xref: /freebsd/sys/contrib/openzfs/module/zfs/zio.c (revision 089104e0e01f080c9cd45dc5f34c4f636dea4ca7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  * Copyright (c) 2019, Klara Inc.
27  * Copyright (c) 2019, Allan Jude
28  * Copyright (c) 2021, Datto, Inc.
29  */
30 
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55 
56 /*
57  * ==========================================================================
58  * I/O type descriptions
59  * ==========================================================================
60  */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 	/*
63 	 * Note: Linux kernel thread name length is limited
64 	 * so these names will differ from upstream open zfs.
65 	 */
66 	"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
67 };
68 
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71 
72 /*
73  * ==========================================================================
74  * I/O kmem caches
75  * ==========================================================================
76  */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85 
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 
89 #define	BP_SPANB(indblkshift, level) \
90 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define	COMPARE_META_LEVEL	0x80000000ul
92 /*
93  * The following actions directly effect the spa's sync-to-convergence logic.
94  * The values below define the sync pass when we start performing the action.
95  * Care should be taken when changing these values as they directly impact
96  * spa_sync() performance. Tuning these values may introduce subtle performance
97  * pathologies and should only be done in the context of performance analysis.
98  * These tunables will eventually be removed and replaced with #defines once
99  * enough analysis has been done to determine optimal values.
100  *
101  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102  * regular blocks are not deferred.
103  *
104  * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105  * compression (including of metadata).  In practice, we don't have this
106  * many sync passes, so this has no effect.
107  *
108  * The original intent was that disabling compression would help the sync
109  * passes to converge. However, in practice disabling compression increases
110  * the average number of sync passes, because when we turn compression off, a
111  * lot of block's size will change and thus we have to re-allocate (not
112  * overwrite) them. It also increases the number of 128KB allocations (e.g.
113  * for indirect blocks and spacemaps) because these will not be compressed.
114  * The 128K allocations are especially detrimental to performance on highly
115  * fragmented systems, which may have very few free segments of this size,
116  * and may need to load new metaslabs to satisfy 128K allocations.
117  */
118 
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121 
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124 
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127 
128 /*
129  * An allocating zio is one that either currently has the DVA allocate
130  * stage set or will have it later in its lifetime.
131  */
132 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133 
134 /*
135  * Enable smaller cores by excluding metadata
136  * allocations as well.
137  */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140 
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146 
147 static inline void __zio_execute(zio_t *zio);
148 
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 
151 void
152 zio_init(void)
153 {
154 	size_t c;
155 
156 	zio_cache = kmem_cache_create("zio_cache",
157 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 	zio_link_cache = kmem_cache_create("zio_link_cache",
159 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160 
161 	/*
162 	 * For small buffers, we want a cache for each multiple of
163 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
164 	 * for each quarter-power of 2.
165 	 */
166 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168 		size_t p2 = size;
169 		size_t align = 0;
170 		size_t data_cflags, cflags;
171 
172 		data_cflags = KMC_NODEBUG;
173 		cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
174 		    KMC_NODEBUG : 0;
175 
176 		while (!ISP2(p2))
177 			p2 &= p2 - 1;
178 
179 #ifndef _KERNEL
180 		/*
181 		 * If we are using watchpoints, put each buffer on its own page,
182 		 * to eliminate the performance overhead of trapping to the
183 		 * kernel when modifying a non-watched buffer that shares the
184 		 * page with a watched buffer.
185 		 */
186 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 			continue;
188 		/*
189 		 * Here's the problem - on 4K native devices in userland on
190 		 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
191 		 * will fail with EINVAL, causing zdb (and others) to coredump.
192 		 * Since userland probably doesn't need optimized buffer caches,
193 		 * we just force 4K alignment on everything.
194 		 */
195 		align = 8 * SPA_MINBLOCKSIZE;
196 #else
197 		if (size < PAGESIZE) {
198 			align = SPA_MINBLOCKSIZE;
199 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
200 			align = PAGESIZE;
201 		}
202 #endif
203 
204 		if (align != 0) {
205 			char name[36];
206 			if (cflags == data_cflags) {
207 				/*
208 				 * Resulting kmem caches would be identical.
209 				 * Save memory by creating only one.
210 				 */
211 				(void) snprintf(name, sizeof (name),
212 				    "zio_buf_comb_%lu", (ulong_t)size);
213 				zio_buf_cache[c] = kmem_cache_create(name,
214 				    size, align, NULL, NULL, NULL, NULL, NULL,
215 				    cflags);
216 				zio_data_buf_cache[c] = zio_buf_cache[c];
217 				continue;
218 			}
219 			(void) snprintf(name, sizeof (name), "zio_buf_%lu",
220 			    (ulong_t)size);
221 			zio_buf_cache[c] = kmem_cache_create(name, size,
222 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
223 
224 			(void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
225 			    (ulong_t)size);
226 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
227 			    align, NULL, NULL, NULL, NULL, NULL, data_cflags);
228 		}
229 	}
230 
231 	while (--c != 0) {
232 		ASSERT(zio_buf_cache[c] != NULL);
233 		if (zio_buf_cache[c - 1] == NULL)
234 			zio_buf_cache[c - 1] = zio_buf_cache[c];
235 
236 		ASSERT(zio_data_buf_cache[c] != NULL);
237 		if (zio_data_buf_cache[c - 1] == NULL)
238 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
239 	}
240 
241 	zio_inject_init();
242 
243 	lz4_init();
244 }
245 
246 void
247 zio_fini(void)
248 {
249 	size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
250 
251 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
252 	for (size_t i = 0; i < n; i++) {
253 		if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
254 			(void) printf("zio_fini: [%d] %llu != %llu\n",
255 			    (int)((i + 1) << SPA_MINBLOCKSHIFT),
256 			    (long long unsigned)zio_buf_cache_allocs[i],
257 			    (long long unsigned)zio_buf_cache_frees[i]);
258 	}
259 #endif
260 
261 	/*
262 	 * The same kmem cache can show up multiple times in both zio_buf_cache
263 	 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
264 	 * sort it out.
265 	 */
266 	for (size_t i = 0; i < n; i++) {
267 		kmem_cache_t *cache = zio_buf_cache[i];
268 		if (cache == NULL)
269 			continue;
270 		for (size_t j = i; j < n; j++) {
271 			if (cache == zio_buf_cache[j])
272 				zio_buf_cache[j] = NULL;
273 			if (cache == zio_data_buf_cache[j])
274 				zio_data_buf_cache[j] = NULL;
275 		}
276 		kmem_cache_destroy(cache);
277 	}
278 
279 	for (size_t i = 0; i < n; i++) {
280 		kmem_cache_t *cache = zio_data_buf_cache[i];
281 		if (cache == NULL)
282 			continue;
283 		for (size_t j = i; j < n; j++) {
284 			if (cache == zio_data_buf_cache[j])
285 				zio_data_buf_cache[j] = NULL;
286 		}
287 		kmem_cache_destroy(cache);
288 	}
289 
290 	for (size_t i = 0; i < n; i++) {
291 		VERIFY3P(zio_buf_cache[i], ==, NULL);
292 		VERIFY3P(zio_data_buf_cache[i], ==, NULL);
293 	}
294 
295 	kmem_cache_destroy(zio_link_cache);
296 	kmem_cache_destroy(zio_cache);
297 
298 	zio_inject_fini();
299 
300 	lz4_fini();
301 }
302 
303 /*
304  * ==========================================================================
305  * Allocate and free I/O buffers
306  * ==========================================================================
307  */
308 
309 /*
310  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
311  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
312  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
313  * excess / transient data in-core during a crashdump.
314  */
315 void *
316 zio_buf_alloc(size_t size)
317 {
318 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319 
320 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
322 	atomic_add_64(&zio_buf_cache_allocs[c], 1);
323 #endif
324 
325 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
326 }
327 
328 /*
329  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
330  * crashdump if the kernel panics.  This exists so that we will limit the amount
331  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
332  * of kernel heap dumped to disk when the kernel panics)
333  */
334 void *
335 zio_data_buf_alloc(size_t size)
336 {
337 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338 
339 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340 
341 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
342 }
343 
344 void
345 zio_buf_free(void *buf, size_t size)
346 {
347 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
348 
349 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
350 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
351 	atomic_add_64(&zio_buf_cache_frees[c], 1);
352 #endif
353 
354 	kmem_cache_free(zio_buf_cache[c], buf);
355 }
356 
357 void
358 zio_data_buf_free(void *buf, size_t size)
359 {
360 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
361 
362 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
363 
364 	kmem_cache_free(zio_data_buf_cache[c], buf);
365 }
366 
367 static void
368 zio_abd_free(void *abd, size_t size)
369 {
370 	(void) size;
371 	abd_free((abd_t *)abd);
372 }
373 
374 /*
375  * ==========================================================================
376  * Push and pop I/O transform buffers
377  * ==========================================================================
378  */
379 void
380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
381     zio_transform_func_t *transform)
382 {
383 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
384 
385 	zt->zt_orig_abd = zio->io_abd;
386 	zt->zt_orig_size = zio->io_size;
387 	zt->zt_bufsize = bufsize;
388 	zt->zt_transform = transform;
389 
390 	zt->zt_next = zio->io_transform_stack;
391 	zio->io_transform_stack = zt;
392 
393 	zio->io_abd = data;
394 	zio->io_size = size;
395 }
396 
397 void
398 zio_pop_transforms(zio_t *zio)
399 {
400 	zio_transform_t *zt;
401 
402 	while ((zt = zio->io_transform_stack) != NULL) {
403 		if (zt->zt_transform != NULL)
404 			zt->zt_transform(zio,
405 			    zt->zt_orig_abd, zt->zt_orig_size);
406 
407 		if (zt->zt_bufsize != 0)
408 			abd_free(zio->io_abd);
409 
410 		zio->io_abd = zt->zt_orig_abd;
411 		zio->io_size = zt->zt_orig_size;
412 		zio->io_transform_stack = zt->zt_next;
413 
414 		kmem_free(zt, sizeof (zio_transform_t));
415 	}
416 }
417 
418 /*
419  * ==========================================================================
420  * I/O transform callbacks for subblocks, decompression, and decryption
421  * ==========================================================================
422  */
423 static void
424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
425 {
426 	ASSERT(zio->io_size > size);
427 
428 	if (zio->io_type == ZIO_TYPE_READ)
429 		abd_copy(data, zio->io_abd, size);
430 }
431 
432 static void
433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
434 {
435 	if (zio->io_error == 0) {
436 		void *tmp = abd_borrow_buf(data, size);
437 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
438 		    zio->io_abd, tmp, zio->io_size, size,
439 		    &zio->io_prop.zp_complevel);
440 		abd_return_buf_copy(data, tmp, size);
441 
442 		if (zio_injection_enabled && ret == 0)
443 			ret = zio_handle_fault_injection(zio, EINVAL);
444 
445 		if (ret != 0)
446 			zio->io_error = SET_ERROR(EIO);
447 	}
448 }
449 
450 static void
451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
452 {
453 	int ret;
454 	void *tmp;
455 	blkptr_t *bp = zio->io_bp;
456 	spa_t *spa = zio->io_spa;
457 	uint64_t dsobj = zio->io_bookmark.zb_objset;
458 	uint64_t lsize = BP_GET_LSIZE(bp);
459 	dmu_object_type_t ot = BP_GET_TYPE(bp);
460 	uint8_t salt[ZIO_DATA_SALT_LEN];
461 	uint8_t iv[ZIO_DATA_IV_LEN];
462 	uint8_t mac[ZIO_DATA_MAC_LEN];
463 	boolean_t no_crypt = B_FALSE;
464 
465 	ASSERT(BP_USES_CRYPT(bp));
466 	ASSERT3U(size, !=, 0);
467 
468 	if (zio->io_error != 0)
469 		return;
470 
471 	/*
472 	 * Verify the cksum of MACs stored in an indirect bp. It will always
473 	 * be possible to verify this since it does not require an encryption
474 	 * key.
475 	 */
476 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
477 		zio_crypt_decode_mac_bp(bp, mac);
478 
479 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
480 			/*
481 			 * We haven't decompressed the data yet, but
482 			 * zio_crypt_do_indirect_mac_checksum() requires
483 			 * decompressed data to be able to parse out the MACs
484 			 * from the indirect block. We decompress it now and
485 			 * throw away the result after we are finished.
486 			 */
487 			tmp = zio_buf_alloc(lsize);
488 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
489 			    zio->io_abd, tmp, zio->io_size, lsize,
490 			    &zio->io_prop.zp_complevel);
491 			if (ret != 0) {
492 				ret = SET_ERROR(EIO);
493 				goto error;
494 			}
495 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
496 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
497 			zio_buf_free(tmp, lsize);
498 		} else {
499 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
500 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
501 		}
502 		abd_copy(data, zio->io_abd, size);
503 
504 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
505 			ret = zio_handle_decrypt_injection(spa,
506 			    &zio->io_bookmark, ot, ECKSUM);
507 		}
508 		if (ret != 0)
509 			goto error;
510 
511 		return;
512 	}
513 
514 	/*
515 	 * If this is an authenticated block, just check the MAC. It would be
516 	 * nice to separate this out into its own flag, but when this was done,
517 	 * we had run out of bits in what is now zio_flag_t. Future cleanup
518 	 * could make this a flag bit.
519 	 */
520 	if (BP_IS_AUTHENTICATED(bp)) {
521 		if (ot == DMU_OT_OBJSET) {
522 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 		} else {
525 			zio_crypt_decode_mac_bp(bp, mac);
526 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 			    zio->io_abd, size, mac);
528 			if (zio_injection_enabled && ret == 0) {
529 				ret = zio_handle_decrypt_injection(spa,
530 				    &zio->io_bookmark, ot, ECKSUM);
531 			}
532 		}
533 		abd_copy(data, zio->io_abd, size);
534 
535 		if (ret != 0)
536 			goto error;
537 
538 		return;
539 	}
540 
541 	zio_crypt_decode_params_bp(bp, salt, iv);
542 
543 	if (ot == DMU_OT_INTENT_LOG) {
544 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 		zio_crypt_decode_mac_zil(tmp, mac);
546 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 	} else {
548 		zio_crypt_decode_mac_bp(bp, mac);
549 	}
550 
551 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 	    zio->io_abd, &no_crypt);
554 	if (no_crypt)
555 		abd_copy(data, zio->io_abd, size);
556 
557 	if (ret != 0)
558 		goto error;
559 
560 	return;
561 
562 error:
563 	/* assert that the key was found unless this was speculative */
564 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565 
566 	/*
567 	 * If there was a decryption / authentication error return EIO as
568 	 * the io_error. If this was not a speculative zio, create an ereport.
569 	 */
570 	if (ret == ECKSUM) {
571 		zio->io_error = SET_ERROR(EIO);
572 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 			spa_log_error(spa, &zio->io_bookmark,
574 			    &zio->io_bp->blk_birth);
575 			(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
576 			    spa, NULL, &zio->io_bookmark, zio, 0);
577 		}
578 	} else {
579 		zio->io_error = ret;
580 	}
581 }
582 
583 /*
584  * ==========================================================================
585  * I/O parent/child relationships and pipeline interlocks
586  * ==========================================================================
587  */
588 zio_t *
589 zio_walk_parents(zio_t *cio, zio_link_t **zl)
590 {
591 	list_t *pl = &cio->io_parent_list;
592 
593 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
594 	if (*zl == NULL)
595 		return (NULL);
596 
597 	ASSERT((*zl)->zl_child == cio);
598 	return ((*zl)->zl_parent);
599 }
600 
601 zio_t *
602 zio_walk_children(zio_t *pio, zio_link_t **zl)
603 {
604 	list_t *cl = &pio->io_child_list;
605 
606 	ASSERT(MUTEX_HELD(&pio->io_lock));
607 
608 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
609 	if (*zl == NULL)
610 		return (NULL);
611 
612 	ASSERT((*zl)->zl_parent == pio);
613 	return ((*zl)->zl_child);
614 }
615 
616 zio_t *
617 zio_unique_parent(zio_t *cio)
618 {
619 	zio_link_t *zl = NULL;
620 	zio_t *pio = zio_walk_parents(cio, &zl);
621 
622 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
623 	return (pio);
624 }
625 
626 void
627 zio_add_child(zio_t *pio, zio_t *cio)
628 {
629 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
630 
631 	/*
632 	 * Logical I/Os can have logical, gang, or vdev children.
633 	 * Gang I/Os can have gang or vdev children.
634 	 * Vdev I/Os can only have vdev children.
635 	 * The following ASSERT captures all of these constraints.
636 	 */
637 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
638 
639 	zl->zl_parent = pio;
640 	zl->zl_child = cio;
641 
642 	mutex_enter(&pio->io_lock);
643 	mutex_enter(&cio->io_lock);
644 
645 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
646 
647 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
648 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
649 
650 	list_insert_head(&pio->io_child_list, zl);
651 	list_insert_head(&cio->io_parent_list, zl);
652 
653 	pio->io_child_count++;
654 	cio->io_parent_count++;
655 
656 	mutex_exit(&cio->io_lock);
657 	mutex_exit(&pio->io_lock);
658 }
659 
660 static void
661 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
662 {
663 	ASSERT(zl->zl_parent == pio);
664 	ASSERT(zl->zl_child == cio);
665 
666 	mutex_enter(&pio->io_lock);
667 	mutex_enter(&cio->io_lock);
668 
669 	list_remove(&pio->io_child_list, zl);
670 	list_remove(&cio->io_parent_list, zl);
671 
672 	pio->io_child_count--;
673 	cio->io_parent_count--;
674 
675 	mutex_exit(&cio->io_lock);
676 	mutex_exit(&pio->io_lock);
677 	kmem_cache_free(zio_link_cache, zl);
678 }
679 
680 static boolean_t
681 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
682 {
683 	boolean_t waiting = B_FALSE;
684 
685 	mutex_enter(&zio->io_lock);
686 	ASSERT(zio->io_stall == NULL);
687 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
688 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
689 			continue;
690 
691 		uint64_t *countp = &zio->io_children[c][wait];
692 		if (*countp != 0) {
693 			zio->io_stage >>= 1;
694 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
695 			zio->io_stall = countp;
696 			waiting = B_TRUE;
697 			break;
698 		}
699 	}
700 	mutex_exit(&zio->io_lock);
701 	return (waiting);
702 }
703 
704 __attribute__((always_inline))
705 static inline void
706 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
707     zio_t **next_to_executep)
708 {
709 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
710 	int *errorp = &pio->io_child_error[zio->io_child_type];
711 
712 	mutex_enter(&pio->io_lock);
713 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
714 		*errorp = zio_worst_error(*errorp, zio->io_error);
715 	pio->io_reexecute |= zio->io_reexecute;
716 	ASSERT3U(*countp, >, 0);
717 
718 	(*countp)--;
719 
720 	if (*countp == 0 && pio->io_stall == countp) {
721 		zio_taskq_type_t type =
722 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
723 		    ZIO_TASKQ_INTERRUPT;
724 		pio->io_stall = NULL;
725 		mutex_exit(&pio->io_lock);
726 
727 		/*
728 		 * If we can tell the caller to execute this parent next, do
729 		 * so. We only do this if the parent's zio type matches the
730 		 * child's type. Otherwise dispatch the parent zio in its
731 		 * own taskq.
