xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 8b959dd6a3921c35395bef4a6d7ad2426a3bd88e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 
47 /*
48  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49  * calls that change the file system. Each itx has enough information to
50  * be able to replay them after a system crash, power loss, or
51  * equivalent failure mode. These are stored in memory until either:
52  *
53  *   1. they are committed to the pool by the DMU transaction group
54  *      (txg), at which point they can be discarded; or
55  *   2. they are committed to the on-disk ZIL for the dataset being
56  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57  *      requirement).
58  *
59  * In the event of a crash or power loss, the itxs contained by each
60  * dataset's on-disk ZIL will be replayed when that dataset is first
61  * instantiated (e.g. if the dataset is a normal filesystem, when it is
62  * first mounted).
63  *
64  * As hinted at above, there is one ZIL per dataset (both the in-memory
65  * representation, and the on-disk representation). The on-disk format
66  * consists of 3 parts:
67  *
68  * 	- a single, per-dataset, ZIL header; which points to a chain of
69  * 	- zero or more ZIL blocks; each of which contains
70  * 	- zero or more ZIL records
71  *
72  * A ZIL record holds the information necessary to replay a single
73  * system call transaction. A ZIL block can hold many ZIL records, and
74  * the blocks are chained together, similarly to a singly linked list.
75  *
76  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77  * block in the chain, and the ZIL header points to the first block in
78  * the chain.
79  *
80  * Note, there is not a fixed place in the pool to hold these ZIL
81  * blocks; they are dynamically allocated and freed as needed from the
82  * blocks available on the pool, though they can be preferentially
83  * allocated from a dedicated "log" vdev.
84  */
85 
86 /*
87  * This controls the amount of time that a ZIL block (lwb) will remain
88  * "open" when it isn't "full", and it has a thread waiting for it to be
89  * committed to stable storage. Please refer to the zil_commit_waiter()
90  * function (and the comments within it) for more details.
91  */
92 int zfs_commit_timeout_pct = 5;
93 
94 /*
95  * See zil.h for more information about these fields.
96  */
97 zil_stats_t zil_stats = {
98 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
99 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
100 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
103 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
108 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
111 };
112 
113 static kstat_t *zil_ksp;
114 
115 /*
116  * Disable intent logging replay.  This global ZIL switch affects all pools.
117  */
118 int zil_replay_disable = 0;
119 
120 /*
121  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122  * the disk(s) by the ZIL after an LWB write has completed. Setting this
123  * will cause ZIL corruption on power loss if a volatile out-of-order
124  * write cache is enabled.
125  */
126 int zil_nocacheflush = 0;
127 
128 /*
129  * Limit SLOG write size per commit executed with synchronous priority.
130  * Any writes above that will be executed with lower (asynchronous) priority
131  * to limit potential SLOG device abuse by single active ZIL writer.
132  */
133 unsigned long zil_slog_bulk = 768 * 1024;
134 
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137 
138 #define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139     sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140 
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146 
147 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 	if (likely(cmp))
149 		return (cmp);
150 
151 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153 
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160 
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 	avl_tree_t *t = &zilog->zl_bp_tree;
165 	zil_bp_node_t *zn;
166 	void *cookie = NULL;
167 
168 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 		kmem_free(zn, sizeof (zil_bp_node_t));
170 
171 	avl_destroy(t);
172 }
173 
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 	avl_tree_t *t = &zilog->zl_bp_tree;
178 	const dva_t *dva;
179 	zil_bp_node_t *zn;
180 	avl_index_t where;
181 
182 	if (BP_IS_EMBEDDED(bp))
183 		return (0);
184 
185 	dva = BP_IDENTITY(bp);
186 
187 	if (avl_find(t, dva, &where) != NULL)
188 		return (SET_ERROR(EEXIST));
189 
190 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 	zn->zn_dva = *dva;
192 	avl_insert(t, zn, where);
193 
194 	return (0);
195 }
196 
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 	return ((zil_header_t *)zilog->zl_header);
201 }
202 
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 	zio_cksum_t *zc = &bp->blk_cksum;
207 
208 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215 
216 /*
217  * Read a log block and make sure it's valid.
218  */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221     blkptr_t *nbp, void *dst, char **end)
222 {
223 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 	arc_flags_t aflags = ARC_FLAG_WAIT;
225 	arc_buf_t *abuf = NULL;
226 	zbookmark_phys_t zb;
227 	int error;
228 
229 	if (zilog->zl_header->zh_claim_txg == 0)
230 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231 
232 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 		zio_flags |= ZIO_FLAG_SPECULATIVE;
234 
235 	if (!decrypt)
236 		zio_flags |= ZIO_FLAG_RAW;
237 
238 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240 
241 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 	    &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243 
244 	if (error == 0) {
245 		zio_cksum_t cksum = bp->blk_cksum;
246 
247 		/*
248 		 * Validate the checksummed log block.
249 		 *
250 		 * Sequence numbers should be... sequential.  The checksum
251 		 * verifier for the next block should be bp's checksum plus 1.
252 		 *
253 		 * Also check the log chain linkage and size used.
254 		 */
255 		cksum.zc_word[ZIL_ZC_SEQ]++;
256 
257 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 			zil_chain_t *zilc = abuf->b_data;
259 			char *lr = (char *)(zilc + 1);
260 			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261 
262 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 				error = SET_ERROR(ECKSUM);
265 			} else {
266 				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 				bcopy(lr, dst, len);
268 				*end = (char *)dst + len;
269 				*nbp = zilc->zc_next_blk;
270 			}
271 		} else {
272 			char *lr = abuf->b_data;
273 			uint64_t size = BP_GET_LSIZE(bp);
274 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275 
276 			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 				error = SET_ERROR(ECKSUM);
280 			} else {
281 				ASSERT3U(zilc->zc_nused, <=,
282 				    SPA_OLD_MAXBLOCKSIZE);
283 				bcopy(lr, dst, zilc->zc_nused);
284 				*end = (char *)dst + zilc->zc_nused;
285 				*nbp = zilc->zc_next_blk;
286 			}
287 		}
288 
289 		arc_buf_destroy(abuf, &abuf);
290 	}
291 
292 	return (error);
293 }
294 
295 /*
296  * Read a TX_WRITE log data block.
297  */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 	const blkptr_t *bp = &lr->lr_blkptr;
303 	arc_flags_t aflags = ARC_FLAG_WAIT;
304 	arc_buf_t *abuf = NULL;
305 	zbookmark_phys_t zb;
306 	int error;
307 
308 	if (BP_IS_HOLE(bp)) {
309 		if (wbuf != NULL)
310 			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 		return (0);
312 	}
313 
314 	if (zilog->zl_header->zh_claim_txg == 0)
315 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316 
317 	/*
318 	 * If we are not using the resulting data, we are just checking that
319 	 * it hasn't been corrupted so we don't need to waste CPU time
320 	 * decompressing and decrypting it.
321 	 */
322 	if (wbuf == NULL)
323 		zio_flags |= ZIO_FLAG_RAW;
324 
325 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327 
328 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330 
331 	if (error == 0) {
332 		if (wbuf != NULL)
333 			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
334 		arc_buf_destroy(abuf, &abuf);
335 	}
336 
337 	return (error);
338 }
339 
340 /*
341  * Parse the intent log, and call parse_func for each valid record within.
342  */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346     boolean_t decrypt)
347 {
348 	const zil_header_t *zh = zilog->zl_header;
349 	boolean_t claimed = !!zh->zh_claim_txg;
350 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 	uint64_t max_blk_seq = 0;
353 	uint64_t max_lr_seq = 0;
354 	uint64_t blk_count = 0;
355 	uint64_t lr_count = 0;
356 	blkptr_t blk, next_blk;
357 	char *lrbuf, *lrp;
358 	int error = 0;
359 
360 	bzero(&next_blk, sizeof (blkptr_t));
361 
362 	/*
363 	 * Old logs didn't record the maximum zh_claim_lr_seq.
