1 /* 2 * Copyright (c) Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 #ifndef ZSTD_CWKSP_H 12 #define ZSTD_CWKSP_H 13 14 /*-************************************* 15 * Dependencies 16 ***************************************/ 17 #include "../common/zstd_internal.h" 18 19 #if defined (__cplusplus) 20 extern "C" { 21 #endif 22 23 /*-************************************* 24 * Constants 25 ***************************************/ 26 27 /* Since the workspace is effectively its own little malloc implementation / 28 * arena, when we run under ASAN, we should similarly insert redzones between 29 * each internal element of the workspace, so ASAN will catch overruns that 30 * reach outside an object but that stay inside the workspace. 31 * 32 * This defines the size of that redzone. 33 */ 34 #ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE 35 #define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128 36 #endif 37 38 39 /* Set our tables and aligneds to align by 64 bytes */ 40 #define ZSTD_CWKSP_ALIGNMENT_BYTES 64 41 42 /*-************************************* 43 * Structures 44 ***************************************/ 45 typedef enum { 46 ZSTD_cwksp_alloc_objects, 47 ZSTD_cwksp_alloc_buffers, 48 ZSTD_cwksp_alloc_aligned 49 } ZSTD_cwksp_alloc_phase_e; 50 51 /** 52 * Used to describe whether the workspace is statically allocated (and will not 53 * necessarily ever be freed), or if it's dynamically allocated and we can 54 * expect a well-formed caller to free this. 55 */ 56 typedef enum { 57 ZSTD_cwksp_dynamic_alloc, 58 ZSTD_cwksp_static_alloc 59 } ZSTD_cwksp_static_alloc_e; 60 61 /** 62 * Zstd fits all its internal datastructures into a single continuous buffer, 63 * so that it only needs to perform a single OS allocation (or so that a buffer 64 * can be provided to it and it can perform no allocations at all). This buffer 65 * is called the workspace. 66 * 67 * Several optimizations complicate that process of allocating memory ranges 68 * from this workspace for each internal datastructure: 69 * 70 * - These different internal datastructures have different setup requirements: 71 * 72 * - The static objects need to be cleared once and can then be trivially 73 * reused for each compression. 74 * 75 * - Various buffers don't need to be initialized at all--they are always 76 * written into before they're read. 77 * 78 * - The matchstate tables have a unique requirement that they don't need 79 * their memory to be totally cleared, but they do need the memory to have 80 * some bound, i.e., a guarantee that all values in the memory they've been 81 * allocated is less than some maximum value (which is the starting value 82 * for the indices that they will then use for compression). When this 83 * guarantee is provided to them, they can use the memory without any setup 84 * work. When it can't, they have to clear the area. 85 * 86 * - These buffers also have different alignment requirements. 87 * 88 * - We would like to reuse the objects in the workspace for multiple 89 * compressions without having to perform any expensive reallocation or 90 * reinitialization work. 91 * 92 * - We would like to be able to efficiently reuse the workspace across 93 * multiple compressions **even when the compression parameters change** and 94 * we need to resize some of the objects (where possible). 95 * 96 * To attempt to manage this buffer, given these constraints, the ZSTD_cwksp 97 * abstraction was created. It works as follows: 98 * 99 * Workspace Layout: 100 * 101 * [ ... workspace ... ] 102 * [objects][tables ... ->] free space [<- ... aligned][<- ... buffers] 103 * 104 * The various objects that live in the workspace are divided into the 105 * following categories, and are allocated separately: 106 * 107 * - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict, 108 * so that literally everything fits in a single buffer. Note: if present, 109 * this must be the first object in the workspace, since ZSTD_customFree{CCtx, 110 * CDict}() rely on a pointer comparison to see whether one or two frees are 111 * required. 112 * 113 * - Fixed size objects: these are fixed-size, fixed-count objects that are 114 * nonetheless "dynamically" allocated in the workspace so that we can 115 * control how they're initialized separately from the broader ZSTD_CCtx. 116 * Examples: 117 * - Entropy Workspace 118 * - 2 x ZSTD_compressedBlockState_t 119 * - CDict dictionary contents 120 * 121 * - Tables: these are any of several different datastructures (hash tables, 122 * chain tables, binary trees) that all respect a common format: they are 123 * uint32_t arrays, all of whose values are between 0 and (nextSrc - base). 124 * Their sizes depend on the cparams. These tables are 64-byte aligned. 