xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision 641efdd10cc3ad05fb7eaeeae20b15c5ad4128c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  *
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/<pool_name>/<dataset_name>
33  *
34  * Volumes are persistent through reboot and module load.  No user command
35  * needs to be run before opening and using a device.
36  *
37  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
38  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40  */
41 
42 /*
43  * Note on locking of zvol state structures.
44  *
45  * These structures are used to maintain internal state used to emulate block
46  * devices on top of zvols. In particular, management of device minor number
47  * operations - create, remove, rename, and set_snapdev - involves access to
48  * these structures. The zvol_state_lock is primarily used to protect the
49  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50  * of the zvol_state_t structures, as well as to make sure that when the
51  * time comes to remove the structure from the list, it is not in use, and
52  * therefore, it can be taken off zvol_state_list and freed.
53  *
54  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55  * e.g. for the duration of receive and rollback operations. This lock can be
56  * held for significant periods of time. Given that it is undesirable to hold
57  * mutexes for long periods of time, the following lock ordering applies:
58  * - take zvol_state_lock if necessary, to protect zvol_state_list
59  * - take zv_suspend_lock if necessary, by the code path in question
60  * - take zv_state_lock to protect zvol_state_t
61  *
62  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63  * single-threaded (to preserve order of minor operations), and are executed
64  * through the zvol_task_cb that dispatches the specific operations. Therefore,
65  * these operations are serialized per pool. Consequently, we can be certain
66  * that for a given zvol, there is only one operation at a time in progress.
67  * That is why one can be sure that first, zvol_state_t for a given zvol is
68  * allocated and placed on zvol_state_list, and then other minor operations
69  * for this zvol are going to proceed in the order of issue.
70  *
71  */
72 
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88 
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91 
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 
96 typedef enum {
97 	ZVOL_ASYNC_REMOVE_MINORS,
98 	ZVOL_ASYNC_RENAME_MINORS,
99 	ZVOL_ASYNC_SET_SNAPDEV,
100 	ZVOL_ASYNC_SET_VOLMODE,
101 	ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
103 
104 typedef struct {
105 	zvol_async_op_t op;
106 	char name1[MAXNAMELEN];
107 	char name2[MAXNAMELEN];
108 	uint64_t value;
109 } zvol_task_t;
110 
111 uint64_t
112 zvol_name_hash(const char *name)
113 {
114 	uint64_t crc = -1ULL;
115 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
116 	for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
117 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
118 	return (crc);
119 }
120 
121 /*
122  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
123  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
124  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
125  * before zv_state_lock. The mode argument indicates the mode (including none)
126  * for zv_suspend_lock to be taken.
127  */
128 zvol_state_t *
129 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
130 {
131 	zvol_state_t *zv;
132 	struct hlist_node *p = NULL;
133 
134 	rw_enter(&zvol_state_lock, RW_READER);
135 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
136 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
137 		mutex_enter(&zv->zv_state_lock);
138 		if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
139 			/*
140 			 * this is the right zvol, take the locks in the
141 			 * right order
142 			 */
143 			if (mode != RW_NONE &&
144 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
145 				mutex_exit(&zv->zv_state_lock);
146 				rw_enter(&zv->zv_suspend_lock, mode);
147 				mutex_enter(&zv->zv_state_lock);
148 				/*
149 				 * zvol cannot be renamed as we continue
150 				 * to hold zvol_state_lock
151 				 */
152 				ASSERT(zv->zv_hash == hash &&
153 				    strcmp(zv->zv_name, name) == 0);
154 			}
155 			rw_exit(&zvol_state_lock);
156 			return (zv);
157 		}
158 		mutex_exit(&zv->zv_state_lock);
159 	}
160 	rw_exit(&zvol_state_lock);
161 
162 	return (NULL);
163 }
164 
165 /*
166  * Find a zvol_state_t given the name.
167  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
168  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
169  * before zv_state_lock. The mode argument indicates the mode (including none)
170  * for zv_suspend_lock to be taken.
171  */
172 static zvol_state_t *
173 zvol_find_by_name(const char *name, int mode)
174 {
175 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
176 }
177 
178 /*
179  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
180  */
181 void
182 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
183 {
184 	zfs_creat_t *zct = arg;
185 	nvlist_t *nvprops = zct->zct_props;
186 	int error;
187 	uint64_t volblocksize, volsize;
188 
189 	VERIFY(nvlist_lookup_uint64(nvprops,
190 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
191 	if (nvlist_lookup_uint64(nvprops,
192 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
193 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
194 
195 	/*
196 	 * These properties must be removed from the list so the generic
197 	 * property setting step won't apply to them.
198 	 */
199 	VERIFY(nvlist_remove_all(nvprops,
200 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
201 	(void) nvlist_remove_all(nvprops,
202 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
203 
204 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
205 	    DMU_OT_NONE, 0, tx);
206 	ASSERT(error == 0);
207 
208 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
209 	    DMU_OT_NONE, 0, tx);
210 	ASSERT(error == 0);
211 
212 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
213 	ASSERT(error == 0);
214 }
215 
216 /*
217  * ZFS_IOC_OBJSET_STATS entry point.
218  */
219 int
220 zvol_get_stats(objset_t *os, nvlist_t *nv)
221 {
222 	int error;
223 	dmu_object_info_t *doi;
224 	uint64_t val;
225 
226 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
227 	if (error)
228 		return (SET_ERROR(error));
229 
230 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
231 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
232 	error = dmu_object_info(os, ZVOL_OBJ, doi);
233 
234 	if (error == 0) {
235 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
236 		    doi->doi_data_block_size);
237 	}
238 
239 	kmem_free(doi, sizeof (dmu_object_info_t));
240 
241 	return (SET_ERROR(error));
242 }
243 
244 /*
245  * Sanity check volume size.
246  */
247 int
248 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
249 {
250 	if (volsize == 0)
251 		return (SET_ERROR(EINVAL));
252 
253 	if (volsize % blocksize != 0)
254 		return (SET_ERROR(EINVAL));
255 
256 #ifdef _ILP32
257 	if (volsize - 1 > SPEC_MAXOFFSET_T)
258 		return (SET_ERROR(EOVERFLOW));
259 #endif
260 	return (0);
261 }
262 
263 /*
264  * Ensure the zap is flushed then inform the VFS of the capacity change.