732 		 *
733 		 * Having the caller execute the parent when possible reduces
734 		 * locking on the zio taskq's, reduces context switch
735 		 * overhead, and has no recursion penalty.  Note that one
736 		 * read from disk typically causes at least 3 zio's: a
737 		 * zio_null(), the logical zio_read(), and then a physical
738 		 * zio.  When the physical ZIO completes, we are able to call
739 		 * zio_done() on all 3 of these zio's from one invocation of
740 		 * zio_execute() by returning the parent back to
741 		 * zio_execute().  Since the parent isn't executed until this
742 		 * thread returns back to zio_execute(), the caller should do
743 		 * so promptly.
744 		 *
745 		 * In other cases, dispatching the parent prevents
746 		 * overflowing the stack when we have deeply nested
747 		 * parent-child relationships, as we do with the "mega zio"
748 		 * of writes for spa_sync(), and the chain of ZIL blocks.
749 		 */
750 		if (next_to_executep != NULL && *next_to_executep == NULL &&
751 		    pio->io_type == zio->io_type) {
752 			*next_to_executep = pio;
753 		} else {
754 			zio_taskq_dispatch(pio, type, B_FALSE);
755 		}
756 	} else {
757 		mutex_exit(&pio->io_lock);
758 	}
759 }
760 
761 static void
762 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
763 {
764 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
765 		zio->io_error = zio->io_child_error[c];
766 }
767 
768 int
769 zio_bookmark_compare(const void *x1, const void *x2)
770 {
771 	const zio_t *z1 = x1;
772 	const zio_t *z2 = x2;
773 
774 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
775 		return (-1);
776 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
777 		return (1);
778 
779 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
780 		return (-1);
781 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
782 		return (1);
783 
784 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
785 		return (-1);
786 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
787 		return (1);
788 
789 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
790 		return (-1);
791 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
792 		return (1);
793 
794 	if (z1 < z2)
795 		return (-1);
796 	if (z1 > z2)
797 		return (1);
798 
799 	return (0);
800 }
801 
802 /*
803  * ==========================================================================
804  * Create the various types of I/O (read, write, free, etc)
805  * ==========================================================================
806  */
807 static zio_t *
808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
809     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
810     void *private, zio_type_t type, zio_priority_t priority,
811     zio_flag_t flags, vdev_t *vd, uint64_t offset,
812     const zbookmark_phys_t *zb, enum zio_stage stage,
813     enum zio_stage pipeline)
814 {
815 	zio_t *zio;
816 
817 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
818 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
819 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
820 
821 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
822 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
823 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
824 
825 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
826 
827 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
828 	memset(zio, 0, sizeof (zio_t));
829 
830 	mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
831 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
832 
833 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
834 	    offsetof(zio_link_t, zl_parent_node));
835 	list_create(&zio->io_child_list, sizeof (zio_link_t),
836 	    offsetof(zio_link_t, zl_child_node));
837 	metaslab_trace_init(&zio->io_alloc_list);
838 
839 	if (vd != NULL)
840 		zio->io_child_type = ZIO_CHILD_VDEV;
841 	else if (flags & ZIO_FLAG_GANG_CHILD)
842 		zio->io_child_type = ZIO_CHILD_GANG;
843 	else if (flags & ZIO_FLAG_DDT_CHILD)
844 		zio->io_child_type = ZIO_CHILD_DDT;
845 	else
846 		zio->io_child_type = ZIO_CHILD_LOGICAL;
847 
848 	if (bp != NULL) {
849 		zio->io_bp = (blkptr_t *)bp;
850 		zio->io_bp_copy = *bp;
851 		zio->io_bp_orig = *bp;
852 		if (type != ZIO_TYPE_WRITE ||
853 		    zio->io_child_type == ZIO_CHILD_DDT)
854 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
855 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
856 			zio->io_logical = zio;
857 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
858 			pipeline |= ZIO_GANG_STAGES;
859 	}
860 
861 	zio->io_spa = spa;
862 	zio->io_txg = txg;
863 	zio->io_done = done;
864 	zio->io_private = private;
865 	zio->io_type = type;
866 	zio->io_priority = priority;
867 	zio->io_vd = vd;
868 	zio->io_offset = offset;
869 	zio->io_orig_abd = zio->io_abd = data;
870 	zio->io_orig_size = zio->io_size = psize;
871 	zio->io_lsize = lsize;
872 	zio->io_orig_flags = zio->io_flags = flags;
873 	zio->io_orig_stage = zio->io_stage = stage;
874 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
875 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
876 
877 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
878 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
879 
880 	if (zb != NULL)
881 		zio->io_bookmark = *zb;
882 
883 	if (pio != NULL) {
884 		zio->io_metaslab_class = pio->io_metaslab_class;
885 		if (zio->io_logical == NULL)
886 			zio->io_logical = pio->io_logical;
887 		if (zio->io_child_type == ZIO_CHILD_GANG)
888 			zio->io_gang_leader = pio->io_gang_leader;
889 		zio_add_child(pio, zio);
890 	}
891 
892 	taskq_init_ent(&zio->io_tqent);
893 
894 	return (zio);
895 }
896 
897 void
898 zio_destroy(zio_t *zio)
899 {
900 	metaslab_trace_fini(&zio->io_alloc_list);
901 	list_destroy(&zio->io_parent_list);
902 	list_destroy(&zio->io_child_list);
903 	mutex_destroy(&zio->io_lock);
904 	cv_destroy(&zio->io_cv);
905 	kmem_cache_free(zio_cache, zio);
906 }
907 
908 zio_t *
909 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
910     void *private, zio_flag_t flags)
911 {
912 	zio_t *zio;
913 
914 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
915 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
916 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
917 
918 	return (zio);
919 }
920 
921 zio_t *
922 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
923 {
924 	return (zio_null(NULL, spa, NULL, done, private, flags));
925 }
926 
927 static int
928 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
929     enum blk_verify_flag blk_verify, const char *fmt, ...)
930 {
931 	va_list adx;
932 	char buf[256];
933 
934 	va_start(adx, fmt);
935 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
936 	va_end(adx);
937 
938 	switch (blk_verify) {
939 	case BLK_VERIFY_HALT:
940 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
941 		zfs_panic_recover("%s: %s", spa_name(spa), buf);
942 		break;
943 	case BLK_VERIFY_LOG:
944 		zfs_dbgmsg("%s: %s", spa_name(spa), buf);
945 		break;
946 	case BLK_VERIFY_ONLY:
947 		break;
948 	}
949 
950 	return (1);
951 }
952 
953 /*
954  * Verify the block pointer fields contain reasonable values.  This means
955  * it only contains known object types, checksum/compression identifiers,
956  * block sizes within the maximum allowed limits, valid DVAs, etc.
957  *
958  * If everything checks out B_TRUE is returned.  The zfs_blkptr_verify
959  * argument controls the behavior when an invalid field is detected.
960  *
961  * Modes for zfs_blkptr_verify:
962  *   1) BLK_VERIFY_ONLY (evaluate the block)
963  *   2) BLK_VERIFY_LOG (evaluate the block and log problems)
964  *   3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
965  */
966 boolean_t
967 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
968     enum blk_verify_flag blk_verify)
969 {
970 	int errors = 0;
971 
972 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
973 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
974 		    "blkptr at %p has invalid TYPE %llu",
975 		    bp, (longlong_t)BP_GET_TYPE(bp));
976 	}
977 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
978 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
979 		    "blkptr at %p has invalid CHECKSUM %llu",
980 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
981 	}
982 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
983 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
984 		    "blkptr at %p has invalid COMPRESS %llu",
985 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
986 	}
987 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
988 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
989 		    "blkptr at %p has invalid LSIZE %llu",
990 		    bp, (longlong_t)BP_GET_LSIZE(bp));
991 	}
992 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
993 		errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
994 		    "blkptr at %p has invalid PSIZE %llu",
995 		    bp, (longlong_t)BP_GET_PSIZE(bp));
996 	}
997 
998 	if (BP_IS_EMBEDDED(bp)) {
999 		if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1000 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1001 			    "blkptr at %p has invalid ETYPE %llu",
1002 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * Do not verify individual DVAs if the config is not trusted. This
1008 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
1009 	 */
1010 	if (!spa->spa_trust_config)
1011 		return (errors == 0);
1012 
1013 	if (!config_held)
1014 		spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1015 	else
1016 		ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1017 	/*
1018 	 * Pool-specific checks.
1019 	 *
1020 	 * Note: it would be nice to verify that the blk_birth and
1021 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
1022 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1023 	 * that are in the log) to be arbitrarily large.
1024 	 */
1025 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1026 		const dva_t *dva = &bp->blk_dva[i];
1027 		uint64_t vdevid = DVA_GET_VDEV(dva);
1028 
1029 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
1030 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1031 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1032 			    bp, i, (longlong_t)vdevid);
1033 			continue;
1034 		}
1035 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1036 		if (vd == NULL) {
1037 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1038 			    "blkptr at %p DVA %u has invalid VDEV %llu",
1039 			    bp, i, (longlong_t)vdevid);
1040 			continue;
1041 		}
1042 		if (vd->vdev_ops == &vdev_hole_ops) {
1043 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1044 			    "blkptr at %p DVA %u has hole VDEV %llu",
1045 			    bp, i, (longlong_t)vdevid);
1046 			continue;
1047 		}
1048 		if (vd->vdev_ops == &vdev_missing_ops) {
1049 			/*
1050 			 * "missing" vdevs are valid during import, but we
1051 			 * don't have their detailed info (e.g. asize), so
1052 			 * we can't perform any more checks on them.
1053 			 */
1054 			continue;
1055 		}
1056 		uint64_t offset = DVA_GET_OFFSET(dva);
1057 		uint64_t asize = DVA_GET_ASIZE(dva);
1058 		if (DVA_GET_GANG(dva))
1059 			asize = vdev_gang_header_asize(vd);
1060 		if (offset + asize > vd->vdev_asize) {
1061 			errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1062 			    "blkptr at %p DVA %u has invalid OFFSET %llu",
1063 			    bp, i, (longlong_t)offset);
1064 		}
1065 	}
1066 	if (errors > 0)
1067 		dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1068 	if (!config_held)
1069 		spa_config_exit(spa, SCL_VDEV, bp);
1070 
1071 	return (errors == 0);
1072 }
1073 
1074 boolean_t
1075 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1076 {
1077 	(void) bp;
1078 	uint64_t vdevid = DVA_GET_VDEV(dva);
1079 
1080 	if (vdevid >= spa->spa_root_vdev->vdev_children)
1081 		return (B_FALSE);
1082 
1083 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1084 	if (vd == NULL)
1085 		return (B_FALSE);
1086 
1087 	if (vd->vdev_ops == &vdev_hole_ops)
1088 		return (B_FALSE);
1089 
1090 	if (vd->vdev_ops == &vdev_missing_ops) {
1091 		return (B_FALSE);
1092 	}
1093 
1094 	uint64_t offset = DVA_GET_OFFSET(dva);
1095 	uint64_t asize = DVA_GET_ASIZE(dva);
1096 
1097 	if (DVA_GET_GANG(dva))
1098 		asize = vdev_gang_header_asize(vd);
1099 	if (offset + asize > vd->vdev_asize)
1100 		return (B_FALSE);
1101 
1102 	return (B_TRUE);
1103 }
1104 
1105 zio_t *
1106 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1107     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1108     zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1109 {
1110 	zio_t *zio;
1111 
1112 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1113 	    data, size, size, done, private,
1114 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1115 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1116 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1117 
1118 	return (zio);
1119 }
1120 
1121 zio_t *
1122 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1123     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1124     zio_done_func_t *ready, zio_done_func_t *children_ready,
1125     zio_done_func_t *physdone, zio_done_func_t *done,
1126     void *private, zio_priority_t priority, zio_flag_t flags,
1127     const zbookmark_phys_t *zb)
1128 {
1129 	zio_t *zio;
1130 
1131 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1132 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1133 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
1134 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1135 	    DMU_OT_IS_VALID(zp->zp_type) &&
1136 	    zp->zp_level < 32 &&
1137 	    zp->zp_copies > 0 &&
1138 	    zp->zp_copies <= spa_max_replication(spa));
1139 
1140 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1141 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1142 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1143 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1144 
1145 	zio->io_ready = ready;
1146 	zio->io_children_ready = children_ready;
1147 	zio->io_physdone = physdone;
1148 	zio->io_prop = *zp;
1149 
1150 	/*
1151 	 * Data can be NULL if we are going to call zio_write_override() to
1152 	 * provide the already-allocated BP.  But we may need the data to
1153 	 * verify a dedup hit (if requested).  In this case, don't try to
1154 	 * dedup (just take the already-allocated BP verbatim). Encrypted
1155 	 * dedup blocks need data as well so we also disable dedup in this
1156 	 * case.
1157 	 */
1158 	if (data == NULL &&
1159 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1160 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1161 	}
1162 
1163 	return (zio);
1164 }
1165 
1166 zio_t *
1167 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1168     uint64_t size, zio_done_func_t *done, void *private,
1169     zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1170 {
1171 	zio_t *zio;
1172 
1173 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1174 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1175 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1176 
1177 	return (zio);
1178 }
1179 
1180 void
1181 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1182     boolean_t brtwrite)
1183 {
1184 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1185 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1186 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1187 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1188 	ASSERT(!brtwrite || !nopwrite);
1189 
1190 	/*
1191 	 * We must reset the io_prop to match the values that existed
1192 	 * when the bp was first written by dmu_sync() keeping in mind
1193 	 * that nopwrite and dedup are mutually exclusive.
1194 	 */
1195 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1196 	zio->io_prop.zp_nopwrite = nopwrite;
1197 	zio->io_prop.zp_brtwrite = brtwrite;
1198 	zio->io_prop.zp_copies = copies;
1199 	zio->io_bp_override = bp;
1200 }
1201 
1202 void
1203 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1204 {
1205 
1206 	(void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1207 
1208 	/*
1209 	 * The check for EMBEDDED is a performance optimization.  We
1210 	 * process the free here (by ignoring it) rather than
1211 	 * putting it on the list and then processing it in zio_free_sync().
1212 	 */
1213 	if (BP_IS_EMBEDDED(bp))
1214 		return;
1215 
1216 	/*
1217 	 * Frees that are for the currently-syncing txg, are not going to be
1218 	 * deferred, and which will not need to do a read (i.e. not GANG or
1219 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1220 	 * in-memory list for later processing.
1221 	 *
1222 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1223 	 * when the log space map feature is disabled. [see relevant comment
1224 	 * in spa_sync_iterate_to_convergence()]
1225 	 */
1226 	if (BP_IS_GANG(bp) ||
1227 	    BP_GET_DEDUP(bp) ||
1228 	    txg != spa->spa_syncing_txg ||
1229 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1230 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1231 	    brt_maybe_exists(spa, bp)) {
1232 		metaslab_check_free(spa, bp);
1233 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1234 	} else {
1235 		VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1236 	}
1237 }
1238 
1239 /*
1240  * To improve performance, this function may return NULL if we were able
1241  * to do the free immediately.  This avoids the cost of creating a zio
1242  * (and linking it to the parent, etc).
1243  */
1244 zio_t *
1245 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1246     zio_flag_t flags)
1247 {
1248 	ASSERT(!BP_IS_HOLE(bp));
1249 	ASSERT(spa_syncing_txg(spa) == txg);
1250 
1251 	if (BP_IS_EMBEDDED(bp))
1252 		return (NULL);
1253 
1254 	metaslab_check_free(spa, bp);
1255 	arc_freed(spa, bp);
1256 	dsl_scan_freed(spa, bp);
1257 
1258 	if (BP_IS_GANG(bp) ||
1259 	    BP_GET_DEDUP(bp) ||
1260 	    brt_maybe_exists(spa, bp)) {
1261 		/*
1262 		 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1263 		 * block header, the DDT or the BRT), so issue them
1264 		 * asynchronously so that this thread is not tied up.
1265 		 */
1266 		enum zio_stage stage =
1267 		    ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1268 
1269 		return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1270 		    BP_GET_PSIZE(bp), NULL, NULL,
1271 		    ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1272 		    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1273 	} else {
1274 		metaslab_free(spa, bp, txg, B_FALSE);
1275 		return (NULL);
1276 	}
1277 }
1278 
1279 zio_t *
1280 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1281     zio_done_func_t *done, void *private, zio_flag_t flags)
1282 {
1283 	zio_t *zio;
1284 
1285 	(void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1286 	    BLK_VERIFY_HALT);
1287 
1288 	if (BP_IS_EMBEDDED(bp))
1289 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1290 
1291 	/*
1292 	 * A claim is an allocation of a specific block.  Claims are needed
1293 	 * to support immediate writes in the intent log.  The issue is that
1294 	 * immediate writes contain committed data, but in a txg that was
1295 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1296 	 * the intent log claims all blocks that contain immediate write data
1297 	 * so that the SPA knows they're in use.
1298 	 *
1299 	 * All claims *must* be resolved in the first txg -- before the SPA
1300 	 * starts allocating blocks -- so that nothing is allocated twice.
1301 	 * If txg == 0 we just verify that the block is claimable.
1302 	 */
1303 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1304 	    spa_min_claim_txg(spa));
1305 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1306 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(8) */
1307 
1308 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1309 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1310 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1311 	ASSERT0(zio->io_queued_timestamp);
1312 
1313 	return (zio);
1314 }
1315 
1316 zio_t *
1317 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1318     zio_done_func_t *done, void *private, zio_flag_t flags)
1319 {
1320 	zio_t *zio;
1321 	int c;
1322 
1323 	if (vd->vdev_children == 0) {
1324 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1325 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1326 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1327 
1328 		zio->io_cmd = cmd;
1329 	} else {
1330 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1331 
1332 		for (c = 0; c < vd->vdev_children; c++)
1333 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1334 			    done, private, flags));
1335 	}
1336 
1337 	return (zio);
1338 }
1339 
1340 zio_t *
1341 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1342     zio_done_func_t *done, void *private, zio_priority_t priority,
1343     zio_flag_t flags, enum trim_flag trim_flags)
1344 {
1345 	zio_t *zio;
1346 
1347 	ASSERT0(vd->vdev_children);
1348 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1349 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1350 	ASSERT3U(size, !=, 0);
1351 
1352 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1353 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1354 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1355 	zio->io_trim_flags = trim_flags;
1356 
1357 	return (zio);
1358 }
1359 
1360 zio_t *
1361 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1362     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1363     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1364 {
1365 	zio_t *zio;
1366 
1367 	ASSERT(vd->vdev_children == 0);
1368 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1369 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1370 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1371 
1372 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1373 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1374 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1375 
1376 	zio->io_prop.zp_checksum = checksum;
1377 
1378 	return (zio);
1379 }
1380 
1381 zio_t *
1382 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1383     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1384     zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1385 {
1386 	zio_t *zio;
1387 
1388 	ASSERT(vd->vdev_children == 0);
1389 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1390 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1391 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1392 
1393 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1394 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1395 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1396 
1397 	zio->io_prop.zp_checksum = checksum;
1398 
1399 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1400 		/*
1401 		 * zec checksums are necessarily destructive -- they modify
1402 		 * the end of the write buffer to hold the verifier/checksum.
1403 		 * Therefore, we must make a local copy in case the data is
1404 		 * being written to multiple places in parallel.
1405 		 */
1406 		abd_t *wbuf = abd_alloc_sametype(data, size);
1407 		abd_copy(wbuf, data, size);
1408 
1409 		zio_push_transform(zio, wbuf, size, size, NULL);
1410 	}
1411 
1412 	return (zio);
1413 }
1414 
1415 /*
1416  * Create a child I/O to do some work for us.
