1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, 2023, 2024, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/brt.h> 45 #include <sys/ddt.h> 46 #include <sys/blkptr.h> 47 #include <sys/zfeature.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/time.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/abd.h> 53 #include <sys/dsl_crypt.h> 54 #include <cityhash.h> 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 const char *const zio_type_name[ZIO_TYPES] = { 62 /* 63 * Note: Linux kernel thread name length is limited 64 * so these names will differ from upstream open zfs. 65 */ 66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim" 67 }; 68 69 int zio_dva_throttle_enabled = B_TRUE; 70 static int zio_deadman_log_all = B_FALSE; 71 72 /* 73 * ========================================================================== 74 * I/O kmem caches 75 * ========================================================================== 76 */ 77 static kmem_cache_t *zio_cache; 78 static kmem_cache_t *zio_link_cache; 79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 84 #endif 85 86 /* Mark IOs as "slow" if they take longer than 30 seconds */ 87 static uint_t zio_slow_io_ms = (30 * MILLISEC); 88 89 #define BP_SPANB(indblkshift, level) \ 90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 91 #define COMPARE_META_LEVEL 0x80000000ul 92 /* 93 * The following actions directly effect the spa's sync-to-convergence logic. 94 * The values below define the sync pass when we start performing the action. 95 * Care should be taken when changing these values as they directly impact 96 * spa_sync() performance. Tuning these values may introduce subtle performance 97 * pathologies and should only be done in the context of performance analysis. 98 * These tunables will eventually be removed and replaced with #defines once 99 * enough analysis has been done to determine optimal values. 100 * 101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 102 * regular blocks are not deferred. 103 * 104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 105 * compression (including of metadata). In practice, we don't have this 106 * many sync passes, so this has no effect. 107 * 108 * The original intent was that disabling compression would help the sync 109 * passes to converge. However, in practice disabling compression increases 110 * the average number of sync passes, because when we turn compression off, a 111 * lot of block's size will change and thus we have to re-allocate (not 112 * overwrite) them. It also increases the number of 128KB allocations (e.g. 113 * for indirect blocks and spacemaps) because these will not be compressed. 114 * The 128K allocations are especially detrimental to performance on highly 115 * fragmented systems, which may have very few free segments of this size, 116 * and may need to load new metaslabs to satisfy 128K allocations. 117 */ 118 119 /* defer frees starting in this pass */ 120 uint_t zfs_sync_pass_deferred_free = 2; 121 122 /* don't compress starting in this pass */ 123 static uint_t zfs_sync_pass_dont_compress = 8; 124 125 /* rewrite new bps starting in this pass */ 126 static uint_t zfs_sync_pass_rewrite = 2; 127 128 /* 129 * An allocating zio is one that either currently has the DVA allocate 130 * stage set or will have it later in its lifetime. 131 */ 132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 133 134 /* 135 * Enable smaller cores by excluding metadata 136 * allocations as well. 137 */ 138 int zio_exclude_metadata = 0; 139 static int zio_requeue_io_start_cut_in_line = 1; 140 141 #ifdef ZFS_DEBUG 142 static const int zio_buf_debug_limit = 16384; 143 #else 144 static const int zio_buf_debug_limit = 0; 145 #endif 146 147 static inline void __zio_execute(zio_t *zio); 148 149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 150 151 void 152 zio_init(void) 153 { 154 size_t c; 155 156 zio_cache = kmem_cache_create("zio_cache", 157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 158 zio_link_cache = kmem_cache_create("zio_link_cache", 159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 160 161 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 162 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 163 size_t align, cflags, data_cflags; 164 char name[32]; 165 166 /* 167 * Create cache for each half-power of 2 size, starting from 168 * SPA_MINBLOCKSIZE. It should give us memory space efficiency 169 * of ~7/8, sufficient for transient allocations mostly using 170 * these caches. 171 */ 172 size_t p2 = size; 173 while (!ISP2(p2)) 174 p2 &= p2 - 1; 175 if (!IS_P2ALIGNED(size, p2 / 2)) 176 continue; 177 178 #ifndef _KERNEL 179 /* 180 * If we are using watchpoints, put each buffer on its own page, 181 * to eliminate the performance overhead of trapping to the 182 * kernel when modifying a non-watched buffer that shares the 183 * page with a watched buffer. 184 */ 185 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 186 continue; 187 #endif 188 189 if (IS_P2ALIGNED(size, PAGESIZE)) 190 align = PAGESIZE; 191 else 192 align = 1 << (highbit64(size ^ (size - 1)) - 1); 193 194 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 195 KMC_NODEBUG : 0; 196 data_cflags = KMC_NODEBUG; 197 if (cflags == data_cflags) { 198 /* 199 * Resulting kmem caches would be identical. 200 * Save memory by creating only one. 201 */ 202 (void) snprintf(name, sizeof (name), 203 "zio_buf_comb_%lu", (ulong_t)size); 204 zio_buf_cache[c] = kmem_cache_create(name, size, align, 205 NULL, NULL, NULL, NULL, NULL, cflags); 206 zio_data_buf_cache[c] = zio_buf_cache[c]; 207 continue; 208 } 209 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 210 (ulong_t)size); 211 zio_buf_cache[c] = kmem_cache_create(name, size, align, 212 NULL, NULL, NULL, NULL, NULL, cflags); 213 214 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 215 (ulong_t)size); 216 zio_data_buf_cache[c] = kmem_cache_create(name, size, align, 217 NULL, NULL, NULL, NULL, NULL, data_cflags); 218 } 219 220 while (--c != 0) { 221 ASSERT(zio_buf_cache[c] != NULL); 222 if (zio_buf_cache[c - 1] == NULL) 223 zio_buf_cache[c - 1] = zio_buf_cache[c]; 224 225 ASSERT(zio_data_buf_cache[c] != NULL); 226 if (zio_data_buf_cache[c - 1] == NULL) 227 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 228 } 229 230 zio_inject_init(); 231 232 lz4_init(); 233 } 234 235 void 236 zio_fini(void) 237 { 238 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 239 240 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 241 for (size_t i = 0; i < n; i++) { 242 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 243 (void) printf("zio_fini: [%d] %llu != %llu\n", 244 (int)((i + 1) << SPA_MINBLOCKSHIFT), 245 (long long unsigned)zio_buf_cache_allocs[i], 246 (long long unsigned)zio_buf_cache_frees[i]); 247 } 248 #endif 249 250 /* 251 * The same kmem cache can show up multiple times in both zio_buf_cache 252 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 253 * sort it out. 254 */ 255 for (size_t i = 0; i < n; i++) { 256 kmem_cache_t *cache = zio_buf_cache[i]; 257 if (cache == NULL) 258 continue; 259 for (size_t j = i; j < n; j++) { 260 if (cache == zio_buf_cache[j]) 261 zio_buf_cache[j] = NULL; 262 if (cache == zio_data_buf_cache[j]) 263 zio_data_buf_cache[j] = NULL; 264 } 265 kmem_cache_destroy(cache); 266 } 267 268 for (size_t i = 0; i < n; i++) { 269 kmem_cache_t *cache = zio_data_buf_cache[i]; 270 if (cache == NULL) 271 continue; 272 for (size_t j = i; j < n; j++) { 273 if (cache == zio_data_buf_cache[j]) 274 zio_data_buf_cache[j] = NULL; 275 } 276 kmem_cache_destroy(cache); 277 } 278 279 for (size_t i = 0; i < n; i++) { 280 VERIFY3P(zio_buf_cache[i], ==, NULL); 281 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 282 } 283 284 kmem_cache_destroy(zio_link_cache); 285 kmem_cache_destroy(zio_cache); 286 287 zio_inject_fini(); 288 289 lz4_fini(); 290 } 291 292 /* 293 * ========================================================================== 294 * Allocate and free I/O buffers 295 * ========================================================================== 296 */ 297 298 #ifdef ZFS_DEBUG 299 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b; 300 #endif 301 302 /* 303 * Use empty space after the buffer to detect overflows. 304 * 305 * Since zio_init() creates kmem caches only for certain set of buffer sizes, 306 * allocations of different sizes may have some unused space after the data. 307 * Filling part of that space with a known pattern on allocation and checking 308 * it on free should allow us to detect some buffer overflows. 309 */ 310 static void 311 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 312 { 313 #ifdef ZFS_DEBUG 314 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 315 ulong_t *canary = p + off / sizeof (ulong_t); 316 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 317 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 318 cache[c] == cache[c + 1]) 319 asize = (c + 2) << SPA_MINBLOCKSHIFT; 320 for (; off < asize; canary++, off += sizeof (ulong_t)) 321 *canary = zio_buf_canary; 322 #endif 323 } 324 325 static void 326 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c) 327 { 328 #ifdef ZFS_DEBUG 329 size_t off = P2ROUNDUP(size, sizeof (ulong_t)); 330 ulong_t *canary = p + off / sizeof (ulong_t); 331 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT; 332 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT && 333 cache[c] == cache[c + 1]) 334 asize = (c + 2) << SPA_MINBLOCKSHIFT; 335 for (; off < asize; canary++, off += sizeof (ulong_t)) { 336 if (unlikely(*canary != zio_buf_canary)) { 337 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx", 338 p, size, (canary - p) * sizeof (ulong_t), 339 *canary, zio_buf_canary); 340 } 341 } 342 #endif 343 } 344 345 /* 346 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 347 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 348 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 349 * excess / transient data in-core during a crashdump. 350 */ 351 void * 352 zio_buf_alloc(size_t size) 353 { 354 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 355 356 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 357 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 358 atomic_add_64(&zio_buf_cache_allocs[c], 1); 359 #endif 360 361 void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE); 362 zio_buf_put_canary(p, size, zio_buf_cache, c); 363 return (p); 364 } 365 366 /* 367 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 368 * crashdump if the kernel panics. This exists so that we will limit the amount 369 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 370 * of kernel heap dumped to disk when the kernel panics) 371 */ 372 void * 373 zio_data_buf_alloc(size_t size) 374 { 375 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 376 377 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 378 379 void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE); 380 zio_buf_put_canary(p, size, zio_data_buf_cache, c); 381 return (p); 382 } 383 384 void 385 zio_buf_free(void *buf, size_t size) 386 { 387 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 388 389 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 390 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 391 atomic_add_64(&zio_buf_cache_frees[c], 1); 392 #endif 393 394 zio_buf_check_canary(buf, size, zio_buf_cache, c); 395 kmem_cache_free(zio_buf_cache[c], buf); 396 } 397 398 void 399 zio_data_buf_free(void *buf, size_t size) 400 { 401 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 402 403 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 404 405 zio_buf_check_canary(buf, size, zio_data_buf_cache, c); 406 kmem_cache_free(zio_data_buf_cache[c], buf); 407 } 408 409 static void 410 zio_abd_free(void *abd, size_t size) 411 { 412 (void) size; 413 abd_free((abd_t *)abd); 414 } 415 416 /* 417 * ========================================================================== 418 * Push and pop I/O transform buffers 419 * ========================================================================== 420 */ 421 void 422 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 423 zio_transform_func_t *transform) 424 { 425 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 426 427 zt->zt_orig_abd = zio->io_abd; 428 zt->zt_orig_size = zio->io_size; 429 zt->zt_bufsize = bufsize; 430 zt->zt_transform = transform; 431 432 zt->zt_next = zio->io_transform_stack; 433 zio->io_transform_stack = zt; 434 435 zio->io_abd = data; 436 zio->io_size = size; 437 } 438 439 void 440 zio_pop_transforms(zio_t *zio) 441 { 442 zio_transform_t *zt; 443 444 while ((zt = zio->io_transform_stack) != NULL) { 445 if (zt->zt_transform != NULL) 446 zt->zt_transform(zio, 447 zt->zt_orig_abd, zt->zt_orig_size); 448 449 if (zt->zt_bufsize != 0) 450 abd_free(zio->io_abd); 451 452 zio->io_abd = zt->zt_orig_abd; 453 zio->io_size = zt->zt_orig_size; 454 zio->io_transform_stack = zt->zt_next; 455 456 kmem_free(zt, sizeof (zio_transform_t)); 457 } 458 } 459 460 /* 461 * ========================================================================== 462 * I/O transform callbacks for subblocks, decompression, and decryption 463 * ========================================================================== 464 */ 465 static void 466 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 467 { 468 ASSERT(zio->io_size > size); 469 470 if (zio->io_type == ZIO_TYPE_READ) 471 abd_copy(data, zio->io_abd, size); 472 } 473 474 static void 475 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 476 { 477 if (zio->io_error == 0) { 478 void *tmp = abd_borrow_buf(data, size); 479 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 480 zio->io_abd, tmp, zio->io_size, size, 481 &zio->io_prop.zp_complevel); 482 abd_return_buf_copy(data, tmp, size); 483 484 if (zio_injection_enabled && ret == 0) 485 ret = zio_handle_fault_injection(zio, EINVAL); 486 487 if (ret != 0) 488 zio->io_error = SET_ERROR(EIO); 489 } 490 } 491 492 static void 493 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 494 { 495 int ret; 496 void *tmp; 497 blkptr_t *bp = zio->io_bp; 498 spa_t *spa = zio->io_spa; 499 uint64_t dsobj = zio->io_bookmark.zb_objset; 500 uint64_t lsize = BP_GET_LSIZE(bp); 501 dmu_object_type_t ot = BP_GET_TYPE(bp); 502 uint8_t salt[ZIO_DATA_SALT_LEN]; 503 uint8_t iv[ZIO_DATA_IV_LEN]; 504 uint8_t mac[ZIO_DATA_MAC_LEN]; 505 boolean_t no_crypt = B_FALSE; 506 507 ASSERT(BP_USES_CRYPT(bp)); 508 ASSERT3U(size, !=, 0); 509 510 if (zio->io_error != 0) 511 return; 512 513 /* 514 * Verify the cksum of MACs stored in an indirect bp. It will always 515 * be possible to verify this since it does not require an encryption 516 * key. 517 */ 518 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 519 zio_crypt_decode_mac_bp(bp, mac); 520 521 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 522 /* 523 * We haven't decompressed the data yet, but 524 * zio_crypt_do_indirect_mac_checksum() requires 525 * decompressed data to be able to parse out the MACs 526 * from the indirect block. We decompress it now and 527 * throw away the result after we are finished. 528 */ 529 tmp = zio_buf_alloc(lsize); 530 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 531 zio->io_abd, tmp, zio->io_size, lsize, 532 &zio->io_prop.zp_complevel); 533 if (ret != 0) { 534 ret = SET_ERROR(EIO); 535 goto error; 536 } 537 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 538 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 539 zio_buf_free(tmp, lsize); 540 } else { 541 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 542 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 543 } 544 abd_copy(data, zio->io_abd, size); 545 546 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 547 ret = zio_handle_decrypt_injection(spa, 548 &zio->io_bookmark, ot, ECKSUM); 549 } 550 if (ret != 0) 551 goto error; 552 553 return; 554 } 555 556 /* 557 * If this is an authenticated block, just check the MAC. It would be 558 * nice to separate this out into its own flag, but when this was done, 559 * we had run out of bits in what is now zio_flag_t. Future cleanup 560 * could make this a flag bit. 561 */ 562 if (BP_IS_AUTHENTICATED(bp)) { 563 if (ot == DMU_OT_OBJSET) { 564 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 565 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 566 } else { 567 zio_crypt_decode_mac_bp(bp, mac); 568 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 569 zio->io_abd, size, mac); 570 if (zio_injection_enabled && ret == 0) { 571 ret = zio_handle_decrypt_injection(spa, 572 &zio->io_bookmark, ot, ECKSUM); 573 } 574 } 575 abd_copy(data, zio->io_abd, size); 576 577 if (ret != 0) 578 goto error; 579 580 return; 581 } 582 583 zio_crypt_decode_params_bp(bp, salt, iv); 584 585 if (ot == DMU_OT_INTENT_LOG) { 586 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 587 zio_crypt_decode_mac_zil(tmp, mac); 588 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 589 } else { 590 zio_crypt_decode_mac_bp(bp, mac); 591 } 592 593 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 594 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 595 zio->io_abd, &no_crypt); 596 if (no_crypt) 597 abd_copy(data, zio->io_abd, size); 598 599 if (ret != 0) 600 goto error; 601 602 return; 603 604 error: 605 /* assert that the key was found unless this was speculative */ 606 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 607 608 /* 609 * If there was a decryption / authentication error return EIO as 610 * the io_error. If this was not a speculative zio, create an ereport. 611 */ 612 if (ret == ECKSUM) { 613 zio->io_error = SET_ERROR(EIO); 614 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 615 spa_log_error(spa, &zio->io_bookmark, 616 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 617 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 618 spa, NULL, &zio->io_bookmark, zio, 0); 619 } 620 } else { 621 zio->io_error = ret; 622 } 623 } 624 625 /* 626 * ========================================================================== 627 * I/O parent/child relationships and pipeline interlocks 628 * ========================================================================== 629 */ 630 zio_t * 631 zio_walk_parents(zio_t *cio, zio_link_t **zl) 632 { 633 list_t *pl = &cio->io_parent_list; 634 635 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 636 if (*zl == NULL) 637 return (NULL); 638 639 ASSERT((*zl)->zl_child == cio); 640 return ((*zl)->zl_parent); 641 } 642 643 zio_t * 644 zio_walk_children(zio_t *pio, zio_link_t **zl) 645 { 646 list_t *cl = &pio->io_child_list; 647 648 ASSERT(MUTEX_HELD(&pio->io_lock)); 649 650 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 651 if (*zl == NULL) 652 return (NULL); 653 654 ASSERT((*zl)->zl_parent == pio); 655 return ((*zl)->zl_child); 656 } 657 658 zio_t * 659 zio_unique_parent(zio_t *cio) 660 { 661 zio_link_t *zl = NULL; 662 zio_t *pio = zio_walk_parents(cio, &zl); 663 664 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 665 return (pio); 666 } 667 668 void 669 zio_add_child(zio_t *pio, zio_t *cio) 670 { 671 /* 672 * Logical I/Os can have logical, gang, or vdev children. 673 * Gang I/Os can have gang or vdev children. 674 * Vdev I/Os can only have vdev children. 675 * The following ASSERT captures all of these constraints. 676 */ 677 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 678 679 /* Parent should not have READY stage if child doesn't have it. */ 680 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 681 (cio->io_child_type != ZIO_CHILD_VDEV), 682 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 683 684 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 685 zl->zl_parent = pio; 686 zl->zl_child = cio; 687 688 mutex_enter(&pio->io_lock); 689 mutex_enter(&cio->io_lock); 690 691 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 692 693 uint64_t *countp = pio->io_children[cio->io_child_type]; 694 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 695 countp[w] += !cio->io_state[w]; 696 697 list_insert_head(&pio->io_child_list, zl); 698 list_insert_head(&cio->io_parent_list, zl); 699 700 mutex_exit(&cio->io_lock); 701 mutex_exit(&pio->io_lock); 702 } 703 704 void 705 zio_add_child_first(zio_t *pio, zio_t *cio) 706 { 707 /* 708 * Logical I/Os can have logical, gang, or vdev children. 709 * Gang I/Os can have gang or vdev children. 710 * Vdev I/Os can only have vdev children. 711 * The following ASSERT captures all of these constraints. 