1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 * Copyright (c) 2019, Klara Inc. 27 * Copyright (c) 2019, Allan Jude 28 * Copyright (c) 2021, Datto, Inc. 29 */ 30 31 #include <sys/sysmacros.h> 32 #include <sys/zfs_context.h> 33 #include <sys/fm/fs/zfs.h> 34 #include <sys/spa.h> 35 #include <sys/txg.h> 36 #include <sys/spa_impl.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/vdev_trim.h> 39 #include <sys/zio_impl.h> 40 #include <sys/zio_compress.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/dmu_objset.h> 43 #include <sys/arc.h> 44 #include <sys/brt.h> 45 #include <sys/ddt.h> 46 #include <sys/blkptr.h> 47 #include <sys/zfeature.h> 48 #include <sys/dsl_scan.h> 49 #include <sys/metaslab_impl.h> 50 #include <sys/time.h> 51 #include <sys/trace_zfs.h> 52 #include <sys/abd.h> 53 #include <sys/dsl_crypt.h> 54 #include <cityhash.h> 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 const char *const zio_type_name[ZIO_TYPES] = { 62 /* 63 * Note: Linux kernel thread name length is limited 64 * so these names will differ from upstream open zfs. 65 */ 66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim" 67 }; 68 69 int zio_dva_throttle_enabled = B_TRUE; 70 static int zio_deadman_log_all = B_FALSE; 71 72 /* 73 * ========================================================================== 74 * I/O kmem caches 75 * ========================================================================== 76 */ 77 static kmem_cache_t *zio_cache; 78 static kmem_cache_t *zio_link_cache; 79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 81 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 84 #endif 85 86 /* Mark IOs as "slow" if they take longer than 30 seconds */ 87 static uint_t zio_slow_io_ms = (30 * MILLISEC); 88 89 #define BP_SPANB(indblkshift, level) \ 90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT))) 91 #define COMPARE_META_LEVEL 0x80000000ul 92 /* 93 * The following actions directly effect the spa's sync-to-convergence logic. 94 * The values below define the sync pass when we start performing the action. 95 * Care should be taken when changing these values as they directly impact 96 * spa_sync() performance. Tuning these values may introduce subtle performance 97 * pathologies and should only be done in the context of performance analysis. 98 * These tunables will eventually be removed and replaced with #defines once 99 * enough analysis has been done to determine optimal values. 100 * 101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that 102 * regular blocks are not deferred. 103 * 104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable 105 * compression (including of metadata). In practice, we don't have this 106 * many sync passes, so this has no effect. 107 * 108 * The original intent was that disabling compression would help the sync 109 * passes to converge. However, in practice disabling compression increases 110 * the average number of sync passes, because when we turn compression off, a 111 * lot of block's size will change and thus we have to re-allocate (not 112 * overwrite) them. It also increases the number of 128KB allocations (e.g. 113 * for indirect blocks and spacemaps) because these will not be compressed. 114 * The 128K allocations are especially detrimental to performance on highly 115 * fragmented systems, which may have very few free segments of this size, 116 * and may need to load new metaslabs to satisfy 128K allocations. 117 */ 118 119 /* defer frees starting in this pass */ 120 uint_t zfs_sync_pass_deferred_free = 2; 121 122 /* don't compress starting in this pass */ 123 static uint_t zfs_sync_pass_dont_compress = 8; 124 125 /* rewrite new bps starting in this pass */ 126 static uint_t zfs_sync_pass_rewrite = 2; 127 128 /* 129 * An allocating zio is one that either currently has the DVA allocate 130 * stage set or will have it later in its lifetime. 131 */ 132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE) 133 134 /* 135 * Enable smaller cores by excluding metadata 136 * allocations as well. 137 */ 138 int zio_exclude_metadata = 0; 139 static int zio_requeue_io_start_cut_in_line = 1; 140 141 #ifdef ZFS_DEBUG 142 static const int zio_buf_debug_limit = 16384; 143 #else 144 static const int zio_buf_debug_limit = 0; 145 #endif 146 147 static inline void __zio_execute(zio_t *zio); 148 149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t); 150 151 void 152 zio_init(void) 153 { 154 size_t c; 155 156 zio_cache = kmem_cache_create("zio_cache", 157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 158 zio_link_cache = kmem_cache_create("zio_link_cache", 159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 160 161 /* 162 * For small buffers, we want a cache for each multiple of 163 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache 164 * for each quarter-power of 2. 165 */ 166 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 167 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 168 size_t p2 = size; 169 size_t align = 0; 170 size_t data_cflags, cflags; 171 172 data_cflags = KMC_NODEBUG; 173 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ? 174 KMC_NODEBUG : 0; 175 176 while (!ISP2(p2)) 177 p2 &= p2 - 1; 178 179 #ifndef _KERNEL 180 /* 181 * If we are using watchpoints, put each buffer on its own page, 182 * to eliminate the performance overhead of trapping to the 183 * kernel when modifying a non-watched buffer that shares the 184 * page with a watched buffer. 185 */ 186 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE)) 187 continue; 188 /* 189 * Here's the problem - on 4K native devices in userland on 190 * Linux using O_DIRECT, buffers must be 4K aligned or I/O 191 * will fail with EINVAL, causing zdb (and others) to coredump. 192 * Since userland probably doesn't need optimized buffer caches, 193 * we just force 4K alignment on everything. 194 */ 195 align = 8 * SPA_MINBLOCKSIZE; 196 #else 197 if (size < PAGESIZE) { 198 align = SPA_MINBLOCKSIZE; 199 } else if (IS_P2ALIGNED(size, p2 >> 2)) { 200 align = PAGESIZE; 201 } 202 #endif 203 204 if (align != 0) { 205 char name[36]; 206 if (cflags == data_cflags) { 207 /* 208 * Resulting kmem caches would be identical. 209 * Save memory by creating only one. 210 */ 211 (void) snprintf(name, sizeof (name), 212 "zio_buf_comb_%lu", (ulong_t)size); 213 zio_buf_cache[c] = kmem_cache_create(name, 214 size, align, NULL, NULL, NULL, NULL, NULL, 215 cflags); 216 zio_data_buf_cache[c] = zio_buf_cache[c]; 217 continue; 218 } 219 (void) snprintf(name, sizeof (name), "zio_buf_%lu", 220 (ulong_t)size); 221 zio_buf_cache[c] = kmem_cache_create(name, size, 222 align, NULL, NULL, NULL, NULL, NULL, cflags); 223 224 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu", 225 (ulong_t)size); 226 zio_data_buf_cache[c] = kmem_cache_create(name, size, 227 align, NULL, NULL, NULL, NULL, NULL, data_cflags); 228 } 229 } 230 231 while (--c != 0) { 232 ASSERT(zio_buf_cache[c] != NULL); 233 if (zio_buf_cache[c - 1] == NULL) 234 zio_buf_cache[c - 1] = zio_buf_cache[c]; 235 236 ASSERT(zio_data_buf_cache[c] != NULL); 237 if (zio_data_buf_cache[c - 1] == NULL) 238 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 239 } 240 241 zio_inject_init(); 242 243 lz4_init(); 244 } 245 246 void 247 zio_fini(void) 248 { 249 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; 250 251 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 252 for (size_t i = 0; i < n; i++) { 253 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i]) 254 (void) printf("zio_fini: [%d] %llu != %llu\n", 255 (int)((i + 1) << SPA_MINBLOCKSHIFT), 256 (long long unsigned)zio_buf_cache_allocs[i], 257 (long long unsigned)zio_buf_cache_frees[i]); 258 } 259 #endif 260 261 /* 262 * The same kmem cache can show up multiple times in both zio_buf_cache 263 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to 264 * sort it out. 265 */ 266 for (size_t i = 0; i < n; i++) { 267 kmem_cache_t *cache = zio_buf_cache[i]; 268 if (cache == NULL) 269 continue; 270 for (size_t j = i; j < n; j++) { 271 if (cache == zio_buf_cache[j]) 272 zio_buf_cache[j] = NULL; 273 if (cache == zio_data_buf_cache[j]) 274 zio_data_buf_cache[j] = NULL; 275 } 276 kmem_cache_destroy(cache); 277 } 278 279 for (size_t i = 0; i < n; i++) { 280 kmem_cache_t *cache = zio_data_buf_cache[i]; 281 if (cache == NULL) 282 continue; 283 for (size_t j = i; j < n; j++) { 284 if (cache == zio_data_buf_cache[j]) 285 zio_data_buf_cache[j] = NULL; 286 } 287 kmem_cache_destroy(cache); 288 } 289 290 for (size_t i = 0; i < n; i++) { 291 VERIFY3P(zio_buf_cache[i], ==, NULL); 292 VERIFY3P(zio_data_buf_cache[i], ==, NULL); 293 } 294 295 kmem_cache_destroy(zio_link_cache); 296 kmem_cache_destroy(zio_cache); 297 298 zio_inject_fini(); 299 300 lz4_fini(); 301 } 302 303 /* 304 * ========================================================================== 305 * Allocate and free I/O buffers 306 * ========================================================================== 307 */ 308 309 /* 310 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 311 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 312 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 313 * excess / transient data in-core during a crashdump. 314 */ 315 void * 316 zio_buf_alloc(size_t size) 317 { 318 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 319 320 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 321 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 322 atomic_add_64(&zio_buf_cache_allocs[c], 1); 323 #endif 324 325 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE)); 326 } 327 328 /* 329 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 330 * crashdump if the kernel panics. This exists so that we will limit the amount 331 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 332 * of kernel heap dumped to disk when the kernel panics) 333 */ 334 void * 335 zio_data_buf_alloc(size_t size) 336 { 337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 338 339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 340 341 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE)); 342 } 343 344 void 345 zio_buf_free(void *buf, size_t size) 346 { 347 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 348 349 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 350 #if defined(ZFS_DEBUG) && !defined(_KERNEL) 351 atomic_add_64(&zio_buf_cache_frees[c], 1); 352 #endif 353 354 kmem_cache_free(zio_buf_cache[c], buf); 355 } 356 357 void 358 zio_data_buf_free(void *buf, size_t size) 359 { 360 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 361 362 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 363 364 kmem_cache_free(zio_data_buf_cache[c], buf); 365 } 366 367 static void 368 zio_abd_free(void *abd, size_t size) 369 { 370 (void) size; 371 abd_free((abd_t *)abd); 372 } 373 374 /* 375 * ========================================================================== 376 * Push and pop I/O transform buffers 377 * ========================================================================== 378 */ 379 void 380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize, 381 zio_transform_func_t *transform) 382 { 383 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 384 385 zt->zt_orig_abd = zio->io_abd; 386 zt->zt_orig_size = zio->io_size; 387 zt->zt_bufsize = bufsize; 388 zt->zt_transform = transform; 389 390 zt->zt_next = zio->io_transform_stack; 391 zio->io_transform_stack = zt; 392 393 zio->io_abd = data; 394 zio->io_size = size; 395 } 396 397 void 398 zio_pop_transforms(zio_t *zio) 399 { 400 zio_transform_t *zt; 401 402 while ((zt = zio->io_transform_stack) != NULL) { 403 if (zt->zt_transform != NULL) 404 zt->zt_transform(zio, 405 zt->zt_orig_abd, zt->zt_orig_size); 406 407 if (zt->zt_bufsize != 0) 408 abd_free(zio->io_abd); 409 410 zio->io_abd = zt->zt_orig_abd; 411 zio->io_size = zt->zt_orig_size; 412 zio->io_transform_stack = zt->zt_next; 413 414 kmem_free(zt, sizeof (zio_transform_t)); 415 } 416 } 417 418 /* 419 * ========================================================================== 420 * I/O transform callbacks for subblocks, decompression, and decryption 421 * ========================================================================== 422 */ 423 static void 424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size) 425 { 426 ASSERT(zio->io_size > size); 427 428 if (zio->io_type == ZIO_TYPE_READ) 429 abd_copy(data, zio->io_abd, size); 430 } 431 432 static void 433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size) 434 { 435 if (zio->io_error == 0) { 436 void *tmp = abd_borrow_buf(data, size); 437 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp), 438 zio->io_abd, tmp, zio->io_size, size, 439 &zio->io_prop.zp_complevel); 440 abd_return_buf_copy(data, tmp, size); 441 442 if (zio_injection_enabled && ret == 0) 443 ret = zio_handle_fault_injection(zio, EINVAL); 444 445 if (ret != 0) 446 zio->io_error = SET_ERROR(EIO); 447 } 448 } 449 450 static void 451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size) 452 { 453 int ret; 454 void *tmp; 455 blkptr_t *bp = zio->io_bp; 456 spa_t *spa = zio->io_spa; 457 uint64_t dsobj = zio->io_bookmark.zb_objset; 458 uint64_t lsize = BP_GET_LSIZE(bp); 459 dmu_object_type_t ot = BP_GET_TYPE(bp); 460 uint8_t salt[ZIO_DATA_SALT_LEN]; 461 uint8_t iv[ZIO_DATA_IV_LEN]; 462 uint8_t mac[ZIO_DATA_MAC_LEN]; 463 boolean_t no_crypt = B_FALSE; 464 465 ASSERT(BP_USES_CRYPT(bp)); 466 ASSERT3U(size, !=, 0); 467 468 if (zio->io_error != 0) 469 return; 470 471 /* 472 * Verify the cksum of MACs stored in an indirect bp. It will always 473 * be possible to verify this since it does not require an encryption 474 * key. 475 */ 476 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { 477 zio_crypt_decode_mac_bp(bp, mac); 478 479 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 480 /* 481 * We haven't decompressed the data yet, but 482 * zio_crypt_do_indirect_mac_checksum() requires 483 * decompressed data to be able to parse out the MACs 484 * from the indirect block. We decompress it now and 485 * throw away the result after we are finished. 486 */ 487 tmp = zio_buf_alloc(lsize); 488 ret = zio_decompress_data(BP_GET_COMPRESS(bp), 489 zio->io_abd, tmp, zio->io_size, lsize, 490 &zio->io_prop.zp_complevel); 491 if (ret != 0) { 492 ret = SET_ERROR(EIO); 493 goto error; 494 } 495 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE, 496 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac); 497 zio_buf_free(tmp, lsize); 498 } else { 499 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE, 500 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac); 501 } 502 abd_copy(data, zio->io_abd, size); 503 504 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) { 505 ret = zio_handle_decrypt_injection(spa, 506 &zio->io_bookmark, ot, ECKSUM); 507 } 508 if (ret != 0) 509 goto error; 510 511 return; 512 } 513 514 /* 515 * If this is an authenticated block, just check the MAC. It would be 516 * nice to separate this out into its own flag, but when this was done, 517 * we had run out of bits in what is now zio_flag_t. Future cleanup 518 * could make this a flag bit. 519 */ 520 if (BP_IS_AUTHENTICATED(bp)) { 521 if (ot == DMU_OT_OBJSET) { 522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, 523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp)); 524 } else { 525 zio_crypt_decode_mac_bp(bp, mac); 526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, 527 zio->io_abd, size, mac); 528 if (zio_injection_enabled && ret == 0) { 529 ret = zio_handle_decrypt_injection(spa, 530 &zio->io_bookmark, ot, ECKSUM); 531 } 532 } 533 abd_copy(data, zio->io_abd, size); 534 535 if (ret != 0) 536 goto error; 537 538 return; 539 } 540 541 zio_crypt_decode_params_bp(bp, salt, iv); 542 543 if (ot == DMU_OT_INTENT_LOG) { 544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t)); 545 zio_crypt_decode_mac_zil(tmp, mac); 546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t)); 547 } else { 548 zio_crypt_decode_mac_bp(bp, mac); 549 } 550 551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp), 552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data, 553 zio->io_abd, &no_crypt); 554 if (no_crypt) 555 abd_copy(data, zio->io_abd, size); 556 557 if (ret != 0) 558 goto error; 559 560 return; 561 562 error: 563 /* assert that the key was found unless this was speculative */ 564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE)); 565 566 /* 567 * If there was a decryption / authentication error return EIO as 568 * the io_error. If this was not a speculative zio, create an ereport. 569 */ 570 if (ret == ECKSUM) { 571 zio->io_error = SET_ERROR(EIO); 572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 573 spa_log_error(spa, &zio->io_bookmark, 574 &zio->io_bp->blk_birth); 575 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 576 spa, NULL, &zio->io_bookmark, zio, 0); 577 } 578 } else { 579 zio->io_error = ret; 580 } 581 } 582 583 /* 584 * ========================================================================== 585 * I/O parent/child relationships and pipeline interlocks 586 * ========================================================================== 587 */ 588 zio_t * 589 zio_walk_parents(zio_t *cio, zio_link_t **zl) 590 { 591 list_t *pl = &cio->io_parent_list; 592 593 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl); 594 if (*zl == NULL) 595 return (NULL); 596 597 ASSERT((*zl)->zl_child == cio); 598 return ((*zl)->zl_parent); 599 } 600 601 zio_t * 602 zio_walk_children(zio_t *pio, zio_link_t **zl) 603 { 604 list_t *cl = &pio->io_child_list; 605 606 ASSERT(MUTEX_HELD(&pio->io_lock)); 607 608 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl); 609 if (*zl == NULL) 610 return (NULL); 611 612 ASSERT((*zl)->zl_parent == pio); 613 return ((*zl)->zl_child); 614 } 615 616 zio_t * 617 zio_unique_parent(zio_t *cio) 618 { 619 zio_link_t *zl = NULL; 620 zio_t *pio = zio_walk_parents(cio, &zl); 621 622 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL); 623 return (pio); 624 } 625 626 void 627 zio_add_child(zio_t *pio, zio_t *cio) 628 { 629 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP); 630 631 /* 632 * Logical I/Os can have logical, gang, or vdev children. 633 * Gang I/Os can have gang or vdev children. 634 * Vdev I/Os can only have vdev children. 635 * The following ASSERT captures all of these constraints. 636 */ 637 ASSERT3S(cio->io_child_type, <=, pio->io_child_type); 638 639 zl->zl_parent = pio; 640 zl->zl_child = cio; 641 642 mutex_enter(&pio->io_lock); 643 mutex_enter(&cio->io_lock); 644 645 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0); 646 647 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 648 pio->io_children[cio->io_child_type][w] += !cio->io_state[w]; 649 650 list_insert_head(&pio->io_child_list, zl); 651 list_insert_head(&cio->io_parent_list, zl); 652 653 pio->io_child_count++; 654 cio->io_parent_count++; 655 656 mutex_exit(&cio->io_lock); 657 mutex_exit(&pio->io_lock); 658 } 659 660 static void 661 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl) 662 { 663 ASSERT(zl->zl_parent == pio); 664 ASSERT(zl->zl_child == cio); 665 666 mutex_enter(&pio->io_lock); 667 mutex_enter(&cio->io_lock); 668 669 list_remove(&pio->io_child_list, zl); 670 list_remove(&cio->io_parent_list, zl); 671 672 pio->io_child_count--; 673 cio->io_parent_count--; 674 675 mutex_exit(&cio->io_lock); 676 mutex_exit(&pio->io_lock); 677 kmem_cache_free(zio_link_cache, zl); 678 } 679 680 static boolean_t 681 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait) 682 { 683 boolean_t waiting = B_FALSE; 684 685 mutex_enter(&zio->io_lock); 686 ASSERT(zio->io_stall == NULL); 687 for (int c = 0; c < ZIO_CHILD_TYPES; c++) { 688 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c))) 689 continue; 690 691 uint64_t *countp = &zio->io_children[c][wait]; 692 if (*countp != 0) { 693 zio->io_stage >>= 1; 694 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN); 695 zio->io_stall = countp; 696 waiting = B_TRUE; 697 break; 698 } 699 } 700 mutex_exit(&zio->io_lock); 701 return (waiting); 702 } 703 704 __attribute__((always_inline)) 705 static inline void 706 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait, 707 zio_t **next_to_executep) 708 { 709 uint64_t *countp = &pio->io_children[zio->io_child_type][wait]; 710 int *errorp = &pio->io_child_error[zio->io_child_type]; 711 712 mutex_enter(&pio->io_lock); 713 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 714 *errorp = zio_worst_error(*errorp, zio->io_error); 715 pio->io_reexecute |= zio->io_reexecute; 716 ASSERT3U(*countp, >, 0); 717 718 (*countp)--; 719 720 if (*countp == 0 && pio->io_stall == countp) { 721 zio_taskq_type_t type = 722 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE : 723 ZIO_TASKQ_INTERRUPT; 724 pio->io_stall = NULL; 725 mutex_exit(&pio->io_lock); 726 727 /* 728 * If we can tell the caller to execute this parent next, do 729 * so. We only do this if the parent's zio type matches the 730 * child's type. Otherwise dispatch the parent zio in its 731 * own taskq. 