364 	 */
365 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
366 		claim_lr_seq = UINT64_MAX;
367 
368 	/*
369 	 * Starting at the block pointed to by zh_log we read the log chain.
370 	 * For each block in the chain we strongly check that block to
371 	 * ensure its validity.  We stop when an invalid block is found.
372 	 * For each block pointer in the chain we call parse_blk_func().
373 	 * For each record in each valid block we call parse_lr_func().
374 	 * If the log has been claimed, stop if we encounter a sequence
375 	 * number greater than the highest claimed sequence number.
376 	 */
377 	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
378 	zil_bp_tree_init(zilog);
379 
380 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
381 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
382 		int reclen;
383 		char *end = NULL;
384 
385 		if (blk_seq > claim_blk_seq)
386 			break;
387 
388 		error = parse_blk_func(zilog, &blk, arg, txg);
389 		if (error != 0)
390 			break;
391 		ASSERT3U(max_blk_seq, <, blk_seq);
392 		max_blk_seq = blk_seq;
393 		blk_count++;
394 
395 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
396 			break;
397 
398 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
399 		    lrbuf, &end);
400 		if (error != 0)
401 			break;
402 
403 		for (lrp = lrbuf; lrp < end; lrp += reclen) {
404 			lr_t *lr = (lr_t *)lrp;
405 			reclen = lr->lrc_reclen;
406 			ASSERT3U(reclen, >=, sizeof (lr_t));
407 			if (lr->lrc_seq > claim_lr_seq)
408 				goto done;
409 
410 			error = parse_lr_func(zilog, lr, arg, txg);
411 			if (error != 0)
412 				goto done;
413 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
414 			max_lr_seq = lr->lrc_seq;
415 			lr_count++;
416 		}
417 	}
418 done:
419 	zilog->zl_parse_error = error;
420 	zilog->zl_parse_blk_seq = max_blk_seq;
421 	zilog->zl_parse_lr_seq = max_lr_seq;
422 	zilog->zl_parse_blk_count = blk_count;
423 	zilog->zl_parse_lr_count = lr_count;
424 
425 	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
426 	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
427 	    (decrypt && error == EIO));
428 
429 	zil_bp_tree_fini(zilog);
430 	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
431 
432 	return (error);
433 }
434 
435 /* ARGSUSED */
436 static int
437 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
438     uint64_t first_txg)
439 {
440 	ASSERT(!BP_IS_HOLE(bp));
441 
442 	/*
443 	 * As we call this function from the context of a rewind to a
444 	 * checkpoint, each ZIL block whose txg is later than the txg
445 	 * that we rewind to is invalid. Thus, we return -1 so
446 	 * zil_parse() doesn't attempt to read it.
447 	 */
448 	if (bp->blk_birth >= first_txg)
449 		return (-1);
450 
451 	if (zil_bp_tree_add(zilog, bp) != 0)
452 		return (0);
453 
454 	zio_free(zilog->zl_spa, first_txg, bp);
455 	return (0);
456 }
457 
458 /* ARGSUSED */
459 static int
460 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
461     uint64_t first_txg)
462 {
463 	return (0);
464 }
465 
466 static int
467 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
468     uint64_t first_txg)
469 {
470 	/*
471 	 * Claim log block if not already committed and not already claimed.
472 	 * If tx == NULL, just verify that the block is claimable.
473 	 */
474 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
475 	    zil_bp_tree_add(zilog, bp) != 0)
476 		return (0);
477 
478 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
479 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
480 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
481 }
482 
483 static int
484 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
485     uint64_t first_txg)
486 {
487 	lr_write_t *lr = (lr_write_t *)lrc;
488 	int error;
489 
490 	if (lrc->lrc_txtype != TX_WRITE)
491 		return (0);
492 
493 	/*
494 	 * If the block is not readable, don't claim it.  This can happen
495 	 * in normal operation when a log block is written to disk before
496 	 * some of the dmu_sync() blocks it points to.  In this case, the
497 	 * transaction cannot have been committed to anyone (we would have
498 	 * waited for all writes to be stable first), so it is semantically
499 	 * correct to declare this the end of the log.
500 	 */
501 	if (lr->lr_blkptr.blk_birth >= first_txg) {
502 		error = zil_read_log_data(zilog, lr, NULL);
503 		if (error != 0)
504 			return (error);
505 	}
506 
507 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
508 }
509 
510 /* ARGSUSED */
511 static int
512 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
513     uint64_t claim_txg)
514 {
515 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
516 
517 	return (0);
518 }
519 
520 static int
521 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
522     uint64_t claim_txg)
523 {
524 	lr_write_t *lr = (lr_write_t *)lrc;
525 	blkptr_t *bp = &lr->lr_blkptr;
526 
527 	/*
528 	 * If we previously claimed it, we need to free it.
529 	 */
530 	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
531 	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
532 	    !BP_IS_HOLE(bp))
533 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
534 
535 	return (0);
536 }
537 
538 static int
539 zil_lwb_vdev_compare(const void *x1, const void *x2)
540 {
541 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
542 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
543 
544 	return (TREE_CMP(v1, v2));
545 }
546 
547 static lwb_t *
548 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
549     boolean_t fastwrite)
550 {
551 	lwb_t *lwb;
552 
553 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
554 	lwb->lwb_zilog = zilog;
555 	lwb->lwb_blk = *bp;
556 	lwb->lwb_fastwrite = fastwrite;
557 	lwb->lwb_slog = slog;
558 	lwb->lwb_state = LWB_STATE_CLOSED;
559 	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
560 	lwb->lwb_max_txg = txg;
561 	lwb->lwb_write_zio = NULL;
562 	lwb->lwb_root_zio = NULL;
563 	lwb->lwb_tx = NULL;
564 	lwb->lwb_issued_timestamp = 0;
565 	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
566 		lwb->lwb_nused = sizeof (zil_chain_t);
567 		lwb->lwb_sz = BP_GET_LSIZE(bp);
568 	} else {
569 		lwb->lwb_nused = 0;
570 		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
571 	}
572 
573 	mutex_enter(&zilog->zl_lock);
574 	list_insert_tail(&zilog->zl_lwb_list, lwb);
575 	mutex_exit(&zilog->zl_lock);
576 
577 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
578 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
579 	VERIFY(list_is_empty(&lwb->lwb_waiters));
580 	VERIFY(list_is_empty(&lwb->lwb_itxs));
581 
582 	return (lwb);
583 }
584 
585 static void
586 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
587 {
588 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
589 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
590 	VERIFY(list_is_empty(&lwb->lwb_waiters));
591 	VERIFY(list_is_empty(&lwb->lwb_itxs));
592 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
593 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
594 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
595 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
596 	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
597 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
598 
599 	/*
600 	 * Clear the zilog's field to indicate this lwb is no longer
601 	 * valid, and prevent use-after-free errors.
602 	 */
603 	if (zilog->zl_last_lwb_opened == lwb)
604 		zilog->zl_last_lwb_opened = NULL;
605 
606 	kmem_cache_free(zil_lwb_cache, lwb);
607 }
608 
609 /*
610  * Called when we create in-memory log transactions so that we know
611  * to cleanup the itxs at the end of spa_sync().
612  */
613 static void
614 zilog_dirty(zilog_t *zilog, uint64_t txg)
615 {
616 	dsl_pool_t *dp = zilog->zl_dmu_pool;
617 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
618 
619 	ASSERT(spa_writeable(zilog->zl_spa));
620 
621 	if (ds->ds_is_snapshot)
622 		panic("dirtying snapshot!");
623 
624 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
625 		/* up the hold count until we can be written out */
626 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
627 
628 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
629 	}
630 }
631 
632 /*
633  * Determine if the zil is dirty in the specified txg. Callers wanting to
634  * ensure that the dirty state does not change must hold the itxg_lock for
635  * the specified txg. Holding the lock will ensure that the zil cannot be
636  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
637  * state.
638  */
639 static boolean_t __maybe_unused
640 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
641 {
642 	dsl_pool_t *dp = zilog->zl_dmu_pool;
643 
644 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
645 		return (B_TRUE);
646 	return (B_FALSE);
647 }
648 
649 /*
650  * Determine if the zil is dirty. The zil is considered dirty if it has
651  * any pending itx records that have not been cleaned by zil_clean().
