1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008 Stanislav Sedov <stas@FreeBSD.org>. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * Driver for Attansic Technology Corp. L2 FastEthernet adapter. 28 * 29 * This driver is heavily based on age(4) Attansic L1 driver by Pyun YongHyeon. 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/bus.h> 38 #include <sys/endian.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/mutex.h> 44 #include <sys/rman.h> 45 #include <sys/module.h> 46 #include <sys/queue.h> 47 #include <sys/socket.h> 48 #include <sys/sockio.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 52 #include <net/bpf.h> 53 #include <net/if.h> 54 #include <net/if_var.h> 55 #include <net/if_arp.h> 56 #include <net/ethernet.h> 57 #include <net/if_dl.h> 58 #include <net/if_media.h> 59 #include <net/if_types.h> 60 #include <net/if_vlan_var.h> 61 62 #include <netinet/in.h> 63 #include <netinet/in_systm.h> 64 #include <netinet/ip.h> 65 #include <netinet/tcp.h> 66 67 #include <dev/mii/mii.h> 68 #include <dev/mii/miivar.h> 69 #include <dev/pci/pcireg.h> 70 #include <dev/pci/pcivar.h> 71 72 #include <machine/bus.h> 73 74 #include "miibus_if.h" 75 76 #include "if_aereg.h" 77 #include "if_aevar.h" 78 79 /* 80 * Devices supported by this driver. 81 */ 82 static struct ae_dev { 83 uint16_t vendorid; 84 uint16_t deviceid; 85 const char *name; 86 } ae_devs[] = { 87 { VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L2, 88 "Attansic Technology Corp, L2 FastEthernet" }, 89 }; 90 #define AE_DEVS_COUNT nitems(ae_devs) 91 92 static struct resource_spec ae_res_spec_mem[] = { 93 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 94 { -1, 0, 0 } 95 }; 96 static struct resource_spec ae_res_spec_irq[] = { 97 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 98 { -1, 0, 0 } 99 }; 100 static struct resource_spec ae_res_spec_msi[] = { 101 { SYS_RES_IRQ, 1, RF_ACTIVE }, 102 { -1, 0, 0 } 103 }; 104 105 static int ae_probe(device_t dev); 106 static int ae_attach(device_t dev); 107 static void ae_pcie_init(ae_softc_t *sc); 108 static void ae_phy_reset(ae_softc_t *sc); 109 static void ae_phy_init(ae_softc_t *sc); 110 static int ae_reset(ae_softc_t *sc); 111 static void ae_init(void *arg); 112 static int ae_init_locked(ae_softc_t *sc); 113 static int ae_detach(device_t dev); 114 static int ae_miibus_readreg(device_t dev, int phy, int reg); 115 static int ae_miibus_writereg(device_t dev, int phy, int reg, int val); 116 static void ae_miibus_statchg(device_t dev); 117 static void ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr); 118 static int ae_mediachange(struct ifnet *ifp); 119 static void ae_retrieve_address(ae_softc_t *sc); 120 static void ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, 121 int error); 122 static int ae_alloc_rings(ae_softc_t *sc); 123 static void ae_dma_free(ae_softc_t *sc); 124 static int ae_shutdown(device_t dev); 125 static int ae_suspend(device_t dev); 126 static void ae_powersave_disable(ae_softc_t *sc); 127 static void ae_powersave_enable(ae_softc_t *sc); 128 static int ae_resume(device_t dev); 129 static unsigned int ae_tx_avail_size(ae_softc_t *sc); 130 static int ae_encap(ae_softc_t *sc, struct mbuf **m_head); 131 static void ae_start(struct ifnet *ifp); 132 static void ae_start_locked(struct ifnet *ifp); 133 static void ae_link_task(void *arg, int pending); 134 static void ae_stop_rxmac(ae_softc_t *sc); 135 static void ae_stop_txmac(ae_softc_t *sc); 136 static void ae_mac_config(ae_softc_t *sc); 137 static int ae_intr(void *arg); 138 static void ae_int_task(void *arg, int pending); 139 static void ae_tx_intr(ae_softc_t *sc); 140 static void ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd); 141 static void ae_rx_intr(ae_softc_t *sc); 142 static void ae_watchdog(ae_softc_t *sc); 143 static void ae_tick(void *arg); 144 static void ae_rxfilter(ae_softc_t *sc); 145 static void ae_rxvlan(ae_softc_t *sc); 146 static int ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); 147 static void ae_stop(ae_softc_t *sc); 148 static int ae_check_eeprom_present(ae_softc_t *sc, int *vpdc); 149 static int ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word); 150 static int ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr); 151 static int ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr); 152 static void ae_update_stats_rx(uint16_t flags, ae_stats_t *stats); 153 static void ae_update_stats_tx(uint16_t flags, ae_stats_t *stats); 154 static void ae_init_tunables(ae_softc_t *sc); 155 156 static device_method_t ae_methods[] = { 157 /* Device interface. */ 158 DEVMETHOD(device_probe, ae_probe), 159 DEVMETHOD(device_attach, ae_attach), 160 DEVMETHOD(device_detach, ae_detach), 161 DEVMETHOD(device_shutdown, ae_shutdown), 162 DEVMETHOD(device_suspend, ae_suspend), 163 DEVMETHOD(device_resume, ae_resume), 164 165 /* MII interface. */ 166 DEVMETHOD(miibus_readreg, ae_miibus_readreg), 167 DEVMETHOD(miibus_writereg, ae_miibus_writereg), 168 DEVMETHOD(miibus_statchg, ae_miibus_statchg), 169 170 { NULL, NULL } 171 }; 172 static driver_t ae_driver = { 173 "ae", 174 ae_methods, 175 sizeof(ae_softc_t) 176 }; 177 static devclass_t ae_devclass; 178 179 DRIVER_MODULE(ae, pci, ae_driver, ae_devclass, 0, 0); 180 DRIVER_MODULE(miibus, ae, miibus_driver, miibus_devclass, 0, 0); 181 MODULE_DEPEND(ae, pci, 1, 1, 1); 182 MODULE_DEPEND(ae, ether, 1, 1, 1); 183 MODULE_DEPEND(ae, miibus, 1, 1, 1); 184 185 /* 186 * Tunables. 187 */ 188 static int msi_disable = 0; 189 TUNABLE_INT("hw.ae.msi_disable", &msi_disable); 190 191 #define AE_READ_4(sc, reg) \ 192 bus_read_4((sc)->mem[0], (reg)) 193 #define AE_READ_2(sc, reg) \ 194 bus_read_2((sc)->mem[0], (reg)) 195 #define AE_READ_1(sc, reg) \ 196 bus_read_1((sc)->mem[0], (reg)) 197 #define AE_WRITE_4(sc, reg, val) \ 198 bus_write_4((sc)->mem[0], (reg), (val)) 199 #define AE_WRITE_2(sc, reg, val) \ 200 bus_write_2((sc)->mem[0], (reg), (val)) 201 #define AE_WRITE_1(sc, reg, val) \ 202 bus_write_1((sc)->mem[0], (reg), (val)) 203 #define AE_PHY_READ(sc, reg) \ 204 ae_miibus_readreg(sc->dev, 0, reg) 205 #define AE_PHY_WRITE(sc, reg, val) \ 206 ae_miibus_writereg(sc->dev, 0, reg, val) 207 #define AE_CHECK_EADDR_VALID(eaddr) \ 208 ((eaddr[0] == 0 && eaddr[1] == 0) || \ 209 (eaddr[0] == 0xffffffff && eaddr[1] == 0xffff)) 210 #define AE_RXD_VLAN(vtag) \ 211 (((vtag) >> 4) | (((vtag) & 0x07) << 13) | (((vtag) & 0x08) << 9)) 212 #define AE_TXD_VLAN(vtag) \ 213 (((vtag) << 4) | (((vtag) >> 13) & 0x07) | (((vtag) >> 9) & 0x08)) 214 215 static int 216 ae_probe(device_t dev) 217 { 218 uint16_t deviceid, vendorid; 219 int i; 220 221 vendorid = pci_get_vendor(dev); 222 deviceid = pci_get_device(dev); 223 224 /* 225 * Search through the list of supported devs for matching one. 226 */ 227 for (i = 0; i < AE_DEVS_COUNT; i++) { 228 if (vendorid == ae_devs[i].vendorid && 229 deviceid == ae_devs[i].deviceid) { 230 device_set_desc(dev, ae_devs[i].name); 231 return (BUS_PROBE_DEFAULT); 232 } 233 } 234 return (ENXIO); 235 } 236 237 static int 238 ae_attach(device_t dev) 239 { 240 ae_softc_t *sc; 241 struct ifnet *ifp; 242 uint8_t chiprev; 243 uint32_t pcirev; 244 int nmsi, pmc; 245 int error; 246 247 sc = device_get_softc(dev); /* Automatically allocated and zeroed 248 on attach. */ 249 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 250 sc->dev = dev; 251 252 /* 253 * Initialize mutexes and tasks. 254 */ 255 mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); 256 callout_init_mtx(&sc->tick_ch, &sc->mtx, 0); 257 TASK_INIT(&sc->int_task, 0, ae_int_task, sc); 258 TASK_INIT(&sc->link_task, 0, ae_link_task, sc); 259 260 pci_enable_busmaster(dev); /* Enable bus mastering. */ 261 262 sc->spec_mem = ae_res_spec_mem; 263 264 /* 265 * Allocate memory-mapped registers. 