1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_agp.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/kernel.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/conf.h> 41 #include <sys/ioccom.h> 42 #include <sys/agpio.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/rwlock.h> 47 48 #include <dev/agp/agppriv.h> 49 #include <dev/agp/agpvar.h> 50 #include <dev/agp/agpreg.h> 51 #include <dev/pci/pcivar.h> 52 #include <dev/pci/pcireg.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_kern.h> 57 #include <vm/vm_param.h> 58 #include <vm/vm_object.h> 59 #include <vm/vm_page.h> 60 #include <vm/vm_pageout.h> 61 #include <vm/pmap.h> 62 63 #include <machine/bus.h> 64 #include <machine/resource.h> 65 #include <sys/rman.h> 66 67 MODULE_VERSION(agp, 1); 68 69 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures"); 70 71 /* agp_drv.c */ 72 static d_open_t agp_open; 73 static d_close_t agp_close; 74 static d_ioctl_t agp_ioctl; 75 static d_mmap_t agp_mmap; 76 77 static struct cdevsw agp_cdevsw = { 78 .d_version = D_VERSION, 79 .d_flags = D_NEEDGIANT, 80 .d_open = agp_open, 81 .d_close = agp_close, 82 .d_ioctl = agp_ioctl, 83 .d_mmap = agp_mmap, 84 .d_name = "agp", 85 }; 86 87 static devclass_t agp_devclass; 88 89 /* Helper functions for implementing chipset mini drivers. */ 90 91 u_int8_t 92 agp_find_caps(device_t dev) 93 { 94 int capreg; 95 96 if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0) 97 capreg = 0; 98 return (capreg); 99 } 100 101 /* 102 * Find an AGP display device (if any). 103 */ 104 static device_t 105 agp_find_display(void) 106 { 107 devclass_t pci = devclass_find("pci"); 108 device_t bus, dev = 0; 109 device_t *kids; 110 int busnum, numkids, i; 111 112 for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) { 113 bus = devclass_get_device(pci, busnum); 114 if (!bus) 115 continue; 116 if (device_get_children(bus, &kids, &numkids) != 0) 117 continue; 118 for (i = 0; i < numkids; i++) { 119 dev = kids[i]; 120 if (pci_get_class(dev) == PCIC_DISPLAY 121 && pci_get_subclass(dev) == PCIS_DISPLAY_VGA) 122 if (agp_find_caps(dev)) { 123 free(kids, M_TEMP); 124 return dev; 125 } 126 127 } 128 free(kids, M_TEMP); 129 } 130 131 return 0; 132 } 133 134 struct agp_gatt * 135 agp_alloc_gatt(device_t dev) 136 { 137 u_int32_t apsize = AGP_GET_APERTURE(dev); 138 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 139 struct agp_gatt *gatt; 140 141 if (bootverbose) 142 device_printf(dev, 143 "allocating GATT for aperture of size %dM\n", 144 apsize / (1024*1024)); 145 146 if (entries == 0) { 147 device_printf(dev, "bad aperture size\n"); 148 return NULL; 149 } 150 151 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 152 if (!gatt) 153 return 0; 154 155 gatt->ag_entries = entries; 156 gatt->ag_virtual = (void *)kmem_alloc_contig(entries * 157 sizeof(u_int32_t), M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0, 158 VM_MEMATTR_WRITE_COMBINING); 159 if (!gatt->ag_virtual) { 160 if (bootverbose) 161 device_printf(dev, "contiguous allocation failed\n"); 162 free(gatt, M_AGP); 163 return 0; 164 } 165 gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual); 166 167 return gatt; 168 } 169 170 void 171 agp_free_gatt(struct agp_gatt *gatt) 172 { 173 kmem_free((vm_offset_t)gatt->ag_virtual, gatt->ag_entries * 174 sizeof(u_int32_t)); 175 free(gatt, M_AGP); 176 } 177 178 static u_int agp_max[][2] = { 179 {0, 0}, 180 {32, 4}, 181 {64, 28}, 182 {128, 96}, 183 {256, 204}, 184 {512, 440}, 185 {1024, 942}, 186 {2048, 1920}, 187 {4096, 3932} 188 }; 189 #define AGP_MAX_SIZE nitems(agp_max) 190 191 /** 192 * Sets the PCI resource which represents the AGP aperture. 