1 /* 2 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /*-************************************** 13 * Tuning parameters 14 ****************************************/ 15 #define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */ 16 #define ZDICT_MAX_SAMPLES_SIZE (2000U << 20) 17 #define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO) 18 19 20 /*-************************************** 21 * Compiler Options 22 ****************************************/ 23 /* Unix Large Files support (>4GB) */ 24 #define _FILE_OFFSET_BITS 64 25 #if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */ 26 # define _LARGEFILE_SOURCE 27 #elif ! defined(__LP64__) /* No point defining Large file for 64 bit */ 28 # define _LARGEFILE64_SOURCE 29 #endif 30 31 32 /*-************************************* 33 * Dependencies 34 ***************************************/ 35 #include <stdlib.h> /* malloc, free */ 36 #include <string.h> /* memset */ 37 #include <stdio.h> /* fprintf, fopen, ftello64 */ 38 #include <time.h> /* clock */ 39 40 #include "../common/mem.h" /* read */ 41 #include "../common/fse.h" /* FSE_normalizeCount, FSE_writeNCount */ 42 #define HUF_STATIC_LINKING_ONLY 43 #include "../common/huf.h" /* HUF_buildCTable, HUF_writeCTable */ 44 #include "../common/zstd_internal.h" /* includes zstd.h */ 45 #include "../common/xxhash.h" /* XXH64 */ 46 #include "divsufsort.h" 47 #ifndef ZDICT_STATIC_LINKING_ONLY 48 # define ZDICT_STATIC_LINKING_ONLY 49 #endif 50 #include "zdict.h" 51 #include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */ 52 53 54 /*-************************************* 55 * Constants 56 ***************************************/ 57 #define KB *(1 <<10) 58 #define MB *(1 <<20) 59 #define GB *(1U<<30) 60 61 #define DICTLISTSIZE_DEFAULT 10000 62 63 #define NOISELENGTH 32 64 65 static const int g_compressionLevel_default = 3; 66 static const U32 g_selectivity_default = 9; 67 68 69 /*-************************************* 70 * Console display 71 ***************************************/ 72 #define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); } 73 #define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ 74 75 static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; } 76 77 static void ZDICT_printHex(const void* ptr, size_t length) 78 { 79 const BYTE* const b = (const BYTE*)ptr; 80 size_t u; 81 for (u=0; u<length; u++) { 82 BYTE c = b[u]; 83 if (c<32 || c>126) c = '.'; /* non-printable char */ 84 DISPLAY("%c", c); 85 } 86 } 87 88 89 /*-******************************************************** 90 * Helper functions 91 **********************************************************/ 92 unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); } 93 94 const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } 95 96 unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize) 97 { 98 if (dictSize < 8) return 0; 99 if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0; 100 return MEM_readLE32((const char*)dictBuffer + 4); 101 } 102 103 size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize) 104 { 105 size_t headerSize; 106 if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted); 107 108 { unsigned offcodeMaxValue = MaxOff; 109 ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t)); 110 U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE); 111 short* offcodeNCount = (short*)malloc((MaxOff+1)*sizeof(short)); 112 if (!bs || !wksp || !offcodeNCount) { 113 headerSize = ERROR(memory_allocation); 114 } else { 115 ZSTD_reset_compressedBlockState(bs); 116 headerSize = ZSTD_loadCEntropy(bs, wksp, offcodeNCount, &offcodeMaxValue, dictBuffer, dictSize); 117 } 118 119 free(bs); 120 free(wksp); 121 free(offcodeNCount); 122 } 123 124 return headerSize; 125 } 126 127 /*-******************************************************** 128 * Dictionary training functions 129 **********************************************************/ 130 static unsigned ZDICT_NbCommonBytes (size_t val) 131 { 132 if (MEM_isLittleEndian()) { 133 if (MEM_64bits()) { 134 # if defined(_MSC_VER) && defined(_WIN64) 135 unsigned long r = 0; 136 _BitScanForward64( &r, (U64)val ); 137 return (unsigned)(r>>3); 138 # elif defined(__GNUC__) && (__GNUC__ >= 3) 139 return (__builtin_ctzll((U64)val) >> 3); 140 # else 141 static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 }; 142 return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; 143 # endif 144 } else { /* 32 bits */ 145 # if defined(_MSC_VER) 146 unsigned long r=0; 147 _BitScanForward( &r, (U32)val ); 148 return (unsigned)(r>>3); 149 # elif defined(__GNUC__) && (__GNUC__ >= 3) 150 return (__builtin_ctz((U32)val) >> 3); 151 # else 152 static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 }; 153 return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; 154 # endif 155 } 156 } else { /* Big Endian CPU */ 157 if (MEM_64bits()) { 158 # if defined(_MSC_VER) && defined(_WIN64) 159 unsigned long r = 0; 160 _BitScanReverse64( &r, val ); 161 return (unsigned)(r>>3); 162 # elif defined(__GNUC__) && (__GNUC__ >= 3) 163 return (__builtin_clzll(val) >> 3); 164 # else 165 unsigned r; 166 const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ 167 if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } 168 if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } 169 r += (!val); 170 return r; 171 # endif 172 } else { /* 32 bits */ 173 # if defined(_MSC_VER) 174 unsigned long r = 0; 175 _BitScanReverse( &r, (unsigned long)val ); 176 return (unsigned)(r>>3); 177 # elif defined(__GNUC__) && (__GNUC__ >= 3) 178 return (__builtin_clz((U32)val) >> 3); 179 # else 180 unsigned r; 181 if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } 182 r += (!val); 183 return r; 184 # endif 185 } } 186 } 187 188 189 /*! ZDICT_count() : 190 Count the nb of common bytes between 2 pointers. 191 Note : this function presumes end of buffer followed by noisy guard band. 192 */ 193 static size_t ZDICT_count(const void* pIn, const void* pMatch) 194 { 195 const char* const pStart = (const char*)pIn; 196 for (;;) { 197 size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); 198 if (!diff) { 199 pIn = (const char*)pIn+sizeof(size_t); 200 pMatch = (const char*)pMatch+sizeof(size_t); 201 continue; 202 } 203 pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff); 204 return (size_t)((const char*)pIn - pStart); 205 } 206 } 207 208 209 typedef struct { 210 U32 pos; 211 U32 length; 212 U32 savings; 213 } dictItem; 214 215 static void ZDICT_initDictItem(dictItem* d) 216 { 217 d->pos = 1; 218 d->length = 0; 219 d->savings = (U32)(-1); 220 } 221 222 223 #define LLIMIT 64 /* heuristic determined experimentally */ 224 #define MINMATCHLENGTH 7 /* heuristic determined experimentally */ 225 static dictItem ZDICT_analyzePos( 226 BYTE* doneMarks, 227 const int* suffix, U32 start, 228 const void* buffer, U32 minRatio, U32 notificationLevel) 229 { 230 U32 lengthList[LLIMIT] = {0}; 231 U32 cumulLength[LLIMIT] = {0}; 232 U32 savings[LLIMIT] = {0}; 233 const BYTE* b = (const BYTE*)buffer; 234 size_t maxLength = LLIMIT; 235 size_t pos = suffix[start]; 236 U32 end = start; 237 dictItem solution; 238 239 /* init */ 240 memset(&solution, 0, sizeof(solution)); 241 doneMarks[pos] = 1; 242 243 /* trivial repetition cases */ 244 if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2)) 245 ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3)) 246 ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) { 247 /* skip and mark segment */ 248 U16 const pattern16 = MEM_read16(b+pos+4); 249 U32 u, patternEnd = 6; 250 while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ; 251 if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++; 252 for (u=1; u<patternEnd; u++) 253 doneMarks[pos+u] = 1; 254 return solution; 255 } 256 257 /* look forward */ 258 { size_t length; 259 do { 260 end++; 261 length = ZDICT_count(b + pos, b + suffix[end]); 262 } while (length >= MINMATCHLENGTH); 263 } 264 265 /* look backward */ 266 { size_t length; 267 do { 268 length = ZDICT_count(b + pos, b + *(suffix+start-1)); 269 if (length >=MINMATCHLENGTH) start--; 270 } while(length >= MINMATCHLENGTH); 271 } 272 273 /* exit if not found a minimum nb of repetitions */ 274 if (end-start < minRatio) { 275 U32 idx; 276 for(idx=start; idx<end; idx++) 277 doneMarks[suffix[idx]] = 1; 278 return solution; 279 } 280 281 { int i; 282 U32 mml; 283 U32 refinedStart = start; 284 U32 refinedEnd = end; 285 286 DISPLAYLEVEL(4, "\n"); 287 DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos); 288 DISPLAYLEVEL(4, "\n"); 289 290 for (mml = MINMATCHLENGTH ; ; mml++) { 291 BYTE currentChar = 0; 292 U32 currentCount = 0; 293 U32 currentID = refinedStart; 294 U32 id; 295 U32 selectedCount = 0; 296 U32 selectedID = currentID; 297 for (id =refinedStart; id < refinedEnd; id++) { 298 if (b[suffix[id] + mml] != currentChar) { 299 if (currentCount > selectedCount) { 300 selectedCount = currentCount; 301 selectedID = currentID; 302 } 303 currentID = id; 304 currentChar = b[ suffix[id] + mml]; 305 currentCount = 0; 306 } 307 currentCount ++; 308 } 309 if (currentCount > selectedCount) { /* for last */ 310 selectedCount = currentCount; 311 selectedID = currentID; 312 } 313 314 if (selectedCount < minRatio) 315 break; 316 