266 */ 267 error = bus_alloc_resources(dev, sc->spec_mem, sc->mem); 268 if (error != 0) { 269 device_printf(dev, "could not allocate memory resources.\n"); 270 sc->spec_mem = NULL; 271 goto fail; 272 } 273 274 /* 275 * Retrieve PCI and chip revisions. 276 */ 277 pcirev = pci_get_revid(dev); 278 chiprev = (AE_READ_4(sc, AE_MASTER_REG) >> AE_MASTER_REVNUM_SHIFT) & 279 AE_MASTER_REVNUM_MASK; 280 if (bootverbose) { 281 device_printf(dev, "pci device revision: %#04x\n", pcirev); 282 device_printf(dev, "chip id: %#02x\n", chiprev); 283 } 284 nmsi = pci_msi_count(dev); 285 if (bootverbose) 286 device_printf(dev, "MSI count: %d.\n", nmsi); 287 288 /* 289 * Allocate interrupt resources. 290 */ 291 if (msi_disable == 0 && nmsi == 1) { 292 error = pci_alloc_msi(dev, &nmsi); 293 if (error == 0) { 294 device_printf(dev, "Using MSI messages.\n"); 295 sc->spec_irq = ae_res_spec_msi; 296 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 297 if (error != 0) { 298 device_printf(dev, "MSI allocation failed.\n"); 299 sc->spec_irq = NULL; 300 pci_release_msi(dev); 301 } else { 302 sc->flags |= AE_FLAG_MSI; 303 } 304 } 305 } 306 if (sc->spec_irq == NULL) { 307 sc->spec_irq = ae_res_spec_irq; 308 error = bus_alloc_resources(dev, sc->spec_irq, sc->irq); 309 if (error != 0) { 310 device_printf(dev, "could not allocate IRQ resources.\n"); 311 sc->spec_irq = NULL; 312 goto fail; 313 } 314 } 315 316 ae_init_tunables(sc); 317 318 ae_phy_reset(sc); /* Reset PHY. */ 319 error = ae_reset(sc); /* Reset the controller itself. */ 320 if (error != 0) 321 goto fail; 322 323 ae_pcie_init(sc); 324 325 ae_retrieve_address(sc); /* Load MAC address. */ 326 327 error = ae_alloc_rings(sc); /* Allocate ring buffers. */ 328 if (error != 0) 329 goto fail; 330 331 ifp = sc->ifp = if_alloc(IFT_ETHER); 332 if (ifp == NULL) { 333 device_printf(dev, "could not allocate ifnet structure.\n"); 334 error = ENXIO; 335 goto fail; 336 } 337 338 ifp->if_softc = sc; 339 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 340 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 341 ifp->if_ioctl = ae_ioctl; 342 ifp->if_start = ae_start; 343 ifp->if_init = ae_init; 344 ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 345 ifp->if_hwassist = 0; 346 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 347 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 348 IFQ_SET_READY(&ifp->if_snd); 349 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 350 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 351 sc->flags |= AE_FLAG_PMG; 352 } 353 ifp->if_capenable = ifp->if_capabilities; 354 355 /* 356 * Configure and attach MII bus. 357 */ 358 error = mii_attach(dev, &sc->miibus, ifp, ae_mediachange, 359 ae_mediastatus, BMSR_DEFCAPMASK, AE_PHYADDR_DEFAULT, 360 MII_OFFSET_ANY, 0); 361 if (error != 0) { 362 device_printf(dev, "attaching PHYs failed\n"); 363 goto fail; 364 } 365 366 ether_ifattach(ifp, sc->eaddr); 367 /* Tell the upper layer(s) we support long frames. */ 368 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 369 370 /* 371 * Create and run all helper tasks. 372 */ 373 sc->tq = taskqueue_create_fast("ae_taskq", M_WAITOK, 374 taskqueue_thread_enqueue, &sc->tq); 375 if (sc->tq == NULL) { 376 device_printf(dev, "could not create taskqueue.\n"); 377 ether_ifdetach(ifp); 378 error = ENXIO; 379 goto fail; 380 } 381 taskqueue_start_threads(&sc->tq, 1, PI_NET, "%s taskq", 382 device_get_nameunit(sc->dev)); 383 384 /* 385 * Configure interrupt handlers. 386 */ 387 error = bus_setup_intr(dev, sc->irq[0], INTR_TYPE_NET | INTR_MPSAFE, 388 ae_intr, NULL, sc, &sc->intrhand); 389 if (error != 0) { 390 device_printf(dev, "could not set up interrupt handler.\n"); 391 taskqueue_free(sc->tq); 392 sc->tq = NULL; 393 ether_ifdetach(ifp); 394 goto fail; 395 } 396 397 fail: 398 if (error != 0) 399 ae_detach(dev); 400 401 return (error); 402 } 403 404 #define AE_SYSCTL(stx, parent, name, desc, ptr) \ 405 SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, name, CTLFLAG_RD, ptr, 0, desc) 406 407 static void 408 ae_init_tunables(ae_softc_t *sc) 409 { 410 struct sysctl_ctx_list *ctx; 411 struct sysctl_oid *root, *stats, *stats_rx, *stats_tx; 412 struct ae_stats *ae_stats; 413 414 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 415 ae_stats = &sc->stats; 416 417 ctx = device_get_sysctl_ctx(sc->dev); 418 root = device_get_sysctl_tree(sc->dev); 419 stats = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(root), OID_AUTO, "stats", 420 CTLFLAG_RD, NULL, "ae statistics"); 421 422 /* 423 * Receiver statistcics. 424 */ 425 stats_rx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "rx", 426 CTLFLAG_RD, NULL, "Rx MAC statistics"); 427 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "bcast", 428 "broadcast frames", &ae_stats->rx_bcast); 429 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "mcast", 430 "multicast frames", &ae_stats->rx_mcast); 431 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "pause", 432 "PAUSE frames", &ae_stats->rx_pause); 433 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "control", 434 "control frames", &ae_stats->rx_ctrl); 435 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "crc_errors", 436 "frames with CRC errors", &ae_stats->rx_crcerr); 437 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "code_errors", 438 "frames with invalid opcode", &ae_stats->rx_codeerr); 439 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "runt", 440 "runt frames", &ae_stats->rx_runt); 441 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "frag", 442 "fragmented frames", &ae_stats->rx_frag); 443 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "align_errors", 444 "frames with alignment errors", &ae_stats->rx_align); 445 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_rx), "truncated", 446 "frames truncated due to Rx FIFO inderrun", &ae_stats->rx_trunc); 447 448 /* 449 * Receiver statistcics. 450 */ 451 stats_tx = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(stats), OID_AUTO, "tx", 452 CTLFLAG_RD, NULL, "Tx MAC statistics"); 453 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "bcast", 454 "broadcast frames", &ae_stats->tx_bcast); 455 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "mcast", 456 "multicast frames", &ae_stats->tx_mcast); 457 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "pause", 458 "PAUSE frames", &ae_stats->tx_pause); 459 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "control", 460 "control frames", &ae_stats->tx_ctrl); 461 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "defers", 462 "deferrals occuried", &ae_stats->tx_defer); 463 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "exc_defers", 464 "excessive deferrals occuried", &ae_stats->tx_excdefer); 465 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "singlecols", 466 "single collisions occuried", &ae_stats->tx_singlecol); 467 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "multicols", 468 "multiple collisions occuried", &ae_stats->tx_multicol); 469 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "latecols", 470 "late collisions occuried", &ae_stats->tx_latecol); 471 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "aborts", 472 "transmit aborts due collisions", &ae_stats->tx_abortcol); 473 AE_SYSCTL(ctx, SYSCTL_CHILDREN(stats_tx), "underruns", 474 "Tx FIFO underruns", &ae_stats->tx_underrun); 475 } 476 477 static void 478 ae_pcie_init(ae_softc_t *sc) 479 { 480 481 AE_WRITE_4(sc, AE_PCIE_LTSSM_TESTMODE_REG, AE_PCIE_LTSSM_TESTMODE_DEFAULT); 482 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, AE_PCIE_DLL_TX_CTRL_DEFAULT); 483 } 484 485 static void 486 ae_phy_reset(ae_softc_t *sc) 487 { 488 489 AE_WRITE_4(sc, AE_PHY_ENABLE_REG, AE_PHY_ENABLE); 490 DELAY(1000); /* XXX: pause(9) ? */ 491 } 492 493 static int 494 ae_reset(ae_softc_t *sc) 495 { 496 int i; 497 498 /* 499 * Issue a soft reset. 