712 */ 713 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 714 715 /* Parent should not have READY stage if child doesn't have it. */ 716 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 && 717 (cio->io_child_type != ZIO_CHILD_VDEV), 718 (pio->io_pipeline & ZIO_STAGE_READY) == 0); 719 720 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 721 zl->zl_parent = pio; 722 zl->zl_child = cio; 723 724 ASSERT(list_is_empty(&cio->io_parent_list)); 725 list_insert_head(&cio->io_parent_list, zl); 726 727 mutex_enter(&pio->io_lock); 728 729 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 730 731 uint64_t *countp = pio->io_children[cio->io_child_type]; 732 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 733 countp[w] += !cio->io_state[w]; 734 735 list_insert_head(&pio->io_child_list, zl); 736 737 mutex_exit(&pio->io_lock); 738 } 739 740 static void 741 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 742 { 743 ASSERT(zl->zl_parent == pio); 744 ASSERT(zl->zl_child == cio); 745 746 mutex_enter(&pio->io_lock); 747 mutex_enter(&cio->io_lock); 748 749 list_remove(&pio->io_child_list, zl); 750 list_remove(&cio->io_parent_list, zl); 751 752 mutex_exit(&cio->io_lock); 753 mutex_exit(&pio->io_lock); 754 kmem_cache_free(zio_link_cache, zl); 755 } 756 757 static boolean_t 758 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 759 { 760 boolean_t waiting = B_FALSE; 761 762 mutex_enter(&zio->io_lock); 763 ASSERT(zio->io_stall == NULL); 764 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 765 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 766 continue; 767 768 uint64_t *countp = &zio->io_children[c][wait]; 769 if (*countp != 0) { 770 zio->io_stage >>= 1; 771 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 772 zio->io_stall = countp; 773 waiting = B_TRUE; 774 break; 775 } 776 } 777 mutex_exit(&zio->io_lock); 778 return (waiting); 779 } 780 781 __attribute__((always_inline)) 782 static inline void 783 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 784 zio_t **next_to_executep) 785 { 786 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 787 int *errorp = &pio->io_child_error[zio->io_child_type]; 788 789 mutex_enter(&pio->io_lock); 790 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 791 *errorp = zio_worst_error(*errorp, zio->io_error); 792 pio->io_reexecute |= zio->io_reexecute; 793 ASSERT3U(*countp, >, 0); 794 795 (*countp)--; 796 797 if (*countp == 0 && pio->io_stall == countp) { 798 zio_taskq_type_t type = 799 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 800 ZIO_TASKQ_INTERRUPT; 801 pio->io_stall = NULL; 802 mutex_exit(&pio->io_lock); 803 804 /* 805 * If we can tell the caller to execute this parent next, do 806 * so. We do this if the parent's zio type matches the child's 807 * type, or if it's a zio_null() with no done callback, and so 808 * has no actual work to do. Otherwise dispatch the parent zio 809 * in its own taskq. 810 * 811 * Having the caller execute the parent when possible reduces 812 * locking on the zio taskq's, reduces context switch 813 * overhead, and has no recursion penalty. Note that one 814 * read from disk typically causes at least 3 zio's: a 815 * zio_null(), the logical zio_read(), and then a physical 816 * zio. When the physical ZIO completes, we are able to call 817 * zio_done() on all 3 of these zio's from one invocation of 818 * zio_execute() by returning the parent back to 819 * zio_execute(). Since the parent isn't executed until this 820 * thread returns back to zio_execute(), the caller should do 821 * so promptly. 822 * 823 * In other cases, dispatching the parent prevents 824 * overflowing the stack when we have deeply nested 825 * parent-child relationships, as we do with the "mega zio" 826 * of writes for spa_sync(), and the chain of ZIL blocks. 827 */ 828 if (next_to_executep != NULL && *next_to_executep == NULL && 829 (pio->io_type == zio->io_type || 830 (pio->io_type == ZIO_TYPE_NULL && !pio->io_done))) { 831 *next_to_executep = pio; 832 } else { 833 zio_taskq_dispatch(pio, type, B_FALSE); 834 } 835 } else { 836 mutex_exit(&pio->io_lock); 837 } 838 } 839 840 static void 841 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 842 { 843 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 844 zio->io_error = zio->io_child_error[c]; 845 } 846 847 int 848 zio_bookmark_compare(const void *x1, const void *x2) 849 { 850 const zio_t *z1 = x1; 851 const zio_t *z2 = x2; 852 853 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 854 return (-1); 855 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 856 return (1); 857 858 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 859 return (-1); 860 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 861 return (1); 862 863 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 864 return (-1); 865 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 866 return (1); 867 868 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 869 return (-1); 870 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 871 return (1); 872 873 if (z1 < z2) 874 return (-1); 875 if (z1 > z2) 876 return (1); 877 878 return (0); 879 } 880 881 /* 882 * ========================================================================== 883 * Create the various types of I/O (read, write, free, etc) 884 * ========================================================================== 885 */ 886 static zio_t * 887 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 888 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 889 void *private, zio_type_t type, zio_priority_t priority, 890 zio_flag_t flags, vdev_t *vd, uint64_t offset, 891 const zbookmark_phys_t *zb, enum zio_stage stage, 892 enum zio_stage pipeline) 893 { 894 zio_t *zio; 895 896 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 897 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 898 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 899 900 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 901 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 902 ASSERT(vd || stage == ZIO_STAGE_OPEN); 903 904 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 905 906 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 907 memset(zio, 0, sizeof (zio_t)); 908 909 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 910 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 911 912 list_create(&zio->io_parent_list, sizeof (zio_link_t), 913 offsetof(zio_link_t, zl_parent_node)); 914 list_create(&zio->io_child_list, sizeof (zio_link_t), 915 offsetof(zio_link_t, zl_child_node)); 916 metaslab_trace_init(&zio->io_alloc_list); 917 918 if (vd != NULL) 919 zio->io_child_type = ZIO_CHILD_VDEV; 920 else if (flags & ZIO_FLAG_GANG_CHILD) 921 zio->io_child_type = ZIO_CHILD_GANG; 922 else if (flags & ZIO_FLAG_DDT_CHILD) 923 zio->io_child_type = ZIO_CHILD_DDT; 924 else 925 zio->io_child_type = ZIO_CHILD_LOGICAL; 926 927 if (bp != NULL) { 928 if (type != ZIO_TYPE_WRITE || 929 zio->io_child_type == ZIO_CHILD_DDT) { 930 zio->io_bp_copy = *bp; 931 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 932 } else { 933 zio->io_bp = (blkptr_t *)bp; 934 } 935 zio->io_bp_orig = *bp; 936 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 937 zio->io_logical = zio; 938 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 939 pipeline |= ZIO_GANG_STAGES; 940 } 941 942 zio->io_spa = spa; 943 zio->io_txg = txg; 944 zio->io_done = done; 945 zio->io_private = private; 946 zio->io_type = type; 947 zio->io_priority = priority; 948 zio->io_vd = vd; 949 zio->io_offset = offset; 950 zio->io_orig_abd = zio->io_abd = data; 951 zio->io_orig_size = zio->io_size = psize; 952 zio->io_lsize = lsize; 953 zio->io_orig_flags = zio->io_flags = flags; 954 zio->io_orig_stage = zio->io_stage = stage; 955 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 956 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 957 zio->io_allocator = ZIO_ALLOCATOR_NONE; 958 959 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) || 960 (pipeline & ZIO_STAGE_READY) == 0; 961 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 962 963 if (zb != NULL) 964 zio->io_bookmark = *zb; 965 966 if (pio != NULL) { 967 zio->io_metaslab_class = pio->io_metaslab_class; 968 if (zio->io_logical == NULL) 969 zio->io_logical = pio->io_logical; 970 if (zio->io_child_type == ZIO_CHILD_GANG) 971 zio->io_gang_leader = pio->io_gang_leader; 972 zio_add_child_first(pio, zio); 973 } 974 975 taskq_init_ent(&zio->io_tqent); 976 977 return (zio); 978 } 979 980 void 981 zio_destroy(zio_t *zio) 982 { 983 metaslab_trace_fini(&zio->io_alloc_list); 984 list_destroy(&zio->io_parent_list); 985 list_destroy(&zio->io_child_list); 986 mutex_destroy(&zio->io_lock); 987 cv_destroy(&zio->io_cv); 988 kmem_cache_free(zio_cache, zio); 989 } 990 991 /* 992 * ZIO intended to be between others. Provides synchronization at READY 993 * and DONE pipeline stages and calls the respective callbacks. 994 */ 995 zio_t * 996 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 997 void *private, zio_flag_t flags) 998 { 999 zio_t *zio; 1000 1001 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1002 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1003 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 1004 1005 return (zio); 1006 } 1007 1008 /* 1009 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a 1010 * READY pipeline stage (is ready on creation), so it should not be used 1011 * as child of any ZIO that may need waiting for grandchildren READY stage 1012 * (any other ZIO type). 1013 */ 1014 zio_t * 1015 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 1016 { 1017 zio_t *zio; 1018 1019 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private, 1020 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL, 1021 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE); 1022 1023 return (zio); 1024 } 1025 1026 static int 1027 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 1028 enum blk_verify_flag blk_verify, const char *fmt, ...) 1029 { 1030 va_list adx; 1031 char buf[256]; 1032 1033 va_start(adx, fmt); 1034 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 1035 va_end(adx); 1036 1037 zfs_dbgmsg("bad blkptr at %px: " 1038 "DVA[0]=%#llx/%#llx " 1039 "DVA[1]=%#llx/%#llx " 1040 "DVA[2]=%#llx/%#llx " 1041 "prop=%#llx " 1042 "pad=%#llx,%#llx " 1043 "phys_birth=%#llx " 1044 "birth=%#llx " 1045 "fill=%#llx " 1046 "cksum=%#llx/%#llx/%#llx/%#llx", 1047 bp, 1048 (long long)bp->blk_dva[0].dva_word[0], 1049 (long long)bp->blk_dva[0].dva_word[1], 1050 (long long)bp->blk_dva[1].dva_word[0], 1051 (long long)bp->blk_dva[1].dva_word[1], 1052 (long long)bp->blk_dva[2].dva_word[0], 1053 (long long)bp->blk_dva[2].dva_word[1], 1054 (long long)bp->blk_prop, 1055 (long long)bp->blk_pad[0], 1056 (long long)bp->blk_pad[1], 1057 (long long)BP_GET_PHYSICAL_BIRTH(bp), 1058 (long long)BP_GET_LOGICAL_BIRTH(bp), 1059 (long long)bp->blk_fill, 1060 (long long)bp->blk_cksum.zc_word[0], 1061 (long long)bp->blk_cksum.zc_word[1], 1062 (long long)bp->blk_cksum.zc_word[2], 1063 (long long)bp->blk_cksum.zc_word[3]); 1064 switch (blk_verify) { 1065 case BLK_VERIFY_HALT: 1066 zfs_panic_recover("%s: %s", spa_name(spa), buf); 1067 break; 1068 case BLK_VERIFY_LOG: 1069 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 1070 break; 1071 case BLK_VERIFY_ONLY: 1072 break; 1073 } 1074 1075 return (1); 1076 } 1077 1078 /* 1079 * Verify the block pointer fields contain reasonable values. This means 1080 * it only contains known object types, checksum/compression identifiers, 1081 * block sizes within the maximum allowed limits, valid DVAs, etc. 1082 * 1083 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 1084 * argument controls the behavior when an invalid field is detected. 1085 * 1086 * Values for blk_verify_flag: 1087 * BLK_VERIFY_ONLY: evaluate the block 1088 * BLK_VERIFY_LOG: evaluate the block and log problems 1089 * BLK_VERIFY_HALT: call zfs_panic_recover on error 1090 * 1091 * Values for blk_config_flag: 1092 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer 1093 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be 1094 * obtained for reader 1095 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better 1096 * performance 1097 */ 1098 boolean_t 1099 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, 1100 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify) 1101 { 1102 int errors = 0; 1103 1104 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 1105 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1106 "blkptr at %px has invalid TYPE %llu", 1107 bp, (longlong_t)BP_GET_TYPE(bp)); 1108 } 1109 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 1110 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1111 "blkptr at %px has invalid CHECKSUM %llu", 1112 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 1113 } 1114 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 1115 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1116 "blkptr at %px has invalid COMPRESS %llu", 1117 bp, (longlong_t)BP_GET_COMPRESS(bp)); 1118 } 1119 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 1120 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1121 "blkptr at %px has invalid LSIZE %llu", 1122 bp, (longlong_t)BP_GET_LSIZE(bp)); 1123 } 1124 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 1125 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1126 "blkptr at %px has invalid PSIZE %llu", 1127 bp, (longlong_t)BP_GET_PSIZE(bp)); 1128 } 1129 1130 if (BP_IS_EMBEDDED(bp)) { 1131 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1132 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1133 "blkptr at %px has invalid ETYPE %llu", 1134 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1135 } 1136 } 1137 1138 /* 1139 * Do not verify individual DVAs if the config is not trusted. This 1140 * will be done once the zio is executed in vdev_mirror_map_alloc. 1141 */ 1142 if (!spa->spa_trust_config) 1143 return (errors == 0); 1144 1145 switch (blk_config) { 1146 case BLK_CONFIG_HELD: 1147 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1148 break; 1149 case BLK_CONFIG_NEEDED: 1150 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1151 break; 1152 case BLK_CONFIG_SKIP: 1153 return (errors == 0); 1154 default: 1155 panic("invalid blk_config %u", blk_config); 1156 } 1157 1158 /* 1159 * Pool-specific checks. 1160 * 1161 * Note: it would be nice to verify that the logical birth 1162 * and physical birth are not too large. However, 1163 * spa_freeze() allows the birth time of log blocks (and 1164 * dmu_sync()-ed blocks that are in the log) to be arbitrarily 1165 * large. 1166 */ 1167 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1168 const dva_t *dva = &bp->blk_dva[i]; 1169 uint64_t vdevid = DVA_GET_VDEV(dva); 1170 1171 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1172 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1173 "blkptr at %px DVA %u has invalid VDEV %llu", 1174 bp, i, (longlong_t)vdevid); 1175 continue; 1176 } 1177 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1178 if (vd == NULL) { 1179 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1180 "blkptr at %px DVA %u has invalid VDEV %llu", 1181 bp, i, (longlong_t)vdevid); 1182 continue; 1183 } 1184 if (vd->vdev_ops == &vdev_hole_ops) { 1185 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1186 "blkptr at %px DVA %u has hole VDEV %llu", 1187 bp, i, (longlong_t)vdevid); 1188 continue; 1189 } 1190 if (vd->vdev_ops == &vdev_missing_ops) { 1191 /* 1192 * "missing" vdevs are valid during import, but we 1193 * don't have their detailed info (e.g. asize), so 1194 * we can't perform any more checks on them. 1195 */ 1196 continue; 1197 } 1198 uint64_t offset = DVA_GET_OFFSET(dva); 1199 uint64_t asize = DVA_GET_ASIZE(dva); 1200 if (DVA_GET_GANG(dva)) 1201 asize = vdev_gang_header_asize(vd); 1202 if (offset + asize > vd->vdev_asize) { 1203 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1204 "blkptr at %px DVA %u has invalid OFFSET %llu", 1205 bp, i, (longlong_t)offset); 1206 } 1207 } 1208 if (blk_config == BLK_CONFIG_NEEDED) 1209 spa_config_exit(spa, SCL_VDEV, bp); 1210 1211 return (errors == 0); 1212 } 1213 1214 boolean_t 1215 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1216 { 1217 (void) bp; 1218 uint64_t vdevid = DVA_GET_VDEV(dva); 1219 1220 if (vdevid >= spa->spa_root_vdev->vdev_children) 1221 return (B_FALSE); 1222 1223 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1224 if (vd == NULL) 1225 return (B_FALSE); 1226 1227 if (vd->vdev_ops == &vdev_hole_ops) 1228 return (B_FALSE); 1229 1230 if (vd->vdev_ops == &vdev_missing_ops) { 1231 return (B_FALSE); 1232 } 1233 1234 uint64_t offset = DVA_GET_OFFSET(dva); 1235 uint64_t asize = DVA_GET_ASIZE(dva); 1236 1237 if (DVA_GET_GANG(dva)) 1238 asize = vdev_gang_header_asize(vd); 1239 if (offset + asize > vd->vdev_asize) 1240 return (B_FALSE); 1241 1242 return (B_TRUE); 1243 } 1244 1245 zio_t * 1246 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1247 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1248 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1249 { 1250 zio_t *zio; 1251 1252 zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp, 1253 data, size, size, done, private, 1254 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1255 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1256 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1257 1258 return (zio); 1259 } 1260 1261 zio_t * 1262 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1263 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1264 zio_done_func_t *ready, zio_done_func_t *children_ready, 1265 zio_done_func_t *done, void *private, zio_priority_t priority, 1266 zio_flag_t flags, const zbookmark_phys_t *zb) 1267 { 1268 zio_t *zio; 1269 1270 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1271 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1272 zp->zp_compress >= ZIO_COMPRESS_OFF && 1273 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1274 DMU_OT_IS_VALID(zp->zp_type) && 1275 zp->zp_level < 32 && 1276 zp->zp_copies > 0 && 1277 zp->zp_copies <= spa_max_replication(spa)); 1278 1279 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1280 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1281 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1282 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1283 1284 zio->io_ready = ready; 1285 zio->io_children_ready = children_ready; 1286 zio->io_prop = *zp; 1287 1288 /* 1289 * Data can be NULL if we are going to call zio_write_override() to 1290 * provide the already-allocated BP. But we may need the data to 1291 * verify a dedup hit (if requested). In this case, don't try to 1292 * dedup (just take the already-allocated BP verbatim). Encrypted 1293 * dedup blocks need data as well so we also disable dedup in this 1294 * case. 1295 */ 1296 if (data == NULL && 1297 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1298 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1299 } 1300 1301 return (zio); 1302 } 1303 1304 zio_t * 1305 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1306 uint64_t size, zio_done_func_t *done, void *private, 1307 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1308 { 1309 zio_t *zio; 1310 1311 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1312 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1313 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1314 1315 return (zio); 1316 } 1317 1318 void 1319 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, 1320 boolean_t brtwrite) 1321 { 1322 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1323 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1324 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1325 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1326 ASSERT(!brtwrite || !nopwrite); 1327 1328 /* 1329 * We must reset the io_prop to match the values that existed 1330 * when the bp was first written by dmu_sync() keeping in mind 1331 * that nopwrite and dedup are mutually exclusive. 1332 */ 1333 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1334 zio->io_prop.zp_nopwrite = nopwrite; 1335 zio->io_prop.zp_brtwrite = brtwrite; 1336 zio->io_prop.zp_copies = copies; 1337 zio->io_bp_override = bp; 1338 } 1339 1340 void 1341 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1342 { 1343 1344 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1345 1346 /* 1347 * The check for EMBEDDED is a performance optimization. We 1348 * process the free here (by ignoring it) rather than 1349 * putting it on the list and then processing it in zio_free_sync(). 1350 */ 1351 if (BP_IS_EMBEDDED(bp)) 1352 return; 1353 1354 /* 1355 * Frees that are for the currently-syncing txg, are not going to be 1356 * deferred, and which will not need to do a read (i.e. not GANG or 1357 * DEDUP), can be processed immediately. Otherwise, put them on the 1358 * in-memory list for later processing. 1359 * 1360 * Note that we only defer frees after zfs_sync_pass_deferred_free 1361 * when the log space map feature is disabled. [see relevant comment 1362 * in spa_sync_iterate_to_convergence()] 1363 */ 1364 if (BP_IS_GANG(bp) || 1365 BP_GET_DEDUP(bp) || 1366 txg != spa->spa_syncing_txg || 1367 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1368 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1369 brt_maybe_exists(spa, bp)) { 1370 metaslab_check_free(spa, bp); 1371 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1372 } else { 1373 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1374 } 1375 } 1376 1377 /* 1378 * To improve performance, this function may return NULL if we were able 1379 * to do the free immediately. This avoids the cost of creating a zio 1380 * (and linking it to the parent, etc). 