265  */
266 static int
267 zvol_update_volsize(uint64_t volsize, objset_t *os)
268 {
269 	dmu_tx_t *tx;
270 	int error;
271 	uint64_t txg;
272 
273 	tx = dmu_tx_create(os);
274 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
275 	dmu_tx_mark_netfree(tx);
276 	error = dmu_tx_assign(tx, TXG_WAIT);
277 	if (error) {
278 		dmu_tx_abort(tx);
279 		return (SET_ERROR(error));
280 	}
281 	txg = dmu_tx_get_txg(tx);
282 
283 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
284 	    &volsize, tx);
285 	dmu_tx_commit(tx);
286 
287 	txg_wait_synced(dmu_objset_pool(os), txg);
288 
289 	if (error == 0)
290 		error = dmu_free_long_range(os,
291 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
292 
293 	return (error);
294 }
295 
296 /*
297  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
298  * size will result in a udev "change" event being generated.
299  */
300 int
301 zvol_set_volsize(const char *name, uint64_t volsize)
302 {
303 	objset_t *os = NULL;
304 	uint64_t readonly;
305 	int error;
306 	boolean_t owned = B_FALSE;
307 
308 	error = dsl_prop_get_integer(name,
309 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
310 	if (error != 0)
311 		return (SET_ERROR(error));
312 	if (readonly)
313 		return (SET_ERROR(EROFS));
314 
315 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
316 
317 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
318 	    RW_READ_HELD(&zv->zv_suspend_lock)));
319 
320 	if (zv == NULL || zv->zv_objset == NULL) {
321 		if (zv != NULL)
322 			rw_exit(&zv->zv_suspend_lock);
323 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
324 		    FTAG, &os)) != 0) {
325 			if (zv != NULL)
326 				mutex_exit(&zv->zv_state_lock);
327 			return (SET_ERROR(error));
328 		}
329 		owned = B_TRUE;
330 		if (zv != NULL)
331 			zv->zv_objset = os;
332 	} else {
333 		os = zv->zv_objset;
334 	}
335 
336 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
337 
338 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
339 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
340 		goto out;
341 
342 	error = zvol_update_volsize(volsize, os);
343 	if (error == 0 && zv != NULL) {
344 		zv->zv_volsize = volsize;
345 		zv->zv_changed = 1;
346 	}
347 out:
348 	kmem_free(doi, sizeof (dmu_object_info_t));
349 
350 	if (owned) {
351 		dmu_objset_disown(os, B_TRUE, FTAG);
352 		if (zv != NULL)
353 			zv->zv_objset = NULL;
354 	} else {
355 		rw_exit(&zv->zv_suspend_lock);
356 	}
357 
358 	if (zv != NULL)
359 		mutex_exit(&zv->zv_state_lock);
360 
361 	if (error == 0 && zv != NULL)
362 		zvol_os_update_volsize(zv, volsize);
363 
364 	return (SET_ERROR(error));
365 }
366 
367 /*
368  * Update volthreading.
369  */
370 int
371 zvol_set_volthreading(const char *name, boolean_t value)
372 {
373 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
374 	if (zv == NULL)
375 		return (ENOENT);
376 	zv->zv_threading = value;
377 	mutex_exit(&zv->zv_state_lock);
378 	return (0);
379 }
380 
381 /*
382  * Update zvol ro property.
383  */
384 int
385 zvol_set_ro(const char *name, boolean_t value)
386 {
387 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
388 	if (zv == NULL)
389 		return (-1);
390 	if (value) {
391 		zvol_os_set_disk_ro(zv, 1);
392 		zv->zv_flags |= ZVOL_RDONLY;
393 	} else {
394 		zvol_os_set_disk_ro(zv, 0);
395 		zv->zv_flags &= ~ZVOL_RDONLY;
396 	}
397 	mutex_exit(&zv->zv_state_lock);
398 	return (0);
399 }
400 
401 /*
402  * Sanity check volume block size.
403  */
404 int
405 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
406 {
407 	/* Record sizes above 128k need the feature to be enabled */
408 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
409 		spa_t *spa;
410 		int error;
411 
412 		if ((error = spa_open(name, &spa, FTAG)) != 0)
413 			return (error);
414 
415 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
416 			spa_close(spa, FTAG);
417 			return (SET_ERROR(ENOTSUP));
418 		}
419 
420 		/*
421 		 * We don't allow setting the property above 1MB,
422 		 * unless the tunable has been changed.
423 		 */
424 		if (volblocksize > zfs_max_recordsize)
425 			return (SET_ERROR(EDOM));
426 
427 		spa_close(spa, FTAG);
428 	}
429 
430 	if (volblocksize < SPA_MINBLOCKSIZE ||
431 	    volblocksize > SPA_MAXBLOCKSIZE ||
432 	    !ISP2(volblocksize))
433 		return (SET_ERROR(EDOM));
434 
435 	return (0);
436 }
437 
438 /*
439  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
440  * implement DKIOCFREE/free-long-range.
441  */
442 static int
443 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
444 {
445 	zvol_state_t *zv = arg1;
446 	lr_truncate_t *lr = arg2;
447 	uint64_t offset, length;
448 
449 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
450 
451 	if (byteswap)
452 		byteswap_uint64_array(lr, sizeof (*lr));
453 
454 	offset = lr->lr_offset;
455 	length = lr->lr_length;
456 
457 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
458 	dmu_tx_mark_netfree(tx);
459 	int error = dmu_tx_assign(tx, TXG_WAIT);
460 	if (error != 0) {
461 		dmu_tx_abort(tx);
462 	} else {
463 		(void) zil_replaying(zv->zv_zilog, tx);
464 		dmu_tx_commit(tx);
465 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
466 		    length);
467 	}
468 
469 	return (error);
470 }
471 
472 /*
473  * Replay a TX_WRITE ZIL transaction that didn't get committed
474  * after a system failure
475  */
476 static int
477 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
478 {
479 	zvol_state_t *zv = arg1;
480 	lr_write_t *lr = arg2;
481 	objset_t *os = zv->zv_objset;
482 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
483 	uint64_t offset, length;
484 	dmu_tx_t *tx;
485 	int error;
486 
487 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
488 
489 	if (byteswap)
490 		byteswap_uint64_array(lr, sizeof (*lr));
491 
492 	offset = lr->lr_offset;
493 	length = lr->lr_length;
494 
495 	/* If it's a dmu_sync() block, write the whole block */
496 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
497 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
498 		if (length < blocksize) {
499 			offset -= offset % blocksize;
500 			length = blocksize;
501 		}
502 	}
503 
504 	tx = dmu_tx_create(os);
505 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
506 	error = dmu_tx_assign(tx, TXG_WAIT);
507 	if (error) {
508 		dmu_tx_abort(tx);
509 	} else {
510 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
511 		(void) zil_replaying(zv->zv_zilog, tx);
512 		dmu_tx_commit(tx);
513 	}
514 
515 	return (error);
516 }
517 
518 /*
519  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
520  * after a system failure.
