xref: /freebsd/sys/crypto/aesni/aesni_wrap.c (revision 5f4c09dd85bff675e0ca63c55ea3c517e0fddfcc)
1 /*-
2  * Copyright (C) 2008 Damien Miller <djm@mindrot.org>
3  * Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
4  * Copyright (c) 2010-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
5  * Copyright 2012-2013 John-Mark Gurney <jmg@FreeBSD.org>
6  * Copyright (c) 2014 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by John-Mark Gurney
10  * under sponsorship of the FreeBSD Foundation and
11  * Rubicon Communications, LLC (Netgate).
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #include <sys/param.h>
37 #include <sys/libkern.h>
38 #include <sys/malloc.h>
39 #include <sys/proc.h>
40 #include <sys/systm.h>
41 #include <crypto/aesni/aesni.h>
42 
43 #include <opencrypto/gmac.h>
44 
45 #include "aesencdec.h"
46 #include <smmintrin.h>
47 
48 MALLOC_DECLARE(M_AESNI);
49 
50 struct blocks8 {
51 	__m128i	blk[8];
52 } __packed;
53 
54 void
55 aesni_encrypt_cbc(int rounds, const void *key_schedule, size_t len,
56     const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN])
57 {
58 	__m128i tot, ivreg;
59 	size_t i;
60 
61 	len /= AES_BLOCK_LEN;
62 	ivreg = _mm_loadu_si128((const __m128i *)iv);
63 	for (i = 0; i < len; i++) {
64 		tot = aesni_enc(rounds - 1, key_schedule,
65 		    _mm_loadu_si128((const __m128i *)from) ^ ivreg);
66 		ivreg = tot;
67 		_mm_storeu_si128((__m128i *)to, tot);
68 		from += AES_BLOCK_LEN;
69 		to += AES_BLOCK_LEN;
70 	}
71 }
72 
73 void
74 aesni_decrypt_cbc(int rounds, const void *key_schedule, size_t len,
75     uint8_t *buf, const uint8_t iv[static AES_BLOCK_LEN])
76 {
77 	__m128i blocks[8];
78 	struct blocks8 *blks;
79 	__m128i ivreg, nextiv;
80 	size_t i, j, cnt;
81 
82 	ivreg = _mm_loadu_si128((const __m128i *)iv);
83 	cnt = len / AES_BLOCK_LEN / 8;
84 	for (i = 0; i < cnt; i++) {
85 		blks = (struct blocks8 *)buf;
86 		aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
87 		    blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
88 		    blks->blk[6], blks->blk[7], &blocks[0]);
89 		for (j = 0; j < 8; j++) {
90 			nextiv = blks->blk[j];
91 			blks->blk[j] = blocks[j] ^ ivreg;
92 			ivreg = nextiv;
93 		}
94 		buf += AES_BLOCK_LEN * 8;
95 	}
96 	i *= 8;
97 	cnt = len / AES_BLOCK_LEN;
98 	for (; i < cnt; i++) {
99 		nextiv = _mm_loadu_si128((void *)buf);
100 		_mm_storeu_si128((void *)buf,
101 		    aesni_dec(rounds - 1, key_schedule, nextiv) ^ ivreg);
102 		ivreg = nextiv;
103 		buf += AES_BLOCK_LEN;
104 	}
105 }
106 
107 void
108 aesni_encrypt_ecb(int rounds, const void *key_schedule, size_t len,
109     const uint8_t *from, uint8_t *to)
110 {
111 	__m128i tot;
112 	__m128i tout[8];
113 	struct blocks8 *top;
114 	const struct blocks8 *blks;
115 	size_t i, cnt;
116 
117 	cnt = len / AES_BLOCK_LEN / 8;
118 	for (i = 0; i < cnt; i++) {
119 		blks = (const struct blocks8 *)from;
120 		top = (struct blocks8 *)to;
121 		aesni_enc8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
122 		    blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
123 		    blks->blk[6], blks->blk[7], tout);
124 		top->blk[0] = tout[0];
125 		top->blk[1] = tout[1];
126 		top->blk[2] = tout[2];
127 		top->blk[3] = tout[3];
128 		top->blk[4] = tout[4];
129 		top->blk[5] = tout[5];
130 		top->blk[6] = tout[6];
131 		top->blk[7] = tout[7];
132 		from += AES_BLOCK_LEN * 8;
133 		to += AES_BLOCK_LEN * 8;
134 	}
135 	i *= 8;
136 	cnt = len / AES_BLOCK_LEN;
137 	for (; i < cnt; i++) {
138 		tot = aesni_enc(rounds - 1, key_schedule,
139 		    _mm_loadu_si128((const __m128i *)from));
140 		_mm_storeu_si128((__m128i *)to, tot);
141 		from += AES_BLOCK_LEN;
142 		to += AES_BLOCK_LEN;
143 	}
144 }
145 
146 void
147 aesni_decrypt_ecb(int rounds, const void *key_schedule, size_t len,
148     const uint8_t *from, uint8_t *to)
149 {
150 	__m128i tot;
151 	__m128i tout[8];
152 	const struct blocks8 *blks;
153 	struct blocks8 *top;
154 	size_t i, cnt;