1417  */
1418 zio_t *
1419 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1420     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1421     zio_flag_t flags, zio_done_func_t *done, void *private)
1422 {
1423 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1424 	zio_t *zio;
1425 
1426 	/*
1427 	 * vdev child I/Os do not propagate their error to the parent.
1428 	 * Therefore, for correct operation the caller *must* check for
1429 	 * and handle the error in the child i/o's done callback.
1430 	 * The only exceptions are i/os that we don't care about
1431 	 * (OPTIONAL or REPAIR).
1432 	 */
1433 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1434 	    done != NULL);
1435 
1436 	if (type == ZIO_TYPE_READ && bp != NULL) {
1437 		/*
1438 		 * If we have the bp, then the child should perform the
1439 		 * checksum and the parent need not.  This pushes error
1440 		 * detection as close to the leaves as possible and
1441 		 * eliminates redundant checksums in the interior nodes.
1442 		 */
1443 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1444 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1445 	}
1446 
1447 	if (vd->vdev_ops->vdev_op_leaf) {
1448 		ASSERT0(vd->vdev_children);
1449 		offset += VDEV_LABEL_START_SIZE;
1450 	}
1451 
1452 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1453 
1454 	/*
1455 	 * If we've decided to do a repair, the write is not speculative --
1456 	 * even if the original read was.
1457 	 */
1458 	if (flags & ZIO_FLAG_IO_REPAIR)
1459 		flags &= ~ZIO_FLAG_SPECULATIVE;
1460 
1461 	/*
1462 	 * If we're creating a child I/O that is not associated with a
1463 	 * top-level vdev, then the child zio is not an allocating I/O.
1464 	 * If this is a retried I/O then we ignore it since we will
1465 	 * have already processed the original allocating I/O.
1466 	 */
1467 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1468 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1469 		ASSERT(pio->io_metaslab_class != NULL);
1470 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1471 		ASSERT(type == ZIO_TYPE_WRITE);
1472 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1473 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1474 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1475 		    pio->io_child_type == ZIO_CHILD_GANG);
1476 
1477 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1478 	}
1479 
1480 
1481 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1482 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1483 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1484 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1485 
1486 	zio->io_physdone = pio->io_physdone;
1487 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1488 		zio->io_logical->io_phys_children++;
1489 
1490 	return (zio);
1491 }
1492 
1493 zio_t *
1494 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1495     zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1496     zio_done_func_t *done, void *private)
1497 {
1498 	zio_t *zio;
1499 
1500 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1501 
1502 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1503 	    data, size, size, done, private, type, priority,
1504 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1505 	    vd, offset, NULL,
1506 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1507 
1508 	return (zio);
1509 }
1510 
1511 void
1512 zio_flush(zio_t *zio, vdev_t *vd)
1513 {
1514 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1515 	    NULL, NULL,
1516 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1517 }
1518 
1519 void
1520 zio_shrink(zio_t *zio, uint64_t size)
1521 {
1522 	ASSERT3P(zio->io_executor, ==, NULL);
1523 	ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1524 	ASSERT3U(size, <=, zio->io_size);
1525 
1526 	/*
1527 	 * We don't shrink for raidz because of problems with the
1528 	 * reconstruction when reading back less than the block size.
1529 	 * Note, BP_IS_RAIDZ() assumes no compression.
1530 	 */
1531 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1532 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1533 		/* we are not doing a raw write */
1534 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1535 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1536 	}
1537 }
1538 
1539 /*
1540  * ==========================================================================
1541  * Prepare to read and write logical blocks
1542  * ==========================================================================
1543  */
1544 
1545 static zio_t *
1546 zio_read_bp_init(zio_t *zio)
1547 {
1548 	blkptr_t *bp = zio->io_bp;
1549 	uint64_t psize =
1550 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1551 
1552 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1553 
1554 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1555 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1556 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1557 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1558 		    psize, psize, zio_decompress);
1559 	}
1560 
1561 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1562 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1563 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1564 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1565 		    psize, psize, zio_decrypt);
1566 	}
1567 
1568 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1569 		int psize = BPE_GET_PSIZE(bp);
1570 		void *data = abd_borrow_buf(zio->io_abd, psize);
1571 
1572 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1573 		decode_embedded_bp_compressed(bp, data);
1574 		abd_return_buf_copy(zio->io_abd, data, psize);
1575 	} else {
1576 		ASSERT(!BP_IS_EMBEDDED(bp));
1577 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1578 	}
1579 
1580 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1581 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1582 
1583 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1584 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1585 
1586 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1587 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1588 
1589 	return (zio);
1590 }
1591 
1592 static zio_t *
1593 zio_write_bp_init(zio_t *zio)
1594 {
1595 	if (!IO_IS_ALLOCATING(zio))
1596 		return (zio);
1597 
1598 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1599 
1600 	if (zio->io_bp_override) {
1601 		blkptr_t *bp = zio->io_bp;
1602 		zio_prop_t *zp = &zio->io_prop;
1603 
1604 		ASSERT(bp->blk_birth != zio->io_txg);
1605 
1606 		*bp = *zio->io_bp_override;
1607 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1608 
1609 		if (zp->zp_brtwrite)
1610 			return (zio);
1611 
1612 		ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1613 
1614 		if (BP_IS_EMBEDDED(bp))
1615 			return (zio);
1616 
1617 		/*
1618 		 * If we've been overridden and nopwrite is set then
1619 		 * set the flag accordingly to indicate that a nopwrite
1620 		 * has already occurred.
1621 		 */
1622 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1623 			ASSERT(!zp->zp_dedup);
1624 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1625 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1626 			return (zio);
1627 		}
1628 
1629 		ASSERT(!zp->zp_nopwrite);
1630 
1631 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1632 			return (zio);
1633 
1634 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1635 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1636 
1637 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1638 		    !zp->zp_encrypt) {
1639 			BP_SET_DEDUP(bp, 1);
1640 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1641 			return (zio);
1642 		}
1643 
1644 		/*
1645 		 * We were unable to handle this as an override bp, treat
1646 		 * it as a regular write I/O.
1647 		 */
1648 		zio->io_bp_override = NULL;
1649 		*bp = zio->io_bp_orig;
1650 		zio->io_pipeline = zio->io_orig_pipeline;
1651 	}
1652 
1653 	return (zio);
1654 }
1655 
1656 static zio_t *
1657 zio_write_compress(zio_t *zio)
1658 {
1659 	spa_t *spa = zio->io_spa;
1660 	zio_prop_t *zp = &zio->io_prop;
1661 	enum zio_compress compress = zp->zp_compress;
1662 	blkptr_t *bp = zio->io_bp;
1663 	uint64_t lsize = zio->io_lsize;
1664 	uint64_t psize = zio->io_size;
1665 	uint32_t pass = 1;
1666 
1667 	/*
1668 	 * If our children haven't all reached the ready stage,
1669 	 * wait for them and then repeat this pipeline stage.
1670 	 */
1671 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1672 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1673 		return (NULL);
1674 	}
1675 
1676 	if (!IO_IS_ALLOCATING(zio))
1677 		return (zio);
1678 
1679 	if (zio->io_children_ready != NULL) {
1680 		/*
1681 		 * Now that all our children are ready, run the callback
1682 		 * associated with this zio in case it wants to modify the
1683 		 * data to be written.
1684 		 */
1685 		ASSERT3U(zp->zp_level, >, 0);
1686 		zio->io_children_ready(zio);
1687 	}
1688 
1689 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1690 	ASSERT(zio->io_bp_override == NULL);
1691 
1692 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1693 		/*
1694 		 * We're rewriting an existing block, which means we're
1695 		 * working on behalf of spa_sync().  For spa_sync() to
1696 		 * converge, it must eventually be the case that we don't
1697 		 * have to allocate new blocks.  But compression changes
1698 		 * the blocksize, which forces a reallocate, and makes
1699 		 * convergence take longer.  Therefore, after the first
1700 		 * few passes, stop compressing to ensure convergence.
1701 		 */
1702 		pass = spa_sync_pass(spa);
1703 
1704 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1705 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1706 		ASSERT(!BP_GET_DEDUP(bp));
1707 
1708 		if (pass >= zfs_sync_pass_dont_compress)
1709 			compress = ZIO_COMPRESS_OFF;
1710 
1711 		/* Make sure someone doesn't change their mind on overwrites */
1712 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1713 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1714 	}
1715 
1716 	/* If it's a compressed write that is not raw, compress the buffer. */
1717 	if (compress != ZIO_COMPRESS_OFF &&
1718 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1719 		void *cbuf = NULL;
1720 		psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1721 		    zp->zp_complevel);
1722 		if (psize == 0) {
1723 			compress = ZIO_COMPRESS_OFF;
1724 		} else if (psize >= lsize) {
1725 			compress = ZIO_COMPRESS_OFF;
1726 			if (cbuf != NULL)
1727 				zio_buf_free(cbuf, lsize);
1728 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1729 		    psize <= BPE_PAYLOAD_SIZE &&
1730 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1731 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1732 			encode_embedded_bp_compressed(bp,
1733 			    cbuf, compress, lsize, psize);
1734 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1735 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1736 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1737 			zio_buf_free(cbuf, lsize);
1738 			bp->blk_birth = zio->io_txg;
1739 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1740 			ASSERT(spa_feature_is_active(spa,
1741 			    SPA_FEATURE_EMBEDDED_DATA));
1742 			return (zio);
1743 		} else {
1744 			/*
1745 			 * Round compressed size up to the minimum allocation
1746 			 * size of the smallest-ashift device, and zero the
1747 			 * tail. This ensures that the compressed size of the
1748 			 * BP (and thus compressratio property) are correct,
1749 			 * in that we charge for the padding used to fill out
1750 			 * the last sector.
1751 			 */
1752 			ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1753 			size_t rounded = (size_t)roundup(psize,
1754 			    spa->spa_min_alloc);
1755 			if (rounded >= lsize) {
1756 				compress = ZIO_COMPRESS_OFF;
1757 				zio_buf_free(cbuf, lsize);
1758 				psize = lsize;
1759 			} else {
1760 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1761 				abd_take_ownership_of_buf(cdata, B_TRUE);
1762 				abd_zero_off(cdata, psize, rounded - psize);
1763 				psize = rounded;
1764 				zio_push_transform(zio, cdata,
1765 				    psize, lsize, NULL);
1766 			}
1767 		}
1768 
1769 		/*
1770 		 * We were unable to handle this as an override bp, treat
1771 		 * it as a regular write I/O.
1772 		 */
1773 		zio->io_bp_override = NULL;
1774 		*bp = zio->io_bp_orig;
1775 		zio->io_pipeline = zio->io_orig_pipeline;
1776 
1777 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1778 	    zp->zp_type == DMU_OT_DNODE) {
1779 		/*
1780 		 * The DMU actually relies on the zio layer's compression
1781 		 * to free metadnode blocks that have had all contained
1782 		 * dnodes freed. As a result, even when doing a raw
1783 		 * receive, we must check whether the block can be compressed
1784 		 * to a hole.
1785 		 */
1786 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1787 		    zio->io_abd, NULL, lsize, zp->zp_complevel);
1788 		if (psize == 0 || psize >= lsize)
1789 			compress = ZIO_COMPRESS_OFF;
1790 	} else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1791 	    !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1792 		/*
1793 		 * If we are raw receiving an encrypted dataset we should not
1794 		 * take this codepath because it will change the on-disk block
1795 		 * and decryption will fail.
1796 		 */
1797 		size_t rounded = MIN((size_t)roundup(psize,
1798 		    spa->spa_min_alloc), lsize);
1799 
1800 		if (rounded != psize) {
1801 			abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1802 			abd_zero_off(cdata, psize, rounded - psize);
1803 			abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1804 			psize = rounded;
1805 			zio_push_transform(zio, cdata,
1806 			    psize, rounded, NULL);
1807 		}
1808 	} else {
1809 		ASSERT3U(psize, !=, 0);
1810 	}
1811 
1812 	/*
1813 	 * The final pass of spa_sync() must be all rewrites, but the first
1814 	 * few passes offer a trade-off: allocating blocks defers convergence,
1815 	 * but newly allocated blocks are sequential, so they can be written
1816 	 * to disk faster.  Therefore, we allow the first few passes of
1817 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1818 	 * There should only be a handful of blocks after pass 1 in any case.
1819 	 */
1820 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1821 	    BP_GET_PSIZE(bp) == psize &&
1822 	    pass >= zfs_sync_pass_rewrite) {
1823 		VERIFY3U(psize, !=, 0);
1824 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1825 
1826 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1827 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1828 	} else {
1829 		BP_ZERO(bp);
1830 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1831 	}
1832 
1833 	if (psize == 0) {
1834 		if (zio->io_bp_orig.blk_birth != 0 &&
1835 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1836 			BP_SET_LSIZE(bp, lsize);
1837 			BP_SET_TYPE(bp, zp->zp_type);
1838 			BP_SET_LEVEL(bp, zp->zp_level);
1839 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1840 		}
1841 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1842 	} else {
1843 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1844 		BP_SET_LSIZE(bp, lsize);
1845 		BP_SET_TYPE(bp, zp->zp_type);
1846 		BP_SET_LEVEL(bp, zp->zp_level);
1847 		BP_SET_PSIZE(bp, psize);
1848 		BP_SET_COMPRESS(bp, compress);
1849 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1850 		BP_SET_DEDUP(bp, zp->zp_dedup);
1851 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1852 		if (zp->zp_dedup) {
1853 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1854 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1855 			ASSERT(!zp->zp_encrypt ||
1856 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1857 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1858 		}
1859 		if (zp->zp_nopwrite) {
1860 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1861 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1862 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1863 		}
1864 	}
1865 	return (zio);
1866 }
1867 
1868 static zio_t *
1869 zio_free_bp_init(zio_t *zio)
1870 {
1871 	blkptr_t *bp = zio->io_bp;
1872 
1873 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1874 		if (BP_GET_DEDUP(bp))
1875 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1876 	}
1877 
1878 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1879 
1880 	return (zio);
1881 }
1882 
1883 /*
1884  * ==========================================================================
1885  * Execute the I/O pipeline
1886  * ==========================================================================
1887  */
1888 
1889 static void
1890 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1891 {
1892 	spa_t *spa = zio->io_spa;
1893 	zio_type_t t = zio->io_type;
1894 	int flags = (cutinline ? TQ_FRONT : 0);
1895 
1896 	/*
1897 	 * If we're a config writer or a probe, the normal issue and
1898 	 * interrupt threads may all be blocked waiting for the config lock.
1899 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1900 	 */
1901 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1902 		t = ZIO_TYPE_NULL;
1903 
1904 	/*
1905 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1906 	 */
1907 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1908 		t = ZIO_TYPE_NULL;
1909 
1910 	/*
1911 	 * If this is a high priority I/O, then use the high priority taskq if
1912 	 * available.
1913 	 */
1914 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1915 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1916 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1917 		q++;
1918 
1919 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1920 
1921 	/*
1922 	 * NB: We are assuming that the zio can only be dispatched
1923 	 * to a single taskq at a time.  It would be a grievous error
1924 	 * to dispatch the zio to another taskq at the same time.
1925 	 */
1926 	ASSERT(taskq_empty_ent(&zio->io_tqent));
1927 	spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1928 	    &zio->io_tqent);
1929 }
1930 
1931 static boolean_t
1932 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1933 {
1934 	spa_t *spa = zio->io_spa;
1935 
1936 	taskq_t *tq = taskq_of_curthread();
1937 
1938 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1939 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1940 		uint_t i;
1941 		for (i = 0; i < tqs->stqs_count; i++) {
1942 			if (tqs->stqs_taskq[i] == tq)
1943 				return (B_TRUE);
1944 		}
1945 	}
1946 
1947 	return (B_FALSE);
1948 }
1949 
1950 static zio_t *
1951 zio_issue_async(zio_t *zio)
1952 {
1953 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1954 
1955 	return (NULL);
1956 }
1957 
1958 void
1959 zio_interrupt(void *zio)
1960 {
1961 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1962 }
1963 
1964 void
1965 zio_delay_interrupt(zio_t *zio)
1966 {
1967 	/*
1968 	 * The timeout_generic() function isn't defined in userspace, so
1969 	 * rather than trying to implement the function, the zio delay
1970 	 * functionality has been disabled for userspace builds.
1971 	 */
1972 
1973 #ifdef _KERNEL
1974 	/*
1975 	 * If io_target_timestamp is zero, then no delay has been registered
1976 	 * for this IO, thus jump to the end of this function and "skip" the
1977 	 * delay; issuing it directly to the zio layer.
1978 	 */
1979 	if (zio->io_target_timestamp != 0) {
1980 		hrtime_t now = gethrtime();
1981 
1982 		if (now >= zio->io_target_timestamp) {
1983 			/*
1984 			 * This IO has already taken longer than the target
1985 			 * delay to complete, so we don't want to delay it
1986 			 * any longer; we "miss" the delay and issue it
1987 			 * directly to the zio layer. This is likely due to
1988 			 * the target latency being set to a value less than
1989 			 * the underlying hardware can satisfy (e.g. delay
1990 			 * set to 1ms, but the disks take 10ms to complete an
1991 			 * IO request).
1992 			 */
1993 
1994 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1995 			    hrtime_t, now);
1996 
1997 			zio_interrupt(zio);
1998 		} else {
1999 			taskqid_t tid;
2000 			hrtime_t diff = zio->io_target_timestamp - now;
2001 			clock_t expire_at_tick = ddi_get_lbolt() +
2002 			    NSEC_TO_TICK(diff);
2003 
2004 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2005 			    hrtime_t, now, hrtime_t, diff);
2006 
2007 			if (NSEC_TO_TICK(diff) == 0) {
2008 				/* Our delay is less than a jiffy - just spin */
2009 				zfs_sleep_until(zio->io_target_timestamp);
2010 				zio_interrupt(zio);
2011 			} else {
2012 				/*
2013 				 * Use taskq_dispatch_delay() in the place of
2014 				 * OpenZFS's timeout_generic().
2015 				 */
2016 				tid = taskq_dispatch_delay(system_taskq,
2017 				    zio_interrupt, zio, TQ_NOSLEEP,
2018 				    expire_at_tick);
2019 				if (tid == TASKQID_INVALID) {
2020 					/*
2021 					 * Couldn't allocate a task.  Just
2022 					 * finish the zio without a delay.
