1 /* 2 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Compiler specifics ====== */ 13 #if defined(_MSC_VER) 14 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 15 #endif 16 17 18 /* ====== Constants ====== */ 19 #define ZSTDMT_OVERLAPLOG_DEFAULT 0 20 21 22 /* ====== Dependencies ====== */ 23 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */ 24 #include "../common/mem.h" /* MEM_STATIC */ 25 #include "../common/pool.h" /* threadpool */ 26 #include "../common/threading.h" /* mutex */ 27 #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ 28 #include "zstd_ldm.h" 29 #include "zstdmt_compress.h" 30 31 /* Guards code to support resizing the SeqPool. 32 * We will want to resize the SeqPool to save memory in the future. 33 * Until then, comment the code out since it is unused. 34 */ 35 #define ZSTD_RESIZE_SEQPOOL 0 36 37 /* ====== Debug ====== */ 38 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ 39 && !defined(_MSC_VER) \ 40 && !defined(__MINGW32__) 41 42 # include <stdio.h> 43 # include <unistd.h> 44 # include <sys/times.h> 45 46 # define DEBUG_PRINTHEX(l,p,n) { \ 47 unsigned debug_u; \ 48 for (debug_u=0; debug_u<(n); debug_u++) \ 49 RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ 50 RAWLOG(l, " \n"); \ 51 } 52 53 static unsigned long long GetCurrentClockTimeMicroseconds(void) 54 { 55 static clock_t _ticksPerSecond = 0; 56 if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); 57 58 { struct tms junk; clock_t newTicks = (clock_t) times(&junk); 59 return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); 60 } } 61 62 #define MUTEX_WAIT_TIME_DLEVEL 6 63 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ 64 if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ 65 unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ 66 ZSTD_pthread_mutex_lock(mutex); \ 67 { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ 68 unsigned long long const elapsedTime = (afterTime-beforeTime); \ 69 if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ 70 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ 71 elapsedTime, #mutex); \ 72 } } \ 73 } else { \ 74 ZSTD_pthread_mutex_lock(mutex); \ 75 } \ 76 } 77 78 #else 79 80 # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) 81 # define DEBUG_PRINTHEX(l,p,n) {} 82 83 #endif 84 85 86 /* ===== Buffer Pool ===== */ 87 /* a single Buffer Pool can be invoked from multiple threads in parallel */ 88 89 typedef struct buffer_s { 90 void* start; 91 size_t capacity; 92 } buffer_t; 93 94 static const buffer_t g_nullBuffer = { NULL, 0 }; 95 96 typedef struct ZSTDMT_bufferPool_s { 97 ZSTD_pthread_mutex_t poolMutex; 98 size_t bufferSize; 99 unsigned totalBuffers; 100 unsigned nbBuffers; 101 ZSTD_customMem cMem; 102 buffer_t bTable[1]; /* variable size */ 103 } ZSTDMT_bufferPool; 104 105 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem) 106 { 107 unsigned const maxNbBuffers = 2*nbWorkers + 3; 108 ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc( 109 sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); 110 if (bufPool==NULL) return NULL; 111 if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { 112 ZSTD_customFree(bufPool, cMem); 113 return NULL; 114 } 115 bufPool->bufferSize = 64 KB; 116 bufPool->totalBuffers = maxNbBuffers; 117 bufPool->nbBuffers = 0; 118 bufPool->cMem = cMem; 119 return bufPool; 120 } 121 122 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) 123 { 124 unsigned u; 125 DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); 126 if (!bufPool) return; /* compatibility with free on NULL */ 127 for (u=0; u<bufPool->totalBuffers; u++) { 128 DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start); 129 ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem); 130 } 131 ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); 132 ZSTD_customFree(bufPool, bufPool->cMem); 133 } 134 135 /* only works at initialization, not during compression */ 136 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) 137 { 138 size_t const poolSize = sizeof(*bufPool) 139 + (bufPool->totalBuffers - 1) * sizeof(buffer_t); 140 unsigned u; 141 size_t totalBufferSize = 0; 142 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 143 for (u=0; u<bufPool->totalBuffers; u++) 144 totalBufferSize += bufPool->bTable[u].capacity; 145 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 146 147 return poolSize + totalBufferSize; 148 } 149 150 /* ZSTDMT_setBufferSize() : 151 * all future buffers provided by this buffer pool will have _at least_ this size 152 * note : it's better for all buffers to have same size, 153 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ 154 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) 155 { 156 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 157 DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); 158 bufPool->bufferSize = bSize; 159 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 160 } 161 162 163 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers) 164 { 165 unsigned const maxNbBuffers = 2*nbWorkers + 3; 166 if (srcBufPool==NULL) return NULL; 167 if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ 168 return srcBufPool; 169 /* need a larger buffer pool */ 170 { ZSTD_customMem const cMem = srcBufPool->cMem; 171 size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ 172 ZSTDMT_bufferPool* newBufPool; 173 ZSTDMT_freeBufferPool(srcBufPool); 174 newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 175 if (newBufPool==NULL) return newBufPool; 176 ZSTDMT_setBufferSize(newBufPool, bSize); 177 return newBufPool; 178 } 179 } 180 181 /** ZSTDMT_getBuffer() : 182 * assumption : bufPool must be valid 183 * @return : a buffer, with start pointer and size 184 * note: allocation may fail, in this case, start==NULL and size==0 */ 185 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) 186 { 187 size_t const bSize = bufPool->bufferSize; 188 DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); 189 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 190 if (bufPool->nbBuffers) { /* try to use an existing buffer */ 191 buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; 192 size_t const availBufferSize = buf.capacity; 193 bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; 194 if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { 195 /* large enough, but not too much */ 196 DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", 197 bufPool->nbBuffers, (U32)buf.capacity); 198 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 199 return buf; 200 } 201 /* size conditions not respected : scratch this buffer, create new one */ 202 DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); 203 ZSTD_customFree(buf.start, bufPool->cMem); 204 } 205 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 206 /* create new buffer */ 207 DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); 208 { buffer_t buffer; 209 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); 210 buffer.start = start; /* note : start can be NULL if malloc fails ! */ 211 buffer.capacity = (start==NULL) ? 0 : bSize; 212 if (start==NULL) { 213 DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); 214 } else { 215 DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); 216 } 217 return buffer; 218 } 219 } 220 221 #if ZSTD_RESIZE_SEQPOOL 222 /** ZSTDMT_resizeBuffer() : 223 * assumption : bufPool must be valid 224 * @return : a buffer that is at least the buffer pool buffer size. 225 * If a reallocation happens, the data in the input buffer is copied. 226 */ 227 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) 228 { 229 size_t const bSize = bufPool->bufferSize; 230 if (buffer.capacity < bSize) { 231 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); 232 buffer_t newBuffer; 233 newBuffer.start = start; 234 newBuffer.capacity = start == NULL ? 