732 * 733 * Having the caller execute the parent when possible reduces 734 * locking on the zio taskq's, reduces context switch 735 * overhead, and has no recursion penalty. Note that one 736 * read from disk typically causes at least 3 zio's: a 737 * zio_null(), the logical zio_read(), and then a physical 738 * zio. When the physical ZIO completes, we are able to call 739 * zio_done() on all 3 of these zio's from one invocation of 740 * zio_execute() by returning the parent back to 741 * zio_execute(). Since the parent isn't executed until this 742 * thread returns back to zio_execute(), the caller should do 743 * so promptly. 744 * 745 * In other cases, dispatching the parent prevents 746 * overflowing the stack when we have deeply nested 747 * parent-child relationships, as we do with the "mega zio" 748 * of writes for spa_sync(), and the chain of ZIL blocks. 749 */ 750 if (next_to_executep != NULL && *next_to_executep == NULL && 751 pio->io_type == zio->io_type) { 752 *next_to_executep = pio; 753 } else { 754 zio_taskq_dispatch(pio, type, B_FALSE); 755 } 756 } else { 757 mutex_exit(&pio->io_lock); 758 } 759 } 760 761 static void 762 zio_inherit_child_errors(zio_t *zio, enum zio_child c) 763 { 764 if (zio->io_child_error[c] != 0 && zio->io_error == 0) 765 zio->io_error = zio->io_child_error[c]; 766 } 767 768 int 769 zio_bookmark_compare(const void *x1, const void *x2) 770 { 771 const zio_t *z1 = x1; 772 const zio_t *z2 = x2; 773 774 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset) 775 return (-1); 776 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset) 777 return (1); 778 779 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object) 780 return (-1); 781 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object) 782 return (1); 783 784 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level) 785 return (-1); 786 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level) 787 return (1); 788 789 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid) 790 return (-1); 791 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid) 792 return (1); 793 794 if (z1 < z2) 795 return (-1); 796 if (z1 > z2) 797 return (1); 798 799 return (0); 800 } 801 802 /* 803 * ========================================================================== 804 * Create the various types of I/O (read, write, free, etc) 805 * ========================================================================== 806 */ 807 static zio_t * 808 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 809 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done, 810 void *private, zio_type_t type, zio_priority_t priority, 811 zio_flag_t flags, vdev_t *vd, uint64_t offset, 812 const zbookmark_phys_t *zb, enum zio_stage stage, 813 enum zio_stage pipeline) 814 { 815 zio_t *zio; 816 817 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE); 818 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0); 819 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 820 821 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER)); 822 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER)); 823 ASSERT(vd || stage == ZIO_STAGE_OPEN); 824 825 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0); 826 827 zio = kmem_cache_alloc(zio_cache, KM_SLEEP); 828 memset(zio, 0, sizeof (zio_t)); 829 830 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL); 831 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL); 832 833 list_create(&zio->io_parent_list, sizeof (zio_link_t), 834 offsetof(zio_link_t, zl_parent_node)); 835 list_create(&zio->io_child_list, sizeof (zio_link_t), 836 offsetof(zio_link_t, zl_child_node)); 837 metaslab_trace_init(&zio->io_alloc_list); 838 839 if (vd != NULL) 840 zio->io_child_type = ZIO_CHILD_VDEV; 841 else if (flags & ZIO_FLAG_GANG_CHILD) 842 zio->io_child_type = ZIO_CHILD_GANG; 843 else if (flags & ZIO_FLAG_DDT_CHILD) 844 zio->io_child_type = ZIO_CHILD_DDT; 845 else 846 zio->io_child_type = ZIO_CHILD_LOGICAL; 847 848 if (bp != NULL) { 849 zio->io_bp = (blkptr_t *)bp; 850 zio->io_bp_copy = *bp; 851 zio->io_bp_orig = *bp; 852 if (type != ZIO_TYPE_WRITE || 853 zio->io_child_type == ZIO_CHILD_DDT) 854 zio->io_bp = &zio->io_bp_copy; /* so caller can free */ 855 if (zio->io_child_type == ZIO_CHILD_LOGICAL) 856 zio->io_logical = zio; 857 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp)) 858 pipeline |= ZIO_GANG_STAGES; 859 } 860 861 zio->io_spa = spa; 862 zio->io_txg = txg; 863 zio->io_done = done; 864 zio->io_private = private; 865 zio->io_type = type; 866 zio->io_priority = priority; 867 zio->io_vd = vd; 868 zio->io_offset = offset; 869 zio->io_orig_abd = zio->io_abd = data; 870 zio->io_orig_size = zio->io_size = psize; 871 zio->io_lsize = lsize; 872 zio->io_orig_flags = zio->io_flags = flags; 873 zio->io_orig_stage = zio->io_stage = stage; 874 zio->io_orig_pipeline = zio->io_pipeline = pipeline; 875 zio->io_pipeline_trace = ZIO_STAGE_OPEN; 876 877 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY); 878 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE); 879 880 if (zb != NULL) 881 zio->io_bookmark = *zb; 882 883 if (pio != NULL) { 884 zio->io_metaslab_class = pio->io_metaslab_class; 885 if (zio->io_logical == NULL) 886 zio->io_logical = pio->io_logical; 887 if (zio->io_child_type == ZIO_CHILD_GANG) 888 zio->io_gang_leader = pio->io_gang_leader; 889 zio_add_child(pio, zio); 890 } 891 892 taskq_init_ent(&zio->io_tqent); 893 894 return (zio); 895 } 896 897 void 898 zio_destroy(zio_t *zio) 899 { 900 metaslab_trace_fini(&zio->io_alloc_list); 901 list_destroy(&zio->io_parent_list); 902 list_destroy(&zio->io_child_list); 903 mutex_destroy(&zio->io_lock); 904 cv_destroy(&zio->io_cv); 905 kmem_cache_free(zio_cache, zio); 906 } 907 908 zio_t * 909 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done, 910 void *private, zio_flag_t flags) 911 { 912 zio_t *zio; 913 914 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 915 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 916 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE); 917 918 return (zio); 919 } 920 921 zio_t * 922 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags) 923 { 924 return (zio_null(NULL, spa, NULL, done, private, flags)); 925 } 926 927 static int 928 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp, 929 enum blk_verify_flag blk_verify, const char *fmt, ...) 930 { 931 va_list adx; 932 char buf[256]; 933 934 va_start(adx, fmt); 935 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 936 va_end(adx); 937 938 switch (blk_verify) { 939 case BLK_VERIFY_HALT: 940 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 941 zfs_panic_recover("%s: %s", spa_name(spa), buf); 942 break; 943 case BLK_VERIFY_LOG: 944 zfs_dbgmsg("%s: %s", spa_name(spa), buf); 945 break; 946 case BLK_VERIFY_ONLY: 947 break; 948 } 949 950 return (1); 951 } 952 953 /* 954 * Verify the block pointer fields contain reasonable values. This means 955 * it only contains known object types, checksum/compression identifiers, 956 * block sizes within the maximum allowed limits, valid DVAs, etc. 957 * 958 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify 959 * argument controls the behavior when an invalid field is detected. 960 * 961 * Modes for zfs_blkptr_verify: 962 * 1) BLK_VERIFY_ONLY (evaluate the block) 963 * 2) BLK_VERIFY_LOG (evaluate the block and log problems) 964 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error) 965 */ 966 boolean_t 967 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held, 968 enum blk_verify_flag blk_verify) 969 { 970 int errors = 0; 971 972 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) { 973 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 974 "blkptr at %p has invalid TYPE %llu", 975 bp, (longlong_t)BP_GET_TYPE(bp)); 976 } 977 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) { 978 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 979 "blkptr at %p has invalid CHECKSUM %llu", 980 bp, (longlong_t)BP_GET_CHECKSUM(bp)); 981 } 982 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) { 983 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 984 "blkptr at %p has invalid COMPRESS %llu", 985 bp, (longlong_t)BP_GET_COMPRESS(bp)); 986 } 987 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) { 988 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 989 "blkptr at %p has invalid LSIZE %llu", 990 bp, (longlong_t)BP_GET_LSIZE(bp)); 991 } 992 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) { 993 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 994 "blkptr at %p has invalid PSIZE %llu", 995 bp, (longlong_t)BP_GET_PSIZE(bp)); 996 } 997 998 if (BP_IS_EMBEDDED(bp)) { 999 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) { 1000 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1001 "blkptr at %p has invalid ETYPE %llu", 1002 bp, (longlong_t)BPE_GET_ETYPE(bp)); 1003 } 1004 } 1005 1006 /* 1007 * Do not verify individual DVAs if the config is not trusted. This 1008 * will be done once the zio is executed in vdev_mirror_map_alloc. 1009 */ 1010 if (!spa->spa_trust_config) 1011 return (errors == 0); 1012 1013 if (!config_held) 1014 spa_config_enter(spa, SCL_VDEV, bp, RW_READER); 1015 else 1016 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER)); 1017 /* 1018 * Pool-specific checks. 1019 * 1020 * Note: it would be nice to verify that the blk_birth and 1021 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze() 1022 * allows the birth time of log blocks (and dmu_sync()-ed blocks 1023 * that are in the log) to be arbitrarily large. 1024 */ 1025 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 1026 const dva_t *dva = &bp->blk_dva[i]; 1027 uint64_t vdevid = DVA_GET_VDEV(dva); 1028 1029 if (vdevid >= spa->spa_root_vdev->vdev_children) { 1030 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1031 "blkptr at %p DVA %u has invalid VDEV %llu", 1032 bp, i, (longlong_t)vdevid); 1033 continue; 1034 } 1035 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1036 if (vd == NULL) { 1037 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1038 "blkptr at %p DVA %u has invalid VDEV %llu", 1039 bp, i, (longlong_t)vdevid); 1040 continue; 1041 } 1042 if (vd->vdev_ops == &vdev_hole_ops) { 1043 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1044 "blkptr at %p DVA %u has hole VDEV %llu", 1045 bp, i, (longlong_t)vdevid); 1046 continue; 1047 } 1048 if (vd->vdev_ops == &vdev_missing_ops) { 1049 /* 1050 * "missing" vdevs are valid during import, but we 1051 * don't have their detailed info (e.g. asize), so 1052 * we can't perform any more checks on them. 1053 */ 1054 continue; 1055 } 1056 uint64_t offset = DVA_GET_OFFSET(dva); 1057 uint64_t asize = DVA_GET_ASIZE(dva); 1058 if (DVA_GET_GANG(dva)) 1059 asize = vdev_gang_header_asize(vd); 1060 if (offset + asize > vd->vdev_asize) { 1061 errors += zfs_blkptr_verify_log(spa, bp, blk_verify, 1062 "blkptr at %p DVA %u has invalid OFFSET %llu", 1063 bp, i, (longlong_t)offset); 1064 } 1065 } 1066 if (errors > 0) 1067 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp); 1068 if (!config_held) 1069 spa_config_exit(spa, SCL_VDEV, bp); 1070 1071 return (errors == 0); 1072 } 1073 1074 boolean_t 1075 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp) 1076 { 1077 (void) bp; 1078 uint64_t vdevid = DVA_GET_VDEV(dva); 1079 1080 if (vdevid >= spa->spa_root_vdev->vdev_children) 1081 return (B_FALSE); 1082 1083 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid]; 1084 if (vd == NULL) 1085 return (B_FALSE); 1086 1087 if (vd->vdev_ops == &vdev_hole_ops) 1088 return (B_FALSE); 1089 1090 if (vd->vdev_ops == &vdev_missing_ops) { 1091 return (B_FALSE); 1092 } 1093 1094 uint64_t offset = DVA_GET_OFFSET(dva); 1095 uint64_t asize = DVA_GET_ASIZE(dva); 1096 1097 if (DVA_GET_GANG(dva)) 1098 asize = vdev_gang_header_asize(vd); 1099 if (offset + asize > vd->vdev_asize) 1100 return (B_FALSE); 1101 1102 return (B_TRUE); 1103 } 1104 1105 zio_t * 1106 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 1107 abd_t *data, uint64_t size, zio_done_func_t *done, void *private, 1108 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb) 1109 { 1110 zio_t *zio; 1111 1112 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp, 1113 data, size, size, done, private, 1114 ZIO_TYPE_READ, priority, flags, NULL, 0, zb, 1115 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1116 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE); 1117 1118 return (zio); 1119 } 1120 1121 zio_t * 1122 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1123 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp, 1124 zio_done_func_t *ready, zio_done_func_t *children_ready, 1125 zio_done_func_t *physdone, zio_done_func_t *done, 1126 void *private, zio_priority_t priority, zio_flag_t flags, 1127 const zbookmark_phys_t *zb) 1128 { 1129 zio_t *zio; 1130 1131 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF && 1132 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS && 1133 zp->zp_compress >= ZIO_COMPRESS_OFF && 1134 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS && 1135 DMU_OT_IS_VALID(zp->zp_type) && 1136 zp->zp_level < 32 && 1137 zp->zp_copies > 0 && 1138 zp->zp_copies <= spa_max_replication(spa)); 1139 1140 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private, 1141 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb, 1142 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ? 1143 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE); 1144 1145 zio->io_ready = ready; 1146 zio->io_children_ready = children_ready; 1147 zio->io_physdone = physdone; 1148 zio->io_prop = *zp; 1149 1150 /* 1151 * Data can be NULL if we are going to call zio_write_override() to 1152 * provide the already-allocated BP. But we may need the data to 1153 * verify a dedup hit (if requested). In this case, don't try to 1154 * dedup (just take the already-allocated BP verbatim). Encrypted 1155 * dedup blocks need data as well so we also disable dedup in this 1156 * case. 1157 */ 1158 if (data == NULL && 1159 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) { 1160 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE; 1161 } 1162 1163 return (zio); 1164 } 1165 1166 zio_t * 1167 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data, 1168 uint64_t size, zio_done_func_t *done, void *private, 1169 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb) 1170 { 1171 zio_t *zio; 1172 1173 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private, 1174 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb, 1175 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 1176 1177 return (zio); 1178 } 1179 1180 void 1181 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite, 1182 boolean_t brtwrite) 1183 { 1184 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 1185 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1186 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 1187 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa)); 1188 ASSERT(!brtwrite || !nopwrite); 1189 1190 /* 1191 * We must reset the io_prop to match the values that existed 1192 * when the bp was first written by dmu_sync() keeping in mind 1193 * that nopwrite and dedup are mutually exclusive. 1194 */ 1195 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup; 1196 zio->io_prop.zp_nopwrite = nopwrite; 1197 zio->io_prop.zp_brtwrite = brtwrite; 1198 zio->io_prop.zp_copies = copies; 1199 zio->io_bp_override = bp; 1200 } 1201 1202 void 1203 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp) 1204 { 1205 1206 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT); 1207 1208 /* 1209 * The check for EMBEDDED is a performance optimization. We 1210 * process the free here (by ignoring it) rather than 1211 * putting it on the list and then processing it in zio_free_sync(). 1212 */ 1213 if (BP_IS_EMBEDDED(bp)) 1214 return; 1215 1216 /* 1217 * Frees that are for the currently-syncing txg, are not going to be 1218 * deferred, and which will not need to do a read (i.e. not GANG or 1219 * DEDUP), can be processed immediately. Otherwise, put them on the 1220 * in-memory list for later processing. 1221 * 1222 * Note that we only defer frees after zfs_sync_pass_deferred_free 1223 * when the log space map feature is disabled. [see relevant comment 1224 * in spa_sync_iterate_to_convergence()] 1225 */ 1226 if (BP_IS_GANG(bp) || 1227 BP_GET_DEDUP(bp) || 1228 txg != spa->spa_syncing_txg || 1229 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free && 1230 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) || 1231 brt_maybe_exists(spa, bp)) { 1232 metaslab_check_free(spa, bp); 1233 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp); 1234 } else { 1235 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL); 1236 } 1237 } 1238 1239 /* 1240 * To improve performance, this function may return NULL if we were able 1241 * to do the free immediately. This avoids the cost of creating a zio 1242 * (and linking it to the parent, etc). 1243 */ 1244 zio_t * 1245 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1246 zio_flag_t flags) 1247 { 1248 ASSERT(!BP_IS_HOLE(bp)); 1249 ASSERT(spa_syncing_txg(spa) == txg); 1250 1251 if (BP_IS_EMBEDDED(bp)) 1252 return (NULL); 1253 1254 metaslab_check_free(spa, bp); 1255 arc_freed(spa, bp); 1256 dsl_scan_freed(spa, bp); 1257 1258 if (BP_IS_GANG(bp) || 1259 BP_GET_DEDUP(bp) || 1260 brt_maybe_exists(spa, bp)) { 1261 /* 1262 * GANG, DEDUP and BRT blocks can induce a read (for the gang 1263 * block header, the DDT or the BRT), so issue them 1264 * asynchronously so that this thread is not tied up. 1265 */ 1266 enum zio_stage stage = 1267 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC; 1268 1269 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1270 BP_GET_PSIZE(bp), NULL, NULL, 1271 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, 1272 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage)); 1273 } else { 1274 metaslab_free(spa, bp, txg, B_FALSE); 1275 return (NULL); 1276 } 1277 } 1278 1279 zio_t * 1280 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp, 1281 zio_done_func_t *done, void *private, zio_flag_t flags) 1282 { 1283 zio_t *zio; 1284 1285 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER, 1286 BLK_VERIFY_HALT); 1287 1288 if (BP_IS_EMBEDDED(bp)) 1289 return (zio_null(pio, spa, NULL, NULL, NULL, 0)); 1290 1291 /* 1292 * A claim is an allocation of a specific block. Claims are needed 1293 * to support immediate writes in the intent log. The issue is that 1294 * immediate writes contain committed data, but in a txg that was 1295 * *not* committed. Upon opening the pool after an unclean shutdown, 1296 * the intent log claims all blocks that contain immediate write data 1297 * so that the SPA knows they're in use. 1298 * 1299 * All claims *must* be resolved in the first txg -- before the SPA 1300 * starts allocating blocks -- so that nothing is allocated twice. 1301 * If txg == 0 we just verify that the block is claimable. 1302 */ 1303 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, 1304 spa_min_claim_txg(spa)); 1305 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0); 1306 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */ 1307 1308 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp), 1309 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 1310 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 1311 ASSERT0(zio->io_queued_timestamp); 1312 1313 return (zio); 1314 } 1315 1316 zio_t * 1317 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 1318 zio_done_func_t *done, void *private, zio_flag_t flags) 1319 { 1320 zio_t *zio; 1321 int c; 1322 1323 if (vd->vdev_children == 0) { 1324 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private, 1325 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL, 1326 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 1327 1328 zio->io_cmd = cmd; 1329 } else { 1330 zio = zio_null(pio, spa, NULL, NULL, NULL, flags); 1331 1332 for (c = 0; c < vd->vdev_children; c++) 1333 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 1334 done, private, flags)); 1335 } 1336 1337 return (zio); 1338 } 1339 1340 zio_t * 1341 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1342 zio_done_func_t *done, void *private, zio_priority_t priority, 1343 zio_flag_t flags, enum trim_flag trim_flags) 1344 { 1345 zio_t *zio; 1346 1347 ASSERT0(vd->vdev_children); 1348 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 1349 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 1350 ASSERT3U(size, !