193 * 194 * If not called, the default AGP aperture resource of AGP_APBASE will 195 * be used. Must be called before agp_generic_attach(). 196 */ 197 void 198 agp_set_aperture_resource(device_t dev, int rid) 199 { 200 struct agp_softc *sc = device_get_softc(dev); 201 202 sc->as_aperture_rid = rid; 203 } 204 205 int 206 agp_generic_attach(device_t dev) 207 { 208 struct make_dev_args mdargs; 209 struct agp_softc *sc = device_get_softc(dev); 210 int error, i, unit; 211 u_int memsize; 212 213 /* 214 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE 215 * because the kernel doesn't need to map it. 216 */ 217 218 if (sc->as_aperture_rid != -1) { 219 if (sc->as_aperture_rid == 0) 220 sc->as_aperture_rid = AGP_APBASE; 221 222 sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 223 &sc->as_aperture_rid, RF_SHAREABLE); 224 if (!sc->as_aperture) 225 return ENOMEM; 226 } 227 228 /* 229 * Work out an upper bound for agp memory allocation. This 230 * uses a heurisitc table from the Linux driver. 231 */ 232 memsize = ptoa(realmem) >> 20; 233 for (i = 0; i < AGP_MAX_SIZE; i++) { 234 if (memsize <= agp_max[i][0]) 235 break; 236 } 237 if (i == AGP_MAX_SIZE) 238 i = AGP_MAX_SIZE - 1; 239 sc->as_maxmem = agp_max[i][1] << 20U; 240 241 /* 242 * The lock is used to prevent re-entry to 243 * agp_generic_bind_memory() since that function can sleep. 244 */ 245 mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF); 246 247 /* 248 * Initialise stuff for the userland device. 249 */ 250 agp_devclass = devclass_find("agp"); 251 TAILQ_INIT(&sc->as_memory); 252 sc->as_nextid = 1; 253 254 sc->as_devalias = NULL; 255 256 make_dev_args_init(&mdargs); 257 mdargs.mda_devsw = &agp_cdevsw; 258 mdargs.mda_uid = UID_ROOT; 259 mdargs.mda_gid = GID_WHEEL; 260 mdargs.mda_mode = 0600; 261 mdargs.mda_si_drv1 = sc; 262 mdargs.mda_si_drv2 = NULL; 263 264 unit = device_get_unit(dev); 265 error = make_dev_s(&mdargs, &sc->as_devnode, "agpgart%d", unit); 266 if (error == 0) { 267 /* 268 * Create an alias for the first device that shows up. 269 */ 270 if (unit == 0) { 271 (void)make_dev_alias_p(MAKEDEV_CHECKNAME, 272 &sc->as_devalias, sc->as_devnode, "agpgart"); 273 } 274 } else { 275 agp_free_res(dev); 276 } 277 278 return error; 279 } 280 281 void 282 agp_free_cdev(device_t dev) 283 { 284 struct agp_softc *sc = device_get_softc(dev); 285 286 destroy_dev(sc->as_devnode); 287 if (sc->as_devalias != NULL) 288 destroy_dev(sc->as_devalias); 289 } 290 291 void 292 agp_free_res(device_t dev) 293 { 294 struct agp_softc *sc = device_get_softc(dev); 295 296 if (sc->as_aperture != NULL) 297 bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid, 298 sc->as_aperture); 299 mtx_destroy(&sc->as_lock); 300 } 301 302 int 303 agp_generic_detach(device_t dev) 304 { 305 306 agp_free_cdev(dev); 307 agp_free_res(dev); 308 return 0; 309 } 310 311 /** 312 * Default AGP aperture size detection which simply returns the size of 313 * the aperture's PCI resource. 