1381 */ 1382 zio_t * 1383 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1384 zio_flag_t flags) 1385 { 1386 ASSERT(!BP_IS_HOLE(bp)); 1387 ASSERT(spa_syncing_txg(spa) == txg); 1388 1389 if (BP_IS_EMBEDDED(bp)) 1390 return (NULL); 1391 1392 metaslab_check_free(spa, bp); 1393 arc_freed(spa, bp); 1394 dsl_scan_freed(spa, bp); 1395 1396 if (BP_IS_GANG(bp) || 1397 BP_GET_DEDUP(bp) || 1398 brt_maybe_exists(spa, bp)) { 1399 /* 1400 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1401 * block header, the DDT or the BRT), so issue them 1402 * asynchronously so that this thread is not tied up. 1403 */ 1404 enum zio_stage stage = 1405 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1406 1407 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1408 BP_GET_PSIZE(bp), NULL, NULL, 1409 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1410 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1411 } else { 1412 metaslab_free(spa, bp, txg, B_FALSE); 1413 return (NULL); 1414 } 1415 } 1416 1417 zio_t * 1418 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1419 zio_done_func_t *done, void *private, zio_flag_t flags) 1420 { 1421 zio_t *zio; 1422 1423 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ? 1424 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT); 1425 1426 if (BP_IS_EMBEDDED(bp)) 1427 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1428 1429 /* 1430 * A claim is an allocation of a specific block. Claims are needed 1431 * to support immediate writes in the intent log. The issue is that 1432 * immediate writes contain committed data, but in a txg that was 1433 * *not* committed. Upon opening the pool after an unclean shutdown, 1434 * the intent log claims all blocks that contain immediate write data 1435 * so that the SPA knows they're in use. 1436 * 1437 * All claims *must* be resolved in the first txg -- before the SPA 1438 * starts allocating blocks -- so that nothing is allocated twice. 1439 * If txg == 0 we just verify that the block is claimable. 1440 */ 1441 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <, 1442 spa_min_claim_txg(spa)); 1443 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1444 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1445 1446 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1447 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1448 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1449 ASSERT0(zio->io_queued_timestamp); 1450 1451 return (zio); 1452 } 1453 1454 zio_t * 1455 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1456 zio_done_func_t *done, void *private, zio_priority_t priority, 1457 zio_flag_t flags, enum trim_flag trim_flags) 1458 { 1459 zio_t *zio; 1460 1461 ASSERT0(vd->vdev_children); 1462 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1463 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1464 ASSERT3U(size, !=, 0); 1465 1466 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1467 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1468 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1469 zio->io_trim_flags = trim_flags; 1470 1471 return (zio); 1472 } 1473 1474 zio_t * 1475 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1476 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1477 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1478 { 1479 zio_t *zio; 1480 1481 ASSERT(vd->vdev_children == 0); 1482 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1483 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1484 ASSERT3U(offset + size, <=, vd->vdev_psize); 1485 1486 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1487 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1488 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1489 1490 zio->io_prop.zp_checksum = checksum; 1491 1492 return (zio); 1493 } 1494 1495 zio_t * 1496 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1497 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1498 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1499 { 1500 zio_t *zio; 1501 1502 ASSERT(vd->vdev_children == 0); 1503 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1504 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1505 ASSERT3U(offset + size, <=, vd->vdev_psize); 1506 1507 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1508 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1509 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1510 1511 zio->io_prop.zp_checksum = checksum; 1512 1513 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1514 /* 1515 * zec checksums are necessarily destructive -- they modify 1516 * the end of the write buffer to hold the verifier/checksum. 1517 * Therefore, we must make a local copy in case the data is 1518 * being written to multiple places in parallel. 1519 */ 1520 abd_t *wbuf = abd_alloc_sametype(data, size); 1521 abd_copy(wbuf, data, size); 1522 1523 zio_push_transform(zio, wbuf, size, size, NULL); 1524 } 1525 1526 return (zio); 1527 } 1528 1529 /* 1530 * Create a child I/O to do some work for us. 1531 */ 1532 zio_t * 1533 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1534 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1535 zio_flag_t flags, zio_done_func_t *done, void *private) 1536 { 1537 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1538 zio_t *zio; 1539 1540 /* 1541 * vdev child I/Os do not propagate their error to the parent. 1542 * Therefore, for correct operation the caller *must* check for 1543 * and handle the error in the child i/o's done callback. 1544 * The only exceptions are i/os that we don't care about 1545 * (OPTIONAL or REPAIR). 1546 */ 1547 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1548 done != NULL); 1549 1550 if (type == ZIO_TYPE_READ && bp != NULL) { 1551 /* 1552 * If we have the bp, then the child should perform the 1553 * checksum and the parent need not. This pushes error 1554 * detection as close to the leaves as possible and 1555 * eliminates redundant checksums in the interior nodes. 1556 */ 1557 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1558 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1559 } 1560 1561 if (vd->vdev_ops->vdev_op_leaf) { 1562 ASSERT0(vd->vdev_children); 1563 offset += VDEV_LABEL_START_SIZE; 1564 } 1565 1566 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1567 1568 /* 1569 * If we've decided to do a repair, the write is not speculative -- 1570 * even if the original read was. 1571 */ 1572 if (flags & ZIO_FLAG_IO_REPAIR) 1573 flags &= ~ZIO_FLAG_SPECULATIVE; 1574 1575 /* 1576 * If we're creating a child I/O that is not associated with a 1577 * top-level vdev, then the child zio is not an allocating I/O. 1578 * If this is a retried I/O then we ignore it since we will 1579 * have already processed the original allocating I/O. 1580 */ 1581 if (flags & ZIO_FLAG_IO_ALLOCATING && 1582 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1583 ASSERT(pio->io_metaslab_class != NULL); 1584 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1585 ASSERT(type == ZIO_TYPE_WRITE); 1586 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1587 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1588 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1589 pio->io_child_type == ZIO_CHILD_GANG); 1590 1591 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1592 } 1593 1594 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1595 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1596 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1597 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1598 1599 return (zio); 1600 } 1601 1602 zio_t * 1603 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1604 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1605 zio_done_func_t *done, void *private) 1606 { 1607 zio_t *zio; 1608 1609 ASSERT(vd->vdev_ops->vdev_op_leaf); 1610 1611 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1612 data, size, size, done, private, type, priority, 1613 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1614 vd, offset, NULL, 1615 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1616 1617 return (zio); 1618 } 1619 1620 1621 /* 1622 * Send a flush command to the given vdev. Unlike most zio creation functions, 1623 * the flush zios are issued immediately. You can wait on pio to pause until 1624 * the flushes complete. 1625 */ 1626 void 1627 zio_flush(zio_t *pio, vdev_t *vd) 1628 { 1629 const zio_flag_t flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 1630 ZIO_FLAG_DONT_RETRY; 1631 1632 if (vd->vdev_nowritecache) 1633 return; 1634 1635 if (vd->vdev_children == 0) { 1636 zio_nowait(zio_create(pio, vd->vdev_spa, 0, NULL, NULL, 0, 0, 1637 NULL, NULL, ZIO_TYPE_FLUSH, ZIO_PRIORITY_NOW, flags, vd, 0, 1638 NULL, ZIO_STAGE_OPEN, ZIO_FLUSH_PIPELINE)); 1639 } else { 1640 for (uint64_t c = 0; c < vd->vdev_children; c++) 1641 zio_flush(pio, vd->vdev_child[c]); 1642 } 1643 } 1644 1645 void 1646 zio_shrink(zio_t *zio, uint64_t size) 1647 { 1648 ASSERT3P(zio->io_executor, ==, NULL); 1649 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1650 ASSERT3U(size, <=, zio->io_size); 1651 1652 /* 1653 * We don't shrink for raidz because of problems with the 1654 * reconstruction when reading back less than the block size. 1655 * Note, BP_IS_RAIDZ() assumes no compression. 1656 */ 1657 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1658 if (!BP_IS_RAIDZ(zio->io_bp)) { 1659 /* we are not doing a raw write */ 1660 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1661 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1662 } 1663 } 1664 1665 /* 1666 * Round provided allocation size up to a value that can be allocated 1667 * by at least some vdev(s) in the pool with minimum or no additional 1668 * padding and without extra space usage on others 1669 */ 1670 static uint64_t 1671 zio_roundup_alloc_size(spa_t *spa, uint64_t size) 1672 { 1673 if (size > spa->spa_min_alloc) 1674 return (roundup(size, spa->spa_gcd_alloc)); 1675 return (spa->spa_min_alloc); 1676 } 1677 1678 /* 1679 * ========================================================================== 1680 * Prepare to read and write logical blocks 1681 * ========================================================================== 1682 */ 1683 1684 static zio_t * 1685 zio_read_bp_init(zio_t *zio) 1686 { 1687 blkptr_t *bp = zio->io_bp; 1688 uint64_t psize = 1689 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1690 1691 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1692 1693 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1694 zio->io_child_type == ZIO_CHILD_LOGICAL && 1695 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1696 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1697 psize, psize, zio_decompress); 1698 } 1699 1700 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1701 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1702 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1703 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1704 psize, psize, zio_decrypt); 1705 } 1706 1707 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1708 int psize = BPE_GET_PSIZE(bp); 1709 void *data = abd_borrow_buf(zio->io_abd, psize); 1710 1711 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1712 decode_embedded_bp_compressed(bp, data); 1713 abd_return_buf_copy(zio->io_abd, data, psize); 1714 } else { 1715 ASSERT(!BP_IS_EMBEDDED(bp)); 1716 } 1717 1718 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1719 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1720 1721 return (zio); 1722 } 1723 1724 static zio_t * 1725 zio_write_bp_init(zio_t *zio) 1726 { 1727 if (!IO_IS_ALLOCATING(zio)) 1728 return (zio); 1729 1730 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1731 1732 if (zio->io_bp_override) { 1733 blkptr_t *bp = zio->io_bp; 1734 zio_prop_t *zp = &zio->io_prop; 1735 1736 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg); 1737 1738 *bp = *zio->io_bp_override; 1739 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1740 1741 if (zp->zp_brtwrite) 1742 return (zio); 1743 1744 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1745 1746 if (BP_IS_EMBEDDED(bp)) 1747 return (zio); 1748 1749 /* 1750 * If we've been overridden and nopwrite is set then 1751 * set the flag accordingly to indicate that a nopwrite 1752 * has already occurred. 1753 */ 1754 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1755 ASSERT(!zp->zp_dedup); 1756 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1757 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1758 return (zio); 1759 } 1760 1761 ASSERT(!zp->zp_nopwrite); 1762 1763 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1764 return (zio); 1765 1766 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1767 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1768 1769 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1770 !zp->zp_encrypt) { 1771 BP_SET_DEDUP(bp, 1); 1772 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1773 return (zio); 1774 } 1775 1776 /* 1777 * We were unable to handle this as an override bp, treat 1778 * it as a regular write I/O. 1779 */ 1780 zio->io_bp_override = NULL; 1781 *bp = zio->io_bp_orig; 1782 zio->io_pipeline = zio->io_orig_pipeline; 1783 } 1784 1785 return (zio); 1786 } 1787 1788 static zio_t * 1789 zio_write_compress(zio_t *zio) 1790 { 1791 spa_t *spa = zio->io_spa; 1792 zio_prop_t *zp = &zio->io_prop; 1793 enum zio_compress compress = zp->zp_compress; 1794 blkptr_t *bp = zio->io_bp; 1795 uint64_t lsize = zio->io_lsize; 1796 uint64_t psize = zio->io_size; 1797 uint32_t pass = 1; 1798 1799 /* 1800 * If our children haven't all reached the ready stage, 1801 * wait for them and then repeat this pipeline stage. 1802 */ 1803 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1804 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1805 return (NULL); 1806 } 1807 1808 if (!IO_IS_ALLOCATING(zio)) 1809 return (zio); 1810 1811 if (zio->io_children_ready != NULL) { 1812 /* 1813 * Now that all our children are ready, run the callback 1814 * associated with this zio in case it wants to modify the 1815 * data to be written. 1816 */ 1817 ASSERT3U(zp->zp_level, >, 0); 1818 zio->io_children_ready(zio); 1819 } 1820 1821 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1822 ASSERT(zio->io_bp_override == NULL); 1823 1824 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) { 1825 /* 1826 * We're rewriting an existing block, which means we're 1827 * working on behalf of spa_sync(). For spa_sync() to 1828 * converge, it must eventually be the case that we don't 1829 * have to allocate new blocks. But compression changes 1830 * the blocksize, which forces a reallocate, and makes 1831 * convergence take longer. Therefore, after the first 1832 * few passes, stop compressing to ensure convergence. 1833 */ 1834 pass = spa_sync_pass(spa); 1835 1836 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1837 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1838 ASSERT(!BP_GET_DEDUP(bp)); 1839 1840 if (pass >= zfs_sync_pass_dont_compress) 1841 compress = ZIO_COMPRESS_OFF; 1842 1843 /* Make sure someone doesn't change their mind on overwrites */ 1844 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) || 1845 MIN(zp->zp_copies, spa_max_replication(spa)) 1846 == BP_GET_NDVAS(bp)); 1847 } 1848 1849 /* If it's a compressed write that is not raw, compress the buffer. */ 1850 if (compress != ZIO_COMPRESS_OFF && 1851 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1852 void *cbuf = NULL; 1853 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, 1854 zp->zp_complevel); 1855 if (psize == 0) { 1856 compress = ZIO_COMPRESS_OFF; 1857 } else if (psize >= lsize) { 1858 compress = ZIO_COMPRESS_OFF; 1859 if (cbuf != NULL) 1860 zio_buf_free(cbuf, lsize); 1861 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1862 psize <= BPE_PAYLOAD_SIZE && 1863 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1864 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1865 encode_embedded_bp_compressed(bp, 1866 cbuf, compress, lsize, psize); 1867 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1868 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1869 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1870 zio_buf_free(cbuf, lsize); 1871 BP_SET_LOGICAL_BIRTH(bp, zio->io_txg); 1872 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1873 ASSERT(spa_feature_is_active(spa, 1874 SPA_FEATURE_EMBEDDED_DATA)); 1875 return (zio); 1876 } else { 1877 /* 1878 * Round compressed size up to the minimum allocation 1879 * size of the smallest-ashift device, and zero the 1880 * tail. This ensures that the compressed size of the 1881 * BP (and thus compressratio property) are correct, 1882 * in that we charge for the padding used to fill out 1883 * the last sector. 1884 */ 1885 size_t rounded = (size_t)zio_roundup_alloc_size(spa, 1886 psize); 1887 if (rounded >= lsize) { 1888 compress = ZIO_COMPRESS_OFF; 1889 zio_buf_free(cbuf, lsize); 1890 psize = lsize; 1891 } else { 1892 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1893 abd_take_ownership_of_buf(cdata, B_TRUE); 1894 abd_zero_off(cdata, psize, rounded - psize); 1895 psize = rounded; 1896 zio_push_transform(zio, cdata, 1897 psize, lsize, NULL); 1898 } 1899 } 1900 1901 /* 1902 * We were unable to handle this as an override bp, treat 1903 * it as a regular write I/O. 1904 */ 1905 zio->io_bp_override = NULL; 1906 *bp = zio->io_bp_orig; 1907 zio->io_pipeline = zio->io_orig_pipeline; 1908 1909 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1910 zp->zp_type == DMU_OT_DNODE) { 1911 /* 1912 * The DMU actually relies on the zio layer's compression 1913 * to free metadnode blocks that have had all contained 1914 * dnodes freed. As a result, even when doing a raw 1915 * receive, we must check whether the block can be compressed 1916 * to a hole. 1917 */ 1918 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1919 zio->io_abd, NULL, lsize, zp->zp_complevel); 1920 if (psize == 0 || psize >= lsize) 1921 compress = ZIO_COMPRESS_OFF; 1922 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1923 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1924 /* 1925 * If we are raw receiving an encrypted dataset we should not 1926 * take this codepath because it will change the on-disk block 1927 * and decryption will fail. 1928 */ 1929 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize), 1930 lsize); 1931 1932 if (rounded != psize) { 1933 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1934 abd_zero_off(cdata, psize, rounded - psize); 1935 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1936 psize = rounded; 1937 zio_push_transform(zio, cdata, 1938 psize, rounded, NULL); 1939 } 1940 } else { 1941 ASSERT3U(psize, !=, 0); 1942 } 1943 1944 /* 1945 * The final pass of spa_sync() must be all rewrites, but the first 1946 * few passes offer a trade-off: allocating blocks defers convergence, 1947 * but newly allocated blocks are sequential, so they can be written 1948 * to disk faster. Therefore, we allow the first few passes of 1949 * spa_sync() to allocate new blocks, but force rewrites after that. 1950 * There should only be a handful of blocks after pass 1 in any case. 1951 */ 1952 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg && 1953 BP_GET_PSIZE(bp) == psize && 1954 pass >= zfs_sync_pass_rewrite) { 1955 VERIFY3U(psize, !=, 0); 1956 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1957 1958 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1959 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1960 } else { 1961 BP_ZERO(bp); 1962 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1963 } 1964 1965 if (psize == 0) { 1966 if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 && 1967 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1968 BP_SET_LSIZE(bp, lsize); 1969 BP_SET_TYPE(bp, zp->zp_type); 1970 BP_SET_LEVEL(bp, zp->zp_level); 1971 BP_SET_BIRTH(bp, zio->io_txg, 0); 1972 } 1973 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1974 } else { 1975 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1976 BP_SET_LSIZE(bp, lsize); 1977 BP_SET_TYPE(bp, zp->zp_type); 1978 BP_SET_LEVEL(bp, zp->zp_level); 1979 BP_SET_PSIZE(bp, psize); 1980 BP_SET_COMPRESS(bp, compress); 1981 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1982 BP_SET_DEDUP(bp, zp->zp_dedup); 1983 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1984 if (zp->zp_dedup) { 1985 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1986 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1987 ASSERT(!zp->zp_encrypt || 1988 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1989 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1990 } 1991 if (zp->zp_nopwrite) { 1992 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1993 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1994 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1995 } 1996 } 1997 return (zio); 1998 } 1999 2000 static zio_t * 2001 zio_free_bp_init(zio_t *zio) 2002 { 2003 blkptr_t *bp = zio->io_bp; 2004 2005 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 2006 if (BP_GET_DEDUP(bp)) 2007 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 2008 } 2009 2010 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 2011 2012 return (zio); 2013 } 2014 2015 /* 2016 * ========================================================================== 2017 * Execute the I/O pipeline 2018 * ========================================================================== 2019 */ 2020 2021 static void 2022 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 2023 { 2024 spa_t *spa = zio->io_spa; 2025 zio_type_t t = zio->io_type; 2026 2027 /* 2028 * If we're a config writer or a probe, the normal issue and 2029 * interrupt threads may all be blocked waiting for the config lock. 2030 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 2031 */ 2032 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 2033 t = ZIO_TYPE_NULL; 2034 2035 /* 2036 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 2037 */ 2038 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 2039 t = ZIO_TYPE_NULL; 2040 2041 /* 2042 * If this is a high priority I/O, then use the high priority taskq if 2043 * available or cut the line otherwise. 