2023 					 */
2024 					zio_interrupt(zio);
2025 				}
2026 			}
2027 		}
2028 		return;
2029 	}
2030 #endif
2031 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2032 	zio_interrupt(zio);
2033 }
2034 
2035 static void
2036 zio_deadman_impl(zio_t *pio, int ziodepth)
2037 {
2038 	zio_t *cio, *cio_next;
2039 	zio_link_t *zl = NULL;
2040 	vdev_t *vd = pio->io_vd;
2041 
2042 	if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2043 		vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2044 		zbookmark_phys_t *zb = &pio->io_bookmark;
2045 		uint64_t delta = gethrtime() - pio->io_timestamp;
2046 		uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2047 
2048 		zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2049 		    "delta=%llu queued=%llu io=%llu "
2050 		    "path=%s "
2051 		    "last=%llu type=%d "
2052 		    "priority=%d flags=0x%llx stage=0x%x "
2053 		    "pipeline=0x%x pipeline-trace=0x%x "
2054 		    "objset=%llu object=%llu "
2055 		    "level=%llu blkid=%llu "
2056 		    "offset=%llu size=%llu "
2057 		    "error=%d",
2058 		    ziodepth, pio, pio->io_timestamp,
2059 		    (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2060 		    vd ? vd->vdev_path : "NULL",
2061 		    vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2062 		    pio->io_priority, (u_longlong_t)pio->io_flags,
2063 		    pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2064 		    (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2065 		    (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2066 		    (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2067 		    pio->io_error);
2068 		(void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2069 		    pio->io_spa, vd, zb, pio, 0);
2070 
2071 		if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2072 		    taskq_empty_ent(&pio->io_tqent)) {
2073 			zio_interrupt(pio);
2074 		}
2075 	}
2076 
2077 	mutex_enter(&pio->io_lock);
2078 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2079 		cio_next = zio_walk_children(pio, &zl);
2080 		zio_deadman_impl(cio, ziodepth + 1);
2081 	}
2082 	mutex_exit(&pio->io_lock);
2083 }
2084 
2085 /*
2086  * Log the critical information describing this zio and all of its children
2087  * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2088  */
2089 void
2090 zio_deadman(zio_t *pio, const char *tag)
2091 {
2092 	spa_t *spa = pio->io_spa;
2093 	char *name = spa_name(spa);
2094 
2095 	if (!zfs_deadman_enabled || spa_suspended(spa))
2096 		return;
2097 
2098 	zio_deadman_impl(pio, 0);
2099 
2100 	switch (spa_get_deadman_failmode(spa)) {
2101 	case ZIO_FAILURE_MODE_WAIT:
2102 		zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2103 		break;
2104 
2105 	case ZIO_FAILURE_MODE_CONTINUE:
2106 		zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2107 		break;
2108 
2109 	case ZIO_FAILURE_MODE_PANIC:
2110 		fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2111 		break;
2112 	}
2113 }
2114 
2115 /*
2116  * Execute the I/O pipeline until one of the following occurs:
2117  * (1) the I/O completes; (2) the pipeline stalls waiting for
2118  * dependent child I/Os; (3) the I/O issues, so we're waiting
2119  * for an I/O completion interrupt; (4) the I/O is delegated by
2120  * vdev-level caching or aggregation; (5) the I/O is deferred
2121  * due to vdev-level queueing; (6) the I/O is handed off to
2122  * another thread.  In all cases, the pipeline stops whenever
2123  * there's no CPU work; it never burns a thread in cv_wait_io().
2124  *
2125  * There's no locking on io_stage because there's no legitimate way
2126  * for multiple threads to be attempting to process the same I/O.
2127  */
2128 static zio_pipe_stage_t *zio_pipeline[];
2129 
2130 /*
2131  * zio_execute() is a wrapper around the static function
2132  * __zio_execute() so that we can force  __zio_execute() to be
2133  * inlined.  This reduces stack overhead which is important
2134  * because __zio_execute() is called recursively in several zio
2135  * code paths.  zio_execute() itself cannot be inlined because
2136  * it is externally visible.
2137  */
2138 void
2139 zio_execute(void *zio)
2140 {
2141 	fstrans_cookie_t cookie;
2142 
2143 	cookie = spl_fstrans_mark();
2144 	__zio_execute(zio);
2145 	spl_fstrans_unmark(cookie);
2146 }
2147 
2148 /*
2149  * Used to determine if in the current context the stack is sized large
2150  * enough to allow zio_execute() to be called recursively.  A minimum
2151  * stack size of 16K is required to avoid needing to re-dispatch the zio.
2152  */
2153 static boolean_t
2154 zio_execute_stack_check(zio_t *zio)
2155 {
2156 #if !defined(HAVE_LARGE_STACKS)
2157 	dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2158 
2159 	/* Executing in txg_sync_thread() context. */
2160 	if (dp && curthread == dp->dp_tx.tx_sync_thread)
2161 		return (B_TRUE);
2162 
2163 	/* Pool initialization outside of zio_taskq context. */
2164 	if (dp && spa_is_initializing(dp->dp_spa) &&
2165 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2166 	    !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2167 		return (B_TRUE);
2168 #else
2169 	(void) zio;
2170 #endif /* HAVE_LARGE_STACKS */
2171 
2172 	return (B_FALSE);
2173 }
2174 
2175 __attribute__((always_inline))
2176 static inline void
2177 __zio_execute(zio_t *zio)
2178 {
2179 	ASSERT3U(zio->io_queued_timestamp, >, 0);
2180 
2181 	while (zio->io_stage < ZIO_STAGE_DONE) {
2182 		enum zio_stage pipeline = zio->io_pipeline;
2183 		enum zio_stage stage = zio->io_stage;
2184 
2185 		zio->io_executor = curthread;
2186 
2187 		ASSERT(!MUTEX_HELD(&zio->io_lock));
2188 		ASSERT(ISP2(stage));
2189 		ASSERT(zio->io_stall == NULL);
2190 
2191 		do {
2192 			stage <<= 1;
2193 		} while ((stage & pipeline) == 0);
2194 
2195 		ASSERT(stage <= ZIO_STAGE_DONE);
2196 
2197 		/*
2198 		 * If we are in interrupt context and this pipeline stage
2199 		 * will grab a config lock that is held across I/O,
2200 		 * or may wait for an I/O that needs an interrupt thread
2201 		 * to complete, issue async to avoid deadlock.
2202 		 *
2203 		 * For VDEV_IO_START, we cut in line so that the io will
2204 		 * be sent to disk promptly.
2205 		 */
2206 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2207 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2208 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2209 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2210 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2211 			return;
2212 		}
2213 
2214 		/*
2215 		 * If the current context doesn't have large enough stacks
2216 		 * the zio must be issued asynchronously to prevent overflow.
2217 		 */
2218 		if (zio_execute_stack_check(zio)) {
2219 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2220 			    zio_requeue_io_start_cut_in_line : B_FALSE;
2221 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2222 			return;
2223 		}
2224 
2225 		zio->io_stage = stage;
2226 		zio->io_pipeline_trace |= zio->io_stage;
2227 
2228 		/*
2229 		 * The zio pipeline stage returns the next zio to execute
2230 		 * (typically the same as this one), or NULL if we should
2231 		 * stop.
2232 		 */
2233 		zio = zio_pipeline[highbit64(stage) - 1](zio);
2234 
2235 		if (zio == NULL)
2236 			return;
2237 	}
2238 }
2239 
2240 
2241 /*
2242  * ==========================================================================
2243  * Initiate I/O, either sync or async
2244  * ==========================================================================
2245  */
2246 int
2247 zio_wait(zio_t *zio)
2248 {
2249 	/*
2250 	 * Some routines, like zio_free_sync(), may return a NULL zio
2251 	 * to avoid the performance overhead of creating and then destroying
2252 	 * an unneeded zio.  For the callers' simplicity, we accept a NULL
2253 	 * zio and ignore it.
2254 	 */
2255 	if (zio == NULL)
2256 		return (0);
2257 
2258 	long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2259 	int error;
2260 
2261 	ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2262 	ASSERT3P(zio->io_executor, ==, NULL);
2263 
2264 	zio->io_waiter = curthread;
2265 	ASSERT0(zio->io_queued_timestamp);
2266 	zio->io_queued_timestamp = gethrtime();
2267 
2268 	__zio_execute(zio);
2269 
2270 	mutex_enter(&zio->io_lock);
2271 	while (zio->io_executor != NULL) {
2272 		error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2273 		    ddi_get_lbolt() + timeout);
2274 
2275 		if (zfs_deadman_enabled && error == -1 &&
2276 		    gethrtime() - zio->io_queued_timestamp >
2277 		    spa_deadman_ziotime(zio->io_spa)) {
2278 			mutex_exit(&zio->io_lock);
2279 			timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2280 			zio_deadman(zio, FTAG);
2281 			mutex_enter(&zio->io_lock);
2282 		}
2283 	}
2284 	mutex_exit(&zio->io_lock);
2285 
2286 	error = zio->io_error;
2287 	zio_destroy(zio);
2288 
2289 	return (error);
2290 }
2291 
2292 void
2293 zio_nowait(zio_t *zio)
2294 {
2295 	/*
2296 	 * See comment in zio_wait().
2297 	 */
2298 	if (zio == NULL)
2299 		return;
2300 
2301 	ASSERT3P(zio->io_executor, ==, NULL);
2302 
2303 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2304 	    zio_unique_parent(zio) == NULL) {
2305 		zio_t *pio;
2306 
2307 		/*
2308 		 * This is a logical async I/O with no parent to wait for it.
2309 		 * We add it to the spa_async_root_zio "Godfather" I/O which
2310 		 * will ensure they complete prior to unloading the pool.
2311 		 */
2312 		spa_t *spa = zio->io_spa;
2313 		pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2314 
2315 		zio_add_child(pio, zio);
2316 	}
2317 
2318 	ASSERT0(zio->io_queued_timestamp);
2319 	zio->io_queued_timestamp = gethrtime();
2320 	__zio_execute(zio);
2321 }
2322 
2323 /*
2324  * ==========================================================================
2325  * Reexecute, cancel, or suspend/resume failed I/O
2326  * ==========================================================================
2327  */
2328 
2329 static void
2330 zio_reexecute(void *arg)
2331 {
2332 	zio_t *pio = arg;
2333 	zio_t *cio, *cio_next;
2334 
2335 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2336 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2337 	ASSERT(pio->io_gang_leader == NULL);
2338 	ASSERT(pio->io_gang_tree == NULL);
2339 
2340 	pio->io_flags = pio->io_orig_flags;
2341 	pio->io_stage = pio->io_orig_stage;
2342 	pio->io_pipeline = pio->io_orig_pipeline;
2343 	pio->io_reexecute = 0;
2344 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
2345 	pio->io_pipeline_trace = 0;
2346 	pio->io_error = 0;
2347 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2348 		pio->io_state[w] = 0;
2349 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2350 		pio->io_child_error[c] = 0;
2351 
2352 	if (IO_IS_ALLOCATING(pio))
2353 		BP_ZERO(pio->io_bp);
2354 
2355 	/*
2356 	 * As we reexecute pio's children, new children could be created.
2357 	 * New children go to the head of pio's io_child_list, however,
2358 	 * so we will (correctly) not reexecute them.  The key is that
2359 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
2360 	 * cannot be affected by any side effects of reexecuting 'cio'.
2361 	 */
2362 	zio_link_t *zl = NULL;
2363 	mutex_enter(&pio->io_lock);
2364 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2365 		cio_next = zio_walk_children(pio, &zl);
2366 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2367 			pio->io_children[cio->io_child_type][w]++;
2368 		mutex_exit(&pio->io_lock);
2369 		zio_reexecute(cio);
2370 		mutex_enter(&pio->io_lock);
2371 	}
2372 	mutex_exit(&pio->io_lock);
2373 
2374 	/*
2375 	 * Now that all children have been reexecuted, execute the parent.
2376 	 * We don't reexecute "The Godfather" I/O here as it's the
2377 	 * responsibility of the caller to wait on it.
2378 	 */
2379 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2380 		pio->io_queued_timestamp = gethrtime();
2381 		__zio_execute(pio);
2382 	}
2383 }
2384 
2385 void
2386 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2387 {
2388 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2389 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2390 		    "failure and the failure mode property for this pool "
2391 		    "is set to panic.", spa_name(spa));
2392 
2393 	cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2394 	    "failure and has been suspended.\n", spa_name(spa));
2395 
2396 	(void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2397 	    NULL, NULL, 0);
2398 
2399 	mutex_enter(&spa->spa_suspend_lock);
2400 
2401 	if (spa->spa_suspend_zio_root == NULL)
2402 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2403 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2404 		    ZIO_FLAG_GODFATHER);
2405 
2406 	spa->spa_suspended = reason;
2407 
2408 	if (zio != NULL) {
2409 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2410 		ASSERT(zio != spa->spa_suspend_zio_root);
2411 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2412 		ASSERT(zio_unique_parent(zio) == NULL);
2413 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2414 		zio_add_child(spa->spa_suspend_zio_root, zio);
2415 	}
2416 
2417 	mutex_exit(&spa->spa_suspend_lock);
2418 }
2419 
2420 int
2421 zio_resume(spa_t *spa)
2422 {
2423 	zio_t *pio;
2424 
2425 	/*
2426 	 * Reexecute all previously suspended i/o.
2427 	 */
2428 	mutex_enter(&spa->spa_suspend_lock);
2429 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2430 	cv_broadcast(&spa->spa_suspend_cv);
2431 	pio = spa->spa_suspend_zio_root;
2432 	spa->spa_suspend_zio_root = NULL;
2433 	mutex_exit(&spa->spa_suspend_lock);
2434 
2435 	if (pio == NULL)
2436 		return (0);
2437 
2438 	zio_reexecute(pio);
2439 	return (zio_wait(pio));
2440 }
2441 
2442 void
2443 zio_resume_wait(spa_t *spa)
2444 {
2445 	mutex_enter(&spa->spa_suspend_lock);
2446 	while (spa_suspended(spa))
2447 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2448 	mutex_exit(&spa->spa_suspend_lock);
2449 }
2450 
2451 /*
2452  * ==========================================================================
2453  * Gang blocks.
2454  *
2455  * A gang block is a collection of small blocks that looks to the DMU
2456  * like one large block.  When zio_dva_allocate() cannot find a block
2457  * of the requested size, due to either severe fragmentation or the pool
2458  * being nearly full, it calls zio_write_gang_block() to construct the
2459  * block from smaller fragments.
2460  *
2461  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2462  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2463  * an indirect block: it's an array of block pointers.  It consumes
2464  * only one sector and hence is allocatable regardless of fragmentation.
2465  * The gang header's bps point to its gang members, which hold the data.
2466  *
2467  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2468  * as the verifier to ensure uniqueness of the SHA256 checksum.
2469  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2470  * not the gang header.  This ensures that data block signatures (needed for
2471  * deduplication) are independent of how the block is physically stored.
2472  *
2473  * Gang blocks can be nested: a gang member may itself be a gang block.
2474  * Thus every gang block is a tree in which root and all interior nodes are
2475  * gang headers, and the leaves are normal blocks that contain user data.
2476  * The root of the gang tree is called the gang leader.
2477  *
2478  * To perform any operation (read, rewrite, free, claim) on a gang block,
2479  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2480  * in the io_gang_tree field of the original logical i/o by recursively
2481  * reading the gang leader and all gang headers below it.  This yields
2482  * an in-core tree containing the contents of every gang header and the
2483  * bps for every constituent of the gang block.
2484  *
2485  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2486  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2487  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2488  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2489  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2490  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2491  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2492  * of the gang header plus zio_checksum_compute() of the data to update the
2493  * gang header's blk_cksum as described above.
2494  *
2495  * The two-phase assemble/issue model solves the problem of partial failure --
2496  * what if you'd freed part of a gang block but then couldn't read the
2497  * gang header for another part?  Assembling the entire gang tree first
2498  * ensures that all the necessary gang header I/O has succeeded before
2499  * starting the actual work of free, claim, or write.  Once the gang tree
2500  * is assembled, free and claim are in-memory operations that cannot fail.
2501  *
2502  * In the event that a gang write fails, zio_dva_unallocate() walks the
2503  * gang tree to immediately free (i.e. insert back into the space map)
2504  * everything we've allocated.  This ensures that we don't get ENOSPC
2505  * errors during repeated suspend/resume cycles due to a flaky device.
2506  *
2507  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2508  * the gang tree, we won't modify the block, so we can safely defer the free
2509  * (knowing that the block is still intact).  If we *can* assemble the gang
2510  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2511  * each constituent bp and we can allocate a new block on the next sync pass.
2512  *
2513  * In all cases, the gang tree allows complete recovery from partial failure.
2514  * ==========================================================================
2515  */
2516 
2517 static void
2518 zio_gang_issue_func_done(zio_t *zio)
2519 {
2520 	abd_free(zio->io_abd);
2521 }
2522 
2523 static zio_t *
2524 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2525     uint64_t offset)
2526 {
2527 	if (gn != NULL)
2528 		return (pio);
2529 
2530 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2531 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2532 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2533 	    &pio->io_bookmark));
2534 }
2535 
2536 static zio_t *
2537 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2538     uint64_t offset)
2539 {
2540 	zio_t *zio;
2541 
2542 	if (gn != NULL) {
2543 		abd_t *gbh_abd =
2544 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2545 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2546 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2547 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2548 		    &pio->io_bookmark);
2549 		/*
2550 		 * As we rewrite each gang header, the pipeline will compute
2551 		 * a new gang block header checksum for it; but no one will
2552 		 * compute a new data checksum, so we do that here.  The one
2553 		 * exception is the gang leader: the pipeline already computed
2554 		 * its data checksum because that stage precedes gang assembly.
2555 		 * (Presently, nothing actually uses interior data checksums;
2556 		 * this is just good hygiene.)
2557 		 */
2558 		if (gn != pio->io_gang_leader->io_gang_tree) {
2559 			abd_t *buf = abd_get_offset(data, offset);
2560 
2561 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2562 			    buf, BP_GET_PSIZE(bp));
2563 
2564 			abd_free(buf);
2565 		}
2566 		/*
2567 		 * If we are here to damage data for testing purposes,
2568 		 * leave the GBH alone so that we can detect the damage.
2569 		 */
2570 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2571 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2572 	} else {
2573 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2574 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2575 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2576 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2577 	}
2578 
2579 	return (zio);
2580 }
2581 
2582 static zio_t *
2583 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2584     uint64_t offset)
2585 {
2586 	(void) gn, (void) data, (void) offset;
2587 
2588 	zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2589 	    ZIO_GANG_CHILD_FLAGS(pio));
2590 	if (zio == NULL) {
2591 		zio = zio_null(pio, pio->io_spa,
2592 		    NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2593 	}
2594 	return (zio);
2595 }
2596 
2597 static zio_t *
2598 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2599     uint64_t offset)
2600 {
2601 	(void) gn, (void) data, (void) offset;
2602 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2603 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2604 }
2605 
2606 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2607 	NULL,
2608 	zio_read_gang,
2609 	zio_rewrite_gang,
2610 	zio_free_gang,
2611 	zio_claim_gang,
2612 	NULL
2613 };
2614 
2615 static void zio_gang_tree_assemble_done(zio_t *zio);
2616 
2617 static zio_gang_node_t *
2618 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2619 {
2620 	zio_gang_node_t *gn;
2621 
2622 	ASSERT(*gnpp == NULL);
2623 
2624 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2625 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2626 	*gnpp = gn;
2627 
2628 	return (gn);
2629 }
2630 
2631 static void
2632 zio_gang_node_free(zio_gang_node_t **gnpp)
2633 {
2634 	zio_gang_node_t *gn = *gnpp;
2635 
2636 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2637 		ASSERT(gn->gn_child[g] == NULL);
2638 
2639 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2640 	kmem_free(gn, sizeof (*gn));
2641 	*gnpp = NULL;
2642 }
2643 
2644 static void
2645 zio_gang_tree_free(zio_gang_node_t **gnpp)
2646 {
2647 	zio_gang_node_t *gn = *gnpp;
2648 
2649 	if (gn == NULL)
2650 		return;
2651 
2652 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2653 		zio_gang_tree_free(&gn->gn_child[g]);
2654 
2655 	zio_gang_node_free(gnpp);
2656 }
2657 
2658 static void
2659 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2660 {
2661 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2662 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2663 
2664 	ASSERT(gio->io_gang_leader == gio);
2665 	ASSERT(BP_IS_GANG(bp));
2666 
2667 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2668 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2669 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2670 }
2671 
2672 static void
2673 zio_gang_tree_assemble_done(zio_t *zio)
2674 {
2675 	zio_t *gio = zio->io_gang_leader;
2676 	zio_gang_node_t *gn = zio->io_private;
2677 	blkptr_t *bp = zio->io_bp;
2678 
2679 	ASSERT(gio == zio_unique_parent(zio));
2680 	ASSERT(zio->io_child_count == 0);
2681 
2682 	if (zio->io_error)
2683 		return;
2684 
2685 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2686 	if (BP_SHOULD_BYTESWAP(bp))
2687 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2688 
2689 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2690 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2691 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2692 
2693 	abd_free(zio->io_abd);
2694 
2695 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2696 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2697 		if (!BP_IS_GANG(gbp))
2698 			continue;
2699 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2700 	}
2701 }
2702 
2703 static void
2704 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2705     uint64_t offset)
2706 {
2707 	zio_t *gio = pio->io_gang_leader;
2708 	zio_t *zio;
2709 
2710 	ASSERT(BP_IS_GANG(bp) == !!gn);
2711 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2712 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2713 
2714 	/*
2715 	 * If you're a gang header, your data is in gn->gn_gbh.