314 */ 315 u_int32_t 316 agp_generic_get_aperture(device_t dev) 317 { 318 struct agp_softc *sc = device_get_softc(dev); 319 320 return rman_get_size(sc->as_aperture); 321 } 322 323 /** 324 * Default AGP aperture size setting function, which simply doesn't allow 325 * changes to resource size. 326 */ 327 int 328 agp_generic_set_aperture(device_t dev, u_int32_t aperture) 329 { 330 u_int32_t current_aperture; 331 332 current_aperture = AGP_GET_APERTURE(dev); 333 if (current_aperture != aperture) 334 return EINVAL; 335 else 336 return 0; 337 } 338 339 /* 340 * This does the enable logic for v3, with the same topology 341 * restrictions as in place for v2 -- one bus, one device on the bus. 342 */ 343 static int 344 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode) 345 { 346 u_int32_t tstatus, mstatus; 347 u_int32_t command; 348 int rq, sba, fw, rate, arqsz, cal; 349 350 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 351 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 352 353 /* Set RQ to the min of mode, tstatus and mstatus */ 354 rq = AGP_MODE_GET_RQ(mode); 355 if (AGP_MODE_GET_RQ(tstatus) < rq) 356 rq = AGP_MODE_GET_RQ(tstatus); 357 if (AGP_MODE_GET_RQ(mstatus) < rq) 358 rq = AGP_MODE_GET_RQ(mstatus); 359 360 /* 361 * ARQSZ - Set the value to the maximum one. 362 * Don't allow the mode register to override values. 363 */ 364 arqsz = AGP_MODE_GET_ARQSZ(mode); 365 if (AGP_MODE_GET_ARQSZ(tstatus) > rq) 366 rq = AGP_MODE_GET_ARQSZ(tstatus); 367 if (AGP_MODE_GET_ARQSZ(mstatus) > rq) 368 rq = AGP_MODE_GET_ARQSZ(mstatus); 369 370 /* Calibration cycle - don't allow override by mode register */ 371 cal = AGP_MODE_GET_CAL(tstatus); 372 if (AGP_MODE_GET_CAL(mstatus) < cal) 373 cal = AGP_MODE_GET_CAL(mstatus); 374 375 /* SBA must be supported for AGP v3. */ 376 sba = 1; 377 378 /* Set FW if all three support it. */ 379 fw = (AGP_MODE_GET_FW(tstatus) 380 & AGP_MODE_GET_FW(mstatus) 381 & AGP_MODE_GET_FW(mode)); 382 383 /* Figure out the max rate */ 384 rate = (AGP_MODE_GET_RATE(tstatus) 385 & AGP_MODE_GET_RATE(mstatus) 386 & AGP_MODE_GET_RATE(mode)); 387 if (rate & AGP_MODE_V3_RATE_8x) 388 rate = AGP_MODE_V3_RATE_8x; 389 else 390 rate = AGP_MODE_V3_RATE_4x; 391 if (bootverbose) 392 device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4); 393 394 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4); 395 396 /* Construct the new mode word and tell the hardware */ 397 command = 0; 398 command = AGP_MODE_SET_RQ(0, rq); 399 command = AGP_MODE_SET_ARQSZ(command, arqsz); 400 command = AGP_MODE_SET_CAL(command, cal); 401 command = AGP_MODE_SET_SBA(command, sba); 402 command = AGP_MODE_SET_FW(command, fw); 403 command = AGP_MODE_SET_RATE(command, rate); 404 command = AGP_MODE_SET_MODE_3(command, 1); 405 command = AGP_MODE_SET_AGP(command, 1); 406 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 407 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 408 409 return 0; 410 } 411 412 static int 413 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode) 414 { 415 u_int32_t tstatus, mstatus; 416 u_int32_t command; 417 int rq, sba, fw, rate; 418 419 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 420 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 421 422 /* Set RQ to the min of mode, tstatus and mstatus */ 423 rq = AGP_MODE_GET_RQ(mode); 424 if (AGP_MODE_GET_RQ(tstatus) < rq) 425 rq = AGP_MODE_GET_RQ(tstatus); 426 if (AGP_MODE_GET_RQ(mstatus) < rq) 427 rq = AGP_MODE_GET_RQ(mstatus); 428 429 /* Set SBA if all three can deal with SBA */ 430 sba = (AGP_MODE_GET_SBA(tstatus) 431 & AGP_MODE_GET_SBA(mstatus) 432 & AGP_MODE_GET_SBA(mode)); 433 434 /* Similar for FW */ 435 fw = (AGP_MODE_GET_FW(tstatus) 436 & AGP_MODE_GET_FW(mstatus) 437 & AGP_MODE_GET_FW(mode)); 438 439 /* Figure out the max rate */ 440 rate = (AGP_MODE_GET_RATE(tstatus) 441 & AGP_MODE_GET_RATE(mstatus) 442 & AGP_MODE_GET_RATE(mode)); 443 if (rate & AGP_MODE_V2_RATE_4x) 444 rate = AGP_MODE_V2_RATE_4x; 445 else if (rate & AGP_MODE_V2_RATE_2x) 446 rate = AGP_MODE_V2_RATE_2x; 447 else 448 rate = AGP_MODE_V2_RATE_1x; 449 if (bootverbose) 450 device_printf(dev, "Setting AGP v2 mode %d\n", rate); 451 452 /* Construct the new mode word and tell the hardware */ 453 command = 0; 454 command = AGP_MODE_SET_RQ(0, rq); 455 command = AGP_MODE_SET_SBA(command, sba); 456 command = AGP_MODE_SET_FW(command, fw); 457 command = AGP_MODE_SET_RATE(command, rate); 458 command = AGP_MODE_SET_AGP(command, 1); 459 pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4); 460 pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4); 461 462 return 0; 463 } 464 465 int 466 agp_generic_enable(device_t dev, u_int32_t mode) 467 { 468 device_t mdev = agp_find_display(); 469 u_int32_t tstatus, mstatus; 470 471 if (!mdev) { 472 AGP_DPF("can't find display\n"); 473 return ENXIO; 474 } 475 476 tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 477 mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4); 478 479 /* 480 * Check display and bridge for AGP v3 support. AGP v3 allows 481 * more variety in topology than v2, e.g. multiple AGP devices 482 * attached to one bridge, or multiple AGP bridges in one 483 * system. This doesn't attempt to address those situations, 484 * but should work fine for a classic single AGP slot system 485 * with AGP v3. 486 */ 487 if (AGP_MODE_GET_MODE_3(mode) && 488 AGP_MODE_GET_MODE_3(tstatus) && 489 AGP_MODE_GET_MODE_3(mstatus)) 490 return (agp_v3_enable(dev, mdev, mode)); 491 else 492 return (agp_v2_enable(dev, mdev, mode)); 493 } 494 495 struct agp_memory * 496 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size) 497 { 498 struct agp_softc *sc = device_get_softc(dev); 499 struct agp_memory *mem; 500 501 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 502 return 0; 503 504 if (size > sc->as_maxmem - sc->as_allocated) 505 return 0; 506 507 if (type != 0) { 508 printf("agp_generic_alloc_memory: unsupported type %d\n", 509 type); 510 return 0; 511 } 512 513 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 514 mem->am_id = sc->as_nextid++; 515 mem->am_size = size; 516 mem->am_type = 0; 517 mem->am_obj = vm_object_allocate(OBJT_SWAP, atop(round_page(size))); 518 mem->am_physical = 0; 519 mem->am_offset = 0; 520 mem->am_is_bound = 0; 521 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 522 sc->as_allocated += size; 523 524 return mem; 525 } 526 527 int 528 agp_generic_free_memory(device_t dev, struct agp_memory *mem) 529 { 530 struct agp_softc *sc = device_get_softc(dev); 531 532 if (mem->am_is_bound) 533 return EBUSY; 534 535 sc->as_allocated -= mem->am_size; 536 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 537 vm_object_deallocate(mem->am_obj); 538 