 { 733 return AGP_ENABLE(dev, setup->agp_mode); 734 } 735 736 static int 737 agp_allocate_user(device_t dev, agp_allocate *alloc) 738 { 739 struct agp_memory *mem; 740 741 mem = AGP_ALLOC_MEMORY(dev, 742 alloc->type, 743 alloc->pg_count << AGP_PAGE_SHIFT); 744 if (mem) { 745 alloc->key = mem->am_id; 746 alloc->physical = mem->am_physical; 747 return 0; 748 } else { 749 return ENOMEM; 750 } 751 } 752 753 static int 754 agp_deallocate_user(device_t dev, int id) 755 { 756 struct agp_memory *mem = agp_find_memory(dev, id); 757 758 if (mem) { 759 AGP_FREE_MEMORY(dev, mem); 760 return 0; 761 } else { 762 return ENOENT; 763 } 764 } 765 766 static int 767 agp_bind_user(device_t dev, agp_bind *bind) 768 { 769 struct agp_memory *mem = agp_find_memory(dev, bind->key); 770 771 if (!mem) 772 return ENOENT; 773 774 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 775 } 776 777 static int 778 agp_unbind_user(device_t dev, agp_unbind *unbind) 779 { 780 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 781 782 if (!mem) 783 return ENOENT; 784 785 return AGP_UNBIND_MEMORY(dev, mem); 786 } 787 788 static int 789 agp_chipset_flush(device_t dev) 790 { 791 792 return (AGP_CHIPSET_FLUSH(dev)); 793 } 794 795 static int 796 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 797 { 798 device_t dev = kdev->si_drv1; 799 struct agp_softc *sc = device_get_softc(dev); 800 801 if (!sc->as_isopen) { 802 sc->as_isopen = 1; 803 device_busy(dev); 804 } 805 806 return 0; 807 } 808 809 static int 810 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 811 { 812 device_t dev = kdev->si_drv1; 813 struct agp_softc *sc = device_get_softc(dev); 814 struct agp_memory *mem; 815 816 /* 817 * Clear the GATT and force release on last close 818 */ 819 while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) { 820 if (mem->am_is_bound) 821 AGP_UNBIND_MEMORY(dev, mem); 822 AGP_FREE_MEMORY(dev, mem); 823 } 824 if (sc->as_state == AGP_ACQUIRE_USER) 825 agp_release_helper(dev, AGP_ACQUIRE_USER); 826 sc->as_isopen = 0; 827 device_unbusy(dev); 828 829 return 0; 830 } 831 832 static int 833 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 834 { 835 device_t dev = kdev->si_drv1; 836 837 switch (cmd) { 838 case AGPIOC_INFO: 839 return agp_info_user(dev, (agp_info *) data); 840 841 case AGPIOC_ACQUIRE: 842 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 843 844 case AGPIOC_RELEASE: 845 return agp_release_helper(dev, AGP_ACQUIRE_USER); 846 847 case AGPIOC_SETUP: 848 return agp_setup_user(dev, (agp_setup *)data); 849 850 case AGPIOC_ALLOCATE: 851 return agp_allocate_user(dev, (agp_allocate *)data); 852 853 case AGPIOC_DEALLOCATE: 854 return agp_deallocate_user(dev, *(int *) data); 855 856 case AGPIOC_BIND: 857 return agp_bind_user(dev, (agp_bind *)data); 858 859 case AGPIOC_UNBIND: 860 return agp_unbind_user(dev, (agp_unbind *)data); 861 862 case AGPIOC_CHIPSET_FLUSH: 863 return agp_chipset_flush(dev); 864 } 865 866 return EINVAL; 867 } 868 869 static int 870 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 871 int prot, vm_memattr_t *memattr) 872 { 873 device_t dev = kdev->si_drv1; 874 struct agp_softc *sc = device_get_softc(dev); 875 876 if (offset > AGP_GET_APERTURE(dev)) 877 return -1; 878 if (sc->as_aperture == NULL) 879 return -1; 880 *paddr = rman_get_start(sc->as_aperture) + offset; 881 return 0; 882 } 883 884 /* Implementation of the kernel api */ 885 886 device_t 887 agp_find_device() 888 { 889 device_t *children, child; 890 int i, count; 891 892 if (!agp_devclass) 893 return NULL; 894 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 895 return NULL; 896 child = NULL; 897 for (i = 0; i < count; i++) { 898 if (device_is_attached(children[i])) { 899 child = children[i]; 900 break; 901 } 902 } 903 free(children, M_TEMP); 904 return child; 