2044 */ 2045 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) { 2046 if (spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 2047 q++; 2048 else 2049 cutinline = B_TRUE; 2050 } 2051 2052 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 2053 2054 spa_taskq_dispatch(spa, t, q, zio_execute, zio, cutinline); 2055 } 2056 2057 static boolean_t 2058 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 2059 { 2060 spa_t *spa = zio->io_spa; 2061 2062 taskq_t *tq = taskq_of_curthread(); 2063 2064 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 2065 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 2066 uint_t i; 2067 for (i = 0; i < tqs->stqs_count; i++) { 2068 if (tqs->stqs_taskq[i] == tq) 2069 return (B_TRUE); 2070 } 2071 } 2072 2073 return (B_FALSE); 2074 } 2075 2076 static zio_t * 2077 zio_issue_async(zio_t *zio) 2078 { 2079 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio)); 2080 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 2081 return (NULL); 2082 } 2083 2084 void 2085 zio_interrupt(void *zio) 2086 { 2087 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 2088 } 2089 2090 void 2091 zio_delay_interrupt(zio_t *zio) 2092 { 2093 /* 2094 * The timeout_generic() function isn't defined in userspace, so 2095 * rather than trying to implement the function, the zio delay 2096 * functionality has been disabled for userspace builds. 2097 */ 2098 2099 #ifdef _KERNEL 2100 /* 2101 * If io_target_timestamp is zero, then no delay has been registered 2102 * for this IO, thus jump to the end of this function and "skip" the 2103 * delay; issuing it directly to the zio layer. 2104 */ 2105 if (zio->io_target_timestamp != 0) { 2106 hrtime_t now = gethrtime(); 2107 2108 if (now >= zio->io_target_timestamp) { 2109 /* 2110 * This IO has already taken longer than the target 2111 * delay to complete, so we don't want to delay it 2112 * any longer; we "miss" the delay and issue it 2113 * directly to the zio layer. This is likely due to 2114 * the target latency being set to a value less than 2115 * the underlying hardware can satisfy (e.g. delay 2116 * set to 1ms, but the disks take 10ms to complete an 2117 * IO request). 2118 */ 2119 2120 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 2121 hrtime_t, now); 2122 2123 zio_interrupt(zio); 2124 } else { 2125 taskqid_t tid; 2126 hrtime_t diff = zio->io_target_timestamp - now; 2127 clock_t expire_at_tick = ddi_get_lbolt() + 2128 NSEC_TO_TICK(diff); 2129 2130 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2131 hrtime_t, now, hrtime_t, diff); 2132 2133 if (NSEC_TO_TICK(diff) == 0) { 2134 /* Our delay is less than a jiffy - just spin */ 2135 zfs_sleep_until(zio->io_target_timestamp); 2136 zio_interrupt(zio); 2137 } else { 2138 /* 2139 * Use taskq_dispatch_delay() in the place of 2140 * OpenZFS's timeout_generic(). 2141 */ 2142 tid = taskq_dispatch_delay(system_taskq, 2143 zio_interrupt, zio, TQ_NOSLEEP, 2144 expire_at_tick); 2145 if (tid == TASKQID_INVALID) { 2146 /* 2147 * Couldn't allocate a task. Just 2148 * finish the zio without a delay. 2149 */ 2150 zio_interrupt(zio); 2151 } 2152 } 2153 } 2154 return; 2155 } 2156 #endif 2157 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2158 zio_interrupt(zio); 2159 } 2160 2161 static void 2162 zio_deadman_impl(zio_t *pio, int ziodepth) 2163 { 2164 zio_t *cio, *cio_next; 2165 zio_link_t *zl = NULL; 2166 vdev_t *vd = pio->io_vd; 2167 2168 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2169 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2170 zbookmark_phys_t *zb = &pio->io_bookmark; 2171 uint64_t delta = gethrtime() - pio->io_timestamp; 2172 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2173 2174 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2175 "delta=%llu queued=%llu io=%llu " 2176 "path=%s " 2177 "last=%llu type=%d " 2178 "priority=%d flags=0x%llx stage=0x%x " 2179 "pipeline=0x%x pipeline-trace=0x%x " 2180 "objset=%llu object=%llu " 2181 "level=%llu blkid=%llu " 2182 "offset=%llu size=%llu " 2183 "error=%d", 2184 ziodepth, pio, pio->io_timestamp, 2185 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2186 vd ? vd->vdev_path : "NULL", 2187 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2188 pio->io_priority, (u_longlong_t)pio->io_flags, 2189 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2190 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2191 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2192 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2193 pio->io_error); 2194 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2195 pio->io_spa, vd, zb, pio, 0); 2196 2197 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2198 taskq_empty_ent(&pio->io_tqent)) { 2199 zio_interrupt(pio); 2200 } 2201 } 2202 2203 mutex_enter(&pio->io_lock); 2204 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2205 cio_next = zio_walk_children(pio, &zl); 2206 zio_deadman_impl(cio, ziodepth + 1); 2207 } 2208 mutex_exit(&pio->io_lock); 2209 } 2210 2211 /* 2212 * Log the critical information describing this zio and all of its children 2213 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2214 */ 2215 void 2216 zio_deadman(zio_t *pio, const char *tag) 2217 { 2218 spa_t *spa = pio->io_spa; 2219 char *name = spa_name(spa); 2220 2221 if (!zfs_deadman_enabled || spa_suspended(spa)) 2222 return; 2223 2224 zio_deadman_impl(pio, 0); 2225 2226 switch (spa_get_deadman_failmode(spa)) { 2227 case ZIO_FAILURE_MODE_WAIT: 2228 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2229 break; 2230 2231 case ZIO_FAILURE_MODE_CONTINUE: 2232 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2233 break; 2234 2235 case ZIO_FAILURE_MODE_PANIC: 2236 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2237 break; 2238 } 2239 } 2240 2241 /* 2242 * Execute the I/O pipeline until one of the following occurs: 2243 * (1) the I/O completes; (2) the pipeline stalls waiting for 2244 * dependent child I/Os; (3) the I/O issues, so we're waiting 2245 * for an I/O completion interrupt; (4) the I/O is delegated by 2246 * vdev-level caching or aggregation; (5) the I/O is deferred 2247 * due to vdev-level queueing; (6) the I/O is handed off to 2248 * another thread. In all cases, the pipeline stops whenever 2249 * there's no CPU work; it never burns a thread in cv_wait_io(). 2250 * 2251 * There's no locking on io_stage because there's no legitimate way 2252 * for multiple threads to be attempting to process the same I/O. 2253 */ 2254 static zio_pipe_stage_t *zio_pipeline[]; 2255 2256 /* 2257 * zio_execute() is a wrapper around the static function 2258 * __zio_execute() so that we can force __zio_execute() to be 2259 * inlined. This reduces stack overhead which is important 2260 * because __zio_execute() is called recursively in several zio 2261 * code paths. zio_execute() itself cannot be inlined because 2262 * it is externally visible. 2263 */ 2264 void 2265 zio_execute(void *zio) 2266 { 2267 fstrans_cookie_t cookie; 2268 2269 cookie = spl_fstrans_mark(); 2270 __zio_execute(zio); 2271 spl_fstrans_unmark(cookie); 2272 } 2273 2274 /* 2275 * Used to determine if in the current context the stack is sized large 2276 * enough to allow zio_execute() to be called recursively. A minimum 2277 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2278 */ 2279 static boolean_t 2280 zio_execute_stack_check(zio_t *zio) 2281 { 2282 #if !defined(HAVE_LARGE_STACKS) 2283 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2284 2285 /* Executing in txg_sync_thread() context. */ 2286 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2287 return (B_TRUE); 2288 2289 /* Pool initialization outside of zio_taskq context. */ 2290 if (dp && spa_is_initializing(dp->dp_spa) && 2291 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2292 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2293 return (B_TRUE); 2294 #else 2295 (void) zio; 2296 #endif /* HAVE_LARGE_STACKS */ 2297 2298 return (B_FALSE); 2299 } 2300 2301 __attribute__((always_inline)) 2302 static inline void 2303 __zio_execute(zio_t *zio) 2304 { 2305 ASSERT3U(zio->io_queued_timestamp, >, 0); 2306 2307 while (zio->io_stage < ZIO_STAGE_DONE) { 2308 enum zio_stage pipeline = zio->io_pipeline; 2309 enum zio_stage stage = zio->io_stage; 2310 2311 zio->io_executor = curthread; 2312 2313 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2314 ASSERT(ISP2(stage)); 2315 ASSERT(zio->io_stall == NULL); 2316 2317 do { 2318 stage <<= 1; 2319 } while ((stage & pipeline) == 0); 2320 2321 ASSERT(stage <= ZIO_STAGE_DONE); 2322 2323 /* 2324 * If we are in interrupt context and this pipeline stage 2325 * will grab a config lock that is held across I/O, 2326 * or may wait for an I/O that needs an interrupt thread 2327 * to complete, issue async to avoid deadlock. 2328 * 2329 * For VDEV_IO_START, we cut in line so that the io will 2330 * be sent to disk promptly. 2331 */ 2332 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2333 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2334 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2335 zio_requeue_io_start_cut_in_line : B_FALSE; 2336 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2337 return; 2338 } 2339 2340 /* 2341 * If the current context doesn't have large enough stacks 2342 * the zio must be issued asynchronously to prevent overflow. 2343 */ 2344 if (zio_execute_stack_check(zio)) { 2345 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2346 zio_requeue_io_start_cut_in_line : B_FALSE; 2347 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2348 return; 2349 } 2350 2351 zio->io_stage = stage; 2352 zio->io_pipeline_trace |= zio->io_stage; 2353 2354 /* 2355 * The zio pipeline stage returns the next zio to execute 2356 * (typically the same as this one), or NULL if we should 2357 * stop. 2358 */ 2359 zio = zio_pipeline[highbit64(stage) - 1](zio); 2360 2361 if (zio == NULL) 2362 return; 2363 } 2364 } 2365 2366 2367 /* 2368 * ========================================================================== 2369 * Initiate I/O, either sync or async 2370 * ========================================================================== 2371 */ 2372 int 2373 zio_wait(zio_t *zio) 2374 { 2375 /* 2376 * Some routines, like zio_free_sync(), may return a NULL zio 2377 * to avoid the performance overhead of creating and then destroying 2378 * an unneeded zio. For the callers' simplicity, we accept a NULL 2379 * zio and ignore it. 2380 */ 2381 if (zio == NULL) 2382 return (0); 2383 2384 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2385 int error; 2386 2387 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2388 ASSERT3P(zio->io_executor, ==, NULL); 2389 2390 zio->io_waiter = curthread; 2391 ASSERT0(zio->io_queued_timestamp); 2392 zio->io_queued_timestamp = gethrtime(); 2393 2394 if (zio->io_type == ZIO_TYPE_WRITE) { 2395 spa_select_allocator(zio); 2396 } 2397 __zio_execute(zio); 2398 2399 mutex_enter(&zio->io_lock); 2400 while (zio->io_executor != NULL) { 2401 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2402 ddi_get_lbolt() + timeout); 2403 2404 if (zfs_deadman_enabled && error == -1 && 2405 gethrtime() - zio->io_queued_timestamp > 2406 spa_deadman_ziotime(zio->io_spa)) { 2407 mutex_exit(&zio->io_lock); 2408 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2409 zio_deadman(zio, FTAG); 2410 mutex_enter(&zio->io_lock); 2411 } 2412 } 2413 mutex_exit(&zio->io_lock); 2414 2415 error = zio->io_error; 2416 zio_destroy(zio); 2417 2418 return (error); 2419 } 2420 2421 void 2422 zio_nowait(zio_t *zio) 2423 { 2424 /* 2425 * See comment in zio_wait(). 2426 */ 2427 if (zio == NULL) 2428 return; 2429 2430 ASSERT3P(zio->io_executor, ==, NULL); 2431 2432 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2433 list_is_empty(&zio->io_parent_list)) { 2434 zio_t *pio; 2435 2436 /* 2437 * This is a logical async I/O with no parent to wait for it. 2438 * We add it to the spa_async_root_zio "Godfather" I/O which 2439 * will ensure they complete prior to unloading the pool. 2440 */ 2441 spa_t *spa = zio->io_spa; 2442 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2443 2444 zio_add_child(pio, zio); 2445 } 2446 2447 ASSERT0(zio->io_queued_timestamp); 2448 zio->io_queued_timestamp = gethrtime(); 2449 if (zio->io_type == ZIO_TYPE_WRITE) { 2450 spa_select_allocator(zio); 2451 } 2452 __zio_execute(zio); 2453 } 2454 2455 /* 2456 * ========================================================================== 2457 * Reexecute, cancel, or suspend/resume failed I/O 2458 * ========================================================================== 2459 */ 2460 2461 static void 2462 zio_reexecute(void *arg) 2463 { 2464 zio_t *pio = arg; 2465 zio_t *cio, *cio_next, *gio; 2466 2467 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2468 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2469 ASSERT(pio->io_gang_leader == NULL); 2470 ASSERT(pio->io_gang_tree == NULL); 2471 2472 mutex_enter(&pio->io_lock); 2473 pio->io_flags = pio->io_orig_flags; 2474 pio->io_stage = pio->io_orig_stage; 2475 pio->io_pipeline = pio->io_orig_pipeline; 2476 pio->io_reexecute = 0; 2477 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2478 pio->io_pipeline_trace = 0; 2479 pio->io_error = 0; 2480 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) || 2481 (pio->io_pipeline & ZIO_STAGE_READY) == 0; 2482 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE); 2483 zio_link_t *zl = NULL; 2484 while ((gio = zio_walk_parents(pio, &zl)) != NULL) { 2485 for (int w = 0; w < ZIO_WAIT_TYPES; w++) { 2486 gio->io_children[pio->io_child_type][w] += 2487 !pio->io_state[w]; 2488 } 2489 } 2490 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2491 pio->io_child_error[c] = 0; 2492 2493 if (IO_IS_ALLOCATING(pio)) 2494 BP_ZERO(pio->io_bp); 2495 2496 /* 2497 * As we reexecute pio's children, new children could be created. 2498 * New children go to the head of pio's io_child_list, however, 2499 * so we will (correctly) not reexecute them. The key is that 2500 * the remainder of pio's io_child_list, from 'cio_next' onward, 2501 * cannot be affected by any side effects of reexecuting 'cio'. 2502 */ 2503 zl = NULL; 2504 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2505 cio_next = zio_walk_children(pio, &zl); 2506 mutex_exit(&pio->io_lock); 2507 zio_reexecute(cio); 2508 mutex_enter(&pio->io_lock); 2509 } 2510 mutex_exit(&pio->io_lock); 2511 2512 /* 2513 * Now that all children have been reexecuted, execute the parent. 2514 * We don't reexecute "The Godfather" I/O here as it's the 2515 * responsibility of the caller to wait on it. 2516 */ 2517 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2518 pio->io_queued_timestamp = gethrtime(); 2519 __zio_execute(pio); 2520 } 2521 } 2522 2523 void 2524 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2525 { 2526 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2527 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2528 "failure and the failure mode property for this pool " 2529 "is set to panic.", spa_name(spa)); 2530 2531 if (reason != ZIO_SUSPEND_MMP) { 2532 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable " 2533 "I/O failure and has been suspended.\n", spa_name(spa)); 2534 } 2535 2536 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2537 NULL, NULL, 0); 2538 2539 mutex_enter(&spa->spa_suspend_lock); 2540 2541 if (spa->spa_suspend_zio_root == NULL) 2542 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2543 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2544 ZIO_FLAG_GODFATHER); 2545 2546 spa->spa_suspended = reason; 2547 2548 if (zio != NULL) { 2549 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2550 ASSERT(zio != spa->spa_suspend_zio_root); 2551 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2552 ASSERT(zio_unique_parent(zio) == NULL); 2553 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2554 zio_add_child(spa->spa_suspend_zio_root, zio); 2555 } 2556 2557 mutex_exit(&spa->spa_suspend_lock); 2558 } 2559 2560 int 2561 zio_resume(spa_t *spa) 2562 { 2563 zio_t *pio; 2564 2565 /* 2566 * Reexecute all previously suspended i/o. 2567 */ 2568 mutex_enter(&spa->spa_suspend_lock); 2569 spa->spa_suspended = ZIO_SUSPEND_NONE; 2570 cv_broadcast(&spa->spa_suspend_cv); 2571 pio = spa->spa_suspend_zio_root; 2572 spa->spa_suspend_zio_root = NULL; 2573 mutex_exit(&spa->spa_suspend_lock); 2574 2575 if (pio == NULL) 2576 return (0); 2577 2578 zio_reexecute(pio); 2579 return (zio_wait(pio)); 2580 } 2581 2582 void 2583 zio_resume_wait(spa_t *spa) 2584 { 2585 mutex_enter(&spa->spa_suspend_lock); 2586 while (spa_suspended(spa)) 2587 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2588 mutex_exit(&spa->spa_suspend_lock); 2589 } 2590 2591 /* 2592 * ========================================================================== 2593 * Gang blocks. 2594 * 2595 * A gang block is a collection of small blocks that looks to the DMU 2596 * like one large block. When zio_dva_allocate() cannot find a block 2597 * of the requested size, due to either severe fragmentation or the pool 2598 * being nearly full, it calls zio_write_gang_block() to construct the 2599 * block from smaller fragments. 2600 * 2601 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2602 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2603 * an indirect block: it's an array of block pointers. It consumes 2604 * only one sector and hence is allocatable regardless of fragmentation. 2605 * The gang header's bps point to its gang members, which hold the data. 2606 * 2607 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2608 * as the verifier to ensure uniqueness of the SHA256 checksum. 2609 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2610 * not the gang header. This ensures that data block signatures (needed for 2611 * deduplication) are independent of how the block is physically stored. 2612 * 2613 * Gang blocks can be nested: a gang member may itself be a gang block. 2614 * Thus every gang block is a tree in which root and all interior nodes are 2615 * gang headers, and the leaves are normal blocks that contain user data. 2616 * The root of the gang tree is called the gang leader. 2617 * 2618 * To perform any operation (read, rewrite, free, claim) on a gang block, 2619 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2620 * in the io_gang_tree field of the original logical i/o by recursively 2621 * reading the gang leader and all gang headers below it. This yields 2622 * an in-core tree containing the contents of every gang header and the 2623 * bps for every constituent of the gang block. 2624 * 2625 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2626 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2627 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2628 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2629 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2630 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2631 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2632 * of the gang header plus zio_checksum_compute() of the data to update the 2633 * gang header's blk_cksum as described above. 2634 * 2635 * The two-phase assemble/issue model solves the problem of partial failure -- 2636 * what if you'd freed part of a gang block but then couldn't read the 2637 * gang header for another part? Assembling the entire gang tree first 2638 * ensures that all the necessary gang header I/O has succeeded before 2639 * starting the actual work of free, claim, or write. Once the gang tree 2640 * is assembled, free and claim are in-memory operations that cannot fail. 2641 * 2642 * In the event that a gang write fails, zio_dva_unallocate() walks the 2643 * gang tree to immediately free (i.e. insert back into the space map) 2644 * everything we've allocated. This ensures that we don't get ENOSPC 2645 * errors during repeated suspend/resume cycles due to a flaky device. 2646 * 2647 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2648 * the gang tree, we won't modify the block, so we can safely defer the free 2649 * (knowing that the block is still intact). If we *can* assemble the gang 2650 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2651 * each constituent bp and we can allocate a new block on the next sync pass. 2652 * 2653 * In all cases, the gang tree allows complete recovery from partial failure. 