155 
156 	cnt = len / AES_BLOCK_LEN / 8;
157 	for (i = 0; i < cnt; i++) {
158 		blks = (const struct blocks8 *)from;
159 		top = (struct blocks8 *)to;
160 		aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
161 		    blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
162 		    blks->blk[6], blks->blk[7], tout);
163 		top->blk[0] = tout[0];
164 		top->blk[1] = tout[1];
165 		top->blk[2] = tout[2];
166 		top->blk[3] = tout[3];
167 		top->blk[4] = tout[4];
168 		top->blk[5] = tout[5];
169 		top->blk[6] = tout[6];
170 		top->blk[7] = tout[7];
171 		from += AES_BLOCK_LEN * 8;
172 		to += AES_BLOCK_LEN * 8;
173 	}
174 	i *= 8;
175 	cnt = len / AES_BLOCK_LEN;
176 	for (; i < cnt; i++) {
177 		tot = aesni_dec(rounds - 1, key_schedule,
178 		    _mm_loadu_si128((const __m128i *)from));
179 		_mm_storeu_si128((__m128i *)to, tot);
180 		from += AES_BLOCK_LEN;
181 		to += AES_BLOCK_LEN;
182 	}
183 }
184 
185 /*
186  * mixed endian increment, low 64bits stored in hi word to be compatible
187  * with _icm's BSWAP.
188  */
189 static inline __m128i
190 nextc(__m128i x)
191 {
192 	const __m128i ONE = _mm_setr_epi32(0, 0, 1, 0);
193 	const __m128i ZERO = _mm_setzero_si128();
194 
195 	x = _mm_add_epi64(x, ONE);
196 	__m128i t = _mm_cmpeq_epi64(x, ZERO);
197 	t = _mm_unpackhi_epi64(t, ZERO);
198 	x = _mm_sub_epi64(x, t);
199 
200 	return x;
201 }
202 
203 void
204 aesni_encrypt_icm(int rounds, const void *key_schedule, size_t len,
205     const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN])
206 {
207 	__m128i tot;
208 	__m128i tmp1, tmp2, tmp3, tmp4;
209 	__m128i tmp5, tmp6, tmp7, tmp8;
210 	__m128i ctr1, ctr2, ctr3, ctr4;
211 	__m128i ctr5, ctr6, ctr7, ctr8;
212 	__m128i BSWAP_EPI64;
213 	__m128i tout[8];
214 	__m128i block;
215 	struct blocks8 *top;
216 	const struct blocks8 *blks;
217 	size_t i, cnt, resid;
218 
219 	BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);
220 
221 	ctr1 = _mm_loadu_si128((const __m128i *)iv);
222 	ctr1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
223 
224 	cnt = len / AES_BLOCK_LEN / 8;
225 	for (i = 0; i < cnt; i++) {
226 		tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
227 		ctr2 = nextc(ctr1);
228 		tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64);
229 		ctr3 = nextc(ctr2);
230 		tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64);
231 		ctr4 = nextc(ctr3);
232 		tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64);
233 		ctr5 = nextc(ctr4);
234 		tmp5 = _mm_shuffle_epi8(ctr5, BSWAP_EPI64);
235 		ctr6 = nextc(ctr5);
236 		tmp6 = _mm_shuffle_epi8(ctr6, BSWAP_EPI64);
237 		ctr7 = nextc(ctr6);
238 		tmp7 = _mm_shuffle_epi8(ctr7, BSWAP_EPI64);
239 		ctr8 = nextc(ctr7);
240 		tmp8 = _mm_shuffle_epi8(ctr8, BSWAP_EPI64);
241 		ctr1 = nextc(ctr8);
242 
243 		blks = (const struct blocks8 *)from;
244 		top = (struct blocks8 *)to;
245 		aesni_enc8(rounds - 1, key_schedule, tmp1, tmp2, tmp3, tmp4,
246 		    tmp5, tmp6, tmp7, tmp8, tout);
247 
248 		top->blk[0] = blks->blk[0] ^ tout[0];
249 		top->blk[1] = blks->blk[1] ^ tout[1];
250 		top->blk[2] = blks->blk[2] ^ tout[2];
251 		top->blk[3] = blks->blk[3] ^ tout[3];
252 		top->blk[4] = blks->blk[4] ^ tout[4];
253 		top->blk[5] = blks->blk[5] ^ tout[5];
254 		top->blk[6] = blks->blk[6] ^ tout[6];
255 		top->blk[7] = blks->blk[7] ^ tout[7];
256 
257 		from += AES_BLOCK_LEN * 8;
258 		to += AES_BLOCK_LEN * 8;
259 	}
260 	i *= 8;
261 	cnt = len / AES_BLOCK_LEN;
262 	for (; i < cnt; i++) {
263 		tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
264 		ctr1 = nextc(ctr1);
265 
266 		tot = aesni_enc(rounds - 1, key_schedule, tmp1);
267 
268 		tot = tot ^ _mm_loadu_si128((const __m128i *)from);
269 		_mm_storeu_si128((__m128i *)to, tot);
270 
271 		from += AES_BLOCK_LEN;
272 		to += AES_BLOCK_LEN;
273 	}
274 
275 	/*
276 	 * Handle remaining partial round.  Copy the remaining payload onto the
277 	 * stack to ensure that the full block can be loaded safely.