652  */
653 static boolean_t
654 zilog_is_dirty(zilog_t *zilog)
655 {
656 	dsl_pool_t *dp = zilog->zl_dmu_pool;
657 
658 	for (int t = 0; t < TXG_SIZE; t++) {
659 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
660 			return (B_TRUE);
661 	}
662 	return (B_FALSE);
663 }
664 
665 /*
666  * Create an on-disk intent log.
667  */
668 static lwb_t *
669 zil_create(zilog_t *zilog)
670 {
671 	const zil_header_t *zh = zilog->zl_header;
672 	lwb_t *lwb = NULL;
673 	uint64_t txg = 0;
674 	dmu_tx_t *tx = NULL;
675 	blkptr_t blk;
676 	int error = 0;
677 	boolean_t fastwrite = FALSE;
678 	boolean_t slog = FALSE;
679 
680 	/*
681 	 * Wait for any previous destroy to complete.
682 	 */
683 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
684 
685 	ASSERT(zh->zh_claim_txg == 0);
686 	ASSERT(zh->zh_replay_seq == 0);
687 
688 	blk = zh->zh_log;
689 
690 	/*
691 	 * Allocate an initial log block if:
692 	 *    - there isn't one already
693 	 *    - the existing block is the wrong endianness
694 	 */
695 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
696 		tx = dmu_tx_create(zilog->zl_os);
697 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
698 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
699 		txg = dmu_tx_get_txg(tx);
700 
701 		if (!BP_IS_HOLE(&blk)) {
702 			zio_free(zilog->zl_spa, txg, &blk);
703 			BP_ZERO(&blk);
704 		}
705 
706 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
707 		    ZIL_MIN_BLKSZ, &slog);
708 		fastwrite = TRUE;
709 
710 		if (error == 0)
711 			zil_init_log_chain(zilog, &blk);
712 	}
713 
714 	/*
715 	 * Allocate a log write block (lwb) for the first log block.
716 	 */
717 	if (error == 0)
718 		lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
719 
720 	/*
721 	 * If we just allocated the first log block, commit our transaction
722 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
723 	 * (zh is part of the MOS, so we cannot modify it in open context.)
724 	 */
725 	if (tx != NULL) {
726 		dmu_tx_commit(tx);
727 		txg_wait_synced(zilog->zl_dmu_pool, txg);
728 	}
729 
730 	ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
731 	IMPLY(error == 0, lwb != NULL);
732 
733 	return (lwb);
734 }
735 
736 /*
737  * In one tx, free all log blocks and clear the log header. If keep_first
738  * is set, then we're replaying a log with no content. We want to keep the
739  * first block, however, so that the first synchronous transaction doesn't
740  * require a txg_wait_synced() in zil_create(). We don't need to
741  * txg_wait_synced() here either when keep_first is set, because both
742  * zil_create() and zil_destroy() will wait for any in-progress destroys
743  * to complete.
744  */
745 void
746 zil_destroy(zilog_t *zilog, boolean_t keep_first)
747 {
748 	const zil_header_t *zh = zilog->zl_header;
749 	lwb_t *lwb;
750 	dmu_tx_t *tx;
751 	uint64_t txg;
752 
753 	/*
754 	 * Wait for any previous destroy to complete.
755 	 */
756 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
757 
758 	zilog->zl_old_header = *zh;		/* debugging aid */
759 
760 	if (BP_IS_HOLE(&zh->zh_log))
761 		return;
762 
763 	tx = dmu_tx_create(zilog->zl_os);
764 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
765 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
766 	txg = dmu_tx_get_txg(tx);
767 
768 	mutex_enter(&zilog->zl_lock);
769 
770 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
771 	zilog->zl_destroy_txg = txg;
772 	zilog->zl_keep_first = keep_first;
773 
774 	if (!list_is_empty(&zilog->zl_lwb_list)) {
775 		ASSERT(zh->zh_claim_txg == 0);
776 		VERIFY(!keep_first);
777 		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
778 			if (lwb->lwb_fastwrite)
779 				metaslab_fastwrite_unmark(zilog->zl_spa,
780 				    &lwb->lwb_blk);
781 
782 			list_remove(&zilog->zl_lwb_list, lwb);
783 			if (lwb->lwb_buf != NULL)
784 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
785 			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
786 			zil_free_lwb(zilog, lwb);
787 		}
788 	} else if (!keep_first) {
789 		zil_destroy_sync(zilog, tx);
790 	}
791 	mutex_exit(&zilog->zl_lock);
792 
793 	dmu_tx_commit(tx);
794 }
795 
796 void
797 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
798 {
799 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
800 	(void) zil_parse(zilog, zil_free_log_block,
801 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
802 }
803 
804 int
805 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
806 {
807 	dmu_tx_t *tx = txarg;
808 	zilog_t *zilog;
809 	uint64_t first_txg;
810 	zil_header_t *zh;
811 	objset_t *os;
812 	int error;
813 
814 	error = dmu_objset_own_obj(dp, ds->ds_object,
815 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
816 	if (error != 0) {
817 		/*
818 		 * EBUSY indicates that the objset is inconsistent, in which
819 		 * case it can not have a ZIL.
820 		 */
821 		if (error != EBUSY) {
822 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
823 			    (unsigned long long)ds->ds_object, error);
824 		}
825 
826 		return (0);
827 	}
828 
829 	zilog = dmu_objset_zil(os);
830 	zh = zil_header_in_syncing_context(zilog);
831 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
832 	first_txg = spa_min_claim_txg(zilog->zl_spa);
833 
834 	/*
835 	 * If the spa_log_state is not set to be cleared, check whether
836 	 * the current uberblock is a checkpoint one and if the current
837 	 * header has been claimed before moving on.
838 	 *
839 	 * If the current uberblock is a checkpointed uberblock then
840 	 * one of the following scenarios took place:
841 	 *
842 	 * 1] We are currently rewinding to the checkpoint of the pool.
843 	 * 2] We crashed in the middle of a checkpoint rewind but we
844 	 *    did manage to write the checkpointed uberblock to the
845 	 *    vdev labels, so when we tried to import the pool again
846 	 *    the checkpointed uberblock was selected from the import
847 	 *    procedure.
848 	 *
849 	 * In both cases we want to zero out all the ZIL blocks, except
850 	 * the ones that have been claimed at the time of the checkpoint
851 	 * (their zh_claim_txg != 0). The reason is that these blocks
852 	 * may be corrupted since we may have reused their locations on
853 	 * disk after we took the checkpoint.
854 	 *
855 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
856 	 * when we first figure out whether the current uberblock is
857 	 * checkpointed or not. Unfortunately, that would discard all
858 	 * the logs, including the ones that are claimed, and we would
859 	 * leak space.
860 	 */
861 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
862 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
863 	    zh->zh_claim_txg == 0)) {
864 		if (!BP_IS_HOLE(&zh->zh_log)) {
865 			(void) zil_parse(zilog, zil_clear_log_block,
866 			    zil_noop_log_record, tx, first_txg, B_FALSE);
867 		}
868 		BP_ZERO(&zh->zh_log);
869 		if (os->os_encrypted)
870 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
871 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
872 		dmu_objset_disown(os, B_FALSE, FTAG);
873 		return (0);
874 	}
875 
876 	/*
877 	 * If we are not rewinding and opening the pool normally, then
878 	 * the min_claim_txg should be equal to the first txg of the pool.
879 	 */
880 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
881 
882 	/*
883 	 * Claim all log blocks if we haven't already done so, and remember
884 	 * the highest claimed sequence number.  This ensures that if we can
885 	 * read only part of the log now (e.g. due to a missing device),
886 	 * but we can read the entire log later, we will not try to replay
887 	 * or destroy beyond the last block we successfully claimed.