=, 0); 1351 1352 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done, 1353 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL, 1354 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE); 1355 zio->io_trim_flags = trim_flags; 1356 1357 return (zio); 1358 } 1359 1360 zio_t * 1361 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1362 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1363 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1364 { 1365 zio_t *zio; 1366 1367 ASSERT(vd->vdev_children == 0); 1368 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1369 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1370 ASSERT3U(offset + size, <=, vd->vdev_psize); 1371 1372 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1373 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1374 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 1375 1376 zio->io_prop.zp_checksum = checksum; 1377 1378 return (zio); 1379 } 1380 1381 zio_t * 1382 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 1383 abd_t *data, int checksum, zio_done_func_t *done, void *private, 1384 zio_priority_t priority, zio_flag_t flags, boolean_t labels) 1385 { 1386 zio_t *zio; 1387 1388 ASSERT(vd->vdev_children == 0); 1389 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE || 1390 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 1391 ASSERT3U(offset + size, <=, vd->vdev_psize); 1392 1393 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done, 1394 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd, 1395 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 1396 1397 zio->io_prop.zp_checksum = checksum; 1398 1399 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) { 1400 /* 1401 * zec checksums are necessarily destructive -- they modify 1402 * the end of the write buffer to hold the verifier/checksum. 1403 * Therefore, we must make a local copy in case the data is 1404 * being written to multiple places in parallel. 1405 */ 1406 abd_t *wbuf = abd_alloc_sametype(data, size); 1407 abd_copy(wbuf, data, size); 1408 1409 zio_push_transform(zio, wbuf, size, size, NULL); 1410 } 1411 1412 return (zio); 1413 } 1414 1415 /* 1416 * Create a child I/O to do some work for us. 1417 */ 1418 zio_t * 1419 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 1420 abd_t *data, uint64_t size, int type, zio_priority_t priority, 1421 zio_flag_t flags, zio_done_func_t *done, void *private) 1422 { 1423 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE; 1424 zio_t *zio; 1425 1426 /* 1427 * vdev child I/Os do not propagate their error to the parent. 1428 * Therefore, for correct operation the caller *must* check for 1429 * and handle the error in the child i/o's done callback. 1430 * The only exceptions are i/os that we don't care about 1431 * (OPTIONAL or REPAIR). 1432 */ 1433 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) || 1434 done != NULL); 1435 1436 if (type == ZIO_TYPE_READ && bp != NULL) { 1437 /* 1438 * If we have the bp, then the child should perform the 1439 * checksum and the parent need not. This pushes error 1440 * detection as close to the leaves as possible and 1441 * eliminates redundant checksums in the interior nodes. 1442 */ 1443 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY; 1444 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 1445 } 1446 1447 if (vd->vdev_ops->vdev_op_leaf) { 1448 ASSERT0(vd->vdev_children); 1449 offset += VDEV_LABEL_START_SIZE; 1450 } 1451 1452 flags |= ZIO_VDEV_CHILD_FLAGS(pio); 1453 1454 /* 1455 * If we've decided to do a repair, the write is not speculative -- 1456 * even if the original read was. 1457 */ 1458 if (flags & ZIO_FLAG_IO_REPAIR) 1459 flags &= ~ZIO_FLAG_SPECULATIVE; 1460 1461 /* 1462 * If we're creating a child I/O that is not associated with a 1463 * top-level vdev, then the child zio is not an allocating I/O. 1464 * If this is a retried I/O then we ignore it since we will 1465 * have already processed the original allocating I/O. 1466 */ 1467 if (flags & ZIO_FLAG_IO_ALLOCATING && 1468 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) { 1469 ASSERT(pio->io_metaslab_class != NULL); 1470 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled); 1471 ASSERT(type == ZIO_TYPE_WRITE); 1472 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE); 1473 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR)); 1474 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) || 1475 pio->io_child_type == ZIO_CHILD_GANG); 1476 1477 flags &= ~ZIO_FLAG_IO_ALLOCATING; 1478 } 1479 1480 1481 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size, 1482 done, private, type, priority, flags, vd, offset, &pio->io_bookmark, 1483 ZIO_STAGE_VDEV_IO_START >> 1, pipeline); 1484 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 1485 1486 zio->io_physdone = pio->io_physdone; 1487 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL) 1488 zio->io_logical->io_phys_children++; 1489 1490 return (zio); 1491 } 1492 1493 zio_t * 1494 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size, 1495 zio_type_t type, zio_priority_t priority, zio_flag_t flags, 1496 zio_done_func_t *done, void *private) 1497 { 1498 zio_t *zio; 1499 1500 ASSERT(vd->vdev_ops->vdev_op_leaf); 1501 1502 zio = zio_create(NULL, vd->vdev_spa, 0, NULL, 1503 data, size, size, done, private, type, priority, 1504 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED, 1505 vd, offset, NULL, 1506 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE); 1507 1508 return (zio); 1509 } 1510 1511 void 1512 zio_flush(zio_t *zio, vdev_t *vd) 1513 { 1514 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE, 1515 NULL, NULL, 1516 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY)); 1517 } 1518 1519 void 1520 zio_shrink(zio_t *zio, uint64_t size) 1521 { 1522 ASSERT3P(zio->io_executor, ==, NULL); 1523 ASSERT3U(zio->io_orig_size, ==, zio->io_size); 1524 ASSERT3U(size, <=, zio->io_size); 1525 1526 /* 1527 * We don't shrink for raidz because of problems with the 1528 * reconstruction when reading back less than the block size. 1529 * Note, BP_IS_RAIDZ() assumes no compression. 1530 */ 1531 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); 1532 if (!BP_IS_RAIDZ(zio->io_bp)) { 1533 /* we are not doing a raw write */ 1534 ASSERT3U(zio->io_size, ==, zio->io_lsize); 1535 zio->io_orig_size = zio->io_size = zio->io_lsize = size; 1536 } 1537 } 1538 1539 /* 1540 * ========================================================================== 1541 * Prepare to read and write logical blocks 1542 * ========================================================================== 1543 */ 1544 1545 static zio_t * 1546 zio_read_bp_init(zio_t *zio) 1547 { 1548 blkptr_t *bp = zio->io_bp; 1549 uint64_t psize = 1550 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp); 1551 1552 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1553 1554 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF && 1555 zio->io_child_type == ZIO_CHILD_LOGICAL && 1556 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1557 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1558 psize, psize, zio_decompress); 1559 } 1560 1561 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) || 1562 BP_HAS_INDIRECT_MAC_CKSUM(bp)) && 1563 zio->io_child_type == ZIO_CHILD_LOGICAL) { 1564 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize), 1565 psize, psize, zio_decrypt); 1566 } 1567 1568 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) { 1569 int psize = BPE_GET_PSIZE(bp); 1570 void *data = abd_borrow_buf(zio->io_abd, psize); 1571 1572 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1573 decode_embedded_bp_compressed(bp, data); 1574 abd_return_buf_copy(zio->io_abd, data, psize); 1575 } else { 1576 ASSERT(!BP_IS_EMBEDDED(bp)); 1577 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1578 } 1579 1580 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0) 1581 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1582 1583 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP) 1584 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1585 1586 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL) 1587 zio->io_pipeline = ZIO_DDT_READ_PIPELINE; 1588 1589 return (zio); 1590 } 1591 1592 static zio_t * 1593 zio_write_bp_init(zio_t *zio) 1594 { 1595 if (!IO_IS_ALLOCATING(zio)) 1596 return (zio); 1597 1598 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1599 1600 if (zio->io_bp_override) { 1601 blkptr_t *bp = zio->io_bp; 1602 zio_prop_t *zp = &zio->io_prop; 1603 1604 ASSERT(bp->blk_birth != zio->io_txg); 1605 1606 *bp = *zio->io_bp_override; 1607 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1608 1609 if (zp->zp_brtwrite) 1610 return (zio); 1611 1612 ASSERT(!BP_GET_DEDUP(zio->io_bp_override)); 1613 1614 if (BP_IS_EMBEDDED(bp)) 1615 return (zio); 1616 1617 /* 1618 * If we've been overridden and nopwrite is set then 1619 * set the flag accordingly to indicate that a nopwrite 1620 * has already occurred. 1621 */ 1622 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) { 1623 ASSERT(!zp->zp_dedup); 1624 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum); 1625 zio->io_flags |= ZIO_FLAG_NOPWRITE; 1626 return (zio); 1627 } 1628 1629 ASSERT(!zp->zp_nopwrite); 1630 1631 if (BP_IS_HOLE(bp) || !zp->zp_dedup) 1632 return (zio); 1633 1634 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags & 1635 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify); 1636 1637 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum && 1638 !zp->zp_encrypt) { 1639 BP_SET_DEDUP(bp, 1); 1640 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE; 1641 return (zio); 1642 } 1643 1644 /* 1645 * We were unable to handle this as an override bp, treat 1646 * it as a regular write I/O. 1647 */ 1648 zio->io_bp_override = NULL; 1649 *bp = zio->io_bp_orig; 1650 zio->io_pipeline = zio->io_orig_pipeline; 1651 } 1652 1653 return (zio); 1654 } 1655 1656 static zio_t * 1657 zio_write_compress(zio_t *zio) 1658 { 1659 spa_t *spa = zio->io_spa; 1660 zio_prop_t *zp = &zio->io_prop; 1661 enum zio_compress compress = zp->zp_compress; 1662 blkptr_t *bp = zio->io_bp; 1663 uint64_t lsize = zio->io_lsize; 1664 uint64_t psize = zio->io_size; 1665 uint32_t pass = 1; 1666 1667 /* 1668 * If our children haven't all reached the ready stage, 1669 * wait for them and then repeat this pipeline stage. 1670 */ 1671 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT | 1672 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) { 1673 return (NULL); 1674 } 1675 1676 if (!IO_IS_ALLOCATING(zio)) 1677 return (zio); 1678 1679 if (zio->io_children_ready != NULL) { 1680 /* 1681 * Now that all our children are ready, run the callback 1682 * associated with this zio in case it wants to modify the 1683 * data to be written. 1684 */ 1685 ASSERT3U(zp->zp_level, >, 0); 1686 zio->io_children_ready(zio); 1687 } 1688 1689 ASSERT(zio->io_child_type != ZIO_CHILD_DDT); 1690 ASSERT(zio->io_bp_override == NULL); 1691 1692 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) { 1693 /* 1694 * We're rewriting an existing block, which means we're 1695 * working on behalf of spa_sync(). For spa_sync() to 1696 * converge, it must eventually be the case that we don't 1697 * have to allocate new blocks. But compression changes 1698 * the blocksize, which forces a reallocate, and makes 1699 * convergence take longer. Therefore, after the first 1700 * few passes, stop compressing to ensure convergence. 1701 */ 1702 pass = spa_sync_pass(spa); 1703 1704 ASSERT(zio->io_txg == spa_syncing_txg(spa)); 1705 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1706 ASSERT(!BP_GET_DEDUP(bp)); 1707 1708 if (pass >= zfs_sync_pass_dont_compress) 1709 compress = ZIO_COMPRESS_OFF; 1710 1711 /* Make sure someone doesn't change their mind on overwrites */ 1712 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp), 1713 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 1714 } 1715 1716 /* If it's a compressed write that is not raw, compress the buffer. */ 1717 if (compress != ZIO_COMPRESS_OFF && 1718 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) { 1719 void *cbuf = NULL; 1720 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize, 1721 zp->zp_complevel); 1722 if (psize == 0) { 1723 compress = ZIO_COMPRESS_OFF; 1724 } else if (psize >= lsize) { 1725 compress = ZIO_COMPRESS_OFF; 1726 if (cbuf != NULL) 1727 zio_buf_free(cbuf, lsize); 1728 } else if (!zp->zp_dedup && !zp->zp_encrypt && 1729 psize <= BPE_PAYLOAD_SIZE && 1730 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) && 1731 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) { 1732 encode_embedded_bp_compressed(bp, 1733 cbuf, compress, lsize, psize); 1734 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA); 1735 BP_SET_TYPE(bp, zio->io_prop.zp_type); 1736 BP_SET_LEVEL(bp, zio->io_prop.zp_level); 1737 zio_buf_free(cbuf, lsize); 1738 bp->blk_birth = zio->io_txg; 1739 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1740 ASSERT(spa_feature_is_active(spa, 1741 SPA_FEATURE_EMBEDDED_DATA)); 1742 return (zio); 1743 } else { 1744 /* 1745 * Round compressed size up to the minimum allocation 1746 * size of the smallest-ashift device, and zero the 1747 * tail. This ensures that the compressed size of the 1748 * BP (and thus compressratio property) are correct, 1749 * in that we charge for the padding used to fill out 1750 * the last sector. 1751 */ 1752 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT); 1753 size_t rounded = (size_t)roundup(psize, 1754 spa->spa_min_alloc); 1755 if (rounded >= lsize) { 1756 compress = ZIO_COMPRESS_OFF; 1757 zio_buf_free(cbuf, lsize); 1758 psize = lsize; 1759 } else { 1760 abd_t *cdata = abd_get_from_buf(cbuf, lsize); 1761 abd_take_ownership_of_buf(cdata, B_TRUE); 1762 abd_zero_off(cdata, psize, rounded - psize); 1763 psize = rounded; 1764 zio_push_transform(zio, cdata, 1765 psize, lsize, NULL); 1766 } 1767 } 1768 1769 /* 1770 * We were unable to handle this as an override bp, treat 1771 * it as a regular write I/O. 1772 */ 1773 zio->io_bp_override = NULL; 1774 *bp = zio->io_bp_orig; 1775 zio->io_pipeline = zio->io_orig_pipeline; 1776 1777 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 && 1778 zp->zp_type == DMU_OT_DNODE) { 1779 /* 1780 * The DMU actually relies on the zio layer's compression 1781 * to free metadnode blocks that have had all contained 1782 * dnodes freed. As a result, even when doing a raw 1783 * receive, we must check whether the block can be compressed 1784 * to a hole. 1785 */ 1786 psize = zio_compress_data(ZIO_COMPRESS_EMPTY, 1787 zio->io_abd, NULL, lsize, zp->zp_complevel); 1788 if (psize == 0 || psize >= lsize) 1789 compress = ZIO_COMPRESS_OFF; 1790 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS && 1791 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) { 1792 /* 1793 * If we are raw receiving an encrypted dataset we should not 1794 * take this codepath because it will change the on-disk block 1795 * and decryption will fail. 1796 */ 1797 size_t rounded = MIN((size_t)roundup(psize, 1798 spa->spa_min_alloc), lsize); 1799 1800 if (rounded != psize) { 1801 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE); 1802 abd_zero_off(cdata, psize, rounded - psize); 1803 abd_copy_off(cdata, zio->io_abd, 0, 0, psize); 1804 psize = rounded; 1805 zio_push_transform(zio, cdata, 1806 psize, rounded, NULL); 1807 } 1808 } else { 1809 ASSERT3U(psize, !=, 0); 1810 } 1811 1812 /* 1813 * The final pass of spa_sync() must be all rewrites, but the first 1814 * few passes offer a trade-off: allocating blocks defers convergence, 1815 * but newly allocated blocks are sequential, so they can be written 1816 * to disk faster. Therefore, we allow the first few passes of 1817 * spa_sync() to allocate new blocks, but force rewrites after that. 1818 * There should only be a handful of blocks after pass 1 in any case. 1819 */ 1820 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg && 1821 BP_GET_PSIZE(bp) == psize && 1822 pass >= zfs_sync_pass_rewrite) { 1823 VERIFY3U(psize, !=, 0); 1824 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES; 1825 1826 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages; 1827 zio->io_flags |= ZIO_FLAG_IO_REWRITE; 1828 } else { 1829 BP_ZERO(bp); 1830 zio->io_pipeline = ZIO_WRITE_PIPELINE; 1831 } 1832 1833 if (psize == 0) { 1834 if (zio->io_bp_orig.blk_birth != 0 && 1835 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) { 1836 BP_SET_LSIZE(bp, lsize); 1837 BP_SET_TYPE(bp, zp->zp_type); 1838 BP_SET_LEVEL(bp, zp->zp_level); 1839 BP_SET_BIRTH(bp, zio->io_txg, 0); 1840 } 1841 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 1842 } else { 1843 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER); 1844 BP_SET_LSIZE(bp, lsize); 1845 BP_SET_TYPE(bp, zp->zp_type); 1846 BP_SET_LEVEL(bp, zp->zp_level); 1847 BP_SET_PSIZE(bp, psize); 1848 BP_SET_COMPRESS(bp, compress); 1849 BP_SET_CHECKSUM(bp, zp->zp_checksum); 1850 BP_SET_DEDUP(bp, zp->zp_dedup); 1851 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1852 if (zp->zp_dedup) { 1853 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1854 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1855 ASSERT(!zp->zp_encrypt || 1856 DMU_OT_IS_ENCRYPTED(zp->zp_type)); 1857 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE; 1858 } 1859 if (zp->zp_nopwrite) { 1860 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 1861 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 1862 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE; 1863 } 1864 } 1865 return (zio); 1866 } 1867 1868 static zio_t * 1869 zio_free_bp_init(zio_t *zio) 1870 { 1871 blkptr_t *bp = zio->io_bp; 1872 1873 if (zio->io_child_type == ZIO_CHILD_LOGICAL) { 1874 if (BP_GET_DEDUP(bp)) 1875 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE; 1876 } 1877 1878 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy); 1879 1880 return (zio); 1881 } 1882 1883 /* 1884 * ========================================================================== 1885 * Execute the I/O pipeline 1886 * ========================================================================== 1887 */ 1888 1889 static void 1890 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline) 1891 { 1892 spa_t *spa = zio->io_spa; 1893 zio_type_t t = zio->io_type; 1894 int flags = (cutinline ? TQ_FRONT : 0); 1895 1896 /* 1897 * If we're a config writer or a probe, the normal issue and 1898 * interrupt threads may all be blocked waiting for the config lock. 1899 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL. 1900 */ 1901 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE)) 1902 t = ZIO_TYPE_NULL; 1903 1904 /* 1905 * A similar issue exists for the L2ARC write thread until L2ARC 2.0. 1906 */ 1907 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux) 1908 t = ZIO_TYPE_NULL; 1909 1910 /* 1911 * If this is a high priority I/O, then use the high priority taskq if 1912 * available. 1913 */ 1914 if ((zio->io_priority == ZIO_PRIORITY_NOW || 1915 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) && 1916 spa->spa_zio_taskq[t][q + 1].stqs_count != 0) 1917 q++; 1918 1919 ASSERT3U(q, <, ZIO_TASKQ_TYPES); 1920 1921 /* 1922 * NB: We are assuming that the zio can only be dispatched 1923 * to a single taskq at a time. It would be a grievous error 1924 * to dispatch the zio to another taskq at the same time. 1925 */ 1926 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1927 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags, 1928 &zio->io_tqent); 1929 } 1930 1931 static boolean_t 1932 zio_taskq_member(zio_t *zio, zio_taskq_type_t q) 1933 { 1934 spa_t *spa = zio->io_spa; 1935 1936 taskq_t *tq = taskq_of_curthread(); 1937 1938 for (zio_type_t t = 0; t < ZIO_TYPES; t++) { 1939 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1940 uint_t i; 1941 for (i = 0; i < tqs->stqs_count; i++) { 1942 if (tqs->stqs_taskq[i] == tq) 1943 return (B_TRUE); 1944 } 1945 } 1946 1947 return (B_FALSE); 1948 } 1949 1950 static zio_t * 1951 zio_issue_async(zio_t *zio) 1952 { 1953 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 1954 1955 return (NULL); 1956 } 1957 1958 void 1959 zio_interrupt(void *zio) 1960 { 1961 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE); 1962 } 1963 1964 void 1965 zio_delay_interrupt(zio_t *zio) 1966 { 1967 /* 1968 * The timeout_generic() function isn't defined in userspace, so 1969 * rather than trying to implement the function, the zio delay 1970 * functionality has been disabled for userspace builds. 1971 */ 1972 1973 #ifdef _KERNEL 1974 /* 1975 * If io_target_timestamp is zero, then no delay has been registered 1976 * for this IO, thus jump to the end of this function and "skip" the 1977 * delay; issuing it directly to the zio layer. 1978 */ 1979 if (zio->io_target_timestamp != 0) { 1980 hrtime_t now = gethrtime(); 1981 1982 if (now >= zio->io_target_timestamp) { 1983 /* 1984 * This IO has already taken longer than the target 1985 * delay to complete, so we don't want to delay it 1986 * any longer; we "miss" the delay and issue it 1987 * directly to the zio layer. This is likely due to 1988 * the target latency being set to a value less than 1989 * the underlying hardware can satisfy (e.g. delay 1990 * set to 1ms, but the disks take 10ms to complete an 1991 * IO request). 