500 */ 501 AE_WRITE_4(sc, AE_MASTER_REG, AE_MASTER_SOFT_RESET); 502 bus_barrier(sc->mem[0], AE_MASTER_REG, 4, 503 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 504 505 /* 506 * Wait for reset to complete. 507 */ 508 for (i = 0; i < AE_RESET_TIMEOUT; i++) { 509 if ((AE_READ_4(sc, AE_MASTER_REG) & AE_MASTER_SOFT_RESET) == 0) 510 break; 511 DELAY(10); 512 } 513 if (i == AE_RESET_TIMEOUT) { 514 device_printf(sc->dev, "reset timeout.\n"); 515 return (ENXIO); 516 } 517 518 /* 519 * Wait for everything to enter idle state. 520 */ 521 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 522 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 523 break; 524 DELAY(100); 525 } 526 if (i == AE_IDLE_TIMEOUT) { 527 device_printf(sc->dev, "could not enter idle state.\n"); 528 return (ENXIO); 529 } 530 return (0); 531 } 532 533 static void 534 ae_init(void *arg) 535 { 536 ae_softc_t *sc; 537 538 sc = (ae_softc_t *)arg; 539 AE_LOCK(sc); 540 ae_init_locked(sc); 541 AE_UNLOCK(sc); 542 } 543 544 static void 545 ae_phy_init(ae_softc_t *sc) 546 { 547 548 /* 549 * Enable link status change interrupt. 550 * XXX magic numbers. 551 */ 552 #ifdef notyet 553 AE_PHY_WRITE(sc, 18, 0xc00); 554 #endif 555 } 556 557 static int 558 ae_init_locked(ae_softc_t *sc) 559 { 560 struct ifnet *ifp; 561 struct mii_data *mii; 562 uint8_t eaddr[ETHER_ADDR_LEN]; 563 uint32_t val; 564 bus_addr_t addr; 565 566 AE_LOCK_ASSERT(sc); 567 568 ifp = sc->ifp; 569 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 570 return (0); 571 mii = device_get_softc(sc->miibus); 572 573 ae_stop(sc); 574 ae_reset(sc); 575 ae_pcie_init(sc); /* Initialize PCIE stuff. */ 576 ae_phy_init(sc); 577 ae_powersave_disable(sc); 578 579 /* 580 * Clear and disable interrupts. 581 */ 582 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 583 584 /* 585 * Set the MAC address. 586 */ 587 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 588 val = eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]; 589 AE_WRITE_4(sc, AE_EADDR0_REG, val); 590 val = eaddr[0] << 8 | eaddr[1]; 591 AE_WRITE_4(sc, AE_EADDR1_REG, val); 592 593 bzero(sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING); 594 bzero(sc->txd_base, AE_TXD_BUFSIZE_DEFAULT); 595 bzero(sc->txs_base, AE_TXS_COUNT_DEFAULT * 4); 596 /* 597 * Set ring buffers base addresses. 598 */ 599 addr = sc->dma_rxd_busaddr; 600 AE_WRITE_4(sc, AE_DESC_ADDR_HI_REG, BUS_ADDR_HI(addr)); 601 AE_WRITE_4(sc, AE_RXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 602 addr = sc->dma_txd_busaddr; 603 AE_WRITE_4(sc, AE_TXD_ADDR_LO_REG, BUS_ADDR_LO(addr)); 604 addr = sc->dma_txs_busaddr; 605 AE_WRITE_4(sc, AE_TXS_ADDR_LO_REG, BUS_ADDR_LO(addr)); 606 607 /* 608 * Configure ring buffers sizes. 609 */ 610 AE_WRITE_2(sc, AE_RXD_COUNT_REG, AE_RXD_COUNT_DEFAULT); 611 AE_WRITE_2(sc, AE_TXD_BUFSIZE_REG, AE_TXD_BUFSIZE_DEFAULT / 4); 612 AE_WRITE_2(sc, AE_TXS_COUNT_REG, AE_TXS_COUNT_DEFAULT); 613 614 /* 615 * Configure interframe gap parameters. 616 */ 617 val = ((AE_IFG_TXIPG_DEFAULT << AE_IFG_TXIPG_SHIFT) & 618 AE_IFG_TXIPG_MASK) | 619 ((AE_IFG_RXIPG_DEFAULT << AE_IFG_RXIPG_SHIFT) & 620 AE_IFG_RXIPG_MASK) | 621 ((AE_IFG_IPGR1_DEFAULT << AE_IFG_IPGR1_SHIFT) & 622 AE_IFG_IPGR1_MASK) | 623 ((AE_IFG_IPGR2_DEFAULT << AE_IFG_IPGR2_SHIFT) & 624 AE_IFG_IPGR2_MASK); 625 AE_WRITE_4(sc, AE_IFG_REG, val); 626 627 /* 628 * Configure half-duplex operation. 629 */ 630 val = ((AE_HDPX_LCOL_DEFAULT << AE_HDPX_LCOL_SHIFT) & 631 AE_HDPX_LCOL_MASK) | 632 ((AE_HDPX_RETRY_DEFAULT << AE_HDPX_RETRY_SHIFT) & 633 AE_HDPX_RETRY_MASK) | 634 ((AE_HDPX_ABEBT_DEFAULT << AE_HDPX_ABEBT_SHIFT) & 635 AE_HDPX_ABEBT_MASK) | 636 ((AE_HDPX_JAMIPG_DEFAULT << AE_HDPX_JAMIPG_SHIFT) & 637 AE_HDPX_JAMIPG_MASK) | AE_HDPX_EXC_EN; 638 AE_WRITE_4(sc, AE_HDPX_REG, val); 639 640 /* 641 * Configure interrupt moderate timer. 642 */ 643 AE_WRITE_2(sc, AE_IMT_REG, AE_IMT_DEFAULT); 644 val = AE_READ_4(sc, AE_MASTER_REG); 645 val |= AE_MASTER_IMT_EN; 646 AE_WRITE_4(sc, AE_MASTER_REG, val); 647 648 /* 649 * Configure interrupt clearing timer. 650 */ 651 AE_WRITE_2(sc, AE_ICT_REG, AE_ICT_DEFAULT); 652 653 /* 654 * Configure MTU. 655 */ 656 val = ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 657 ETHER_CRC_LEN; 658 AE_WRITE_2(sc, AE_MTU_REG, val); 659 660 /* 661 * Configure cut-through threshold. 662 */ 663 AE_WRITE_4(sc, AE_CUT_THRESH_REG, AE_CUT_THRESH_DEFAULT); 664 665 /* 666 * Configure flow control. 667 */ 668 AE_WRITE_2(sc, AE_FLOW_THRESH_HI_REG, (AE_RXD_COUNT_DEFAULT / 8) * 7); 669 AE_WRITE_2(sc, AE_FLOW_THRESH_LO_REG, (AE_RXD_COUNT_MIN / 8) > 670 (AE_RXD_COUNT_DEFAULT / 12) ? (AE_RXD_COUNT_MIN / 8) : 671 (AE_RXD_COUNT_DEFAULT / 12)); 672 673 /* 674 * Init mailboxes. 675 */ 676 sc->txd_cur = sc->rxd_cur = 0; 677 sc->txs_ack = sc->txd_ack = 0; 678 sc->rxd_cur = 0; 679 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur); 680 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 681 682 sc->tx_inproc = 0; /* Number of packets the chip processes now. */ 683 sc->flags |= AE_FLAG_TXAVAIL; /* Free Tx's available. */ 684 685 /* 686 * Enable DMA. 687 */ 688 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 689 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 690 691 /* 692 * Check if everything is OK. 693 */ 694 val = AE_READ_4(sc, AE_ISR_REG); 695 if ((val & AE_ISR_PHY_LINKDOWN) != 0) { 696 device_printf(sc->dev, "Initialization failed.\n"); 697 return (ENXIO); 698 } 699 700 /* 701 * Clear interrupt status. 702 */ 703 AE_WRITE_4(sc, AE_ISR_REG, 0x3fffffff); 704 AE_WRITE_4(sc, AE_ISR_REG, 0x0); 705 706 /* 707 * Enable interrupts. 708 */ 709 val = AE_READ_4(sc, AE_MASTER_REG); 710 AE_WRITE_4(sc, AE_MASTER_REG, val | AE_MASTER_MANUAL_INT); 711 AE_WRITE_4(sc, AE_IMR_REG, AE_IMR_DEFAULT); 712 713 /* 714 * Disable WOL. 715 */ 716 AE_WRITE_4(sc, AE_WOL_REG, 0); 717 718 /* 719 * Configure MAC. 720 */ 721 val = AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | 722 AE_MAC_FULL_DUPLEX | AE_MAC_CLK_PHY | 723 AE_MAC_TX_FLOW_EN | AE_MAC_RX_FLOW_EN | 724 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & AE_HALFBUF_MASK) | 725 ((AE_MAC_PREAMBLE_DEFAULT << AE_MAC_PREAMBLE_SHIFT) & 726 AE_MAC_PREAMBLE_MASK); 727 AE_WRITE_4(sc, AE_MAC_REG, val); 728 729 /* 730 * Configure Rx MAC. 731 */ 732 ae_rxfilter(sc); 733 ae_rxvlan(sc); 734 735 /* 736 * Enable Tx/Rx. 737 */ 738 val = AE_READ_4(sc, AE_MAC_REG); 739 AE_WRITE_4(sc, AE_MAC_REG, val | AE_MAC_TX_EN | AE_MAC_RX_EN); 740 741 sc->flags &= ~AE_FLAG_LINK; 742 mii_mediachg(mii); /* Switch to the current media. */ 743 744 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 745 746 ifp->if_drv_flags |= IFF_DRV_RUNNING; 747 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 748 749 #ifdef AE_DEBUG 750 device_printf(sc->dev, "Initialization complete.\n"); 751 #endif 752 753 return (0); 754 } 755 756 static int 757 ae_detach(device_t dev) 758 { 759 struct ae_softc *sc; 760 struct ifnet *ifp; 761 762 sc = device_get_softc(dev); 763 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 764 ifp = sc->ifp; 765 if (device_is_attached(dev)) { 766 AE_LOCK(sc); 767 sc->flags |= AE_FLAG_DETACH; 768 ae_stop(sc); 769 AE_UNLOCK(sc); 770 callout_drain(&sc->tick_ch); 771 taskqueue_drain(sc->tq, &sc->int_task); 772 taskqueue_drain(taskqueue_swi, &sc->link_task); 773 ether_ifdetach(ifp); 774 } 775 if (sc->tq != NULL) { 776 taskqueue_drain(sc->tq, &sc->int_task); 777 taskqueue_free(sc->tq); 778 sc->tq = NULL; 779 } 780 if (sc->miibus != NULL) { 781 device_delete_child(dev, sc->miibus); 782 sc->miibus = NULL; 783 } 784 bus_generic_detach(sc->dev); 785 ae_dma_free(sc); 786 if (sc->intrhand != NULL) { 787 bus_teardown_intr(dev, sc->irq[0], sc->intrhand); 788 sc->intrhand = NULL; 789 } 790 if (ifp != NULL) { 791 if_free(ifp); 792 sc->ifp = NULL; 793 } 794 if (sc->spec_irq != NULL) 795 bus_release_resources(dev, sc->spec_irq, sc->irq); 796 if (sc->spec_mem != NULL) 797 bus_release_resources(dev, sc->spec_mem, sc->mem); 798 if ((sc->flags & AE_FLAG_MSI) != 0) 799 pci_release_msi(dev); 800 mtx_destroy(&sc->mtx); 801 802 return (0); 803 } 804 805 static int 806 ae_miibus_readreg(device_t dev, int phy, int reg) 807 { 808 ae_softc_t *sc; 809 uint32_t val; 810 int i; 811 812 sc = device_get_softc(dev); 813 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 814 815 /* 816 * Locking is done in upper layers. 