2654 * ========================================================================== 2655 */ 2656 2657 static void 2658 zio_gang_issue_func_done(zio_t *zio) 2659 { 2660 abd_free(zio->io_abd); 2661 } 2662 2663 static zio_t * 2664 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2665 uint64_t offset) 2666 { 2667 if (gn != NULL) 2668 return (pio); 2669 2670 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2671 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2672 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2673 &pio->io_bookmark)); 2674 } 2675 2676 static zio_t * 2677 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2678 uint64_t offset) 2679 { 2680 zio_t *zio; 2681 2682 if (gn != NULL) { 2683 abd_t *gbh_abd = 2684 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2685 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2686 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2687 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2688 &pio->io_bookmark); 2689 /* 2690 * As we rewrite each gang header, the pipeline will compute 2691 * a new gang block header checksum for it; but no one will 2692 * compute a new data checksum, so we do that here. The one 2693 * exception is the gang leader: the pipeline already computed 2694 * its data checksum because that stage precedes gang assembly. 2695 * (Presently, nothing actually uses interior data checksums; 2696 * this is just good hygiene.) 2697 */ 2698 if (gn != pio->io_gang_leader->io_gang_tree) { 2699 abd_t *buf = abd_get_offset(data, offset); 2700 2701 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2702 buf, BP_GET_PSIZE(bp)); 2703 2704 abd_free(buf); 2705 } 2706 /* 2707 * If we are here to damage data for testing purposes, 2708 * leave the GBH alone so that we can detect the damage. 2709 */ 2710 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2711 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2712 } else { 2713 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2714 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2715 zio_gang_issue_func_done, NULL, pio->io_priority, 2716 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2717 } 2718 2719 return (zio); 2720 } 2721 2722 static zio_t * 2723 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2724 uint64_t offset) 2725 { 2726 (void) gn, (void) data, (void) offset; 2727 2728 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2729 ZIO_GANG_CHILD_FLAGS(pio)); 2730 if (zio == NULL) { 2731 zio = zio_null(pio, pio->io_spa, 2732 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2733 } 2734 return (zio); 2735 } 2736 2737 static zio_t * 2738 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2739 uint64_t offset) 2740 { 2741 (void) gn, (void) data, (void) offset; 2742 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2743 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2744 } 2745 2746 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2747 NULL, 2748 zio_read_gang, 2749 zio_rewrite_gang, 2750 zio_free_gang, 2751 zio_claim_gang, 2752 NULL 2753 }; 2754 2755 static void zio_gang_tree_assemble_done(zio_t *zio); 2756 2757 static zio_gang_node_t * 2758 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2759 { 2760 zio_gang_node_t *gn; 2761 2762 ASSERT(*gnpp == NULL); 2763 2764 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2765 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2766 *gnpp = gn; 2767 2768 return (gn); 2769 } 2770 2771 static void 2772 zio_gang_node_free(zio_gang_node_t **gnpp) 2773 { 2774 zio_gang_node_t *gn = *gnpp; 2775 2776 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2777 ASSERT(gn->gn_child[g] == NULL); 2778 2779 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2780 kmem_free(gn, sizeof (*gn)); 2781 *gnpp = NULL; 2782 } 2783 2784 static void 2785 zio_gang_tree_free(zio_gang_node_t **gnpp) 2786 { 2787 zio_gang_node_t *gn = *gnpp; 2788 2789 if (gn == NULL) 2790 return; 2791 2792 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2793 zio_gang_tree_free(&gn->gn_child[g]); 2794 2795 zio_gang_node_free(gnpp); 2796 } 2797 2798 static void 2799 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2800 { 2801 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2802 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2803 2804 ASSERT(gio->io_gang_leader == gio); 2805 ASSERT(BP_IS_GANG(bp)); 2806 2807 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2808 zio_gang_tree_assemble_done, gn, gio->io_priority, 2809 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2810 } 2811 2812 static void 2813 zio_gang_tree_assemble_done(zio_t *zio) 2814 { 2815 zio_t *gio = zio->io_gang_leader; 2816 zio_gang_node_t *gn = zio->io_private; 2817 blkptr_t *bp = zio->io_bp; 2818 2819 ASSERT(gio == zio_unique_parent(zio)); 2820 ASSERT(list_is_empty(&zio->io_child_list)); 2821 2822 if (zio->io_error) 2823 return; 2824 2825 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2826 if (BP_SHOULD_BYTESWAP(bp)) 2827 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2828 2829 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2830 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2831 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2832 2833 abd_free(zio->io_abd); 2834 2835 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2836 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2837 if (!BP_IS_GANG(gbp)) 2838 continue; 2839 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2840 } 2841 } 2842 2843 static void 2844 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2845 uint64_t offset) 2846 { 2847 zio_t *gio = pio->io_gang_leader; 2848 zio_t *zio; 2849 2850 ASSERT(BP_IS_GANG(bp) == !!gn); 2851 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2852 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2853 2854 /* 2855 * If you're a gang header, your data is in gn->gn_gbh. 2856 * If you're a gang member, your data is in 'data' and gn == NULL. 2857 */ 2858 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2859 2860 if (gn != NULL) { 2861 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2862 2863 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2864 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2865 if (BP_IS_HOLE(gbp)) 2866 continue; 2867 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2868 offset); 2869 offset += BP_GET_PSIZE(gbp); 2870 } 2871 } 2872 2873 if (gn == gio->io_gang_tree) 2874 ASSERT3U(gio->io_size, ==, offset); 2875 2876 if (zio != pio) 2877 zio_nowait(zio); 2878 } 2879 2880 static zio_t * 2881 zio_gang_assemble(zio_t *zio) 2882 { 2883 blkptr_t *bp = zio->io_bp; 2884 2885 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2886 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2887 2888 zio->io_gang_leader = zio; 2889 2890 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2891 2892 return (zio); 2893 } 2894 2895 static zio_t * 2896 zio_gang_issue(zio_t *zio) 2897 { 2898 blkptr_t *bp = zio->io_bp; 2899 2900 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2901 return (NULL); 2902 } 2903 2904 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2905 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2906 2907 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2908 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2909 0); 2910 else 2911 zio_gang_tree_free(&zio->io_gang_tree); 2912 2913 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2914 2915 return (zio); 2916 } 2917 2918 static void 2919 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio) 2920 { 2921 cio->io_allocator = pio->io_allocator; 2922 } 2923 2924 static void 2925 zio_write_gang_member_ready(zio_t *zio) 2926 { 2927 zio_t *pio = zio_unique_parent(zio); 2928 dva_t *cdva = zio->io_bp->blk_dva; 2929 dva_t *pdva = pio->io_bp->blk_dva; 2930 uint64_t asize; 2931 zio_t *gio __maybe_unused = zio->io_gang_leader; 2932 2933 if (BP_IS_HOLE(zio->io_bp)) 2934 return; 2935 2936 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2937 2938 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2939 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2940 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2941 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2942 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2943 2944 mutex_enter(&pio->io_lock); 2945 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2946 ASSERT(DVA_GET_GANG(&pdva[d])); 2947 asize = DVA_GET_ASIZE(&pdva[d]); 2948 asize += DVA_GET_ASIZE(&cdva[d]); 2949 DVA_SET_ASIZE(&pdva[d], asize); 2950 } 2951 mutex_exit(&pio->io_lock); 2952 } 2953 2954 static void 2955 zio_write_gang_done(zio_t *zio) 2956 { 2957 /* 2958 * The io_abd field will be NULL for a zio with no data. The io_flags 2959 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2960 * check for it here as it is cleared in zio_ready. 2961 */ 2962 if (zio->io_abd != NULL) 2963 abd_free(zio->io_abd); 2964 } 2965 2966 static zio_t * 2967 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2968 { 2969 spa_t *spa = pio->io_spa; 2970 blkptr_t *bp = pio->io_bp; 2971 zio_t *gio = pio->io_gang_leader; 2972 zio_t *zio; 2973 zio_gang_node_t *gn, **gnpp; 2974 zio_gbh_phys_t *gbh; 2975 abd_t *gbh_abd; 2976 uint64_t txg = pio->io_txg; 2977 uint64_t resid = pio->io_size; 2978 uint64_t lsize; 2979 int copies = gio->io_prop.zp_copies; 2980 zio_prop_t zp; 2981 int error; 2982 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2983 2984 /* 2985 * If one copy was requested, store 2 copies of the GBH, so that we 2986 * can still traverse all the data (e.g. to free or scrub) even if a 2987 * block is damaged. Note that we can't store 3 copies of the GBH in 2988 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. 2989 */ 2990 int gbh_copies = copies; 2991 if (gbh_copies == 1) { 2992 gbh_copies = MIN(2, spa_max_replication(spa)); 2993 } 2994 2995 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 2996 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2997 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2998 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2999 ASSERT(has_data); 3000 3001 flags |= METASLAB_ASYNC_ALLOC; 3002 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 3003 mca_alloc_slots, pio)); 3004 3005 /* 3006 * The logical zio has already placed a reservation for 3007 * 'copies' allocation slots but gang blocks may require 3008 * additional copies. These additional copies 3009 * (i.e. gbh_copies - copies) are guaranteed to succeed 3010 * since metaslab_class_throttle_reserve() always allows 3011 * additional reservations for gang blocks. 3012 */ 3013 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 3014 pio->io_allocator, pio, flags)); 3015 } 3016 3017 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 3018 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 3019 &pio->io_alloc_list, pio, pio->io_allocator); 3020 if (error) { 3021 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3022 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3023 ASSERT(has_data); 3024 3025 /* 3026 * If we failed to allocate the gang block header then 3027 * we remove any additional allocation reservations that 3028 * we placed here. The original reservation will 3029 * be removed when the logical I/O goes to the ready 3030 * stage. 3031 */ 3032 metaslab_class_throttle_unreserve(mc, 3033 gbh_copies - copies, pio->io_allocator, pio); 3034 } 3035 3036 pio->io_error = error; 3037 return (pio); 3038 } 3039 3040 if (pio == gio) { 3041 gnpp = &gio->io_gang_tree; 3042 } else { 3043 gnpp = pio->io_private; 3044 ASSERT(pio->io_ready == zio_write_gang_member_ready); 3045 } 3046 3047 gn = zio_gang_node_alloc(gnpp); 3048 gbh = gn->gn_gbh; 3049 memset(gbh, 0, SPA_GANGBLOCKSIZE); 3050 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 3051 3052 /* 3053 * Create the gang header. 3054 */ 3055 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 3056 zio_write_gang_done, NULL, pio->io_priority, 3057 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3058 3059 zio_gang_inherit_allocator(pio, zio); 3060 3061 /* 3062 * Create and nowait the gang children. 3063 */ 3064 for (int g = 0; resid != 0; resid -= lsize, g++) { 3065 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 3066 SPA_MINBLOCKSIZE); 3067 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 3068 3069 zp.zp_checksum = gio->io_prop.zp_checksum; 3070 zp.zp_compress = ZIO_COMPRESS_OFF; 3071 zp.zp_complevel = gio->io_prop.zp_complevel; 3072 zp.zp_type = DMU_OT_NONE; 3073 zp.zp_level = 0; 3074 zp.zp_copies = gio->io_prop.zp_copies; 3075 zp.zp_dedup = B_FALSE; 3076 zp.zp_dedup_verify = B_FALSE; 3077 zp.zp_nopwrite = B_FALSE; 3078 zp.zp_encrypt = gio->io_prop.zp_encrypt; 3079 zp.zp_byteorder = gio->io_prop.zp_byteorder; 3080 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 3081 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 3082 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 3083 3084 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 3085 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 3086 resid) : NULL, lsize, lsize, &zp, 3087 zio_write_gang_member_ready, NULL, 3088 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 3089 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 3090 3091 zio_gang_inherit_allocator(zio, cio); 3092 3093 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 3094 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 3095 ASSERT(has_data); 3096 3097 /* 3098 * Gang children won't throttle but we should 3099 * account for their work, so reserve an allocation 3100 * slot for them here. 3101 */ 3102 VERIFY(metaslab_class_throttle_reserve(mc, 3103 zp.zp_copies, cio->io_allocator, cio, flags)); 3104 } 3105 zio_nowait(cio); 3106 } 3107 3108 /* 3109 * Set pio's pipeline to just wait for zio to finish. 3110 */ 3111 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3112 3113 zio_nowait(zio); 3114 3115 return (pio); 3116 } 3117 3118 /* 3119 * The zio_nop_write stage in the pipeline determines if allocating a 3120 * new bp is necessary. The nopwrite feature can handle writes in 3121 * either syncing or open context (i.e. zil writes) and as a result is 3122 * mutually exclusive with dedup. 3123 * 3124 * By leveraging a cryptographically secure checksum, such as SHA256, we 3125 * can compare the checksums of the new data and the old to determine if 3126 * allocating a new block is required. Note that our requirements for 3127 * cryptographic strength are fairly weak: there can't be any accidental 3128 * hash collisions, but we don't need to be secure against intentional 3129 * (malicious) collisions. To trigger a nopwrite, you have to be able 3130 * to write the file to begin with, and triggering an incorrect (hash 3131 * collision) nopwrite is no worse than simply writing to the file. 3132 * That said, there are no known attacks against the checksum algorithms 3133 * used for nopwrite, assuming that the salt and the checksums 3134 * themselves remain secret. 3135 */ 3136 static zio_t * 3137 zio_nop_write(zio_t *zio) 3138 { 3139 blkptr_t *bp = zio->io_bp; 3140 blkptr_t *bp_orig = &zio->io_bp_orig; 3141 zio_prop_t *zp = &zio->io_prop; 3142 3143 ASSERT(BP_IS_HOLE(bp)); 3144 ASSERT(BP_GET_LEVEL(bp) == 0); 3145 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3146 ASSERT(zp->zp_nopwrite); 3147 ASSERT(!zp->zp_dedup); 3148 ASSERT(zio->io_bp_override == NULL); 3149 ASSERT(IO_IS_ALLOCATING(zio)); 3150 3151 /* 3152 * Check to see if the original bp and the new bp have matching 3153 * characteristics (i.e. same checksum, compression algorithms, etc). 3154 * If they don't then just continue with the pipeline which will 3155 * allocate a new bp. 3156 */ 3157 if (BP_IS_HOLE(bp_orig) || 3158 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3159 ZCHECKSUM_FLAG_NOPWRITE) || 3160 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3161 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3162 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3163 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3164 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3165 return (zio); 3166 3167 /* 3168 * If the checksums match then reset the pipeline so that we 3169 * avoid allocating a new bp and issuing any I/O. 3170 */ 3171 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3172 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3173 ZCHECKSUM_FLAG_NOPWRITE); 3174 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3175 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3176 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3177 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3178 3179 /* 3180 * If we're overwriting a block that is currently on an 3181 * indirect vdev, then ignore the nopwrite request and 3182 * allow a new block to be allocated on a concrete vdev. 3183 */ 3184 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3185 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3186 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3187 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3188 if (tvd->vdev_ops == &vdev_indirect_ops) { 3189 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3190 return (zio); 3191 } 3192 } 3193 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3194 3195 *bp = *bp_orig; 3196 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3197 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3198 } 3199 3200 return (zio); 3201 } 3202 3203 /* 3204 * ========================================================================== 3205 * Block Reference Table 3206 * ========================================================================== 3207 */ 3208 static zio_t * 3209 zio_brt_free(zio_t *zio) 3210 { 3211 blkptr_t *bp; 3212 3213 bp = zio->io_bp; 3214 3215 if (BP_GET_LEVEL(bp) > 0 || 3216 BP_IS_METADATA(bp) || 3217 !brt_maybe_exists(zio->io_spa, bp)) { 3218 return (zio); 3219 } 3220 3221 if (!brt_entry_decref(zio->io_spa, bp)) { 3222 /* 3223 * This isn't the last reference, so we cannot free 3224 * the data yet. 3225 */ 3226 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3227 } 3228 3229 return (zio); 3230 } 3231 3232 /* 3233 * ========================================================================== 3234 * Dedup 3235 * ========================================================================== 3236 */ 3237 static void 3238 zio_ddt_child_read_done(zio_t *zio) 3239 { 3240 blkptr_t *bp = zio->io_bp; 3241 ddt_entry_t *dde = zio->io_private; 3242 ddt_phys_t *ddp; 3243 zio_t *pio = zio_unique_parent(zio); 3244 3245 mutex_enter(&pio->io_lock); 3246 ddp = ddt_phys_select(dde, bp); 3247 if (zio->io_error == 0) 3248 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3249 3250 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3251 dde->dde_repair_abd = zio->io_abd; 3252 else 3253 abd_free(zio->io_abd); 3254 mutex_exit(&pio->io_lock); 3255 } 3256 3257 static zio_t * 3258 zio_ddt_read_start(zio_t *zio) 3259 { 3260 blkptr_t *bp = zio->io_bp; 3261 3262 ASSERT(BP_GET_DEDUP(bp)); 3263 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3264 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3265 3266 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3267 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3268 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3269 ddt_phys_t *ddp = dde->dde_phys; 3270 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3271 blkptr_t blk; 3272 3273 ASSERT(zio->io_vsd == NULL); 3274 zio->io_vsd = dde; 3275 3276 if (ddp_self == NULL) 3277 return (zio); 3278 3279 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3280 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3281 continue; 3282 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3283 &blk); 3284 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3285 abd_alloc_for_io(zio->io_size, B_TRUE), 3286 zio->io_size, zio_ddt_child_read_done, dde, 3287 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3288 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3289 } 3290 return (zio); 3291 } 3292 3293 zio_nowait(zio_read(zio, zio->io_spa, bp, 3294 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3295 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3296 3297 return (zio); 3298 } 3299 3300 static zio_t * 3301 zio_ddt_read_done(zio_t *zio) 3302 { 3303 blkptr_t *bp = zio->io_bp; 3304 3305 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3306 return (NULL); 3307 } 3308 3309 ASSERT(BP_GET_DEDUP(bp)); 3310 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3311 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3312 3313 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3314 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3315 ddt_entry_t *dde = zio->io_vsd; 3316 if (ddt == NULL) { 3317 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3318 return (zio); 3319 } 3320 if (dde == NULL) { 3321 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3322 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3323 return (NULL); 3324 } 3325 if (dde->dde_repair_abd != NULL) { 3326 abd_copy(zio->io_abd, dde->dde_repair_abd, 3327 zio->io_size); 3328 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3329 } 3330 ddt_repair_done(ddt, dde); 3331 zio->io_vsd = NULL; 3332 } 3333 3334 ASSERT(zio->io_vsd == NULL); 3335 3336 return (zio); 3337 } 3338 3339 static boolean_t 3340 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3341 { 3342 spa_t *spa = zio->io_spa; 3343 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3344 3345 ASSERT(!