0 : bSize; 235 if (start != NULL) { 236 assert(newBuffer.capacity >= buffer.capacity); 237 ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity); 238 DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); 239 return newBuffer; 240 } 241 DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); 242 } 243 return buffer; 244 } 245 #endif 246 247 /* store buffer for later re-use, up to pool capacity */ 248 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) 249 { 250 DEBUGLOG(5, "ZSTDMT_releaseBuffer"); 251 if (buf.start == NULL) return; /* compatible with release on NULL */ 252 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 253 if (bufPool->nbBuffers < bufPool->totalBuffers) { 254 bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ 255 DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", 256 (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); 257 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 258 return; 259 } 260 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 261 /* Reached bufferPool capacity (should not happen) */ 262 DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); 263 ZSTD_customFree(buf.start, bufPool->cMem); 264 } 265 266 267 /* ===== Seq Pool Wrapper ====== */ 268 269 typedef ZSTDMT_bufferPool ZSTDMT_seqPool; 270 271 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) 272 { 273 return ZSTDMT_sizeof_bufferPool(seqPool); 274 } 275 276 static rawSeqStore_t bufferToSeq(buffer_t buffer) 277 { 278 rawSeqStore_t seq = kNullRawSeqStore; 279 seq.seq = (rawSeq*)buffer.start; 280 seq.capacity = buffer.capacity / sizeof(rawSeq); 281 return seq; 282 } 283 284 static buffer_t seqToBuffer(rawSeqStore_t seq) 285 { 286 buffer_t buffer; 287 buffer.start = seq.seq; 288 buffer.capacity = seq.capacity * sizeof(rawSeq); 289 return buffer; 290 } 291 292 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) 293 { 294 if (seqPool->bufferSize == 0) { 295 return kNullRawSeqStore; 296 } 297 return bufferToSeq(ZSTDMT_getBuffer(seqPool)); 298 } 299 300 #if ZSTD_RESIZE_SEQPOOL 301 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 302 { 303 return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); 304 } 305 #endif 306 307 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 308 { 309 ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); 310 } 311 312 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) 313 { 314 ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); 315 } 316 317 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) 318 { 319 ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 320 if (seqPool == NULL) return NULL; 321 ZSTDMT_setNbSeq(seqPool, 0); 322 return seqPool; 323 } 324 325 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) 326 { 327 ZSTDMT_freeBufferPool(seqPool); 328 } 329 330 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) 331 { 332 return ZSTDMT_expandBufferPool(pool, nbWorkers); 333 } 334 335 336 /* ===== CCtx Pool ===== */ 337 /* a single CCtx Pool can be invoked from multiple threads in parallel */ 338 339 typedef struct { 340 ZSTD_pthread_mutex_t poolMutex; 341 int totalCCtx; 342 int availCCtx; 343 ZSTD_customMem cMem; 344 ZSTD_CCtx* cctx[1]; /* variable size */ 345 } ZSTDMT_CCtxPool; 346 347 /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ 348 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) 349 { 350 int cid; 351 for (cid=0; cid<pool->totalCCtx; cid++) 352 ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */ 353 ZSTD_pthread_mutex_destroy(&pool->poolMutex); 354 ZSTD_customFree(pool, pool->cMem); 355 } 356 357 /* ZSTDMT_createCCtxPool() : 358 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ 359 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, 360 ZSTD_customMem cMem) 361 { 362 ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc( 363 sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem); 364 assert(nbWorkers > 0); 365 if (!cctxPool) return NULL; 366 if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { 367 ZSTD_customFree(cctxPool, cMem); 368 return NULL; 369 } 370 cctxPool->cMem = cMem; 371 cctxPool->totalCCtx = nbWorkers; 372 cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ 373 cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); 374 if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } 375 DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); 376 return cctxPool; 377 } 378 379 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, 380 int nbWorkers) 381 { 382 if (srcPool==NULL) return NULL; 383 if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ 384 /* need a larger cctx pool */ 385 { ZSTD_customMem const cMem = srcPool->cMem; 386 ZSTDMT_freeCCtxPool(srcPool); 387 return ZSTDMT_createCCtxPool(nbWorkers, cMem); 388 } 389 } 390 391 /* only works during initialization phase, not during compression */ 392 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) 393 { 394 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 395 { unsigned const nbWorkers = cctxPool->totalCCtx; 396 size_t const poolSize = sizeof(*cctxPool) 397 + (nbWorkers-1) * sizeof(ZSTD_CCtx*); 398 unsigned u; 399 size_t totalCCtxSize = 0; 400 for (u=0; u<nbWorkers; u++) { 401 totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]); 402 } 403 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 404 assert(nbWorkers > 0); 405 return poolSize + totalCCtxSize; 406 } 407 } 408 409 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) 410 { 411 DEBUGLOG(5, "ZSTDMT_getCCtx"); 412 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 413 if (cctxPool->availCCtx) { 414 cctxPool->availCCtx--; 415 { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; 416 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 417 return cctx; 418 } } 419 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 420 DEBUGLOG(5, "create one more CCtx"); 421 return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ 422 } 423 424 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) 425 { 426 if (cctx==NULL) return; /* compatibility with release on NULL */ 427 ZSTD_pthread_mutex_lock(&pool->poolMutex); 428 if (pool->availCCtx < pool->totalCCtx) 429 pool->cctx[pool->availCCtx++] = cctx; 430 else { 431 /* pool overflow : should not happen, since totalCCtx==nbWorkers */ 432 DEBUGLOG(4, "CCtx pool overflow : free cctx"); 433 ZSTD_freeCCtx(cctx); 434 } 435 ZSTD_pthread_mutex_unlock(&pool->poolMutex); 436 } 437 438 /* ==== Serial State ==== */ 439 440 typedef struct { 441 void const* start; 442 size_t size; 443 } range_t; 444 445 typedef struct { 446 /* All variables in the struct are protected by mutex. */ 447 ZSTD_pthread_mutex_t mutex; 448 ZSTD_pthread_cond_t cond; 449 ZSTD_CCtx_params params; 450 ldmState_t ldmState; 451 XXH64_state_t xxhState; 452 unsigned nextJobID; 453 /* Protects ldmWindow. 454 * Must be acquired after the main mutex when acquiring both. 455 */ 456 ZSTD_pthread_mutex_t ldmWindowMutex; 457 ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ 458 ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ 459 } serialState_t; 460 461 static int 462 ZSTDMT_serialState_reset(serialState_t* serialState, 463 ZSTDMT_seqPool* seqPool, 464 ZSTD_CCtx_params params, 465 size_t jobSize, 466 const void* dict, size_t const dictSize, 467 ZSTD_dictContentType_e dictContentType) 468 { 469 /* Adjust parameters */ 470 if (params.ldmParams.enableLdm) { 471 DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); 472 ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); 473 assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); 474 assert(params.ldmParams.hashRateLog < 32); 475 serialState->ldmState.hashPower = 476 ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength); 477 } else { 478 ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); 479 } 480 serialState->nextJobID = 0; 481 if (params.fParams.checksumFlag) 482 XXH64_reset(&serialState->xxhState, 0); 483 if (params.ldmParams.enableLdm) { 484 ZSTD_customMem cMem = params.customMem; 485 unsigned const hashLog = params.ldmParams.hashLog; 486 size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); 487 unsigned const bucketLog = 488 params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; 489 size_t const bucketSize = (size_t)1 << bucketLog; 490 unsigned const prevBucketLog = 491 serialState->params.ldmParams.hashLog - 492 serialState->params.ldmParams.bucketSizeLog; 493 /* Size the seq pool tables */ 494 ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); 495 /* Reset the window */ 496 ZSTD_window_init(&serialState->ldmState.window); 497 /* Resize tables and output space if necessary. */ 498 if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { 499 ZSTD_customFree(serialState->ldmState.hashTable, cMem); 500 serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem); 501 } 502 if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { 503 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); 504 serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(bucketSize, cMem); 