521  *
522  * TODO: For now we drop block cloning transations for ZVOLs as they are
523  *       unsupported, but we still need to inform BRT about that as we
524  *       claimed them during pool import.
525  *       This situation can occur when we try to import a pool from a ZFS
526  *       version supporting block cloning for ZVOLs into a system that
527  *       has this ZFS version, that doesn't support block cloning for ZVOLs.
528  */
529 static int
530 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
531 {
532 	char name[ZFS_MAX_DATASET_NAME_LEN];
533 	zvol_state_t *zv = arg1;
534 	objset_t *os = zv->zv_objset;
535 	lr_clone_range_t *lr = arg2;
536 	blkptr_t *bp;
537 	dmu_tx_t *tx;
538 	spa_t *spa;
539 	uint_t ii;
540 	int error;
541 
542 	ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
543 	ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t,
544 	    lr_bps[lr->lr_nbps]));
545 
546 	dmu_objset_name(os, name);
547 	cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.",
548 	    name);
549 
550 	if (byteswap)
551 		byteswap_uint64_array(lr, sizeof (*lr));
552 
553 	tx = dmu_tx_create(os);
554 	error = dmu_tx_assign(tx, TXG_WAIT);
555 	if (error) {
556 		dmu_tx_abort(tx);
557 		return (error);
558 	}
559 
560 	spa = os->os_spa;
561 
562 	for (ii = 0; ii < lr->lr_nbps; ii++) {
563 		bp = &lr->lr_bps[ii];
564 
565 		if (!BP_IS_HOLE(bp)) {
566 			zio_free(spa, dmu_tx_get_txg(tx), bp);
567 		}
568 	}
569 
570 	(void) zil_replaying(zv->zv_zilog, tx);
571 	dmu_tx_commit(tx);
572 
573 	return (0);
574 }
575 
576 static int
577 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
578 {
579 	(void) arg1, (void) arg2, (void) byteswap;
580 	return (SET_ERROR(ENOTSUP));
581 }
582 
583 /*
584  * Callback vectors for replaying records.
585  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
586  */
587 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
588 	zvol_replay_err,	/* no such transaction type */
589 	zvol_replay_err,	/* TX_CREATE */
590 	zvol_replay_err,	/* TX_MKDIR */
591 	zvol_replay_err,	/* TX_MKXATTR */
592 	zvol_replay_err,	/* TX_SYMLINK */
593 	zvol_replay_err,	/* TX_REMOVE */
594 	zvol_replay_err,	/* TX_RMDIR */
595 	zvol_replay_err,	/* TX_LINK */
596 	zvol_replay_err,	/* TX_RENAME */
597 	zvol_replay_write,	/* TX_WRITE */
598 	zvol_replay_truncate,	/* TX_TRUNCATE */
599 	zvol_replay_err,	/* TX_SETATTR */
600 	zvol_replay_err,	/* TX_ACL */
601 	zvol_replay_err,	/* TX_CREATE_ATTR */
602 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
603 	zvol_replay_err,	/* TX_MKDIR_ACL */
604 	zvol_replay_err,	/* TX_MKDIR_ATTR */
605 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
606 	zvol_replay_err,	/* TX_WRITE2 */
607 	zvol_replay_err,	/* TX_SETSAXATTR */
608 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
609 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
610 	zvol_replay_clone_range	/* TX_CLONE_RANGE */
611 };
612 
613 /*
614  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
615  *
616  * We store data in the log buffers if it's small enough.
617  * Otherwise we will later flush the data out via dmu_sync().
618  */
619 static const ssize_t zvol_immediate_write_sz = 32768;
620 
621 void
622 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
623     uint64_t size, boolean_t commit)
624 {
625 	uint32_t blocksize = zv->zv_volblocksize;
626 	zilog_t *zilog = zv->zv_zilog;
627 	itx_wr_state_t write_state;
628 	uint64_t sz = size;
629 
630 	if (zil_replaying(zilog, tx))
631 		return;
632 
633 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
634 		write_state = WR_INDIRECT;
635 	else if (!spa_has_slogs(zilog->zl_spa) &&
636 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
637 		write_state = WR_INDIRECT;
638 	else if (commit)
639 		write_state = WR_COPIED;
640 	else
641 		write_state = WR_NEED_COPY;
642 
643 	while (size) {
644 		itx_t *itx;
645 		lr_write_t *lr;
646 		itx_wr_state_t wr_state = write_state;
647 		ssize_t len = size;
648 
649 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
650 			wr_state = WR_NEED_COPY;
651 		else if (wr_state == WR_INDIRECT)
652 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
653 
654 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
655 		    (wr_state == WR_COPIED ? len : 0));
656 		lr = (lr_write_t *)&itx->itx_lr;
657 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
658 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
659 			zil_itx_destroy(itx);
660 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
661 			lr = (lr_write_t *)&itx->itx_lr;
662 			wr_state = WR_NEED_COPY;
663 		}
664 
665 		itx->itx_wr_state = wr_state;
666 		lr->lr_foid = ZVOL_OBJ;
667 		lr->lr_offset = offset;
668 		lr->lr_length = len;
669 		lr->lr_blkoff = 0;
670 		BP_ZERO(&lr->lr_blkptr);
671 
672 		itx->itx_private = zv;
673 
674 		(void) zil_itx_assign(zilog, itx, tx);
675 
676 		offset += len;
677 		size -= len;
678 	}
679 
680 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
681 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
682 	}
683 }
684 
685 /*
686  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
687  */
688 void
689 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
690 {
691 	itx_t *itx;
692 	lr_truncate_t *lr;
693 	zilog_t *zilog = zv->zv_zilog;
694 
695 	if (zil_replaying(zilog, tx))
696 		return;
697 
698 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
699 	lr = (lr_truncate_t *)&itx->itx_lr;
700 	lr->lr_foid = ZVOL_OBJ;
701 	lr->lr_offset = off;
702 	lr->lr_length = len;
703 
704 	zil_itx_assign(zilog, itx, tx);
705 }
706 
707 
708 static void
709 zvol_get_done(zgd_t *zgd, int error)
710 {
711 	(void) error;
712 	if (zgd->zgd_db)
713 		dmu_buf_rele(zgd->zgd_db, zgd);
714 
715 	zfs_rangelock_exit(zgd->zgd_lr);
716 
717 	kmem_free(zgd, sizeof (zgd_t));
718 }
719 
720 /*
721  * Get data to generate a TX_WRITE intent log record.