817 */ 818 819 val = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 820 AE_MDIO_START | AE_MDIO_READ | AE_MDIO_SUP_PREAMBLE | 821 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK); 822 AE_WRITE_4(sc, AE_MDIO_REG, val); 823 824 /* 825 * Wait for operation to complete. 826 */ 827 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 828 DELAY(2); 829 val = AE_READ_4(sc, AE_MDIO_REG); 830 if ((val & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 831 break; 832 } 833 if (i == AE_MDIO_TIMEOUT) { 834 device_printf(sc->dev, "phy read timeout: %d.\n", reg); 835 return (0); 836 } 837 return ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 838 } 839 840 static int 841 ae_miibus_writereg(device_t dev, int phy, int reg, int val) 842 { 843 ae_softc_t *sc; 844 uint32_t aereg; 845 int i; 846 847 sc = device_get_softc(dev); 848 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 849 850 /* 851 * Locking is done in upper layers. 852 */ 853 854 aereg = ((reg << AE_MDIO_REGADDR_SHIFT) & AE_MDIO_REGADDR_MASK) | 855 AE_MDIO_START | AE_MDIO_SUP_PREAMBLE | 856 ((AE_MDIO_CLK_25_4 << AE_MDIO_CLK_SHIFT) & AE_MDIO_CLK_MASK) | 857 ((val << AE_MDIO_DATA_SHIFT) & AE_MDIO_DATA_MASK); 858 AE_WRITE_4(sc, AE_MDIO_REG, aereg); 859 860 /* 861 * Wait for operation to complete. 862 */ 863 for (i = 0; i < AE_MDIO_TIMEOUT; i++) { 864 DELAY(2); 865 aereg = AE_READ_4(sc, AE_MDIO_REG); 866 if ((aereg & (AE_MDIO_START | AE_MDIO_BUSY)) == 0) 867 break; 868 } 869 if (i == AE_MDIO_TIMEOUT) { 870 device_printf(sc->dev, "phy write timeout: %d.\n", reg); 871 } 872 return (0); 873 } 874 875 static void 876 ae_miibus_statchg(device_t dev) 877 { 878 ae_softc_t *sc; 879 880 sc = device_get_softc(dev); 881 taskqueue_enqueue(taskqueue_swi, &sc->link_task); 882 } 883 884 static void 885 ae_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 886 { 887 ae_softc_t *sc; 888 struct mii_data *mii; 889 890 sc = ifp->if_softc; 891 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 892 893 AE_LOCK(sc); 894 mii = device_get_softc(sc->miibus); 895 mii_pollstat(mii); 896 ifmr->ifm_status = mii->mii_media_status; 897 ifmr->ifm_active = mii->mii_media_active; 898 AE_UNLOCK(sc); 899 } 900 901 static int 902 ae_mediachange(struct ifnet *ifp) 903 { 904 ae_softc_t *sc; 905 struct mii_data *mii; 906 struct mii_softc *mii_sc; 907 int error; 908 909 /* XXX: check IFF_UP ?? */ 910 sc = ifp->if_softc; 911 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 912 AE_LOCK(sc); 913 mii = device_get_softc(sc->miibus); 914 LIST_FOREACH(mii_sc, &mii->mii_phys, mii_list) 915 PHY_RESET(mii_sc); 916 error = mii_mediachg(mii); 917 AE_UNLOCK(sc); 918 919 return (error); 920 } 921 922 static int 923 ae_check_eeprom_present(ae_softc_t *sc, int *vpdc) 924 { 925 int error; 926 uint32_t val; 927 928 KASSERT(vpdc != NULL, ("[ae, %d]: vpdc is NULL!\n", __LINE__)); 929 930 /* 931 * Not sure why, but Linux does this. 932 */ 933 val = AE_READ_4(sc, AE_SPICTL_REG); 934 if ((val & AE_SPICTL_VPD_EN) != 0) { 935 val &= ~AE_SPICTL_VPD_EN; 936 AE_WRITE_4(sc, AE_SPICTL_REG, val); 937 } 938 error = pci_find_cap(sc->dev, PCIY_VPD, vpdc); 939 return (error); 940 } 941 942 static int 943 ae_vpd_read_word(ae_softc_t *sc, int reg, uint32_t *word) 944 { 945 uint32_t val; 946 int i; 947 948 AE_WRITE_4(sc, AE_VPD_DATA_REG, 0); /* Clear register value. */ 949 950 /* 951 * VPD registers start at offset 0x100. Read them. 952 */ 953 val = 0x100 + reg * 4; 954 AE_WRITE_4(sc, AE_VPD_CAP_REG, (val << AE_VPD_CAP_ADDR_SHIFT) & 955 AE_VPD_CAP_ADDR_MASK); 956 for (i = 0; i < AE_VPD_TIMEOUT; i++) { 957 DELAY(2000); 958 val = AE_READ_4(sc, AE_VPD_CAP_REG); 959 if ((val & AE_VPD_CAP_DONE) != 0) 960 break; 961 } 962 if (i == AE_VPD_TIMEOUT) { 963 device_printf(sc->dev, "timeout reading VPD register %d.\n", 964 reg); 965 return (ETIMEDOUT); 966 } 967 *word = AE_READ_4(sc, AE_VPD_DATA_REG); 968 return (0); 969 } 970 971 static int 972 ae_get_vpd_eaddr(ae_softc_t *sc, uint32_t *eaddr) 973 { 974 uint32_t word, reg, val; 975 int error; 976 int found; 977 int vpdc; 978 int i; 979 980 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 981 KASSERT(eaddr != NULL, ("[ae, %d]: eaddr is NULL", __LINE__)); 982 983 /* 984 * Check for EEPROM. 985 */ 986 error = ae_check_eeprom_present(sc, &vpdc); 987 if (error != 0) 988 return (error); 989 990 /* 991 * Read the VPD configuration space. 992 * Each register is prefixed with signature, 993 * so we can check if it is valid. 994 */ 995 for (i = 0, found = 0; i < AE_VPD_NREGS; i++) { 996 error = ae_vpd_read_word(sc, i, &word); 997 if (error != 0) 998 break; 999 1000 /* 1001 * Check signature. 1002 */ 1003 if ((word & AE_VPD_SIG_MASK) != AE_VPD_SIG) 1004 break; 1005 reg = word >> AE_VPD_REG_SHIFT; 1006 i++; /* Move to the next word. */ 1007 1008 if (reg != AE_EADDR0_REG && reg != AE_EADDR1_REG) 1009 continue; 1010 1011 error = ae_vpd_read_word(sc, i, &val); 1012 if (error != 0) 1013 break; 1014 if (reg == AE_EADDR0_REG) 1015 eaddr[0] = val; 1016 else 1017 eaddr[1] = val; 1018 found++; 1019 } 1020 1021 if (found < 2) 1022 return (ENOENT); 1023 1024 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1025 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1026 if (bootverbose) 1027 device_printf(sc->dev, 1028 "VPD ethernet address registers are invalid.\n"); 1029 return (EINVAL); 1030 } 1031 return (0); 1032 } 1033 1034 static int 1035 ae_get_reg_eaddr(ae_softc_t *sc, uint32_t *eaddr) 1036 { 1037 1038 /* 1039 * BIOS is supposed to set this. 1040 */ 1041 eaddr[0] = AE_READ_4(sc, AE_EADDR0_REG); 1042 eaddr[1] = AE_READ_4(sc, AE_EADDR1_REG); 1043 eaddr[1] &= 0xffff; /* Only last 2 bytes are used. */ 1044 1045 if (AE_CHECK_EADDR_VALID(eaddr) != 0) { 1046 if (bootverbose) 1047 device_printf(sc->dev, 1048 "Ethernet address registers are invalid.\n"); 1049 return (EINVAL); 1050 } 1051 return (0); 1052 } 1053 1054 static void 1055 ae_retrieve_address(ae_softc_t *sc) 1056 { 1057 uint32_t eaddr[2] = {0, 0}; 1058 int error; 1059 1060 /* 1061 *Check for EEPROM. 1062 */ 1063 error = ae_get_vpd_eaddr(sc, eaddr); 1064 if (error != 0) 1065 error = ae_get_reg_eaddr(sc, eaddr); 1066 if (error != 0) { 1067 if (bootverbose) 1068 device_printf(sc->dev, 1069 "Generating random ethernet address.\n"); 1070 eaddr[0] = arc4random(); 1071 1072 /* 1073 * Set OUI to ASUSTek COMPUTER INC. 1074 */ 1075 sc->eaddr[0] = 0x02; /* U/L bit set. */ 1076 sc->eaddr[1] = 0x1f; 1077 sc->eaddr[2] = 0xc6; 1078 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1079 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1080 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1081 } else { 1082 sc->eaddr[0] = (eaddr[1] >> 8) & 0xff; 1083 sc->eaddr[1] = (eaddr[1] >> 0) & 0xff; 1084 sc->eaddr[2] = (eaddr[0] >> 24) & 0xff; 1085 sc->eaddr[3] = (eaddr[0] >> 16) & 0xff; 1086 sc->eaddr[4] = (eaddr[0] >> 8) & 0xff; 1087 sc->eaddr[5] = (eaddr[0] >> 0) & 0xff; 1088 } 1089 } 1090 1091 static void 1092 ae_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1093 { 1094 bus_addr_t *addr = arg; 1095 1096 if (error != 0) 1097 return; 1098 KASSERT(nsegs == 1, ("[ae, %d]: %d segments instead of 1!", __LINE__, 1099 nsegs)); 1100 *addr = segs[0].ds_addr; 1101 } 1102 1103 static int 1104 ae_alloc_rings(ae_softc_t *sc) 1105 { 1106 bus_addr_t busaddr; 1107 int error; 1108 1109 /* 1110 * Create parent DMA tag. 1111 */ 1112 error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1113 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, 1114 NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, 1115 BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, 1116 &sc->dma_parent_tag); 1117 if (error != 0) { 1118 device_printf(sc->dev, "could not creare parent DMA tag.