505 } 506 if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) 507 return 1; 508 /* Zero the tables */ 509 ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize); 510 ZSTD_memset(serialState->ldmState.bucketOffsets, 0, bucketSize); 511 512 /* Update window state and fill hash table with dict */ 513 serialState->ldmState.loadedDictEnd = 0; 514 if (dictSize > 0) { 515 if (dictContentType == ZSTD_dct_rawContent) { 516 BYTE const* const dictEnd = (const BYTE*)dict + dictSize; 517 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize); 518 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams); 519 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base); 520 } else { 521 /* don't even load anything */ 522 } 523 } 524 525 /* Initialize serialState's copy of ldmWindow. */ 526 serialState->ldmWindow = serialState->ldmState.window; 527 } 528 529 serialState->params = params; 530 serialState->params.jobSize = (U32)jobSize; 531 return 0; 532 } 533 534 static int ZSTDMT_serialState_init(serialState_t* serialState) 535 { 536 int initError = 0; 537 ZSTD_memset(serialState, 0, sizeof(*serialState)); 538 initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); 539 initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); 540 initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); 541 initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); 542 return initError; 543 } 544 545 static void ZSTDMT_serialState_free(serialState_t* serialState) 546 { 547 ZSTD_customMem cMem = serialState->params.customMem; 548 ZSTD_pthread_mutex_destroy(&serialState->mutex); 549 ZSTD_pthread_cond_destroy(&serialState->cond); 550 ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); 551 ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); 552 ZSTD_customFree(serialState->ldmState.hashTable, cMem); 553 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); 554 } 555 556 static void ZSTDMT_serialState_update(serialState_t* serialState, 557 ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, 558 range_t src, unsigned jobID) 559 { 560 /* Wait for our turn */ 561 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 562 while (serialState->nextJobID < jobID) { 563 DEBUGLOG(5, "wait for serialState->cond"); 564 ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); 565 } 566 /* A future job may error and skip our job */ 567 if (serialState->nextJobID == jobID) { 568 /* It is now our turn, do any processing necessary */ 569 if (serialState->params.ldmParams.enableLdm) { 570 size_t error; 571 assert(seqStore.seq != NULL && seqStore.pos == 0 && 572 seqStore.size == 0 && seqStore.capacity > 0); 573 assert(src.size <= serialState->params.jobSize); 574 ZSTD_window_update(&serialState->ldmState.window, src.start, src.size); 575 error = ZSTD_ldm_generateSequences( 576 &serialState->ldmState, &seqStore, 577 &serialState->params.ldmParams, src.start, src.size); 578 /* We provide a large enough buffer to never fail. */ 579 assert(!ZSTD_isError(error)); (void)error; 580 /* Update ldmWindow to match the ldmState.window and signal the main 581 * thread if it is waiting for a buffer. 582 */ 583 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 584 serialState->ldmWindow = serialState->ldmState.window; 585 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 586 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 587 } 588 if (serialState->params.fParams.checksumFlag && src.size > 0) 589 XXH64_update(&serialState->xxhState, src.start, src.size); 590 } 591 /* Now it is the next jobs turn */ 592 serialState->nextJobID++; 593 ZSTD_pthread_cond_broadcast(&serialState->cond); 594 ZSTD_pthread_mutex_unlock(&serialState->mutex); 595 596 if (seqStore.size > 0) { 597 size_t const err = ZSTD_referenceExternalSequences( 598 jobCCtx, seqStore.seq, seqStore.size); 599 assert(serialState->params.ldmParams.enableLdm); 600 assert(!ZSTD_isError(err)); 601 (void)err; 602 } 603 } 604 605 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, 606 unsigned jobID, size_t cSize) 607 { 608 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 609 if (serialState->nextJobID <= jobID) { 610 assert(ZSTD_isError(cSize)); (void)cSize; 611 DEBUGLOG(5, "Skipping past job %u because of error", jobID); 612 serialState->nextJobID = jobID + 1; 613 ZSTD_pthread_cond_broadcast(&serialState->cond); 614 615 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 616 ZSTD_window_clear(&serialState->ldmWindow); 617 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 618 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 619 } 620 ZSTD_pthread_mutex_unlock(&serialState->mutex); 621 622 } 623 624 625 /* ------------------------------------------ */ 626 /* ===== Worker thread ===== */ 627 /* ------------------------------------------ */ 628 629 static const range_t kNullRange = { NULL, 0 }; 630 631 typedef struct { 632 size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ 633 size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ 634 ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ 635 ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ 636 ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ 637 ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ 638 ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ 639 serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ 640 buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ 641 range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ 642 range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ 643 unsigned jobID; /* set by mtctx, then read by worker => no barrier */ 644 unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ 645 unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ 646 ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ 647 const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ 648 unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ 649 size_t dstFlushed; /* used only by mtctx */ 650 unsigned frameChecksumNeeded; /* used only by mtctx */ 651 } ZSTDMT_jobDescription; 652 653 #define JOB_ERROR(e) { \ 654 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ 655 job->cSize = e; \ 656 ZSTD_pthread_mutex_unlock(&job->job_mutex); \ 657 goto _endJob; \ 658 } 659 660 /* ZSTDMT_compressionJob() is a POOL_function type */ 661 static void ZSTDMT_compressionJob(void* jobDescription) 662 { 663 ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; 664 ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ 665 ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); 666 rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); 667 buffer_t dstBuff = job->dstBuff; 668 size_t lastCBlockSize = 0; 669 670 /* resources */ 671 if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); 672 if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ 673 dstBuff = ZSTDMT_getBuffer(job->bufPool); 674 if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); 675 job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ 676 } 677 if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL) 678 JOB_ERROR(ERROR(memory_allocation)); 679 680 /* Don't compute the checksum for chunks, since we compute it externally, 681 * but write it in the header. 