722  */
723 int
724 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
725     struct lwb *lwb, zio_t *zio)
726 {
727 	zvol_state_t *zv = arg;
728 	uint64_t offset = lr->lr_offset;
729 	uint64_t size = lr->lr_length;
730 	dmu_buf_t *db;
731 	zgd_t *zgd;
732 	int error;
733 
734 	ASSERT3P(lwb, !=, NULL);
735 	ASSERT3U(size, !=, 0);
736 
737 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
738 	zgd->zgd_lwb = lwb;
739 
740 	/*
741 	 * Write records come in two flavors: immediate and indirect.
742 	 * For small writes it's cheaper to store the data with the
743 	 * log record (immediate); for large writes it's cheaper to
744 	 * sync the data and get a pointer to it (indirect) so that
745 	 * we don't have to write the data twice.
746 	 */
747 	if (buf != NULL) { /* immediate write */
748 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
749 		    size, RL_READER);
750 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
751 		    DMU_READ_NO_PREFETCH);
752 	} else { /* indirect write */
753 		ASSERT3P(zio, !=, NULL);
754 		/*
755 		 * Have to lock the whole block to ensure when it's written out
756 		 * and its checksum is being calculated that no one can change
757 		 * the data. Contrarily to zfs_get_data we need not re-check
758 		 * blocksize after we get the lock because it cannot be changed.
759 		 */
760 		size = zv->zv_volblocksize;
761 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
762 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
763 		    size, RL_READER);
764 		error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
765 		    &db);
766 		if (error == 0) {
767 			blkptr_t *bp = &lr->lr_blkptr;
768 
769 			zgd->zgd_db = db;
770 			zgd->zgd_bp = bp;
771 
772 			ASSERT(db != NULL);
773 			ASSERT(db->db_offset == offset);
774 			ASSERT(db->db_size == size);
775 
776 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
777 			    zvol_get_done, zgd);
778 
779 			if (error == 0)
780 				return (0);
781 		}
782 	}
783 
784 	zvol_get_done(zgd, error);
785 
786 	return (SET_ERROR(error));
787 }
788 
789 /*
790  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
791  */
792 
793 void
794 zvol_insert(zvol_state_t *zv)
795 {
796 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
797 	list_insert_head(&zvol_state_list, zv);
798 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
799 }
800 
801 /*
802  * Simply remove the zvol from to list of zvols.
803  */
804 static void
805 zvol_remove(zvol_state_t *zv)
806 {
807 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
808 	list_remove(&zvol_state_list, zv);
809 	hlist_del(&zv->zv_hlink);
810 }
811 
812 /*
813  * Setup zv after we just own the zv->objset
814  */
815 static int
816 zvol_setup_zv(zvol_state_t *zv)
817 {
818 	uint64_t volsize;
819 	int error;
820 	uint64_t ro;
821 	objset_t *os = zv->zv_objset;
822 
823 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
824 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
825 
826 	zv->zv_zilog = NULL;
827 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
828 
829 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
830 	if (error)
831 		return (SET_ERROR(error));
832 
833 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
834 	if (error)
835 		return (SET_ERROR(error));
836 
837 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
838 	if (error)
839 		return (SET_ERROR(error));
840 
841 	zvol_os_set_capacity(zv, volsize >> 9);
842 	zv->zv_volsize = volsize;
843 
844 	if (ro || dmu_objset_is_snapshot(os) ||
845 	    !spa_writeable(dmu_objset_spa(os))) {
846 		zvol_os_set_disk_ro(zv, 1);
847 		zv->zv_flags |= ZVOL_RDONLY;
848 	} else {
849 		zvol_os_set_disk_ro(zv, 0);
850 		zv->zv_flags &= ~ZVOL_RDONLY;
851 	}
852 	return (0);
853 }
854 
855 /*
856  * Shutdown every zv_objset related stuff except zv_objset itself.
857  * The is the reverse of zvol_setup_zv.
858  */
859 static void
860 zvol_shutdown_zv(zvol_state_t *zv)
861 {
862 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
863 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
864 
865 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
866 		ASSERT(zv->zv_zilog != NULL);
867 		zil_close(zv->zv_zilog);
868 	}
869 
870 	zv->zv_zilog = NULL;
871 
872 	dnode_rele(zv->zv_dn, zv);
873 	zv->zv_dn = NULL;
874 
875 	/*
876 	 * Evict cached data. We must write out any dirty data before
877 	 * disowning the dataset.
878 	 */
879 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
880 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
881 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
882 }
883 
884 /*
885  * return the proper tag for rollback and recv
886  */
887 void *
888 zvol_tag(zvol_state_t *zv)
889 {
890 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
891 	return (zv->zv_open_count > 0 ? zv : NULL);
892 }
893 
894 /*
895  * Suspend the zvol for recv and rollback.
896  */
897 zvol_state_t *
898 zvol_suspend(const char *name)
899 {
900 	zvol_state_t *zv;
901 
902 	zv = zvol_find_by_name(name, RW_WRITER);
903 
904 	if (zv == NULL)
905 		return (NULL);
906 
907 	/* block all I/O, release in zvol_resume. */
908 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
909 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
910 
911 	atomic_inc(&zv->zv_suspend_ref);
912 
913 	if (zv->zv_open_count > 0)
914 		zvol_shutdown_zv(zv);
915 
916 	/*
917 	 * do not hold zv_state_lock across suspend/resume to
918 	 * avoid locking up zvol lookups
919 	 */
920 	mutex_exit(&zv->zv_state_lock);
921 
922 	/* zv_suspend_lock is released in zvol_resume() */
923 	return (zv);
924 }
925 
926 int
927 zvol_resume(zvol_state_t *zv)
928 {
929 	int error = 0;
930 
931 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
932 
933 	mutex_enter(&zv->zv_state_lock);
934 
935 	if (zv->zv_open_count > 0) {
936 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
937 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
938 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
939 		dmu_objset_rele(zv->zv_objset, zv);
940 
941 		error = zvol_setup_zv(zv);
942 	}
943 
944 	mutex_exit(&zv->zv_state_lock);
945 
946 	rw_exit(&zv->zv_suspend_lock);
947 	/*
948 	 * We need this because we don't hold zvol_state_lock while releasing
949 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
950 	 * zv_suspend_lock to determine it is safe to free because rwlock is
951 	 * not inherent atomic.