\n"); 1119 return (error); 1120 } 1121 1122 /* 1123 * Create DMA tag for TxD. 1124 */ 1125 error = bus_dma_tag_create(sc->dma_parent_tag, 1126 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1127 NULL, NULL, AE_TXD_BUFSIZE_DEFAULT, 1, 1128 AE_TXD_BUFSIZE_DEFAULT, 0, NULL, NULL, 1129 &sc->dma_txd_tag); 1130 if (error != 0) { 1131 device_printf(sc->dev, "could not creare TxD DMA tag.\n"); 1132 return (error); 1133 } 1134 1135 /* 1136 * Create DMA tag for TxS. 1137 */ 1138 error = bus_dma_tag_create(sc->dma_parent_tag, 1139 8, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1140 NULL, NULL, AE_TXS_COUNT_DEFAULT * 4, 1, 1141 AE_TXS_COUNT_DEFAULT * 4, 0, NULL, NULL, 1142 &sc->dma_txs_tag); 1143 if (error != 0) { 1144 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1145 return (error); 1146 } 1147 1148 /* 1149 * Create DMA tag for RxD. 1150 */ 1151 error = bus_dma_tag_create(sc->dma_parent_tag, 1152 128, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, 1153 NULL, NULL, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1, 1154 AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 0, NULL, NULL, 1155 &sc->dma_rxd_tag); 1156 if (error != 0) { 1157 device_printf(sc->dev, "could not creare TxS DMA tag.\n"); 1158 return (error); 1159 } 1160 1161 /* 1162 * Allocate TxD DMA memory. 1163 */ 1164 error = bus_dmamem_alloc(sc->dma_txd_tag, (void **)&sc->txd_base, 1165 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1166 &sc->dma_txd_map); 1167 if (error != 0) { 1168 device_printf(sc->dev, 1169 "could not allocate DMA memory for TxD ring.\n"); 1170 return (error); 1171 } 1172 error = bus_dmamap_load(sc->dma_txd_tag, sc->dma_txd_map, sc->txd_base, 1173 AE_TXD_BUFSIZE_DEFAULT, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1174 if (error != 0 || busaddr == 0) { 1175 device_printf(sc->dev, 1176 "could not load DMA map for TxD ring.\n"); 1177 return (error); 1178 } 1179 sc->dma_txd_busaddr = busaddr; 1180 1181 /* 1182 * Allocate TxS DMA memory. 1183 */ 1184 error = bus_dmamem_alloc(sc->dma_txs_tag, (void **)&sc->txs_base, 1185 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1186 &sc->dma_txs_map); 1187 if (error != 0) { 1188 device_printf(sc->dev, 1189 "could not allocate DMA memory for TxS ring.\n"); 1190 return (error); 1191 } 1192 error = bus_dmamap_load(sc->dma_txs_tag, sc->dma_txs_map, sc->txs_base, 1193 AE_TXS_COUNT_DEFAULT * 4, ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1194 if (error != 0 || busaddr == 0) { 1195 device_printf(sc->dev, 1196 "could not load DMA map for TxS ring.\n"); 1197 return (error); 1198 } 1199 sc->dma_txs_busaddr = busaddr; 1200 1201 /* 1202 * Allocate RxD DMA memory. 1203 */ 1204 error = bus_dmamem_alloc(sc->dma_rxd_tag, (void **)&sc->rxd_base_dma, 1205 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1206 &sc->dma_rxd_map); 1207 if (error != 0) { 1208 device_printf(sc->dev, 1209 "could not allocate DMA memory for RxD ring.\n"); 1210 return (error); 1211 } 1212 error = bus_dmamap_load(sc->dma_rxd_tag, sc->dma_rxd_map, 1213 sc->rxd_base_dma, AE_RXD_COUNT_DEFAULT * 1536 + AE_RXD_PADDING, 1214 ae_dmamap_cb, &busaddr, BUS_DMA_NOWAIT); 1215 if (error != 0 || busaddr == 0) { 1216 device_printf(sc->dev, 1217 "could not load DMA map for RxD ring.\n"); 1218 return (error); 1219 } 1220 sc->dma_rxd_busaddr = busaddr + AE_RXD_PADDING; 1221 sc->rxd_base = (ae_rxd_t *)(sc->rxd_base_dma + AE_RXD_PADDING); 1222 1223 return (0); 1224 } 1225 1226 static void 1227 ae_dma_free(ae_softc_t *sc) 1228 { 1229 1230 if (sc->dma_txd_tag != NULL) { 1231 if (sc->dma_txd_busaddr != 0) 1232 bus_dmamap_unload(sc->dma_txd_tag, sc->dma_txd_map); 1233 if (sc->txd_base != NULL) 1234 bus_dmamem_free(sc->dma_txd_tag, sc->txd_base, 1235 sc->dma_txd_map); 1236 bus_dma_tag_destroy(sc->dma_txd_tag); 1237 sc->dma_txd_tag = NULL; 1238 sc->txd_base = NULL; 1239 sc->dma_txd_busaddr = 0; 1240 } 1241 if (sc->dma_txs_tag != NULL) { 1242 if (sc->dma_txs_busaddr != 0) 1243 bus_dmamap_unload(sc->dma_txs_tag, sc->dma_txs_map); 1244 if (sc->txs_base != NULL) 1245 bus_dmamem_free(sc->dma_txs_tag, sc->txs_base, 1246 sc->dma_txs_map); 1247 bus_dma_tag_destroy(sc->dma_txs_tag); 1248 sc->dma_txs_tag = NULL; 1249 sc->txs_base = NULL; 1250 sc->dma_txs_busaddr = 0; 1251 } 1252 if (sc->dma_rxd_tag != NULL) { 1253 if (sc->dma_rxd_busaddr != 0) 1254 bus_dmamap_unload(sc->dma_rxd_tag, sc->dma_rxd_map); 1255 if (sc->rxd_base_dma != NULL) 1256 bus_dmamem_free(sc->dma_rxd_tag, sc->rxd_base_dma, 1257 sc->dma_rxd_map); 1258 bus_dma_tag_destroy(sc->dma_rxd_tag); 1259 sc->dma_rxd_tag = NULL; 1260 sc->rxd_base_dma = NULL; 1261 sc->dma_rxd_busaddr = 0; 1262 } 1263 if (sc->dma_parent_tag != NULL) { 1264 bus_dma_tag_destroy(sc->dma_parent_tag); 1265 sc->dma_parent_tag = NULL; 1266 } 1267 } 1268 1269 static int 1270 ae_shutdown(device_t dev) 1271 { 1272 ae_softc_t *sc; 1273 int error; 1274 1275 sc = device_get_softc(dev); 1276 KASSERT(sc != NULL, ("[ae: %d]: sc is NULL", __LINE__)); 1277 1278 error = ae_suspend(dev); 1279 AE_LOCK(sc); 1280 ae_powersave_enable(sc); 1281 AE_UNLOCK(sc); 1282 return (error); 1283 } 1284 1285 static void 1286 ae_powersave_disable(ae_softc_t *sc) 1287 { 1288 uint32_t val; 1289 1290 AE_LOCK_ASSERT(sc); 1291 1292 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1293 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1294 if (val & AE_PHY_DBG_POWERSAVE) { 1295 val &= ~AE_PHY_DBG_POWERSAVE; 1296 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, val); 1297 DELAY(1000); 1298 } 1299 } 1300 1301 static void 1302 ae_powersave_enable(ae_softc_t *sc) 1303 { 1304 uint32_t val; 1305 1306 AE_LOCK_ASSERT(sc); 1307 1308 /* 1309 * XXX magic numbers. 1310 */ 1311 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 0); 1312 val = AE_PHY_READ(sc, AE_PHY_DBG_DATA); 1313 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, val | 0x1000); 1314 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 2); 1315 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0x3000); 1316 AE_PHY_WRITE(sc, AE_PHY_DBG_ADDR, 3); 1317 AE_PHY_WRITE(sc, AE_PHY_DBG_DATA, 0); 1318 } 1319 1320 static void 1321 ae_pm_init(ae_softc_t *sc) 1322 { 1323 struct ifnet *ifp; 1324 uint32_t val; 1325 uint16_t pmstat; 1326 struct mii_data *mii; 1327 int pmc; 1328 1329 AE_LOCK_ASSERT(sc); 1330 1331 ifp = sc->ifp; 1332 if ((sc->flags & AE_FLAG_PMG) == 0) { 1333 /* Disable WOL entirely. */ 1334 AE_WRITE_4(sc, AE_WOL_REG, 0); 1335 return; 1336 } 1337 1338 /* 1339 * Configure WOL if enabled. 1340 */ 1341 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 1342 mii = device_get_softc(sc->miibus); 1343 mii_pollstat(mii); 1344 if ((mii->mii_media_status & IFM_AVALID) != 0 && 1345 (mii->mii_media_status & IFM_ACTIVE) != 0) { 1346 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_MAGIC | \ 1347 AE_WOL_MAGIC_PME); 1348 1349 /* 1350 * Configure MAC. 1351 */ 1352 val = AE_MAC_RX_EN | AE_MAC_CLK_PHY | \ 1353 AE_MAC_TX_CRC_EN | AE_MAC_TX_AUTOPAD | \ 1354 ((AE_HALFBUF_DEFAULT << AE_HALFBUF_SHIFT) & \ 1355 AE_HALFBUF_MASK) | \ 1356 ((AE_MAC_PREAMBLE_DEFAULT << \ 1357 AE_MAC_PREAMBLE_SHIFT) & AE_MAC_PREAMBLE_MASK) | \ 1358 AE_MAC_BCAST_EN | AE_MAC_MCAST_EN; 1359 if ((IFM_OPTIONS(mii->mii_media_active) & \ 1360 IFM_FDX) != 0) 1361 val |= AE_MAC_FULL_DUPLEX; 1362 AE_WRITE_4(sc, AE_MAC_REG, val); 1363 1364 } else { /* No link. */ 1365 AE_WRITE_4(sc, AE_WOL_REG, AE_WOL_LNKCHG | \ 1366 AE_WOL_LNKCHG_PME); 1367 AE_WRITE_4(sc, AE_MAC_REG, 0); 1368 } 1369 } else { 1370 ae_powersave_enable(sc); 1371 } 1372 1373 /* 1374 * PCIE hacks. Magic numbers. 