1992 */ 1993 1994 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio, 1995 hrtime_t, now); 1996 1997 zio_interrupt(zio); 1998 } else { 1999 taskqid_t tid; 2000 hrtime_t diff = zio->io_target_timestamp - now; 2001 clock_t expire_at_tick = ddi_get_lbolt() + 2002 NSEC_TO_TICK(diff); 2003 2004 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio, 2005 hrtime_t, now, hrtime_t, diff); 2006 2007 if (NSEC_TO_TICK(diff) == 0) { 2008 /* Our delay is less than a jiffy - just spin */ 2009 zfs_sleep_until(zio->io_target_timestamp); 2010 zio_interrupt(zio); 2011 } else { 2012 /* 2013 * Use taskq_dispatch_delay() in the place of 2014 * OpenZFS's timeout_generic(). 2015 */ 2016 tid = taskq_dispatch_delay(system_taskq, 2017 zio_interrupt, zio, TQ_NOSLEEP, 2018 expire_at_tick); 2019 if (tid == TASKQID_INVALID) { 2020 /* 2021 * Couldn't allocate a task. Just 2022 * finish the zio without a delay. 2023 */ 2024 zio_interrupt(zio); 2025 } 2026 } 2027 } 2028 return; 2029 } 2030 #endif 2031 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio); 2032 zio_interrupt(zio); 2033 } 2034 2035 static void 2036 zio_deadman_impl(zio_t *pio, int ziodepth) 2037 { 2038 zio_t *cio, *cio_next; 2039 zio_link_t *zl = NULL; 2040 vdev_t *vd = pio->io_vd; 2041 2042 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) { 2043 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL; 2044 zbookmark_phys_t *zb = &pio->io_bookmark; 2045 uint64_t delta = gethrtime() - pio->io_timestamp; 2046 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa); 2047 2048 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu " 2049 "delta=%llu queued=%llu io=%llu " 2050 "path=%s " 2051 "last=%llu type=%d " 2052 "priority=%d flags=0x%llx stage=0x%x " 2053 "pipeline=0x%x pipeline-trace=0x%x " 2054 "objset=%llu object=%llu " 2055 "level=%llu blkid=%llu " 2056 "offset=%llu size=%llu " 2057 "error=%d", 2058 ziodepth, pio, pio->io_timestamp, 2059 (u_longlong_t)delta, pio->io_delta, pio->io_delay, 2060 vd ? vd->vdev_path : "NULL", 2061 vq ? vq->vq_io_complete_ts : 0, pio->io_type, 2062 pio->io_priority, (u_longlong_t)pio->io_flags, 2063 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace, 2064 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, 2065 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, 2066 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size, 2067 pio->io_error); 2068 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN, 2069 pio->io_spa, vd, zb, pio, 0); 2070 2071 if (failmode == ZIO_FAILURE_MODE_CONTINUE && 2072 taskq_empty_ent(&pio->io_tqent)) { 2073 zio_interrupt(pio); 2074 } 2075 } 2076 2077 mutex_enter(&pio->io_lock); 2078 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2079 cio_next = zio_walk_children(pio, &zl); 2080 zio_deadman_impl(cio, ziodepth + 1); 2081 } 2082 mutex_exit(&pio->io_lock); 2083 } 2084 2085 /* 2086 * Log the critical information describing this zio and all of its children 2087 * using the zfs_dbgmsg() interface then post deadman event for the ZED. 2088 */ 2089 void 2090 zio_deadman(zio_t *pio, const char *tag) 2091 { 2092 spa_t *spa = pio->io_spa; 2093 char *name = spa_name(spa); 2094 2095 if (!zfs_deadman_enabled || spa_suspended(spa)) 2096 return; 2097 2098 zio_deadman_impl(pio, 0); 2099 2100 switch (spa_get_deadman_failmode(spa)) { 2101 case ZIO_FAILURE_MODE_WAIT: 2102 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name); 2103 break; 2104 2105 case ZIO_FAILURE_MODE_CONTINUE: 2106 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name); 2107 break; 2108 2109 case ZIO_FAILURE_MODE_PANIC: 2110 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name); 2111 break; 2112 } 2113 } 2114 2115 /* 2116 * Execute the I/O pipeline until one of the following occurs: 2117 * (1) the I/O completes; (2) the pipeline stalls waiting for 2118 * dependent child I/Os; (3) the I/O issues, so we're waiting 2119 * for an I/O completion interrupt; (4) the I/O is delegated by 2120 * vdev-level caching or aggregation; (5) the I/O is deferred 2121 * due to vdev-level queueing; (6) the I/O is handed off to 2122 * another thread. In all cases, the pipeline stops whenever 2123 * there's no CPU work; it never burns a thread in cv_wait_io(). 2124 * 2125 * There's no locking on io_stage because there's no legitimate way 2126 * for multiple threads to be attempting to process the same I/O. 2127 */ 2128 static zio_pipe_stage_t *zio_pipeline[]; 2129 2130 /* 2131 * zio_execute() is a wrapper around the static function 2132 * __zio_execute() so that we can force __zio_execute() to be 2133 * inlined. This reduces stack overhead which is important 2134 * because __zio_execute() is called recursively in several zio 2135 * code paths. zio_execute() itself cannot be inlined because 2136 * it is externally visible. 2137 */ 2138 void 2139 zio_execute(void *zio) 2140 { 2141 fstrans_cookie_t cookie; 2142 2143 cookie = spl_fstrans_mark(); 2144 __zio_execute(zio); 2145 spl_fstrans_unmark(cookie); 2146 } 2147 2148 /* 2149 * Used to determine if in the current context the stack is sized large 2150 * enough to allow zio_execute() to be called recursively. A minimum 2151 * stack size of 16K is required to avoid needing to re-dispatch the zio. 2152 */ 2153 static boolean_t 2154 zio_execute_stack_check(zio_t *zio) 2155 { 2156 #if !defined(HAVE_LARGE_STACKS) 2157 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 2158 2159 /* Executing in txg_sync_thread() context. */ 2160 if (dp && curthread == dp->dp_tx.tx_sync_thread) 2161 return (B_TRUE); 2162 2163 /* Pool initialization outside of zio_taskq context. */ 2164 if (dp && spa_is_initializing(dp->dp_spa) && 2165 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) && 2166 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH)) 2167 return (B_TRUE); 2168 #else 2169 (void) zio; 2170 #endif /* HAVE_LARGE_STACKS */ 2171 2172 return (B_FALSE); 2173 } 2174 2175 __attribute__((always_inline)) 2176 static inline void 2177 __zio_execute(zio_t *zio) 2178 { 2179 ASSERT3U(zio->io_queued_timestamp, >, 0); 2180 2181 while (zio->io_stage < ZIO_STAGE_DONE) { 2182 enum zio_stage pipeline = zio->io_pipeline; 2183 enum zio_stage stage = zio->io_stage; 2184 2185 zio->io_executor = curthread; 2186 2187 ASSERT(!MUTEX_HELD(&zio->io_lock)); 2188 ASSERT(ISP2(stage)); 2189 ASSERT(zio->io_stall == NULL); 2190 2191 do { 2192 stage <<= 1; 2193 } while ((stage & pipeline) == 0); 2194 2195 ASSERT(stage <= ZIO_STAGE_DONE); 2196 2197 /* 2198 * If we are in interrupt context and this pipeline stage 2199 * will grab a config lock that is held across I/O, 2200 * or may wait for an I/O that needs an interrupt thread 2201 * to complete, issue async to avoid deadlock. 2202 * 2203 * For VDEV_IO_START, we cut in line so that the io will 2204 * be sent to disk promptly. 2205 */ 2206 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL && 2207 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) { 2208 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2209 zio_requeue_io_start_cut_in_line : B_FALSE; 2210 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2211 return; 2212 } 2213 2214 /* 2215 * If the current context doesn't have large enough stacks 2216 * the zio must be issued asynchronously to prevent overflow. 2217 */ 2218 if (zio_execute_stack_check(zio)) { 2219 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ? 2220 zio_requeue_io_start_cut_in_line : B_FALSE; 2221 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut); 2222 return; 2223 } 2224 2225 zio->io_stage = stage; 2226 zio->io_pipeline_trace |= zio->io_stage; 2227 2228 /* 2229 * The zio pipeline stage returns the next zio to execute 2230 * (typically the same as this one), or NULL if we should 2231 * stop. 2232 */ 2233 zio = zio_pipeline[highbit64(stage) - 1](zio); 2234 2235 if (zio == NULL) 2236 return; 2237 } 2238 } 2239 2240 2241 /* 2242 * ========================================================================== 2243 * Initiate I/O, either sync or async 2244 * ========================================================================== 2245 */ 2246 int 2247 zio_wait(zio_t *zio) 2248 { 2249 /* 2250 * Some routines, like zio_free_sync(), may return a NULL zio 2251 * to avoid the performance overhead of creating and then destroying 2252 * an unneeded zio. For the callers' simplicity, we accept a NULL 2253 * zio and ignore it. 2254 */ 2255 if (zio == NULL) 2256 return (0); 2257 2258 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms); 2259 int error; 2260 2261 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN); 2262 ASSERT3P(zio->io_executor, ==, NULL); 2263 2264 zio->io_waiter = curthread; 2265 ASSERT0(zio->io_queued_timestamp); 2266 zio->io_queued_timestamp = gethrtime(); 2267 2268 __zio_execute(zio); 2269 2270 mutex_enter(&zio->io_lock); 2271 while (zio->io_executor != NULL) { 2272 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock, 2273 ddi_get_lbolt() + timeout); 2274 2275 if (zfs_deadman_enabled && error == -1 && 2276 gethrtime() - zio->io_queued_timestamp > 2277 spa_deadman_ziotime(zio->io_spa)) { 2278 mutex_exit(&zio->io_lock); 2279 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms); 2280 zio_deadman(zio, FTAG); 2281 mutex_enter(&zio->io_lock); 2282 } 2283 } 2284 mutex_exit(&zio->io_lock); 2285 2286 error = zio->io_error; 2287 zio_destroy(zio); 2288 2289 return (error); 2290 } 2291 2292 void 2293 zio_nowait(zio_t *zio) 2294 { 2295 /* 2296 * See comment in zio_wait(). 2297 */ 2298 if (zio == NULL) 2299 return; 2300 2301 ASSERT3P(zio->io_executor, ==, NULL); 2302 2303 if (zio->io_child_type == ZIO_CHILD_LOGICAL && 2304 zio_unique_parent(zio) == NULL) { 2305 zio_t *pio; 2306 2307 /* 2308 * This is a logical async I/O with no parent to wait for it. 2309 * We add it to the spa_async_root_zio "Godfather" I/O which 2310 * will ensure they complete prior to unloading the pool. 2311 */ 2312 spa_t *spa = zio->io_spa; 2313 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE]; 2314 2315 zio_add_child(pio, zio); 2316 } 2317 2318 ASSERT0(zio->io_queued_timestamp); 2319 zio->io_queued_timestamp = gethrtime(); 2320 __zio_execute(zio); 2321 } 2322 2323 /* 2324 * ========================================================================== 2325 * Reexecute, cancel, or suspend/resume failed I/O 2326 * ========================================================================== 2327 */ 2328 2329 static void 2330 zio_reexecute(void *arg) 2331 { 2332 zio_t *pio = arg; 2333 zio_t *cio, *cio_next; 2334 2335 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL); 2336 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN); 2337 ASSERT(pio->io_gang_leader == NULL); 2338 ASSERT(pio->io_gang_tree == NULL); 2339 2340 pio->io_flags = pio->io_orig_flags; 2341 pio->io_stage = pio->io_orig_stage; 2342 pio->io_pipeline = pio->io_orig_pipeline; 2343 pio->io_reexecute = 0; 2344 pio->io_flags |= ZIO_FLAG_REEXECUTED; 2345 pio->io_pipeline_trace = 0; 2346 pio->io_error = 0; 2347 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2348 pio->io_state[w] = 0; 2349 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 2350 pio->io_child_error[c] = 0; 2351 2352 if (IO_IS_ALLOCATING(pio)) 2353 BP_ZERO(pio->io_bp); 2354 2355 /* 2356 * As we reexecute pio's children, new children could be created. 2357 * New children go to the head of pio's io_child_list, however, 2358 * so we will (correctly) not reexecute them. The key is that 2359 * the remainder of pio's io_child_list, from 'cio_next' onward, 2360 * cannot be affected by any side effects of reexecuting 'cio'. 2361 */ 2362 zio_link_t *zl = NULL; 2363 mutex_enter(&pio->io_lock); 2364 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 2365 cio_next = zio_walk_children(pio, &zl); 2366 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 2367 pio->io_children[cio->io_child_type][w]++; 2368 mutex_exit(&pio->io_lock); 2369 zio_reexecute(cio); 2370 mutex_enter(&pio->io_lock); 2371 } 2372 mutex_exit(&pio->io_lock); 2373 2374 /* 2375 * Now that all children have been reexecuted, execute the parent. 2376 * We don't reexecute "The Godfather" I/O here as it's the 2377 * responsibility of the caller to wait on it. 2378 */ 2379 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) { 2380 pio->io_queued_timestamp = gethrtime(); 2381 __zio_execute(pio); 2382 } 2383 } 2384 2385 void 2386 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason) 2387 { 2388 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC) 2389 fm_panic("Pool '%s' has encountered an uncorrectable I/O " 2390 "failure and the failure mode property for this pool " 2391 "is set to panic.", spa_name(spa)); 2392 2393 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O " 2394 "failure and has been suspended.\n", spa_name(spa)); 2395 2396 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, 2397 NULL, NULL, 0); 2398 2399 mutex_enter(&spa->spa_suspend_lock); 2400 2401 if (spa->spa_suspend_zio_root == NULL) 2402 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 2403 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 2404 ZIO_FLAG_GODFATHER); 2405 2406 spa->spa_suspended = reason; 2407 2408 if (zio != NULL) { 2409 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 2410 ASSERT(zio != spa->spa_suspend_zio_root); 2411 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 2412 ASSERT(zio_unique_parent(zio) == NULL); 2413 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 2414 zio_add_child(spa->spa_suspend_zio_root, zio); 2415 } 2416 2417 mutex_exit(&spa->spa_suspend_lock); 2418 } 2419 2420 int 2421 zio_resume(spa_t *spa) 2422 { 2423 zio_t *pio; 2424 2425 /* 2426 * Reexecute all previously suspended i/o. 2427 */ 2428 mutex_enter(&spa->spa_suspend_lock); 2429 spa->spa_suspended = ZIO_SUSPEND_NONE; 2430 cv_broadcast(&spa->spa_suspend_cv); 2431 pio = spa->spa_suspend_zio_root; 2432 spa->spa_suspend_zio_root = NULL; 2433 mutex_exit(&spa->spa_suspend_lock); 2434 2435 if (pio == NULL) 2436 return (0); 2437 2438 zio_reexecute(pio); 2439 return (zio_wait(pio)); 2440 } 2441 2442 void 2443 zio_resume_wait(spa_t *spa) 2444 { 2445 mutex_enter(&spa->spa_suspend_lock); 2446 while (spa_suspended(spa)) 2447 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock); 2448 mutex_exit(&spa->spa_suspend_lock); 2449 } 2450 2451 /* 2452 * ========================================================================== 2453 * Gang blocks. 2454 * 2455 * A gang block is a collection of small blocks that looks to the DMU 2456 * like one large block. When zio_dva_allocate() cannot find a block 2457 * of the requested size, due to either severe fragmentation or the pool 2458 * being nearly full, it calls zio_write_gang_block() to construct the 2459 * block from smaller fragments. 2460 * 2461 * A gang block consists of a gang header (zio_gbh_phys_t) and up to 2462 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like 2463 * an indirect block: it's an array of block pointers. It consumes 2464 * only one sector and hence is allocatable regardless of fragmentation. 2465 * The gang header's bps point to its gang members, which hold the data. 2466 * 2467 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg> 2468 * as the verifier to ensure uniqueness of the SHA256 checksum. 2469 * Critically, the gang block bp's blk_cksum is the checksum of the data, 2470 * not the gang header. This ensures that data block signatures (needed for 2471 * deduplication) are independent of how the block is physically stored. 2472 * 2473 * Gang blocks can be nested: a gang member may itself be a gang block. 2474 * Thus every gang block is a tree in which root and all interior nodes are 2475 * gang headers, and the leaves are normal blocks that contain user data. 2476 * The root of the gang tree is called the gang leader. 2477 * 2478 * To perform any operation (read, rewrite, free, claim) on a gang block, 2479 * zio_gang_assemble() first assembles the gang tree (minus data leaves) 2480 * in the io_gang_tree field of the original logical i/o by recursively 2481 * reading the gang leader and all gang headers below it. This yields 2482 * an in-core tree containing the contents of every gang header and the 2483 * bps for every constituent of the gang block. 2484 * 2485 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree 2486 * and invokes a callback on each bp. To free a gang block, zio_gang_issue() 2487 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp. 2488 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim(). 2489 * zio_read_gang() is a wrapper around zio_read() that omits reading gang 2490 * headers, since we already have those in io_gang_tree. zio_rewrite_gang() 2491 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite() 2492 * of the gang header plus zio_checksum_compute() of the data to update the 2493 * gang header's blk_cksum as described above. 2494 * 2495 * The two-phase assemble/issue model solves the problem of partial failure -- 2496 * what if you'd freed part of a gang block but then couldn't read the 2497 * gang header for another part? Assembling the entire gang tree first 2498 * ensures that all the necessary gang header I/O has succeeded before 2499 * starting the actual work of free, claim, or write. Once the gang tree 2500 * is assembled, free and claim are in-memory operations that cannot fail. 2501 * 2502 * In the event that a gang write fails, zio_dva_unallocate() walks the 2503 * gang tree to immediately free (i.e. insert back into the space map) 2504 * everything we've allocated. This ensures that we don't get ENOSPC 2505 * errors during repeated suspend/resume cycles due to a flaky device. 2506 * 2507 * Gang rewrites only happen during sync-to-convergence. If we can't assemble 2508 * the gang tree, we won't modify the block, so we can safely defer the free 2509 * (knowing that the block is still intact). If we *can* assemble the gang 2510 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free 2511 * each constituent bp and we can allocate a new block on the next sync pass. 2512 * 2513 * In all cases, the gang tree allows complete recovery from partial failure. 2514 * ========================================================================== 2515 */ 2516 2517 static void 2518 zio_gang_issue_func_done(zio_t *zio) 2519 { 2520 abd_free(zio->io_abd); 2521 } 2522 2523 static zio_t * 2524 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2525 uint64_t offset) 2526 { 2527 if (gn != NULL) 2528 return (pio); 2529 2530 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset), 2531 BP_GET_PSIZE(bp), zio_gang_issue_func_done, 2532 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2533 &pio->io_bookmark)); 2534 } 2535 2536 static zio_t * 2537 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2538 uint64_t offset) 2539 { 2540 zio_t *zio; 2541 2542 if (gn != NULL) { 2543 abd_t *gbh_abd = 2544 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2545 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2546 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL, 2547 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), 2548 &pio->io_bookmark); 2549 /* 2550 * As we rewrite each gang header, the pipeline will compute 2551 * a new gang block header checksum for it; but no one will 2552 * compute a new data checksum, so we do that here. The one 2553 * exception is the gang leader: the pipeline already computed 2554 * its data checksum because that stage precedes gang assembly. 2555 * (Presently, nothing actually uses interior data checksums; 2556 * this is just good hygiene.) 2557 */ 2558 if (gn != pio->io_gang_leader->io_gang_tree) { 2559 abd_t *buf = abd_get_offset(data, offset); 2560 2561 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp), 2562 buf, BP_GET_PSIZE(bp)); 2563 2564 abd_free(buf); 2565 } 2566 /* 2567 * If we are here to damage data for testing purposes, 2568 * leave the GBH alone so that we can detect the damage. 