952 	 */
953 	atomic_dec(&zv->zv_suspend_ref);
954 
955 	return (SET_ERROR(error));
956 }
957 
958 int
959 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
960 {
961 	objset_t *os;
962 	int error;
963 
964 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
965 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
966 	ASSERT(mutex_owned(&spa_namespace_lock));
967 
968 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
969 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
970 	if (error)
971 		return (SET_ERROR(error));
972 
973 	zv->zv_objset = os;
974 
975 	error = zvol_setup_zv(zv);
976 	if (error) {
977 		dmu_objset_disown(os, 1, zv);
978 		zv->zv_objset = NULL;
979 	}
980 
981 	return (error);
982 }
983 
984 void
985 zvol_last_close(zvol_state_t *zv)
986 {
987 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
988 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
989 
990 	zvol_shutdown_zv(zv);
991 
992 	dmu_objset_disown(zv->zv_objset, 1, zv);
993 	zv->zv_objset = NULL;
994 }
995 
996 typedef struct minors_job {
997 	list_t *list;
998 	list_node_t link;
999 	/* input */
1000 	char *name;
1001 	/* output */
1002 	int error;
1003 } minors_job_t;
1004 
1005 /*
1006  * Prefetch zvol dnodes for the minors_job
1007  */
1008 static void
1009 zvol_prefetch_minors_impl(void *arg)
1010 {
1011 	minors_job_t *job = arg;
1012 	char *dsname = job->name;
1013 	objset_t *os = NULL;
1014 
1015 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1016 	    FTAG, &os);
1017 	if (job->error == 0) {
1018 		dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1019 		dmu_objset_disown(os, B_TRUE, FTAG);
1020 	}
1021 }
1022 
1023 /*
1024  * Mask errors to continue dmu_objset_find() traversal
1025  */
1026 static int
1027 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1028 {
1029 	minors_job_t *j = arg;
1030 	list_t *minors_list = j->list;
1031 	const char *name = j->name;
1032 
1033 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1034 
1035 	/* skip the designated dataset */
1036 	if (name && strcmp(dsname, name) == 0)
1037 		return (0);
1038 
1039 	/* at this point, the dsname should name a snapshot */
1040 	if (strchr(dsname, '@') == 0) {
1041 		dprintf("zvol_create_snap_minor_cb(): "
1042 		    "%s is not a snapshot name\n", dsname);
1043 	} else {
1044 		minors_job_t *job;
1045 		char *n = kmem_strdup(dsname);
1046 		if (n == NULL)
1047 			return (0);
1048 
1049 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1050 		job->name = n;
1051 		job->list = minors_list;
1052 		job->error = 0;
1053 		list_insert_tail(minors_list, job);
1054 		/* don't care if dispatch fails, because job->error is 0 */
1055 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1056 		    TQ_SLEEP);
1057 	}
1058 
1059 	return (0);
1060 }
1061 
1062 /*
1063  * If spa_keystore_load_wkey() is called for an encrypted zvol,
1064  * we need to look for any clones also using the key. This function
1065  * is "best effort" - so we just skip over it if there are failures.
1066  */
1067 static void
1068 zvol_add_clones(const char *dsname, list_t *minors_list)
1069 {
1070 	/* Also check if it has clones */
1071 	dsl_dir_t *dd = NULL;
1072 	dsl_pool_t *dp = NULL;
1073 
1074 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1075 		return;
1076 
1077 	if (!spa_feature_is_enabled(dp->dp_spa,
1078 	    SPA_FEATURE_ENCRYPTION))
1079 		goto out;
1080 
1081 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1082 		goto out;
1083 
1084 	if (dsl_dir_phys(dd)->dd_clones == 0)
1085 		goto out;
1086 
1087 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1088 	zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1089 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1090 
1091 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1092 	    zap_cursor_retrieve(zc, za) == 0;
1093 	    zap_cursor_advance(zc)) {
1094 		dsl_dataset_t *clone;
1095 		minors_job_t *job;
1096 
1097 		if (dsl_dataset_hold_obj(dd->dd_pool,
1098 		    za->za_first_integer, FTAG, &clone) == 0) {
1099 
1100 			char name[ZFS_MAX_DATASET_NAME_LEN];
1101 			dsl_dataset_name(clone, name);
1102 
1103 			char *n = kmem_strdup(name);
1104 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1105 			job->name = n;
1106 			job->list = minors_list;
1107 			job->error = 0;
1108 			list_insert_tail(minors_list, job);
1109 
1110 			dsl_dataset_rele(clone, FTAG);
1111 		}
1112 	}
1113 	zap_cursor_fini(zc);
1114 	kmem_free(za, sizeof (zap_attribute_t));
1115 	kmem_free(zc, sizeof (zap_cursor_t));
1116 
1117 out:
1118 	if (dd != NULL)
1119 		dsl_dir_rele(dd, FTAG);
1120 	dsl_pool_rele(dp, FTAG);
1121 }
1122 
1123 /*
1124  * Mask errors to continue dmu_objset_find() traversal
1125  */
1126 static int
1127 zvol_create_minors_cb(const char *dsname, void *arg)
1128 {
1129 	uint64_t snapdev;
1130 	int error;
1131 	list_t *minors_list = arg;
1132 
1133 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1134 
1135 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1136 	if (error)
1137 		return (0);
1138 
1139 	/*
1140 	 * Given the name and the 'snapdev' property, create device minor nodes
1141 	 * with the linkages to zvols/snapshots as needed.
1142 	 * If the name represents a zvol, create a minor node for the zvol, then
1143 	 * check if its snapshots are 'visible', and if so, iterate over the
1144 	 * snapshots and create device minor nodes for those.