682 */ 683 if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; 684 /* Don't run LDM for the chunks, since we handle it externally */ 685 jobParams.ldmParams.enableLdm = 0; 686 687 688 /* init */ 689 if (job->cdict) { 690 size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize); 691 assert(job->firstJob); /* only allowed for first job */ 692 if (ZSTD_isError(initError)) JOB_ERROR(initError); 693 } else { /* srcStart points at reloaded section */ 694 U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; 695 { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); 696 if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); 697 } 698 { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, 699 job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ 700 ZSTD_dtlm_fast, 701 NULL, /*cdict*/ 702 &jobParams, pledgedSrcSize); 703 if (ZSTD_isError(initError)) JOB_ERROR(initError); 704 } } 705 706 /* Perform serial step as early as possible, but after CCtx initialization */ 707 ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); 708 709 if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ 710 size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); 711 if (ZSTD_isError(hSize)) JOB_ERROR(hSize); 712 DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); 713 ZSTD_invalidateRepCodes(cctx); 714 } 715 716 /* compress */ 717 { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; 718 int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); 719 const BYTE* ip = (const BYTE*) job->src.start; 720 BYTE* const ostart = (BYTE*)dstBuff.start; 721 BYTE* op = ostart; 722 BYTE* oend = op + dstBuff.capacity; 723 int chunkNb; 724 if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ 725 DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); 726 assert(job->cSize == 0); 727 for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { 728 size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize); 729 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 730 ip += chunkSize; 731 op += cSize; assert(op < oend); 732 /* stats */ 733 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 734 job->cSize += cSize; 735 job->consumed = chunkSize * chunkNb; 736 DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", 737 (U32)cSize, (U32)job->cSize); 738 ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ 739 ZSTD_pthread_mutex_unlock(&job->job_mutex); 740 } 741 /* last block */ 742 assert(chunkSize > 0); 743 assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ 744 if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { 745 size_t const lastBlockSize1 = job->src.size & (chunkSize-1); 746 size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; 747 size_t const cSize = (job->lastJob) ? 748 ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) : 749 ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize); 750 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 751 lastCBlockSize = cSize; 752 } } 753 754 _endJob: 755 ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); 756 if (job->prefix.size > 0) 757 DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); 758 DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); 759 /* release resources */ 760 ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); 761 ZSTDMT_releaseCCtx(job->cctxPool, cctx); 762 /* report */ 763 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 764 if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); 765 job->cSize += lastCBlockSize; 766 job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ 767 ZSTD_pthread_cond_signal(&job->job_cond); 768 ZSTD_pthread_mutex_unlock(&job->job_mutex); 769 } 770 771 772 /* ------------------------------------------ */ 773 /* ===== Multi-threaded compression ===== */ 774 /* ------------------------------------------ */ 775 776 typedef struct { 777 range_t prefix; /* read-only non-owned prefix buffer */ 778 buffer_t buffer; 779 size_t filled; 780 } inBuff_t; 781 782 typedef struct { 783 BYTE* buffer; /* The round input buffer. All jobs get references 784 * to pieces of the buffer. ZSTDMT_tryGetInputRange() 785 * handles handing out job input buffers, and makes 786 * sure it doesn't overlap with any pieces still in use. 787 */ 788 size_t capacity; /* The capacity of buffer. */ 789 size_t pos; /* The position of the current inBuff in the round 790 * buffer. Updated past the end if the inBuff once 791 * the inBuff is sent to the worker thread. 792 * pos <= capacity. 793 */ 794 } roundBuff_t; 795 796 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; 797 798 #define RSYNC_LENGTH 32 799 800 typedef struct { 801 U64 hash; 802 U64 hitMask; 803 U64 primePower; 804 } rsyncState_t; 805 806 struct ZSTDMT_CCtx_s { 807 POOL_ctx* factory; 808 ZSTDMT_jobDescription* jobs; 809 ZSTDMT_bufferPool* bufPool; 810 ZSTDMT_CCtxPool* cctxPool; 811 ZSTDMT_seqPool* seqPool; 812 ZSTD_CCtx_params params; 813 size_t targetSectionSize; 814 size_t targetPrefixSize; 815 int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */ 816 inBuff_t inBuff; 817 roundBuff_t roundBuff; 818 serialState_t serial; 819 rsyncState_t rsync; 820 unsigned jobIDMask; 821 unsigned doneJobID; 822 unsigned nextJobID; 823 unsigned frameEnded; 824 unsigned allJobsCompleted; 825 unsigned long long frameContentSize; 826 unsigned long long consumed; 827 unsigned long long produced; 828 ZSTD_customMem cMem; 829 ZSTD_CDict* cdictLocal; 830 const ZSTD_CDict* cdict; 831 unsigned providedFactory: 1; 832 }; 833 834 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) 835 { 836 U32 jobNb; 837 if (jobTable == NULL) return; 838 for (jobNb=0; jobNb<nbJobs; jobNb++) { 839 ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex); 840 ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond); 841 } 842 ZSTD_customFree(jobTable, cMem); 843 } 844 845 /* ZSTDMT_allocJobsTable() 846 * allocate and init a job table. 847 * update *nbJobsPtr to next power of 2 value, as size of table */ 848 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) 849 { 850 U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; 851 U32 const nbJobs = 1 << nbJobsLog2; 852 U32 jobNb; 853 ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*) 854 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem); 855 int initError = 0; 856 if (jobTable==NULL) return NULL; 857 *nbJobsPtr = nbJobs; 858 for (jobNb=0; jobNb<nbJobs; jobNb++) { 859 initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL); 860 initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL); 861 } 862 if (initError != 0) { 863 ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem); 864 return NULL; 865 } 866 return jobTable; 867 } 868 869 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) { 870 U32 nbJobs = nbWorkers + 2; 871 if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */ 872 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 873 mtctx->jobIDMask = 0; 874 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); 875 if (mtctx->jobs==NULL) return ERROR(memory_allocation); 876 assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ 877 mtctx->jobIDMask = nbJobs - 1; 878 } 879 return 0; 880 } 881 882 883 /* ZSTDMT_CCtxParam_setNbWorkers(): 884 * Internal use only */ 885 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) 886 { 887 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); 888 } 889 890 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) 891 { 892 ZSTDMT_CCtx* mtctx; 893 U32 nbJobs = nbWorkers + 2; 894 int initError; 895 DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); 896 897 if (nbWorkers < 1) return NULL; 898 nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); 899 if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) 900 /* invalid custom allocator */ 901 return NULL; 902 903 mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem); 904 if (!mtctx) return NULL; 905 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 906 mtctx->cMem = cMem; 907 mtctx->allJobsCompleted = 1; 908 if (pool != NULL) { 909 mtctx->factory = pool; 910 mtctx->providedFactory = 1; 911 } 912 else { 913 mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); 914 mtctx->providedFactory = 0; 915 } 916 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); 917 assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ 918 mtctx->jobIDMask = nbJobs - 1; 919 mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 920 mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); 921 mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); 922 initError = ZSTDMT_serialState_init(&mtctx->serial); 923 mtctx->roundBuff = kNullRoundBuff; 924 if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { 925 ZSTDMT_freeCCtx(mtctx); 926 return NULL; 927 } 928 DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); 929 return mtctx; 930 } 931 932 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) 933 { 934 #ifdef ZSTD_MULTITHREAD 935 return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool); 936 #else 937 (void)nbWorkers; 938 (void)cMem; 939 (void)pool; 940 return NULL; 941 #endif 942 } 943 944 945 /* ZSTDMT_releaseAllJobResources() : 946 * note : ensure all workers are killed first ! */ 947 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) 948 { 949 unsigned jobID; 950 DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); 951 for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { 952 /* Copy the mutex/cond out */ 953 ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex; 954 ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond; 955 956 DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); 957 