2716 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2717 	 */
2718 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2719 
2720 	if (gn != NULL) {
2721 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2722 
2723 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2724 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2725 			if (BP_IS_HOLE(gbp))
2726 				continue;
2727 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2728 			    offset);
2729 			offset += BP_GET_PSIZE(gbp);
2730 		}
2731 	}
2732 
2733 	if (gn == gio->io_gang_tree)
2734 		ASSERT3U(gio->io_size, ==, offset);
2735 
2736 	if (zio != pio)
2737 		zio_nowait(zio);
2738 }
2739 
2740 static zio_t *
2741 zio_gang_assemble(zio_t *zio)
2742 {
2743 	blkptr_t *bp = zio->io_bp;
2744 
2745 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2746 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2747 
2748 	zio->io_gang_leader = zio;
2749 
2750 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2751 
2752 	return (zio);
2753 }
2754 
2755 static zio_t *
2756 zio_gang_issue(zio_t *zio)
2757 {
2758 	blkptr_t *bp = zio->io_bp;
2759 
2760 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2761 		return (NULL);
2762 	}
2763 
2764 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2765 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2766 
2767 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2768 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2769 		    0);
2770 	else
2771 		zio_gang_tree_free(&zio->io_gang_tree);
2772 
2773 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2774 
2775 	return (zio);
2776 }
2777 
2778 static void
2779 zio_write_gang_member_ready(zio_t *zio)
2780 {
2781 	zio_t *pio = zio_unique_parent(zio);
2782 	dva_t *cdva = zio->io_bp->blk_dva;
2783 	dva_t *pdva = pio->io_bp->blk_dva;
2784 	uint64_t asize;
2785 	zio_t *gio __maybe_unused = zio->io_gang_leader;
2786 
2787 	if (BP_IS_HOLE(zio->io_bp))
2788 		return;
2789 
2790 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2791 
2792 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2793 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2794 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2795 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2796 	VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2797 
2798 	mutex_enter(&pio->io_lock);
2799 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2800 		ASSERT(DVA_GET_GANG(&pdva[d]));
2801 		asize = DVA_GET_ASIZE(&pdva[d]);
2802 		asize += DVA_GET_ASIZE(&cdva[d]);
2803 		DVA_SET_ASIZE(&pdva[d], asize);
2804 	}
2805 	mutex_exit(&pio->io_lock);
2806 }
2807 
2808 static void
2809 zio_write_gang_done(zio_t *zio)
2810 {
2811 	/*
2812 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2813 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2814 	 * check for it here as it is cleared in zio_ready.
2815 	 */
2816 	if (zio->io_abd != NULL)
2817 		abd_free(zio->io_abd);
2818 }
2819 
2820 static zio_t *
2821 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2822 {
2823 	spa_t *spa = pio->io_spa;
2824 	blkptr_t *bp = pio->io_bp;
2825 	zio_t *gio = pio->io_gang_leader;
2826 	zio_t *zio;
2827 	zio_gang_node_t *gn, **gnpp;
2828 	zio_gbh_phys_t *gbh;
2829 	abd_t *gbh_abd;
2830 	uint64_t txg = pio->io_txg;
2831 	uint64_t resid = pio->io_size;
2832 	uint64_t lsize;
2833 	int copies = gio->io_prop.zp_copies;
2834 	zio_prop_t zp;
2835 	int error;
2836 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2837 
2838 	/*
2839 	 * If one copy was requested, store 2 copies of the GBH, so that we
2840 	 * can still traverse all the data (e.g. to free or scrub) even if a
2841 	 * block is damaged.  Note that we can't store 3 copies of the GBH in
2842 	 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2843 	 */
2844 	int gbh_copies = copies;
2845 	if (gbh_copies == 1) {
2846 		gbh_copies = MIN(2, spa_max_replication(spa));
2847 	}
2848 
2849 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2850 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2851 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2852 		ASSERT(has_data);
2853 
2854 		flags |= METASLAB_ASYNC_ALLOC;
2855 		VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2856 		    mca_alloc_slots, pio));
2857 
2858 		/*
2859 		 * The logical zio has already placed a reservation for
2860 		 * 'copies' allocation slots but gang blocks may require
2861 		 * additional copies. These additional copies
2862 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2863 		 * since metaslab_class_throttle_reserve() always allows
2864 		 * additional reservations for gang blocks.
2865 		 */
2866 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2867 		    pio->io_allocator, pio, flags));
2868 	}
2869 
2870 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2871 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2872 	    &pio->io_alloc_list, pio, pio->io_allocator);
2873 	if (error) {
2874 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2875 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2876 			ASSERT(has_data);
2877 
2878 			/*
2879 			 * If we failed to allocate the gang block header then
2880 			 * we remove any additional allocation reservations that
2881 			 * we placed here. The original reservation will
2882 			 * be removed when the logical I/O goes to the ready
2883 			 * stage.
2884 			 */
2885 			metaslab_class_throttle_unreserve(mc,
2886 			    gbh_copies - copies, pio->io_allocator, pio);
2887 		}
2888 
2889 		pio->io_error = error;
2890 		return (pio);
2891 	}
2892 
2893 	if (pio == gio) {
2894 		gnpp = &gio->io_gang_tree;
2895 	} else {
2896 		gnpp = pio->io_private;
2897 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2898 	}
2899 
2900 	gn = zio_gang_node_alloc(gnpp);
2901 	gbh = gn->gn_gbh;
2902 	memset(gbh, 0, SPA_GANGBLOCKSIZE);
2903 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2904 
2905 	/*
2906 	 * Create the gang header.
2907 	 */
2908 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2909 	    zio_write_gang_done, NULL, pio->io_priority,
2910 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2911 
2912 	/*
2913 	 * Create and nowait the gang children.
2914 	 */
2915 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2916 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2917 		    SPA_MINBLOCKSIZE);
2918 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2919 
2920 		zp.zp_checksum = gio->io_prop.zp_checksum;
2921 		zp.zp_compress = ZIO_COMPRESS_OFF;
2922 		zp.zp_complevel = gio->io_prop.zp_complevel;
2923 		zp.zp_type = DMU_OT_NONE;
2924 		zp.zp_level = 0;
2925 		zp.zp_copies = gio->io_prop.zp_copies;
2926 		zp.zp_dedup = B_FALSE;
2927 		zp.zp_dedup_verify = B_FALSE;
2928 		zp.zp_nopwrite = B_FALSE;
2929 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2930 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2931 		memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2932 		memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2933 		memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2934 
2935 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2936 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2937 		    resid) : NULL, lsize, lsize, &zp,
2938 		    zio_write_gang_member_ready, NULL, NULL,
2939 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2940 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2941 
2942 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2943 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2944 			ASSERT(has_data);
2945 
2946 			/*
2947 			 * Gang children won't throttle but we should
2948 			 * account for their work, so reserve an allocation
2949 			 * slot for them here.
2950 			 */
2951 			VERIFY(metaslab_class_throttle_reserve(mc,
2952 			    zp.zp_copies, cio->io_allocator, cio, flags));
2953 		}
2954 		zio_nowait(cio);
2955 	}
2956 
2957 	/*
2958 	 * Set pio's pipeline to just wait for zio to finish.
2959 	 */
2960 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2961 
2962 	/*
2963 	 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2964 	 */
2965 	pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2966 
2967 	zio_nowait(zio);
2968 
2969 	return (pio);
2970 }
2971 
2972 /*
2973  * The zio_nop_write stage in the pipeline determines if allocating a
2974  * new bp is necessary.  The nopwrite feature can handle writes in
2975  * either syncing or open context (i.e. zil writes) and as a result is
2976  * mutually exclusive with dedup.
2977  *
2978  * By leveraging a cryptographically secure checksum, such as SHA256, we
2979  * can compare the checksums of the new data and the old to determine if
2980  * allocating a new block is required.  Note that our requirements for
2981  * cryptographic strength are fairly weak: there can't be any accidental
2982  * hash collisions, but we don't need to be secure against intentional
2983  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2984  * to write the file to begin with, and triggering an incorrect (hash
2985  * collision) nopwrite is no worse than simply writing to the file.
2986  * That said, there are no known attacks against the checksum algorithms
2987  * used for nopwrite, assuming that the salt and the checksums
2988  * themselves remain secret.
2989  */
2990 static zio_t *
2991 zio_nop_write(zio_t *zio)
2992 {
2993 	blkptr_t *bp = zio->io_bp;
2994 	blkptr_t *bp_orig = &zio->io_bp_orig;
2995 	zio_prop_t *zp = &zio->io_prop;
2996 
2997 	ASSERT(BP_IS_HOLE(bp));
2998 	ASSERT(BP_GET_LEVEL(bp) == 0);
2999 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3000 	ASSERT(zp->zp_nopwrite);
3001 	ASSERT(!zp->zp_dedup);
3002 	ASSERT(zio->io_bp_override == NULL);
3003 	ASSERT(IO_IS_ALLOCATING(zio));
3004 
3005 	/*
3006 	 * Check to see if the original bp and the new bp have matching
3007 	 * characteristics (i.e. same checksum, compression algorithms, etc).
3008 	 * If they don't then just continue with the pipeline which will
3009 	 * allocate a new bp.
3010 	 */
3011 	if (BP_IS_HOLE(bp_orig) ||
3012 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3013 	    ZCHECKSUM_FLAG_NOPWRITE) ||
3014 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3015 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3016 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3017 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3018 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
3019 		return (zio);
3020 
3021 	/*
3022 	 * If the checksums match then reset the pipeline so that we
3023 	 * avoid allocating a new bp and issuing any I/O.
3024 	 */
3025 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3026 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3027 		    ZCHECKSUM_FLAG_NOPWRITE);
3028 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3029 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3030 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3031 		ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3032 
3033 		/*
3034 		 * If we're overwriting a block that is currently on an
3035 		 * indirect vdev, then ignore the nopwrite request and
3036 		 * allow a new block to be allocated on a concrete vdev.
3037 		 */
3038 		spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3039 		for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3040 			vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3041 			    DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3042 			if (tvd->vdev_ops == &vdev_indirect_ops) {
3043 				spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3044 				return (zio);
3045 			}
3046 		}
3047 		spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3048 
3049 		*bp = *bp_orig;
3050 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3051 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
3052 	}
3053 
3054 	return (zio);
3055 }
3056 
3057 /*
3058  * ==========================================================================
3059  * Block Reference Table
3060  * ==========================================================================
3061  */
3062 static zio_t *
3063 zio_brt_free(zio_t *zio)
3064 {
3065 	blkptr_t *bp;
3066 
3067 	bp = zio->io_bp;
3068 
3069 	if (BP_GET_LEVEL(bp) > 0 ||
3070 	    BP_IS_METADATA(bp) ||
3071 	    !brt_maybe_exists(zio->io_spa, bp)) {
3072 		return (zio);
3073 	}
3074 
3075 	if (!brt_entry_decref(zio->io_spa, bp)) {
3076 		/*
3077 		 * This isn't the last reference, so we cannot free
3078 		 * the data yet.
3079 		 */
3080 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3081 	}
3082 
3083 	return (zio);
3084 }
3085 
3086 /*
3087  * ==========================================================================
3088  * Dedup
3089  * ==========================================================================
3090  */
3091 static void
3092 zio_ddt_child_read_done(zio_t *zio)
3093 {
3094 	blkptr_t *bp = zio->io_bp;
3095 	ddt_entry_t *dde = zio->io_private;
3096 	ddt_phys_t *ddp;
3097 	zio_t *pio = zio_unique_parent(zio);
3098 
3099 	mutex_enter(&pio->io_lock);
3100 	ddp = ddt_phys_select(dde, bp);
3101 	if (zio->io_error == 0)
3102 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
3103 
3104 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3105 		dde->dde_repair_abd = zio->io_abd;
3106 	else
3107 		abd_free(zio->io_abd);
3108 	mutex_exit(&pio->io_lock);
3109 }
3110 
3111 static zio_t *
3112 zio_ddt_read_start(zio_t *zio)
3113 {
3114 	blkptr_t *bp = zio->io_bp;
3115 
3116 	ASSERT(BP_GET_DEDUP(bp));
3117 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3118 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3119 
3120 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3121 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3122 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3123 		ddt_phys_t *ddp = dde->dde_phys;
3124 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3125 		blkptr_t blk;
3126 
3127 		ASSERT(zio->io_vsd == NULL);
3128 		zio->io_vsd = dde;
3129 
3130 		if (ddp_self == NULL)
3131 			return (zio);
3132 
3133 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3134 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3135 				continue;
3136 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3137 			    &blk);
3138 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
3139 			    abd_alloc_for_io(zio->io_size, B_TRUE),
3140 			    zio->io_size, zio_ddt_child_read_done, dde,
3141 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3142 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3143 		}
3144 		return (zio);
3145 	}
3146 
3147 	zio_nowait(zio_read(zio, zio->io_spa, bp,
3148 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3149 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3150 
3151 	return (zio);
3152 }
3153 
3154 static zio_t *
3155 zio_ddt_read_done(zio_t *zio)
3156 {
3157 	blkptr_t *bp = zio->io_bp;
3158 
3159 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3160 		return (NULL);
3161 	}
3162 
3163 	ASSERT(BP_GET_DEDUP(bp));
3164 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3165 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3166 
3167 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
3168 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
3169 		ddt_entry_t *dde = zio->io_vsd;
3170 		if (ddt == NULL) {
3171 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3172 			return (zio);
3173 		}
3174 		if (dde == NULL) {
3175 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3176 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3177 			return (NULL);
3178 		}
3179 		if (dde->dde_repair_abd != NULL) {
3180 			abd_copy(zio->io_abd, dde->dde_repair_abd,
3181 			    zio->io_size);
3182 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
3183 		}
3184 		ddt_repair_done(ddt, dde);
3185 		zio->io_vsd = NULL;
3186 	}
3187 
3188 	ASSERT(zio->io_vsd == NULL);
3189 
3190 	return (zio);
3191 }
3192 
3193 static boolean_t
3194 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3195 {
3196 	spa_t *spa = zio->io_spa;
3197 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3198 
3199 	ASSERT(!(zio->io_bp_override && do_raw));
3200 
3201 	/*
3202 	 * Note: we compare the original data, not the transformed data,
3203 	 * because when zio->io_bp is an override bp, we will not have
3204 	 * pushed the I/O transforms.  That's an important optimization
3205 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3206 	 * However, we should never get a raw, override zio so in these
3207 	 * cases we can compare the io_abd directly. This is useful because
3208 	 * it allows us to do dedup verification even if we don't have access
3209 	 * to the original data (for instance, if the encryption keys aren't
3210 	 * loaded).
3211 	 */
3212 
3213 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3214 		zio_t *lio = dde->dde_lead_zio[p];
3215 
3216 		if (lio != NULL && do_raw) {
3217 			return (lio->io_size != zio->io_size ||
3218 			    abd_cmp(zio->io_abd, lio->io_abd) != 0);
3219 		} else if (lio != NULL) {
3220 			return (lio->io_orig_size != zio->io_orig_size ||
3221 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3222 		}
3223 	}
3224 
3225 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3226 		ddt_phys_t *ddp = &dde->dde_phys[p];
3227 
3228 		if (ddp->ddp_phys_birth != 0 && do_raw) {
3229 			blkptr_t blk = *zio->io_bp;
3230 			uint64_t psize;
3231 			abd_t *tmpabd;
3232 			int error;
3233 
3234 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3235 			psize = BP_GET_PSIZE(&blk);
3236 
3237 			if (psize != zio->io_size)
3238 				return (B_TRUE);
3239 
3240 			ddt_exit(ddt);
3241 
3242 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
3243 
3244 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3245 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3246 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3247 			    ZIO_FLAG_RAW, &zio->io_bookmark));
3248 
3249 			if (error == 0) {
3250 				if (abd_cmp(tmpabd, zio->io_abd) != 0)
3251 					error = SET_ERROR(ENOENT);
3252 			}
3253 
3254 			abd_free(tmpabd);
3255 			ddt_enter(ddt);
3256 			return (error != 0);
3257 		} else if (ddp->ddp_phys_birth != 0) {
3258 			arc_buf_t *abuf = NULL;
3259 			arc_flags_t aflags = ARC_FLAG_WAIT;
3260 			blkptr_t blk = *zio->io_bp;
3261 			int error;
3262 
3263 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3264 
3265 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3266 				return (B_TRUE);
3267 
3268 			ddt_exit(ddt);
3269 
3270 			error = arc_read(NULL, spa, &blk,
3271 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3272 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3273 			    &aflags, &zio->io_bookmark);
3274 
3275 			if (error == 0) {
3276 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3277 				    zio->io_orig_size) != 0)
3278 					error = SET_ERROR(ENOENT);
3279 				arc_buf_destroy(abuf, &abuf);
3280 			}
3281 
3282 			ddt_enter(ddt);
3283 			return (error != 0);
3284 		}
3285 	}
3286 
3287 	return (B_FALSE);
3288 }
3289 
3290 static void
3291 zio_ddt_child_write_ready(zio_t *zio)
3292 {
3293 	int p = zio->io_prop.zp_copies;
3294 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3295 	ddt_entry_t *dde = zio->io_private;
3296 	ddt_phys_t *ddp = &dde->dde_phys[p];
3297 	zio_t *pio;
3298 
3299 	if (zio->io_error)
3300 		return;
3301 
3302 	ddt_enter(ddt);
3303 
3304 	ASSERT(dde->dde_lead_zio[p] == zio);
3305 
3306 	ddt_phys_fill(ddp, zio->io_bp);
3307 
3308 	zio_link_t *zl = NULL;
3309 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3310 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3311 
3312 	ddt_exit(ddt);
3313 }
3314 
3315 static void
3316 zio_ddt_child_write_done(zio_t *zio)
3317 {
3318 	int p = zio->io_prop.zp_copies;
3319 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3320 	ddt_entry_t *dde = zio->io_private;
3321 	ddt_phys_t *ddp = &dde->dde_phys[p];
3322 
3323 	ddt_enter(ddt);
3324 
3325 	ASSERT(ddp->ddp_refcnt == 0);
3326 	ASSERT(dde->dde_lead_zio[p] == zio);
3327 	dde->dde_lead_zio[p] = NULL;
3328 
3329 	if (zio->io_error == 0) {
3330 		zio_link_t *zl = NULL;
3331 		while (zio_walk_parents(zio, &zl) != NULL)
3332 			ddt_phys_addref(ddp);
3333 	} else {
3334 		ddt_phys_clear(ddp);
3335 	}
3336 
3337 	ddt_exit(ddt);
3338 }
3339 
3340 static zio_t *
3341 zio_ddt_write(zio_t *zio)
3342 {
3343 	spa_t *spa = zio->io_spa;
3344 	blkptr_t *bp = zio->io_bp;
3345 	uint64_t txg = zio->io_txg;
3346 	zio_prop_t *zp = &zio->io_prop;
3347 	int p = zp->zp_copies;
3348 	zio_t *cio = NULL;
3349 	ddt_t *ddt = ddt_select(spa, bp);
3350 	ddt_entry_t *dde;
3351 	ddt_phys_t *ddp;
3352 
3353 	ASSERT(BP_GET_DEDUP(bp));
3354 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3355 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3356 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3357 
3358 	ddt_enter(ddt);
3359 	dde = ddt_lookup(ddt, bp, B_TRUE);
3360 	ddp = &dde->dde_phys[p];
3361 
3362 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3363 		/*
3364 		 * If we're using a weak checksum, upgrade to a strong checksum
3365 		 * and try again.  If we're already using a strong checksum,
3366 		 * we can't resolve it, so just convert to an ordinary write.
