1 /*- 2 * Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/kernel.h> 30 #include <sys/module.h> 31 #include <sys/malloc.h> 32 #include <sys/libkern.h> 33 #include <sys/endian.h> 34 #include <sys/pcpu.h> 35 #if defined(__amd64__) || defined(__i386__) 36 #include <machine/cpufunc.h> 37 #include <machine/cputypes.h> 38 #include <machine/fpu.h> 39 #include <machine/md_var.h> 40 #include <machine/specialreg.h> 41 #endif 42 #include <machine/pcb.h> 43 44 #include <opencrypto/cryptodev.h> 45 #include <opencrypto/xform.h> 46 47 #include <crypto/via/padlock.h> 48 49 /* 50 * Implementation notes. 51 * 52 * Some VIA CPUs provides SHA1 and SHA256 acceleration. 53 * We implement all HMAC algorithms provided by crypto(9) framework, but we do 54 * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and 55 * our CPU can accelerate it. 56 * 57 * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot 58 * functions - we have only one chance to give the data, CPU itself will add 59 * the padding and calculate hash automatically. 60 * This means, it is not possible to implement common init(), update(), final() 61 * methods. 62 * The way I've choosen is to keep adding data to the buffer on update() 63 * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on 64 * final(). 65 */ 66 67 struct padlock_sha_ctx { 68 uint8_t *psc_buf; 69 int psc_offset; 70 int psc_size; 71 }; 72 CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx)); 73 74 static void padlock_sha_init(void *vctx); 75 static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize); 76 static void padlock_sha1_final(uint8_t *hash, void *vctx); 77 static void padlock_sha256_final(uint8_t *hash, void *vctx); 78 79 static const struct auth_hash padlock_hmac_sha1 = { 80 .type = CRYPTO_SHA1_HMAC, 81 .name = "HMAC-SHA1", 82 .keysize = SHA1_BLOCK_LEN, 83 .hashsize = SHA1_HASH_LEN, 84 .ctxsize = sizeof(struct padlock_sha_ctx), 85 .blocksize = SHA1_BLOCK_LEN, 86 .Init = padlock_sha_init, 87 .Update = padlock_sha_update, 88 .Final = padlock_sha1_final, 89 }; 90 91 static const struct auth_hash padlock_hmac_sha256 = { 92 .type = CRYPTO_SHA2_256_HMAC, 93 .name = "HMAC-SHA2-256", 94 .keysize = SHA2_256_BLOCK_LEN, 95 .hashsize = SHA2_256_HASH_LEN, 96 .ctxsize = sizeof(struct padlock_sha_ctx), 97 .blocksize = SHA2_256_BLOCK_LEN, 98 .Init = padlock_sha_init, 99 .Update = padlock_sha_update, 100 .Final = padlock_sha256_final, 101 }; 102 103 MALLOC_DECLARE(M_PADLOCK); 104 105 static __inline void 106 padlock_output_block(uint32_t *src, uint32_t *dst, size_t count) 107 { 108 109 while (count-- > 0) 110 *dst++ = bswap32(*src++); 111 } 112 113 static void 114 padlock_do_sha1(const u_char *in, u_char *out, int count) 115 { 116 u_char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */ 117 u_char *result = PADLOCK_ALIGN(buf); 118 119 ((uint32_t *)result)[0] = 0x67452301; 120 ((uint32_t *)result)[1] = 0xEFCDAB89; 121 ((uint32_t *)result)[2] = 0x98BADCFE; 122 ((uint32_t *)result)[3] = 0x10325476; 123 ((uint32_t *)result)[4] = 0xC3D2E1F0; 124 125 __asm __volatile( 126 ".byte 0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */ 127 : "+S"(in), "+D"(result) 128 : "c"(count), "a"(0) 129 ); 130 131 padlock_output_block((uint32_t *)result, (uint32_t *)out, 132 SHA1_HASH_LEN / sizeof(uint32_t)); 133 } 134 135 static void 136 padlock_do_sha256(const char *in, char *out, int count) 137 { 138 char buf[128+16]; /* PadLock needs at least 128 bytes buffer. */ 139 char *result = PADLOCK_ALIGN(buf); 140 141 ((uint32_t *)result)[0] = 0x6A09E667; 142 ((uint32_t *)result)[1] = 0xBB67AE85; 143 ((uint32_t *)result)[2] = 0x3C6EF372; 144 ((uint32_t *)result)[3] = 0xA54FF53A; 145 ((uint32_t *)result)[4] = 0x510E527F; 146 ((uint32_t *)result)[5] = 0x9B05688C; 147 ((uint32_t *)result)[6] = 0x1F83D9AB; 148 ((uint32_t *)result)[7] = 0x5BE0CD19; 149 150 __asm __volatile( 151 ".byte 0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */ 152 : "+S"(in), "+D"(result) 153 : "c"(count), "a"(0) 154 ); 155 156 padlock_output_block((uint32_t *)result, (uint32_t *)out, 157 SHA2_256_HASH_LEN / sizeof(uint32_t)); 158 } 159 160 static void 161 padlock_sha_init(void *vctx) 162 { 163 struct padlock_sha_ctx *ctx; 164 165 ctx = vctx; 166 ctx->psc_buf = NULL; 167 ctx->psc_offset = 0; 168 ctx->psc_size = 0; 169 } 170 171 static int 172 padlock_sha_update(void *vctx, const void *buf, u_int bufsize) 173 { 174 struct padlock_sha_ctx *ctx; 175 176 ctx = vctx; 177 if (ctx->psc_size - ctx->psc_offset < bufsize) { 178 ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize); 179 ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK, 180 M_NOWAIT); 181 if(ctx->psc_buf == NULL) 182 return (ENOMEM); 183 } 184 bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize); 185 ctx->psc_offset += bufsize; 186 return (0); 187 } 188 189 static void 190 padlock_sha_free(void *vctx) 191 { 192 struct padlock_sha_ctx *ctx; 193 194 ctx = vctx; 195 if (ctx->psc_buf != NULL) { 196 zfree(ctx->psc_buf, M_PADLOCK); 197 ctx->psc_buf = NULL; 198 ctx->psc_offset = 0; 199 ctx->psc_size = 0; 200 } 201 } 202 203 static void 204 padlock_sha1_final(uint8_t *hash, void *vctx) 205 { 206 struct padlock_sha_ctx *ctx; 207 208 ctx = vctx; 209 padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset); 210 padlock_sha_free(ctx); 211 } 212 213 static void 214 padlock_sha256_final(uint8_t *hash, void *vctx) 215 { 216 struct padlock_sha_ctx *ctx; 217 218 ctx = vctx; 219 padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset); 220 padlock_sha_free(ctx); 221 } 222 223 static void 224 padlock_copy_ctx(const struct auth_hash *axf, void *sctx, void *dctx) 225 { 226 227 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 && 228 (axf->type == CRYPTO_SHA1_HMAC || 229 axf->type == CRYPTO_SHA2_256_HMAC)) { 230 struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx; 231 232 dpctx->psc_offset = spctx->psc_offset; 233 dpctx->psc_size = spctx->psc_size; 234 dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK); 235 bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size); 236 } else { 237 bcopy(sctx, dctx, axf->ctxsize); 238 } 239 } 240 241 static void 242 padlock_free_ctx(const struct auth_hash *axf, void *ctx) 243 { 244 245 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 && 246 (axf->type == CRYPTO_SHA1_HMAC || 247 axf->type == CRYPTO_SHA2_256_HMAC)) { 248 padlock_sha_free(ctx); 249 } 250 } 251 252 static void 253 padlock_hash_key_setup(struct padlock_session *ses, const uint8_t *key, 254 int klen) 255 { 256 const struct auth_hash *axf; 257 258 axf = ses->ses_axf; 259 260 /* 261 * Try to free contexts before using them, because 262 * padlock_hash_key_setup() can be called twice - once from 263 * padlock_newsession() and again from padlock_process(). 264 */ 265 padlock_free_ctx(axf, ses->ses_ictx); 266 padlock_free_ctx(axf, ses->ses_octx); 267 268 hmac_init_ipad(axf, key, klen, ses->ses_ictx); 269 hmac_init_opad(axf, key, klen, ses->ses_octx); 270 } 271 272 /* 273 * Compute keyed-hash authenticator. 