888 	 */
889 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
890 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
891 		(void) zil_parse(zilog, zil_claim_log_block,
892 		    zil_claim_log_record, tx, first_txg, B_FALSE);
893 		zh->zh_claim_txg = first_txg;
894 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
895 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
896 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
897 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
898 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
899 		if (os->os_encrypted)
900 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
901 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
902 	}
903 
904 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
905 	dmu_objset_disown(os, B_FALSE, FTAG);
906 	return (0);
907 }
908 
909 /*
910  * Check the log by walking the log chain.
911  * Checksum errors are ok as they indicate the end of the chain.
912  * Any other error (no device or read failure) returns an error.
913  */
914 /* ARGSUSED */
915 int
916 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
917 {
918 	zilog_t *zilog;
919 	objset_t *os;
920 	blkptr_t *bp;
921 	int error;
922 
923 	ASSERT(tx == NULL);
924 
925 	error = dmu_objset_from_ds(ds, &os);
926 	if (error != 0) {
927 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
928 		    (unsigned long long)ds->ds_object, error);
929 		return (0);
930 	}
931 
932 	zilog = dmu_objset_zil(os);
933 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
934 
935 	if (!BP_IS_HOLE(bp)) {
936 		vdev_t *vd;
937 		boolean_t valid = B_TRUE;
938 
939 		/*
940 		 * Check the first block and determine if it's on a log device
941 		 * which may have been removed or faulted prior to loading this
942 		 * pool.  If so, there's no point in checking the rest of the
943 		 * log as its content should have already been synced to the
944 		 * pool.
945 		 */
946 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
947 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
948 		if (vd->vdev_islog && vdev_is_dead(vd))
949 			valid = vdev_log_state_valid(vd);
950 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
951 
952 		if (!valid)
953 			return (0);
954 
955 		/*
956 		 * Check whether the current uberblock is checkpointed (e.g.
957 		 * we are rewinding) and whether the current header has been
958 		 * claimed or not. If it hasn't then skip verifying it. We
959 		 * do this because its ZIL blocks may be part of the pool's
960 		 * state before the rewind, which is no longer valid.
961 		 */
962 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
963 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
964 		    zh->zh_claim_txg == 0)
965 			return (0);
966 	}
967 
968 	/*
969 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
970 	 * any blocks, but just determine whether it is possible to do so.
971 	 * In addition to checking the log chain, zil_claim_log_block()
972 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
973 	 * which will update spa_max_claim_txg.  See spa_load() for details.
974 	 */
975 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
976 	    zilog->zl_header->zh_claim_txg ? -1ULL :
977 	    spa_min_claim_txg(os->os_spa), B_FALSE);
978 
979 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
980 }
981 
982 /*
983  * When an itx is "skipped", this function is used to properly mark the
984  * waiter as "done, and signal any thread(s) waiting on it. An itx can
985  * be skipped (and not committed to an lwb) for a variety of reasons,
986  * one of them being that the itx was committed via spa_sync(), prior to
987  * it being committed to an lwb; this can happen if a thread calling
988  * zil_commit() is racing with spa_sync().
989  */
990 static void
991 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
992 {
993 	mutex_enter(&zcw->zcw_lock);
994 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
995 	zcw->zcw_done = B_TRUE;
996 	cv_broadcast(&zcw->zcw_cv);
997 	mutex_exit(&zcw->zcw_lock);
998 }
999 
1000 /*
1001  * This function is used when the given waiter is to be linked into an
1002  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1003  * At this point, the waiter will no longer be referenced by the itx,
1004  * and instead, will be referenced by the lwb.
1005  */
1006 static void
1007 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1008 {
1009 	/*
1010 	 * The lwb_waiters field of the lwb is protected by the zilog's
1011 	 * zl_lock, thus it must be held when calling this function.
1012 	 */
1013 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1014 
1015 	mutex_enter(&zcw->zcw_lock);
1016 	ASSERT(!list_link_active(&zcw->zcw_node));
1017 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1018 	ASSERT3P(lwb, !=, NULL);
1019 	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1020 	    lwb->lwb_state == LWB_STATE_ISSUED ||
1021 	    lwb->lwb_state == LWB_STATE_WRITE_DONE);
1022 
1023 	list_insert_tail(&lwb->lwb_waiters, zcw);
1024 	zcw->zcw_lwb = lwb;
1025 	mutex_exit(&zcw->zcw_lock);
1026 }
1027 
1028 /*
1029  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1030  * block, and the given waiter must be linked to the "nolwb waiters"
1031  * list inside of zil_process_commit_list().
1032  */
1033 static void
1034 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1035 {
1036 	mutex_enter(&zcw->zcw_lock);
1037 	ASSERT(!list_link_active(&zcw->zcw_node));
1038 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1039 	list_insert_tail(nolwb, zcw);
1040 	mutex_exit(&zcw->zcw_lock);
1041 }
1042 
1043 void
1044 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1045 {
1046 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1047 	avl_index_t where;
1048 	zil_vdev_node_t *zv, zvsearch;
1049 	int ndvas = BP_GET_NDVAS(bp);
1050 	int i;
1051 
1052 	if (zil_nocacheflush)
1053 		return;
1054 
1055 	mutex_enter(&lwb->lwb_vdev_lock);
1056 	for (i = 0; i < ndvas; i++) {
1057 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1058 		if (avl_find(t, &zvsearch, &where) == NULL) {
1059 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1060 			zv->zv_vdev = zvsearch.zv_vdev;
1061 			avl_insert(t, zv, where);
1062 		}
1063 	}
1064 	mutex_exit(&lwb->lwb_vdev_lock);
1065 }
1066 
1067 static void
1068 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1069 {
1070 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1071 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1072 	void *cookie = NULL;
1073 	zil_vdev_node_t *zv;
1074 
1075 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1076 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1077 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1078 
1079 	/*
1080 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1081 	 * not need the protection of lwb_vdev_lock (it will only be modified
1082 	 * while holding zilog->zl_lock) as its writes and those of its
1083 	 * children have all completed.  The younger 'nlwb' may be waiting on
1084 	 * future writes to additional vdevs.
1085 	 */
1086 	mutex_enter(&nlwb->lwb_vdev_lock);
1087 	/*
1088 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1089 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1090 	 */
1091 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1092 		avl_index_t where;
1093 
1094 		if (avl_find(dst, zv, &where) == NULL) {
1095 			avl_insert(dst, zv, where);
1096 		} else {
1097 			kmem_free(zv, sizeof (*zv));
1098 		}
1099 	}
1100 	mutex_exit(&nlwb->lwb_vdev_lock);
1101 }
1102 
1103 void
1104 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1105 {
1106 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1107 }
1108 
1109 /*
1110  * This function is a called after all vdevs associated with a given lwb
1111  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1112  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1113  * all "previous" lwb's will have completed before this function is
1114  * called; i.e. this function is called for all previous lwbs before
1115  * it's called for "this" lwb (enforced via zio the dependencies
1116  * configured in zil_lwb_set_zio_dependency()).
1117  *
1118  * The intention is for this function to be called as soon as the
1119  * contents of an lwb are considered "stable" on disk, and will survive
1120  * any sudden loss of power. At this point, any threads waiting for the
1121  * lwb to reach this state are signalled, and the "waiter" structures
1122  * are marked "done".
1123  */
1124 static void
1125 zil_lwb_flush_vdevs_done(zio_t *zio)
1126 {
1127 	lwb_t *lwb = zio->io_private;
1128 	zilog_t *zilog = lwb->lwb_zilog;
1129 	dmu_tx_t *tx = lwb->lwb_tx;
1130 	zil_commit_waiter_t *zcw;
1131 	itx_t *itx;
1132 
1133 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1134 
1135 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1136 
1137 	mutex_enter(&zilog->zl_lock);
1138 
1139 	/*
1140 	 * Ensure the lwb buffer pointer is cleared before releasing the
1141 	 * txg. If we have had an allocation failure and the txg is
1142 	 * waiting to sync then we want zil_sync() to remove the lwb so
1143 	 * that it's not picked up as the next new one in
1144 	 * zil_process_commit_list(). zil_sync() will only remove the
1145 	 * lwb if lwb_buf is null.