3367 		 * (And automatically e-mail a paper to Nature?)
3368 		 */
3369 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3370 		    ZCHECKSUM_FLAG_DEDUP)) {
3371 			zp->zp_checksum = spa_dedup_checksum(spa);
3372 			zio_pop_transforms(zio);
3373 			zio->io_stage = ZIO_STAGE_OPEN;
3374 			BP_ZERO(bp);
3375 		} else {
3376 			zp->zp_dedup = B_FALSE;
3377 			BP_SET_DEDUP(bp, B_FALSE);
3378 		}
3379 		ASSERT(!BP_GET_DEDUP(bp));
3380 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
3381 		ddt_exit(ddt);
3382 		return (zio);
3383 	}
3384 
3385 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3386 		if (ddp->ddp_phys_birth != 0)
3387 			ddt_bp_fill(ddp, bp, txg);
3388 		if (dde->dde_lead_zio[p] != NULL)
3389 			zio_add_child(zio, dde->dde_lead_zio[p]);
3390 		else
3391 			ddt_phys_addref(ddp);
3392 	} else if (zio->io_bp_override) {
3393 		ASSERT(bp->blk_birth == txg);
3394 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3395 		ddt_phys_fill(ddp, bp);
3396 		ddt_phys_addref(ddp);
3397 	} else {
3398 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3399 		    zio->io_orig_size, zio->io_orig_size, zp,
3400 		    zio_ddt_child_write_ready, NULL, NULL,
3401 		    zio_ddt_child_write_done, dde, zio->io_priority,
3402 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3403 
3404 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3405 		dde->dde_lead_zio[p] = cio;
3406 	}
3407 
3408 	ddt_exit(ddt);
3409 
3410 	zio_nowait(cio);
3411 
3412 	return (zio);
3413 }
3414 
3415 static ddt_entry_t *freedde; /* for debugging */
3416 
3417 static zio_t *
3418 zio_ddt_free(zio_t *zio)
3419 {
3420 	spa_t *spa = zio->io_spa;
3421 	blkptr_t *bp = zio->io_bp;
3422 	ddt_t *ddt = ddt_select(spa, bp);
3423 	ddt_entry_t *dde;
3424 	ddt_phys_t *ddp;
3425 
3426 	ASSERT(BP_GET_DEDUP(bp));
3427 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3428 
3429 	ddt_enter(ddt);
3430 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3431 	if (dde) {
3432 		ddp = ddt_phys_select(dde, bp);
3433 		if (ddp)
3434 			ddt_phys_decref(ddp);
3435 	}
3436 	ddt_exit(ddt);
3437 
3438 	return (zio);
3439 }
3440 
3441 /*
3442  * ==========================================================================
3443  * Allocate and free blocks
3444  * ==========================================================================
3445  */
3446 
3447 static zio_t *
3448 zio_io_to_allocate(spa_t *spa, int allocator)
3449 {
3450 	zio_t *zio;
3451 
3452 	ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3453 
3454 	zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3455 	if (zio == NULL)
3456 		return (NULL);
3457 
3458 	ASSERT(IO_IS_ALLOCATING(zio));
3459 
3460 	/*
3461 	 * Try to place a reservation for this zio. If we're unable to
3462 	 * reserve then we throttle.
3463 	 */
3464 	ASSERT3U(zio->io_allocator, ==, allocator);
3465 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3466 	    zio->io_prop.zp_copies, allocator, zio, 0)) {
3467 		return (NULL);
3468 	}
3469 
3470 	avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3471 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3472 
3473 	return (zio);
3474 }
3475 
3476 static zio_t *
3477 zio_dva_throttle(zio_t *zio)
3478 {
3479 	spa_t *spa = zio->io_spa;
3480 	zio_t *nio;
3481 	metaslab_class_t *mc;
3482 
3483 	/* locate an appropriate allocation class */
3484 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3485 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3486 
3487 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3488 	    !mc->mc_alloc_throttle_enabled ||
3489 	    zio->io_child_type == ZIO_CHILD_GANG ||
3490 	    zio->io_flags & ZIO_FLAG_NODATA) {
3491 		return (zio);
3492 	}
3493 
3494 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3495 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3496 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3497 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3498 
3499 	zbookmark_phys_t *bm = &zio->io_bookmark;
3500 	/*
3501 	 * We want to try to use as many allocators as possible to help improve
3502 	 * performance, but we also want logically adjacent IOs to be physically
3503 	 * adjacent to improve sequential read performance. We chunk each object
3504 	 * into 2^20 block regions, and then hash based on the objset, object,
3505 	 * level, and region to accomplish both of these goals.
3506 	 */
3507 	int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3508 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3509 	zio->io_allocator = allocator;
3510 	zio->io_metaslab_class = mc;
3511 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3512 	avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3513 	nio = zio_io_to_allocate(spa, allocator);
3514 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3515 	return (nio);
3516 }
3517 
3518 static void
3519 zio_allocate_dispatch(spa_t *spa, int allocator)
3520 {
3521 	zio_t *zio;
3522 
3523 	mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3524 	zio = zio_io_to_allocate(spa, allocator);
3525 	mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3526 	if (zio == NULL)
3527 		return;
3528 
3529 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3530 	ASSERT0(zio->io_error);
3531 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3532 }
3533 
3534 static zio_t *
3535 zio_dva_allocate(zio_t *zio)
3536 {
3537 	spa_t *spa = zio->io_spa;
3538 	metaslab_class_t *mc;
3539 	blkptr_t *bp = zio->io_bp;
3540 	int error;
3541 	int flags = 0;
3542 
3543 	if (zio->io_gang_leader == NULL) {
3544 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3545 		zio->io_gang_leader = zio;
3546 	}
3547 
3548 	ASSERT(BP_IS_HOLE(bp));
3549 	ASSERT0(BP_GET_NDVAS(bp));
3550 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3551 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3552 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3553 
3554 	flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3555 	if (zio->io_flags & ZIO_FLAG_NODATA)
3556 		flags |= METASLAB_DONT_THROTTLE;
3557 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3558 		flags |= METASLAB_GANG_CHILD;
3559 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3560 		flags |= METASLAB_ASYNC_ALLOC;
3561 
3562 	/*
3563 	 * if not already chosen, locate an appropriate allocation class
3564 	 */
3565 	mc = zio->io_metaslab_class;
3566 	if (mc == NULL) {
3567 		mc = spa_preferred_class(spa, zio->io_size,
3568 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3569 		    zio->io_prop.zp_zpl_smallblk);
3570 		zio->io_metaslab_class = mc;
3571 	}
3572 
3573 	/*
3574 	 * Try allocating the block in the usual metaslab class.
3575 	 * If that's full, allocate it in the normal class.
3576 	 * If that's full, allocate as a gang block,
3577 	 * and if all are full, the allocation fails (which shouldn't happen).
3578 	 *
3579 	 * Note that we do not fall back on embedded slog (ZIL) space, to
3580 	 * preserve unfragmented slog space, which is critical for decent
3581 	 * sync write performance.  If a log allocation fails, we will fall
3582 	 * back to spa_sync() which is abysmal for performance.
3583 	 */
3584 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3585 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3586 	    &zio->io_alloc_list, zio, zio->io_allocator);
3587 
3588 	/*
3589 	 * Fallback to normal class when an alloc class is full
3590 	 */
3591 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3592 		/*
3593 		 * If throttling, transfer reservation over to normal class.
3594 		 * The io_allocator slot can remain the same even though we
3595 		 * are switching classes.
3596 		 */
3597 		if (mc->mc_alloc_throttle_enabled &&
3598 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3599 			metaslab_class_throttle_unreserve(mc,
3600 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3601 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3602 
3603 			VERIFY(metaslab_class_throttle_reserve(
3604 			    spa_normal_class(spa),
3605 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3606 			    flags | METASLAB_MUST_RESERVE));
3607 		}
3608 		zio->io_metaslab_class = mc = spa_normal_class(spa);
3609 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3610 			zfs_dbgmsg("%s: metaslab allocation failure, "
3611 			    "trying normal class: zio %px, size %llu, error %d",
3612 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3613 			    error);
3614 		}
3615 
3616 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3617 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3618 		    &zio->io_alloc_list, zio, zio->io_allocator);
3619 	}
3620 
3621 	if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3622 		if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3623 			zfs_dbgmsg("%s: metaslab allocation failure, "
3624 			    "trying ganging: zio %px, size %llu, error %d",
3625 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3626 			    error);
3627 		}
3628 		return (zio_write_gang_block(zio, mc));
3629 	}
3630 	if (error != 0) {
3631 		if (error != ENOSPC ||
3632 		    (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3633 			zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3634 			    "size %llu, error %d",
3635 			    spa_name(spa), zio, (u_longlong_t)zio->io_size,
3636 			    error);
3637 		}
3638 		zio->io_error = error;
3639 	}
3640 
3641 	return (zio);
3642 }
3643 
3644 static zio_t *
3645 zio_dva_free(zio_t *zio)
3646 {
3647 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3648 
3649 	return (zio);
3650 }
3651 
3652 static zio_t *
3653 zio_dva_claim(zio_t *zio)
3654 {
3655 	int error;
3656 
3657 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3658 	if (error)
3659 		zio->io_error = error;
3660 
3661 	return (zio);
3662 }
3663 
3664 /*
3665  * Undo an allocation.  This is used by zio_done() when an I/O fails
3666  * and we want to give back the block we just allocated.
3667  * This handles both normal blocks and gang blocks.
3668  */
3669 static void
3670 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3671 {
3672 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3673 	ASSERT(zio->io_bp_override == NULL);
3674 
3675 	if (!BP_IS_HOLE(bp))
3676 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3677 
3678 	if (gn != NULL) {
3679 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3680 			zio_dva_unallocate(zio, gn->gn_child[g],
3681 			    &gn->gn_gbh->zg_blkptr[g]);
3682 		}
3683 	}
3684 }
3685 
3686 /*
3687  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3688  */
3689 int
3690 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3691     uint64_t size, boolean_t *slog)
3692 {
3693 	int error = 1;
3694 	zio_alloc_list_t io_alloc_list;
3695 
3696 	ASSERT(txg > spa_syncing_txg(spa));
3697 
3698 	metaslab_trace_init(&io_alloc_list);
3699 
3700 	/*
3701 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3702 	 * Fill in the obvious ones before calling into metaslab_alloc().
3703 	 */
3704 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3705 	BP_SET_PSIZE(new_bp, size);
3706 	BP_SET_LEVEL(new_bp, 0);
3707 
3708 	/*
3709 	 * When allocating a zil block, we don't have information about
3710 	 * the final destination of the block except the objset it's part
3711 	 * of, so we just hash the objset ID to pick the allocator to get
3712 	 * some parallelism.
3713 	 */
3714 	int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3715 	int allocator = (uint_t)cityhash4(0, 0, 0,
3716 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3717 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3718 	    txg, NULL, flags, &io_alloc_list, NULL, allocator);
3719 	*slog = (error == 0);
3720 	if (error != 0) {
3721 		error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3722 		    new_bp, 1, txg, NULL, flags,
3723 		    &io_alloc_list, NULL, allocator);
3724 	}
3725 	if (error != 0) {
3726 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3727 		    new_bp, 1, txg, NULL, flags,
3728 		    &io_alloc_list, NULL, allocator);
3729 	}
3730 	metaslab_trace_fini(&io_alloc_list);
3731 
3732 	if (error == 0) {
3733 		BP_SET_LSIZE(new_bp, size);
3734 		BP_SET_PSIZE(new_bp, size);
3735 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3736 		BP_SET_CHECKSUM(new_bp,
3737 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3738 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3739 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3740 		BP_SET_LEVEL(new_bp, 0);
3741 		BP_SET_DEDUP(new_bp, 0);
3742 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3743 
3744 		/*
3745 		 * encrypted blocks will require an IV and salt. We generate
3746 		 * these now since we will not be rewriting the bp at
3747 		 * rewrite time.
3748 		 */
3749 		if (os->os_encrypted) {
3750 			uint8_t iv[ZIO_DATA_IV_LEN];
3751 			uint8_t salt[ZIO_DATA_SALT_LEN];
3752 
3753 			BP_SET_CRYPT(new_bp, B_TRUE);
3754 			VERIFY0(spa_crypt_get_salt(spa,
3755 			    dmu_objset_id(os), salt));
3756 			VERIFY0(zio_crypt_generate_iv(iv));
3757 
3758 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3759 		}
3760 	} else {
3761 		zfs_dbgmsg("%s: zil block allocation failure: "
3762 		    "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3763 		    error);
3764 	}
3765 
3766 	return (error);
3767 }
3768 
3769 /*
3770  * ==========================================================================
3771  * Read and write to physical devices
3772  * ==========================================================================
3773  */
3774 
3775 /*
3776  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3777  * stops after this stage and will resume upon I/O completion.
3778  * However, there are instances where the vdev layer may need to
3779  * continue the pipeline when an I/O was not issued. Since the I/O
3780  * that was sent to the vdev layer might be different than the one
3781  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3782  * force the underlying vdev layers to call either zio_execute() or
3783  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3784  */
3785 static zio_t *
3786 zio_vdev_io_start(zio_t *zio)
3787 {
3788 	vdev_t *vd = zio->io_vd;
3789 	uint64_t align;
3790 	spa_t *spa = zio->io_spa;
3791 
3792 	zio->io_delay = 0;
3793 
3794 	ASSERT(zio->io_error == 0);
3795 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3796 
3797 	if (vd == NULL) {
3798 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3799 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3800 
3801 		/*
3802 		 * The mirror_ops handle multiple DVAs in a single BP.
3803 		 */
3804 		vdev_mirror_ops.vdev_op_io_start(zio);
3805 		return (NULL);
3806 	}
3807 
3808 	ASSERT3P(zio->io_logical, !=, zio);
3809 	if (zio->io_type == ZIO_TYPE_WRITE) {
3810 		ASSERT(spa->spa_trust_config);
3811 
3812 		/*
3813 		 * Note: the code can handle other kinds of writes,
3814 		 * but we don't expect them.
3815 		 */
3816 		if (zio->io_vd->vdev_noalloc) {
3817 			ASSERT(zio->io_flags &
3818 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3819 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3820 		}
3821 	}
3822 
3823 	align = 1ULL << vd->vdev_top->vdev_ashift;
3824 
3825 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3826 	    P2PHASE(zio->io_size, align) != 0) {
3827 		/* Transform logical writes to be a full physical block size. */
3828 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3829 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3830 		ASSERT(vd == vd->vdev_top);
3831 		if (zio->io_type == ZIO_TYPE_WRITE) {
3832 			abd_copy(abuf, zio->io_abd, zio->io_size);
3833 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3834 		}
3835 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3836 	}
3837 
3838 	/*
3839 	 * If this is not a physical io, make sure that it is properly aligned
3840 	 * before proceeding.
3841 	 */
3842 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3843 		ASSERT0(P2PHASE(zio->io_offset, align));
3844 		ASSERT0(P2PHASE(zio->io_size, align));
3845 	} else {
3846 		/*
3847 		 * For physical writes, we allow 512b aligned writes and assume
3848 		 * the device will perform a read-modify-write as necessary.
3849 		 */
3850 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3851 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3852 	}
3853 
3854 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3855 
3856 	/*
3857 	 * If this is a repair I/O, and there's no self-healing involved --
3858 	 * that is, we're just resilvering what we expect to resilver --
3859 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3860 	 * This prevents spurious resilvering.
3861 	 *
3862 	 * There are a few ways that we can end up creating these spurious
3863 	 * resilver i/os:
3864 	 *
3865 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3866 	 * dirty DTL.  The mirror code will issue resilver writes to
3867 	 * each DVA, including the one(s) that are not on vdevs with dirty
3868 	 * DTLs.
3869 	 *
3870 	 * 2. With nested replication, which happens when we have a
3871 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3872 	 * For example, given mirror(replacing(A+B), C), it's likely that
3873 	 * only A is out of date (it's the new device). In this case, we'll
3874 	 * read from C, then use the data to resilver A+B -- but we don't
3875 	 * actually want to resilver B, just A. The top-level mirror has no
3876 	 * way to know this, so instead we just discard unnecessary repairs
3877 	 * as we work our way down the vdev tree.
3878 	 *
3879 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3880 	 * The same logic applies to any form of nested replication: ditto
3881 	 * + mirror, RAID-Z + replacing, etc.
3882 	 *
3883 	 * However, indirect vdevs point off to other vdevs which may have
3884 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3885 	 * will be properly bypassed instead.
3886 	 *
3887 	 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3888 	 * a dRAID spare vdev. For example, when a dRAID spare is first
3889 	 * used, its spare blocks need to be written to but the leaf vdev's
3890 	 * of such blocks can have empty DTL_PARTIAL.
3891 	 *
3892 	 * There seemed no clean way to allow such writes while bypassing
3893 	 * spurious ones. At this point, just avoid all bypassing for dRAID
3894 	 * for correctness.
3895 	 */
3896 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3897 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3898 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3899 	    vd->vdev_ops != &vdev_indirect_ops &&
3900 	    vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3901 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3902 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3903 		zio_vdev_io_bypass(zio);
3904 		return (zio);
3905 	}
3906 
3907 	/*
3908 	 * Select the next best leaf I/O to process.  Distributed spares are
3909 	 * excluded since they dispatch the I/O directly to a leaf vdev after
3910 	 * applying the dRAID mapping.