2569 */ 2570 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE) 2571 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 2572 } else { 2573 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp, 2574 abd_get_offset(data, offset), BP_GET_PSIZE(bp), 2575 zio_gang_issue_func_done, NULL, pio->io_priority, 2576 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2577 } 2578 2579 return (zio); 2580 } 2581 2582 static zio_t * 2583 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2584 uint64_t offset) 2585 { 2586 (void) gn, (void) data, (void) offset; 2587 2588 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp, 2589 ZIO_GANG_CHILD_FLAGS(pio)); 2590 if (zio == NULL) { 2591 zio = zio_null(pio, pio->io_spa, 2592 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)); 2593 } 2594 return (zio); 2595 } 2596 2597 static zio_t * 2598 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data, 2599 uint64_t offset) 2600 { 2601 (void) gn, (void) data, (void) offset; 2602 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp, 2603 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio))); 2604 } 2605 2606 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = { 2607 NULL, 2608 zio_read_gang, 2609 zio_rewrite_gang, 2610 zio_free_gang, 2611 zio_claim_gang, 2612 NULL 2613 }; 2614 2615 static void zio_gang_tree_assemble_done(zio_t *zio); 2616 2617 static zio_gang_node_t * 2618 zio_gang_node_alloc(zio_gang_node_t **gnpp) 2619 { 2620 zio_gang_node_t *gn; 2621 2622 ASSERT(*gnpp == NULL); 2623 2624 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP); 2625 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE); 2626 *gnpp = gn; 2627 2628 return (gn); 2629 } 2630 2631 static void 2632 zio_gang_node_free(zio_gang_node_t **gnpp) 2633 { 2634 zio_gang_node_t *gn = *gnpp; 2635 2636 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2637 ASSERT(gn->gn_child[g] == NULL); 2638 2639 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2640 kmem_free(gn, sizeof (*gn)); 2641 *gnpp = NULL; 2642 } 2643 2644 static void 2645 zio_gang_tree_free(zio_gang_node_t **gnpp) 2646 { 2647 zio_gang_node_t *gn = *gnpp; 2648 2649 if (gn == NULL) 2650 return; 2651 2652 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) 2653 zio_gang_tree_free(&gn->gn_child[g]); 2654 2655 zio_gang_node_free(gnpp); 2656 } 2657 2658 static void 2659 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp) 2660 { 2661 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp); 2662 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE); 2663 2664 ASSERT(gio->io_gang_leader == gio); 2665 ASSERT(BP_IS_GANG(bp)); 2666 2667 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2668 zio_gang_tree_assemble_done, gn, gio->io_priority, 2669 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark)); 2670 } 2671 2672 static void 2673 zio_gang_tree_assemble_done(zio_t *zio) 2674 { 2675 zio_t *gio = zio->io_gang_leader; 2676 zio_gang_node_t *gn = zio->io_private; 2677 blkptr_t *bp = zio->io_bp; 2678 2679 ASSERT(gio == zio_unique_parent(zio)); 2680 ASSERT(zio->io_child_count == 0); 2681 2682 if (zio->io_error) 2683 return; 2684 2685 /* this ABD was created from a linear buf in zio_gang_tree_assemble */ 2686 if (BP_SHOULD_BYTESWAP(bp)) 2687 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size); 2688 2689 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh); 2690 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 2691 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2692 2693 abd_free(zio->io_abd); 2694 2695 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2696 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2697 if (!BP_IS_GANG(gbp)) 2698 continue; 2699 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]); 2700 } 2701 } 2702 2703 static void 2704 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data, 2705 uint64_t offset) 2706 { 2707 zio_t *gio = pio->io_gang_leader; 2708 zio_t *zio; 2709 2710 ASSERT(BP_IS_GANG(bp) == !!gn); 2711 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp)); 2712 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree); 2713 2714 /* 2715 * If you're a gang header, your data is in gn->gn_gbh. 2716 * If you're a gang member, your data is in 'data' and gn == NULL. 2717 */ 2718 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset); 2719 2720 if (gn != NULL) { 2721 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC); 2722 2723 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 2724 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g]; 2725 if (BP_IS_HOLE(gbp)) 2726 continue; 2727 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data, 2728 offset); 2729 offset += BP_GET_PSIZE(gbp); 2730 } 2731 } 2732 2733 if (gn == gio->io_gang_tree) 2734 ASSERT3U(gio->io_size, ==, offset); 2735 2736 if (zio != pio) 2737 zio_nowait(zio); 2738 } 2739 2740 static zio_t * 2741 zio_gang_assemble(zio_t *zio) 2742 { 2743 blkptr_t *bp = zio->io_bp; 2744 2745 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL); 2746 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2747 2748 zio->io_gang_leader = zio; 2749 2750 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree); 2751 2752 return (zio); 2753 } 2754 2755 static zio_t * 2756 zio_gang_issue(zio_t *zio) 2757 { 2758 blkptr_t *bp = zio->io_bp; 2759 2760 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) { 2761 return (NULL); 2762 } 2763 2764 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio); 2765 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 2766 2767 if (zio->io_child_error[ZIO_CHILD_GANG] == 0) 2768 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd, 2769 0); 2770 else 2771 zio_gang_tree_free(&zio->io_gang_tree); 2772 2773 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2774 2775 return (zio); 2776 } 2777 2778 static void 2779 zio_write_gang_member_ready(zio_t *zio) 2780 { 2781 zio_t *pio = zio_unique_parent(zio); 2782 dva_t *cdva = zio->io_bp->blk_dva; 2783 dva_t *pdva = pio->io_bp->blk_dva; 2784 uint64_t asize; 2785 zio_t *gio __maybe_unused = zio->io_gang_leader; 2786 2787 if (BP_IS_HOLE(zio->io_bp)) 2788 return; 2789 2790 ASSERT(BP_IS_HOLE(&zio->io_bp_orig)); 2791 2792 ASSERT(zio->io_child_type == ZIO_CHILD_GANG); 2793 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies); 2794 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp)); 2795 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp)); 2796 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 2797 2798 mutex_enter(&pio->io_lock); 2799 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) { 2800 ASSERT(DVA_GET_GANG(&pdva[d])); 2801 asize = DVA_GET_ASIZE(&pdva[d]); 2802 asize += DVA_GET_ASIZE(&cdva[d]); 2803 DVA_SET_ASIZE(&pdva[d], asize); 2804 } 2805 mutex_exit(&pio->io_lock); 2806 } 2807 2808 static void 2809 zio_write_gang_done(zio_t *zio) 2810 { 2811 /* 2812 * The io_abd field will be NULL for a zio with no data. The io_flags 2813 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't 2814 * check for it here as it is cleared in zio_ready. 2815 */ 2816 if (zio->io_abd != NULL) 2817 abd_free(zio->io_abd); 2818 } 2819 2820 static zio_t * 2821 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc) 2822 { 2823 spa_t *spa = pio->io_spa; 2824 blkptr_t *bp = pio->io_bp; 2825 zio_t *gio = pio->io_gang_leader; 2826 zio_t *zio; 2827 zio_gang_node_t *gn, **gnpp; 2828 zio_gbh_phys_t *gbh; 2829 abd_t *gbh_abd; 2830 uint64_t txg = pio->io_txg; 2831 uint64_t resid = pio->io_size; 2832 uint64_t lsize; 2833 int copies = gio->io_prop.zp_copies; 2834 zio_prop_t zp; 2835 int error; 2836 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA); 2837 2838 /* 2839 * If one copy was requested, store 2 copies of the GBH, so that we 2840 * can still traverse all the data (e.g. to free or scrub) even if a 2841 * block is damaged. Note that we can't store 3 copies of the GBH in 2842 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt. 2843 */ 2844 int gbh_copies = copies; 2845 if (gbh_copies == 1) { 2846 gbh_copies = MIN(2, spa_max_replication(spa)); 2847 } 2848 2849 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER; 2850 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2851 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2852 ASSERT(has_data); 2853 2854 flags |= METASLAB_ASYNC_ALLOC; 2855 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator]. 2856 mca_alloc_slots, pio)); 2857 2858 /* 2859 * The logical zio has already placed a reservation for 2860 * 'copies' allocation slots but gang blocks may require 2861 * additional copies. These additional copies 2862 * (i.e. gbh_copies - copies) are guaranteed to succeed 2863 * since metaslab_class_throttle_reserve() always allows 2864 * additional reservations for gang blocks. 2865 */ 2866 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies, 2867 pio->io_allocator, pio, flags)); 2868 } 2869 2870 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE, 2871 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags, 2872 &pio->io_alloc_list, pio, pio->io_allocator); 2873 if (error) { 2874 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2875 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2876 ASSERT(has_data); 2877 2878 /* 2879 * If we failed to allocate the gang block header then 2880 * we remove any additional allocation reservations that 2881 * we placed here. The original reservation will 2882 * be removed when the logical I/O goes to the ready 2883 * stage. 2884 */ 2885 metaslab_class_throttle_unreserve(mc, 2886 gbh_copies - copies, pio->io_allocator, pio); 2887 } 2888 2889 pio->io_error = error; 2890 return (pio); 2891 } 2892 2893 if (pio == gio) { 2894 gnpp = &gio->io_gang_tree; 2895 } else { 2896 gnpp = pio->io_private; 2897 ASSERT(pio->io_ready == zio_write_gang_member_ready); 2898 } 2899 2900 gn = zio_gang_node_alloc(gnpp); 2901 gbh = gn->gn_gbh; 2902 memset(gbh, 0, SPA_GANGBLOCKSIZE); 2903 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE); 2904 2905 /* 2906 * Create the gang header. 2907 */ 2908 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE, 2909 zio_write_gang_done, NULL, pio->io_priority, 2910 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2911 2912 /* 2913 * Create and nowait the gang children. 2914 */ 2915 for (int g = 0; resid != 0; resid -= lsize, g++) { 2916 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g), 2917 SPA_MINBLOCKSIZE); 2918 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid); 2919 2920 zp.zp_checksum = gio->io_prop.zp_checksum; 2921 zp.zp_compress = ZIO_COMPRESS_OFF; 2922 zp.zp_complevel = gio->io_prop.zp_complevel; 2923 zp.zp_type = DMU_OT_NONE; 2924 zp.zp_level = 0; 2925 zp.zp_copies = gio->io_prop.zp_copies; 2926 zp.zp_dedup = B_FALSE; 2927 zp.zp_dedup_verify = B_FALSE; 2928 zp.zp_nopwrite = B_FALSE; 2929 zp.zp_encrypt = gio->io_prop.zp_encrypt; 2930 zp.zp_byteorder = gio->io_prop.zp_byteorder; 2931 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN); 2932 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN); 2933 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN); 2934 2935 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g], 2936 has_data ? abd_get_offset(pio->io_abd, pio->io_size - 2937 resid) : NULL, lsize, lsize, &zp, 2938 zio_write_gang_member_ready, NULL, NULL, 2939 zio_write_gang_done, &gn->gn_child[g], pio->io_priority, 2940 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark); 2941 2942 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 2943 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 2944 ASSERT(has_data); 2945 2946 /* 2947 * Gang children won't throttle but we should 2948 * account for their work, so reserve an allocation 2949 * slot for them here. 2950 */ 2951 VERIFY(metaslab_class_throttle_reserve(mc, 2952 zp.zp_copies, cio->io_allocator, cio, flags)); 2953 } 2954 zio_nowait(cio); 2955 } 2956 2957 /* 2958 * Set pio's pipeline to just wait for zio to finish. 2959 */ 2960 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 2961 2962 /* 2963 * We didn't allocate this bp, so make sure it doesn't get unmarked. 2964 */ 2965 pio->io_flags &= ~ZIO_FLAG_FASTWRITE; 2966 2967 zio_nowait(zio); 2968 2969 return (pio); 2970 } 2971 2972 /* 2973 * The zio_nop_write stage in the pipeline determines if allocating a 2974 * new bp is necessary. The nopwrite feature can handle writes in 2975 * either syncing or open context (i.e. zil writes) and as a result is 2976 * mutually exclusive with dedup. 2977 * 2978 * By leveraging a cryptographically secure checksum, such as SHA256, we 2979 * can compare the checksums of the new data and the old to determine if 2980 * allocating a new block is required. Note that our requirements for 2981 * cryptographic strength are fairly weak: there can't be any accidental 2982 * hash collisions, but we don't need to be secure against intentional 2983 * (malicious) collisions. To trigger a nopwrite, you have to be able 2984 * to write the file to begin with, and triggering an incorrect (hash 2985 * collision) nopwrite is no worse than simply writing to the file. 2986 * That said, there are no known attacks against the checksum algorithms 2987 * used for nopwrite, assuming that the salt and the checksums 2988 * themselves remain secret. 2989 */ 2990 static zio_t * 2991 zio_nop_write(zio_t *zio) 2992 { 2993 blkptr_t *bp = zio->io_bp; 2994 blkptr_t *bp_orig = &zio->io_bp_orig; 2995 zio_prop_t *zp = &zio->io_prop; 2996 2997 ASSERT(BP_IS_HOLE(bp)); 2998 ASSERT(BP_GET_LEVEL(bp) == 0); 2999 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE)); 3000 ASSERT(zp->zp_nopwrite); 3001 ASSERT(!zp->zp_dedup); 3002 ASSERT(zio->io_bp_override == NULL); 3003 ASSERT(IO_IS_ALLOCATING(zio)); 3004 3005 /* 3006 * Check to see if the original bp and the new bp have matching 3007 * characteristics (i.e. same checksum, compression algorithms, etc). 3008 * If they don't then just continue with the pipeline which will 3009 * allocate a new bp. 3010 */ 3011 if (BP_IS_HOLE(bp_orig) || 3012 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags & 3013 ZCHECKSUM_FLAG_NOPWRITE) || 3014 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) || 3015 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) || 3016 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) || 3017 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) || 3018 zp->zp_copies != BP_GET_NDVAS(bp_orig)) 3019 return (zio); 3020 3021 /* 3022 * If the checksums match then reset the pipeline so that we 3023 * avoid allocating a new bp and issuing any I/O. 3024 */ 3025 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) { 3026 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags & 3027 ZCHECKSUM_FLAG_NOPWRITE); 3028 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig)); 3029 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig)); 3030 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF); 3031 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop); 3032 3033 /* 3034 * If we're overwriting a block that is currently on an 3035 * indirect vdev, then ignore the nopwrite request and 3036 * allow a new block to be allocated on a concrete vdev. 3037 */ 3038 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER); 3039 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) { 3040 vdev_t *tvd = vdev_lookup_top(zio->io_spa, 3041 DVA_GET_VDEV(&bp_orig->blk_dva[d])); 3042 if (tvd->vdev_ops == &vdev_indirect_ops) { 3043 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3044 return (zio); 3045 } 3046 } 3047 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG); 3048 3049 *bp = *bp_orig; 3050 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3051 zio->io_flags |= ZIO_FLAG_NOPWRITE; 3052 } 3053 3054 return (zio); 3055 } 3056 3057 /* 3058 * ========================================================================== 3059 * Block Reference Table 3060 * ========================================================================== 3061 */ 3062 static zio_t * 3063 zio_brt_free(zio_t *zio) 3064 { 3065 blkptr_t *bp; 3066 3067 bp = zio->io_bp; 3068 3069 if (BP_GET_LEVEL(bp) > 0 || 3070 BP_IS_METADATA(bp) || 3071 !brt_maybe_exists(zio->io_spa, bp)) { 3072 return (zio); 3073 } 3074 3075 if (!brt_entry_decref(zio->io_spa, bp)) { 3076 /* 3077 * This isn't the last reference, so we cannot free 3078 * the data yet. 3079 */ 3080 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 3081 } 3082 3083 return (zio); 3084 } 3085 3086 /* 3087 * ========================================================================== 3088 * Dedup 3089 * ========================================================================== 3090 */ 3091 static void 3092 zio_ddt_child_read_done(zio_t *zio) 3093 { 3094 blkptr_t *bp = zio->io_bp; 3095 ddt_entry_t *dde = zio->io_private; 3096 ddt_phys_t *ddp; 3097 zio_t *pio = zio_unique_parent(zio); 3098 3099 mutex_enter(&pio->io_lock); 3100 ddp = ddt_phys_select(dde, bp); 3101 if (zio->io_error == 0) 3102 ddt_phys_clear(ddp); /* this ddp doesn't need repair */ 3103 3104 if (zio->io_error == 0 && dde->dde_repair_abd == NULL) 3105 dde->dde_repair_abd = zio->io_abd; 3106 else 3107 abd_free(zio->io_abd); 3108 mutex_exit(&pio->io_lock); 3109 } 3110 3111 static zio_t * 3112 zio_ddt_read_start(zio_t *zio) 3113 { 3114 blkptr_t *bp = zio->io_bp; 3115 3116 ASSERT(BP_GET_DEDUP(bp)); 3117 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3118 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3119 3120 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3121 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3122 ddt_entry_t *dde = ddt_repair_start(ddt, bp); 3123 ddt_phys_t *ddp = dde->dde_phys; 3124 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp); 3125 blkptr_t blk; 3126 3127 ASSERT(zio->io_vsd == NULL); 3128 zio->io_vsd = dde; 3129 3130 if (ddp_self == NULL) 3131 return (zio); 3132 3133 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 3134 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self) 3135 continue; 3136 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp, 3137 &blk); 3138 zio_nowait(zio_read(zio, zio->io_spa, &blk, 3139 abd_alloc_for_io(zio->io_size, B_TRUE), 3140 zio->io_size, zio_ddt_child_read_done, dde, 3141 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) | 3142 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark)); 3143 } 3144 return (zio); 3145 } 3146 3147 zio_nowait(zio_read(zio, zio->io_spa, bp, 3148 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority, 3149 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark)); 3150 3151 return (zio); 3152 } 3153 3154 static zio_t * 3155 zio_ddt_read_done(zio_t *zio) 3156 { 3157 blkptr_t *bp = zio->io_bp; 3158 3159 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) { 3160 return (NULL); 3161 } 3162 3163 ASSERT(BP_GET_DEDUP(bp)); 3164 ASSERT(BP_GET_PSIZE(bp) == zio->io_size); 3165 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3166 3167 if (zio->io_child_error[ZIO_CHILD_DDT]) { 3168 ddt_t *ddt = ddt_select(zio->io_spa, bp); 3169 ddt_entry_t *dde = zio->io_vsd; 3170 if (ddt == NULL) { 3171 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE); 3172 return (zio); 3173 } 3174 if (dde == NULL) { 3175 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1; 3176 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE); 3177 return (NULL); 3178 } 3179 if (dde->dde_repair_abd != NULL) { 3180 abd_copy(zio->io_abd, dde->dde_repair_abd, 3181 zio->io_size); 3182 zio->io_child_error[ZIO_CHILD_DDT] = 0; 3183 } 3184 ddt_repair_done(ddt, dde); 3185 zio->io_vsd = NULL; 3186 } 3187 3188 ASSERT(zio->io_vsd == NULL); 3189 3190 return (zio); 3191 } 3192 3193 static boolean_t 3194 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde) 3195 { 3196 spa_t *spa = zio->io_spa; 3197 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW); 3198 3199 ASSERT(!(zio->io_bp_override && do_raw)); 3200 3201 /* 3202 * Note: we compare the original data, not the transformed data, 3203 * because when zio->io_bp is an override bp, we will not have 3204 * pushed the I/O transforms. That's an important optimization 3205 * because otherwise we'd compress/encrypt all dmu_sync() data twice. 3206 * However, we should never get a raw, override zio so in these 3207 * cases we can compare the io_abd directly. This is useful because 3208 * it allows us to do dedup verification even if we don't have access 3209 * to the original data (for instance, if the encryption keys aren't 3210 * loaded). 