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); 958 959 /* Clear the job description, but keep the mutex/cond */ 960 ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID])); 961 mtctx->jobs[jobID].job_mutex = mutex; 962 mtctx->jobs[jobID].job_cond = cond; 963 } 964 mtctx->inBuff.buffer = g_nullBuffer; 965 mtctx->inBuff.filled = 0; 966 mtctx->allJobsCompleted = 1; 967 } 968 969 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) 970 { 971 DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); 972 while (mtctx->doneJobID < mtctx->nextJobID) { 973 unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; 974 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); 975 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { 976 DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ 977 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); 978 } 979 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); 980 mtctx->doneJobID++; 981 } 982 } 983 984 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) 985 { 986 if (mtctx==NULL) return 0; /* compatible with free on NULL */ 987 if (!mtctx->providedFactory) 988 POOL_free(mtctx->factory); /* stop and free worker threads */ 989 ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ 990 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 991 ZSTDMT_freeBufferPool(mtctx->bufPool); 992 ZSTDMT_freeCCtxPool(mtctx->cctxPool); 993 ZSTDMT_freeSeqPool(mtctx->seqPool); 994 ZSTDMT_serialState_free(&mtctx->serial); 995 ZSTD_freeCDict(mtctx->cdictLocal); 996 if (mtctx->roundBuff.buffer) 997 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); 998 ZSTD_customFree(mtctx, mtctx->cMem); 999 return 0; 1000 } 1001 1002 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) 1003 { 1004 if (mtctx == NULL) return 0; /* supports sizeof NULL */ 1005 return sizeof(*mtctx) 1006 + POOL_sizeof(mtctx->factory) 1007 + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) 1008 + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) 1009 + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) 1010 + ZSTDMT_sizeof_seqPool(mtctx->seqPool) 1011 + ZSTD_sizeof_CDict(mtctx->cdictLocal) 1012 + mtctx->roundBuff.capacity; 1013 } 1014 1015 1016 /* ZSTDMT_resize() : 1017 * @return : error code if fails, 0 on success */ 1018 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) 1019 { 1020 if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); 1021 FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , ""); 1022 mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers); 1023 if (mtctx->bufPool == NULL) return ERROR(memory_allocation); 1024 mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); 1025 if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); 1026 mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); 1027 if (mtctx->seqPool == NULL) return ERROR(memory_allocation); 1028 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 1029 return 0; 1030 } 1031 1032 1033 /*! ZSTDMT_updateCParams_whileCompressing() : 1034 * Updates a selected set of compression parameters, remaining compatible with currently active frame. 1035 * New parameters will be applied to next compression job. */ 1036 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) 1037 { 1038 U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ 1039 int const compressionLevel = cctxParams->compressionLevel; 1040 DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", 1041 compressionLevel); 1042 mtctx->params.compressionLevel = compressionLevel; 1043 { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); 1044 cParams.windowLog = saved_wlog; 1045 mtctx->params.cParams = cParams; 1046 } 1047 } 1048 1049 /* ZSTDMT_getFrameProgression(): 1050 * tells how much data has been consumed (input) and produced (output) for current frame. 1051 * able to count progression inside worker threads. 1052 * Note : mutex will be acquired during statistics collection inside workers. */ 1053 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) 1054 { 1055 ZSTD_frameProgression fps; 1056 DEBUGLOG(5, "ZSTDMT_getFrameProgression"); 1057 fps.ingested = mtctx->consumed + mtctx->inBuff.filled; 1058 fps.consumed = mtctx->consumed; 1059 fps.produced = fps.flushed = mtctx->produced; 1060 fps.currentJobID = mtctx->nextJobID; 1061 fps.nbActiveWorkers = 0; 1062 { unsigned jobNb; 1063 unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); 1064 DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", 1065 mtctx->doneJobID, lastJobNb, mtctx->jobReady) 1066 for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { 1067 unsigned const wJobID = jobNb & mtctx->jobIDMask; 1068 ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; 1069 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1070 { size_t const cResult = jobPtr->cSize; 1071 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1072 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1073 assert(flushed <= produced); 1074 fps.ingested += jobPtr->src.size; 1075 fps.consumed += jobPtr->consumed; 1076 fps.produced += produced; 1077 fps.flushed += flushed; 1078 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); 1079 } 1080 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1081 } 1082 } 1083 return fps; 1084 } 1085 1086 1087 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) 1088 { 1089 size_t toFlush; 1090 unsigned const jobID = mtctx->doneJobID; 1091 assert(jobID <= mtctx->nextJobID); 1092 if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ 1093 1094 /* look into oldest non-fully-flushed job */ 1095 { unsigned const wJobID = jobID & mtctx->jobIDMask; 1096 ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; 1097 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1098 { size_t const cResult = jobPtr->cSize; 1099 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1100 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1101 assert(flushed <= produced); 1102 assert(jobPtr->consumed <= jobPtr->src.size); 1103 toFlush = produced - flushed; 1104 /* if toFlush==0, nothing is available to flush. 1105 * However, jobID is expected to still be active: 1106 * if jobID was already completed and fully flushed, 1107 * ZSTDMT_flushProduced() should have already moved onto next job. 1108 * Therefore, some input has not yet been consumed. */ 1109 if (toFlush==0) { 1110 assert(jobPtr->consumed < jobPtr->src.size); 1111 } 1112 } 1113 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1114 } 1115 1116 return toFlush; 1117 } 1118 1119 1120 /* ------------------------------------------ */ 1121 /* ===== Multi-threaded compression ===== */ 1122 /* ------------------------------------------ */ 1123 1124 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) 1125 { 1126 unsigned jobLog; 1127 if (params->ldmParams.enableLdm) { 1128 /* In Long Range Mode, the windowLog is typically oversized. 1129 * In which case, it's preferable to determine the jobSize 1130 * based on cycleLog instead. */ 1131 jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3); 1132 } else { 1133 jobLog = MAX(20, params->cParams.windowLog + 2); 1134 } 1135 return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); 1136 } 1137 1138 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) 1139 { 1140 switch(strat) 1141 { 1142 case ZSTD_btultra2: 1143 return 9; 1144 case ZSTD_btultra: 1145 case ZSTD_btopt: 1146 return 8; 1147 case ZSTD_btlazy2: 1148 case ZSTD_lazy2: 1149 return 7; 1150 case ZSTD_lazy: 1151 case ZSTD_greedy: 1152 case ZSTD_dfast: 1153 case ZSTD_fast: 1154 default:; 1155 } 1156 return 6; 1157 } 1158 1159 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) 1160 { 1161 assert(0 <= ovlog && ovlog <= 9); 1162 if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); 1163 return ovlog; 1164 } 1165 1166 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params) 1167 { 1168 int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); 1169 int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); 1170 assert(0 <= overlapRLog && overlapRLog <= 8); 1171 if (params->ldmParams.enableLdm) { 1172 /* In Long Range Mode, the windowLog is typically oversized. 1173 * In which case, it's preferable to determine the jobSize 1174 * based on chainLog instead. 1175 * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ 1176 ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) 1177 - overlapRLog; 1178 } 1179 assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); 1180 DEBUGLOG(4, "overlapLog : %i", params->overlapLog); 1181 DEBUGLOG(4, "overlap size : %i", 1 << ovLog); 1182 return (ovLog==0) ? 