3911 	 */
3912 	if (vd->vdev_ops->vdev_op_leaf &&
3913 	    vd->vdev_ops != &vdev_draid_spare_ops &&
3914 	    (zio->io_type == ZIO_TYPE_READ ||
3915 	    zio->io_type == ZIO_TYPE_WRITE ||
3916 	    zio->io_type == ZIO_TYPE_TRIM)) {
3917 
3918 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3919 			return (zio);
3920 
3921 		if ((zio = vdev_queue_io(zio)) == NULL)
3922 			return (NULL);
3923 
3924 		if (!vdev_accessible(vd, zio)) {
3925 			zio->io_error = SET_ERROR(ENXIO);
3926 			zio_interrupt(zio);
3927 			return (NULL);
3928 		}
3929 		zio->io_delay = gethrtime();
3930 	}
3931 
3932 	vd->vdev_ops->vdev_op_io_start(zio);
3933 	return (NULL);
3934 }
3935 
3936 static zio_t *
3937 zio_vdev_io_done(zio_t *zio)
3938 {
3939 	vdev_t *vd = zio->io_vd;
3940 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3941 	boolean_t unexpected_error = B_FALSE;
3942 
3943 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3944 		return (NULL);
3945 	}
3946 
3947 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3948 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3949 
3950 	if (zio->io_delay)
3951 		zio->io_delay = gethrtime() - zio->io_delay;
3952 
3953 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3954 	    vd->vdev_ops != &vdev_draid_spare_ops) {
3955 		vdev_queue_io_done(zio);
3956 
3957 		if (zio->io_type == ZIO_TYPE_WRITE)
3958 			vdev_cache_write(zio);
3959 
3960 		if (zio_injection_enabled && zio->io_error == 0)
3961 			zio->io_error = zio_handle_device_injections(vd, zio,
3962 			    EIO, EILSEQ);
3963 
3964 		if (zio_injection_enabled && zio->io_error == 0)
3965 			zio->io_error = zio_handle_label_injection(zio, EIO);
3966 
3967 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3968 			if (!vdev_accessible(vd, zio)) {
3969 				zio->io_error = SET_ERROR(ENXIO);
3970 			} else {
3971 				unexpected_error = B_TRUE;
3972 			}
3973 		}
3974 	}
3975 
3976 	ops->vdev_op_io_done(zio);
3977 
3978 	if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3979 		VERIFY(vdev_probe(vd, zio) == NULL);
3980 
3981 	return (zio);
3982 }
3983 
3984 /*
3985  * This function is used to change the priority of an existing zio that is
3986  * currently in-flight. This is used by the arc to upgrade priority in the
3987  * event that a demand read is made for a block that is currently queued
3988  * as a scrub or async read IO. Otherwise, the high priority read request
3989  * would end up having to wait for the lower priority IO.
3990  */
3991 void
3992 zio_change_priority(zio_t *pio, zio_priority_t priority)
3993 {
3994 	zio_t *cio, *cio_next;
3995 	zio_link_t *zl = NULL;
3996 
3997 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3998 
3999 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4000 		vdev_queue_change_io_priority(pio, priority);
4001 	} else {
4002 		pio->io_priority = priority;
4003 	}
4004 
4005 	mutex_enter(&pio->io_lock);
4006 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4007 		cio_next = zio_walk_children(pio, &zl);
4008 		zio_change_priority(cio, priority);
4009 	}
4010 	mutex_exit(&pio->io_lock);
4011 }
4012 
4013 /*
4014  * For non-raidz ZIOs, we can just copy aside the bad data read from the
4015  * disk, and use that to finish the checksum ereport later.
4016  */
4017 static void
4018 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4019     const abd_t *good_buf)
4020 {
4021 	/* no processing needed */
4022 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4023 }
4024 
4025 void
4026 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4027 {
4028 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4029 
4030 	abd_copy(abd, zio->io_abd, zio->io_size);
4031 
4032 	zcr->zcr_cbinfo = zio->io_size;
4033 	zcr->zcr_cbdata = abd;
4034 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
4035 	zcr->zcr_free = zio_abd_free;
4036 }
4037 
4038 static zio_t *
4039 zio_vdev_io_assess(zio_t *zio)
4040 {
4041 	vdev_t *vd = zio->io_vd;
4042 
4043 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4044 		return (NULL);
4045 	}
4046 
4047 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4048 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4049 
4050 	if (zio->io_vsd != NULL) {
4051 		zio->io_vsd_ops->vsd_free(zio);
4052 		zio->io_vsd = NULL;
4053 	}
4054 
4055 	if (zio_injection_enabled && zio->io_error == 0)
4056 		zio->io_error = zio_handle_fault_injection(zio, EIO);
4057 
4058 	/*
4059 	 * If the I/O failed, determine whether we should attempt to retry it.
4060 	 *
4061 	 * On retry, we cut in line in the issue queue, since we don't want
4062 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4063 	 */
4064 	if (zio->io_error && vd == NULL &&
4065 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4066 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
4067 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
4068 		zio->io_error = 0;
4069 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
4070 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4071 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4072 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4073 		    zio_requeue_io_start_cut_in_line);
4074 		return (NULL);
4075 	}
4076 
4077 	/*
4078 	 * If we got an error on a leaf device, convert it to ENXIO
4079 	 * if the device is not accessible at all.
4080 	 */
4081 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4082 	    !vdev_accessible(vd, zio))
4083 		zio->io_error = SET_ERROR(ENXIO);
4084 
4085 	/*
4086 	 * If we can't write to an interior vdev (mirror or RAID-Z),
4087 	 * set vdev_cant_write so that we stop trying to allocate from it.
4088 	 */
4089 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4090 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4091 		vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4092 		    "cant_write=TRUE due to write failure with ENXIO",
4093 		    zio);
4094 		vd->vdev_cant_write = B_TRUE;
4095 	}
4096 
4097 	/*
4098 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4099 	 * attempts will ever succeed. In this case we set a persistent
4100 	 * boolean flag so that we don't bother with it in the future.
4101 	 */
4102 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4103 	    zio->io_type == ZIO_TYPE_IOCTL &&
4104 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4105 		vd->vdev_nowritecache = B_TRUE;
4106 
4107 	if (zio->io_error)
4108 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4109 
4110 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4111 	    zio->io_physdone != NULL) {
4112 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4113 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4114 		zio->io_physdone(zio->io_logical);
4115 	}
4116 
4117 	return (zio);
4118 }
4119 
4120 void
4121 zio_vdev_io_reissue(zio_t *zio)
4122 {
4123 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4124 	ASSERT(zio->io_error == 0);
4125 
4126 	zio->io_stage >>= 1;
4127 }
4128 
4129 void
4130 zio_vdev_io_redone(zio_t *zio)
4131 {
4132 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4133 
4134 	zio->io_stage >>= 1;
4135 }
4136 
4137 void
4138 zio_vdev_io_bypass(zio_t *zio)
4139 {
4140 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4141 	ASSERT(zio->io_error == 0);
4142 
4143 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4144 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4145 }
4146 
4147 /*
4148  * ==========================================================================
4149  * Encrypt and store encryption parameters
4150  * ==========================================================================
4151  */
4152 
4153 
4154 /*
4155  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4156  * managing the storage of encryption parameters and passing them to the
4157  * lower-level encryption functions.
4158  */
4159 static zio_t *
4160 zio_encrypt(zio_t *zio)
4161 {
4162 	zio_prop_t *zp = &zio->io_prop;
4163 	spa_t *spa = zio->io_spa;
4164 	blkptr_t *bp = zio->io_bp;
4165 	uint64_t psize = BP_GET_PSIZE(bp);
4166 	uint64_t dsobj = zio->io_bookmark.zb_objset;
4167 	dmu_object_type_t ot = BP_GET_TYPE(bp);
4168 	void *enc_buf = NULL;
4169 	abd_t *eabd = NULL;
4170 	uint8_t salt[ZIO_DATA_SALT_LEN];
4171 	uint8_t iv[ZIO_DATA_IV_LEN];
4172 	uint8_t mac[ZIO_DATA_MAC_LEN];
4173 	boolean_t no_crypt = B_FALSE;
4174 
4175 	/* the root zio already encrypted the data */
4176 	if (zio->io_child_type == ZIO_CHILD_GANG)
4177 		return (zio);
4178 
4179 	/* only ZIL blocks are re-encrypted on rewrite */
4180 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4181 		return (zio);
4182 
4183 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4184 		BP_SET_CRYPT(bp, B_FALSE);
4185 		return (zio);
4186 	}
4187 
4188 	/* if we are doing raw encryption set the provided encryption params */
4189 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4190 		ASSERT0(BP_GET_LEVEL(bp));
4191 		BP_SET_CRYPT(bp, B_TRUE);
4192 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4193 		if (ot != DMU_OT_OBJSET)
4194 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4195 
4196 		/* dnode blocks must be written out in the provided byteorder */
4197 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4198 		    ot == DMU_OT_DNODE) {
4199 			void *bswap_buf = zio_buf_alloc(psize);
4200 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4201 
4202 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4203 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4204 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4205 			    psize);
4206 
4207 			abd_take_ownership_of_buf(babd, B_TRUE);
4208 			zio_push_transform(zio, babd, psize, psize, NULL);
4209 		}
4210 
4211 		if (DMU_OT_IS_ENCRYPTED(ot))
4212 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4213 		return (zio);
4214 	}
4215 
4216 	/* indirect blocks only maintain a cksum of the lower level MACs */
4217 	if (BP_GET_LEVEL(bp) > 0) {
4218 		BP_SET_CRYPT(bp, B_TRUE);
4219 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4220 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4221 		    mac));
4222 		zio_crypt_encode_mac_bp(bp, mac);
4223 		return (zio);
4224 	}
4225 
4226 	/*
4227 	 * Objset blocks are a special case since they have 2 256-bit MACs
4228 	 * embedded within them.
4229 	 */
4230 	if (ot == DMU_OT_OBJSET) {
4231 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4232 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4233 		BP_SET_CRYPT(bp, B_TRUE);
4234 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4235 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4236 		return (zio);
4237 	}
4238 
4239 	/* unencrypted object types are only authenticated with a MAC */
4240 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
4241 		BP_SET_CRYPT(bp, B_TRUE);
4242 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4243 		    zio->io_abd, psize, mac));
4244 		zio_crypt_encode_mac_bp(bp, mac);
4245 		return (zio);
4246 	}
4247 
4248 	/*
4249 	 * Later passes of sync-to-convergence may decide to rewrite data
4250 	 * in place to avoid more disk reallocations. This presents a problem
4251 	 * for encryption because this constitutes rewriting the new data with
4252 	 * the same encryption key and IV. However, this only applies to blocks
4253 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
4254 	 * MOS. We assert that the zio is allocating or an intent log write
4255 	 * to enforce this.
4256 	 */
4257 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4258 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4259 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4260 	ASSERT3U(psize, !=, 0);
4261 
4262 	enc_buf = zio_buf_alloc(psize);
4263 	eabd = abd_get_from_buf(enc_buf, psize);
4264 	abd_take_ownership_of_buf(eabd, B_TRUE);
4265 
4266 	/*
4267 	 * For an explanation of what encryption parameters are stored
4268 	 * where, see the block comment in zio_crypt.c.
4269 	 */
4270 	if (ot == DMU_OT_INTENT_LOG) {
4271 		zio_crypt_decode_params_bp(bp, salt, iv);
4272 	} else {
4273 		BP_SET_CRYPT(bp, B_TRUE);
4274 	}
4275 
4276 	/* Perform the encryption. This should not fail */
4277 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4278 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4279 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4280 
4281 	/* encode encryption metadata into the bp */
4282 	if (ot == DMU_OT_INTENT_LOG) {
4283 		/*
4284 		 * ZIL blocks store the MAC in the embedded checksum, so the
4285 		 * transform must always be applied.
4286 		 */
4287 		zio_crypt_encode_mac_zil(enc_buf, mac);
4288 		zio_push_transform(zio, eabd, psize, psize, NULL);
4289 	} else {
4290 		BP_SET_CRYPT(bp, B_TRUE);
4291 		zio_crypt_encode_params_bp(bp, salt, iv);
4292 		zio_crypt_encode_mac_bp(bp, mac);
4293 
4294 		if (no_crypt) {
4295 			ASSERT3U(ot, ==, DMU_OT_DNODE);
4296 			abd_free(eabd);
4297 		} else {
4298 			zio_push_transform(zio, eabd, psize, psize, NULL);
4299 		}
4300 	}
4301 
4302 	return (zio);
4303 }
4304 
4305 /*
4306  * ==========================================================================
4307  * Generate and verify checksums
4308  * ==========================================================================
4309  */
4310 static zio_t *
4311 zio_checksum_generate(zio_t *zio)
4312 {
4313 	blkptr_t *bp = zio->io_bp;
4314 	enum zio_checksum checksum;
4315 
4316 	if (bp == NULL) {
4317 		/*
4318 		 * This is zio_write_phys().
4319 		 * We're either generating a label checksum, or none at all.
4320 		 */
4321 		checksum = zio->io_prop.zp_checksum;
4322 
4323 		if (checksum == ZIO_CHECKSUM_OFF)
4324 			return (zio);
4325 
4326 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4327 	} else {
4328 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4329 			ASSERT(!IO_IS_ALLOCATING(zio));
4330 			checksum = ZIO_CHECKSUM_GANG_HEADER;
4331 		} else {
4332 			checksum = BP_GET_CHECKSUM(bp);
4333 		}
4334 	}
4335 
4336 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4337 
4338 	return (zio);
4339 }
4340 
4341 static zio_t *
4342 zio_checksum_verify(zio_t *zio)
4343 {
4344 	zio_bad_cksum_t info;
4345 	blkptr_t *bp = zio->io_bp;
4346 	int error;
4347 
4348 	ASSERT(zio->io_vd != NULL);
4349 
4350 	if (bp == NULL) {
4351 		/*
4352 		 * This is zio_read_phys().
4353 		 * We're either verifying a label checksum, or nothing at all.
4354 		 */
4355 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4356 			return (zio);
4357 
4358 		ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4359 	}
4360 
4361 	if ((error = zio_checksum_error(zio, &info)) != 0) {
4362 		zio->io_error = error;
4363 		if (error == ECKSUM &&
4364 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4365 			mutex_enter(&zio->io_vd->vdev_stat_lock);
4366 			zio->io_vd->vdev_stat.vs_checksum_errors++;
4367 			mutex_exit(&zio->io_vd->vdev_stat_lock);
4368 			(void) zfs_ereport_start_checksum(zio->io_spa,
4369 			    zio->io_vd, &zio->io_bookmark, zio,
4370 			    zio->io_offset, zio->io_size, &info);
4371 		}
4372 	}
4373 
4374 	return (zio);
4375 }
4376 
4377 /*
4378  * Called by RAID-Z to ensure we don't compute the checksum twice.
4379  */
4380 void
4381 zio_checksum_verified(zio_t *zio)
4382 {
4383 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4384 }
4385 
4386 /*
4387  * ==========================================================================
4388  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4389  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
4390  * which may be transient (e.g. unplugged) or permanent.  ECKSUM and EIO
4391  * indicate errors that are specific to one I/O, and most likely permanent.
4392  * Any other error is presumed to be worse because we weren't expecting it.
4393  * ==========================================================================
4394  */
4395 int
4396 zio_worst_error(int e1, int e2)
4397 {
4398 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4399 	int r1, r2;
4400 
4401 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4402 		if (e1 == zio_error_rank[r1])
4403 			break;
4404 
4405 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4406 		if (e2 == zio_error_rank[r2])
4407 			break;
4408 
4409 	return (r1 > r2 ? e1 : e2);
4410 }
4411 
4412 /*
4413  * ==========================================================================
4414  * I/O completion
4415  * ==========================================================================
4416  */
4417 static zio_t *
4418 zio_ready(zio_t *zio)
4419 {
4420 	blkptr_t *bp = zio->io_bp;
4421 	zio_t *pio, *pio_next;
4422 	zio_link_t *zl = NULL;
4423 
4424 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4425 	    ZIO_WAIT_READY)) {
4426 		return (NULL);
4427 	}
4428 
4429 	if (zio->io_ready) {
4430 		ASSERT(IO_IS_ALLOCATING(zio));
4431 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4432 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4433 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4434 
4435 		zio->io_ready(zio);
4436 	}
4437 
4438 	if (bp != NULL && bp != &zio->io_bp_copy)
4439 		zio->io_bp_copy = *bp;
4440 
4441 	if (zio->io_error != 0) {
4442 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4443 
4444 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4445 			ASSERT(IO_IS_ALLOCATING(zio));
4446 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4447 			ASSERT(zio->io_metaslab_class != NULL);
4448 
4449 			/*
4450 			 * We were unable to allocate anything, unreserve and
4451 			 * issue the next I/O to allocate.
4452 			 */
4453 			metaslab_class_throttle_unreserve(
4454 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4455 			    zio->io_allocator, zio);
4456 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4457 		}
4458 	}
4459 
4460 	mutex_enter(&zio->io_lock);
4461 	zio->io_state[ZIO_WAIT_READY] = 1;
4462 	pio = zio_walk_parents(zio, &zl);
4463 	mutex_exit(&zio->io_lock);
4464 
4465 	/*
4466 	 * As we notify zio's parents, new parents could be added.
4467 	 * New parents go to the head of zio's io_parent_list, however,
4468 	 * so we will (correctly) not notify them.  The remainder of zio's
4469 	 * io_parent_list, from 'pio_next' onward, cannot change because
4470 	 * all parents must wait for us to be done before they can be done.
4471 	 */
4472 	for (; pio != NULL; pio = pio_next) {
4473 		pio_next = zio_walk_parents(zio, &zl);
4474 		zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4475 	}
4476 
4477 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4478 		if (bp != NULL && BP_IS_GANG(bp)) {
4479 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4480 		} else {
4481 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4482 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4483 		}
4484 	}
4485 
4486 	if (zio_injection_enabled &&
4487 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4488 		zio_handle_ignored_writes(zio);
4489 
4490 	return (zio);
4491 }
4492 
4493 /*
4494  * Update the allocation throttle accounting.
4495  */
4496 static void
4497 zio_dva_throttle_done(zio_t *zio)
4498 {
4499 	zio_t *lio __maybe_unused = zio->io_logical;
4500 	zio_t *pio = zio_unique_parent(zio);
4501 	vdev_t *vd = zio->io_vd;
4502 	int flags = METASLAB_ASYNC_ALLOC;
4503 
4504 	ASSERT3P(zio->io_bp, !=, NULL);
4505 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4506 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4507 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4508 	ASSERT(vd != NULL);
4509 	ASSERT3P(vd, ==, vd->vdev_top);
4510 	ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4511 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4512 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4513 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4514 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4515 
4516 	/*
4517 	 * Parents of gang children can have two flavors -- ones that
4518 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4519 	 * and ones that allocated the constituent blocks. The allocation
4520 	 * throttle needs to know the allocating parent zio so we must find
4521 	 * it here.
4522 	 */
4523 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4524 		/*
4525 		 * If our parent is a rewrite gang child then our grandparent
4526 		 * would have been the one that performed the allocation.
4527 		 */
4528 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4529 			pio = zio_unique_parent(pio);
4530 		flags |= METASLAB_GANG_CHILD;
4531 	}
4532 
4533 	ASSERT(IO_IS_ALLOCATING(pio));
4534 	ASSERT3P(zio, !=, zio->io_logical);
4535 	ASSERT(zio->io_logical != NULL);
4536 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4537 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4538 	ASSERT(zio->io_metaslab_class != NULL);
4539 
4540 	mutex_enter(&pio->io_lock);
4541 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4542 	    pio->io_allocator, B_TRUE);
4543 	mutex_exit(&pio->io_lock);
4544 
4545 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4546 	    pio->io_allocator, pio);
4547 
4548 	/*
4549 	 * Call into the pipeline to see if there is more work that
4550 	 * needs to be done. If there is work to be done it will be
4551 	 * dispatched to another taskq thread.