1146 	 */
1147 	lwb->lwb_buf = NULL;
1148 	lwb->lwb_tx = NULL;
1149 
1150 	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1151 	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1152 
1153 	lwb->lwb_root_zio = NULL;
1154 
1155 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1156 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1157 
1158 	if (zilog->zl_last_lwb_opened == lwb) {
1159 		/*
1160 		 * Remember the highest committed log sequence number
1161 		 * for ztest. We only update this value when all the log
1162 		 * writes succeeded, because ztest wants to ASSERT that
1163 		 * it got the whole log chain.
1164 		 */
1165 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1166 	}
1167 
1168 	while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1169 		list_remove(&lwb->lwb_itxs, itx);
1170 		zil_itx_destroy(itx);
1171 	}
1172 
1173 	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1174 		mutex_enter(&zcw->zcw_lock);
1175 
1176 		ASSERT(list_link_active(&zcw->zcw_node));
1177 		list_remove(&lwb->lwb_waiters, zcw);
1178 
1179 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1180 		zcw->zcw_lwb = NULL;
1181 		/*
1182 		 * We expect any ZIO errors from child ZIOs to have been
1183 		 * propagated "up" to this specific LWB's root ZIO, in
1184 		 * order for this error handling to work correctly. This
1185 		 * includes ZIO errors from either this LWB's write or
1186 		 * flush, as well as any errors from other dependent LWBs
1187 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1188 		 *
1189 		 * With that said, it's important to note that LWB flush
1190 		 * errors are not propagated up to the LWB root ZIO.
1191 		 * This is incorrect behavior, and results in VDEV flush
1192 		 * errors not being handled correctly here. See the
1193 		 * comment above the call to "zio_flush" for details.
1194 		 */
1195 
1196 		zcw->zcw_zio_error = zio->io_error;
1197 
1198 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1199 		zcw->zcw_done = B_TRUE;
1200 		cv_broadcast(&zcw->zcw_cv);
1201 
1202 		mutex_exit(&zcw->zcw_lock);
1203 	}
1204 
1205 	mutex_exit(&zilog->zl_lock);
1206 
1207 	/*
1208 	 * Now that we've written this log block, we have a stable pointer
1209 	 * to the next block in the chain, so it's OK to let the txg in
1210 	 * which we allocated the next block sync.
1211 	 */
1212 	dmu_tx_commit(tx);
1213 }
1214 
1215 /*
1216  * This is called when an lwb's write zio completes. The callback's
1217  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1218  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1219  * in writing out this specific lwb's data, and in the case that cache
1220  * flushes have been deferred, vdevs involved in writing the data for
1221  * previous lwbs. The writes corresponding to all the vdevs in the
1222  * lwb_vdev_tree will have completed by the time this is called, due to
1223  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1224  * which takes deferred flushes into account. The lwb will be "done"
1225  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1226  * completion callback for the lwb's root zio.
1227  */
1228 static void
1229 zil_lwb_write_done(zio_t *zio)
1230 {
1231 	lwb_t *lwb = zio->io_private;
1232 	spa_t *spa = zio->io_spa;
1233 	zilog_t *zilog = lwb->lwb_zilog;
1234 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1235 	void *cookie = NULL;
1236 	zil_vdev_node_t *zv;
1237 	lwb_t *nlwb;
1238 
1239 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1240 
1241 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1242 	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1243 	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1244 	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1245 	ASSERT(!BP_IS_GANG(zio->io_bp));
1246 	ASSERT(!BP_IS_HOLE(zio->io_bp));
1247 	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1248 
1249 	abd_free(zio->io_abd);
1250 
1251 	mutex_enter(&zilog->zl_lock);
1252 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1253 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1254 	lwb->lwb_write_zio = NULL;
1255 	lwb->lwb_fastwrite = FALSE;
1256 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1257 	mutex_exit(&zilog->zl_lock);
1258 
1259 	if (avl_numnodes(t) == 0)
1260 		return;
1261 
1262 	/*
1263 	 * If there was an IO error, we're not going to call zio_flush()
1264 	 * on these vdevs, so we simply empty the tree and free the
1265 	 * nodes. We avoid calling zio_flush() since there isn't any
1266 	 * good reason for doing so, after the lwb block failed to be
1267 	 * written out.
1268 	 *
1269 	 * Additionally, we don't perform any further error handling at
1270 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1271 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1272 	 * we expect any error seen here, to have been propagated to
1273 	 * that function).
1274 	 */
1275 	if (zio->io_error != 0) {
1276 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1277 			kmem_free(zv, sizeof (*zv));
1278 		return;
1279 	}
1280 
1281 	/*
1282 	 * If this lwb does not have any threads waiting for it to
1283 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1284 	 * command to the vdevs written to by "this" lwb, and instead
1285 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1286 	 * command for those vdevs. Thus, we merge the vdev tree of
1287 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1288 	 * and assume the "next" lwb will handle flushing the vdevs (or
1289 	 * deferring the flush(s) again).
1290 	 *
1291 	 * This is a useful performance optimization, especially for
1292 	 * workloads with lots of async write activity and few sync
1293 	 * write and/or fsync activity, as it has the potential to
1294 	 * coalesce multiple flush commands to a vdev into one.
1295 	 */
1296 	if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1297 		zil_lwb_flush_defer(lwb, nlwb);
1298 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1299 		return;
1300 	}
1301 
1302 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1303 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1304 		if (vd != NULL) {
1305 			/*
1306 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1307 			 * always used within "zio_flush". This means,
1308 			 * any errors when flushing the vdev(s), will
1309 			 * (unfortunately) not be handled correctly,
1310 			 * since these "zio_flush" errors will not be
1311 			 * propagated up to "zil_lwb_flush_vdevs_done".
1312 			 */
1313 			zio_flush(lwb->lwb_root_zio, vd);
1314 		}
1315 		kmem_free(zv, sizeof (*zv));
1316 	}
1317 }
1318 
1319 static void
1320 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1321 {
1322 	lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1323 
1324 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1325 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1326 
1327 	/*
1328 	 * The zilog's "zl_last_lwb_opened" field is used to build the
1329 	 * lwb/zio dependency chain, which is used to preserve the
1330 	 * ordering of lwb completions that is required by the semantics
1331 	 * of the ZIL. Each new lwb zio becomes a parent of the
1332 	 * "previous" lwb zio, such that the new lwb's zio cannot
1333 	 * complete until the "previous" lwb's zio completes.
1334 	 *
1335 	 * This is required by the semantics of zil_commit(); the commit
1336 	 * waiters attached to the lwbs will be woken in the lwb zio's
1337 	 * completion callback, so this zio dependency graph ensures the
1338 	 * waiters are woken in the correct order (the same order the
1339 	 * lwbs were created).
1340 	 */
1341 	if (last_lwb_opened != NULL &&
1342 	    last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1343 		ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1344 		    last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1345 		    last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1346 
1347 		ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1348 		zio_add_child(lwb->lwb_root_zio,
1349 		    last_lwb_opened->lwb_root_zio);
1350 
1351 		/*
1352 		 * If the previous lwb's write hasn't already completed,
1353 		 * we also want to order the completion of the lwb write
1354 		 * zios (above, we only order the completion of the lwb
1355 		 * root zios). This is required because of how we can
1356 		 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1357 		 *
1358 		 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1359 		 * the previous lwb will rely on this lwb to flush the
1360 		 * vdevs written to by that previous lwb. Thus, we need
1361 		 * to ensure this lwb doesn't issue the flush until
1362 		 * after the previous lwb's write completes. We ensure
1363 		 * this ordering by setting the zio parent/child
1364 		 * relationship here.
1365 		 *
1366 		 * Without this relationship on the lwb's write zio,
1367 		 * it's possible for this lwb's write to complete prior
1368 		 * to the previous lwb's write completing; and thus, the
1369 		 * vdevs for the previous lwb would be flushed prior to
1370 		 * that lwb's data being written to those vdevs (the
1371 		 * vdevs are flushed in the lwb write zio's completion
1372 		 * handler, zil_lwb_write_done()).