0 : (size_t)1 << ovLog; 1183 } 1184 1185 /* ====================================== */ 1186 /* ======= Streaming API ======= */ 1187 /* ====================================== */ 1188 1189 size_t ZSTDMT_initCStream_internal( 1190 ZSTDMT_CCtx* mtctx, 1191 const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, 1192 const ZSTD_CDict* cdict, ZSTD_CCtx_params params, 1193 unsigned long long pledgedSrcSize) 1194 { 1195 DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", 1196 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); 1197 1198 /* params supposed partially fully validated at this point */ 1199 assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); 1200 assert(!((dict) && (cdict))); /* either dict or cdict, not both */ 1201 1202 /* init */ 1203 if (params.nbWorkers != mtctx->params.nbWorkers) 1204 FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , ""); 1205 1206 if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; 1207 if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; 1208 1209 DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); 1210 1211 if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ 1212 ZSTDMT_waitForAllJobsCompleted(mtctx); 1213 ZSTDMT_releaseAllJobResources(mtctx); 1214 mtctx->allJobsCompleted = 1; 1215 } 1216 1217 mtctx->params = params; 1218 mtctx->frameContentSize = pledgedSrcSize; 1219 if (dict) { 1220 ZSTD_freeCDict(mtctx->cdictLocal); 1221 mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 1222 ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ 1223 params.cParams, mtctx->cMem); 1224 mtctx->cdict = mtctx->cdictLocal; 1225 if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); 1226 } else { 1227 ZSTD_freeCDict(mtctx->cdictLocal); 1228 mtctx->cdictLocal = NULL; 1229 mtctx->cdict = cdict; 1230 } 1231 1232 mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms); 1233 DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); 1234 mtctx->targetSectionSize = params.jobSize; 1235 if (mtctx->targetSectionSize == 0) { 1236 mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms); 1237 } 1238 assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); 1239 1240 if (params.rsyncable) { 1241 /* Aim for the targetsectionSize as the average job size. */ 1242 U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20); 1243 U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20; 1244 assert(jobSizeMB >= 1); 1245 DEBUGLOG(4, "rsyncLog = %u", rsyncBits); 1246 mtctx->rsync.hash = 0; 1247 mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; 1248 mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); 1249 } 1250 if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ 1251 DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); 1252 DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); 1253 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); 1254 { 1255 /* If ldm is enabled we need windowSize space. */ 1256 size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0; 1257 /* Two buffers of slack, plus extra space for the overlap 1258 * This is the minimum slack that LDM works with. One extra because 1259 * flush might waste up to targetSectionSize-1 bytes. Another extra 1260 * for the overlap (if > 0), then one to fill which doesn't overlap 1261 * with the LDM window. 1262 */ 1263 size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); 1264 size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; 1265 /* Compute the total size, and always have enough slack */ 1266 size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); 1267 size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; 1268 size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; 1269 if (mtctx->roundBuff.capacity < capacity) { 1270 if (mtctx->roundBuff.buffer) 1271 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); 1272 mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem); 1273 if (mtctx->roundBuff.buffer == NULL) { 1274 mtctx->roundBuff.capacity = 0; 1275 return ERROR(memory_allocation); 1276 } 1277 mtctx->roundBuff.capacity = capacity; 1278 } 1279 } 1280 DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); 1281 mtctx->roundBuff.pos = 0; 1282 mtctx->inBuff.buffer = g_nullBuffer; 1283 mtctx->inBuff.filled = 0; 1284 mtctx->inBuff.prefix = kNullRange; 1285 mtctx->doneJobID = 0; 1286 mtctx->nextJobID = 0; 1287 mtctx->frameEnded = 0; 1288 mtctx->allJobsCompleted = 0; 1289 mtctx->consumed = 0; 1290 mtctx->produced = 0; 1291 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize, 1292 dict, dictSize, dictContentType)) 1293 return ERROR(memory_allocation); 1294 return 0; 1295 } 1296 1297 1298 /* ZSTDMT_writeLastEmptyBlock() 1299 * Write a single empty block with an end-of-frame to finish a frame. 1300 * Job must be created from streaming variant. 1301 * This function is always successful if expected conditions are fulfilled. 1302 */ 1303 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) 1304 { 1305 assert(job->lastJob == 1); 1306 assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ 1307 assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ 1308 assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ 1309 job->dstBuff = ZSTDMT_getBuffer(job->bufPool); 1310 if (job->dstBuff.start == NULL) { 1311 job->cSize = ERROR(memory_allocation); 1312 return; 1313 } 1314 assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ 1315 job->src = kNullRange; 1316 job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); 1317 assert(!ZSTD_isError(job->cSize)); 1318 assert(job->consumed == 0); 1319 } 1320 1321 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) 1322 { 1323 unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; 1324 int const endFrame = (endOp == ZSTD_e_end); 1325 1326 if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { 1327 DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); 1328 assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); 1329 return 0; 1330 } 1331 1332 if (!mtctx->jobReady) { 1333 BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; 1334 DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", 1335 mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); 1336 mtctx->jobs[jobID].src.start = src; 1337 mtctx->jobs[jobID].src.size = srcSize; 1338 assert(mtctx->inBuff.filled >= srcSize); 1339 mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; 1340 mtctx->jobs[jobID].consumed = 0; 1341 mtctx->jobs[jobID].cSize = 0; 1342 mtctx->jobs[jobID].params = mtctx->params; 1343 mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; 1344 mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; 1345 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 1346 mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; 1347 mtctx->jobs[jobID].bufPool = mtctx->bufPool; 1348 mtctx->jobs[jobID].seqPool = mtctx->seqPool; 1349 mtctx->jobs[jobID].serial = &mtctx->serial; 1350 mtctx->jobs[jobID].jobID = mtctx->nextJobID; 1351 mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); 1352 mtctx->jobs[jobID].lastJob = endFrame; 1353 mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); 1354 mtctx->jobs[jobID].dstFlushed = 0; 1355 1356 /* Update the round buffer pos and clear the input buffer to be reset */ 1357 mtctx->roundBuff.pos += srcSize; 1358 mtctx->inBuff.buffer = g_nullBuffer; 1359 mtctx->inBuff.filled = 0; 1360 /* Set the prefix */ 1361 if (!endFrame) { 1362 size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); 1363 mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; 1364 mtctx->inBuff.prefix.size = newPrefixSize; 1365 } else { /* endFrame==1 => no need for another input buffer */ 1366 mtctx->inBuff.prefix = kNullRange; 1367 mtctx->frameEnded = endFrame; 1368 if (mtctx->nextJobID == 0) { 1369 /* single job exception : checksum is already calculated directly within worker thread */ 1370 mtctx->params.fParams.checksumFlag = 0; 1371 } } 1372 1373 if ( (srcSize == 0) 1374 && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { 1375 DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); 1376 assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ 1377 ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); 1378 mtctx->nextJobID++; 1379 return 0; 1380 } 1381 } 1382 1383 DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", 1384 mtctx->nextJobID, 1385 (U32)mtctx->jobs[jobID].src.size, 1386 mtctx->jobs[jobID].lastJob, 1387 mtctx->nextJobID, 1388 jobID); 1389 if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { 1390 mtctx->nextJobID++; 1391 mtctx->jobReady = 0; 1392 } else { 1393 DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); 1394 mtctx->jobReady = 1; 1395 } 1396 return 0; 1397 } 1398 1399 1400 /*! ZSTDMT_flushProduced() : 1401 * flush whatever data has been produced but not yet flushed in current job. 1402 * move to next job if current one is fully flushed. 