1145 	 */
1146 	if (strchr(dsname, '@') == 0) {
1147 		minors_job_t *job;
1148 		char *n = kmem_strdup(dsname);
1149 		if (n == NULL)
1150 			return (0);
1151 
1152 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1153 		job->name = n;
1154 		job->list = minors_list;
1155 		job->error = 0;
1156 		list_insert_tail(minors_list, job);
1157 		/* don't care if dispatch fails, because job->error is 0 */
1158 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1159 		    TQ_SLEEP);
1160 
1161 		zvol_add_clones(dsname, minors_list);
1162 
1163 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1164 			/*
1165 			 * traverse snapshots only, do not traverse children,
1166 			 * and skip the 'dsname'
1167 			 */
1168 			(void) dmu_objset_find(dsname,
1169 			    zvol_create_snap_minor_cb, (void *)job,
1170 			    DS_FIND_SNAPSHOTS);
1171 		}
1172 	} else {
1173 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1174 		    dsname);
1175 	}
1176 
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Create minors for the specified dataset, including children and snapshots.
1182  * Pay attention to the 'snapdev' property and iterate over the snapshots
1183  * only if they are 'visible'. This approach allows one to assure that the
1184  * snapshot metadata is read from disk only if it is needed.
1185  *
1186  * The name can represent a dataset to be recursively scanned for zvols and
1187  * their snapshots, or a single zvol snapshot. If the name represents a
1188  * dataset, the scan is performed in two nested stages:
1189  * - scan the dataset for zvols, and
1190  * - for each zvol, create a minor node, then check if the zvol's snapshots
1191  *   are 'visible', and only then iterate over the snapshots if needed
1192  *
1193  * If the name represents a snapshot, a check is performed if the snapshot is
1194  * 'visible' (which also verifies that the parent is a zvol), and if so,
1195  * a minor node for that snapshot is created.
1196  */
1197 void
1198 zvol_create_minors_recursive(const char *name)
1199 {
1200 	list_t minors_list;
1201 	minors_job_t *job;
1202 
1203 	if (zvol_inhibit_dev)
1204 		return;
1205 
1206 	/*
1207 	 * This is the list for prefetch jobs. Whenever we found a match
1208 	 * during dmu_objset_find, we insert a minors_job to the list and do
1209 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1210 	 * any lock because all list operation is done on the current thread.
1211 	 *
1212 	 * We will use this list to do zvol_os_create_minor after prefetch
1213 	 * so we don't have to traverse using dmu_objset_find again.
1214 	 */
1215 	list_create(&minors_list, sizeof (minors_job_t),
1216 	    offsetof(minors_job_t, link));
1217 
1218 
1219 	if (strchr(name, '@') != NULL) {
1220 		uint64_t snapdev;
1221 
1222 		int error = dsl_prop_get_integer(name, "snapdev",
1223 		    &snapdev, NULL);
1224 
1225 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1226 			(void) zvol_os_create_minor(name);
1227 	} else {
1228 		fstrans_cookie_t cookie = spl_fstrans_mark();
1229 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1230 		    &minors_list, DS_FIND_CHILDREN);
1231 		spl_fstrans_unmark(cookie);
1232 	}
1233 
1234 	taskq_wait_outstanding(system_taskq, 0);
1235 
1236 	/*
1237 	 * Prefetch is completed, we can do zvol_os_create_minor
1238 	 * sequentially.
1239 	 */
1240 	while ((job = list_remove_head(&minors_list)) != NULL) {
1241 		if (!job->error)
1242 			(void) zvol_os_create_minor(job->name);
1243 		kmem_strfree(job->name);
1244 		kmem_free(job, sizeof (minors_job_t));
1245 	}
1246 
1247 	list_destroy(&minors_list);
1248 }
1249 
1250 void
1251 zvol_create_minor(const char *name)
1252 {
1253 	/*
1254 	 * Note: the dsl_pool_config_lock must not be held.
1255 	 * Minor node creation needs to obtain the zvol_state_lock.
1256 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1257 	 * config lock.  Therefore, we can't have the config lock now if
1258 	 * we are going to wait for the zvol_state_lock, because it
1259 	 * would be a lock order inversion which could lead to deadlock.
1260 	 */
1261 
1262 	if (zvol_inhibit_dev)
1263 		return;
1264 
1265 	if (strchr(name, '@') != NULL) {
1266 		uint64_t snapdev;
1267 
1268 		int error = dsl_prop_get_integer(name,
1269 		    "snapdev", &snapdev, NULL);
1270 
1271 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1272 			(void) zvol_os_create_minor(name);
1273 	} else {
1274 		(void) zvol_os_create_minor(name);
1275 	}
1276 }
1277 
1278 /*
1279  * Remove minors for specified dataset including children and snapshots.
1280  */
1281 
1282 static void
1283 zvol_free_task(void *arg)
1284 {
1285 	zvol_os_free(arg);
1286 }
1287 
1288 void
1289 zvol_remove_minors_impl(const char *name)
1290 {
1291 	zvol_state_t *zv, *zv_next;
1292 	int namelen = ((name) ? strlen(name) : 0);
1293 	taskqid_t t;
1294 	list_t free_list;
1295 
1296 	if (zvol_inhibit_dev)
1297 		return;
1298 
1299 	list_create(&free_list, sizeof (zvol_state_t),
1300 	    offsetof(zvol_state_t, zv_next));
1301 
1302 	rw_enter(&zvol_state_lock, RW_WRITER);
1303 
1304 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1305 		zv_next = list_next(&zvol_state_list, zv);
1306 
1307 		mutex_enter(&zv->zv_state_lock);
1308 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1309 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1310 		    (zv->zv_name[namelen] == '/' ||
1311 		    zv->zv_name[namelen] == '@'))) {
1312 			/*
1313 			 * By holding zv_state_lock here, we guarantee that no
1314 			 * one is currently using this zv
1315 			 */
1316 
1317 			/* If in use, leave alone */
1318 			if (zv->zv_open_count > 0 ||
1319 			    atomic_read(&zv->zv_suspend_ref)) {
1320 				mutex_exit(&zv->zv_state_lock);
1321 				continue;
1322 			}
1323 
1324 			zvol_remove(zv);
1325 
1326 			/*
1327 			 * Cleared while holding zvol_state_lock as a writer
1328 			 * which will prevent zvol_open() from opening it.