refinedStart = selectedID; 317 refinedEnd = refinedStart + selectedCount; 318 } 319 320 /* evaluate gain based on new dict */ 321 start = refinedStart; 322 pos = suffix[refinedStart]; 323 end = start; 324 memset(lengthList, 0, sizeof(lengthList)); 325 326 /* look forward */ 327 { size_t length; 328 do { 329 end++; 330 length = ZDICT_count(b + pos, b + suffix[end]); 331 if (length >= LLIMIT) length = LLIMIT-1; 332 lengthList[length]++; 333 } while (length >=MINMATCHLENGTH); 334 } 335 336 /* look backward */ 337 { size_t length = MINMATCHLENGTH; 338 while ((length >= MINMATCHLENGTH) & (start > 0)) { 339 length = ZDICT_count(b + pos, b + suffix[start - 1]); 340 if (length >= LLIMIT) length = LLIMIT - 1; 341 lengthList[length]++; 342 if (length >= MINMATCHLENGTH) start--; 343 } 344 } 345 346 /* largest useful length */ 347 memset(cumulLength, 0, sizeof(cumulLength)); 348 cumulLength[maxLength-1] = lengthList[maxLength-1]; 349 for (i=(int)(maxLength-2); i>=0; i--) 350 cumulLength[i] = cumulLength[i+1] + lengthList[i]; 351 352 for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break; 353 maxLength = i; 354 355 /* reduce maxLength in case of final into repetitive data */ 356 { U32 l = (U32)maxLength; 357 BYTE const c = b[pos + maxLength-1]; 358 while (b[pos+l-2]==c) l--; 359 maxLength = l; 360 } 361 if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */ 362 363 /* calculate savings */ 364 savings[5] = 0; 365 for (i=MINMATCHLENGTH; i<=(int)maxLength; i++) 366 savings[i] = savings[i-1] + (lengthList[i] * (i-3)); 367 368 DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f) \n", 369 (unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / maxLength); 370 371 solution.pos = (U32)pos; 372 solution.length = (U32)maxLength; 373 solution.savings = savings[maxLength]; 374 375 /* mark positions done */ 376 { U32 id; 377 for (id=start; id<end; id++) { 378 U32 p, pEnd, length; 379 U32 const testedPos = suffix[id]; 380 if (testedPos == pos) 381 length = solution.length; 382 else { 383 length = (U32)ZDICT_count(b+pos, b+testedPos); 384 if (length > solution.length) length = solution.length; 385 } 386 pEnd = (U32)(testedPos + length); 387 for (p=testedPos; p<pEnd; p++) 388 doneMarks[p] = 1; 389 } } } 390 391 return solution; 392 } 393 394 395 static int isIncluded(const void* in, const void* container, size_t length) 396 { 397 const char* const ip = (const char*) in; 398 const char* const into = (const char*) container; 399 size_t u; 400 401 for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */ 402 if (ip[u] != into[u]) break; 403 } 404 405 return u==length; 406 } 407 408 /*! ZDICT_tryMerge() : 409 check if dictItem can be merged, do it if possible 410 @return : id of destination elt, 0 if not merged 411 */ 412 static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer) 413 { 414 const U32 tableSize = table->pos; 415 const U32 eltEnd = elt.pos + elt.length; 416 const char* const buf = (const char*) buffer; 417 418 /* tail overlap */ 419 U32 u; for (u=1; u<tableSize; u++) { 420 if (u==eltNbToSkip) continue; 421 if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */ 422 /* append */ 423 U32 const addedLength = table[u].pos - elt.pos; 424 table[u].length += addedLength; 425 table[u].pos = elt.pos; 426 table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ 427 table[u].savings += elt.length / 8; /* rough approx bonus */ 428 elt = table[u]; 429 /* sort : improve rank */ 430 while ((u>1) && (table[u-1].savings < elt.savings)) 431 table[u] = table[u-1], u--; 432 table[u] = elt; 433 return u; 434 } } 435 436 /* front overlap */ 437 for (u=1; u<tableSize; u++) { 438 if (u==eltNbToSkip) continue; 439 440 if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */ 441 /* append */ 442 int const addedLength = (int)eltEnd - (table[u].pos + table[u].length); 443 table[u].savings += elt.length / 8; /* rough approx bonus */ 444 if (addedLength > 0) { /* otherwise, elt fully included into existing */ 445 table[u].length += addedLength; 446 table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ 447 } 448 /* sort : improve rank */ 449 elt = table[u]; 450 while ((u>1) && (table[u-1].savings < elt.savings)) 451 table[u] = table[u-1], u--; 452 table[u] = elt; 453 return u; 454 } 455 456 if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) { 457 if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) { 458 size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 ); 459 table[u].pos = elt.pos; 460 table[u].savings += (U32)(elt.savings * addedLength / elt.length); 461 table[u].length = MIN(elt.length, table[u].length + 1); 462 return u; 463 } 464 } 465 } 466 467 return 0; 468 } 469 470 471 static void ZDICT_removeDictItem(dictItem* table, U32 id) 472 { 473 /* convention : table[0].pos stores nb of elts */ 474 U32 const max = table[0].pos; 475 U32 u; 476 if (!id) return; /* protection, should never happen */ 477 for (u=id; u<max-1; u++) 478 table[u] = table[u+1]; 479 table->pos--; 480 } 481 482 483 static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer) 484 { 485 /* merge if possible */ 486 U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer); 487 if (mergeId) { 488 U32 newMerge = 1; 489 while (newMerge) { 490 newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer); 491 if (newMerge) ZDICT_removeDictItem(table, mergeId); 492 mergeId = newMerge; 493 } 494 return; 495 } 496 497 /* insert */ 498 { U32 current; 499 U32 nextElt = table->pos; 500 if (nextElt >= maxSize) nextElt = maxSize-1; 501 current = nextElt-1; 502 while (table[current].savings < elt.savings) { 503 table[current+1] = table[current]; 504 current--; 505 } 506 table[current+1] = elt; 507 table->pos = nextElt+1; 508 } 509 } 510 511 512 static U32 ZDICT_dictSize(const dictItem* dictList) 513 { 514 U32 u, dictSize = 0; 515 for (u=1; u<dictList[0].pos; u++) 516 dictSize += dictList[u].length; 517 return dictSize; 518 } 519 520 521 static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize, 522 const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */ 523 const size_t* fileSizes, unsigned nbFiles, 524 unsigned minRatio, U32 notificationLevel) 525 { 526 int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0)); 527 int* const suffix = suffix0+1; 528 U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix)); 529 BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */ 530 U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos)); 531 size_t result = 0; 532 clock_t displayClock = 0; 533 clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10; 534 535 # define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \ 536 if (ZDICT_clockSpan(displayClock) > refreshRate) \ 537 { displayClock = clock(); DISPLAY(__VA_ARGS__); \ 538 if (notificationLevel>=4) fflush(stderr); } } 539 540 /* init */ 541 DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ 542 if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) { 543 result = ERROR(memory_allocation); 544 goto _cleanup; 545 } 546 if (minRatio < MINRATIO) minRatio = MINRATIO; 547 memset(doneMarks, 0, bufferSize+16); 548 549 /* limit sample set size (divsufsort limitation)*/ 550 if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20)); 551 while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles]; 552 553 /* sort */ 554 DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20)); 555 { int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0); 556 if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; } 557 } 558 suffix[bufferSize] = (int)bufferSize; /* leads into noise */ 559 suffix0[0] = (int)bufferSize; /* leads into noise */ 560 /* build reverse suffix sort */ 561 { size_t pos; 562 for (pos=0; pos < bufferSize; pos++) 563 reverseSuffix[suffix[pos]] = (U32)pos; 564 /* note filePos tracks borders between samples. 565 It's not used at this stage, but planned to become useful in a later update */ 566 filePos[0] = 0; 567 for (pos=1; pos<nbFiles; pos++) 568 filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]); 569 } 570 571 DISPLAYLEVEL(2, "finding patterns ... \n"); 572 DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio); 573 574 { U32 cursor; for (cursor=0; cursor < bufferSize; ) { 575 dictItem solution; 576 if (doneMarks[cursor]) { cursor++; continue; } 577 solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel); 578 if (solution.length==0) { cursor++; continue; } 579 ZDICT_insertDictItem(dictList, dictListSize, solution, buffer); 580 cursor += solution.length; 581 DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100); 582 } } 583 584 _cleanup: 585 free(suffix0); 586 free(reverseSuffix); 587 free(doneMarks); 588 free(filePos); 589 return result; 590 } 591 592 593 static void ZDICT_fillNoise(void* buffer, size_t length) 594 { 595 unsigned const prime1 = 2654435761U; 596 unsigned const prime2 = 2246822519U; 597 unsigned acc = prime1; 598 size_t p=0; 599 for (p=0; p<length; p++) { 600 acc *= prime2; 601 ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21); 602 } 603 } 604 605 606 typedef struct 607 { 608 ZSTD_CDict* dict; /* dictionary */ 609 ZSTD_CCtx* zc; /* working context */ 610 void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */ 611 } EStats_ress_t; 612 613 #define MAXREPOFFSET 1024 614 615 