free(mem, M_AGP); 539 return 0; 540 } 541 542 int 543 agp_generic_bind_memory(device_t dev, struct agp_memory *mem, 544 vm_offset_t offset) 545 { 546 struct agp_softc *sc = device_get_softc(dev); 547 vm_offset_t i, j, k; 548 vm_page_t m; 549 int error; 550 551 /* Do some sanity checks first. */ 552 if ((offset & (AGP_PAGE_SIZE - 1)) != 0 || 553 offset + mem->am_size > AGP_GET_APERTURE(dev)) { 554 device_printf(dev, "binding memory at bad offset %#x\n", 555 (int)offset); 556 return EINVAL; 557 } 558 559 /* 560 * Allocate the pages early, before acquiring the lock, 561 * because vm_page_grab() may sleep and we can't hold a mutex 562 * while sleeping. 563 */ 564 VM_OBJECT_WLOCK(mem->am_obj); 565 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 566 /* 567 * Find a page from the object and wire it 568 * down. This page will be mapped using one or more 569 * entries in the GATT (assuming that PAGE_SIZE >= 570 * AGP_PAGE_SIZE. If this is the first call to bind, 571 * the pages will be allocated and zeroed. 572 */ 573 m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i), 574 VM_ALLOC_WIRED | VM_ALLOC_ZERO); 575 AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m)); 576 } 577 VM_OBJECT_WUNLOCK(mem->am_obj); 578 579 mtx_lock(&sc->as_lock); 580 581 if (mem->am_is_bound) { 582 device_printf(dev, "memory already bound\n"); 583 error = EINVAL; 584 VM_OBJECT_WLOCK(mem->am_obj); 585 i = 0; 586 goto bad; 587 } 588 589 /* 590 * Bind the individual pages and flush the chipset's 591 * TLB. 592 */ 593 VM_OBJECT_WLOCK(mem->am_obj); 594 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 595 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(i)); 596 597 /* 598 * Install entries in the GATT, making sure that if 599 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 600 * aligned to PAGE_SIZE, we don't modify too many GATT 601 * entries. 602 */ 603 for (j = 0; j < PAGE_SIZE && i + j < mem->am_size; 604 j += AGP_PAGE_SIZE) { 605 vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j; 606 AGP_DPF("binding offset %#jx to pa %#jx\n", 607 (uintmax_t)offset + i + j, (uintmax_t)pa); 608 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 609 if (error) { 610 /* 611 * Bail out. Reverse all the mappings 612 * and unwire the pages. 613 */ 614 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 615 AGP_UNBIND_PAGE(dev, offset + k); 616 goto bad; 617 } 618 } 619 vm_page_xunbusy(m); 620 } 621 VM_OBJECT_WUNLOCK(mem->am_obj); 622 623 /* 624 * Make sure the chipset gets the new mappings. 625 */ 626 AGP_FLUSH_TLB(dev); 627 628 mem->am_offset = offset; 629 mem->am_is_bound = 1; 630 631 mtx_unlock(&sc->as_lock); 632 633 return 0; 634 bad: 635 mtx_unlock(&sc->as_lock); 636 VM_OBJECT_ASSERT_WLOCKED(mem->am_obj); 637 for (k = 0; k < mem->am_size; k += PAGE_SIZE) { 638 m = vm_page_lookup(mem->am_obj, OFF_TO_IDX(k)); 639 if (k >= i) 640 vm_page_xunbusy(m); 641 vm_page_unwire(m, PQ_INACTIVE); 642 } 643 VM_OBJECT_WUNLOCK(mem->am_obj); 644 645 return error; 646 } 647 648 int 649 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem) 650 { 651 struct agp_softc *sc = device_get_softc(dev); 652 vm_page_t m; 653 int i; 654 655 mtx_lock(&sc->as_lock); 656 657 if (!mem->am_is_bound) { 658 device_printf(dev, "memory is not bound\n"); 659 mtx_unlock(&sc->as_lock); 660 return EINVAL; 661 } 662 663 /* 664 * Unbind the individual pages and flush the chipset's 665 * TLB. Unwire the pages so they can be swapped. 