(zio->io_bp_override && do_raw)); 3346 3347 /* 3348 * Note: we compare the original data, not the transformed data, 3349 * because when zio->io_bp is an override bp, we will not have 3350 * pushed the I/O transforms. That's an important optimization 3351 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3352 * However, we should never get a raw, override zio so in these 3353 * cases we can compare the io_abd directly. This is useful because 3354 * it allows us to do dedup verification even if we don't have access 3355 * to the original data (for instance, if the encryption keys aren't 3356 * loaded). 3357 */ 3358 3359 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3360 zio_t *lio = dde->dde_lead_zio[p]; 3361 3362 if (lio != NULL && do_raw) { 3363 return (lio->io_size != zio->io_size || 3364 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3365 } else if (lio != NULL) { 3366 return (lio->io_orig_size != zio->io_orig_size || 3367 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3368 } 3369 } 3370 3371 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3372 ddt_phys_t *ddp = &dde->dde_phys[p]; 3373 3374 if (ddp->ddp_phys_birth != 0 && do_raw) { 3375 blkptr_t blk = *zio->io_bp; 3376 uint64_t psize; 3377 abd_t *tmpabd; 3378 int error; 3379 3380 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3381 psize = BP_GET_PSIZE(&blk); 3382 3383 if (psize != zio->io_size) 3384 return (B_TRUE); 3385 3386 ddt_exit(ddt); 3387 3388 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3389 3390 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3391 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3392 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3393 ZIO_FLAG_RAW, &zio->io_bookmark)); 3394 3395 if (error == 0) { 3396 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3397 error = SET_ERROR(ENOENT); 3398 } 3399 3400 abd_free(tmpabd); 3401 ddt_enter(ddt); 3402 return (error != 0); 3403 } else if (ddp->ddp_phys_birth != 0) { 3404 arc_buf_t *abuf = NULL; 3405 arc_flags_t aflags = ARC_FLAG_WAIT; 3406 blkptr_t blk = *zio->io_bp; 3407 int error; 3408 3409 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3410 3411 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3412 return (B_TRUE); 3413 3414 ddt_exit(ddt); 3415 3416 error = arc_read(NULL, spa, &blk, 3417 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3418 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3419 &aflags, &zio->io_bookmark); 3420 3421 if (error == 0) { 3422 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3423 zio->io_orig_size) != 0) 3424 error = SET_ERROR(ENOENT); 3425 arc_buf_destroy(abuf, &abuf); 3426 } 3427 3428 ddt_enter(ddt); 3429 return (error != 0); 3430 } 3431 } 3432 3433 return (B_FALSE); 3434 } 3435 3436 static void 3437 zio_ddt_child_write_ready(zio_t *zio) 3438 { 3439 int p = zio->io_prop.zp_copies; 3440 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3441 ddt_entry_t *dde = zio->io_private; 3442 ddt_phys_t *ddp = &dde->dde_phys[p]; 3443 zio_t *pio; 3444 3445 if (zio->io_error) 3446 return; 3447 3448 ddt_enter(ddt); 3449 3450 ASSERT(dde->dde_lead_zio[p] == zio); 3451 3452 ddt_phys_fill(ddp, zio->io_bp); 3453 3454 zio_link_t *zl = NULL; 3455 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3456 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3457 3458 ddt_exit(ddt); 3459 } 3460 3461 static void 3462 zio_ddt_child_write_done(zio_t *zio) 3463 { 3464 int p = zio->io_prop.zp_copies; 3465 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3466 ddt_entry_t *dde = zio->io_private; 3467 ddt_phys_t *ddp = &dde->dde_phys[p]; 3468 3469 ddt_enter(ddt); 3470 3471 ASSERT(ddp->ddp_refcnt == 0); 3472 ASSERT(dde->dde_lead_zio[p] == zio); 3473 dde->dde_lead_zio[p] = NULL; 3474 3475 if (zio->io_error == 0) { 3476 zio_link_t *zl = NULL; 3477 while (zio_walk_parents(zio, &zl) != NULL) 3478 ddt_phys_addref(ddp); 3479 } else { 3480 ddt_phys_clear(ddp); 3481 } 3482 3483 ddt_exit(ddt); 3484 } 3485 3486 static zio_t * 3487 zio_ddt_write(zio_t *zio) 3488 { 3489 spa_t *spa = zio->io_spa; 3490 blkptr_t *bp = zio->io_bp; 3491 uint64_t txg = zio->io_txg; 3492 zio_prop_t *zp = &zio->io_prop; 3493 int p = zp->zp_copies; 3494 zio_t *cio = NULL; 3495 ddt_t *ddt = ddt_select(spa, bp); 3496 ddt_entry_t *dde; 3497 ddt_phys_t *ddp; 3498 3499 ASSERT(BP_GET_DEDUP(bp)); 3500 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3501 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3502 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3503 3504 ddt_enter(ddt); 3505 dde = ddt_lookup(ddt, bp, B_TRUE); 3506 ddp = &dde->dde_phys[p]; 3507 3508 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3509 /* 3510 * If we're using a weak checksum, upgrade to a strong checksum 3511 * and try again. If we're already using a strong checksum, 3512 * we can't resolve it, so just convert to an ordinary write. 3513 * (And automatically e-mail a paper to Nature?) 3514 */ 3515 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3516 ZCHECKSUM_FLAG_DEDUP)) { 3517 zp->zp_checksum = spa_dedup_checksum(spa); 3518 zio_pop_transforms(zio); 3519 zio->io_stage = ZIO_STAGE_OPEN; 3520 BP_ZERO(bp); 3521 } else { 3522 zp->zp_dedup = B_FALSE; 3523 BP_SET_DEDUP(bp, B_FALSE); 3524 } 3525 ASSERT(!BP_GET_DEDUP(bp)); 3526 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3527 ddt_exit(ddt); 3528 return (zio); 3529 } 3530 3531 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3532 if (ddp->ddp_phys_birth != 0) 3533 ddt_bp_fill(ddp, bp, txg); 3534 if (dde->dde_lead_zio[p] != NULL) 3535 zio_add_child(zio, dde->dde_lead_zio[p]); 3536 else 3537 ddt_phys_addref(ddp); 3538 } else if (zio->io_bp_override) { 3539 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg); 3540 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3541 ddt_phys_fill(ddp, bp); 3542 ddt_phys_addref(ddp); 3543 } else { 3544 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3545 zio->io_orig_size, zio->io_orig_size, zp, 3546 zio_ddt_child_write_ready, NULL, 3547 zio_ddt_child_write_done, dde, zio->io_priority, 3548 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3549 3550 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3551 dde->dde_lead_zio[p] = cio; 3552 } 3553 3554 ddt_exit(ddt); 3555 3556 zio_nowait(cio); 3557 3558 return (zio); 3559 } 3560 3561 static ddt_entry_t *freedde; /* for debugging */ 3562 3563 static zio_t * 3564 zio_ddt_free(zio_t *zio) 3565 { 3566 spa_t *spa = zio->io_spa; 3567 blkptr_t *bp = zio->io_bp; 3568 ddt_t *ddt = ddt_select(spa, bp); 3569 ddt_entry_t *dde; 3570 ddt_phys_t *ddp; 3571 3572 ASSERT(BP_GET_DEDUP(bp)); 3573 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3574 3575 ddt_enter(ddt); 3576 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3577 if (dde) { 3578 ddp = ddt_phys_select(dde, bp); 3579 if (ddp) 3580 ddt_phys_decref(ddp); 3581 } 3582 ddt_exit(ddt); 3583 3584 return (zio); 3585 } 3586 3587 /* 3588 * ========================================================================== 3589 * Allocate and free blocks 3590 * ========================================================================== 3591 */ 3592 3593 static zio_t * 3594 zio_io_to_allocate(spa_t *spa, int allocator) 3595 { 3596 zio_t *zio; 3597 3598 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3599 3600 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3601 if (zio == NULL) 3602 return (NULL); 3603 3604 ASSERT(IO_IS_ALLOCATING(zio)); 3605 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3606 3607 /* 3608 * Try to place a reservation for this zio. If we're unable to 3609 * reserve then we throttle. 3610 */ 3611 ASSERT3U(zio->io_allocator, ==, allocator); 3612 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3613 zio->io_prop.zp_copies, allocator, zio, 0)) { 3614 return (NULL); 3615 } 3616 3617 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3618 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3619 3620 return (zio); 3621 } 3622 3623 static zio_t * 3624 zio_dva_throttle(zio_t *zio) 3625 { 3626 spa_t *spa = zio->io_spa; 3627 zio_t *nio; 3628 metaslab_class_t *mc; 3629 3630 /* locate an appropriate allocation class */ 3631 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3632 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3633 3634 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3635 !mc->mc_alloc_throttle_enabled || 3636 zio->io_child_type == ZIO_CHILD_GANG || 3637 zio->io_flags & ZIO_FLAG_NODATA) { 3638 return (zio); 3639 } 3640 3641 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3642 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3643 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3644 ASSERT3U(zio->io_queued_timestamp, >, 0); 3645 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3646 3647 int allocator = zio->io_allocator; 3648 zio->io_metaslab_class = mc; 3649 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3650 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3651 nio = zio_io_to_allocate(spa, allocator); 3652 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3653 return (nio); 3654 } 3655 3656 static void 3657 zio_allocate_dispatch(spa_t *spa, int allocator) 3658 { 3659 zio_t *zio; 3660 3661 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3662 zio = zio_io_to_allocate(spa, allocator); 3663 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3664 if (zio == NULL) 3665 return; 3666 3667 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3668 ASSERT0(zio->io_error); 3669 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3670 } 3671 3672 static zio_t * 3673 zio_dva_allocate(zio_t *zio) 3674 { 3675 spa_t *spa = zio->io_spa; 3676 metaslab_class_t *mc; 3677 blkptr_t *bp = zio->io_bp; 3678 int error; 3679 int flags = 0; 3680 3681 if (zio->io_gang_leader == NULL) { 3682 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3683 zio->io_gang_leader = zio; 3684 } 3685 3686 ASSERT(BP_IS_HOLE(bp)); 3687 ASSERT0(BP_GET_NDVAS(bp)); 3688 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3689 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3690 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3691 3692 if (zio->io_flags & ZIO_FLAG_NODATA) 3693 flags |= METASLAB_DONT_THROTTLE; 3694 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3695 flags |= METASLAB_GANG_CHILD; 3696 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3697 flags |= METASLAB_ASYNC_ALLOC; 3698 3699 /* 3700 * if not already chosen, locate an appropriate allocation class 3701 */ 3702 mc = zio->io_metaslab_class; 3703 if (mc == NULL) { 3704 mc = spa_preferred_class(spa, zio->io_size, 3705 zio->io_prop.zp_type, zio->io_prop.zp_level, 3706 zio->io_prop.zp_zpl_smallblk); 3707 zio->io_metaslab_class = mc; 3708 } 3709 3710 /* 3711 * Try allocating the block in the usual metaslab class. 3712 * If that's full, allocate it in the normal class. 3713 * If that's full, allocate as a gang block, 3714 * and if all are full, the allocation fails (which shouldn't happen). 3715 * 3716 * Note that we do not fall back on embedded slog (ZIL) space, to 3717 * preserve unfragmented slog space, which is critical for decent 3718 * sync write performance. If a log allocation fails, we will fall 3719 * back to spa_sync() which is abysmal for performance. 3720 */ 3721 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 3722 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3723 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3724 &zio->io_alloc_list, zio, zio->io_allocator); 3725 3726 /* 3727 * Fallback to normal class when an alloc class is full 3728 */ 3729 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3730 /* 3731 * If throttling, transfer reservation over to normal class. 3732 * The io_allocator slot can remain the same even though we 3733 * are switching classes. 3734 */ 3735 if (mc->mc_alloc_throttle_enabled && 3736 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3737 metaslab_class_throttle_unreserve(mc, 3738 zio->io_prop.zp_copies, zio->io_allocator, zio); 3739 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3740 3741 VERIFY(metaslab_class_throttle_reserve( 3742 spa_normal_class(spa), 3743 zio->io_prop.zp_copies, zio->io_allocator, zio, 3744 flags | METASLAB_MUST_RESERVE)); 3745 } 3746 zio->io_metaslab_class = mc = spa_normal_class(spa); 3747 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3748 zfs_dbgmsg("%s: metaslab allocation failure, " 3749 "trying normal class: zio %px, size %llu, error %d", 3750 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3751 error); 3752 } 3753 3754 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3755 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3756 &zio->io_alloc_list, zio, zio->io_allocator); 3757 } 3758 3759 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3760 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3761 zfs_dbgmsg("%s: metaslab allocation failure, " 3762 "trying ganging: zio %px, size %llu, error %d", 3763 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3764 error); 3765 } 3766 return (zio_write_gang_block(zio, mc)); 3767 } 3768 if (error != 0) { 3769 if (error != ENOSPC || 3770 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3771 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3772 "size %llu, error %d", 3773 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3774 error); 3775 } 3776 zio->io_error = error; 3777 } 3778 3779 return (zio); 3780 } 3781 3782 static zio_t * 3783 zio_dva_free(zio_t *zio) 3784 { 3785 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3786 3787 return (zio); 3788 } 3789 3790 static zio_t * 3791 zio_dva_claim(zio_t *zio) 3792 { 3793 int error; 3794 3795 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3796 if (error) 3797 zio->io_error = error; 3798 3799 return (zio); 3800 } 3801 3802 /* 3803 * Undo an allocation. This is used by zio_done() when an I/O fails 3804 * and we want to give back the block we just allocated. 3805 * This handles both normal blocks and gang blocks. 3806 */ 3807 static void 3808 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3809 { 3810 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp)); 3811 ASSERT(zio->io_bp_override == NULL); 3812 3813 if (!BP_IS_HOLE(bp)) { 3814 metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp), 3815 B_TRUE); 3816 } 3817 3818 if (gn != NULL) { 3819 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3820 zio_dva_unallocate(zio, gn->gn_child[g], 3821 &gn->gn_gbh->zg_blkptr[g]); 3822 } 3823 } 3824 } 3825 3826 /* 3827 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3828 */ 3829 int 3830 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3831 uint64_t size, boolean_t *slog) 3832 { 3833 int error = 1; 3834 zio_alloc_list_t io_alloc_list; 3835 3836 ASSERT(txg > spa_syncing_txg(spa)); 3837 3838 metaslab_trace_init(&io_alloc_list); 3839 3840 /* 3841 * Block pointer fields are useful to metaslabs for stats and debugging. 3842 * Fill in the obvious ones before calling into metaslab_alloc(). 3843 */ 3844 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3845 BP_SET_PSIZE(new_bp, size); 3846 BP_SET_LEVEL(new_bp, 0); 3847 3848 /* 3849 * When allocating a zil block, we don't have information about 3850 * the final destination of the block except the objset it's part 3851 * of, so we just hash the objset ID to pick the allocator to get 3852 * some parallelism. 3853 */ 3854 int flags = METASLAB_ZIL; 3855 int allocator = (uint_t)cityhash4(0, 0, 0, 3856 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3857 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3858 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3859 *slog = (error == 0); 3860 if (error != 0) { 3861 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3862 new_bp, 1, txg, NULL, flags, 3863 &io_alloc_list, NULL, allocator); 3864 } 3865 if (error != 0) { 3866 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3867 new_bp, 1, txg, NULL, flags, 3868 &io_alloc_list, NULL, allocator); 3869 } 3870 metaslab_trace_fini(&io_alloc_list); 3871 3872 if (error == 0) { 3873 BP_SET_LSIZE(new_bp, size); 3874 BP_SET_PSIZE(new_bp, size); 3875 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3876 BP_SET_CHECKSUM(new_bp, 3877 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3878 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3879 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3880 BP_SET_LEVEL(new_bp, 0); 3881 BP_SET_DEDUP(new_bp, 0); 3882 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3883 3884 /* 3885 * encrypted blocks will require an IV and salt. We generate 3886 * these now since we will not be rewriting the bp at 3887 * rewrite time. 3888 */ 3889 if (os->os_encrypted) { 3890 uint8_t iv[ZIO_DATA_IV_LEN]; 3891 uint8_t salt[ZIO_DATA_SALT_LEN]; 3892 3893 BP_SET_CRYPT(new_bp, B_TRUE); 3894 VERIFY0(spa_crypt_get_salt(spa, 3895 dmu_objset_id(os), salt)); 3896 VERIFY0(zio_crypt_generate_iv(iv)); 3897 3898 zio_crypt_encode_params_bp(new_bp, salt, iv); 3899 } 3900 } else { 3901 zfs_dbgmsg("%s: zil block allocation failure: " 3902 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3903 error); 3904 } 3905 3906 return (error); 3907 } 3908 3909 /* 3910 * ========================================================================== 3911 * Read and write to physical devices 3912 * ========================================================================== 3913 */ 3914 3915 /* 3916 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3917 * stops after this stage and will resume upon I/O completion. 3918 * However, there are instances where the vdev layer may need to 3919 * continue the pipeline when an I/O was not issued. Since the I/O 3920 * that was sent to the vdev layer might be different than the one 3921 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3922 * force the underlying vdev layers to call either zio_execute() or 3923 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3924 */ 3925 static zio_t * 3926 zio_vdev_io_start(zio_t *zio) 3927 { 3928 vdev_t *vd = zio->io_vd; 3929 uint64_t align; 3930 spa_t *spa = zio->io_spa; 3931 3932 zio->io_delay = 0; 3933 3934 ASSERT(zio->io_error == 0); 3935 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3936 3937 if (vd == NULL) { 3938 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3939 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3940 3941 /* 3942 * The mirror_ops handle multiple DVAs in a single BP. 3943 */ 3944 vdev_mirror_ops.vdev_op_io_start(zio); 3945 return (NULL); 3946 } 3947 3948 ASSERT3P(zio->io_logical, !=, zio); 3949 if (zio->io_type == ZIO_TYPE_WRITE) { 3950 ASSERT(spa->spa_trust_config); 3951 3952 /* 3953 * Note: the code can handle other kinds of writes, 3954 * but we don't expect them. 3955 */ 3956 if (zio->io_vd->vdev_noalloc) { 3957 ASSERT(zio->io_flags & 3958 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3959 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3960 } 3961 } 3962 3963 align = 1ULL << vd->vdev_top->vdev_ashift; 3964 3965 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3966 P2PHASE(zio->io_size, align) != 0) { 3967 /* Transform logical writes to be a full physical block size. */ 3968 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3969 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3970 ASSERT(vd == vd->vdev_top); 3971 if (zio->io_type == ZIO_TYPE_WRITE) { 3972 abd_copy(abuf, zio->io_abd, zio->io_size); 3973 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3974 } 3975 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3976 } 3977 3978 /* 3979 * If this is not a physical io, make sure that it is properly aligned 3980 * before proceeding. 3981 */ 3982 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3983 ASSERT0(P2PHASE(zio->io_offset, align)); 3984 ASSERT0(P2PHASE(zio->io_size, align)); 3985 } else { 3986 /* 3987 * For physical writes, we allow 512b aligned writes and assume 3988 * the device will perform a read-modify-write as necessary. 3989 */ 3990 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3991 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3992 } 3993 3994 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3995 3996 /* 3997 * If this is a repair I/O, and there's no self-healing involved -- 3998 * that is, we're just resilvering what we expect to resilver -- 3999 * then don't do the I/O unless zio's txg is actually in vd's DTL. 4000 * This prevents spurious resilvering. 