1375 */ 1376 val = AE_READ_4(sc, AE_PCIE_PHYMISC_REG); 1377 val |= AE_PCIE_PHYMISC_FORCE_RCV_DET; 1378 AE_WRITE_4(sc, AE_PCIE_PHYMISC_REG, val); 1379 val = AE_READ_4(sc, AE_PCIE_DLL_TX_CTRL_REG); 1380 val |= AE_PCIE_DLL_TX_CTRL_SEL_NOR_CLK; 1381 AE_WRITE_4(sc, AE_PCIE_DLL_TX_CTRL_REG, val); 1382 1383 /* 1384 * Configure PME. 1385 */ 1386 if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { 1387 pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); 1388 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1389 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1390 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1391 pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1392 } 1393 } 1394 1395 static int 1396 ae_suspend(device_t dev) 1397 { 1398 ae_softc_t *sc; 1399 1400 sc = device_get_softc(dev); 1401 1402 AE_LOCK(sc); 1403 ae_stop(sc); 1404 ae_pm_init(sc); 1405 AE_UNLOCK(sc); 1406 1407 return (0); 1408 } 1409 1410 static int 1411 ae_resume(device_t dev) 1412 { 1413 ae_softc_t *sc; 1414 1415 sc = device_get_softc(dev); 1416 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1417 1418 AE_LOCK(sc); 1419 AE_READ_4(sc, AE_WOL_REG); /* Clear WOL status. */ 1420 if ((sc->ifp->if_flags & IFF_UP) != 0) 1421 ae_init_locked(sc); 1422 AE_UNLOCK(sc); 1423 1424 return (0); 1425 } 1426 1427 static unsigned int 1428 ae_tx_avail_size(ae_softc_t *sc) 1429 { 1430 unsigned int avail; 1431 1432 if (sc->txd_cur >= sc->txd_ack) 1433 avail = AE_TXD_BUFSIZE_DEFAULT - (sc->txd_cur - sc->txd_ack); 1434 else 1435 avail = sc->txd_ack - sc->txd_cur; 1436 1437 return (avail); 1438 } 1439 1440 static int 1441 ae_encap(ae_softc_t *sc, struct mbuf **m_head) 1442 { 1443 struct mbuf *m0; 1444 ae_txd_t *hdr; 1445 unsigned int to_end; 1446 uint16_t len; 1447 1448 AE_LOCK_ASSERT(sc); 1449 1450 m0 = *m_head; 1451 len = m0->m_pkthdr.len; 1452 1453 if ((sc->flags & AE_FLAG_TXAVAIL) == 0 || 1454 len + sizeof(ae_txd_t) + 3 > ae_tx_avail_size(sc)) { 1455 #ifdef AE_DEBUG 1456 if_printf(sc->ifp, "No free Tx available.\n"); 1457 #endif 1458 return ENOBUFS; 1459 } 1460 1461 hdr = (ae_txd_t *)(sc->txd_base + sc->txd_cur); 1462 bzero(hdr, sizeof(*hdr)); 1463 /* Skip header size. */ 1464 sc->txd_cur = (sc->txd_cur + sizeof(ae_txd_t)) % AE_TXD_BUFSIZE_DEFAULT; 1465 /* Space available to the end of the ring */ 1466 to_end = AE_TXD_BUFSIZE_DEFAULT - sc->txd_cur; 1467 if (to_end >= len) { 1468 m_copydata(m0, 0, len, (caddr_t)(sc->txd_base + sc->txd_cur)); 1469 } else { 1470 m_copydata(m0, 0, to_end, (caddr_t)(sc->txd_base + 1471 sc->txd_cur)); 1472 m_copydata(m0, to_end, len - to_end, (caddr_t)sc->txd_base); 1473 } 1474 1475 /* 1476 * Set TxD flags and parameters. 1477 */ 1478 if ((m0->m_flags & M_VLANTAG) != 0) { 1479 hdr->vlan = htole16(AE_TXD_VLAN(m0->m_pkthdr.ether_vtag)); 1480 hdr->len = htole16(len | AE_TXD_INSERT_VTAG); 1481 } else { 1482 hdr->len = htole16(len); 1483 } 1484 1485 /* 1486 * Set current TxD position and round up to a 4-byte boundary. 1487 */ 1488 sc->txd_cur = ((sc->txd_cur + len + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT; 1489 if (sc->txd_cur == sc->txd_ack) 1490 sc->flags &= ~AE_FLAG_TXAVAIL; 1491 #ifdef AE_DEBUG 1492 if_printf(sc->ifp, "New txd_cur = %d.\n", sc->txd_cur); 1493 #endif 1494 1495 /* 1496 * Update TxS position and check if there are empty TxS available. 1497 */ 1498 sc->txs_base[sc->txs_cur].flags &= ~htole16(AE_TXS_UPDATE); 1499 sc->txs_cur = (sc->txs_cur + 1) % AE_TXS_COUNT_DEFAULT; 1500 if (sc->txs_cur == sc->txs_ack) 1501 sc->flags &= ~AE_FLAG_TXAVAIL; 1502 1503 /* 1504 * Synchronize DMA memory. 1505 */ 1506 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, BUS_DMASYNC_PREREAD | 1507 BUS_DMASYNC_PREWRITE); 1508 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1509 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1510 1511 return (0); 1512 } 1513 1514 static void 1515 ae_start(struct ifnet *ifp) 1516 { 1517 ae_softc_t *sc; 1518 1519 sc = ifp->if_softc; 1520 AE_LOCK(sc); 1521 ae_start_locked(ifp); 1522 AE_UNLOCK(sc); 1523 } 1524 1525 static void 1526 ae_start_locked(struct ifnet *ifp) 1527 { 1528 ae_softc_t *sc; 1529 unsigned int count; 1530 struct mbuf *m0; 1531 int error; 1532 1533 sc = ifp->if_softc; 1534 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1535 AE_LOCK_ASSERT(sc); 1536 1537 #ifdef AE_DEBUG 1538 if_printf(ifp, "Start called.\n"); 1539 #endif 1540 1541 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1542 IFF_DRV_RUNNING || (sc->flags & AE_FLAG_LINK) == 0) 1543 return; 1544 1545 count = 0; 1546 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 1547 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1548 if (m0 == NULL) 1549 break; /* Nothing to do. */ 1550 1551 error = ae_encap(sc, &m0); 1552 if (error != 0) { 1553 if (m0 != NULL) { 1554 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 1555 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1556 #ifdef AE_DEBUG 1557 if_printf(ifp, "Setting OACTIVE.\n"); 1558 #endif 1559 } 1560 break; 1561 } 1562 count++; 1563 sc->tx_inproc++; 1564 1565 /* Bounce a copy of the frame to BPF. */ 1566 ETHER_BPF_MTAP(ifp, m0); 1567 1568 m_freem(m0); 1569 } 1570 1571 if (count > 0) { /* Something was dequeued. */ 1572 AE_WRITE_2(sc, AE_MB_TXD_IDX_REG, sc->txd_cur / 4); 1573 sc->wd_timer = AE_TX_TIMEOUT; /* Load watchdog. */ 1574 #ifdef AE_DEBUG 1575 if_printf(ifp, "%d packets dequeued.\n", count); 1576 if_printf(ifp, "Tx pos now is %d.\n", sc->txd_cur); 1577 #endif 1578 } 1579 } 1580 1581 static void 1582 ae_link_task(void *arg, int pending) 1583 { 1584 ae_softc_t *sc; 1585 struct mii_data *mii; 1586 struct ifnet *ifp; 1587 uint32_t val; 1588 1589 sc = (ae_softc_t *)arg; 1590 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1591 AE_LOCK(sc); 1592 1593 ifp = sc->ifp; 1594 mii = device_get_softc(sc->miibus); 1595 if (mii == NULL || ifp == NULL || 1596 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1597 AE_UNLOCK(sc); /* XXX: could happen? */ 1598 return; 1599 } 1600 1601 sc->flags &= ~AE_FLAG_LINK; 1602 if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == 1603 (IFM_AVALID | IFM_ACTIVE)) { 1604 switch(IFM_SUBTYPE(mii->mii_media_active)) { 1605 case IFM_10_T: 1606 case IFM_100_TX: 1607 sc->flags |= AE_FLAG_LINK; 1608 break; 1609 default: 1610 break; 1611 } 1612 } 1613 1614 /* 1615 * Stop Rx/Tx MACs. 1616 */ 1617 ae_stop_rxmac(sc); 1618 ae_stop_txmac(sc); 1619 1620 if ((sc->flags & AE_FLAG_LINK) != 0) { 1621 ae_mac_config(sc); 1622 1623 /* 1624 * Restart DMA engines. 1625 */ 1626 AE_WRITE_1(sc, AE_DMAREAD_REG, AE_DMAREAD_EN); 1627 AE_WRITE_1(sc, AE_DMAWRITE_REG, AE_DMAWRITE_EN); 1628 1629 /* 1630 * Enable Rx and Tx MACs. 1631 */ 1632 val = AE_READ_4(sc, AE_MAC_REG); 1633 val |= AE_MAC_TX_EN | AE_MAC_RX_EN; 1634 AE_WRITE_4(sc, AE_MAC_REG, val); 1635 } 1636 AE_UNLOCK(sc); 1637 } 1638 1639 static void 1640 ae_stop_rxmac(ae_softc_t *sc) 1641 { 1642 uint32_t val; 1643 int i; 1644 1645 AE_LOCK_ASSERT(sc); 1646 1647 /* 1648 * Stop Rx MAC engine. 1649 */ 1650 val = AE_READ_4(sc, AE_MAC_REG); 1651 if ((val & AE_MAC_RX_EN) != 0) { 1652 val &= ~AE_MAC_RX_EN; 1653 AE_WRITE_4(sc, AE_MAC_REG, val); 1654 } 1655 1656 /* 1657 * Stop Rx DMA engine. 1658 */ 1659 if (AE_READ_1(sc, AE_DMAWRITE_REG) == AE_DMAWRITE_EN) 1660 AE_WRITE_1(sc, AE_DMAWRITE_REG, 0); 1661 1662 /* 1663 * Wait for IDLE state. 