1373 		 */
1374 		if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1375 			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1376 			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1377 
1378 			ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1379 			zio_add_child(lwb->lwb_write_zio,
1380 			    last_lwb_opened->lwb_write_zio);
1381 		}
1382 	}
1383 }
1384 
1385 
1386 /*
1387  * This function's purpose is to "open" an lwb such that it is ready to
1388  * accept new itxs being committed to it. To do this, the lwb's zio
1389  * structures are created, and linked to the lwb. This function is
1390  * idempotent; if the passed in lwb has already been opened, this
1391  * function is essentially a no-op.
1392  */
1393 static void
1394 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1395 {
1396 	zbookmark_phys_t zb;
1397 	zio_priority_t prio;
1398 
1399 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1400 	ASSERT3P(lwb, !=, NULL);
1401 	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1402 	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1403 
1404 	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1405 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1406 	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1407 
1408 	/* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1409 	mutex_enter(&zilog->zl_lock);
1410 	if (lwb->lwb_root_zio == NULL) {
1411 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1412 		    BP_GET_LSIZE(&lwb->lwb_blk));
1413 
1414 		if (!lwb->lwb_fastwrite) {
1415 			metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1416 			lwb->lwb_fastwrite = 1;
1417 		}
1418 
1419 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1420 			prio = ZIO_PRIORITY_SYNC_WRITE;
1421 		else
1422 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1423 
1424 		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1425 		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1426 		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1427 
1428 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1429 		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1430 		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1431 		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1432 		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1433 
1434 		lwb->lwb_state = LWB_STATE_OPENED;
1435 
1436 		zil_lwb_set_zio_dependency(zilog, lwb);
1437 		zilog->zl_last_lwb_opened = lwb;
1438 	}
1439 	mutex_exit(&zilog->zl_lock);
1440 
1441 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1442 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1443 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1444 }
1445 
1446 /*
1447  * Define a limited set of intent log block sizes.
1448  *
1449  * These must be a multiple of 4KB. Note only the amount used (again
1450  * aligned to 4KB) actually gets written. However, we can't always just
1451  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1452  */
1453 struct {
1454 	uint64_t	limit;
1455 	uint64_t	blksz;
1456 } zil_block_buckets[] = {
1457 	{ 4096,		4096 },			/* non TX_WRITE */
1458 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1459 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1460 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1461 	{ 131072,	131072 },		/* < 128KB writes */
1462 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1463 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1464 };
1465 
1466 /*
1467  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1468  * initialized.  Otherwise this should not be used directly; see
1469  * zl_max_block_size instead.
1470  */
1471 int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1472 
1473 /*
1474  * Start a log block write and advance to the next log block.
1475  * Calls are serialized.
1476  */
1477 static lwb_t *
1478 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1479 {
1480 	lwb_t *nlwb = NULL;
1481 	zil_chain_t *zilc;
1482 	spa_t *spa = zilog->zl_spa;
1483 	blkptr_t *bp;
1484 	dmu_tx_t *tx;
1485 	uint64_t txg;
1486 	uint64_t zil_blksz, wsz;
1487 	int i, error;
1488 	boolean_t slog;
1489 
1490 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1491 	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1492 	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1493 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1494 
1495 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1496 		zilc = (zil_chain_t *)lwb->lwb_buf;
1497 		bp = &zilc->zc_next_blk;
1498 	} else {
1499 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1500 		bp = &zilc->zc_next_blk;
1501 	}
1502 
1503 	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1504 
1505 	/*
1506 	 * Allocate the next block and save its address in this block
1507 	 * before writing it in order to establish the log chain.
1508 	 * Note that if the allocation of nlwb synced before we wrote
1509 	 * the block that points at it (lwb), we'd leak it if we crashed.
1510 	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1511 	 * We dirty the dataset to ensure that zil_sync() will be called
1512 	 * to clean up in the event of allocation failure or I/O failure.
1513 	 */
1514 
1515 	tx = dmu_tx_create(zilog->zl_os);
1516 
1517 	/*
1518 	 * Since we are not going to create any new dirty data, and we
1519 	 * can even help with clearing the existing dirty data, we
1520 	 * should not be subject to the dirty data based delays. We
1521 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1522 	 */
1523 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1524 
1525 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1526 	txg = dmu_tx_get_txg(tx);
1527 
1528 	lwb->lwb_tx = tx;
1529 
1530 	/*
1531 	 * Log blocks are pre-allocated. Here we select the size of the next
1532 	 * block, based on size used in the last block.
1533 	 * - first find the smallest bucket that will fit the block from a
1534 	 *   limited set of block sizes. This is because it's faster to write
1535 	 *   blocks allocated from the same metaslab as they are adjacent or
1536 	 *   close.
1537 	 * - next find the maximum from the new suggested size and an array of
1538 	 *   previous sizes. This lessens a picket fence effect of wrongly
1539 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1540 	 *   requests.
1541 	 *
1542 	 * Note we only write what is used, but we can't just allocate
1543 	 * the maximum block size because we can exhaust the available
1544 	 * pool log space.
1545 	 */
1546 	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1547 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1548 		continue;
1549 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1550 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1551 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1552 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1553 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1554 
1555 	BP_ZERO(bp);
1556 	error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1557 	if (slog) {
1558 		ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1559 		ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1560 	} else {
1561 		ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1562 		ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1563 	}
1564 	if (error == 0) {
1565 		ASSERT3U(bp->blk_birth, ==, txg);
1566 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1567 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1568 
1569 		/*
1570 		 * Allocate a new log write block (lwb).
1571 		 */
1572 		nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1573 	}
1574 
1575 	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1576 		/* For Slim ZIL only write what is used. */
1577 		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1578 		ASSERT3U(wsz, <=, lwb->lwb_sz);
1579 		zio_shrink(lwb->lwb_write_zio, wsz);
1580 
1581 	} else {
1582 		wsz = lwb->lwb_sz;
1583 	}
1584 
1585 	zilc->zc_pad = 0;
1586 	zilc->zc_nused = lwb->lwb_nused;
1587 	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1588 
1589 	/*
1590 	 * clear unused data for security
1591 	 */
1592 	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1593 
1594 	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1595 
1596 	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1597 	lwb->lwb_issued_timestamp = gethrtime();
1598 	lwb->lwb_state = LWB_STATE_ISSUED;
1599 
1600 	zio_nowait(lwb->lwb_root_zio);
1601 	zio_nowait(lwb->lwb_write_zio);
1602 
1603 	/*
1604 	 * If there was an allocation failure then nlwb will be null which
1605 	 * forces a txg_wait_synced().
1606 	 */
1607 	return (nlwb);
1608 }
1609 
1610 /*
1611  * Maximum amount of write data that can be put into single log block.
1612  */
1613 uint64_t
1614 zil_max_log_data(zilog_t *zilog)
1615 {
1616 	return (zilog->zl_max_block_size -
1617 	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1618 }
1619 
1620 /*
1621  * Maximum amount of log space we agree to waste to reduce number of
1622  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1623  */
1624 static inline uint64_t
1625 zil_max_waste_space(zilog_t *zilog)
1626 {
1627 	return (zil_max_log_data(zilog) / 8);
1628 }
1629 
1630 /*
1631  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1632  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1633  * maximum sized log block, because each WR_COPIED record must fit in a
1634  * single log block.  For space efficiency, we want to fit two records into a
1635  * max-sized log block.