4001 * 4002 * There are a few ways that we can end up creating these spurious 4003 * resilver i/os: 4004 * 4005 * 1. A resilver i/o will be issued if any DVA in the BP has a 4006 * dirty DTL. The mirror code will issue resilver writes to 4007 * each DVA, including the one(s) that are not on vdevs with dirty 4008 * DTLs. 4009 * 4010 * 2. With nested replication, which happens when we have a 4011 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 4012 * For example, given mirror(replacing(A+B), C), it's likely that 4013 * only A is out of date (it's the new device). In this case, we'll 4014 * read from C, then use the data to resilver A+B -- but we don't 4015 * actually want to resilver B, just A. The top-level mirror has no 4016 * way to know this, so instead we just discard unnecessary repairs 4017 * as we work our way down the vdev tree. 4018 * 4019 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 4020 * The same logic applies to any form of nested replication: ditto 4021 * + mirror, RAID-Z + replacing, etc. 4022 * 4023 * However, indirect vdevs point off to other vdevs which may have 4024 * DTL's, so we never bypass them. The child i/os on concrete vdevs 4025 * will be properly bypassed instead. 4026 * 4027 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 4028 * a dRAID spare vdev. For example, when a dRAID spare is first 4029 * used, its spare blocks need to be written to but the leaf vdev's 4030 * of such blocks can have empty DTL_PARTIAL. 4031 * 4032 * There seemed no clean way to allow such writes while bypassing 4033 * spurious ones. At this point, just avoid all bypassing for dRAID 4034 * for correctness. 4035 */ 4036 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 4037 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 4038 zio->io_txg != 0 && /* not a delegated i/o */ 4039 vd->vdev_ops != &vdev_indirect_ops && 4040 vd->vdev_top->vdev_ops != &vdev_draid_ops && 4041 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 4042 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4043 zio_vdev_io_bypass(zio); 4044 return (zio); 4045 } 4046 4047 /* 4048 * Select the next best leaf I/O to process. Distributed spares are 4049 * excluded since they dispatch the I/O directly to a leaf vdev after 4050 * applying the dRAID mapping. 4051 */ 4052 if (vd->vdev_ops->vdev_op_leaf && 4053 vd->vdev_ops != &vdev_draid_spare_ops && 4054 (zio->io_type == ZIO_TYPE_READ || 4055 zio->io_type == ZIO_TYPE_WRITE || 4056 zio->io_type == ZIO_TYPE_TRIM)) { 4057 4058 if (zio_handle_device_injection(vd, zio, ENOSYS) != 0) { 4059 /* 4060 * "no-op" injections return success, but do no actual 4061 * work. Just skip the remaining vdev stages. 4062 */ 4063 zio_vdev_io_bypass(zio); 4064 zio_interrupt(zio); 4065 return (NULL); 4066 } 4067 4068 if ((zio = vdev_queue_io(zio)) == NULL) 4069 return (NULL); 4070 4071 if (!vdev_accessible(vd, zio)) { 4072 zio->io_error = SET_ERROR(ENXIO); 4073 zio_interrupt(zio); 4074 return (NULL); 4075 } 4076 zio->io_delay = gethrtime(); 4077 } 4078 4079 vd->vdev_ops->vdev_op_io_start(zio); 4080 return (NULL); 4081 } 4082 4083 static zio_t * 4084 zio_vdev_io_done(zio_t *zio) 4085 { 4086 vdev_t *vd = zio->io_vd; 4087 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 4088 boolean_t unexpected_error = B_FALSE; 4089 4090 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4091 return (NULL); 4092 } 4093 4094 ASSERT(zio->io_type == ZIO_TYPE_READ || 4095 zio->io_type == ZIO_TYPE_WRITE || 4096 zio->io_type == ZIO_TYPE_FLUSH || 4097 zio->io_type == ZIO_TYPE_TRIM); 4098 4099 if (zio->io_delay) 4100 zio->io_delay = gethrtime() - zio->io_delay; 4101 4102 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4103 vd->vdev_ops != &vdev_draid_spare_ops) { 4104 if (zio->io_type != ZIO_TYPE_FLUSH) 4105 vdev_queue_io_done(zio); 4106 4107 if (zio_injection_enabled && zio->io_error == 0) 4108 zio->io_error = zio_handle_device_injections(vd, zio, 4109 EIO, EILSEQ); 4110 4111 if (zio_injection_enabled && zio->io_error == 0) 4112 zio->io_error = zio_handle_label_injection(zio, EIO); 4113 4114 if (zio->io_error && zio->io_type != ZIO_TYPE_FLUSH && 4115 zio->io_type != ZIO_TYPE_TRIM) { 4116 if (!vdev_accessible(vd, zio)) { 4117 zio->io_error = SET_ERROR(ENXIO); 4118 } else { 4119 unexpected_error = B_TRUE; 4120 } 4121 } 4122 } 4123 4124 ops->vdev_op_io_done(zio); 4125 4126 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 4127 VERIFY(vdev_probe(vd, zio) == NULL); 4128 4129 return (zio); 4130 } 4131 4132 /* 4133 * This function is used to change the priority of an existing zio that is 4134 * currently in-flight. This is used by the arc to upgrade priority in the 4135 * event that a demand read is made for a block that is currently queued 4136 * as a scrub or async read IO. Otherwise, the high priority read request 4137 * would end up having to wait for the lower priority IO. 4138 */ 4139 void 4140 zio_change_priority(zio_t *pio, zio_priority_t priority) 4141 { 4142 zio_t *cio, *cio_next; 4143 zio_link_t *zl = NULL; 4144 4145 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 4146 4147 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4148 vdev_queue_change_io_priority(pio, priority); 4149 } else { 4150 pio->io_priority = priority; 4151 } 4152 4153 mutex_enter(&pio->io_lock); 4154 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4155 cio_next = zio_walk_children(pio, &zl); 4156 zio_change_priority(cio, priority); 4157 } 4158 mutex_exit(&pio->io_lock); 4159 } 4160 4161 /* 4162 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4163 * disk, and use that to finish the checksum ereport later. 4164 */ 4165 static void 4166 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4167 const abd_t *good_buf) 4168 { 4169 /* no processing needed */ 4170 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4171 } 4172 4173 void 4174 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4175 { 4176 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4177 4178 abd_copy(abd, zio->io_abd, zio->io_size); 4179 4180 zcr->zcr_cbinfo = zio->io_size; 4181 zcr->zcr_cbdata = abd; 4182 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4183 zcr->zcr_free = zio_abd_free; 4184 } 4185 4186 static zio_t * 4187 zio_vdev_io_assess(zio_t *zio) 4188 { 4189 vdev_t *vd = zio->io_vd; 4190 4191 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4192 return (NULL); 4193 } 4194 4195 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4196 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4197 4198 if (zio->io_vsd != NULL) { 4199 zio->io_vsd_ops->vsd_free(zio); 4200 zio->io_vsd = NULL; 4201 } 4202 4203 if (zio_injection_enabled && zio->io_error == 0) 4204 zio->io_error = zio_handle_fault_injection(zio, EIO); 4205 4206 /* 4207 * If the I/O failed, determine whether we should attempt to retry it. 4208 * 4209 * On retry, we cut in line in the issue queue, since we don't want 4210 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4211 */ 4212 if (zio->io_error && vd == NULL && 4213 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4214 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4215 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4216 zio->io_error = 0; 4217 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE; 4218 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4219 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4220 zio_requeue_io_start_cut_in_line); 4221 return (NULL); 4222 } 4223 4224 /* 4225 * If we got an error on a leaf device, convert it to ENXIO 4226 * if the device is not accessible at all. 4227 */ 4228 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4229 !vdev_accessible(vd, zio)) 4230 zio->io_error = SET_ERROR(ENXIO); 4231 4232 /* 4233 * If we can't write to an interior vdev (mirror or RAID-Z), 4234 * set vdev_cant_write so that we stop trying to allocate from it. 4235 */ 4236 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4237 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4238 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4239 "cant_write=TRUE due to write failure with ENXIO", 4240 zio); 4241 vd->vdev_cant_write = B_TRUE; 4242 } 4243 4244 /* 4245 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4246 * attempts will ever succeed. In this case we set a persistent 4247 * boolean flag so that we don't bother with it in the future. 4248 */ 4249 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4250 zio->io_type == ZIO_TYPE_FLUSH && vd != NULL) 4251 vd->vdev_nowritecache = B_TRUE; 4252 4253 if (zio->io_error) 4254 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4255 4256 return (zio); 4257 } 4258 4259 void 4260 zio_vdev_io_reissue(zio_t *zio) 4261 { 4262 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4263 ASSERT(zio->io_error == 0); 4264 4265 zio->io_stage >>= 1; 4266 } 4267 4268 void 4269 zio_vdev_io_redone(zio_t *zio) 4270 { 4271 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4272 4273 zio->io_stage >>= 1; 4274 } 4275 4276 void 4277 zio_vdev_io_bypass(zio_t *zio) 4278 { 4279 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4280 ASSERT(zio->io_error == 0); 4281 4282 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4283 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4284 } 4285 4286 /* 4287 * ========================================================================== 4288 * Encrypt and store encryption parameters 4289 * ========================================================================== 4290 */ 4291 4292 4293 /* 4294 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4295 * managing the storage of encryption parameters and passing them to the 4296 * lower-level encryption functions. 4297 */ 4298 static zio_t * 4299 zio_encrypt(zio_t *zio) 4300 { 4301 zio_prop_t *zp = &zio->io_prop; 4302 spa_t *spa = zio->io_spa; 4303 blkptr_t *bp = zio->io_bp; 4304 uint64_t psize = BP_GET_PSIZE(bp); 4305 uint64_t dsobj = zio->io_bookmark.zb_objset; 4306 dmu_object_type_t ot = BP_GET_TYPE(bp); 4307 void *enc_buf = NULL; 4308 abd_t *eabd = NULL; 4309 uint8_t salt[ZIO_DATA_SALT_LEN]; 4310 uint8_t iv[ZIO_DATA_IV_LEN]; 4311 uint8_t mac[ZIO_DATA_MAC_LEN]; 4312 boolean_t no_crypt = B_FALSE; 4313 4314 /* the root zio already encrypted the data */ 4315 if (zio->io_child_type == ZIO_CHILD_GANG) 4316 return (zio); 4317 4318 /* only ZIL blocks are re-encrypted on rewrite */ 4319 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4320 return (zio); 4321 4322 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4323 BP_SET_CRYPT(bp, B_FALSE); 4324 return (zio); 4325 } 4326 4327 /* if we are doing raw encryption set the provided encryption params */ 4328 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4329 ASSERT0(BP_GET_LEVEL(bp)); 4330 BP_SET_CRYPT(bp, B_TRUE); 4331 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4332 if (ot != DMU_OT_OBJSET) 4333 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4334 4335 /* dnode blocks must be written out in the provided byteorder */ 4336 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4337 ot == DMU_OT_DNODE) { 4338 void *bswap_buf = zio_buf_alloc(psize); 4339 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4340 4341 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4342 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4343 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4344 psize); 4345 4346 abd_take_ownership_of_buf(babd, B_TRUE); 4347 zio_push_transform(zio, babd, psize, psize, NULL); 4348 } 4349 4350 if (DMU_OT_IS_ENCRYPTED(ot)) 4351 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4352 return (zio); 4353 } 4354 4355 /* indirect blocks only maintain a cksum of the lower level MACs */ 4356 if (BP_GET_LEVEL(bp) > 0) { 4357 BP_SET_CRYPT(bp, B_TRUE); 4358 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4359 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4360 mac)); 4361 zio_crypt_encode_mac_bp(bp, mac); 4362 return (zio); 4363 } 4364 4365 /* 4366 * Objset blocks are a special case since they have 2 256-bit MACs 4367 * embedded within them. 4368 */ 4369 if (ot == DMU_OT_OBJSET) { 4370 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4371 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4372 BP_SET_CRYPT(bp, B_TRUE); 4373 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4374 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4375 return (zio); 4376 } 4377 4378 /* unencrypted object types are only authenticated with a MAC */ 4379 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4380 BP_SET_CRYPT(bp, B_TRUE); 4381 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4382 zio->io_abd, psize, mac)); 4383 zio_crypt_encode_mac_bp(bp, mac); 4384 return (zio); 4385 } 4386 4387 /* 4388 * Later passes of sync-to-convergence may decide to rewrite data 4389 * in place to avoid more disk reallocations. This presents a problem 4390 * for encryption because this constitutes rewriting the new data with 4391 * the same encryption key and IV. However, this only applies to blocks 4392 * in the MOS (particularly the spacemaps) and we do not encrypt the 4393 * MOS. We assert that the zio is allocating or an intent log write 4394 * to enforce this. 4395 */ 4396 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4397 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4398 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4399 ASSERT3U(psize, !=, 0); 4400 4401 enc_buf = zio_buf_alloc(psize); 4402 eabd = abd_get_from_buf(enc_buf, psize); 4403 abd_take_ownership_of_buf(eabd, B_TRUE); 4404 4405 /* 4406 * For an explanation of what encryption parameters are stored 4407 * where, see the block comment in zio_crypt.c. 4408 */ 4409 if (ot == DMU_OT_INTENT_LOG) { 4410 zio_crypt_decode_params_bp(bp, salt, iv); 4411 } else { 4412 BP_SET_CRYPT(bp, B_TRUE); 4413 } 4414 4415 /* Perform the encryption. This should not fail */ 4416 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4417 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4418 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4419 4420 /* encode encryption metadata into the bp */ 4421 if (ot == DMU_OT_INTENT_LOG) { 4422 /* 4423 * ZIL blocks store the MAC in the embedded checksum, so the 4424 * transform must always be applied. 4425 */ 4426 zio_crypt_encode_mac_zil(enc_buf, mac); 4427 zio_push_transform(zio, eabd, psize, psize, NULL); 4428 } else { 4429 BP_SET_CRYPT(bp, B_TRUE); 4430 zio_crypt_encode_params_bp(bp, salt, iv); 4431 zio_crypt_encode_mac_bp(bp, mac); 4432 4433 if (no_crypt) { 4434 ASSERT3U(ot, ==, DMU_OT_DNODE); 4435 abd_free(eabd); 4436 } else { 4437 zio_push_transform(zio, eabd, psize, psize, NULL); 4438 } 4439 } 4440 4441 return (zio); 4442 } 4443 4444 /* 4445 * ========================================================================== 4446 * Generate and verify checksums 4447 * ========================================================================== 4448 */ 4449 static zio_t * 4450 zio_checksum_generate(zio_t *zio) 4451 { 4452 blkptr_t *bp = zio->io_bp; 4453 enum zio_checksum checksum; 4454 4455 if (bp == NULL) { 4456 /* 4457 * This is zio_write_phys(). 4458 * We're either generating a label checksum, or none at all. 4459 */ 4460 checksum = zio->io_prop.zp_checksum; 4461 4462 if (checksum == ZIO_CHECKSUM_OFF) 4463 return (zio); 4464 4465 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4466 } else { 4467 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4468 ASSERT(!IO_IS_ALLOCATING(zio)); 4469 checksum = ZIO_CHECKSUM_GANG_HEADER; 4470 } else { 4471 checksum = BP_GET_CHECKSUM(bp); 4472 } 4473 } 4474 4475 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4476 4477 return (zio); 4478 } 4479 4480 static zio_t * 4481 zio_checksum_verify(zio_t *zio) 4482 { 4483 zio_bad_cksum_t info; 4484 blkptr_t *bp = zio->io_bp; 4485 int error; 4486 4487 ASSERT(zio->io_vd != NULL); 4488 4489 if (bp == NULL) { 4490 /* 4491 * This is zio_read_phys(). 4492 * We're either verifying a label checksum, or nothing at all. 4493 */ 4494 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4495 return (zio); 4496 4497 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4498 } 4499 4500 if ((error = zio_checksum_error(zio, &info)) != 0) { 4501 zio->io_error = error; 4502 if (error == ECKSUM && 4503 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4504 mutex_enter(&zio->io_vd->vdev_stat_lock); 4505 zio->io_vd->vdev_stat.vs_checksum_errors++; 4506 mutex_exit(&zio->io_vd->vdev_stat_lock); 4507 (void) zfs_ereport_start_checksum(zio->io_spa, 4508 zio->io_vd, &zio->io_bookmark, zio, 4509 zio->io_offset, zio->io_size, &info); 4510 } 4511 } 4512 4513 return (zio); 4514 } 4515 4516 /* 4517 * Called by RAID-Z to ensure we don't compute the checksum twice. 4518 */ 4519 void 4520 zio_checksum_verified(zio_t *zio) 4521 { 4522 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4523 } 4524 4525 /* 4526 * ========================================================================== 4527 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4528 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4529 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4530 * indicate errors that are specific to one I/O, and most likely permanent. 4531 * Any other error is presumed to be worse because we weren't expecting it. 4532 * ========================================================================== 4533 */ 4534 int 4535 zio_worst_error(int e1, int e2) 4536 { 4537 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4538 int r1, r2; 4539 4540 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4541 if (e1 == zio_error_rank[r1]) 4542 break; 4543 4544 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4545 if (e2 == zio_error_rank[r2]) 4546 break; 4547 4548 return (r1 > r2 ? e1 : e2); 4549 } 4550 4551 /* 4552 * ========================================================================== 4553 * I/O completion 4554 * ========================================================================== 4555 */ 4556 static zio_t * 4557 zio_ready(zio_t *zio) 4558 { 4559 blkptr_t *bp = zio->io_bp; 4560 zio_t *pio, *pio_next; 4561 zio_link_t *zl = NULL; 4562 4563 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 4564 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) { 4565 return (NULL); 4566 } 4567 4568 if (zio->io_ready) { 4569 ASSERT(IO_IS_ALLOCATING(zio)); 4570 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || 4571 BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4572 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4573 4574 zio->io_ready(zio); 4575 } 4576 4577 #ifdef ZFS_DEBUG 4578 if (bp != NULL && bp != &zio->io_bp_copy) 4579 zio->io_bp_copy = *bp; 4580 #endif 4581 4582 if (zio->io_error != 0) { 4583 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4584 4585 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4586 ASSERT(IO_IS_ALLOCATING(zio)); 4587 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4588 ASSERT(zio->io_metaslab_class != NULL); 4589 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4590 4591 /* 4592 * We were unable to allocate anything, unreserve and 4593 * issue the next I/O to allocate. 4594 */ 4595 metaslab_class_throttle_unreserve( 4596 zio->io_metaslab_class, zio->io_prop.zp_copies, 4597 zio->io_allocator, zio); 4598 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4599 } 4600 } 4601 4602 mutex_enter(&zio->io_lock); 4603 zio->io_state[ZIO_WAIT_READY] = 1; 4604 pio = zio_walk_parents(zio, &zl); 4605 mutex_exit(&zio->io_lock); 4606 4607 /* 4608 * As we notify zio's parents, new parents could be added. 4609 * New parents go to the head of zio's io_parent_list, however, 4610 * so we will (correctly) not notify them. The remainder of zio's 4611 * io_parent_list, from 'pio_next' onward, cannot change because 4612 * all parents must wait for us to be done before they can be done. 4613 */ 4614 for (; pio != NULL; pio = pio_next) { 4615 pio_next = zio_walk_parents(zio, &zl); 4616 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4617 } 4618 4619 if (zio->io_flags & ZIO_FLAG_NODATA) { 4620 if (bp != NULL && BP_IS_GANG(bp)) { 4621 zio->io_flags &= ~ZIO_FLAG_NODATA; 4622 } else { 4623 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4624 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4625 } 4626 } 4627 4628 if (zio_injection_enabled && 4629 zio->io_spa->spa_syncing_txg == zio->io_txg) 4630 zio_handle_ignored_writes(zio); 4631 4632 return (zio); 4633 } 4634 4635 /* 4636 * Update the allocation throttle accounting. 4637 */ 4638 static void 4639 zio_dva_throttle_done(zio_t *zio) 4640 { 4641 zio_t *lio __maybe_unused = zio->io_logical; 4642 zio_t *pio = zio_unique_parent(zio); 4643 vdev_t *vd = zio->io_vd; 4644 int flags = METASLAB_ASYNC_ALLOC; 4645 4646 ASSERT3P(zio->io_bp, !=, NULL); 4647 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4648 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4649 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4650 ASSERT(vd != NULL); 4651 ASSERT3P(vd, ==, vd->vdev_top); 4652 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4653 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4654 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4655 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4656 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4657 4658 /* 4659 * Parents of gang children can have two flavors -- ones that 4660 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4661 * and ones that allocated the constituent blocks. The allocation 4662 * throttle needs to know the allocating parent zio so we must find 4663 * it here. 4664 */ 4665 if (pio->io_child_type == ZIO_CHILD_GANG) { 4666 /* 4667 * If our parent is a rewrite gang child then our grandparent 4668 * would have been the one that performed the allocation. 