1403 * `output` : `pos` will be updated with amount of data flushed . 1404 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . 1405 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ 1406 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) 1407 { 1408 unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; 1409 DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", 1410 blockToFlush, mtctx->doneJobID, mtctx->nextJobID); 1411 assert(output->size >= output->pos); 1412 1413 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1414 if ( blockToFlush 1415 && (mtctx->doneJobID < mtctx->nextJobID) ) { 1416 assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); 1417 while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ 1418 if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { 1419 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", 1420 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); 1421 break; 1422 } 1423 DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", 1424 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1425 ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ 1426 } } 1427 1428 /* try to flush something */ 1429 { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ 1430 size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ 1431 size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ 1432 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1433 if (ZSTD_isError(cSize)) { 1434 DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", 1435 mtctx->doneJobID, ZSTD_getErrorName(cSize)); 1436 ZSTDMT_waitForAllJobsCompleted(mtctx); 1437 ZSTDMT_releaseAllJobResources(mtctx); 1438 return cSize; 1439 } 1440 /* add frame checksum if necessary (can only happen once) */ 1441 assert(srcConsumed <= srcSize); 1442 if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ 1443 && mtctx->jobs[wJobID].frameChecksumNeeded ) { 1444 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); 1445 DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); 1446 MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); 1447 cSize += 4; 1448 mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ 1449 mtctx->jobs[wJobID].frameChecksumNeeded = 0; 1450 } 1451 1452 if (cSize > 0) { /* compression is ongoing or completed */ 1453 size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); 1454 DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", 1455 (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); 1456 assert(mtctx->doneJobID < mtctx->nextJobID); 1457 assert(cSize >= mtctx->jobs[wJobID].dstFlushed); 1458 assert(mtctx->jobs[wJobID].dstBuff.start != NULL); 1459 if (toFlush > 0) { 1460 ZSTD_memcpy((char*)output->dst + output->pos, 1461 (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, 1462 toFlush); 1463 } 1464 output->pos += toFlush; 1465 mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ 1466 1467 if ( (srcConsumed == srcSize) /* job is completed */ 1468 && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ 1469 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", 1470 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1471 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); 1472 DEBUGLOG(5, "dstBuffer released"); 1473 mtctx->jobs[wJobID].dstBuff = g_nullBuffer; 1474 mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ 1475 mtctx->consumed += srcSize; 1476 mtctx->produced += cSize; 1477 mtctx->doneJobID++; 1478 } } 1479 1480 /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ 1481 if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); 1482 if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ 1483 } 1484 if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ 1485 if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ 1486 if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ 1487 mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ 1488 if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ 1489 return 0; /* internal buffers fully flushed */ 1490 } 1491 1492 /** 1493 * Returns the range of data used by the earliest job that is not yet complete. 1494 * If the data of the first job is broken up into two segments, we cover both 1495 * sections. 1496 */ 1497 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) 1498 { 1499 unsigned const firstJobID = mtctx->doneJobID; 1500 unsigned const lastJobID = mtctx->nextJobID; 1501 unsigned jobID; 1502 1503 for (jobID = firstJobID; jobID < lastJobID; ++jobID) { 1504 unsigned const wJobID = jobID & mtctx->jobIDMask; 1505 size_t consumed; 1506 1507 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1508 consumed = mtctx->jobs[wJobID].consumed; 1509 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1510 1511 if (consumed < mtctx->jobs[wJobID].src.size) { 1512 range_t range = mtctx->jobs[wJobID].prefix; 1513 if (range.size == 0) { 1514 /* Empty prefix */ 1515 range = mtctx->jobs[wJobID].src; 1516 } 1517 /* Job source in multiple segments not supported yet */ 1518 assert(range.start <= mtctx->jobs[wJobID].src.start); 1519 return range; 1520 } 1521 } 1522 return kNullRange; 1523 } 1524 1525 /** 1526 * Returns non-zero iff buffer and range overlap. 1527 */ 1528 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) 1529 { 1530 BYTE const* const bufferStart = (BYTE const*)buffer.start; 1531 BYTE const* const bufferEnd = bufferStart + buffer.capacity; 1532 BYTE const* const rangeStart = (BYTE const*)range.start; 1533 BYTE const* const rangeEnd = range.size != 0 ? rangeStart + range.size : rangeStart; 1534 1535 if (rangeStart == NULL || bufferStart == NULL) 1536 return 0; 1537 /* Empty ranges cannot overlap */ 1538 if (bufferStart == bufferEnd || rangeStart == rangeEnd) 1539 return 0; 1540 1541 return bufferStart < rangeEnd && rangeStart < bufferEnd; 1542 } 1543 1544 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) 1545 { 1546 range_t extDict; 1547 range_t prefix; 1548 1549 DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); 1550 extDict.start = window.dictBase + window.lowLimit; 1551 extDict.size = window.dictLimit - window.lowLimit; 1552 1553 prefix.start = window.base + window.dictLimit; 1554 prefix.size = window.nextSrc - (window.base + window.dictLimit); 1555 DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", 1556 (size_t)extDict.start, 1557 (size_t)extDict.start + extDict.size); 1558 DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", 1559 (size_t)prefix.start, 1560 (size_t)prefix.start + prefix.size); 1561 1562 return ZSTDMT_isOverlapped(buffer, extDict) 1563 || ZSTDMT_isOverlapped(buffer, prefix); 1564 } 1565 1566 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) 1567 { 1568 if (mtctx->params.ldmParams.enableLdm) { 1569 ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; 1570 DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); 1571 DEBUGLOG(5, "source [0x%zx, 0x%zx)", 1572 (size_t)buffer.start, 1573 (size_t)buffer.start + buffer.capacity); 1574 ZSTD_PTHREAD_MUTEX_LOCK(mutex); 1575 while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { 1576 DEBUGLOG(5, "Waiting for LDM to finish..."); 1577 ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); 1578 } 1579 DEBUGLOG(6, "Done waiting for LDM to finish"); 1580 ZSTD_pthread_mutex_unlock(mutex); 1581 } 1582 } 1583 1584 /** 1585 * Attempts to set the inBuff to the next section to fill. 1586 * If any part of the new section is still in use we give up. 1587 * Returns non-zero if the buffer is filled. 1588 */ 1589 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) 1590 { 1591 range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); 1592 size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; 1593 size_t const target = mtctx->targetSectionSize; 1594 buffer_t buffer; 1595 1596 DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); 1597 assert(mtctx->inBuff.buffer.start == NULL); 1598 assert(mtctx->roundBuff.capacity >= target); 1599 1600 if (spaceLeft < target) { 1601 /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. 