125 * 126 * - Aligned: these buffers are used for various purposes that require 4 byte 127 * alignment, but don't require any initialization before they're used. These 128 * buffers are each aligned to 64 bytes. 129 * 130 * - Buffers: these buffers are used for various purposes that don't require 131 * any alignment or initialization before they're used. This means they can 132 * be moved around at no cost for a new compression. 133 * 134 * Allocating Memory: 135 * 136 * The various types of objects must be allocated in order, so they can be 137 * correctly packed into the workspace buffer. That order is: 138 * 139 * 1. Objects 140 * 2. Buffers 141 * 3. Aligned/Tables 142 * 143 * Attempts to reserve objects of different types out of order will fail. 144 */ 145 typedef struct { 146 void* workspace; 147 void* workspaceEnd; 148 149 void* objectEnd; 150 void* tableEnd; 151 void* tableValidEnd; 152 void* allocStart; 153 154 BYTE allocFailed; 155 int workspaceOversizedDuration; 156 ZSTD_cwksp_alloc_phase_e phase; 157 ZSTD_cwksp_static_alloc_e isStatic; 158 } ZSTD_cwksp; 159 160 /*-************************************* 161 * Functions 162 ***************************************/ 163 164 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws); 165 166 MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) { 167 (void)ws; 168 assert(ws->workspace <= ws->objectEnd); 169 assert(ws->objectEnd <= ws->tableEnd); 170 assert(ws->objectEnd <= ws->tableValidEnd); 171 assert(ws->tableEnd <= ws->allocStart); 172 assert(ws->tableValidEnd <= ws->allocStart); 173 assert(ws->allocStart <= ws->workspaceEnd); 174 } 175 176 /** 177 * Align must be a power of 2. 178 */ 179 MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) { 180 size_t const mask = align - 1; 181 assert((align & mask) == 0); 182 return (size + mask) & ~mask; 183 } 184 185 /** 186 * Use this to determine how much space in the workspace we will consume to 187 * allocate this object. (Normally it should be exactly the size of the object, 188 * but under special conditions, like ASAN, where we pad each object, it might 189 * be larger.) 190 * 191 * Since tables aren't currently redzoned, you don't need to call through this 192 * to figure out how much space you need for the matchState tables. Everything 193 * else is though. 194 * 195 * Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size(). 196 */ 197 MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) { 198 if (size == 0) 199 return 0; 200 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 201 return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; 202 #else 203 return size; 204 #endif 205 } 206 207 /** 208 * Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes. 209 * Used to determine the number of bytes required for a given "aligned". 210 */ 211 MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) { 212 return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES)); 213 } 214 215 /** 216 * Returns the amount of additional space the cwksp must allocate 217 * for internal purposes (currently only alignment). 218 */ 219 MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) { 220 /* For alignment, the wksp will always allocate an additional n_1=[1, 64] bytes 221 * to align the beginning of tables section, as well as another n_2=[0, 63] bytes 222 * to align the beginning of the aligned section. 223 * 224 * n_1 + n_2 == 64 bytes if the cwksp is freshly allocated, due to tables and 225 * aligneds being sized in multiples of 64 bytes. 226 */ 227 size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES; 228 return slackSpace; 229 } 230 231 232 /** 233 * Return the number of additional bytes required to align a pointer to the given number of bytes. 234 * alignBytes must be a power of two. 235 */ 236 MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) { 237 size_t const alignBytesMask = alignBytes - 1; 238 size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask; 239 assert((alignBytes & alignBytesMask) == 0); 240 assert(bytes != ZSTD_CWKSP_ALIGNMENT_BYTES); 241 return bytes; 242 } 243 244 /** 245 * Internal function. Do not use directly. 246 * Reserves the given number of bytes within the aligned/buffer segment of the wksp, 247 * which counts from the end of the wksp (as opposed to the object/table segment). 248 * 249 * Returns a pointer to the beginning of that space. 250 */ 251 MEM_STATIC void* 252 ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes) 253 { 254 void* const alloc = (BYTE*)ws->allocStart - bytes; 255 void* const bottom = ws->tableEnd; 256 DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining", 257 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); 258 ZSTD_cwksp_assert_internal_consistency(ws); 259 assert(alloc >= bottom); 260 if (alloc < bottom) { 261 DEBUGLOG(4, "cwksp: alloc failed!"); 262 ws->allocFailed = 1; 263 return NULL; 264 } 265 /* the area is reserved from the end of wksp. 266 * If it overlaps with tableValidEnd, it voids guarantees on values' range */ 267 if (alloc < ws->tableValidEnd) { 268 ws->tableValidEnd = alloc; 269 } 270 ws->allocStart = alloc; 271 return alloc; 272 } 273 274 /** 275 * Moves the cwksp to the next phase, and does any necessary allocations. 