278 	 */
279 	resid = len % AES_BLOCK_LEN;
280 	if (resid != 0) {
281 		tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
282 		tot = aesni_enc(rounds - 1, key_schedule, tmp1);
283 		block = _mm_setzero_si128();
284 		memcpy(&block, from, resid);
285 		tot = tot ^ _mm_loadu_si128(&block);
286 		memcpy(to, &tot, resid);
287 		explicit_bzero(&block, sizeof(block));
288 	}
289 }
290 
291 #define	AES_XTS_BLOCKSIZE	16
292 #define	AES_XTS_IVSIZE		8
293 #define	AES_XTS_ALPHA		0x87	/* GF(2^128) generator polynomial */
294 
295 static inline __m128i
296 xts_crank_lfsr(__m128i inp)
297 {
298 	const __m128i alphamask = _mm_set_epi32(1, 1, 1, AES_XTS_ALPHA);
299 	__m128i xtweak, ret;
300 
301 	/* set up xor mask */
302 	xtweak = _mm_shuffle_epi32(inp, 0x93);
303 	xtweak = _mm_srai_epi32(xtweak, 31);
304 	xtweak &= alphamask;
305 
306 	/* next term */
307 	ret = _mm_slli_epi32(inp, 1);
308 	ret ^= xtweak;
309 
310 	return ret;
311 }
312 
313 static void
314 aesni_crypt_xts_block(int rounds, const __m128i *key_schedule, __m128i *tweak,
315     const uint8_t *from, uint8_t *to, int do_encrypt)
316 {
317 	__m128i block;
318 
319 	block = _mm_loadu_si128((const __m128i *)from) ^ *tweak;
320 
321 	if (do_encrypt)
322 		block = aesni_enc(rounds - 1, key_schedule, block);
323 	else
324 		block = aesni_dec(rounds - 1, key_schedule, block);
325 
326 	_mm_storeu_si128((__m128i *)to, block ^ *tweak);
327 
328 	*tweak = xts_crank_lfsr(*tweak);
329 }
330 
331 static void
332 aesni_crypt_xts_block8(int rounds, const __m128i *key_schedule, __m128i *tweak,
333     const uint8_t *from, uint8_t *to, int do_encrypt)
334 {
335 	__m128i tmptweak;
336 	__m128i a, b, c, d, e, f, g, h;
337 	__m128i tweaks[8];
338 	__m128i tmp[8];
339 	__m128i *top;
340 	const __m128i *fromp;
341 
342 	tmptweak = *tweak;
343 
344 	/*
345 	 * unroll the loop.  This lets gcc put values directly in the
346 	 * register and saves memory accesses.