1329 			 */
1330 			zvol_os_clear_private(zv);
1331 
1332 			/* Drop zv_state_lock before zvol_free() */
1333 			mutex_exit(&zv->zv_state_lock);
1334 
1335 			/* Try parallel zv_free, if failed do it in place */
1336 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1337 			    TQ_SLEEP);
1338 			if (t == TASKQID_INVALID)
1339 				list_insert_head(&free_list, zv);
1340 		} else {
1341 			mutex_exit(&zv->zv_state_lock);
1342 		}
1343 	}
1344 	rw_exit(&zvol_state_lock);
1345 
1346 	/* Drop zvol_state_lock before calling zvol_free() */
1347 	while ((zv = list_remove_head(&free_list)) != NULL)
1348 		zvol_os_free(zv);
1349 }
1350 
1351 /* Remove minor for this specific volume only */
1352 static void
1353 zvol_remove_minor_impl(const char *name)
1354 {
1355 	zvol_state_t *zv = NULL, *zv_next;
1356 
1357 	if (zvol_inhibit_dev)
1358 		return;
1359 
1360 	rw_enter(&zvol_state_lock, RW_WRITER);
1361 
1362 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1363 		zv_next = list_next(&zvol_state_list, zv);
1364 
1365 		mutex_enter(&zv->zv_state_lock);
1366 		if (strcmp(zv->zv_name, name) == 0) {
1367 			/*
1368 			 * By holding zv_state_lock here, we guarantee that no
1369 			 * one is currently using this zv
1370 			 */
1371 
1372 			/* If in use, leave alone */
1373 			if (zv->zv_open_count > 0 ||
1374 			    atomic_read(&zv->zv_suspend_ref)) {
1375 				mutex_exit(&zv->zv_state_lock);
1376 				continue;
1377 			}
1378 			zvol_remove(zv);
1379 
1380 			zvol_os_clear_private(zv);
1381 			mutex_exit(&zv->zv_state_lock);
1382 			break;
1383 		} else {
1384 			mutex_exit(&zv->zv_state_lock);
1385 		}
1386 	}
1387 
1388 	/* Drop zvol_state_lock before calling zvol_free() */
1389 	rw_exit(&zvol_state_lock);
1390 
1391 	if (zv != NULL)
1392 		zvol_os_free(zv);
1393 }
1394 
1395 /*
1396  * Rename minors for specified dataset including children and snapshots.
1397  */
1398 static void
1399 zvol_rename_minors_impl(const char *oldname, const char *newname)
1400 {
1401 	zvol_state_t *zv, *zv_next;
1402 	int oldnamelen;
1403 
1404 	if (zvol_inhibit_dev)
1405 		return;
1406 
1407 	oldnamelen = strlen(oldname);
1408 
1409 	rw_enter(&zvol_state_lock, RW_READER);
1410 
1411 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1412 		zv_next = list_next(&zvol_state_list, zv);
1413 
1414 		mutex_enter(&zv->zv_state_lock);
1415 
1416 		if (strcmp(zv->zv_name, oldname) == 0) {
1417 			zvol_os_rename_minor(zv, newname);
1418 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1419 		    (zv->zv_name[oldnamelen] == '/' ||
1420 		    zv->zv_name[oldnamelen] == '@')) {
1421 			char *name = kmem_asprintf("%s%c%s", newname,
1422 			    zv->zv_name[oldnamelen],
1423 			    zv->zv_name + oldnamelen + 1);
1424 			zvol_os_rename_minor(zv, name);
1425 			kmem_strfree(name);
1426 		}
1427 
1428 		mutex_exit(&zv->zv_state_lock);
1429 	}
1430 
1431 	rw_exit(&zvol_state_lock);
1432 }
1433 
1434 typedef struct zvol_snapdev_cb_arg {
1435 	uint64_t snapdev;
1436 } zvol_snapdev_cb_arg_t;
1437 
1438 static int
1439 zvol_set_snapdev_cb(const char *dsname, void *param)
1440 {
1441 	zvol_snapdev_cb_arg_t *arg = param;
1442 
1443 	if (strchr(dsname, '@') == NULL)
1444 		return (0);
1445 
1446 	switch (arg->snapdev) {
1447 		case ZFS_SNAPDEV_VISIBLE:
1448 			(void) zvol_os_create_minor(dsname);
1449 			break;
1450 		case ZFS_SNAPDEV_HIDDEN:
1451 			(void) zvol_remove_minor_impl(dsname);
1452 			break;
1453 	}
1454 
1455 	return (0);
1456 }
1457 
1458 static void
1459 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1460 {
1461 	zvol_snapdev_cb_arg_t arg = {snapdev};
1462 	fstrans_cookie_t cookie = spl_fstrans_mark();
1463 	/*
1464 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1465 	 * in the dataset hierarchy. Here, we only scan snapshots.
1466 	 */
1467 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1468 	spl_fstrans_unmark(cookie);
1469 }
1470 
1471 static void
1472 zvol_set_volmode_impl(char *name, uint64_t volmode)
1473 {
1474 	fstrans_cookie_t cookie;
1475 	uint64_t old_volmode;
1476 	zvol_state_t *zv;
1477 
1478 	if (strchr(name, '@') != NULL)
1479 		return;
1480 
1481 	/*
1482 	 * It's unfortunate we need to remove minors before we create new ones:
1483 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1484 	 * could be different when we set, for instance, volmode from "geom"
1485 	 * to "dev" (or vice versa).
1486 	 */
1487 	zv = zvol_find_by_name(name, RW_NONE);
1488 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1489 			return;
1490 	if (zv != NULL) {
1491 		old_volmode = zv->zv_volmode;
1492 		mutex_exit(&zv->zv_state_lock);
1493 		if (old_volmode == volmode)
1494 			return;
1495 		zvol_wait_close(zv);
1496 	}
1497 	cookie = spl_fstrans_mark();
1498 	switch (volmode) {
1499 		case ZFS_VOLMODE_NONE:
1500 			(void) zvol_remove_minor_impl(name);
1501 			break;
1502 		case ZFS_VOLMODE_GEOM:
1503 		case ZFS_VOLMODE_DEV:
1504 			(void) zvol_remove_minor_impl(name);
1505 			(void) zvol_os_create_minor(name);
1506 			break;
1507 		case ZFS_VOLMODE_DEFAULT:
1508 			(void) zvol_remove_minor_impl(name);
1509 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1510 				break;
1511 			else /* if zvol_volmode is invalid defaults to "geom" */
1512 				(void) zvol_os_create_minor(name);
1513 			break;
1514 	}
1515 	spl_fstrans_unmark(cookie);
1516 }
1517 
1518 static zvol_task_t *
1519 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1520     uint64_t value)
1521 {
1522 	zvol_task_t *task;
1523 
1524 	/* Never allow tasks on hidden names. */
1525 	if (name1[0] == '$')
1526 		return (NULL);
1527 
1528 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1529 	task->op = op;
1530 	task->value = value;
1531 
1532 	strlcpy(task->name1, name1, sizeof (task->name1));
1533 	if (name2 != NULL)
1534 		strlcpy(task->name2, name2, sizeof (task->name2));
1535 
1536 	return (task);
1537 }
1538 
1539 static void
1540 zvol_task_free(zvol_task_t *task)
1541 {
1542 	kmem_free(task, sizeof (zvol_task_t));
1543 }
1544 
1545 /*
1546  * The worker thread function performed asynchronously.