276 * cwksp initialization must necessarily go through each phase in order. 277 * Returns a 0 on success, or zstd error 278 */ 279 MEM_STATIC size_t 280 ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase) 281 { 282 assert(phase >= ws->phase); 283 if (phase > ws->phase) { 284 /* Going from allocating objects to allocating buffers */ 285 if (ws->phase < ZSTD_cwksp_alloc_buffers && 286 phase >= ZSTD_cwksp_alloc_buffers) { 287 ws->tableValidEnd = ws->objectEnd; 288 } 289 290 /* Going from allocating buffers to allocating aligneds/tables */ 291 if (ws->phase < ZSTD_cwksp_alloc_aligned && 292 phase >= ZSTD_cwksp_alloc_aligned) { 293 { /* Align the start of the "aligned" to 64 bytes. Use [1, 64] bytes. */ 294 size_t const bytesToAlign = 295 ZSTD_CWKSP_ALIGNMENT_BYTES - ZSTD_cwksp_bytes_to_align_ptr(ws->allocStart, ZSTD_CWKSP_ALIGNMENT_BYTES); 296 DEBUGLOG(5, "reserving aligned alignment addtl space: %zu", bytesToAlign); 297 ZSTD_STATIC_ASSERT((ZSTD_CWKSP_ALIGNMENT_BYTES & (ZSTD_CWKSP_ALIGNMENT_BYTES - 1)) == 0); /* power of 2 */ 298 RETURN_ERROR_IF(!ZSTD_cwksp_reserve_internal_buffer_space(ws, bytesToAlign), 299 memory_allocation, "aligned phase - alignment initial allocation failed!"); 300 } 301 { /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */ 302 void* const alloc = ws->objectEnd; 303 size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES); 304 void* const objectEnd = (BYTE*)alloc + bytesToAlign; 305 DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign); 306 RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation, 307 "table phase - alignment initial allocation failed!"); 308 ws->objectEnd = objectEnd; 309 ws->tableEnd = objectEnd; /* table area starts being empty */ 310 if (ws->tableValidEnd < ws->tableEnd) { 311 ws->tableValidEnd = ws->tableEnd; 312 } } } 313 ws->phase = phase; 314 ZSTD_cwksp_assert_internal_consistency(ws); 315 } 316 return 0; 317 } 318 319 /** 320 * Returns whether this object/buffer/etc was allocated in this workspace. 321 */ 322 MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr) 323 { 324 return (ptr != NULL) && (ws->workspace <= ptr) && (ptr <= ws->workspaceEnd); 325 } 326 327 /** 328 * Internal function. Do not use directly. 329 */ 330 MEM_STATIC void* 331 ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase) 332 { 333 void* alloc; 334 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) { 335 return NULL; 336 } 337 338 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 339 /* over-reserve space */ 340 bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; 341 #endif 342 343 alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes); 344 345 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 346 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on 347 * either size. */ 348 if (alloc) { 349 alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE; 350 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 351 __asan_unpoison_memory_region(alloc, bytes); 352 } 353 } 354 #endif 355 356 return alloc; 357 } 358 359 /** 360 * Reserves and returns unaligned memory. 361 */ 362 MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes) 363 { 364 return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers); 365 } 366 367 /** 368 * Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes). 369 */ 370 MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes) 371 { 372 void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES), 373 ZSTD_cwksp_alloc_aligned); 374 assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0); 375 return ptr; 376 } 377 378 /** 379 * Aligned on 64 bytes. These buffers have the special property that 380 * their values remain constrained, allowing us to re-use them without 381 * memset()-ing them. 382 */ 383 MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes) 384 { 385 const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned; 386 void* alloc; 387 void* end; 388 void* top; 389 390 if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) { 391 return NULL; 392 } 393 alloc = ws->tableEnd; 394 end = (BYTE *)alloc + bytes; 395 top = ws->allocStart; 396 397 DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining", 398 alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes); 399 assert((bytes & (sizeof(U32)-1)) == 0); 400 ZSTD_cwksp_assert_internal_consistency(ws); 401 assert(end <= top); 402 if (end > top) { 403 DEBUGLOG(4, "cwksp: table alloc failed!"); 404 ws->allocFailed = 1; 405 return NULL; 406 } 407 ws->tableEnd = end; 408 409 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 410 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 411 __asan_unpoison_memory_region(alloc, bytes); 412 } 413 #endif 414 415 assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0); 416 assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0); 417 return alloc; 418 } 419 420 /** 421 * Aligned on sizeof(void*). 