3211 */ 3212 3213 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3214 zio_t *lio = dde->dde_lead_zio[p]; 3215 3216 if (lio != NULL && do_raw) { 3217 return (lio->io_size != zio->io_size || 3218 abd_cmp(zio->io_abd, lio->io_abd) != 0); 3219 } else if (lio != NULL) { 3220 return (lio->io_orig_size != zio->io_orig_size || 3221 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0); 3222 } 3223 } 3224 3225 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) { 3226 ddt_phys_t *ddp = &dde->dde_phys[p]; 3227 3228 if (ddp->ddp_phys_birth != 0 && do_raw) { 3229 blkptr_t blk = *zio->io_bp; 3230 uint64_t psize; 3231 abd_t *tmpabd; 3232 int error; 3233 3234 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3235 psize = BP_GET_PSIZE(&blk); 3236 3237 if (psize != zio->io_size) 3238 return (B_TRUE); 3239 3240 ddt_exit(ddt); 3241 3242 tmpabd = abd_alloc_for_io(psize, B_TRUE); 3243 3244 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd, 3245 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 3246 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3247 ZIO_FLAG_RAW, &zio->io_bookmark)); 3248 3249 if (error == 0) { 3250 if (abd_cmp(tmpabd, zio->io_abd) != 0) 3251 error = SET_ERROR(ENOENT); 3252 } 3253 3254 abd_free(tmpabd); 3255 ddt_enter(ddt); 3256 return (error != 0); 3257 } else if (ddp->ddp_phys_birth != 0) { 3258 arc_buf_t *abuf = NULL; 3259 arc_flags_t aflags = ARC_FLAG_WAIT; 3260 blkptr_t blk = *zio->io_bp; 3261 int error; 3262 3263 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth); 3264 3265 if (BP_GET_LSIZE(&blk) != zio->io_orig_size) 3266 return (B_TRUE); 3267 3268 ddt_exit(ddt); 3269 3270 error = arc_read(NULL, spa, &blk, 3271 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, 3272 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3273 &aflags, &zio->io_bookmark); 3274 3275 if (error == 0) { 3276 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data, 3277 zio->io_orig_size) != 0) 3278 error = SET_ERROR(ENOENT); 3279 arc_buf_destroy(abuf, &abuf); 3280 } 3281 3282 ddt_enter(ddt); 3283 return (error != 0); 3284 } 3285 } 3286 3287 return (B_FALSE); 3288 } 3289 3290 static void 3291 zio_ddt_child_write_ready(zio_t *zio) 3292 { 3293 int p = zio->io_prop.zp_copies; 3294 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3295 ddt_entry_t *dde = zio->io_private; 3296 ddt_phys_t *ddp = &dde->dde_phys[p]; 3297 zio_t *pio; 3298 3299 if (zio->io_error) 3300 return; 3301 3302 ddt_enter(ddt); 3303 3304 ASSERT(dde->dde_lead_zio[p] == zio); 3305 3306 ddt_phys_fill(ddp, zio->io_bp); 3307 3308 zio_link_t *zl = NULL; 3309 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 3310 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg); 3311 3312 ddt_exit(ddt); 3313 } 3314 3315 static void 3316 zio_ddt_child_write_done(zio_t *zio) 3317 { 3318 int p = zio->io_prop.zp_copies; 3319 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp); 3320 ddt_entry_t *dde = zio->io_private; 3321 ddt_phys_t *ddp = &dde->dde_phys[p]; 3322 3323 ddt_enter(ddt); 3324 3325 ASSERT(ddp->ddp_refcnt == 0); 3326 ASSERT(dde->dde_lead_zio[p] == zio); 3327 dde->dde_lead_zio[p] = NULL; 3328 3329 if (zio->io_error == 0) { 3330 zio_link_t *zl = NULL; 3331 while (zio_walk_parents(zio, &zl) != NULL) 3332 ddt_phys_addref(ddp); 3333 } else { 3334 ddt_phys_clear(ddp); 3335 } 3336 3337 ddt_exit(ddt); 3338 } 3339 3340 static zio_t * 3341 zio_ddt_write(zio_t *zio) 3342 { 3343 spa_t *spa = zio->io_spa; 3344 blkptr_t *bp = zio->io_bp; 3345 uint64_t txg = zio->io_txg; 3346 zio_prop_t *zp = &zio->io_prop; 3347 int p = zp->zp_copies; 3348 zio_t *cio = NULL; 3349 ddt_t *ddt = ddt_select(spa, bp); 3350 ddt_entry_t *dde; 3351 ddt_phys_t *ddp; 3352 3353 ASSERT(BP_GET_DEDUP(bp)); 3354 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum); 3355 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override); 3356 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW))); 3357 3358 ddt_enter(ddt); 3359 dde = ddt_lookup(ddt, bp, B_TRUE); 3360 ddp = &dde->dde_phys[p]; 3361 3362 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) { 3363 /* 3364 * If we're using a weak checksum, upgrade to a strong checksum 3365 * and try again. If we're already using a strong checksum, 3366 * we can't resolve it, so just convert to an ordinary write. 3367 * (And automatically e-mail a paper to Nature?) 3368 */ 3369 if (!(zio_checksum_table[zp->zp_checksum].ci_flags & 3370 ZCHECKSUM_FLAG_DEDUP)) { 3371 zp->zp_checksum = spa_dedup_checksum(spa); 3372 zio_pop_transforms(zio); 3373 zio->io_stage = ZIO_STAGE_OPEN; 3374 BP_ZERO(bp); 3375 } else { 3376 zp->zp_dedup = B_FALSE; 3377 BP_SET_DEDUP(bp, B_FALSE); 3378 } 3379 ASSERT(!BP_GET_DEDUP(bp)); 3380 zio->io_pipeline = ZIO_WRITE_PIPELINE; 3381 ddt_exit(ddt); 3382 return (zio); 3383 } 3384 3385 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) { 3386 if (ddp->ddp_phys_birth != 0) 3387 ddt_bp_fill(ddp, bp, txg); 3388 if (dde->dde_lead_zio[p] != NULL) 3389 zio_add_child(zio, dde->dde_lead_zio[p]); 3390 else 3391 ddt_phys_addref(ddp); 3392 } else if (zio->io_bp_override) { 3393 ASSERT(bp->blk_birth == txg); 3394 ASSERT(BP_EQUAL(bp, zio->io_bp_override)); 3395 ddt_phys_fill(ddp, bp); 3396 ddt_phys_addref(ddp); 3397 } else { 3398 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd, 3399 zio->io_orig_size, zio->io_orig_size, zp, 3400 zio_ddt_child_write_ready, NULL, NULL, 3401 zio_ddt_child_write_done, dde, zio->io_priority, 3402 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark); 3403 3404 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL); 3405 dde->dde_lead_zio[p] = cio; 3406 } 3407 3408 ddt_exit(ddt); 3409 3410 zio_nowait(cio); 3411 3412 return (zio); 3413 } 3414 3415 static ddt_entry_t *freedde; /* for debugging */ 3416 3417 static zio_t * 3418 zio_ddt_free(zio_t *zio) 3419 { 3420 spa_t *spa = zio->io_spa; 3421 blkptr_t *bp = zio->io_bp; 3422 ddt_t *ddt = ddt_select(spa, bp); 3423 ddt_entry_t *dde; 3424 ddt_phys_t *ddp; 3425 3426 ASSERT(BP_GET_DEDUP(bp)); 3427 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 3428 3429 ddt_enter(ddt); 3430 freedde = dde = ddt_lookup(ddt, bp, B_TRUE); 3431 if (dde) { 3432 ddp = ddt_phys_select(dde, bp); 3433 if (ddp) 3434 ddt_phys_decref(ddp); 3435 } 3436 ddt_exit(ddt); 3437 3438 return (zio); 3439 } 3440 3441 /* 3442 * ========================================================================== 3443 * Allocate and free blocks 3444 * ========================================================================== 3445 */ 3446 3447 static zio_t * 3448 zio_io_to_allocate(spa_t *spa, int allocator) 3449 { 3450 zio_t *zio; 3451 3452 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock)); 3453 3454 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree); 3455 if (zio == NULL) 3456 return (NULL); 3457 3458 ASSERT(IO_IS_ALLOCATING(zio)); 3459 3460 /* 3461 * Try to place a reservation for this zio. If we're unable to 3462 * reserve then we throttle. 3463 */ 3464 ASSERT3U(zio->io_allocator, ==, allocator); 3465 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class, 3466 zio->io_prop.zp_copies, allocator, zio, 0)) { 3467 return (NULL); 3468 } 3469 3470 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio); 3471 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE); 3472 3473 return (zio); 3474 } 3475 3476 static zio_t * 3477 zio_dva_throttle(zio_t *zio) 3478 { 3479 spa_t *spa = zio->io_spa; 3480 zio_t *nio; 3481 metaslab_class_t *mc; 3482 3483 /* locate an appropriate allocation class */ 3484 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type, 3485 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk); 3486 3487 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE || 3488 !mc->mc_alloc_throttle_enabled || 3489 zio->io_child_type == ZIO_CHILD_GANG || 3490 zio->io_flags & ZIO_FLAG_NODATA) { 3491 return (zio); 3492 } 3493 3494 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3495 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3496 ASSERT3U(zio->io_queued_timestamp, >, 0); 3497 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE); 3498 3499 zbookmark_phys_t *bm = &zio->io_bookmark; 3500 /* 3501 * We want to try to use as many allocators as possible to help improve 3502 * performance, but we also want logically adjacent IOs to be physically 3503 * adjacent to improve sequential read performance. We chunk each object 3504 * into 2^20 block regions, and then hash based on the objset, object, 3505 * level, and region to accomplish both of these goals. 3506 */ 3507 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object, 3508 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count; 3509 zio->io_allocator = allocator; 3510 zio->io_metaslab_class = mc; 3511 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3512 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio); 3513 nio = zio_io_to_allocate(spa, allocator); 3514 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3515 return (nio); 3516 } 3517 3518 static void 3519 zio_allocate_dispatch(spa_t *spa, int allocator) 3520 { 3521 zio_t *zio; 3522 3523 mutex_enter(&spa->spa_allocs[allocator].spaa_lock); 3524 zio = zio_io_to_allocate(spa, allocator); 3525 mutex_exit(&spa->spa_allocs[allocator].spaa_lock); 3526 if (zio == NULL) 3527 return; 3528 3529 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE); 3530 ASSERT0(zio->io_error); 3531 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE); 3532 } 3533 3534 static zio_t * 3535 zio_dva_allocate(zio_t *zio) 3536 { 3537 spa_t *spa = zio->io_spa; 3538 metaslab_class_t *mc; 3539 blkptr_t *bp = zio->io_bp; 3540 int error; 3541 int flags = 0; 3542 3543 if (zio->io_gang_leader == NULL) { 3544 ASSERT(zio->io_child_type > ZIO_CHILD_GANG); 3545 zio->io_gang_leader = zio; 3546 } 3547 3548 ASSERT(BP_IS_HOLE(bp)); 3549 ASSERT0(BP_GET_NDVAS(bp)); 3550 ASSERT3U(zio->io_prop.zp_copies, >, 0); 3551 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa)); 3552 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 3553 3554 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0; 3555 if (zio->io_flags & ZIO_FLAG_NODATA) 3556 flags |= METASLAB_DONT_THROTTLE; 3557 if (zio->io_flags & ZIO_FLAG_GANG_CHILD) 3558 flags |= METASLAB_GANG_CHILD; 3559 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE) 3560 flags |= METASLAB_ASYNC_ALLOC; 3561 3562 /* 3563 * if not already chosen, locate an appropriate allocation class 3564 */ 3565 mc = zio->io_metaslab_class; 3566 if (mc == NULL) { 3567 mc = spa_preferred_class(spa, zio->io_size, 3568 zio->io_prop.zp_type, zio->io_prop.zp_level, 3569 zio->io_prop.zp_zpl_smallblk); 3570 zio->io_metaslab_class = mc; 3571 } 3572 3573 /* 3574 * Try allocating the block in the usual metaslab class. 3575 * If that's full, allocate it in the normal class. 3576 * If that's full, allocate as a gang block, 3577 * and if all are full, the allocation fails (which shouldn't happen). 3578 * 3579 * Note that we do not fall back on embedded slog (ZIL) space, to 3580 * preserve unfragmented slog space, which is critical for decent 3581 * sync write performance. If a log allocation fails, we will fall 3582 * back to spa_sync() which is abysmal for performance. 3583 */ 3584 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3585 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3586 &zio->io_alloc_list, zio, zio->io_allocator); 3587 3588 /* 3589 * Fallback to normal class when an alloc class is full 3590 */ 3591 if (error == ENOSPC && mc != spa_normal_class(spa)) { 3592 /* 3593 * If throttling, transfer reservation over to normal class. 3594 * The io_allocator slot can remain the same even though we 3595 * are switching classes. 3596 */ 3597 if (mc->mc_alloc_throttle_enabled && 3598 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) { 3599 metaslab_class_throttle_unreserve(mc, 3600 zio->io_prop.zp_copies, zio->io_allocator, zio); 3601 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING; 3602 3603 VERIFY(metaslab_class_throttle_reserve( 3604 spa_normal_class(spa), 3605 zio->io_prop.zp_copies, zio->io_allocator, zio, 3606 flags | METASLAB_MUST_RESERVE)); 3607 } 3608 zio->io_metaslab_class = mc = spa_normal_class(spa); 3609 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3610 zfs_dbgmsg("%s: metaslab allocation failure, " 3611 "trying normal class: zio %px, size %llu, error %d", 3612 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3613 error); 3614 } 3615 3616 error = metaslab_alloc(spa, mc, zio->io_size, bp, 3617 zio->io_prop.zp_copies, zio->io_txg, NULL, flags, 3618 &zio->io_alloc_list, zio, zio->io_allocator); 3619 } 3620 3621 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) { 3622 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) { 3623 zfs_dbgmsg("%s: metaslab allocation failure, " 3624 "trying ganging: zio %px, size %llu, error %d", 3625 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3626 error); 3627 } 3628 return (zio_write_gang_block(zio, mc)); 3629 } 3630 if (error != 0) { 3631 if (error != ENOSPC || 3632 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) { 3633 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, " 3634 "size %llu, error %d", 3635 spa_name(spa), zio, (u_longlong_t)zio->io_size, 3636 error); 3637 } 3638 zio->io_error = error; 3639 } 3640 3641 return (zio); 3642 } 3643 3644 static zio_t * 3645 zio_dva_free(zio_t *zio) 3646 { 3647 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE); 3648 3649 return (zio); 3650 } 3651 3652 static zio_t * 3653 zio_dva_claim(zio_t *zio) 3654 { 3655 int error; 3656 3657 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 3658 if (error) 3659 zio->io_error = error; 3660 3661 return (zio); 3662 } 3663 3664 /* 3665 * Undo an allocation. This is used by zio_done() when an I/O fails 3666 * and we want to give back the block we just allocated. 3667 * This handles both normal blocks and gang blocks. 3668 */ 3669 static void 3670 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp) 3671 { 3672 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp)); 3673 ASSERT(zio->io_bp_override == NULL); 3674 3675 if (!BP_IS_HOLE(bp)) 3676 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE); 3677 3678 if (gn != NULL) { 3679 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) { 3680 zio_dva_unallocate(zio, gn->gn_child[g], 3681 &gn->gn_gbh->zg_blkptr[g]); 3682 } 3683 } 3684 } 3685 3686 /* 3687 * Try to allocate an intent log block. Return 0 on success, errno on failure. 3688 */ 3689 int 3690 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp, 3691 uint64_t size, boolean_t *slog) 3692 { 3693 int error = 1; 3694 zio_alloc_list_t io_alloc_list; 3695 3696 ASSERT(txg > spa_syncing_txg(spa)); 3697 3698 metaslab_trace_init(&io_alloc_list); 3699 3700 /* 3701 * Block pointer fields are useful to metaslabs for stats and debugging. 3702 * Fill in the obvious ones before calling into metaslab_alloc(). 3703 */ 3704 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3705 BP_SET_PSIZE(new_bp, size); 3706 BP_SET_LEVEL(new_bp, 0); 3707 3708 /* 3709 * When allocating a zil block, we don't have information about 3710 * the final destination of the block except the objset it's part 3711 * of, so we just hash the objset ID to pick the allocator to get 3712 * some parallelism. 3713 */ 3714 int flags = METASLAB_FASTWRITE | METASLAB_ZIL; 3715 int allocator = (uint_t)cityhash4(0, 0, 0, 3716 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count; 3717 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1, 3718 txg, NULL, flags, &io_alloc_list, NULL, allocator); 3719 *slog = (error == 0); 3720 if (error != 0) { 3721 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size, 3722 new_bp, 1, txg, NULL, flags, 3723 &io_alloc_list, NULL, allocator); 3724 } 3725 if (error != 0) { 3726 error = metaslab_alloc(spa, spa_normal_class(spa), size, 3727 new_bp, 1, txg, NULL, flags, 3728 &io_alloc_list, NULL, allocator); 3729 } 3730 metaslab_trace_fini(&io_alloc_list); 3731 3732 if (error == 0) { 3733 BP_SET_LSIZE(new_bp, size); 3734 BP_SET_PSIZE(new_bp, size); 3735 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 3736 BP_SET_CHECKSUM(new_bp, 3737 spa_version(spa) >= SPA_VERSION_SLIM_ZIL 3738 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG); 3739 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 3740 BP_SET_LEVEL(new_bp, 0); 3741 BP_SET_DEDUP(new_bp, 0); 3742 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 3743 3744 /* 3745 * encrypted blocks will require an IV and salt. We generate 3746 * these now since we will not be rewriting the bp at 3747 * rewrite time. 3748 */ 3749 if (os->os_encrypted) { 3750 uint8_t iv[ZIO_DATA_IV_LEN]; 3751 uint8_t salt[ZIO_DATA_SALT_LEN]; 3752 3753 BP_SET_CRYPT(new_bp, B_TRUE); 3754 VERIFY0(spa_crypt_get_salt(spa, 3755 dmu_objset_id(os), salt)); 3756 VERIFY0(zio_crypt_generate_iv(iv)); 3757 3758 zio_crypt_encode_params_bp(new_bp, salt, iv); 3759 } 3760 } else { 3761 zfs_dbgmsg("%s: zil block allocation failure: " 3762 "size %llu, error %d", spa_name(spa), (u_longlong_t)size, 3763 error); 3764 } 3765 3766 return (error); 3767 } 3768 3769 /* 3770 * ========================================================================== 3771 * Read and write to physical devices 3772 * ========================================================================== 3773 */ 3774 3775 /* 3776 * Issue an I/O to the underlying vdev. Typically the issue pipeline 3777 * stops after this stage and will resume upon I/O completion. 3778 * However, there are instances where the vdev layer may need to 3779 * continue the pipeline when an I/O was not issued. Since the I/O 3780 * that was sent to the vdev layer might be different than the one 3781 * currently active in the pipeline (see vdev_queue_io()), we explicitly 3782 * force the underlying vdev layers to call either zio_execute() or 3783 * zio_interrupt() to ensure that the pipeline continues with the correct I/O. 3784 */ 3785 static zio_t * 3786 zio_vdev_io_start(zio_t *zio) 3787 { 3788 vdev_t *vd = zio->io_vd; 3789 uint64_t align; 3790 spa_t *spa = zio->io_spa; 3791 3792 zio->io_delay = 0; 3793 3794 ASSERT(zio->io_error == 0); 3795 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0); 3796 3797 if (vd == NULL) { 3798 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 3799 spa_config_enter(spa, SCL_ZIO, zio, RW_READER); 3800 3801 /* 3802 * The mirror_ops handle multiple DVAs in a single BP. 3803 */ 3804 vdev_mirror_ops.vdev_op_io_start(zio); 3805 return (NULL); 3806 } 3807 3808 ASSERT3P(zio->io_logical, !=, zio); 3809 if (zio->io_type == ZIO_TYPE_WRITE) { 3810 ASSERT(spa->spa_trust_config); 3811 3812 /* 3813 * Note: the code can handle other kinds of writes, 3814 * but we don't expect them. 3815 */ 3816 if (zio->io_vd->vdev_noalloc) { 3817 ASSERT(zio->io_flags & 3818 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL | 3819 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)); 3820 } 3821 } 3822 3823 align = 1ULL << vd->vdev_top->vdev_ashift; 3824 3825 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 3826 P2PHASE(zio->io_size, align) != 0) { 3827 /* Transform logical writes to be a full physical block size. */ 3828 uint64_t asize = P2ROUNDUP(zio->io_size, align); 3829 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize); 3830 ASSERT(vd == vd->vdev_top); 3831 if (zio->io_type == ZIO_TYPE_WRITE) { 3832 abd_copy(abuf, zio->io_abd, zio->io_size); 3833 abd_zero_off(abuf, zio->io_size, asize - zio->io_size); 3834 } 3835 zio_push_transform(zio, abuf, asize, asize, zio_subblock); 3836 } 3837 3838 /* 3839 * If this is not a physical io, make sure that it is properly aligned 3840 * before proceeding. 3841 */ 3842 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) { 3843 ASSERT0(P2PHASE(zio->io_offset, align)); 3844 ASSERT0(P2PHASE(zio->io_size, align)); 3845 } else { 3846 /* 3847 * For physical writes, we allow 512b aligned writes and assume 3848 * the device will perform a read-modify-write as necessary. 3849 */ 3850 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE)); 3851 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE)); 3852 } 3853 3854 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa)); 3855 3856 /* 3857 * If this is a repair I/O, and there's no self-healing involved -- 3858 * that is, we're just resilvering what we expect to resilver -- 3859 * then don't do the I/O unless zio's txg is actually in vd's DTL. 3860 * This prevents spurious resilvering. 3861 * 3862 * There are a few ways that we can end up creating these spurious 3863 * resilver i/os: 3864 * 3865 * 1. A resilver i/o will be issued if any DVA in the BP has a 3866 * dirty DTL. The mirror code will issue resilver writes to 3867 * each DVA, including the one(s) that are not on vdevs with dirty 3868 * DTLs. 3869 * 3870 * 2. With nested replication, which happens when we have a 3871 * "replacing" or "spare" vdev that's a child of a mirror or raidz. 3872 * For example, given mirror(replacing(A+B), C), it's likely that 3873 * only A is out of date (it's the new device). In this case, we'll 3874 * read from C, then use the data to resilver A+B -- but we don't 3875 * actually want to resilver B, just A. The top-level mirror has no 3876 * way to know this, so instead we just discard unnecessary repairs 3877 * as we work our way down the vdev tree. 3878 * 3879 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc. 3880 * The same logic applies to any form of nested replication: ditto 3881 * + mirror, RAID-Z + replacing, etc. 3882 * 3883 * However, indirect vdevs point off to other vdevs which may have 3884 * DTL's, so we never bypass them. The child i/os on concrete vdevs 3885 * will be properly bypassed instead. 3886 * 3887 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from 3888 * a dRAID spare vdev. For example, when a dRAID spare is first 3889 * used, its spare blocks need to be written to but the leaf vdev's 3890 * of such blocks can have empty DTL_PARTIAL. 3891 * 3892 * There seemed no clean way to allow such writes while bypassing 3893 * spurious ones. At this point, just avoid all bypassing for dRAID 3894 * for correctness. 