905 } 906 907 enum agp_acquire_state 908 agp_state(device_t dev) 909 { 910 struct agp_softc *sc = device_get_softc(dev); 911 return sc->as_state; 912 } 913 914 void 915 agp_get_info(device_t dev, struct agp_info *info) 916 { 917 struct agp_softc *sc = device_get_softc(dev); 918 919 info->ai_mode = 920 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 921 if (sc->as_aperture != NULL) 922 info->ai_aperture_base = rman_get_start(sc->as_aperture); 923 else 924 info->ai_aperture_base = 0; 925 info->ai_aperture_size = AGP_GET_APERTURE(dev); 926 info->ai_memory_allowed = sc->as_maxmem; 927 info->ai_memory_used = sc->as_allocated; 928 } 929 930 int 931 agp_acquire(device_t dev) 932 { 933 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 934 } 935 936 int 937 agp_release(device_t dev) 938 { 939 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 940 } 941 942 int 943 agp_enable(device_t dev, u_int32_t mode) 944 { 945 return AGP_ENABLE(dev, mode); 946 } 947 948 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 949 { 950 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 951 } 952 953 void agp_free_memory(device_t dev, void *handle) 954 { 955 struct agp_memory *mem = (struct agp_memory *) handle; 956 AGP_FREE_MEMORY(dev, mem); 957 } 958 959 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 960 { 961 struct agp_memory *mem = (struct agp_memory *) handle; 962 return AGP_BIND_MEMORY(dev, mem, offset); 963 } 964 965 int agp_unbind_memory(device_t dev, void *handle) 966 { 967 struct agp_memory *mem = (struct agp_memory *) handle; 968 return AGP_UNBIND_MEMORY(dev, mem); 969 } 970 971 void agp_memory_info(device_t dev, void *handle, struct 972 agp_memory_info *mi) 973 { 974 struct agp_memory *mem = (struct agp_memory *) handle; 975 976 mi->ami_size = mem->am_size; 977 mi->ami_physical = mem->am_physical; 978 mi->ami_offset = mem->am_offset; 979 mi->ami_is_bound = mem->am_is_bound; 980 } 981 982 int 983 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size, 984 vm_offset_t offset) 985 { 986 struct agp_softc *sc; 987 vm_offset_t i, j, k, pa; 988 vm_page_t m; 989 int error; 990 991 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 992 (offset & (AGP_PAGE_SIZE - 1)) != 0) 993 return (EINVAL); 994 995 sc = device_get_softc(dev); 996 997 mtx_lock(&sc->as_lock); 998 for (i = 0; i < size; i += PAGE_SIZE) { 999 m = pages[OFF_TO_IDX(i)]; 1000 KASSERT(vm_page_wired(m), 1001 ("agp_bind_pages: page %p hasn't been wired", m)); 1002 1003 /* 1004 * Install entries in the GATT, making sure that if 1005 * AGP_PAGE_SIZE < PAGE_SIZE and size is not 1006 * aligned to PAGE_SIZE, we don't modify too many GATT 1007 * entries. 1008 */ 1009 for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) { 1010 pa = VM_PAGE_TO_PHYS(m) + j; 1011 AGP_DPF("binding offset %#jx to pa %#jx\n", 1012 (uintmax_t)offset + i + j, (uintmax_t)pa); 1013 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 1014 if (error) { 1015 /* 1016 * Bail out. Reverse all the mappings. 1017 */ 1018 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 1019 AGP_UNBIND_PAGE(dev, offset + k); 1020 1021 mtx_unlock(&sc->as_lock); 1022 return (error); 1023 } 1024 } 1025 } 1026 1027 AGP_FLUSH_TLB(dev); 1028 1029 mtx_unlock(&sc->as_lock); 1030 return (0); 1031 } 1032 1033 int 1034 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset) 1035 { 1036 struct agp_softc *sc; 1037 vm_offset_t i; 1038 1039 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1040 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1041 return (EINVAL); 1042 1043 sc = device_get_softc(dev); 1044 1045 mtx_lock(&sc->as_lock); 1046 for (i = 0; i < size; i += AGP_PAGE_SIZE) 1047 AGP_UNBIND_PAGE(dev, offset + i); 1048 1049 AGP_FLUSH_TLB(dev); 1050 1051 mtx_unlock(&sc->as_lock); 1052 return (0); 1053 } 1054