422 * Note : should happen only once, at workspace first initialization 423 */ 424 MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes) 425 { 426 size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*)); 427 void* alloc = ws->objectEnd; 428 void* end = (BYTE*)alloc + roundedBytes; 429 430 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 431 /* over-reserve space */ 432 end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE; 433 #endif 434 435 DEBUGLOG(4, 436 "cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining", 437 alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes); 438 assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0); 439 assert(bytes % ZSTD_ALIGNOF(void*) == 0); 440 ZSTD_cwksp_assert_internal_consistency(ws); 441 /* we must be in the first phase, no advance is possible */ 442 if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) { 443 DEBUGLOG(3, "cwksp: object alloc failed!"); 444 ws->allocFailed = 1; 445 return NULL; 446 } 447 ws->objectEnd = end; 448 ws->tableEnd = end; 449 ws->tableValidEnd = end; 450 451 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 452 /* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on 453 * either size. */ 454 alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE; 455 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 456 __asan_unpoison_memory_region(alloc, bytes); 457 } 458 #endif 459 460 return alloc; 461 } 462 463 MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws) 464 { 465 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty"); 466 467 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) 468 /* To validate that the table re-use logic is sound, and that we don't 469 * access table space that we haven't cleaned, we re-"poison" the table 470 * space every time we mark it dirty. */ 471 { 472 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd; 473 assert(__msan_test_shadow(ws->objectEnd, size) == -1); 474 __msan_poison(ws->objectEnd, size); 475 } 476 #endif 477 478 assert(ws->tableValidEnd >= ws->objectEnd); 479 assert(ws->tableValidEnd <= ws->allocStart); 480 ws->tableValidEnd = ws->objectEnd; 481 ZSTD_cwksp_assert_internal_consistency(ws); 482 } 483 484 MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) { 485 DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean"); 486 assert(ws->tableValidEnd >= ws->objectEnd); 487 assert(ws->tableValidEnd <= ws->allocStart); 488 if (ws->tableValidEnd < ws->tableEnd) { 489 ws->tableValidEnd = ws->tableEnd; 490 } 491 ZSTD_cwksp_assert_internal_consistency(ws); 492 } 493 494 /** 495 * Zero the part of the allocated tables not already marked clean. 496 */ 497 MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) { 498 DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables"); 499 assert(ws->tableValidEnd >= ws->objectEnd); 500 assert(ws->tableValidEnd <= ws->allocStart); 501 if (ws->tableValidEnd < ws->tableEnd) { 502 ZSTD_memset(ws->tableValidEnd, 0, (BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd); 503 } 504 ZSTD_cwksp_mark_tables_clean(ws); 505 } 506 507 /** 508 * Invalidates table allocations. 509 * All other allocations remain valid. 510 */ 511 MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) { 512 DEBUGLOG(4, "cwksp: clearing tables!"); 513 514 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 515 /* We don't do this when the workspace is statically allocated, because 516 * when that is the case, we have no capability to hook into the end of the 517 * workspace's lifecycle to unpoison the memory. 518 */ 519 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 520 size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd; 521 __asan_poison_memory_region(ws->objectEnd, size); 522 } 523 #endif 524 525 ws->tableEnd = ws->objectEnd; 526 ZSTD_cwksp_assert_internal_consistency(ws); 527 } 528 529 /** 530 * Invalidates all buffer, aligned, and table allocations. 531 * Object allocations remain valid. 532 */ 533 MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) { 534 DEBUGLOG(4, "cwksp: clearing!"); 535 536 #if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE) 537 /* To validate that the context re-use logic is sound, and that we don't 538 * access stuff that this compression hasn't initialized, we re-"poison" 539 * the workspace (or at least the non-static, non-table parts of it) 540 * every time we start a new compression. */ 541 { 542 size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->tableValidEnd; 543 __msan_poison(ws->tableValidEnd, size); 544 } 545 #endif 546 547 #if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE) 548 /* We don't do this when the workspace is statically allocated, because 549 * when that is the case, we have no capability to hook into the end of the 550 * workspace's lifecycle to unpoison the memory. 