3895 */ 3896 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) && 3897 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) && 3898 zio->io_txg != 0 && /* not a delegated i/o */ 3899 vd->vdev_ops != &vdev_indirect_ops && 3900 vd->vdev_top->vdev_ops != &vdev_draid_ops && 3901 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) { 3902 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 3903 zio_vdev_io_bypass(zio); 3904 return (zio); 3905 } 3906 3907 /* 3908 * Select the next best leaf I/O to process. Distributed spares are 3909 * excluded since they dispatch the I/O directly to a leaf vdev after 3910 * applying the dRAID mapping. 3911 */ 3912 if (vd->vdev_ops->vdev_op_leaf && 3913 vd->vdev_ops != &vdev_draid_spare_ops && 3914 (zio->io_type == ZIO_TYPE_READ || 3915 zio->io_type == ZIO_TYPE_WRITE || 3916 zio->io_type == ZIO_TYPE_TRIM)) { 3917 3918 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio)) 3919 return (zio); 3920 3921 if ((zio = vdev_queue_io(zio)) == NULL) 3922 return (NULL); 3923 3924 if (!vdev_accessible(vd, zio)) { 3925 zio->io_error = SET_ERROR(ENXIO); 3926 zio_interrupt(zio); 3927 return (NULL); 3928 } 3929 zio->io_delay = gethrtime(); 3930 } 3931 3932 vd->vdev_ops->vdev_op_io_start(zio); 3933 return (NULL); 3934 } 3935 3936 static zio_t * 3937 zio_vdev_io_done(zio_t *zio) 3938 { 3939 vdev_t *vd = zio->io_vd; 3940 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops; 3941 boolean_t unexpected_error = B_FALSE; 3942 3943 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 3944 return (NULL); 3945 } 3946 3947 ASSERT(zio->io_type == ZIO_TYPE_READ || 3948 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM); 3949 3950 if (zio->io_delay) 3951 zio->io_delay = gethrtime() - zio->io_delay; 3952 3953 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 3954 vd->vdev_ops != &vdev_draid_spare_ops) { 3955 vdev_queue_io_done(zio); 3956 3957 if (zio->io_type == ZIO_TYPE_WRITE) 3958 vdev_cache_write(zio); 3959 3960 if (zio_injection_enabled && zio->io_error == 0) 3961 zio->io_error = zio_handle_device_injections(vd, zio, 3962 EIO, EILSEQ); 3963 3964 if (zio_injection_enabled && zio->io_error == 0) 3965 zio->io_error = zio_handle_label_injection(zio, EIO); 3966 3967 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) { 3968 if (!vdev_accessible(vd, zio)) { 3969 zio->io_error = SET_ERROR(ENXIO); 3970 } else { 3971 unexpected_error = B_TRUE; 3972 } 3973 } 3974 } 3975 3976 ops->vdev_op_io_done(zio); 3977 3978 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE) 3979 VERIFY(vdev_probe(vd, zio) == NULL); 3980 3981 return (zio); 3982 } 3983 3984 /* 3985 * This function is used to change the priority of an existing zio that is 3986 * currently in-flight. This is used by the arc to upgrade priority in the 3987 * event that a demand read is made for a block that is currently queued 3988 * as a scrub or async read IO. Otherwise, the high priority read request 3989 * would end up having to wait for the lower priority IO. 3990 */ 3991 void 3992 zio_change_priority(zio_t *pio, zio_priority_t priority) 3993 { 3994 zio_t *cio, *cio_next; 3995 zio_link_t *zl = NULL; 3996 3997 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 3998 3999 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) { 4000 vdev_queue_change_io_priority(pio, priority); 4001 } else { 4002 pio->io_priority = priority; 4003 } 4004 4005 mutex_enter(&pio->io_lock); 4006 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) { 4007 cio_next = zio_walk_children(pio, &zl); 4008 zio_change_priority(cio, priority); 4009 } 4010 mutex_exit(&pio->io_lock); 4011 } 4012 4013 /* 4014 * For non-raidz ZIOs, we can just copy aside the bad data read from the 4015 * disk, and use that to finish the checksum ereport later. 4016 */ 4017 static void 4018 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr, 4019 const abd_t *good_buf) 4020 { 4021 /* no processing needed */ 4022 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE); 4023 } 4024 4025 void 4026 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr) 4027 { 4028 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size); 4029 4030 abd_copy(abd, zio->io_abd, zio->io_size); 4031 4032 zcr->zcr_cbinfo = zio->io_size; 4033 zcr->zcr_cbdata = abd; 4034 zcr->zcr_finish = zio_vsd_default_cksum_finish; 4035 zcr->zcr_free = zio_abd_free; 4036 } 4037 4038 static zio_t * 4039 zio_vdev_io_assess(zio_t *zio) 4040 { 4041 vdev_t *vd = zio->io_vd; 4042 4043 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) { 4044 return (NULL); 4045 } 4046 4047 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER)) 4048 spa_config_exit(zio->io_spa, SCL_ZIO, zio); 4049 4050 if (zio->io_vsd != NULL) { 4051 zio->io_vsd_ops->vsd_free(zio); 4052 zio->io_vsd = NULL; 4053 } 4054 4055 if (zio_injection_enabled && zio->io_error == 0) 4056 zio->io_error = zio_handle_fault_injection(zio, EIO); 4057 4058 /* 4059 * If the I/O failed, determine whether we should attempt to retry it. 4060 * 4061 * On retry, we cut in line in the issue queue, since we don't want 4062 * compression/checksumming/etc. work to prevent our (cheap) IO reissue. 4063 */ 4064 if (zio->io_error && vd == NULL && 4065 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) { 4066 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */ 4067 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */ 4068 zio->io_error = 0; 4069 zio->io_flags |= ZIO_FLAG_IO_RETRY | 4070 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE; 4071 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1; 4072 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, 4073 zio_requeue_io_start_cut_in_line); 4074 return (NULL); 4075 } 4076 4077 /* 4078 * If we got an error on a leaf device, convert it to ENXIO 4079 * if the device is not accessible at all. 4080 */ 4081 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf && 4082 !vdev_accessible(vd, zio)) 4083 zio->io_error = SET_ERROR(ENXIO); 4084 4085 /* 4086 * If we can't write to an interior vdev (mirror or RAID-Z), 4087 * set vdev_cant_write so that we stop trying to allocate from it. 4088 */ 4089 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE && 4090 vd != NULL && !vd->vdev_ops->vdev_op_leaf) { 4091 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting " 4092 "cant_write=TRUE due to write failure with ENXIO", 4093 zio); 4094 vd->vdev_cant_write = B_TRUE; 4095 } 4096 4097 /* 4098 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future 4099 * attempts will ever succeed. In this case we set a persistent 4100 * boolean flag so that we don't bother with it in the future. 4101 */ 4102 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) && 4103 zio->io_type == ZIO_TYPE_IOCTL && 4104 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL) 4105 vd->vdev_nowritecache = B_TRUE; 4106 4107 if (zio->io_error) 4108 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4109 4110 if (vd != NULL && vd->vdev_ops->vdev_op_leaf && 4111 zio->io_physdone != NULL) { 4112 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED)); 4113 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV); 4114 zio->io_physdone(zio->io_logical); 4115 } 4116 4117 return (zio); 4118 } 4119 4120 void 4121 zio_vdev_io_reissue(zio_t *zio) 4122 { 4123 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4124 ASSERT(zio->io_error == 0); 4125 4126 zio->io_stage >>= 1; 4127 } 4128 4129 void 4130 zio_vdev_io_redone(zio_t *zio) 4131 { 4132 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 4133 4134 zio->io_stage >>= 1; 4135 } 4136 4137 void 4138 zio_vdev_io_bypass(zio_t *zio) 4139 { 4140 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 4141 ASSERT(zio->io_error == 0); 4142 4143 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 4144 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1; 4145 } 4146 4147 /* 4148 * ========================================================================== 4149 * Encrypt and store encryption parameters 4150 * ========================================================================== 4151 */ 4152 4153 4154 /* 4155 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for 4156 * managing the storage of encryption parameters and passing them to the 4157 * lower-level encryption functions. 4158 */ 4159 static zio_t * 4160 zio_encrypt(zio_t *zio) 4161 { 4162 zio_prop_t *zp = &zio->io_prop; 4163 spa_t *spa = zio->io_spa; 4164 blkptr_t *bp = zio->io_bp; 4165 uint64_t psize = BP_GET_PSIZE(bp); 4166 uint64_t dsobj = zio->io_bookmark.zb_objset; 4167 dmu_object_type_t ot = BP_GET_TYPE(bp); 4168 void *enc_buf = NULL; 4169 abd_t *eabd = NULL; 4170 uint8_t salt[ZIO_DATA_SALT_LEN]; 4171 uint8_t iv[ZIO_DATA_IV_LEN]; 4172 uint8_t mac[ZIO_DATA_MAC_LEN]; 4173 boolean_t no_crypt = B_FALSE; 4174 4175 /* the root zio already encrypted the data */ 4176 if (zio->io_child_type == ZIO_CHILD_GANG) 4177 return (zio); 4178 4179 /* only ZIL blocks are re-encrypted on rewrite */ 4180 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG) 4181 return (zio); 4182 4183 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) { 4184 BP_SET_CRYPT(bp, B_FALSE); 4185 return (zio); 4186 } 4187 4188 /* if we are doing raw encryption set the provided encryption params */ 4189 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) { 4190 ASSERT0(BP_GET_LEVEL(bp)); 4191 BP_SET_CRYPT(bp, B_TRUE); 4192 BP_SET_BYTEORDER(bp, zp->zp_byteorder); 4193 if (ot != DMU_OT_OBJSET) 4194 zio_crypt_encode_mac_bp(bp, zp->zp_mac); 4195 4196 /* dnode blocks must be written out in the provided byteorder */ 4197 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER && 4198 ot == DMU_OT_DNODE) { 4199 void *bswap_buf = zio_buf_alloc(psize); 4200 abd_t *babd = abd_get_from_buf(bswap_buf, psize); 4201 4202 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4203 abd_copy_to_buf(bswap_buf, zio->io_abd, psize); 4204 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf, 4205 psize); 4206 4207 abd_take_ownership_of_buf(babd, B_TRUE); 4208 zio_push_transform(zio, babd, psize, psize, NULL); 4209 } 4210 4211 if (DMU_OT_IS_ENCRYPTED(ot)) 4212 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv); 4213 return (zio); 4214 } 4215 4216 /* indirect blocks only maintain a cksum of the lower level MACs */ 4217 if (BP_GET_LEVEL(bp) > 0) { 4218 BP_SET_CRYPT(bp, B_TRUE); 4219 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE, 4220 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp), 4221 mac)); 4222 zio_crypt_encode_mac_bp(bp, mac); 4223 return (zio); 4224 } 4225 4226 /* 4227 * Objset blocks are a special case since they have 2 256-bit MACs 4228 * embedded within them. 4229 */ 4230 if (ot == DMU_OT_OBJSET) { 4231 ASSERT0(DMU_OT_IS_ENCRYPTED(ot)); 4232 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF); 4233 BP_SET_CRYPT(bp, B_TRUE); 4234 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj, 4235 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp))); 4236 return (zio); 4237 } 4238 4239 /* unencrypted object types are only authenticated with a MAC */ 4240 if (!DMU_OT_IS_ENCRYPTED(ot)) { 4241 BP_SET_CRYPT(bp, B_TRUE); 4242 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj, 4243 zio->io_abd, psize, mac)); 4244 zio_crypt_encode_mac_bp(bp, mac); 4245 return (zio); 4246 } 4247 4248 /* 4249 * Later passes of sync-to-convergence may decide to rewrite data 4250 * in place to avoid more disk reallocations. This presents a problem 4251 * for encryption because this constitutes rewriting the new data with 4252 * the same encryption key and IV. However, this only applies to blocks 4253 * in the MOS (particularly the spacemaps) and we do not encrypt the 4254 * MOS. We assert that the zio is allocating or an intent log write 4255 * to enforce this. 4256 */ 4257 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG); 4258 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG); 4259 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION)); 4260 ASSERT3U(psize, !=, 0); 4261 4262 enc_buf = zio_buf_alloc(psize); 4263 eabd = abd_get_from_buf(enc_buf, psize); 4264 abd_take_ownership_of_buf(eabd, B_TRUE); 4265 4266 /* 4267 * For an explanation of what encryption parameters are stored 4268 * where, see the block comment in zio_crypt.c. 4269 */ 4270 if (ot == DMU_OT_INTENT_LOG) { 4271 zio_crypt_decode_params_bp(bp, salt, iv); 4272 } else { 4273 BP_SET_CRYPT(bp, B_TRUE); 4274 } 4275 4276 /* Perform the encryption. This should not fail */ 4277 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark, 4278 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 4279 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt)); 4280 4281 /* encode encryption metadata into the bp */ 4282 if (ot == DMU_OT_INTENT_LOG) { 4283 /* 4284 * ZIL blocks store the MAC in the embedded checksum, so the 4285 * transform must always be applied. 4286 */ 4287 zio_crypt_encode_mac_zil(enc_buf, mac); 4288 zio_push_transform(zio, eabd, psize, psize, NULL); 4289 } else { 4290 BP_SET_CRYPT(bp, B_TRUE); 4291 zio_crypt_encode_params_bp(bp, salt, iv); 4292 zio_crypt_encode_mac_bp(bp, mac); 4293 4294 if (no_crypt) { 4295 ASSERT3U(ot, ==, DMU_OT_DNODE); 4296 abd_free(eabd); 4297 } else { 4298 zio_push_transform(zio, eabd, psize, psize, NULL); 4299 } 4300 } 4301 4302 return (zio); 4303 } 4304 4305 /* 4306 * ========================================================================== 4307 * Generate and verify checksums 4308 * ========================================================================== 4309 */ 4310 static zio_t * 4311 zio_checksum_generate(zio_t *zio) 4312 { 4313 blkptr_t *bp = zio->io_bp; 4314 enum zio_checksum checksum; 4315 4316 if (bp == NULL) { 4317 /* 4318 * This is zio_write_phys(). 4319 * We're either generating a label checksum, or none at all. 4320 */ 4321 checksum = zio->io_prop.zp_checksum; 4322 4323 if (checksum == ZIO_CHECKSUM_OFF) 4324 return (zio); 4325 4326 ASSERT(checksum == ZIO_CHECKSUM_LABEL); 4327 } else { 4328 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) { 4329 ASSERT(!IO_IS_ALLOCATING(zio)); 4330 checksum = ZIO_CHECKSUM_GANG_HEADER; 4331 } else { 4332 checksum = BP_GET_CHECKSUM(bp); 4333 } 4334 } 4335 4336 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size); 4337 4338 return (zio); 4339 } 4340 4341 static zio_t * 4342 zio_checksum_verify(zio_t *zio) 4343 { 4344 zio_bad_cksum_t info; 4345 blkptr_t *bp = zio->io_bp; 4346 int error; 4347 4348 ASSERT(zio->io_vd != NULL); 4349 4350 if (bp == NULL) { 4351 /* 4352 * This is zio_read_phys(). 4353 * We're either verifying a label checksum, or nothing at all. 4354 */ 4355 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF) 4356 return (zio); 4357 4358 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL); 4359 } 4360 4361 if ((error = zio_checksum_error(zio, &info)) != 0) { 4362 zio->io_error = error; 4363 if (error == ECKSUM && 4364 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 4365 mutex_enter(&zio->io_vd->vdev_stat_lock); 4366 zio->io_vd->vdev_stat.vs_checksum_errors++; 4367 mutex_exit(&zio->io_vd->vdev_stat_lock); 4368 (void) zfs_ereport_start_checksum(zio->io_spa, 4369 zio->io_vd, &zio->io_bookmark, zio, 4370 zio->io_offset, zio->io_size, &info); 4371 } 4372 } 4373 4374 return (zio); 4375 } 4376 4377 /* 4378 * Called by RAID-Z to ensure we don't compute the checksum twice. 4379 */ 4380 void 4381 zio_checksum_verified(zio_t *zio) 4382 { 4383 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY; 4384 } 4385 4386 /* 4387 * ========================================================================== 4388 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other. 4389 * An error of 0 indicates success. ENXIO indicates whole-device failure, 4390 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO 4391 * indicate errors that are specific to one I/O, and most likely permanent. 4392 * Any other error is presumed to be worse because we weren't expecting it. 4393 * ========================================================================== 4394 */ 4395 int 4396 zio_worst_error(int e1, int e2) 4397 { 4398 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO }; 4399 int r1, r2; 4400 4401 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++) 4402 if (e1 == zio_error_rank[r1]) 4403 break; 4404 4405 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++) 4406 if (e2 == zio_error_rank[r2]) 4407 break; 4408 4409 return (r1 > r2 ? e1 : e2); 4410 } 4411 4412 /* 4413 * ========================================================================== 4414 * I/O completion 4415 * ========================================================================== 4416 */ 4417 static zio_t * 4418 zio_ready(zio_t *zio) 4419 { 4420 blkptr_t *bp = zio->io_bp; 4421 zio_t *pio, *pio_next; 4422 zio_link_t *zl = NULL; 4423 4424 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, 4425 ZIO_WAIT_READY)) { 4426 return (NULL); 4427 } 4428 4429 if (zio->io_ready) { 4430 ASSERT(IO_IS_ALLOCATING(zio)); 4431 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) || 4432 (zio->io_flags & ZIO_FLAG_NOPWRITE)); 4433 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0); 4434 4435 zio->io_ready(zio); 4436 } 4437 4438 if (bp != NULL && bp != &zio->io_bp_copy) 4439 zio->io_bp_copy = *bp; 4440 4441 if (zio->io_error != 0) { 4442 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE; 4443 4444 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4445 ASSERT(IO_IS_ALLOCATING(zio)); 4446 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4447 ASSERT(zio->io_metaslab_class != NULL); 4448 4449 /* 4450 * We were unable to allocate anything, unreserve and 4451 * issue the next I/O to allocate. 4452 */ 4453 metaslab_class_throttle_unreserve( 4454 zio->io_metaslab_class, zio->io_prop.zp_copies, 4455 zio->io_allocator, zio); 4456 zio_allocate_dispatch(zio->io_spa, zio->io_allocator); 4457 } 4458 } 4459 4460 mutex_enter(&zio->io_lock); 4461 zio->io_state[ZIO_WAIT_READY] = 1; 4462 pio = zio_walk_parents(zio, &zl); 4463 mutex_exit(&zio->io_lock); 4464 4465 /* 4466 * As we notify zio's parents, new parents could be added. 4467 * New parents go to the head of zio's io_parent_list, however, 4468 * so we will (correctly) not notify them. The remainder of zio's 4469 * io_parent_list, from 'pio_next' onward, cannot change because 4470 * all parents must wait for us to be done before they can be done. 4471 */ 4472 for (; pio != NULL; pio = pio_next) { 4473 pio_next = zio_walk_parents(zio, &zl); 4474 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL); 4475 } 4476 4477 if (zio->io_flags & ZIO_FLAG_NODATA) { 4478 if (bp != NULL && BP_IS_GANG(bp)) { 4479 zio->io_flags &= ~ZIO_FLAG_NODATA; 4480 } else { 4481 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE); 4482 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES; 4483 } 4484 } 4485 4486 if (zio_injection_enabled && 4487 zio->io_spa->spa_syncing_txg == zio->io_txg) 4488 zio_handle_ignored_writes(zio); 4489 4490 return (zio); 4491 } 4492 4493 /* 4494 * Update the allocation throttle accounting. 4495 */ 4496 static void 4497 zio_dva_throttle_done(zio_t *zio) 4498 { 4499 zio_t *lio __maybe_unused = zio->io_logical; 4500 zio_t *pio = zio_unique_parent(zio); 4501 vdev_t *vd = zio->io_vd; 4502 int flags = METASLAB_ASYNC_ALLOC; 4503 4504 ASSERT3P(zio->io_bp, !=, NULL); 4505 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE); 4506 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE); 4507 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV); 4508 ASSERT(vd != NULL); 4509 ASSERT3P(vd, ==, vd->vdev_top); 4510 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY)); 4511 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4512 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING); 4513 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE)); 4514 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA)); 4515 4516 /* 4517 * Parents of gang children can have two flavors -- ones that 4518 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set) 4519 * and ones that allocated the constituent blocks. The allocation 4520 * throttle needs to know the allocating parent zio so we must find 4521 * it here. 4522 */ 4523 if (pio->io_child_type == ZIO_CHILD_GANG) { 4524 /* 4525 * If our parent is a rewrite gang child then our grandparent 4526 * would have been the one that performed the allocation. 4527 */ 4528 if (pio->io_flags & ZIO_FLAG_IO_REWRITE) 4529 pio = zio_unique_parent(pio); 4530 flags |= METASLAB_GANG_CHILD; 4531 } 4532 4533 ASSERT(IO_IS_ALLOCATING(pio)); 4534 ASSERT3P(zio, !=, zio->io_logical); 4535 ASSERT(zio->io_logical != NULL); 4536 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR)); 4537 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE); 4538 ASSERT(zio->io_metaslab_class != NULL); 4539 4540 mutex_enter(&pio->io_lock); 4541 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags, 4542 pio->io_allocator, B_TRUE); 4543 mutex_exit(&pio->io_lock); 4544 4545 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1, 4546 pio->io_allocator, pio); 4547 4548 /* 4549 * Call into the pipeline to see if there is more work that 4550 * needs to be done. If there is work to be done it will be 4551 * dispatched to another taskq thread. 