347 	 */
348 	fromp = (const __m128i *)from;
349 #define PREPINP(v, pos) 					\
350 		do {						\
351 			tweaks[(pos)] = tmptweak;		\
352 			(v) = _mm_loadu_si128(&fromp[pos]) ^	\
353 			    tmptweak;				\
354 			tmptweak = xts_crank_lfsr(tmptweak);	\
355 		} while (0)
356 	PREPINP(a, 0);
357 	PREPINP(b, 1);
358 	PREPINP(c, 2);
359 	PREPINP(d, 3);
360 	PREPINP(e, 4);
361 	PREPINP(f, 5);
362 	PREPINP(g, 6);
363 	PREPINP(h, 7);
364 	*tweak = tmptweak;
365 
366 	if (do_encrypt)
367 		aesni_enc8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
368 		    tmp);
369 	else
370 		aesni_dec8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
371 		    tmp);
372 
373 	top = (__m128i *)to;
374 	_mm_storeu_si128(&top[0], tmp[0] ^ tweaks[0]);
375 	_mm_storeu_si128(&top[1], tmp[1] ^ tweaks[1]);
376 	_mm_storeu_si128(&top[2], tmp[2] ^ tweaks[2]);
377 	_mm_storeu_si128(&top[3], tmp[3] ^ tweaks[3]);
378 	_mm_storeu_si128(&top[4], tmp[4] ^ tweaks[4]);
379 	_mm_storeu_si128(&top[5], tmp[5] ^ tweaks[5]);
380 	_mm_storeu_si128(&top[6], tmp[6] ^ tweaks[6]);
381 	_mm_storeu_si128(&top[7], tmp[7] ^ tweaks[7]);
382 }
383 
384 static void
385 aesni_crypt_xts(int rounds, const __m128i *data_schedule,
386     const __m128i *tweak_schedule, size_t len, const uint8_t *from,
387     uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN], int do_encrypt)
388 {
389 	__m128i tweakreg;
390 	uint8_t tweak[AES_XTS_BLOCKSIZE] __aligned(16);
391 	size_t i, cnt;
392 
393 	/*
394 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
395 	 * of a 64-bit block number which we allow to be passed in directly.
396 	 */
397 #if BYTE_ORDER == LITTLE_ENDIAN
398 	bcopy(iv, tweak, AES_XTS_IVSIZE);
399 	/* Last 64 bits of IV are always zero. */
400 	bzero(tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
401 #else
402 #error Only LITTLE_ENDIAN architectures are supported.
403 #endif
404 	tweakreg = _mm_loadu_si128((__m128i *)&tweak[0]);
405 	tweakreg = aesni_enc(rounds - 1, tweak_schedule, tweakreg);
406 
407 	cnt = len / AES_XTS_BLOCKSIZE / 8;
408 	for (i = 0; i < cnt; i++) {
409 		aesni_crypt_xts_block8(rounds, data_schedule, &tweakreg,
410 		    from, to, do_encrypt);
411 		from += AES_XTS_BLOCKSIZE * 8;
412 		to += AES_XTS_BLOCKSIZE * 8;
413 	}
414 	i *= 8;
415 	cnt = len / AES_XTS_BLOCKSIZE;
416 	for (; i < cnt; i++) {
417 		aesni_crypt_xts_block(rounds, data_schedule, &tweakreg,
418 		    from, to, do_encrypt);
419 		from += AES_XTS_BLOCKSIZE;
420 		to += AES_XTS_BLOCKSIZE;
421 	}
422 }
423 
424 void
425 aesni_encrypt_xts(int rounds, const void *data_schedule,
426     const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
427     const uint8_t iv[static AES_BLOCK_LEN])
428 {
429 
430 	aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
431 	    iv, 1);
432 }
433 
434 void
435 aesni_decrypt_xts(int rounds, const void *data_schedule,
436     const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
437     const uint8_t iv[static AES_BLOCK_LEN])
438 {
439 
440 	aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
441 	    iv, 0);
442 }
443 
444 void
445 aesni_cipher_setup_common(struct aesni_session *ses,
446     const struct crypto_session_params *csp, const uint8_t *key, int keylen)
447 {
448 	int decsched;
449 
450 	decsched = 1;
451 
452 	switch (csp->csp_cipher_alg) {
453 	case CRYPTO_AES_ICM:
454 	case CRYPTO_AES_NIST_GCM_16:
455 	case CRYPTO_AES_CCM_16:
456 		decsched = 0;
457 		break;
458 	}
459 
460 	if (csp->csp_cipher_alg == CRYPTO_AES_XTS)
461 		keylen /= 2;
462 
463 	switch (keylen * 8) {
464 	case 128:
465 		ses->rounds = AES128_ROUNDS;
466 		break;
467 	case 192:
468 		ses->rounds = AES192_ROUNDS;
469 		break;
470 	case 256:
471 		ses->rounds = AES256_ROUNDS;
472 		break;
473 	default:
474 		panic("shouldn't happen");
475 	}
476 
477 	aesni_set_enckey(key, ses->enc_schedule, ses->rounds);
478 	if (decsched)
479 		aesni_set_deckey(ses->enc_schedule, ses->dec_schedule,
480 		    ses->rounds);
481 
482 	if (csp->csp_cipher_alg == CRYPTO_AES_XTS)
483 		aesni_set_enckey(key + keylen, ses->xts_schedule,
484 		    ses->rounds);
485 }
486