1547  */
1548 static void
1549 zvol_task_cb(void *arg)
1550 {
1551 	zvol_task_t *task = arg;
1552 
1553 	switch (task->op) {
1554 	case ZVOL_ASYNC_REMOVE_MINORS:
1555 		zvol_remove_minors_impl(task->name1);
1556 		break;
1557 	case ZVOL_ASYNC_RENAME_MINORS:
1558 		zvol_rename_minors_impl(task->name1, task->name2);
1559 		break;
1560 	case ZVOL_ASYNC_SET_SNAPDEV:
1561 		zvol_set_snapdev_impl(task->name1, task->value);
1562 		break;
1563 	case ZVOL_ASYNC_SET_VOLMODE:
1564 		zvol_set_volmode_impl(task->name1, task->value);
1565 		break;
1566 	default:
1567 		VERIFY(0);
1568 		break;
1569 	}
1570 
1571 	zvol_task_free(task);
1572 }
1573 
1574 typedef struct zvol_set_prop_int_arg {
1575 	const char *zsda_name;
1576 	uint64_t zsda_value;
1577 	zprop_source_t zsda_source;
1578 	zfs_prop_t zsda_prop;
1579 } zvol_set_prop_int_arg_t;
1580 
1581 /*
1582  * Sanity check the dataset for safe use by the sync task.  No additional
1583  * conditions are imposed.
1584  */
1585 static int
1586 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1587 {
1588 	zvol_set_prop_int_arg_t *zsda = arg;
1589 	dsl_pool_t *dp = dmu_tx_pool(tx);
1590 	dsl_dir_t *dd;
1591 	int error;
1592 
1593 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1594 	if (error != 0)
1595 		return (error);
1596 
1597 	dsl_dir_rele(dd, FTAG);
1598 
1599 	return (error);
1600 }
1601 
1602 static int
1603 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1604 {
1605 	zvol_set_prop_int_arg_t *zsda = arg;
1606 	char dsname[ZFS_MAX_DATASET_NAME_LEN];
1607 	zvol_task_t *task;
1608 	uint64_t prop;
1609 
1610 	const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1611 	dsl_dataset_name(ds, dsname);
1612 
1613 	if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1614 		return (0);
1615 
1616 	switch (zsda->zsda_prop) {
1617 		case ZFS_PROP_VOLMODE:
1618 			task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
1619 			    NULL, prop);
1620 			break;
1621 		case ZFS_PROP_SNAPDEV:
1622 			task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1623 			    NULL, prop);
1624 			break;
1625 		default:
1626 			task = NULL;
1627 			break;
1628 	}
1629 
1630 	if (task == NULL)
1631 		return (0);
1632 
1633 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1634 	    task, TQ_SLEEP);
1635 	return (0);
1636 }
1637 
1638 /*
1639  * Traverse all child datasets and apply the property appropriately.
1640  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1641  * dataset and read the effective "property" on every child in the callback
1642  * function: this is because the value is not guaranteed to be the same in the
1643  * whole dataset hierarchy.
1644  */
1645 static void
1646 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
1647 {
1648 	zvol_set_prop_int_arg_t *zsda = arg;
1649 	dsl_pool_t *dp = dmu_tx_pool(tx);
1650 	dsl_dir_t *dd;
1651 	dsl_dataset_t *ds;
1652 	int error;
1653 
1654 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1655 
1656 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1657 	if (error == 0) {
1658 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
1659 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1660 		    &zsda->zsda_value, tx);
1661 		dsl_dataset_rele(ds, FTAG);
1662 	}
1663 
1664 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
1665 	    zsda, DS_FIND_CHILDREN);
1666 
1667 	dsl_dir_rele(dd, FTAG);
1668 }
1669 
1670 int
1671 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
1672     uint64_t val)
1673 {
1674 	zvol_set_prop_int_arg_t zsda;
1675 
1676 	zsda.zsda_name = ddname;
1677 	zsda.zsda_source = source;
1678 	zsda.zsda_value = val;
1679 	zsda.zsda_prop = prop;
1680 
1681 	return (dsl_sync_task(ddname, zvol_set_common_check,
1682 	    zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1683 }
1684 
1685 void
1686 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1687 {
1688 	zvol_task_t *task;
1689 	taskqid_t id;
1690 
1691 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1692 	if (task == NULL)
1693 		return;
1694 
1695 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1696 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1697 		taskq_wait_id(spa->spa_zvol_taskq, id);
1698 }
1699 
1700 void
1701 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1702     boolean_t async)
1703 {
1704 	zvol_task_t *task;
1705 	taskqid_t id;
1706 
1707 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1708 	if (task == NULL)
1709 		return;
1710 
1711 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1712 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1713 		taskq_wait_id(spa->spa_zvol_taskq, id);
1714 }
1715 
1716 boolean_t
1717 zvol_is_zvol(const char *name)
1718 {
1719 
1720 	return (zvol_os_is_zvol(name));
1721 }
1722 
1723 int
1724 zvol_init_impl(void)
1725 {
1726 	int i;
1727 
1728 	list_create(&zvol_state_list, sizeof (zvol_state_t),
1729 	    offsetof(zvol_state_t, zv_next));
1730 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1731 
1732 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1733 	    KM_SLEEP);
1734 	for (i = 0; i < ZVOL_HT_SIZE; i++)
1735 		INIT_HLIST_HEAD(&zvol_htable[i]);
1736 
1737 	return (0);
1738 }
1739 
1740 void
1741 zvol_fini_impl(void)
1742 {
1743 	zvol_remove_minors_impl(NULL);
1744 
1745 	/*
1746 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
1747 	 * the system_taskq, but it doesn't wait for those entries to
1748 	 * complete before it returns. Thus, we must wait for all of the
1749 	 * removals to finish, before we can continue.
1750 	 */
1751 	taskq_wait_outstanding(system_taskq, 0);
1752 
1753 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1754 	list_destroy(&zvol_state_list);
1755 	rw_destroy(&zvol_state_lock);
1756 }
1757