4552 */ 4553 zio_allocate_dispatch(zio->io_spa, pio->io_allocator); 4554 } 4555 4556 static zio_t * 4557 zio_done(zio_t *zio) 4558 { 4559 /* 4560 * Always attempt to keep stack usage minimal here since 4561 * we can be called recursively up to 19 levels deep. 4562 */ 4563 const uint64_t psize = zio->io_size; 4564 zio_t *pio, *pio_next; 4565 zio_link_t *zl = NULL; 4566 4567 /* 4568 * If our children haven't all completed, 4569 * wait for them and then repeat this pipeline stage. 4570 */ 4571 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) { 4572 return (NULL); 4573 } 4574 4575 /* 4576 * If the allocation throttle is enabled, then update the accounting. 4577 * We only track child I/Os that are part of an allocating async 4578 * write. We must do this since the allocation is performed 4579 * by the logical I/O but the actual write is done by child I/Os. 4580 */ 4581 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING && 4582 zio->io_child_type == ZIO_CHILD_VDEV) { 4583 ASSERT(zio->io_metaslab_class != NULL); 4584 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled); 4585 zio_dva_throttle_done(zio); 4586 } 4587 4588 /* 4589 * If the allocation throttle is enabled, verify that 4590 * we have decremented the refcounts for every I/O that was throttled. 4591 */ 4592 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) { 4593 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 4594 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE); 4595 ASSERT(zio->io_bp != NULL); 4596 4597 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio, 4598 zio->io_allocator); 4599 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class-> 4600 mc_allocator[zio->io_allocator].mca_alloc_slots, zio)); 4601 } 4602 4603 4604 for (int c = 0; c < ZIO_CHILD_TYPES; c++) 4605 for (int w = 0; w < ZIO_WAIT_TYPES; w++) 4606 ASSERT(zio->io_children[c][w] == 0); 4607 4608 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) { 4609 ASSERT(zio->io_bp->blk_pad[0] == 0); 4610 ASSERT(zio->io_bp->blk_pad[1] == 0); 4611 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy, 4612 sizeof (blkptr_t)) == 0 || 4613 (zio->io_bp == zio_unique_parent(zio)->io_bp)); 4614 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) && 4615 zio->io_bp_override == NULL && 4616 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 4617 ASSERT3U(zio->io_prop.zp_copies, <=, 4618 BP_GET_NDVAS(zio->io_bp)); 4619 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 || 4620 (BP_COUNT_GANG(zio->io_bp) == 4621 BP_GET_NDVAS(zio->io_bp))); 4622 } 4623 if (zio->io_flags & ZIO_FLAG_NOPWRITE) 4624 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4625 } 4626 4627 /* 4628 * If there were child vdev/gang/ddt errors, they apply to us now. 4629 */ 4630 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV); 4631 zio_inherit_child_errors(zio, ZIO_CHILD_GANG); 4632 zio_inherit_child_errors(zio, ZIO_CHILD_DDT); 4633 4634 /* 4635 * If the I/O on the transformed data was successful, generate any 4636 * checksum reports now while we still have the transformed data. 4637 */ 4638 if (zio->io_error == 0) { 4639 while (zio->io_cksum_report != NULL) { 4640 zio_cksum_report_t *zcr = zio->io_cksum_report; 4641 uint64_t align = zcr->zcr_align; 4642 uint64_t asize = P2ROUNDUP(psize, align); 4643 abd_t *adata = zio->io_abd; 4644 4645 if (adata != NULL && asize != psize) { 4646 adata = abd_alloc(asize, B_TRUE); 4647 abd_copy(adata, zio->io_abd, psize); 4648 abd_zero_off(adata, psize, asize - psize); 4649 } 4650 4651 zio->io_cksum_report = zcr->zcr_next; 4652 zcr->zcr_next = NULL; 4653 zcr->zcr_finish(zcr, adata); 4654 zfs_ereport_free_checksum(zcr); 4655 4656 if (adata != NULL && asize != psize) 4657 abd_free(adata); 4658 } 4659 } 4660 4661 zio_pop_transforms(zio); /* note: may set zio->io_error */ 4662 4663 vdev_stat_update(zio, psize); 4664 4665 /* 4666 * If this I/O is attached to a particular vdev is slow, exceeding 4667 * 30 seconds to complete, post an error described the I/O delay. 4668 * We ignore these errors if the device is currently unavailable. 4669 */ 4670 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) { 4671 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) { 4672 /* 4673 * We want to only increment our slow IO counters if 4674 * the IO is valid (i.e. not if the drive is removed). 4675 * 4676 * zfs_ereport_post() will also do these checks, but 4677 * it can also ratelimit and have other failures, so we 4678 * need to increment the slow_io counters independent 4679 * of it. 4680 */ 4681 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY, 4682 zio->io_spa, zio->io_vd, zio)) { 4683 mutex_enter(&zio->io_vd->vdev_stat_lock); 4684 zio->io_vd->vdev_stat.vs_slow_ios++; 4685 mutex_exit(&zio->io_vd->vdev_stat_lock); 4686 4687 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY, 4688 zio->io_spa, zio->io_vd, &zio->io_bookmark, 4689 zio, 0); 4690 } 4691 } 4692 } 4693 4694 if (zio->io_error) { 4695 /* 4696 * If this I/O is attached to a particular vdev, 4697 * generate an error message describing the I/O failure 4698 * at the block level. We ignore these errors if the 4699 * device is currently unavailable. 4700 */ 4701 if (zio->io_error != ECKSUM && zio->io_vd != NULL && 4702 !vdev_is_dead(zio->io_vd)) { 4703 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO, 4704 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0); 4705 if (ret != EALREADY) { 4706 mutex_enter(&zio->io_vd->vdev_stat_lock); 4707 if (zio->io_type == ZIO_TYPE_READ) 4708 zio->io_vd->vdev_stat.vs_read_errors++; 4709 else if (zio->io_type == ZIO_TYPE_WRITE) 4710 zio->io_vd->vdev_stat.vs_write_errors++; 4711 mutex_exit(&zio->io_vd->vdev_stat_lock); 4712 } 4713 } 4714 4715 if ((zio->io_error == EIO || !(zio->io_flags & 4716 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) && 4717 zio == zio->io_logical) { 4718 /* 4719 * For logical I/O requests, tell the SPA to log the 4720 * error and generate a logical data ereport. 4721 */ 4722 spa_log_error(zio->io_spa, &zio->io_bookmark, 4723 &zio->io_bp->blk_birth); 4724 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA, 4725 zio->io_spa, NULL, &zio->io_bookmark, zio, 0); 4726 } 4727 } 4728 4729 if (zio->io_error && zio == zio->io_logical) { 4730 /* 4731 * Determine whether zio should be reexecuted. This will 4732 * propagate all the way to the root via zio_notify_parent(). 4733 */ 4734 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL); 4735 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4736 4737 if (IO_IS_ALLOCATING(zio) && 4738 !(zio->io_flags & ZIO_FLAG_CANFAIL)) { 4739 if (zio->io_error != ENOSPC) 4740 zio->io_reexecute |= ZIO_REEXECUTE_NOW; 4741 else 4742 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4743 } 4744 4745 if ((zio->io_type == ZIO_TYPE_READ || 4746 zio->io_type == ZIO_TYPE_FREE) && 4747 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && 4748 zio->io_error == ENXIO && 4749 spa_load_state(zio->io_spa) == SPA_LOAD_NONE && 4750 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE) 4751 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4752 4753 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute) 4754 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND; 4755 4756 /* 4757 * Here is a possibly good place to attempt to do 4758 * either combinatorial reconstruction or error correction 4759 * based on checksums. It also might be a good place 4760 * to send out preliminary ereports before we suspend 4761 * processing. 4762 */ 4763 } 4764 4765 /* 4766 * If there were logical child errors, they apply to us now. 4767 * We defer this until now to avoid conflating logical child 4768 * errors with errors that happened to the zio itself when 4769 * updating vdev stats and reporting FMA events above. 4770 */ 4771 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL); 4772 4773 if ((zio->io_error || zio->io_reexecute) && 4774 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio && 4775 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE))) 4776 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp); 4777 4778 zio_gang_tree_free(&zio->io_gang_tree); 4779 4780 /* 4781 * Godfather I/Os should never suspend. 4782 */ 4783 if ((zio->io_flags & ZIO_FLAG_GODFATHER) && 4784 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) 4785 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND; 4786 4787 if (zio->io_reexecute) { 4788 /* 4789 * This is a logical I/O that wants to reexecute. 4790 * 4791 * Reexecute is top-down. When an i/o fails, if it's not 4792 * the root, it simply notifies its parent and sticks around. 4793 * The parent, seeing that it still has children in zio_done(), 4794 * does the same. This percolates all the way up to the root. 4795 * The root i/o will reexecute or suspend the entire tree. 4796 * 4797 * This approach ensures that zio_reexecute() honors 4798 * all the original i/o dependency relationships, e.g. 4799 * parents not executing until children are ready. 4800 */ 4801 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL); 4802 4803 zio->io_gang_leader = NULL; 4804 4805 mutex_enter(&zio->io_lock); 4806 zio->io_state[ZIO_WAIT_DONE] = 1; 4807 mutex_exit(&zio->io_lock); 4808 4809 /* 4810 * "The Godfather" I/O monitors its children but is 4811 * not a true parent to them. It will track them through 4812 * the pipeline but severs its ties whenever they get into 4813 * trouble (e.g. suspended). This allows "The Godfather" 4814 * I/O to return status without blocking. 4815 */ 4816 zl = NULL; 4817 for (pio = zio_walk_parents(zio, &zl); pio != NULL; 4818 pio = pio_next) { 4819 zio_link_t *remove_zl = zl; 4820 pio_next = zio_walk_parents(zio, &zl); 4821 4822 if ((pio->io_flags & ZIO_FLAG_GODFATHER) && 4823 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) { 4824 zio_remove_child(pio, zio, remove_zl); 4825 /* 4826 * This is a rare code path, so we don't 4827 * bother with "next_to_execute". 4828 */ 4829 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, 4830 NULL); 4831 } 4832 } 4833 4834 if ((pio = zio_unique_parent(zio)) != NULL) { 4835 /* 4836 * We're not a root i/o, so there's nothing to do 4837 * but notify our parent. Don't propagate errors 4838 * upward since we haven't permanently failed yet. 4839 */ 4840 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER)); 4841 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE; 4842 /* 4843 * This is a rare code path, so we don't bother with 4844 * "next_to_execute". 4845 */ 4846 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL); 4847 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) { 4848 /* 4849 * We'd fail again if we reexecuted now, so suspend 4850 * until conditions improve (e.g. device comes online). 4851 */ 4852 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR); 4853 } else { 4854 /* 4855 * Reexecution is potentially a huge amount of work. 4856 * Hand it off to the otherwise-unused claim taskq. 4857 */ 4858 ASSERT(taskq_empty_ent(&zio->io_tqent)); 4859 spa_taskq_dispatch_ent(zio->io_spa, 4860 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE, 4861 zio_reexecute, zio, 0, &zio->io_tqent); 4862 } 4863 return (NULL); 4864 } 4865 4866 ASSERT(zio->io_child_count == 0); 4867 ASSERT(zio->io_reexecute == 0); 4868 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL)); 4869 4870 /* 4871 * Report any checksum errors, since the I/O is complete. 4872 */ 4873 while (zio->io_cksum_report != NULL) { 4874 zio_cksum_report_t *zcr = zio->io_cksum_report; 4875 zio->io_cksum_report = zcr->zcr_next; 4876 zcr->zcr_next = NULL; 4877 zcr->zcr_finish(zcr, NULL); 4878 zfs_ereport_free_checksum(zcr); 4879 } 4880 4881 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp && 4882 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) && 4883 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) { 4884 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp); 4885 } 4886 4887 /* 4888 * It is the responsibility of the done callback to ensure that this 4889 * particular zio is no longer discoverable for adoption, and as 4890 * such, cannot acquire any new parents. 4891 */ 4892 if (zio->io_done) 4893 zio->io_done(zio); 4894 4895 mutex_enter(&zio->io_lock); 4896 zio->io_state[ZIO_WAIT_DONE] = 1; 4897 mutex_exit(&zio->io_lock); 4898 4899 /* 4900 * We are done executing this zio. We may want to execute a parent 4901 * next. See the comment in zio_notify_parent(). 4902 */ 4903 zio_t *next_to_execute = NULL; 4904 zl = NULL; 4905 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) { 4906 zio_link_t *remove_zl = zl; 4907 pio_next = zio_walk_parents(zio, &zl); 4908 zio_remove_child(pio, zio, remove_zl); 4909 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute); 4910 } 4911 4912 if (zio->io_waiter != NULL) { 4913 mutex_enter(&zio->io_lock); 4914 zio->io_executor = NULL; 4915 cv_broadcast(&zio->io_cv); 4916 mutex_exit(&zio->io_lock); 4917 } else { 4918 zio_destroy(zio); 4919 } 4920 4921 return (next_to_execute); 4922 } 4923 4924 /* 4925 * ========================================================================== 4926 * I/O pipeline definition 4927 * ========================================================================== 4928 */ 4929 static zio_pipe_stage_t *zio_pipeline[] = { 4930 NULL, 4931 zio_read_bp_init, 4932 zio_write_bp_init, 4933 zio_free_bp_init, 4934 zio_issue_async, 4935 zio_write_compress, 4936 zio_encrypt, 4937 zio_checksum_generate, 4938 zio_nop_write, 4939 zio_brt_free, 4940 zio_ddt_read_start, 4941 zio_ddt_read_done, 4942 zio_ddt_write, 4943 zio_ddt_free, 4944 zio_gang_assemble, 4945 zio_gang_issue, 4946 zio_dva_throttle, 4947 zio_dva_allocate, 4948 zio_dva_free, 4949 zio_dva_claim, 4950 zio_ready, 4951 zio_vdev_io_start, 4952 zio_vdev_io_done, 4953 zio_vdev_io_assess, 4954 zio_checksum_verify, 4955 zio_done 4956 }; 4957 4958 4959 4960 4961 /* 4962 * Compare two zbookmark_phys_t's to see which we would reach first in a 4963 * pre-order traversal of the object tree. 4964 * 4965 * This is simple in every case aside from the meta-dnode object. For all other 4966 * objects, we traverse them in order (object 1 before object 2, and so on). 4967 * However, all of these objects are traversed while traversing object 0, since 4968 * the data it points to is the list of objects. Thus, we need to convert to a 4969 * canonical representation so we can compare meta-dnode bookmarks to 4970 * non-meta-dnode bookmarks. 4971 * 4972 * We do this by calculating "equivalents" for each field of the zbookmark. 4973 * zbookmarks outside of the meta-dnode use their own object and level, and 4974 * calculate the level 0 equivalent (the first L0 blkid that is contained in the 4975 * blocks this bookmark refers to) by multiplying their blkid by their span 4976 * (the number of L0 blocks contained within one block at their level). 4977 * zbookmarks inside the meta-dnode calculate their object equivalent 4978 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use 4979 * level + 1<<31 (any value larger than a level could ever be) for their level. 4980 * This causes them to always compare before a bookmark in their object 4981 * equivalent, compare appropriately to bookmarks in other objects, and to 4982 * compare appropriately to other bookmarks in the meta-dnode. 4983 */ 4984 int 4985 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2, 4986 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2) 4987 { 4988 /* 4989 * These variables represent the "equivalent" values for the zbookmark, 4990 * after converting zbookmarks inside the meta dnode to their 4991 * normal-object equivalents. 4992 */ 4993 uint64_t zb1obj, zb2obj; 4994 uint64_t zb1L0, zb2L0; 4995 uint64_t zb1level, zb2level; 4996 4997 if (zb1->zb_object == zb2->zb_object && 4998 zb1->zb_level == zb2->zb_level && 4999 zb1->zb_blkid == zb2->zb_blkid) 5000 return (0); 5001 5002 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT); 5003 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT); 5004 5005 /* 5006 * BP_SPANB calculates the span in blocks. 5007 */ 5008 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level); 5009 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level); 5010 5011 if (zb1->zb_object == DMU_META_DNODE_OBJECT) { 5012 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5013 zb1L0 = 0; 5014 zb1level = zb1->zb_level + COMPARE_META_LEVEL; 5015 } else { 5016 zb1obj = zb1->zb_object; 5017 zb1level = zb1->zb_level; 5018 } 5019 5020 if (zb2->zb_object == DMU_META_DNODE_OBJECT) { 5021 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT)); 5022 zb2L0 = 0; 5023 zb2level = zb2->zb_level + COMPARE_META_LEVEL; 5024 } else { 5025 zb2obj = zb2->zb_object; 5026 zb2level = zb2->zb_level; 5027 } 5028 5029 /* Now that we have a canonical representation, do the comparison. */ 5030 if (zb1obj != zb2obj) 5031 return (zb1obj < zb2obj ? -1 : 1); 5032 else if (zb1L0 != zb2L0) 5033 return (zb1L0 < zb2L0 ? -1 : 1); 5034 else if (zb1level != zb2level) 5035 return (zb1level > zb2level ? -1 : 1); 5036 /* 5037 * This can (theoretically) happen if the bookmarks have the same object 5038 * and level, but different blkids, if the block sizes are not the same. 5039 * There is presently no way to change the indirect block sizes 5040 */ 5041 return (0); 5042 } 5043 5044 /* 5045 * This function checks the following: given that last_block is the place that 5046 * our traversal stopped last time, does that guarantee that we've visited 5047 * every node under subtree_root? Therefore, we can't just use the raw output 5048 * of zbookmark_compare. We have to pass in a modified version of 5049 * subtree_root; by incrementing the block id, and then checking whether 5050 * last_block is before or equal to that, we can tell whether or not having 5051 * visited last_block implies that all of subtree_root's children have been 5052 * visited. 5053 */ 5054 boolean_t 5055 zbookmark_subtree_completed(const dnode_phys_t *dnp, 5056 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5057 { 5058 zbookmark_phys_t mod_zb = *subtree_root; 5059 mod_zb.zb_blkid++; 5060 ASSERT0(last_block->zb_level); 5061 5062 /* The objset_phys_t isn't before anything. */ 5063 if (dnp == NULL) 5064 return (B_FALSE); 5065 5066 /* 5067 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the 5068 * data block size in sectors, because that variable is only used if 5069 * the bookmark refers to a block in the meta-dnode. Since we don't 5070 * know without examining it what object it refers to, and there's no 5071 * harm in passing in this value in other cases, we always pass it in. 5072 * 5073 * We pass in 0 for the indirect block size shift because zb2 must be 5074 * level 0. The indirect block size is only used to calculate the span 5075 * of the bookmark, but since the bookmark must be level 0, the span is 5076 * always 1, so the math works out. 5077 * 5078 * If you make changes to how the zbookmark_compare code works, be sure 5079 * to make sure that this code still works afterwards. 5080 */ 5081 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5082 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb, 5083 last_block) <= 0); 5084 } 5085 5086 /* 5087 * This function is similar to zbookmark_subtree_completed(), but returns true 5088 * if subtree_root is equal or ahead of last_block, i.e. still to be done. 5089 */ 5090 boolean_t 5091 zbookmark_subtree_tbd(const dnode_phys_t *dnp, 5092 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block) 5093 { 5094 ASSERT0(last_block->zb_level); 5095 if (dnp == NULL) 5096 return (B_FALSE); 5097 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift, 5098 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root, 5099 last_block) >= 0); 5100 } 5101 5102 EXPORT_SYMBOL(zio_type_name); 5103 EXPORT_SYMBOL(zio_buf_alloc); 5104 EXPORT_SYMBOL(zio_data_buf_alloc); 5105 EXPORT_SYMBOL(zio_buf_free); 5106 EXPORT_SYMBOL(zio_data_buf_free); 5107 5108 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW, 5109 "Max I/O completion time (milliseconds) before marking it as slow"); 5110 5111 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW, 5112 "Prioritize requeued I/O"); 5113 5114 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW, 5115 "Defer frees starting in this pass"); 5116 5117 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW, 5118 "Don't compress starting in this pass"); 5119 5120 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW, 5121 "Rewrite new bps starting in this pass"); 5122 5123 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW, 5124 "Throttle block allocations in the ZIO pipeline"); 5125 5126 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW, 5127 "Log all slow ZIOs, not just those with vdevs"); 5128