static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params, 616 unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets, 617 const void* src, size_t srcSize, 618 U32 notificationLevel) 619 { 620 size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog); 621 size_t cSize; 622 623 if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */ 624 { size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict); 625 if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; } 626 627 } 628 cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize); 629 if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; } 630 631 if (cSize) { /* if == 0; block is not compressible */ 632 const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc); 633 634 /* literals stats */ 635 { const BYTE* bytePtr; 636 for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++) 637 countLit[*bytePtr]++; 638 } 639 640 /* seqStats */ 641 { U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); 642 ZSTD_seqToCodes(seqStorePtr); 643 644 { const BYTE* codePtr = seqStorePtr->ofCode; 645 U32 u; 646 for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++; 647 } 648 649 { const BYTE* codePtr = seqStorePtr->mlCode; 650 U32 u; 651 for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++; 652 } 653 654 { const BYTE* codePtr = seqStorePtr->llCode; 655 U32 u; 656 for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++; 657 } 658 659 if (nbSeq >= 2) { /* rep offsets */ 660 const seqDef* const seq = seqStorePtr->sequencesStart; 661 U32 offset1 = seq[0].offset - 3; 662 U32 offset2 = seq[1].offset - 3; 663 if (offset1 >= MAXREPOFFSET) offset1 = 0; 664 if (offset2 >= MAXREPOFFSET) offset2 = 0; 665 repOffsets[offset1] += 3; 666 repOffsets[offset2] += 1; 667 } } } 668 } 669 670 static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles) 671 { 672 size_t total=0; 673 unsigned u; 674 for (u=0; u<nbFiles; u++) total += fileSizes[u]; 675 return total; 676 } 677 678 typedef struct { U32 offset; U32 count; } offsetCount_t; 679 680 static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count) 681 { 682 U32 u; 683 table[ZSTD_REP_NUM].offset = val; 684 table[ZSTD_REP_NUM].count = count; 685 for (u=ZSTD_REP_NUM; u>0; u--) { 686 offsetCount_t tmp; 687 if (table[u-1].count >= table[u].count) break; 688 tmp = table[u-1]; 689 table[u-1] = table[u]; 690 table[u] = tmp; 691 } 692 } 693 694 /* ZDICT_flatLit() : 695 * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals. 696 * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode. 697 */ 698 static void ZDICT_flatLit(unsigned* countLit) 699 { 700 int u; 701 for (u=1; u<256; u++) countLit[u] = 2; 702 countLit[0] = 4; 703 countLit[253] = 1; 704 countLit[254] = 1; 705 } 706 707 #define OFFCODE_MAX 30 /* only applicable to first block */ 708 static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize, 709 unsigned compressionLevel, 710 const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles, 711 const void* dictBuffer, size_t dictBufferSize, 712 unsigned notificationLevel) 713 { 714 unsigned countLit[256]; 715 HUF_CREATE_STATIC_CTABLE(hufTable, 255); 716 unsigned offcodeCount[OFFCODE_MAX+1]; 717 short offcodeNCount[OFFCODE_MAX+1]; 718 U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB)); 719 unsigned matchLengthCount[MaxML+1]; 720 short matchLengthNCount[MaxML+1]; 721 unsigned litLengthCount[MaxLL+1]; 722 short litLengthNCount[MaxLL+1]; 723 U32 repOffset[MAXREPOFFSET]; 724 offsetCount_t bestRepOffset[ZSTD_REP_NUM+1]; 725 EStats_ress_t esr = { NULL, NULL, NULL }; 726 ZSTD_parameters params; 727 U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total; 728 size_t pos = 0, errorCode; 729 size_t eSize = 0; 730 size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles); 731 size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles); 732 BYTE* dstPtr = (BYTE*)dstBuffer; 733 734 /* init */ 735 DEBUGLOG(4, "ZDICT_analyzeEntropy"); 736 if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */ 737 for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */ 738 for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1; 739 for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1; 740 for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1; 741 memset(repOffset, 0, sizeof(repOffset)); 742 repOffset[1] = repOffset[4] = repOffset[8] = 1; 743 memset(bestRepOffset, 0, sizeof(bestRepOffset)); 744 if (compressionLevel==0) compressionLevel = g_compressionLevel_default; 745 params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize); 746 747 esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem); 748 esr.zc = ZSTD_createCCtx(); 749 esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX); 750 if (!esr.dict || !esr.zc || !esr.workPlace) { 751 eSize = ERROR(memory_allocation); 752 DISPLAYLEVEL(1, "Not enough memory \n"); 753 goto _cleanup; 754 } 755 756 /* collect stats on all samples */ 757 for (u=0; u<nbFiles; u++) { 758 ZDICT_countEStats(esr, ¶ms, 759 countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset, 760 (const char*)srcBuffer + pos, fileSizes[u], 761 notificationLevel); 762 pos += fileSizes[u]; 763 } 764 765 /* analyze, build stats, starting with literals */ 766 { size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog); 767 if (HUF_isError(maxNbBits)) { 768 eSize = maxNbBits; 769 DISPLAYLEVEL(1, " HUF_buildCTable error \n"); 770 goto _cleanup; 771 } 772 if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */ 773 DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n"); 774 ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */ 775 maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog); 776 assert(maxNbBits==9); 777 } 778 huffLog = (U32)maxNbBits; 779 } 780 781 /* looking for most common first offsets */ 782 { U32 offset; 783 for (offset=1; offset<MAXREPOFFSET; offset++) 784 ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]); 785 } 786 /* note : the result of this phase should be used to better appreciate the impact on statistics */ 787 788 total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u]; 789 errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax); 790 if (FSE_isError(errorCode)) { 791 eSize = errorCode; 792 DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n"); 793 goto _cleanup; 794 } 795 Offlog = (U32)errorCode; 796 797 total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u]; 798 errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML); 799 if (FSE_isError(errorCode)) { 800 eSize = errorCode; 801 DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n"); 802 goto _cleanup; 803 } 804 mlLog = (U32)errorCode; 805 806 total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u]; 807 errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL); 808 if (FSE_isError(errorCode)) { 809 eSize = errorCode; 810 DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n"); 811 goto _cleanup; 812 } 813 llLog = (U32)errorCode; 814 815 /* write result to buffer */ 816 { size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog); 817 if (HUF_isError(hhSize)) { 818 eSize = hhSize; 819 DISPLAYLEVEL(1, "HUF_writeCTable error \n"); 820 goto _cleanup; 821 } 822 dstPtr += hhSize; 823 maxDstSize -= hhSize; 824 eSize += hhSize; 825 } 826 827 { size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog); 828 if (FSE_isError(ohSize)) { 829 eSize = ohSize; 830 DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n"); 831 goto _cleanup; 832 } 833 dstPtr += ohSize; 834 maxDstSize -= ohSize; 835 eSize += ohSize; 836 } 837 838 { size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog); 839 if (FSE_isError(mhSize)) { 840 eSize = mhSize; 841 DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n"); 842 goto _cleanup; 843 } 844 dstPtr += mhSize; 845 maxDstSize -= mhSize; 846 eSize += mhSize; 847 } 848 849 { size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog); 850 if (FSE_isError(lhSize)) { 851 eSize = lhSize; 852 DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n"); 853 goto _cleanup; 854 } 855 dstPtr += lhSize; 856 maxDstSize -= lhSize; 857 eSize += lhSize; 858 } 859 860 if (maxDstSize<12) { 861 eSize = ERROR(dstSize_tooSmall); 862 DISPLAYLEVEL(1, "not enough space to write RepOffsets \n"); 863 goto _cleanup; 864 } 865 # if 0 866 MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset); 867 MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset); 868 MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset); 869 #else 870 /* at this stage, we don't use the result of "most common first offset", 871 as the impact of statistics is not properly evaluated */ 872 MEM_writeLE32(dstPtr+0, repStartValue[0]); 873 MEM_writeLE32(dstPtr+4, repStartValue[1]); 874 MEM_writeLE32(dstPtr+8, repStartValue[2]); 875 #endif 876 eSize += 12; 877 878 _cleanup: 879 ZSTD_freeCDict(esr.dict); 880 ZSTD_freeCCtx(esr.zc); 881 free(esr.workPlace); 882 883 return eSize; 884 } 885 886 887 888 size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity, 889 const void* customDictContent, size_t dictContentSize, 890 const void* samplesBuffer, const size_t* samplesSizes, 891 unsigned nbSamples, ZDICT_params_t params) 892 { 893 size_t hSize; 894 #define HBUFFSIZE 256 /* should prove large enough for all entropy