1636  */
1637 uint64_t
1638 zil_max_copied_data(zilog_t *zilog)
1639 {
1640 	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1641 	    sizeof (lr_write_t));
1642 }
1643 
1644 static lwb_t *
1645 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1646 {
1647 	lr_t *lrcb, *lrc;
1648 	lr_write_t *lrwb, *lrw;
1649 	char *lr_buf;
1650 	uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1651 
1652 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1653 	ASSERT3P(lwb, !=, NULL);
1654 	ASSERT3P(lwb->lwb_buf, !=, NULL);
1655 
1656 	zil_lwb_write_open(zilog, lwb);
1657 
1658 	lrc = &itx->itx_lr;
1659 	lrw = (lr_write_t *)lrc;
1660 
1661 	/*
1662 	 * A commit itx doesn't represent any on-disk state; instead
1663 	 * it's simply used as a place holder on the commit list, and
1664 	 * provides a mechanism for attaching a "commit waiter" onto the
1665 	 * correct lwb (such that the waiter can be signalled upon
1666 	 * completion of that lwb). Thus, we don't process this itx's
1667 	 * log record if it's a commit itx (these itx's don't have log
1668 	 * records), and instead link the itx's waiter onto the lwb's
1669 	 * list of waiters.
1670 	 *
1671 	 * For more details, see the comment above zil_commit().
1672 	 */
1673 	if (lrc->lrc_txtype == TX_COMMIT) {
1674 		mutex_enter(&zilog->zl_lock);
1675 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1676 		itx->itx_private = NULL;
1677 		mutex_exit(&zilog->zl_lock);
1678 		return (lwb);
1679 	}
1680 
1681 	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1682 		dlen = P2ROUNDUP_TYPED(
1683 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1684 		dpad = dlen - lrw->lr_length;
1685 	} else {
1686 		dlen = dpad = 0;
1687 	}
1688 	reclen = lrc->lrc_reclen;
1689 	zilog->zl_cur_used += (reclen + dlen);
1690 	txg = lrc->lrc_txg;
1691 
1692 	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1693 
1694 cont:
1695 	/*
1696 	 * If this record won't fit in the current log block, start a new one.
1697 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1698 	 */
1699 	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1700 	max_log_data = zil_max_log_data(zilog);
1701 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1702 	    lwb_sp < zil_max_waste_space(zilog) &&
1703 	    (dlen % max_log_data == 0 ||
1704 	    lwb_sp < reclen + dlen % max_log_data))) {
1705 		lwb = zil_lwb_write_issue(zilog, lwb);
1706 		if (lwb == NULL)
1707 			return (NULL);
1708 		zil_lwb_write_open(zilog, lwb);
1709 		ASSERT(LWB_EMPTY(lwb));
1710 		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1711 
1712 		/*
1713 		 * There must be enough space in the new, empty log block to
1714 		 * hold reclen.  For WR_COPIED, we need to fit the whole
1715 		 * record in one block, and reclen is the header size + the
1716 		 * data size. For WR_NEED_COPY, we can create multiple
1717 		 * records, splitting the data into multiple blocks, so we
1718 		 * only need to fit one word of data per block; in this case
1719 		 * reclen is just the header size (no data).
1720 		 */
1721 		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1722 	}
1723 
1724 	dnow = MIN(dlen, lwb_sp - reclen);
1725 	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1726 	bcopy(lrc, lr_buf, reclen);
1727 	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1728 	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1729 
1730 	ZIL_STAT_BUMP(zil_itx_count);
1731 
1732 	/*
1733 	 * If it's a write, fetch the data or get its blkptr as appropriate.
1734 	 */
1735 	if (lrc->lrc_txtype == TX_WRITE) {
1736 		if (txg > spa_freeze_txg(zilog->zl_spa))
1737 			txg_wait_synced(zilog->zl_dmu_pool, txg);
1738 		if (itx->itx_wr_state == WR_COPIED) {
1739 			ZIL_STAT_BUMP(zil_itx_copied_count);
1740 			ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1741 		} else {
1742 			char *dbuf;
1743 			int error;
1744 
1745 			if (itx->itx_wr_state == WR_NEED_COPY) {
1746 				dbuf = lr_buf + reclen;
1747 				lrcb->lrc_reclen += dnow;
1748 				if (lrwb->lr_length > dnow)
1749 					lrwb->lr_length = dnow;
1750 				lrw->lr_offset += dnow;
1751 				lrw->lr_length -= dnow;
1752 				ZIL_STAT_BUMP(zil_itx_needcopy_count);
1753 				ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1754 			} else {
1755 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1756 				dbuf = NULL;
1757 				ZIL_STAT_BUMP(zil_itx_indirect_count);
1758 				ZIL_STAT_INCR(zil_itx_indirect_bytes,
1759 				    lrw->lr_length);
1760 			}
1761 
1762 			/*
1763 			 * We pass in the "lwb_write_zio" rather than
1764 			 * "lwb_root_zio" so that the "lwb_write_zio"
1765 			 * becomes the parent of any zio's created by
1766 			 * the "zl_get_data" callback. The vdevs are
1767 			 * flushed after the "lwb_write_zio" completes,
1768 			 * so we want to make sure that completion
1769 			 * callback waits for these additional zio's,
1770 			 * such that the vdevs used by those zio's will
1771 			 * be included in the lwb's vdev tree, and those
1772 			 * vdevs will be properly flushed. If we passed
1773 			 * in "lwb_root_zio" here, then these additional
1774 			 * vdevs may not be flushed; e.g. if these zio's
1775 			 * completed after "lwb_write_zio" completed.
1776 			 */
1777 			error = zilog->zl_get_data(itx->itx_private,
1778 			    itx->itx_gen, lrwb, dbuf, lwb,
1779 			    lwb->lwb_write_zio);
1780 			if (dbuf != NULL && error == 0 && dnow == dlen)
1781 				/* Zero any padding bytes in the last block. */
1782 				bzero((char *)dbuf + lrwb->lr_length, dpad);
1783 
1784 			if (error == EIO) {
1785 				txg_wait_synced(zilog->zl_dmu_pool, txg);
1786 				return (lwb);
1787 			}
1788 			if (error != 0) {
1789 				ASSERT(error == ENOENT || error == EEXIST ||
1790 				    error == EALREADY);
1791 				return (lwb);
1792 			}
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * We're actually making an entry, so update lrc_seq to be the
1798 	 * log record sequence number.  Note that this is generally not
1799 	 * equal to the itx sequence number because not all transactions
1800 	 * are synchronous, and sometimes spa_sync() gets there first.
1801 	 */
1802 	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1803 	lwb->lwb_nused += reclen + dnow;
1804 
1805 	zil_lwb_add_txg(lwb, txg);
1806 
1807 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1808 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1809 
1810 	dlen -= dnow;
1811 	if (dlen > 0) {
1812 		zilog->zl_cur_used += reclen;
1813 		goto cont;
1814 	}
1815 
1816 	return (lwb);
1817 }
1818 
1819 itx_t *
1820 zil_itx_create(uint64_t txtype, size_t olrsize)
1821 {
1822 	size_t itxsize, lrsize;
1823 	itx_t *itx;
1824 
1825 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1826 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
1827 
1828 	itx = zio_data_buf_alloc(itxsize);
1829 	itx->itx_lr.lrc_txtype = txtype;
1830 	itx->itx_lr.lrc_reclen = lrsize;
1831 	itx->itx_lr.lrc_seq = 0;	/* defensive */
1832 	bzero((char *)&itx->itx_lr + olrsize, lrsize - olrsize);
1833 	itx->itx_sync = B_TRUE;		/* default is synchronous */
1834 	itx->itx_callback = NULL;
1835 	itx->itx_callback_data = NULL;
1836 	itx->itx_size = itxsize;
1837 
1838 	return (itx);
1839 }
1840 
1841 void
1842 zil_itx_destroy(itx_t *itx)
1843 {
1844 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1845 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1846 
1847 	if (itx->itx_callback != NULL)
1848 		itx->itx_callback(itx->itx_callback_data);
1849 
1850 	zio_data_buf_free(itx, itx->itx_size);
1851 }
1852 
1853 /*
1854  * Free up the sync and async itxs. The itxs_t has already been detached
1855  * so no locks are needed.