274 */ 275 static int 276 padlock_authcompute(struct padlock_session *ses, struct cryptop *crp) 277 { 278 u_char hash[HASH_MAX_LEN], hash2[HASH_MAX_LEN]; 279 const struct auth_hash *axf; 280 union authctx ctx; 281 int error; 282 283 axf = ses->ses_axf; 284 285 padlock_copy_ctx(axf, ses->ses_ictx, &ctx); 286 error = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length, 287 axf->Update, &ctx); 288 if (error != 0) { 289 padlock_free_ctx(axf, &ctx); 290 return (error); 291 } 292 error = crypto_apply(crp, crp->crp_payload_start, 293 crp->crp_payload_length, axf->Update, &ctx); 294 if (error != 0) { 295 padlock_free_ctx(axf, &ctx); 296 return (error); 297 } 298 axf->Final(hash, &ctx); 299 300 padlock_copy_ctx(axf, ses->ses_octx, &ctx); 301 axf->Update(&ctx, hash, axf->hashsize); 302 axf->Final(hash, &ctx); 303 304 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { 305 crypto_copydata(crp, crp->crp_digest_start, ses->ses_mlen, 306 hash2); 307 if (timingsafe_bcmp(hash, hash2, ses->ses_mlen) != 0) 308 return (EBADMSG); 309 } else 310 crypto_copyback(crp, crp->crp_digest_start, ses->ses_mlen, 311 hash); 312 return (0); 313 } 314 315 /* Find software structure which describes HMAC algorithm. */ 316 static const struct auth_hash * 317 padlock_hash_lookup(int alg) 318 { 319 const struct auth_hash *axf; 320 321 switch (alg) { 322 case CRYPTO_NULL_HMAC: 323 axf = &auth_hash_null; 324 break; 325 case CRYPTO_SHA1_HMAC: 326 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0) 327 axf = &padlock_hmac_sha1; 328 else 329 axf = &auth_hash_hmac_sha1; 330 break; 331 case CRYPTO_RIPEMD160_HMAC: 332 axf = &auth_hash_hmac_ripemd_160; 333 break; 334 case CRYPTO_SHA2_256_HMAC: 335 if ((via_feature_xcrypt & VIA_HAS_SHA) != 0) 336 axf = &padlock_hmac_sha256; 337 else 338 axf = &auth_hash_hmac_sha2_256; 339 break; 340 case CRYPTO_SHA2_384_HMAC: 341 axf = &auth_hash_hmac_sha2_384; 342 break; 343 case CRYPTO_SHA2_512_HMAC: 344 axf = &auth_hash_hmac_sha2_512; 345 break; 346 default: 347 axf = NULL; 348 break; 349 } 350 return (axf); 351 } 352 353 bool 354 padlock_hash_check(const struct crypto_session_params *csp) 355 { 356 357 return (padlock_hash_lookup(csp->csp_auth_alg) != NULL); 358 } 359 360 int 361 padlock_hash_setup(struct padlock_session *ses, 362 const struct crypto_session_params *csp) 363 { 364 365 ses->ses_axf = padlock_hash_lookup(csp->csp_auth_alg); 366 if (csp->csp_auth_mlen == 0) 367 ses->ses_mlen = ses->ses_axf->hashsize; 368 else 369 ses->ses_mlen = csp->csp_auth_mlen; 370 371 /* Allocate memory for HMAC inner and outer contexts. */ 372 ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK, 373 M_ZERO | M_NOWAIT); 374 ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK, 375 M_ZERO | M_NOWAIT); 376 if (ses->ses_ictx == NULL || ses->ses_octx == NULL) 377 return (ENOMEM); 378 379 /* Setup key if given. */ 380 if (csp->csp_auth_key != NULL) { 381 padlock_hash_key_setup(ses, csp->csp_auth_key, 382 csp->csp_auth_klen); 383 } 384 return (0); 385 } 386 387 int 388 padlock_hash_process(struct padlock_session *ses, struct cryptop *crp, 389 const struct crypto_session_params *csp) 390 { 391 struct thread *td; 392 int error; 393 394 td = curthread; 395 fpu_kern_enter(td, NULL, FPU_KERN_NORMAL | FPU_KERN_NOCTX); 396 if (crp->crp_auth_key != NULL) 397 padlock_hash_key_setup(ses, crp->crp_auth_key, 398 csp->csp_auth_klen); 399 400 error = padlock_authcompute(ses, crp); 401 fpu_kern_leave(td, NULL); 402 return (error); 403 } 404 405 void 406 padlock_hash_free(struct padlock_session *ses) 407 { 408 409 if (ses->ses_ictx != NULL) { 410 padlock_free_ctx(ses->ses_axf, ses->ses_ictx); 411 zfree(ses->ses_ictx, M_PADLOCK); 412 ses->ses_ictx = NULL; 413 } 414 if (ses->ses_octx != NULL) { 415 padlock_free_ctx(ses->ses_axf, ses->ses_octx); 416 zfree(ses->ses_octx, M_PADLOCK); 417 ses->ses_octx = NULL; 418 } 419 } 420