headers */ 895 BYTE header[HBUFFSIZE]; 896 int const compressionLevel = (params.compressionLevel == 0) ? g_compressionLevel_default : params.compressionLevel; 897 U32 const notificationLevel = params.notificationLevel; 898 899 /* check conditions */ 900 DEBUGLOG(4, "ZDICT_finalizeDictionary"); 901 if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall); 902 if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong); 903 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall); 904 905 /* dictionary header */ 906 MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY); 907 { U64 const randomID = XXH64(customDictContent, dictContentSize, 0); 908 U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; 909 U32 const dictID = params.dictID ? params.dictID : compliantID; 910 MEM_writeLE32(header+4, dictID); 911 } 912 hSize = 8; 913 914 /* entropy tables */ 915 DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ 916 DISPLAYLEVEL(2, "statistics ... \n"); 917 { size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize, 918 compressionLevel, 919 samplesBuffer, samplesSizes, nbSamples, 920 customDictContent, dictContentSize, 921 notificationLevel); 922 if (ZDICT_isError(eSize)) return eSize; 923 hSize += eSize; 924 } 925 926 /* copy elements in final buffer ; note : src and dst buffer can overlap */ 927 if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize; 928 { size_t const dictSize = hSize + dictContentSize; 929 char* dictEnd = (char*)dictBuffer + dictSize; 930 memmove(dictEnd - dictContentSize, customDictContent, dictContentSize); 931 memcpy(dictBuffer, header, hSize); 932 return dictSize; 933 } 934 } 935 936 937 static size_t ZDICT_addEntropyTablesFromBuffer_advanced( 938 void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, 939 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, 940 ZDICT_params_t params) 941 { 942 int const compressionLevel = (params.compressionLevel == 0) ? g_compressionLevel_default : params.compressionLevel; 943 U32 const notificationLevel = params.notificationLevel; 944 size_t hSize = 8; 945 946 /* calculate entropy tables */ 947 DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ 948 DISPLAYLEVEL(2, "statistics ... \n"); 949 { size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize, 950 compressionLevel, 951 samplesBuffer, samplesSizes, nbSamples, 952 (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 953 notificationLevel); 954 if (ZDICT_isError(eSize)) return eSize; 955 hSize += eSize; 956 } 957 958 /* add dictionary header (after entropy tables) */ 959 MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY); 960 { U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0); 961 U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; 962 U32 const dictID = params.dictID ? params.dictID : compliantID; 963 MEM_writeLE32((char*)dictBuffer+4, dictID); 964 } 965 966 if (hSize + dictContentSize < dictBufferCapacity) 967 memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize); 968 return MIN(dictBufferCapacity, hSize+dictContentSize); 969 } 970 971 /* Hidden declaration for dbio.c */ 972 size_t ZDICT_trainFromBuffer_unsafe_legacy( 973 void* dictBuffer, size_t maxDictSize, 974 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, 975 ZDICT_legacy_params_t params); 976 /*! ZDICT_trainFromBuffer_unsafe_legacy() : 977 * Warning : `samplesBuffer` must be followed by noisy guard band. 978 * @return : size of dictionary, or an error code which can be tested with ZDICT_isError() 979 */ 980 size_t ZDICT_trainFromBuffer_unsafe_legacy( 981 void* dictBuffer, size_t maxDictSize, 982 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, 983 ZDICT_legacy_params_t params) 984 { 985 U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16)); 986 dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList)); 987 unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel; 988 unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity; 989 size_t const targetDictSize = maxDictSize; 990 size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); 991 size_t dictSize = 0; 992 U32 const notificationLevel = params.zParams.notificationLevel; 993 994 /* checks */ 995 if (!dictList) return ERROR(memory_allocation); 996 if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */ 997 if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */ 998 999 /* init */ 1000 ZDICT_initDictItem(dictList); 1001 1002 /* build dictionary */ 1003 ZDICT_trainBuffer_legacy(dictList, dictListSize, 1004 samplesBuffer, samplesBuffSize, 1005 samplesSizes, nbSamples, 1006 minRep, notificationLevel); 1007 1008 /* display best matches */ 1009 if (params.zParams.notificationLevel>= 3) { 1010 unsigned const nb = MIN(25, dictList[0].pos); 1011 unsigned const dictContentSize = ZDICT_dictSize(dictList); 1012 unsigned u; 1013 DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize); 1014 DISPLAYLEVEL(3, "list %u best segments \n", nb-1); 1015 for (u=1; u<nb; u++) { 1016 unsigned const pos = dictList[u].pos; 1017 unsigned const length = dictList[u].length; 1018 U32 const printedLength = MIN(40, length); 1019 if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) { 1020 free(dictList); 1021 return ERROR(GENERIC); /* should never happen */ 1022 } 1023 DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |", 1024 u, length, pos, (unsigned)dictList[u].savings); 1025 ZDICT_printHex((const char*)samplesBuffer+pos, printedLength); 1026 DISPLAYLEVEL(3, "| \n"); 1027 } } 1028 1029 1030 /* create dictionary */ 1031 { unsigned dictContentSize = ZDICT_dictSize(dictList); 1032 if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */ 1033 if (dictContentSize < targetDictSize/4) { 1034 DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize); 1035 if (samplesBuffSize < 10 * targetDictSize) 1036 DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20)); 1037 if (minRep > MINRATIO) { 1038 DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1); 1039 DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n"); 1040 } 1041 } 1042 1043 if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) { 1044 unsigned proposedSelectivity = selectivity-1; 1045 while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; } 1046 DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize); 1047 DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity); 1048 DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n"); 1049 } 1050 1051 /* limit dictionary size */ 1052 { U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */ 1053 U32 currentSize = 0; 1054 U32 n; for (n=1; n<max; n++) { 1055 currentSize += dictList[n].length; 1056 if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; } 1057 } 1058 dictList->pos = n; 1059 dictContentSize = currentSize; 1060 } 1061 1062 /* build dict content */ 1063 { U32 u; 1064 BYTE* ptr = (BYTE*)dictBuffer + maxDictSize; 1065 for (u=1; u<dictList->pos; u++) { 1066 U32 l = dictList[u].length; 1067 ptr -= l; 1068 if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */ 1069 memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l); 1070 } } 1071 1072 dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize, 1073 samplesBuffer, samplesSizes, nbSamples, 1074 params.zParams); 1075 } 1076 1077 /* clean up */ 1078 free(dictList); 1079 return dictSize; 1080 } 1081 1082 1083 /* ZDICT_trainFromBuffer_legacy() : 1084 * issue : samplesBuffer need to be followed by a noisy guard band. 1085 * work around : duplicate the buffer, and add the noise */ 1086 size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity, 1087 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, 1088 ZDICT_legacy_params_t params) 1089 { 1090 size_t result; 1091 void* newBuff; 1092 size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); 1093 if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */ 1094 1095 newBuff = malloc(sBuffSize + NOISELENGTH); 1096 if (!newBuff) return ERROR(memory_allocation); 1097 1098 memcpy(newBuff, samplesBuffer, sBuffSize); 1099 ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */ 1100 1101 result = 1102 ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff, 1103 samplesSizes, nbSamples, params); 1104 free(newBuff); 1105 return result; 1106 } 1107 1108 1109 size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity, 1110 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) 1111 { 1112 ZDICT_fastCover_params_t params; 1113 DEBUGLOG(3, "ZDICT_trainFromBuffer"); 1114 memset(¶ms, 0, sizeof(params)); 1115 params.d = 8; 1116 params.steps = 4; 1117 /* Default to level 6 since no compression level information is available */ 1118 params.zParams.compressionLevel = 3; 1119 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1) 1120 params.zParams.notificationLevel = DEBUGLEVEL; 1121 #endif 1122 return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity, 1123 samplesBuffer, samplesSizes, nbSamples, 1124 ¶ms); 1125 } 1126 1127 size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, 1128 const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) 1129 { 1130 ZDICT_params_t params; 1131 memset(¶ms, 0, sizeof(params)); 1132 return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity, 1133 samplesBuffer, samplesSizes, nbSamples, 1134 params); 1135 } 1136