551 */ 552 if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) { 553 size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd; 554 __asan_poison_memory_region(ws->objectEnd, size); 555 } 556 #endif 557 558 ws->tableEnd = ws->objectEnd; 559 ws->allocStart = ws->workspaceEnd; 560 ws->allocFailed = 0; 561 if (ws->phase > ZSTD_cwksp_alloc_buffers) { 562 ws->phase = ZSTD_cwksp_alloc_buffers; 563 } 564 ZSTD_cwksp_assert_internal_consistency(ws); 565 } 566 567 /** 568 * The provided workspace takes ownership of the buffer [start, start+size). 569 * Any existing values in the workspace are ignored (the previously managed 570 * buffer, if present, must be separately freed). 571 */ 572 MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) { 573 DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size); 574 assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */ 575 ws->workspace = start; 576 ws->workspaceEnd = (BYTE*)start + size; 577 ws->objectEnd = ws->workspace; 578 ws->tableValidEnd = ws->objectEnd; 579 ws->phase = ZSTD_cwksp_alloc_objects; 580 ws->isStatic = isStatic; 581 ZSTD_cwksp_clear(ws); 582 ws->workspaceOversizedDuration = 0; 583 ZSTD_cwksp_assert_internal_consistency(ws); 584 } 585 586 MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) { 587 void* workspace = ZSTD_customMalloc(size, customMem); 588 DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size); 589 RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!"); 590 ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc); 591 return 0; 592 } 593 594 MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) { 595 void *ptr = ws->workspace; 596 DEBUGLOG(4, "cwksp: freeing workspace"); 597 ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp)); 598 ZSTD_customFree(ptr, customMem); 599 } 600 601 /** 602 * Moves the management of a workspace from one cwksp to another. The src cwksp 603 * is left in an invalid state (src must be re-init()'ed before it's used again). 604 */ 605 MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) { 606 *dst = *src; 607 ZSTD_memset(src, 0, sizeof(ZSTD_cwksp)); 608 } 609 610 MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) { 611 return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace); 612 } 613 614 MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) { 615 return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace) 616 + (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart); 617 } 618 619 MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) { 620 return ws->allocFailed; 621 } 622 623 /*-************************************* 624 * Functions Checking Free Space 625 ***************************************/ 626 627 /* ZSTD_alignmentSpaceWithinBounds() : 628 * Returns if the estimated space needed for a wksp is within an acceptable limit of the 629 * actual amount of space used. 630 */ 631 MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp* const ws, 632 size_t const estimatedSpace, int resizedWorkspace) { 633 if (resizedWorkspace) { 634 /* Resized/newly allocated wksp should have exact bounds */ 635 return ZSTD_cwksp_used(ws) == estimatedSpace; 636 } else { 637 /* Due to alignment, when reusing a workspace, we can actually consume 63 fewer or more bytes 638 * than estimatedSpace. See the comments in zstd_cwksp.h for details. 639 */ 640 return (ZSTD_cwksp_used(ws) >= estimatedSpace - 63) && (ZSTD_cwksp_used(ws) <= estimatedSpace + 63); 641 } 642 } 643 644 645 MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) { 646 return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd); 647 } 648 649 MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 650 return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace; 651 } 652 653 MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 654 return ZSTD_cwksp_check_available( 655 ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR); 656 } 657 658 MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) { 659 return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace) 660 && ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION; 661 } 662 663 MEM_STATIC void ZSTD_cwksp_bump_oversized_duration( 664 ZSTD_cwksp* ws, size_t additionalNeededSpace) { 665 if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) { 666 ws->workspaceOversizedDuration++; 667 } else { 668 ws->workspaceOversizedDuration = 0; 669 } 670 } 671 672 #if defined (__cplusplus) 673 } 674 #endif 675 676 #endif /* ZSTD_CWKSP_H */ 677