666 */ 667 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 668 AGP_UNBIND_PAGE(dev, mem->am_offset + i); 669 670 AGP_FLUSH_TLB(dev); 671 672 VM_OBJECT_WLOCK(mem->am_obj); 673 for (i = 0; i < mem->am_size; i += PAGE_SIZE) { 674 m = vm_page_lookup(mem->am_obj, atop(i)); 675 vm_page_unwire(m, PQ_INACTIVE); 676 } 677 VM_OBJECT_WUNLOCK(mem->am_obj); 678 679 mem->am_offset = 0; 680 mem->am_is_bound = 0; 681 682 mtx_unlock(&sc->as_lock); 683 684 return 0; 685 } 686 687 /* Helper functions for implementing user/kernel api */ 688 689 static int 690 agp_acquire_helper(device_t dev, enum agp_acquire_state state) 691 { 692 struct agp_softc *sc = device_get_softc(dev); 693 694 if (sc->as_state != AGP_ACQUIRE_FREE) 695 return EBUSY; 696 sc->as_state = state; 697 698 return 0; 699 } 700 701 static int 702 agp_release_helper(device_t dev, enum agp_acquire_state state) 703 { 704 struct agp_softc *sc = device_get_softc(dev); 705 706 if (sc->as_state == AGP_ACQUIRE_FREE) 707 return 0; 708 709 if (sc->as_state != state) 710 return EBUSY; 711 712 sc->as_state = AGP_ACQUIRE_FREE; 713 return 0; 714 } 715 716 static struct agp_memory * 717 agp_find_memory(device_t dev, int id) 718 { 719 struct agp_softc *sc = device_get_softc(dev); 720 struct agp_memory *mem; 721 722 AGP_DPF("searching for memory block %d\n", id); 723 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 724 AGP_DPF("considering memory block %d\n", mem->am_id); 725 if (mem->am_id == id) 726 return mem; 727 } 728 return 0; 729 } 730 731 /* Implementation of the userland ioctl api */ 732 733 static int 734 agp_info_user(device_t dev, agp_info *info) 735 { 736 struct agp_softc *sc = device_get_softc(dev); 737 738 bzero(info, sizeof *info); 739 info->bridge_id = pci_get_devid(dev); 740 info->agp_mode = 741 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 742 if (sc->as_aperture) 743 info->aper_base = rman_get_start(sc->as_aperture); 744 else 745 info->aper_base = 0; 746 info->aper_size = AGP_GET_APERTURE(dev) >> 20; 747 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 748 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 749 750 return 0; 751 } 752 753 static int 754 agp_setup_user(device_t dev, agp_setup *setup) 755 { 756 return AGP_ENABLE(dev, setup->agp_mode); 757 } 758 759 static int 760 agp_allocate_user(device_t dev, agp_allocate *alloc) 761 { 762 struct agp_memory *mem; 763 764 mem = AGP_ALLOC_MEMORY(dev, 765 alloc->type, 766 alloc->pg_count << AGP_PAGE_SHIFT); 767 if (mem) { 768 alloc->key = mem->am_id; 769 alloc->physical = mem->am_physical; 770 return 0; 771 } else { 772 return ENOMEM; 773 } 774 } 775 776 static int 777 agp_deallocate_user(device_t dev, int id) 778 { 779 struct agp_memory *mem = agp_find_memory(dev, id); 780 781 if (mem) { 782 AGP_FREE_MEMORY(dev, mem); 783 return 0; 784 } else { 785 return ENOENT; 786 } 787 } 788 789 static int 790 agp_bind_user(device_t dev, agp_bind *bind) 791 { 792 struct agp_memory *mem = agp_find_memory(dev, bind->key); 793 794 if (!mem) 795 return ENOENT; 796 797 return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT); 798 } 799 800 static int 801 agp_unbind_user(device_t dev, agp_unbind *unbind) 802 { 803 struct agp_memory *mem = agp_find_memory(dev, unbind->key); 804 805 if (!mem) 806 return ENOENT; 807 808 return AGP_UNBIND_MEMORY(dev, mem); 809 } 810 811 static int 812 agp_chipset_flush(device_t dev) 813 { 814 815 return (AGP_CHIPSET_FLUSH(dev)); 816 } 817 818 static int 819 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td) 820 { 821 device_t dev = kdev->si_drv1; 822 struct agp_softc *sc = device_get_softc(dev); 823 824 if (!sc->as_isopen) { 825 sc->as_isopen = 1; 826 device_busy(dev); 827 } 828 829 return 0; 830 } 831 832 static int 833 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td) 834 { 835 device_t dev = kdev->si_drv1; 836 struct agp_softc *sc = device_get_softc(dev); 837 struct agp_memory *mem; 838 839 /* 840 * Clear the GATT and force release on last close 841 */ 842 while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) { 843 if (mem->am_is_bound) 844 AGP_UNBIND_MEMORY(dev, mem); 845 AGP_FREE_MEMORY(dev, mem); 846 } 847 if (sc->as_state == AGP_ACQUIRE_USER) 848 agp_release_helper(dev, AGP_ACQUIRE_USER); 849 sc->as_isopen = 0; 850 device_unbusy(dev); 851 852 return 0; 853 } 854 855 static int 856 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td) 857 { 858 device_t dev = kdev->si_drv1; 859 860 switch (cmd) { 861 case AGPIOC_INFO: 862 return agp_info_user(dev, (agp_info *) data); 863 864 case AGPIOC_ACQUIRE: 865 return agp_acquire_helper(dev, AGP_ACQUIRE_USER); 866 867 case AGPIOC_RELEASE: 868 return agp_release_helper(dev, AGP_ACQUIRE_USER); 869 870 case AGPIOC_SETUP: 871 return agp_setup_user(dev, (agp_setup *)data); 872 873 case AGPIOC_ALLOCATE: 874 return agp_allocate_user(dev, (agp_allocate *)data); 875 876 case AGPIOC_DEALLOCATE: 877 return agp_deallocate_user(dev, *(int *) data); 878 879 case AGPIOC_BIND: 880 return agp_bind_user(dev, (agp_bind *)data); 881 882 case AGPIOC_UNBIND: 883 return agp_unbind_user(dev, (agp_unbind *)data); 884 885 case AGPIOC_CHIPSET_FLUSH: 886 return agp_chipset_flush(dev); 887 } 888 889 return EINVAL; 890 } 891 892 static int 893 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr, 894 int prot, vm_memattr_t *memattr) 895 { 896 device_t dev = kdev->si_drv1; 897 struct agp_softc *sc = device_get_softc(dev); 898 899 if (offset > AGP_GET_APERTURE(dev)) 900 return -1; 901 if (sc->as_aperture == NULL) 902 return -1; 903 *paddr = rman_get_start(sc->as_aperture) + offset; 904 return 0; 905 } 906 907 /* Implementation of the kernel api */ 908 909 device_t 910 agp_find_device(void) 911 { 912 device_t *children, child; 913 int i, count; 914 915 if (!agp_devclass) 916 return NULL; 917 if (devclass_get_devices(agp_devclass, &children, &count) != 0) 918 return NULL; 919 child = NULL; 920 for (i = 0; i < count; i++) { 921 if (device_is_attached(children[i])) { 922 child = children[i]; 923 break; 924 } 925 } 926 free(children, M_TEMP); 927 return child; 928 } 929 930 enum agp_acquire_state 931 agp_state(device_t dev) 932 { 933 struct agp_softc *sc = device_get_softc(dev); 934 return sc->as_state; 935 } 936 937 void 938 agp_get_info(device_t dev, struct agp_info *info) 939 { 940 struct agp_softc *sc = device_get_softc(dev); 941 942 info->ai_mode = 943 pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4); 944 if (sc->as_aperture != NULL) 945 info->ai_aperture_base = rman_get_start(sc->as_aperture); 946 else 947 