xref: /freebsd/sys/crypto/openssl/ossl_poly1305.c (revision 0d66206fff44f864ea8a4b220c3a53b4caa959a0)
1 /*
2  * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <sys/libkern.h>
11 #include <sys/malloc.h>
12 
13 #include <opencrypto/cryptodev.h>
14 #include <opencrypto/xform_auth.h>
15 
16 #include <crypto/openssl/ossl.h>
17 #include <crypto/openssl/ossl_poly1305.h>
18 
19 #define	POLY1305_ASM
20 
21 /* From crypto/poly1305/poly1305.c */
22 
23 /* pick 32-bit unsigned integer in little endian order */
24 static unsigned int U8TOU32(const unsigned char *p)
25 {
26     return (((unsigned int)(p[0] & 0xff)) |
27             ((unsigned int)(p[1] & 0xff) << 8) |
28             ((unsigned int)(p[2] & 0xff) << 16) |
29             ((unsigned int)(p[3] & 0xff) << 24));
30 }
31 
32 /*
33  * Implementations can be classified by amount of significant bits in
34  * words making up the multi-precision value, or in other words radix
35  * or base of numerical representation, e.g. base 2^64, base 2^32,
36  * base 2^26. Complementary characteristic is how wide is the result of
37  * multiplication of pair of digits, e.g. it would take 128 bits to
38  * accommodate multiplication result in base 2^64 case. These are used
39  * interchangeably. To describe implementation that is. But interface
40  * is designed to isolate this so that low-level primitives implemented
41  * in assembly can be self-contained/self-coherent.
42  */
43 int poly1305_init(void *ctx, const unsigned char key[16], void *func);
44 void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
45                      unsigned int padbit);
46 void poly1305_emit(void *ctx, unsigned char mac[16],
47                    const unsigned int nonce[4]);
48 
49 void Poly1305_Init(POLY1305 *ctx, const unsigned char key[32])
50 {
51     ctx->nonce[0] = U8TOU32(&key[16]);
52     ctx->nonce[1] = U8TOU32(&key[20]);
53     ctx->nonce[2] = U8TOU32(&key[24]);
54     ctx->nonce[3] = U8TOU32(&key[28]);
55 
56     /*
57      * Unlike reference poly1305_init assembly counterpart is expected
58      * to return a value: non-zero if it initializes ctx->func, and zero
59      * otherwise. Latter is to simplify assembly in cases when there no
60      * multiple code paths to switch between.
61      */
62     if (!poly1305_init(ctx->opaque, key, &ctx->func)) {
63         ctx->func.blocks = poly1305_blocks;
64         ctx->func.emit = poly1305_emit;
65     }
66 
67     ctx->num = 0;
68 
69 }
70 
71 #ifdef POLY1305_ASM
72 /*
73  * This "eclipses" poly1305_blocks and poly1305_emit, but it's
74  * conscious choice imposed by -Wshadow compiler warnings.
75  */
76 # define poly1305_blocks (*poly1305_blocks_p)
77 # define poly1305_emit   (*poly1305_emit_p)
78 #endif
79 
80 void Poly1305_Update(POLY1305 *ctx, const unsigned char *inp, size_t len)
81 {
82 #ifdef POLY1305_ASM
83     /*
84      * As documented, poly1305_blocks is never called with input
85      * longer than single block and padbit argument set to 0. This
86      * property is fluently used in assembly modules to optimize
87      * padbit handling on loop boundary.
88      */
89     poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
90 #endif
91     size_t rem, num;
92 
93     if ((num = ctx->num)) {
94         rem = POLY1305_BLOCK_SIZE - num;
95         if (len >= rem) {
96             memcpy(ctx->data + num, inp, rem);
97             poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 1);
98             inp += rem;
99             len -= rem;
100         } else {
101             /* Still not enough data to process a block. */
102             memcpy(ctx->data + num, inp, len);
103             ctx->num = num + len;
104             return;
105         }
106     }
107 
108     rem = len % POLY1305_BLOCK_SIZE;
109     len -= rem;
110 
111     if (len >= POLY1305_BLOCK_SIZE) {
112         poly1305_blocks(ctx->opaque, inp, len, 1);
113         inp += len;
114     }
115 
116     if (rem)
117         memcpy(ctx->data, inp, rem);
118 
119     ctx->num = rem;
120 }
121 
122 void Poly1305_Final(POLY1305 *ctx, unsigned char mac[16])
123 {
124 #ifdef POLY1305_ASM
125     poly1305_blocks_f poly1305_blocks_p = ctx->func.blocks;
126     poly1305_emit_f poly1305_emit_p = ctx->func.emit;
127 #endif
128     size_t num;
129 
130     if ((num = ctx->num)) {
131         ctx->data[num++] = 1;   /* pad bit */
132         while (num < POLY1305_BLOCK_SIZE)
133             ctx->data[num++] = 0;
134         poly1305_blocks(ctx->opaque, ctx->data, POLY1305_BLOCK_SIZE, 0);
135     }
136 
137     poly1305_emit(ctx->opaque, mac, ctx->nonce);
138 
139     /* zero out the state */
140     OPENSSL_cleanse(ctx, sizeof(*ctx));
141 }
142 
143 static void
144 ossl_poly1305_init(void *vctx)
145 {
146 }
147 
148 static void
149 ossl_poly1305_setkey(void *vctx, const uint8_t *key, u_int klen)
150 {
151 	MPASS(klen == 32);
152 	Poly1305_Init(vctx, key);
153 }
154 
155 int
156 ossl_poly1305_update(void *vctx, const void *buf, u_int len)
157 {
158 	Poly1305_Update(vctx, buf, len);
159 	return (0);
160 }
161 
162 static void
163 ossl_poly1305_final(uint8_t *digest, void *vctx)
164 {
165 	Poly1305_Final(vctx, digest);
166 }
167 
168 struct auth_hash ossl_hash_poly1305 = {
169 	.type = CRYPTO_POLY1305,
170 	.name = "OpenSSL-Poly1305",
171 	.hashsize = POLY1305_HASH_LEN,
172 	.ctxsize = sizeof(struct poly1305_context),
173 	.blocksize = POLY1305_BLOCK_SIZE,
174 	.Init = ossl_poly1305_init,
175 	.Setkey = ossl_poly1305_setkey,
176 	.Update = ossl_poly1305_update,
177 	.Final = ossl_poly1305_final,
178 };
179 
180 _Static_assert(sizeof(struct poly1305_context) <=
181     sizeof(struct ossl_hash_context), "ossl_hash_context too small");
182