1602 * Simply copy the prefix to the beginning in that case. 1603 */ 1604 BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; 1605 size_t const prefixSize = mtctx->inBuff.prefix.size; 1606 1607 buffer.start = start; 1608 buffer.capacity = prefixSize; 1609 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1610 DEBUGLOG(5, "Waiting for buffer..."); 1611 return 0; 1612 } 1613 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1614 ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize); 1615 mtctx->inBuff.prefix.start = start; 1616 mtctx->roundBuff.pos = prefixSize; 1617 } 1618 buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; 1619 buffer.capacity = target; 1620 1621 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1622 DEBUGLOG(5, "Waiting for buffer..."); 1623 return 0; 1624 } 1625 assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); 1626 1627 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1628 1629 DEBUGLOG(5, "Using prefix range [%zx, %zx)", 1630 (size_t)mtctx->inBuff.prefix.start, 1631 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); 1632 DEBUGLOG(5, "Using source range [%zx, %zx)", 1633 (size_t)buffer.start, 1634 (size_t)buffer.start + buffer.capacity); 1635 1636 1637 mtctx->inBuff.buffer = buffer; 1638 mtctx->inBuff.filled = 0; 1639 assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); 1640 return 1; 1641 } 1642 1643 typedef struct { 1644 size_t toLoad; /* The number of bytes to load from the input. */ 1645 int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ 1646 } syncPoint_t; 1647 1648 /** 1649 * Searches through the input for a synchronization point. If one is found, we 1650 * will instruct the caller to flush, and return the number of bytes to load. 1651 * Otherwise, we will load as many bytes as possible and instruct the caller 1652 * to continue as normal. 1653 */ 1654 static syncPoint_t 1655 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) 1656 { 1657 BYTE const* const istart = (BYTE const*)input.src + input.pos; 1658 U64 const primePower = mtctx->rsync.primePower; 1659 U64 const hitMask = mtctx->rsync.hitMask; 1660 1661 syncPoint_t syncPoint; 1662 U64 hash; 1663 BYTE const* prev; 1664 size_t pos; 1665 1666 syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); 1667 syncPoint.flush = 0; 1668 if (!mtctx->params.rsyncable) 1669 /* Rsync is disabled. */ 1670 return syncPoint; 1671 if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) 1672 /* Not enough to compute the hash. 1673 * We will miss any synchronization points in this RSYNC_LENGTH byte 1674 * window. However, since it depends only in the internal buffers, if the 1675 * state is already synchronized, we will remain synchronized. 1676 * Additionally, the probability that we miss a synchronization point is 1677 * low: RSYNC_LENGTH / targetSectionSize. 1678 */ 1679 return syncPoint; 1680 /* Initialize the loop variables. */ 1681 if (mtctx->inBuff.filled >= RSYNC_LENGTH) { 1682 /* We have enough bytes buffered to initialize the hash. 1683 * Start scanning at the beginning of the input. 1684 */ 1685 pos = 0; 1686 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; 1687 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); 1688 if ((hash & hitMask) == hitMask) { 1689 /* We're already at a sync point so don't load any more until 1690 * we're able to flush this sync point. 1691 * This likely happened because the job table was full so we 1692 * couldn't add our job. 1693 */ 1694 syncPoint.toLoad = 0; 1695 syncPoint.flush = 1; 1696 return syncPoint; 1697 } 1698 } else { 1699 /* We don't have enough bytes buffered to initialize the hash, but 1700 * we know we have at least RSYNC_LENGTH bytes total. 1701 * Start scanning after the first RSYNC_LENGTH bytes less the bytes 1702 * already buffered. 1703 */ 1704 pos = RSYNC_LENGTH - mtctx->inBuff.filled; 1705 prev = (BYTE const*)mtctx->inBuff.buffer.start - pos; 1706 hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled); 1707 hash = ZSTD_rollingHash_append(hash, istart, pos); 1708 } 1709 /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll 1710 * through the input. If we hit a synchronization point, then cut the 1711 * job off, and tell the compressor to flush the job. Otherwise, load 1712 * all the bytes and continue as normal. 1713 * If we go too long without a synchronization point (targetSectionSize) 1714 * then a block will be emitted anyways, but this is okay, since if we 1715 * are already synchronized we will remain synchronized. 1716 */ 1717 for (; pos < syncPoint.toLoad; ++pos) { 1718 BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; 1719 /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */ 1720 hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); 1721 if ((hash & hitMask) == hitMask) { 1722 syncPoint.toLoad = pos + 1; 1723 syncPoint.flush = 1; 1724 break; 1725 } 1726 } 1727 return syncPoint; 1728 } 1729 1730 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) 1731 { 1732 size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; 1733 if (hintInSize==0) hintInSize = mtctx->targetSectionSize; 1734 return hintInSize; 1735 } 1736 1737 /** ZSTDMT_compressStream_generic() : 1738 * internal use only - exposed to be invoked from zstd_compress.c 1739 * assumption : output and input are valid (pos <= size) 1740 * @return : minimum amount of data remaining to flush, 0 if none */ 1741 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, 1742 ZSTD_outBuffer* output, 1743 ZSTD_inBuffer* input, 1744 ZSTD_EndDirective endOp) 1745 { 1746 unsigned forwardInputProgress = 0; 1747 DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", 1748 (U32)endOp, (U32)(input->size - input->pos)); 1749 assert(output->pos <= output->size); 1750 assert(input->pos <= input->size); 1751 1752 if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { 1753 /* current frame being ended. Only flush/end are allowed */ 1754 return ERROR(stage_wrong); 1755 } 1756 1757 /* fill input buffer */ 1758 if ( (!mtctx->jobReady) 1759 && (input->size > input->pos) ) { /* support NULL input */ 1760 if (mtctx->inBuff.buffer.start == NULL) { 1761 assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ 1762 if (!ZSTDMT_tryGetInputRange(mtctx)) { 1763 /* It is only possible for this operation to fail if there are 1764 * still compression jobs ongoing. 1765 */ 1766 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); 1767 assert(mtctx->doneJobID != mtctx->nextJobID); 1768 } else 1769 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); 1770 } 1771 if (mtctx->inBuff.buffer.start != NULL) { 1772 syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); 1773 if (syncPoint.flush && endOp == ZSTD_e_continue) { 1774 endOp = ZSTD_e_flush; 1775 } 1776 assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); 1777 DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", 1778 (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); 1779 ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); 1780 input->pos += syncPoint.toLoad; 1781 mtctx->inBuff.filled += syncPoint.toLoad; 1782 forwardInputProgress = syncPoint.toLoad>0; 1783 } 1784 } 1785 if ((input->pos < input->size) && (endOp == ZSTD_e_end)) { 1786 /* Can't end yet because the input is not fully consumed. 1787 * We are in one of these cases: 1788 * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job. 1789 * - We filled the input buffer: flush this job but don't end the frame. 1790 * - We hit a synchronization point: flush this job but don't end the frame. 1791 */ 1792 assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable); 1793 endOp = ZSTD_e_flush; 1794 } 1795 1796 if ( (mtctx->jobReady) 1797 || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ 1798 || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ 1799 || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ 1800 size_t const jobSize = mtctx->inBuff.filled; 1801 assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); 1802 FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , ""); 1803 } 1804 1805 /* check for potential compressed data ready to be flushed */ 1806 { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ 1807 if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ 1808 DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); 1809 return remainingToFlush; 1810 } 1811 } 1812