info->ai_aperture_base = 0; 948 info->ai_aperture_size = AGP_GET_APERTURE(dev); 949 info->ai_memory_allowed = sc->as_maxmem; 950 info->ai_memory_used = sc->as_allocated; 951 } 952 953 int 954 agp_acquire(device_t dev) 955 { 956 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 957 } 958 959 int 960 agp_release(device_t dev) 961 { 962 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 963 } 964 965 int 966 agp_enable(device_t dev, u_int32_t mode) 967 { 968 return AGP_ENABLE(dev, mode); 969 } 970 971 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes) 972 { 973 return (void *) AGP_ALLOC_MEMORY(dev, type, bytes); 974 } 975 976 void agp_free_memory(device_t dev, void *handle) 977 { 978 struct agp_memory *mem = (struct agp_memory *) handle; 979 AGP_FREE_MEMORY(dev, mem); 980 } 981 982 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset) 983 { 984 struct agp_memory *mem = (struct agp_memory *) handle; 985 return AGP_BIND_MEMORY(dev, mem, offset); 986 } 987 988 int agp_unbind_memory(device_t dev, void *handle) 989 { 990 struct agp_memory *mem = (struct agp_memory *) handle; 991 return AGP_UNBIND_MEMORY(dev, mem); 992 } 993 994 void agp_memory_info(device_t dev, void *handle, struct 995 agp_memory_info *mi) 996 { 997 struct agp_memory *mem = (struct agp_memory *) handle; 998 999 mi->ami_size = mem->am_size; 1000 mi->ami_physical = mem->am_physical; 1001 mi->ami_offset = mem->am_offset; 1002 mi->ami_is_bound = mem->am_is_bound; 1003 } 1004 1005 int 1006 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size, 1007 vm_offset_t offset) 1008 { 1009 struct agp_softc *sc; 1010 vm_offset_t i, j, k, pa; 1011 vm_page_t m; 1012 int error; 1013 1014 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1015 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1016 return (EINVAL); 1017 1018 sc = device_get_softc(dev); 1019 1020 mtx_lock(&sc->as_lock); 1021 for (i = 0; i < size; i += PAGE_SIZE) { 1022 m = pages[OFF_TO_IDX(i)]; 1023 KASSERT(vm_page_wired(m), 1024 ("agp_bind_pages: page %p hasn't been wired", m)); 1025 1026 /* 1027 * Install entries in the GATT, making sure that if 1028 * AGP_PAGE_SIZE < PAGE_SIZE and size is not 1029 * aligned to PAGE_SIZE, we don't modify too many GATT 1030 * entries. 1031 */ 1032 for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) { 1033 pa = VM_PAGE_TO_PHYS(m) + j; 1034 AGP_DPF("binding offset %#jx to pa %#jx\n", 1035 (uintmax_t)offset + i + j, (uintmax_t)pa); 1036 error = AGP_BIND_PAGE(dev, offset + i + j, pa); 1037 if (error) { 1038 /* 1039 * Bail out. Reverse all the mappings. 1040 */ 1041 for (k = 0; k < i + j; k += AGP_PAGE_SIZE) 1042 AGP_UNBIND_PAGE(dev, offset + k); 1043 1044 mtx_unlock(&sc->as_lock); 1045 return (error); 1046 } 1047 } 1048 } 1049 1050 AGP_FLUSH_TLB(dev); 1051 1052 mtx_unlock(&sc->as_lock); 1053 return (0); 1054 } 1055 1056 int 1057 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset) 1058 { 1059 struct agp_softc *sc; 1060 vm_offset_t i; 1061 1062 if ((size & (AGP_PAGE_SIZE - 1)) != 0 || 1063 (offset & (AGP_PAGE_SIZE - 1)) != 0) 1064 return (EINVAL); 1065 1066 sc = device_get_softc(dev); 1067 1068 mtx_lock(&sc->as_lock); 1069 for (i = 0; i < size; i += AGP_PAGE_SIZE) 1070 AGP_UNBIND_PAGE(dev, offset + i); 1071 1072 AGP_FLUSH_TLB(dev); 1073 1074 mtx_unlock(&sc->as_lock); 1075 return (0); 1076 } 1077