4669 */ 4670 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4671 pio = zio_unique_parent(pio); 4672 flags |= METASLAB_GANG_CHILD; 4673 } 4674 4675 ASSERT(IO_IS_ALLOCATING(pio)); 4676 ASSERT(ZIO_HAS_ALLOCATOR(pio)); 4677 ASSERT3P(zio, !=, zio->io_logical); 4678 ASSERT(zio->io_logical != NULL); 4679 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4680 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4681 ASSERT(zio->io_metaslab_class != NULL); 4682 4683 mutex_enter(&pio->io_lock); 4684 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4685 pio->io_allocator, B_TRUE); 4686 mutex_exit(&pio->io_lock); 4687 4688 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4689 pio->io_allocator, pio); 4690 4691 /* 4692 * Call into the pipeline to see if there is more work that 4693 * needs to be done. If there is work to be done it will be 4694 * dispatched to another taskq thread. 4695 */ 4696 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4697 } 4698 4699 static zio_t * 4700 zio_done(zio_t *zio) 4701 { 4702 /* 4703 * Always attempt to keep stack usage minimal here since 4704 * we can be called recursively up to 19 levels deep. 4705 */ 4706 const uint64_t psize = zio->io_size; 4707 zio_t *pio, *pio_next; 4708 zio_link_t *zl = NULL; 4709 4710 /* 4711 * If our children haven't all completed, 4712 * wait for them and then repeat this pipeline stage. 4713 */ 4714 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4715 return (NULL); 4716 } 4717 4718 /* 4719 * If the allocation throttle is enabled, then update the accounting. 4720 * We only track child I/Os that are part of an allocating async 4721 * write. We must do this since the allocation is performed 4722 * by the logical I/O but the actual write is done by child I/Os. 4723 */ 4724 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4725 zio->io_child_type == ZIO_CHILD_VDEV) { 4726 ASSERT(zio->io_metaslab_class != NULL); 4727 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4728 zio_dva_throttle_done(zio); 4729 } 4730 4731 /* 4732 * If the allocation throttle is enabled, verify that 4733 * we have decremented the refcounts for every I/O that was throttled. 4734 */ 4735 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4736 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4737 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4738 ASSERT(zio->io_bp != NULL); 4739 ASSERT(ZIO_HAS_ALLOCATOR(zio)); 4740 4741 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4742 zio->io_allocator); 4743 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4744 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4745 } 4746 4747 4748 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4749 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4750 ASSERT(zio->io_children[c][w] == 0); 4751 4752 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4753 ASSERT(zio->io_bp->blk_pad[0] == 0); 4754 ASSERT(zio->io_bp->blk_pad[1] == 0); 4755 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4756 sizeof (blkptr_t)) == 0 || 4757 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4758 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4759 zio->io_bp_override == NULL && 4760 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4761 ASSERT3U(zio->io_prop.zp_copies, <=, 4762 BP_GET_NDVAS(zio->io_bp)); 4763 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4764 (BP_COUNT_GANG(zio->io_bp) == 4765 BP_GET_NDVAS(zio->io_bp))); 4766 } 4767 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4768 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4769 } 4770 4771 /* 4772 * If there were child vdev/gang/ddt errors, they apply to us now. 4773 */ 4774 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4775 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4776 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4777 4778 /* 4779 * If the I/O on the transformed data was successful, generate any 4780 * checksum reports now while we still have the transformed data. 4781 */ 4782 if (zio->io_error == 0) { 4783 while (zio->io_cksum_report != NULL) { 4784 zio_cksum_report_t *zcr = zio->io_cksum_report; 4785 uint64_t align = zcr->zcr_align; 4786 uint64_t asize = P2ROUNDUP(psize, align); 4787 abd_t *adata = zio->io_abd; 4788 4789 if (adata != NULL && asize != psize) { 4790 adata = abd_alloc(asize, B_TRUE); 4791 abd_copy(adata, zio->io_abd, psize); 4792 abd_zero_off(adata, psize, asize - psize); 4793 } 4794 4795 zio->io_cksum_report = zcr->zcr_next; 4796 zcr->zcr_next = NULL; 4797 zcr->zcr_finish(zcr, adata); 4798 zfs_ereport_free_checksum(zcr); 4799 4800 if (adata != NULL && asize != psize) 4801 abd_free(adata); 4802 } 4803 } 4804 4805 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4806 4807 vdev_stat_update(zio, psize); 4808 4809 /* 4810 * If this I/O is attached to a particular vdev is slow, exceeding 4811 * 30 seconds to complete, post an error described the I/O delay. 4812 * We ignore these errors if the device is currently unavailable. 4813 */ 4814 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4815 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4816 /* 4817 * We want to only increment our slow IO counters if 4818 * the IO is valid (i.e. not if the drive is removed). 4819 * 4820 * zfs_ereport_post() will also do these checks, but 4821 * it can also ratelimit and have other failures, so we 4822 * need to increment the slow_io counters independent 4823 * of it. 4824 */ 4825 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4826 zio->io_spa, zio->io_vd, zio)) { 4827 mutex_enter(&zio->io_vd->vdev_stat_lock); 4828 zio->io_vd->vdev_stat.vs_slow_ios++; 4829 mutex_exit(&zio->io_vd->vdev_stat_lock); 4830 4831 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4832 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4833 zio, 0); 4834 } 4835 } 4836 } 4837 4838 if (zio->io_error) { 4839 /* 4840 * If this I/O is attached to a particular vdev, 4841 * generate an error message describing the I/O failure 4842 * at the block level. We ignore these errors if the 4843 * device is currently unavailable. 4844 */ 4845 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4846 !vdev_is_dead(zio->io_vd)) { 4847 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4848 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4849 if (ret != EALREADY) { 4850 mutex_enter(&zio->io_vd->vdev_stat_lock); 4851 if (zio->io_type == ZIO_TYPE_READ) 4852 zio->io_vd->vdev_stat.vs_read_errors++; 4853 else if (zio->io_type == ZIO_TYPE_WRITE) 4854 zio->io_vd->vdev_stat.vs_write_errors++; 4855 mutex_exit(&zio->io_vd->vdev_stat_lock); 4856 } 4857 } 4858 4859 if ((zio->io_error == EIO || !(zio->io_flags & 4860 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4861 zio == zio->io_logical) { 4862 /* 4863 * For logical I/O requests, tell the SPA to log the 4864 * error and generate a logical data ereport. 4865 */ 4866 spa_log_error(zio->io_spa, &zio->io_bookmark, 4867 BP_GET_LOGICAL_BIRTH(zio->io_bp)); 4868 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4869 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4870 } 4871 } 4872 4873 if (zio->io_error && zio == zio->io_logical) { 4874 /* 4875 * Determine whether zio should be reexecuted. This will 4876 * propagate all the way to the root via zio_notify_parent(). 4877 */ 4878 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4879 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4880 4881 if (IO_IS_ALLOCATING(zio) && 4882 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4883 if (zio->io_error != ENOSPC) 4884 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4885 else 4886 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4887 } 4888 4889 if ((zio->io_type == ZIO_TYPE_READ || 4890 zio->io_type == ZIO_TYPE_FREE) && 4891 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4892 zio->io_error == ENXIO && 4893 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4894 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4895 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4896 4897 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4898 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4899 4900 /* 4901 * Here is a possibly good place to attempt to do 4902 * either combinatorial reconstruction or error correction 4903 * based on checksums. It also might be a good place 4904 * to send out preliminary ereports before we suspend 4905 * processing. 4906 */ 4907 } 4908 4909 /* 4910 * If there were logical child errors, they apply to us now. 4911 * We defer this until now to avoid conflating logical child 4912 * errors with errors that happened to the zio itself when 4913 * updating vdev stats and reporting FMA events above. 4914 */ 4915 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4916 4917 if ((zio->io_error || zio->io_reexecute) && 4918 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4919 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4920 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4921 4922 zio_gang_tree_free(&zio->io_gang_tree); 4923 4924 /* 4925 * Godfather I/Os should never suspend. 4926 */ 4927 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4928 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4929 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4930 4931 if (zio->io_reexecute) { 4932 /* 4933 * This is a logical I/O that wants to reexecute. 4934 * 4935 * Reexecute is top-down. When an i/o fails, if it's not 4936 * the root, it simply notifies its parent and sticks around. 4937 * The parent, seeing that it still has children in zio_done(), 4938 * does the same. This percolates all the way up to the root. 4939 * The root i/o will reexecute or suspend the entire tree. 4940 * 4941 * This approach ensures that zio_reexecute() honors 4942 * all the original i/o dependency relationships, e.g. 4943 * parents not executing until children are ready. 4944 */ 4945 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4946 4947 zio->io_gang_leader = NULL; 4948 4949 mutex_enter(&zio->io_lock); 4950 zio->io_state[ZIO_WAIT_DONE] = 1; 4951 mutex_exit(&zio->io_lock); 4952 4953 /* 4954 * "The Godfather" I/O monitors its children but is 4955 * not a true parent to them. It will track them through 4956 * the pipeline but severs its ties whenever they get into 4957 * trouble (e.g. suspended). This allows "The Godfather" 4958 * I/O to return status without blocking. 4959 */ 4960 zl = NULL; 4961 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4962 pio = pio_next) { 4963 zio_link_t *remove_zl = zl; 4964 pio_next = zio_walk_parents(zio, &zl); 4965 4966 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4967 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4968 zio_remove_child(pio, zio, remove_zl); 4969 /* 4970 * This is a rare code path, so we don't 4971 * bother with "next_to_execute". 4972 */ 4973 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4974 NULL); 4975 } 4976 } 4977 4978 if ((pio = zio_unique_parent(zio)) != NULL) { 4979 /* 4980 * We're not a root i/o, so there's nothing to do 4981 * but notify our parent. Don't propagate errors 4982 * upward since we haven't permanently failed yet. 4983 */ 4984 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4985 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4986 /* 4987 * This is a rare code path, so we don't bother with 4988 * "next_to_execute". 4989 */ 4990 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4991 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4992 /* 4993 * We'd fail again if we reexecuted now, so suspend 4994 * until conditions improve (e.g. device comes online). 4995 */ 4996 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4997 } else { 4998 /* 4999 * Reexecution is potentially a huge amount of work. 5000 * Hand it off to the otherwise-unused claim taskq. 5001 */ 5002 spa_taskq_dispatch(zio->io_spa, 5003 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 5004 zio_reexecute, zio, B_FALSE); 5005 } 5006 return (NULL); 5007 } 5008 5009 ASSERT(list_is_empty(&zio->io_child_list)); 5010 ASSERT(zio->io_reexecute == 0); 5011 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 5012 5013 /* 5014 * Report any checksum errors, since the I/O is complete. 5015 */ 5016 while (zio->io_cksum_report != NULL) { 5017 zio_cksum_report_t *zcr = zio->io_cksum_report; 5018 zio->io_cksum_report = zcr->zcr_next; 5019 zcr->zcr_next = NULL; 5020 zcr->zcr_finish(zcr, NULL); 5021 zfs_ereport_free_checksum(zcr); 5022 } 5023 5024 /* 5025 * It is the responsibility of the done callback to ensure that this 5026 * particular zio is no longer discoverable for adoption, and as 5027 * such, cannot acquire any new parents. 5028 */ 5029 if (zio->io_done) 5030 zio->io_done(zio); 5031 5032 mutex_enter(&zio->io_lock); 5033 zio->io_state[ZIO_WAIT_DONE] = 1; 5034 mutex_exit(&zio->io_lock); 5035 5036 /* 5037 * We are done executing this zio. We may want to execute a parent 5038 * next. See the comment in zio_notify_parent(). 5039 */ 5040 zio_t *next_to_execute = NULL; 5041 zl = NULL; 5042 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 5043 zio_link_t *remove_zl = zl; 5044 pio_next = zio_walk_parents(zio, &zl); 5045 zio_remove_child(pio, zio, remove_zl); 5046 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 5047 } 5048 5049 if (zio->io_waiter != NULL) { 5050 mutex_enter(&zio->io_lock); 5051 zio->io_executor = NULL; 5052 cv_broadcast(&zio->io_cv); 5053 mutex_exit(&zio->io_lock); 5054 } else { 5055 zio_destroy(zio); 5056 } 5057 5058 return (next_to_execute); 5059 } 5060 5061 /* 5062 * ========================================================================== 5063 * I/O pipeline definition 5064 * ========================================================================== 5065 */ 5066 static zio_pipe_stage_t *zio_pipeline[] = { 5067 NULL, 5068 zio_read_bp_init, 5069 zio_write_bp_init, 5070 zio_free_bp_init, 5071 zio_issue_async, 5072 zio_write_compress, 5073 zio_encrypt, 5074 zio_checksum_generate, 5075 zio_nop_write, 5076 zio_brt_free, 5077 zio_ddt_read_start, 5078 zio_ddt_read_done, 5079 zio_ddt_write, 5080 zio_ddt_free, 5081 zio_gang_assemble, 5082 zio_gang_issue, 5083 zio_dva_throttle, 5084 zio_dva_allocate, 5085 zio_dva_free, 5086 zio_dva_claim, 5087 zio_ready, 5088 zio_vdev_io_start, 5089 zio_vdev_io_done, 5090 zio_vdev_io_assess, 5091 zio_checksum_verify, 5092 zio_done 5093 }; 5094 5095 5096 5097 5098 /* 5099 * Compare two zbookmark_phys_t's to see which we would reach first in a 5100 * pre-order traversal of the object tree. 5101 * 5102 * This is simple in every case aside from the meta-dnode object. For all other 5103 * objects, we traverse them in order (object 1 before object 2, and so on). 5104 * However, all of these objects are traversed while traversing object 0, since 5105 * the data it points to is the list of objects. Thus, we need to convert to a 5106 * canonical representation so we can compare meta-dnode bookmarks to 5107 * non-meta-dnode bookmarks. 5108 * 5109 * We do this by calculating "equivalents" for each field of the zbookmark. 5110 * zbookmarks outside of the meta-dnode use their own object and level, and 5111 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 5112 * blocks this bookmark refers to) by multiplying their blkid by their span 5113 * (the number of L0 blocks contained within one block at their level). 5114 * zbookmarks inside the meta-dnode calculate their object equivalent 5115 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 5116 * level + 1<<31 (any value larger than a level could ever be) for their level. 5117 * This causes them to always compare before a bookmark in their object 5118 * equivalent, compare appropriately to bookmarks in other objects, and to 5119 * compare appropriately to other bookmarks in the meta-dnode. 5120 */ 5121 int 5122 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 5123 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 5124 { 5125 /* 5126 * These variables represent the "equivalent" values for the zbookmark, 5127 * after converting zbookmarks inside the meta dnode to their 5128 * normal-object equivalents. 5129 */ 5130 uint64_t zb1obj, zb2obj; 5131 uint64_t zb1L0, zb2L0; 5132 uint64_t zb1level, zb2level; 5133 5134 if (zb1->zb_object == zb2->zb_object && 5135 zb1->zb_level == zb2->zb_level && 5136 zb1->zb_blkid == zb2->zb_blkid) 5137 return (0); 5138 5139 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5140 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5141 5142 /* 5143 * BP_SPANB calculates the span in blocks. 5144 */ 5145 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5146 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5147 5148 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5149 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5150 zb1L0 = 0; 5151 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5152 } else { 5153 zb1obj = zb1->zb_object; 5154 zb1level = zb1->zb_level; 5155 } 5156 5157 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5158 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5159 zb2L0 = 0; 5160 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5161 } else { 5162 zb2obj = zb2->zb_object; 5163 zb2level = zb2->zb_level; 5164 } 5165 5166 /* Now that we have a canonical representation, do the comparison. */ 5167 if (zb1obj != zb2obj) 5168 return (zb1obj < zb2obj ? -1 : 1); 5169 else if (zb1L0 != zb2L0) 5170 return (zb1L0 < zb2L0 ? -1 : 1); 5171 else if (zb1level != zb2level) 5172 return (zb1level > zb2level ? -1 : 1); 5173 /* 5174 * This can (theoretically) happen if the bookmarks have the same object 5175 * and level, but different blkids, if the block sizes are not the same. 5176 * There is presently no way to change the indirect block sizes 5177 */ 5178 return (0); 5179 } 5180 5181 /* 5182 * This function checks the following: given that last_block is the place that 5183 * our traversal stopped last time, does that guarantee that we've visited 5184 * every node under subtree_root? Therefore, we can't just use the raw output 5185 * of zbookmark_compare. We have to pass in a modified version of 5186 * subtree_root; by incrementing the block id, and then checking whether 5187 * last_block is before or equal to that, we can tell whether or not having 5188 * visited last_block implies that all of subtree_root's children have been 5189 * visited. 5190 */ 5191 boolean_t 5192 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5193 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5194 { 5195 zbookmark_phys_t mod_zb = *subtree_root; 5196 mod_zb.zb_blkid++; 5197 ASSERT0(last_block->zb_level); 5198 5199 /* The objset_phys_t isn't before anything. */ 5200 if (dnp == NULL) 5201 return (B_FALSE); 5202 5203 /* 5204 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5205 * data block size in sectors, because that variable is only used if 5206 * the bookmark refers to a block in the meta-dnode. Since we don't 5207 * know without examining it what object it refers to, and there's no 5208 * harm in passing in this value in other cases, we always pass it in. 5209 * 5210 * We pass in 0 for the indirect block size shift because zb2 must be 5211 * level 0. The indirect block size is only used to calculate the span 5212 * of the bookmark, but since the bookmark must be level 0, the span is 5213 * always 1, so the math works out. 5214 * 5215 * If you make changes to how the zbookmark_compare code works, be sure 5216 * to make sure that this code still works afterwards. 5217 */ 5218 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5219 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5220 last_block) <= 0); 5221 } 5222 5223 /* 5224 * This function is similar to zbookmark_subtree_completed(), but returns true 5225 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5226 */ 5227 boolean_t 5228 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5229 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5230 { 5231 ASSERT0(last_block->zb_level); 5232 if (dnp == NULL) 5233 return (B_FALSE); 5234 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5235 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5236 last_block) >= 0); 5237 } 5238 5239 EXPORT_SYMBOL(zio_type_name); 5240 EXPORT_SYMBOL(zio_buf_alloc); 5241 EXPORT_SYMBOL(zio_data_buf_alloc); 5242 EXPORT_SYMBOL(zio_buf_free); 5243 EXPORT_SYMBOL(zio_data_buf_free); 5244 5245 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5246 "Max I/O completion time (milliseconds) before marking it as slow"); 5247 5248 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5249 "Prioritize requeued I/O"); 5250 5251 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5252 "Defer frees starting in this pass"); 5253 5254 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5255 "Don't compress starting in this pass"); 5256 5257 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5258 "Rewrite new bps starting in this pass"); 5259 5260 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5261 "Throttle block allocations in the ZIO pipeline"); 5262 5263 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5264 "Log all slow ZIOs, not just those with vdevs"); 5265