4552 	 */
4553 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4554 }
4555 
4556 static zio_t *
4557 zio_done(zio_t *zio)
4558 {
4559 	/*
4560 	 * Always attempt to keep stack usage minimal here since
4561 	 * we can be called recursively up to 19 levels deep.
4562 	 */
4563 	const uint64_t psize = zio->io_size;
4564 	zio_t *pio, *pio_next;
4565 	zio_link_t *zl = NULL;
4566 
4567 	/*
4568 	 * If our children haven't all completed,
4569 	 * wait for them and then repeat this pipeline stage.
4570 	 */
4571 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4572 		return (NULL);
4573 	}
4574 
4575 	/*
4576 	 * If the allocation throttle is enabled, then update the accounting.
4577 	 * We only track child I/Os that are part of an allocating async
4578 	 * write. We must do this since the allocation is performed
4579 	 * by the logical I/O but the actual write is done by child I/Os.
4580 	 */
4581 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4582 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4583 		ASSERT(zio->io_metaslab_class != NULL);
4584 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4585 		zio_dva_throttle_done(zio);
4586 	}
4587 
4588 	/*
4589 	 * If the allocation throttle is enabled, verify that
4590 	 * we have decremented the refcounts for every I/O that was throttled.
4591 	 */
4592 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4593 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4594 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4595 		ASSERT(zio->io_bp != NULL);
4596 
4597 		metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4598 		    zio->io_allocator);
4599 		VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4600 		    mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4601 	}
4602 
4603 
4604 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4605 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4606 			ASSERT(zio->io_children[c][w] == 0);
4607 
4608 	if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4609 		ASSERT(zio->io_bp->blk_pad[0] == 0);
4610 		ASSERT(zio->io_bp->blk_pad[1] == 0);
4611 		ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4612 		    sizeof (blkptr_t)) == 0 ||
4613 		    (zio->io_bp == zio_unique_parent(zio)->io_bp));
4614 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4615 		    zio->io_bp_override == NULL &&
4616 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4617 			ASSERT3U(zio->io_prop.zp_copies, <=,
4618 			    BP_GET_NDVAS(zio->io_bp));
4619 			ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4620 			    (BP_COUNT_GANG(zio->io_bp) ==
4621 			    BP_GET_NDVAS(zio->io_bp)));
4622 		}
4623 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4624 			VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4625 	}
4626 
4627 	/*
4628 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4629 	 */
4630 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4631 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4632 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4633 
4634 	/*
4635 	 * If the I/O on the transformed data was successful, generate any
4636 	 * checksum reports now while we still have the transformed data.
4637 	 */
4638 	if (zio->io_error == 0) {
4639 		while (zio->io_cksum_report != NULL) {
4640 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4641 			uint64_t align = zcr->zcr_align;
4642 			uint64_t asize = P2ROUNDUP(psize, align);
4643 			abd_t *adata = zio->io_abd;
4644 
4645 			if (adata != NULL && asize != psize) {
4646 				adata = abd_alloc(asize, B_TRUE);
4647 				abd_copy(adata, zio->io_abd, psize);
4648 				abd_zero_off(adata, psize, asize - psize);
4649 			}
4650 
4651 			zio->io_cksum_report = zcr->zcr_next;
4652 			zcr->zcr_next = NULL;
4653 			zcr->zcr_finish(zcr, adata);
4654 			zfs_ereport_free_checksum(zcr);
4655 
4656 			if (adata != NULL && asize != psize)
4657 				abd_free(adata);
4658 		}
4659 	}
4660 
4661 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4662 
4663 	vdev_stat_update(zio, psize);
4664 
4665 	/*
4666 	 * If this I/O is attached to a particular vdev is slow, exceeding
4667 	 * 30 seconds to complete, post an error described the I/O delay.
4668 	 * We ignore these errors if the device is currently unavailable.
4669 	 */
4670 	if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4671 		if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4672 			/*
4673 			 * We want to only increment our slow IO counters if
4674 			 * the IO is valid (i.e. not if the drive is removed).
4675 			 *
4676 			 * zfs_ereport_post() will also do these checks, but
4677 			 * it can also ratelimit and have other failures, so we
4678 			 * need to increment the slow_io counters independent
4679 			 * of it.
4680 			 */
4681 			if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4682 			    zio->io_spa, zio->io_vd, zio)) {
4683 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4684 				zio->io_vd->vdev_stat.vs_slow_ios++;
4685 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4686 
4687 				(void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4688 				    zio->io_spa, zio->io_vd, &zio->io_bookmark,
4689 				    zio, 0);
4690 			}
4691 		}
4692 	}
4693 
4694 	if (zio->io_error) {
4695 		/*
4696 		 * If this I/O is attached to a particular vdev,
4697 		 * generate an error message describing the I/O failure
4698 		 * at the block level.  We ignore these errors if the
4699 		 * device is currently unavailable.
4700 		 */
4701 		if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4702 		    !vdev_is_dead(zio->io_vd)) {
4703 			int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4704 			    zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4705 			if (ret != EALREADY) {
4706 				mutex_enter(&zio->io_vd->vdev_stat_lock);
4707 				if (zio->io_type == ZIO_TYPE_READ)
4708 					zio->io_vd->vdev_stat.vs_read_errors++;
4709 				else if (zio->io_type == ZIO_TYPE_WRITE)
4710 					zio->io_vd->vdev_stat.vs_write_errors++;
4711 				mutex_exit(&zio->io_vd->vdev_stat_lock);
4712 			}
4713 		}
4714 
4715 		if ((zio->io_error == EIO || !(zio->io_flags &
4716 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4717 		    zio == zio->io_logical) {
4718 			/*
4719 			 * For logical I/O requests, tell the SPA to log the
4720 			 * error and generate a logical data ereport.
4721 			 */
4722 			spa_log_error(zio->io_spa, &zio->io_bookmark,
4723 			    &zio->io_bp->blk_birth);
4724 			(void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4725 			    zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4726 		}
4727 	}
4728 
4729 	if (zio->io_error && zio == zio->io_logical) {
4730 		/*
4731 		 * Determine whether zio should be reexecuted.  This will
4732 		 * propagate all the way to the root via zio_notify_parent().
4733 		 */
4734 		ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4735 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4736 
4737 		if (IO_IS_ALLOCATING(zio) &&
4738 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4739 			if (zio->io_error != ENOSPC)
4740 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4741 			else
4742 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4743 		}
4744 
4745 		if ((zio->io_type == ZIO_TYPE_READ ||
4746 		    zio->io_type == ZIO_TYPE_FREE) &&
4747 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4748 		    zio->io_error == ENXIO &&
4749 		    spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4750 		    spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4751 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4752 
4753 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4754 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4755 
4756 		/*
4757 		 * Here is a possibly good place to attempt to do
4758 		 * either combinatorial reconstruction or error correction
4759 		 * based on checksums.  It also might be a good place
4760 		 * to send out preliminary ereports before we suspend
4761 		 * processing.
4762 		 */
4763 	}
4764 
4765 	/*
4766 	 * If there were logical child errors, they apply to us now.
4767 	 * We defer this until now to avoid conflating logical child
4768 	 * errors with errors that happened to the zio itself when
4769 	 * updating vdev stats and reporting FMA events above.
4770 	 */
4771 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4772 
4773 	if ((zio->io_error || zio->io_reexecute) &&
4774 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4775 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4776 		zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4777 
4778 	zio_gang_tree_free(&zio->io_gang_tree);
4779 
4780 	/*
4781 	 * Godfather I/Os should never suspend.
4782 	 */
4783 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4784 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4785 		zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4786 
4787 	if (zio->io_reexecute) {
4788 		/*
4789 		 * This is a logical I/O that wants to reexecute.
4790 		 *
4791 		 * Reexecute is top-down.  When an i/o fails, if it's not
4792 		 * the root, it simply notifies its parent and sticks around.
4793 		 * The parent, seeing that it still has children in zio_done(),
4794 		 * does the same.  This percolates all the way up to the root.
4795 		 * The root i/o will reexecute or suspend the entire tree.
4796 		 *
4797 		 * This approach ensures that zio_reexecute() honors
4798 		 * all the original i/o dependency relationships, e.g.
4799 		 * parents not executing until children are ready.
4800 		 */
4801 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4802 
4803 		zio->io_gang_leader = NULL;
4804 
4805 		mutex_enter(&zio->io_lock);
4806 		zio->io_state[ZIO_WAIT_DONE] = 1;
4807 		mutex_exit(&zio->io_lock);
4808 
4809 		/*
4810 		 * "The Godfather" I/O monitors its children but is
4811 		 * not a true parent to them. It will track them through
4812 		 * the pipeline but severs its ties whenever they get into
4813 		 * trouble (e.g. suspended). This allows "The Godfather"
4814 		 * I/O to return status without blocking.
4815 		 */
4816 		zl = NULL;
4817 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4818 		    pio = pio_next) {
4819 			zio_link_t *remove_zl = zl;
4820 			pio_next = zio_walk_parents(zio, &zl);
4821 
4822 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4823 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4824 				zio_remove_child(pio, zio, remove_zl);
4825 				/*
4826 				 * This is a rare code path, so we don't
4827 				 * bother with "next_to_execute".
4828 				 */
4829 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4830 				    NULL);
4831 			}
4832 		}
4833 
4834 		if ((pio = zio_unique_parent(zio)) != NULL) {
4835 			/*
4836 			 * We're not a root i/o, so there's nothing to do
4837 			 * but notify our parent.  Don't propagate errors
4838 			 * upward since we haven't permanently failed yet.
4839 			 */
4840 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4841 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4842 			/*
4843 			 * This is a rare code path, so we don't bother with
4844 			 * "next_to_execute".
4845 			 */
4846 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4847 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4848 			/*
4849 			 * We'd fail again if we reexecuted now, so suspend
4850 			 * until conditions improve (e.g. device comes online).
4851 			 */
4852 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4853 		} else {
4854 			/*
4855 			 * Reexecution is potentially a huge amount of work.
4856 			 * Hand it off to the otherwise-unused claim taskq.
4857 			 */
4858 			ASSERT(taskq_empty_ent(&zio->io_tqent));
4859 			spa_taskq_dispatch_ent(zio->io_spa,
4860 			    ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4861 			    zio_reexecute, zio, 0, &zio->io_tqent);
4862 		}
4863 		return (NULL);
4864 	}
4865 
4866 	ASSERT(zio->io_child_count == 0);
4867 	ASSERT(zio->io_reexecute == 0);
4868 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4869 
4870 	/*
4871 	 * Report any checksum errors, since the I/O is complete.
4872 	 */
4873 	while (zio->io_cksum_report != NULL) {
4874 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4875 		zio->io_cksum_report = zcr->zcr_next;
4876 		zcr->zcr_next = NULL;
4877 		zcr->zcr_finish(zcr, NULL);
4878 		zfs_ereport_free_checksum(zcr);
4879 	}
4880 
4881 	if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4882 	    !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4883 	    !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4884 		metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4885 	}
4886 
4887 	/*
4888 	 * It is the responsibility of the done callback to ensure that this
4889 	 * particular zio is no longer discoverable for adoption, and as
4890 	 * such, cannot acquire any new parents.
4891 	 */
4892 	if (zio->io_done)
4893 		zio->io_done(zio);
4894 
4895 	mutex_enter(&zio->io_lock);
4896 	zio->io_state[ZIO_WAIT_DONE] = 1;
4897 	mutex_exit(&zio->io_lock);
4898 
4899 	/*
4900 	 * We are done executing this zio.  We may want to execute a parent
4901 	 * next.  See the comment in zio_notify_parent().
4902 	 */
4903 	zio_t *next_to_execute = NULL;
4904 	zl = NULL;
4905 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4906 		zio_link_t *remove_zl = zl;
4907 		pio_next = zio_walk_parents(zio, &zl);
4908 		zio_remove_child(pio, zio, remove_zl);
4909 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4910 	}
4911 
4912 	if (zio->io_waiter != NULL) {
4913 		mutex_enter(&zio->io_lock);
4914 		zio->io_executor = NULL;
4915 		cv_broadcast(&zio->io_cv);
4916 		mutex_exit(&zio->io_lock);
4917 	} else {
4918 		zio_destroy(zio);
4919 	}
4920 
4921 	return (next_to_execute);
4922 }
4923 
4924 /*
4925  * ==========================================================================
4926  * I/O pipeline definition
4927  * ==========================================================================
4928  */
4929 static zio_pipe_stage_t *zio_pipeline[] = {
4930 	NULL,
4931 	zio_read_bp_init,
4932 	zio_write_bp_init,
4933 	zio_free_bp_init,
4934 	zio_issue_async,
4935 	zio_write_compress,
4936 	zio_encrypt,
4937 	zio_checksum_generate,
4938 	zio_nop_write,
4939 	zio_brt_free,
4940 	zio_ddt_read_start,
4941 	zio_ddt_read_done,
4942 	zio_ddt_write,
4943 	zio_ddt_free,
4944 	zio_gang_assemble,
4945 	zio_gang_issue,
4946 	zio_dva_throttle,
4947 	zio_dva_allocate,
4948 	zio_dva_free,
4949 	zio_dva_claim,
4950 	zio_ready,
4951 	zio_vdev_io_start,
4952 	zio_vdev_io_done,
4953 	zio_vdev_io_assess,
4954 	zio_checksum_verify,
4955 	zio_done
4956 };
4957 
4958 
4959 
4960 
4961 /*
4962  * Compare two zbookmark_phys_t's to see which we would reach first in a
4963  * pre-order traversal of the object tree.
4964  *
4965  * This is simple in every case aside from the meta-dnode object. For all other
4966  * objects, we traverse them in order (object 1 before object 2, and so on).
4967  * However, all of these objects are traversed while traversing object 0, since
4968  * the data it points to is the list of objects.  Thus, we need to convert to a
4969  * canonical representation so we can compare meta-dnode bookmarks to
4970  * non-meta-dnode bookmarks.
4971  *
4972  * We do this by calculating "equivalents" for each field of the zbookmark.
4973  * zbookmarks outside of the meta-dnode use their own object and level, and
4974  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4975  * blocks this bookmark refers to) by multiplying their blkid by their span
4976  * (the number of L0 blocks contained within one block at their level).
4977  * zbookmarks inside the meta-dnode calculate their object equivalent
4978  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4979  * level + 1<<31 (any value larger than a level could ever be) for their level.
4980  * This causes them to always compare before a bookmark in their object
4981  * equivalent, compare appropriately to bookmarks in other objects, and to
4982  * compare appropriately to other bookmarks in the meta-dnode.
4983  */
4984 int
4985 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4986     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4987 {
4988 	/*
4989 	 * These variables represent the "equivalent" values for the zbookmark,
4990 	 * after converting zbookmarks inside the meta dnode to their
4991 	 * normal-object equivalents.
4992 	 */
4993 	uint64_t zb1obj, zb2obj;
4994 	uint64_t zb1L0, zb2L0;
4995 	uint64_t zb1level, zb2level;
4996 
4997 	if (zb1->zb_object == zb2->zb_object &&
4998 	    zb1->zb_level == zb2->zb_level &&
4999 	    zb1->zb_blkid == zb2->zb_blkid)
5000 		return (0);
5001 
5002 	IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5003 	IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5004 
5005 	/*
5006 	 * BP_SPANB calculates the span in blocks.
5007 	 */
5008 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5009 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5010 
5011 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5012 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5013 		zb1L0 = 0;
5014 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5015 	} else {
5016 		zb1obj = zb1->zb_object;
5017 		zb1level = zb1->zb_level;
5018 	}
5019 
5020 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5021 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5022 		zb2L0 = 0;
5023 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5024 	} else {
5025 		zb2obj = zb2->zb_object;
5026 		zb2level = zb2->zb_level;
5027 	}
5028 
5029 	/* Now that we have a canonical representation, do the comparison. */
5030 	if (zb1obj != zb2obj)
5031 		return (zb1obj < zb2obj ? -1 : 1);
5032 	else if (zb1L0 != zb2L0)
5033 		return (zb1L0 < zb2L0 ? -1 : 1);
5034 	else if (zb1level != zb2level)
5035 		return (zb1level > zb2level ? -1 : 1);
5036 	/*
5037 	 * This can (theoretically) happen if the bookmarks have the same object
5038 	 * and level, but different blkids, if the block sizes are not the same.
5039 	 * There is presently no way to change the indirect block sizes
5040 	 */
5041 	return (0);
5042 }
5043 
5044 /*
5045  *  This function checks the following: given that last_block is the place that
5046  *  our traversal stopped last time, does that guarantee that we've visited
5047  *  every node under subtree_root?  Therefore, we can't just use the raw output
5048  *  of zbookmark_compare.  We have to pass in a modified version of
5049  *  subtree_root; by incrementing the block id, and then checking whether
5050  *  last_block is before or equal to that, we can tell whether or not having
5051  *  visited last_block implies that all of subtree_root's children have been
5052  *  visited.
5053  */
5054 boolean_t
5055 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5056     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5057 {
5058 	zbookmark_phys_t mod_zb = *subtree_root;
5059 	mod_zb.zb_blkid++;
5060 	ASSERT0(last_block->zb_level);
5061 
5062 	/* The objset_phys_t isn't before anything. */
5063 	if (dnp == NULL)
5064 		return (B_FALSE);
5065 
5066 	/*
5067 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5068 	 * data block size in sectors, because that variable is only used if
5069 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
5070 	 * know without examining it what object it refers to, and there's no
5071 	 * harm in passing in this value in other cases, we always pass it in.
5072 	 *
5073 	 * We pass in 0 for the indirect block size shift because zb2 must be
5074 	 * level 0.  The indirect block size is only used to calculate the span
5075 	 * of the bookmark, but since the bookmark must be level 0, the span is
5076 	 * always 1, so the math works out.
5077 	 *
5078 	 * If you make changes to how the zbookmark_compare code works, be sure
5079 	 * to make sure that this code still works afterwards.
5080 	 */
5081 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5082 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5083 	    last_block) <= 0);
5084 }
5085 
5086 /*
5087  * This function is similar to zbookmark_subtree_completed(), but returns true
5088  * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5089  */
5090 boolean_t
5091 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5092     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5093 {
5094 	ASSERT0(last_block->zb_level);
5095 	if (dnp == NULL)
5096 		return (B_FALSE);
5097 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5098 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5099 	    last_block) >= 0);
5100 }
5101 
5102 EXPORT_SYMBOL(zio_type_name);
5103 EXPORT_SYMBOL(zio_buf_alloc);
5104 EXPORT_SYMBOL(zio_data_buf_alloc);
5105 EXPORT_SYMBOL(zio_buf_free);
5106 EXPORT_SYMBOL(zio_data_buf_free);
5107 
5108 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5109 	"Max I/O completion time (milliseconds) before marking it as slow");
5110 
5111 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5112 	"Prioritize requeued I/O");
5113 
5114 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free,  UINT, ZMOD_RW,
5115 	"Defer frees starting in this pass");
5116 
5117 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5118 	"Don't compress starting in this pass");
5119 
5120 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5121 	"Rewrite new bps starting in this pass");
5122 
5123 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5124 	"Throttle block allocations in the ZIO pipeline");
5125 
5126 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5127 	"Log all slow ZIOs, not just those with vdevs");
5128