1664 */ 1665 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 1666 val = AE_READ_4(sc, AE_IDLE_REG); 1667 if ((val & (AE_IDLE_RXMAC | AE_IDLE_DMAWRITE)) == 0) 1668 break; 1669 DELAY(100); 1670 } 1671 if (i == AE_IDLE_TIMEOUT) 1672 device_printf(sc->dev, "timed out while stopping Rx MAC.\n"); 1673 } 1674 1675 static void 1676 ae_stop_txmac(ae_softc_t *sc) 1677 { 1678 uint32_t val; 1679 int i; 1680 1681 AE_LOCK_ASSERT(sc); 1682 1683 /* 1684 * Stop Tx MAC engine. 1685 */ 1686 val = AE_READ_4(sc, AE_MAC_REG); 1687 if ((val & AE_MAC_TX_EN) != 0) { 1688 val &= ~AE_MAC_TX_EN; 1689 AE_WRITE_4(sc, AE_MAC_REG, val); 1690 } 1691 1692 /* 1693 * Stop Tx DMA engine. 1694 */ 1695 if (AE_READ_1(sc, AE_DMAREAD_REG) == AE_DMAREAD_EN) 1696 AE_WRITE_1(sc, AE_DMAREAD_REG, 0); 1697 1698 /* 1699 * Wait for IDLE state. 1700 */ 1701 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 1702 val = AE_READ_4(sc, AE_IDLE_REG); 1703 if ((val & (AE_IDLE_TXMAC | AE_IDLE_DMAREAD)) == 0) 1704 break; 1705 DELAY(100); 1706 } 1707 if (i == AE_IDLE_TIMEOUT) 1708 device_printf(sc->dev, "timed out while stopping Tx MAC.\n"); 1709 } 1710 1711 static void 1712 ae_mac_config(ae_softc_t *sc) 1713 { 1714 struct mii_data *mii; 1715 uint32_t val; 1716 1717 AE_LOCK_ASSERT(sc); 1718 1719 mii = device_get_softc(sc->miibus); 1720 val = AE_READ_4(sc, AE_MAC_REG); 1721 val &= ~AE_MAC_FULL_DUPLEX; 1722 /* XXX disable AE_MAC_TX_FLOW_EN? */ 1723 1724 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 1725 val |= AE_MAC_FULL_DUPLEX; 1726 1727 AE_WRITE_4(sc, AE_MAC_REG, val); 1728 } 1729 1730 static int 1731 ae_intr(void *arg) 1732 { 1733 ae_softc_t *sc; 1734 uint32_t val; 1735 1736 sc = (ae_softc_t *)arg; 1737 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL", __LINE__)); 1738 1739 val = AE_READ_4(sc, AE_ISR_REG); 1740 if (val == 0 || (val & AE_IMR_DEFAULT) == 0) 1741 return (FILTER_STRAY); 1742 1743 /* Disable interrupts. */ 1744 AE_WRITE_4(sc, AE_ISR_REG, AE_ISR_DISABLE); 1745 1746 /* Schedule interrupt processing. */ 1747 taskqueue_enqueue(sc->tq, &sc->int_task); 1748 1749 return (FILTER_HANDLED); 1750 } 1751 1752 static void 1753 ae_int_task(void *arg, int pending) 1754 { 1755 ae_softc_t *sc; 1756 struct ifnet *ifp; 1757 uint32_t val; 1758 1759 sc = (ae_softc_t *)arg; 1760 1761 AE_LOCK(sc); 1762 1763 ifp = sc->ifp; 1764 1765 val = AE_READ_4(sc, AE_ISR_REG); /* Read interrupt status. */ 1766 if (val == 0) { 1767 AE_UNLOCK(sc); 1768 return; 1769 } 1770 1771 /* 1772 * Clear interrupts and disable them. 1773 */ 1774 AE_WRITE_4(sc, AE_ISR_REG, val | AE_ISR_DISABLE); 1775 1776 #ifdef AE_DEBUG 1777 if_printf(ifp, "Interrupt received: 0x%08x\n", val); 1778 #endif 1779 1780 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1781 if ((val & (AE_ISR_DMAR_TIMEOUT | AE_ISR_DMAW_TIMEOUT | 1782 AE_ISR_PHY_LINKDOWN)) != 0) { 1783 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1784 ae_init_locked(sc); 1785 AE_UNLOCK(sc); 1786 return; 1787 } 1788 if ((val & AE_ISR_TX_EVENT) != 0) 1789 ae_tx_intr(sc); 1790 if ((val & AE_ISR_RX_EVENT) != 0) 1791 ae_rx_intr(sc); 1792 /* 1793 * Re-enable interrupts. 1794 */ 1795 AE_WRITE_4(sc, AE_ISR_REG, 0); 1796 1797 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) { 1798 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1799 ae_start_locked(ifp); 1800 } 1801 } 1802 1803 AE_UNLOCK(sc); 1804 } 1805 1806 static void 1807 ae_tx_intr(ae_softc_t *sc) 1808 { 1809 struct ifnet *ifp; 1810 ae_txd_t *txd; 1811 ae_txs_t *txs; 1812 uint16_t flags; 1813 1814 AE_LOCK_ASSERT(sc); 1815 1816 ifp = sc->ifp; 1817 1818 #ifdef AE_DEBUG 1819 if_printf(ifp, "Tx interrupt occuried.\n"); 1820 #endif 1821 1822 /* 1823 * Syncronize DMA buffers. 1824 */ 1825 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1826 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1827 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1828 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1829 1830 for (;;) { 1831 txs = sc->txs_base + sc->txs_ack; 1832 flags = le16toh(txs->flags); 1833 if ((flags & AE_TXS_UPDATE) == 0) 1834 break; 1835 txs->flags = htole16(flags & ~AE_TXS_UPDATE); 1836 /* Update stats. */ 1837 ae_update_stats_tx(flags, &sc->stats); 1838 1839 /* 1840 * Update TxS position. 1841 */ 1842 sc->txs_ack = (sc->txs_ack + 1) % AE_TXS_COUNT_DEFAULT; 1843 sc->flags |= AE_FLAG_TXAVAIL; 1844 1845 txd = (ae_txd_t *)(sc->txd_base + sc->txd_ack); 1846 if (txs->len != txd->len) 1847 device_printf(sc->dev, "Size mismatch: TxS:%d TxD:%d\n", 1848 le16toh(txs->len), le16toh(txd->len)); 1849 1850 /* 1851 * Move txd ack and align on 4-byte boundary. 1852 */ 1853 sc->txd_ack = ((sc->txd_ack + le16toh(txd->len) + 1854 sizeof(ae_txs_t) + 3) & ~3) % AE_TXD_BUFSIZE_DEFAULT; 1855 1856 if ((flags & AE_TXS_SUCCESS) != 0) 1857 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1858 else 1859 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1860 1861 sc->tx_inproc--; 1862 } 1863 1864 if ((sc->flags & AE_FLAG_TXAVAIL) != 0) 1865 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1866 if (sc->tx_inproc < 0) { 1867 if_printf(ifp, "Received stray Tx interrupt(s).\n"); 1868 sc->tx_inproc = 0; 1869 } 1870 1871 if (sc->tx_inproc == 0) 1872 sc->wd_timer = 0; /* Unarm watchdog. */ 1873 1874 /* 1875 * Syncronize DMA buffers. 1876 */ 1877 bus_dmamap_sync(sc->dma_txd_tag, sc->dma_txd_map, 1878 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1879 bus_dmamap_sync(sc->dma_txs_tag, sc->dma_txs_map, 1880 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1881 } 1882 1883 static void 1884 ae_rxeof(ae_softc_t *sc, ae_rxd_t *rxd) 1885 { 1886 struct ifnet *ifp; 1887 struct mbuf *m; 1888 unsigned int size; 1889 uint16_t flags; 1890 1891 AE_LOCK_ASSERT(sc); 1892 1893 ifp = sc->ifp; 1894 flags = le16toh(rxd->flags); 1895 1896 #ifdef AE_DEBUG 1897 if_printf(ifp, "Rx interrupt occuried.\n"); 1898 #endif 1899 size = le16toh(rxd->len) - ETHER_CRC_LEN; 1900 if (size < (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) { 1901 if_printf(ifp, "Runt frame received."); 1902 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1903 return; 1904 } 1905 1906 m = m_devget(&rxd->data[0], size, ETHER_ALIGN, ifp, NULL); 1907 if (m == NULL) { 1908 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1909 return; 1910 } 1911 1912 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 1913 (flags & AE_RXD_HAS_VLAN) != 0) { 1914 m->m_pkthdr.ether_vtag = AE_RXD_VLAN(le16toh(rxd->vlan)); 1915 m->m_flags |= M_VLANTAG; 1916 } 1917 1918 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1919 /* 1920 * Pass it through. 1921 */ 1922 AE_UNLOCK(sc); 1923 (*ifp->if_input)(ifp, m); 1924 AE_LOCK(sc); 1925 } 1926 1927 static void 1928 ae_rx_intr(ae_softc_t *sc) 1929 { 1930 ae_rxd_t *rxd; 1931 struct ifnet *ifp; 1932 uint16_t flags; 1933 int count; 1934 1935 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1936 1937 AE_LOCK_ASSERT(sc); 1938 1939 ifp = sc->ifp; 1940 1941 /* 1942 * Syncronize DMA buffers. 1943 */ 1944 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map, 1945 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1946 1947 for (count = 0;; count++) { 1948 rxd = (ae_rxd_t *)(sc->rxd_base + sc->rxd_cur); 1949 flags = le16toh(rxd->flags); 1950 if ((flags & AE_RXD_UPDATE) == 0) 1951 break; 1952 rxd->flags = htole16(flags & ~AE_RXD_UPDATE); 1953 /* Update stats. */ 1954 ae_update_stats_rx(flags, &sc->stats); 1955 1956 /* 1957 * Update position index. 1958 */ 1959 sc->rxd_cur = (sc->rxd_cur + 1) % AE_RXD_COUNT_DEFAULT; 1960 1961 if ((flags & AE_RXD_SUCCESS) != 0) 1962 ae_rxeof(sc, rxd); 1963 else 1964 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1965 } 1966 1967 if (count > 0) { 1968 bus_dmamap_sync(sc->dma_rxd_tag, sc->dma_rxd_map, 1969 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1970 /* 1971 * Update Rx index. 1972 */ 1973 AE_WRITE_2(sc, AE_MB_RXD_IDX_REG, sc->rxd_cur); 1974 } 1975 } 1976 1977 static void 1978 ae_watchdog(ae_softc_t *sc) 1979 { 1980 struct ifnet *ifp; 1981 1982 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 1983 AE_LOCK_ASSERT(sc); 1984 ifp = sc->ifp; 1985 1986 if (sc->wd_timer == 0 || --sc->wd_timer != 0) 1987 return; /* Noting to do. */ 1988 1989 if ((sc->flags & AE_FLAG_LINK) == 0) 1990 if_printf(ifp, "watchdog timeout (missed link).\n"); 1991 else 1992 if_printf(ifp, "watchdog timeout - resetting.\n"); 1993 1994 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1995 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1996 ae_init_locked(sc); 1997 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1998 ae_start_locked(ifp); 1999 } 2000 2001 static void 2002 ae_tick(void *arg) 2003 { 2004 ae_softc_t *sc; 2005 struct mii_data *mii; 2006 2007 sc = (ae_softc_t *)arg; 2008 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 2009 AE_LOCK_ASSERT(sc); 2010 2011 mii = device_get_softc(sc->miibus); 2012 mii_tick(mii); 2013 ae_watchdog(sc); /* Watchdog check. */ 2014 callout_reset(&sc->tick_ch, hz, ae_tick, sc); 2015 } 2016 2017 static void 2018 ae_rxvlan(ae_softc_t *sc) 2019 { 2020 struct ifnet *ifp; 2021 uint32_t val; 2022 2023 AE_LOCK_ASSERT(sc); 2024 ifp = sc->ifp; 2025 val = AE_READ_4(sc, AE_MAC_REG); 2026 val &= ~AE_MAC_RMVLAN_EN; 2027 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2028 val |= AE_MAC_RMVLAN_EN; 2029 AE_WRITE_4(sc, AE_MAC_REG, val); 2030 } 2031 2032 static void 2033 ae_rxfilter(ae_softc_t *sc) 2034 { 2035 struct ifnet *ifp; 2036 struct ifmultiaddr *ifma; 2037 uint32_t crc; 2038 uint32_t mchash[2]; 2039 uint32_t rxcfg; 2040 2041 KASSERT(sc != NULL, ("[ae, %d]: sc is NULL!", __LINE__)); 2042 2043 AE_LOCK_ASSERT(sc); 2044 2045 ifp = sc->ifp; 2046 2047 rxcfg = AE_READ_4(sc, AE_MAC_REG); 2048 rxcfg &= ~(AE_MAC_MCAST_EN | AE_MAC_BCAST_EN | AE_MAC_PROMISC_EN); 2049 2050 if ((ifp->if_flags & IFF_BROADCAST) != 0) 2051 rxcfg |= AE_MAC_BCAST_EN; 2052 if ((ifp->if_flags & IFF_PROMISC) != 0) 2053 rxcfg |= AE_MAC_PROMISC_EN; 2054 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 2055 rxcfg |= AE_MAC_MCAST_EN; 2056 2057 /* 2058 * Wipe old settings. 2059 */ 2060 AE_WRITE_4(sc, AE_REG_MHT0, 0); 2061 AE_WRITE_4(sc, AE_REG_MHT1, 0); 2062 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 2063 AE_WRITE_4(sc, AE_REG_MHT0, 0xffffffff); 2064 AE_WRITE_4(sc, AE_REG_MHT1, 0xffffffff); 2065 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2066 return; 2067 } 2068 2069 /* 2070 * Load multicast tables. 2071 */ 2072 bzero(mchash, sizeof(mchash)); 2073 if_maddr_rlock(ifp); 2074 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2075 if (ifma->ifma_addr->sa_family != AF_LINK) 2076 continue; 2077 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 2078 ifma->ifma_addr), ETHER_ADDR_LEN); 2079 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 2080 } 2081 if_maddr_runlock(ifp); 2082 AE_WRITE_4(sc, AE_REG_MHT0, mchash[0]); 2083 AE_WRITE_4(sc, AE_REG_MHT1, mchash[1]); 2084 AE_WRITE_4(sc, AE_MAC_REG, rxcfg); 2085 } 2086 2087 static int 2088 ae_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2089 { 2090 struct ae_softc *sc; 2091 struct ifreq *ifr; 2092 struct mii_data *mii; 2093 int error, mask; 2094 2095 sc = ifp->if_softc; 2096 ifr = (struct ifreq *)data; 2097 error = 0; 2098 2099 switch (cmd) { 2100 case SIOCSIFMTU: 2101 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) 2102 error = EINVAL; 2103 else if (ifp->if_mtu != ifr->ifr_mtu) { 2104 AE_LOCK(sc); 2105 ifp->if_mtu = ifr->ifr_mtu; 2106 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2107 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2108 ae_init_locked(sc); 2109 } 2110 AE_UNLOCK(sc); 2111 } 2112 break; 2113 case SIOCSIFFLAGS: 2114 AE_LOCK(sc); 2115 if ((ifp->if_flags & IFF_UP) != 0) { 2116 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2117 if (((ifp->if_flags ^ sc->if_flags) 2118 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2119 ae_rxfilter(sc); 2120 } else { 2121 if ((sc->flags & AE_FLAG_DETACH) == 0) 2122 ae_init_locked(sc); 2123 } 2124 } else { 2125 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2126 ae_stop(sc); 2127 } 2128 sc->if_flags = ifp->if_flags; 2129 AE_UNLOCK(sc); 2130 break; 2131 case SIOCADDMULTI: 2132 case SIOCDELMULTI: 2133 AE_LOCK(sc); 2134 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2135 ae_rxfilter(sc); 2136 AE_UNLOCK(sc); 2137 break; 2138 case SIOCSIFMEDIA: 2139 case SIOCGIFMEDIA: 2140 mii = device_get_softc(sc->miibus); 2141 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2142 break; 2143 case SIOCSIFCAP: 2144 AE_LOCK(sc); 2145 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2146 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2147 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2148 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2149 ae_rxvlan(sc); 2150 } 2151 VLAN_CAPABILITIES(ifp); 2152 AE_UNLOCK(sc); 2153 break; 2154 default: 2155 error = ether_ioctl(ifp, cmd, data); 2156 break; 2157 } 2158 return (error); 2159 } 2160 2161 static void 2162 ae_stop(ae_softc_t *sc) 2163 { 2164 struct ifnet *ifp; 2165 int i; 2166 2167 AE_LOCK_ASSERT(sc); 2168 2169 ifp = sc->ifp; 2170 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2171 sc->flags &= ~AE_FLAG_LINK; 2172 sc->wd_timer = 0; /* Cancel watchdog. */ 2173 callout_stop(&sc->tick_ch); 2174 2175 /* 2176 * Clear and disable interrupts. 2177 */ 2178 AE_WRITE_4(sc, AE_IMR_REG, 0); 2179 AE_WRITE_4(sc, AE_ISR_REG, 0xffffffff); 2180 2181 /* 2182 * Stop Rx/Tx MACs. 2183 */ 2184 ae_stop_txmac(sc); 2185 ae_stop_rxmac(sc); 2186 2187 /* 2188 * Stop DMA engines. 2189 */ 2190 AE_WRITE_1(sc, AE_DMAREAD_REG, ~AE_DMAREAD_EN); 2191 AE_WRITE_1(sc, AE_DMAWRITE_REG, ~AE_DMAWRITE_EN); 2192 2193 /* 2194 * Wait for everything to enter idle state. 2195 */ 2196 for (i = 0; i < AE_IDLE_TIMEOUT; i++) { 2197 if (AE_READ_4(sc, AE_IDLE_REG) == 0) 2198 break; 2199 DELAY(100); 2200 } 2201 if (i == AE_IDLE_TIMEOUT) 2202 device_printf(sc->dev, "could not enter idle state in stop.\n"); 2203 } 2204 2205 static void 2206 ae_update_stats_tx(uint16_t flags, ae_stats_t *stats) 2207 { 2208 2209 if ((flags & AE_TXS_BCAST) != 0) 2210 stats->tx_bcast++; 2211 if ((flags & AE_TXS_MCAST) != 0) 2212 stats->tx_mcast++; 2213 if ((flags & AE_TXS_PAUSE) != 0) 2214 stats->tx_pause++; 2215 if ((flags & AE_TXS_CTRL) != 0) 2216 stats->tx_ctrl++; 2217 if ((flags & AE_TXS_DEFER) != 0) 2218 stats->tx_defer++; 2219 if ((flags & AE_TXS_EXCDEFER) != 0) 2220 stats->tx_excdefer++; 2221 if ((flags & AE_TXS_SINGLECOL) != 0) 2222 stats->tx_singlecol++; 2223 if ((flags & AE_TXS_MULTICOL) != 0) 2224 stats->tx_multicol++; 2225 if ((flags & AE_TXS_LATECOL) != 0) 2226 stats->tx_latecol++; 2227 if ((flags & AE_TXS_ABORTCOL) != 0) 2228 stats->tx_abortcol++; 2229 if ((flags & AE_TXS_UNDERRUN) != 0) 2230 stats->tx_underrun++; 2231 } 2232 2233 static void 2234 ae_update_stats_rx(uint16_t flags, ae_stats_t *stats) 2235 { 2236 2237 if ((flags & AE_RXD_BCAST) != 0) 2238 stats->rx_bcast++; 2239 if ((flags & AE_RXD_MCAST) != 0) 2240 stats->rx_mcast++; 2241 if ((flags & AE_RXD_PAUSE) != 0) 2242 stats->rx_pause++; 2243 if ((flags & AE_RXD_CTRL) != 0) 2244 stats->rx_ctrl++; 2245 if ((flags & AE_RXD_CRCERR) != 0) 2246 stats->rx_crcerr++; 2247 if ((flags & AE_RXD_CODEERR) != 0) 2248 stats->rx_codeerr++; 2249 if ((flags & AE_RXD_RUNT) != 0) 2250 stats->rx_runt++; 2251 if ((flags & AE_RXD_FRAG) != 0) 2252 stats->rx_frag++; 2253 if ((flags & AE_RXD_TRUNC) != 0) 2254 stats->rx_trunc++; 2255 if ((flags & AE_RXD_ALIGN) != 0) 2256 stats->rx_align++; 2257 } 2258