1856  */
1857 static void
1858 zil_itxg_clean(void *arg)
1859 {
1860 	itx_t *itx;
1861 	list_t *list;
1862 	avl_tree_t *t;
1863 	void *cookie;
1864 	itxs_t *itxs = arg;
1865 	itx_async_node_t *ian;
1866 
1867 	list = &itxs->i_sync_list;
1868 	while ((itx = list_head(list)) != NULL) {
1869 		/*
1870 		 * In the general case, commit itxs will not be found
1871 		 * here, as they'll be committed to an lwb via
1872 		 * zil_lwb_commit(), and free'd in that function. Having
1873 		 * said that, it is still possible for commit itxs to be
1874 		 * found here, due to the following race:
1875 		 *
1876 		 *	- a thread calls zil_commit() which assigns the
1877 		 *	  commit itx to a per-txg i_sync_list
1878 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1879 		 *	  while the waiter is still on the i_sync_list
1880 		 *
1881 		 * There's nothing to prevent syncing the txg while the
1882 		 * waiter is on the i_sync_list. This normally doesn't
1883 		 * happen because spa_sync() is slower than zil_commit(),
1884 		 * but if zil_commit() calls txg_wait_synced() (e.g.
1885 		 * because zil_create() or zil_commit_writer_stall() is
1886 		 * called) we will hit this case.
1887 		 */
1888 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1889 			zil_commit_waiter_skip(itx->itx_private);
1890 
1891 		list_remove(list, itx);
1892 		zil_itx_destroy(itx);
1893 	}
1894 
1895 	cookie = NULL;
1896 	t = &itxs->i_async_tree;
1897 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1898 		list = &ian->ia_list;
1899 		while ((itx = list_head(list)) != NULL) {
1900 			list_remove(list, itx);
1901 			/* commit itxs should never be on the async lists. */
1902 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1903 			zil_itx_destroy(itx);
1904 		}
1905 		list_destroy(list);
1906 		kmem_free(ian, sizeof (itx_async_node_t));
1907 	}
1908 	avl_destroy(t);
1909 
1910 	kmem_free(itxs, sizeof (itxs_t));
1911 }
1912 
1913 static int
1914 zil_aitx_compare(const void *x1, const void *x2)
1915 {
1916 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1917 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1918 
1919 	return (TREE_CMP(o1, o2));
1920 }
1921 
1922 /*
1923  * Remove all async itx with the given oid.
1924  */
1925 void
1926 zil_remove_async(zilog_t *zilog, uint64_t oid)
1927 {
1928 	uint64_t otxg, txg;
1929 	itx_async_node_t *ian;
1930 	avl_tree_t *t;
1931 	avl_index_t where;
1932 	list_t clean_list;
1933 	itx_t *itx;
1934 
1935 	ASSERT(oid != 0);
1936 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1937 
1938 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1939 		otxg = ZILTEST_TXG;
1940 	else
1941 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1942 
1943 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1944 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1945 
1946 		mutex_enter(&itxg->itxg_lock);
1947 		if (itxg->itxg_txg != txg) {
1948 			mutex_exit(&itxg->itxg_lock);
1949 			continue;
1950 		}
1951 
1952 		/*
1953 		 * Locate the object node and append its list.
1954 		 */
1955 		t = &itxg->itxg_itxs->i_async_tree;
1956 		ian = avl_find(t, &oid, &where);
1957 		if (ian != NULL)
1958 			list_move_tail(&clean_list, &ian->ia_list);
1959 		mutex_exit(&itxg->itxg_lock);
1960 	}
1961 	while ((itx = list_head(&clean_list)) != NULL) {
1962 		list_remove(&clean_list, itx);
1963 		/* commit itxs should never be on the async lists. */
1964 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1965 		zil_itx_destroy(itx);
1966 	}
1967 	list_destroy(&clean_list);
1968 }
1969 
1970 void
1971 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1972 {
1973 	uint64_t txg;
1974 	itxg_t *itxg;
1975 	itxs_t *itxs, *clean = NULL;
1976 
1977 	/*
1978 	 * Ensure the data of a renamed file is committed before the rename.
1979 	 */
1980 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1981 		zil_async_to_sync(zilog, itx->itx_oid);
1982 
1983 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1984 		txg = ZILTEST_TXG;
1985 	else
1986 		txg = dmu_tx_get_txg(tx);
1987 
1988 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1989 	mutex_enter(&itxg->itxg_lock);
1990 	itxs = itxg->itxg_itxs;
1991 	if (itxg->itxg_txg != txg) {
1992 		if (itxs != NULL) {
1993 			/*
1994 			 * The zil_clean callback hasn't got around to cleaning
1995 			 * this itxg. Save the itxs for release below.
1996 			 * This should be rare.
1997 			 */
1998 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1999 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2000 			clean = itxg->itxg_itxs;
2001 		}
2002 		itxg->itxg_txg = txg;
2003 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2004 		    KM_SLEEP);
2005 
2006 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2007 		    offsetof(itx_t, itx_node));
2008 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2009 		    sizeof (itx_async_node_t),
2010 		    offsetof(itx_async_node_t, ia_node));
2011 	}
2012 	if (itx->itx_sync) {
2013 		list_insert_tail(&itxs->i_sync_list, itx);
2014 	} else {
2015 		avl_tree_t *t = &itxs->i_async_tree;
2016 		uint64_t foid =
2017 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2018 		itx_async_node_t *ian;
2019 		avl_index_t where;
2020 
2021 		ian = avl_find(t, &foid, &where);
2022 		if (ian == NULL) {
2023 			ian = kmem_alloc(sizeof (itx_async_node_t),
2024 			    KM_SLEEP);
2025 			list_create(&ian->ia_list, sizeof (itx_t),
2026 			    offsetof(itx_t, itx_node));
2027 			ian->ia_foid = foid;
2028 			avl_insert(t, ian, where);
2029 		}
2030 		list_insert_tail(&ian->ia_list, itx);
2031 	}
2032 
2033 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2034 
2035 	/*
2036 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2037 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2038 	 * need to be careful to always dirty the ZIL using the "real"
2039 	 * TXG (not itxg_txg) even when the SPA is frozen.
2040 	 */
2041 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2042 	mutex_exit(&itxg->itxg_lock);
2043 
2044 	/* Release the old itxs now we've dropped the lock */
2045 	if (clean != NULL)
2046 		zil_itxg_clean(clean);
2047 }
2048 
2049 /*
2050  * If there are any in-memory intent log transactions which have now been
2051  * synced then start up a taskq to free them. We should only do this after we
2052  * have written out the uberblocks (i.e. txg has been committed) so that
2053  * don't inadvertently clean out in-memory log records that would be required
2054  * by zil_commit().
2055  */
2056 void
2057 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2058 {
2059 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2060 	itxs_t *clean_me;
2061 
2062 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2063 
2064 	mutex_enter(&itxg->itxg_lock);
2065 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2066 		mutex_exit(&itxg->itxg_lock);
2067 		return;
2068 	}
2069 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2070 	ASSERT3U(itxg->itxg_txg, !=, 0);
2071 	clean_me = itxg->itxg_itxs;
2072 	itxg->itxg_itxs = NULL;
2073 	itxg->itxg_txg = 0;
2074 	mutex_exit(&itxg->itxg_lock);
2075 	/*
2076 	 * Preferably start a task queue to free up the old itxs but
2077 	 * if taskq_dispatch can't allocate resources to do that then
2078 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2079 	 * created a bad performance problem.
2080 	 */
2081 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2082 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2083 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2084 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2085 	if (id == TASKQID_INVALID)
2086 		zil_itxg_clean(clean_me);
2087 }
2088 
2089 /*
2090  * This function will traverse the queue of itxs that need to be
2091  * committed, and move them onto the ZIL's zl_itx_commit_list.
2092  */
2093 static void
2094 zil_get_commit_list(zilog_t *zilog)
2095 {
2096 	uint64_t otxg, txg;
2097 	list_t *commit_list = &zilog->zl_itx_commit_list;
2098 
2099 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2100 
2101 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2102 		otxg = ZILTEST_TXG;
2103 	else
2104 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2105 
2106 	/*
2107 	 * This is inherently racy, since there is nothing to prevent
2108 	 * the last synced txg from changing. That's okay since we'll
2109 	 * only commit things in the future.
2110 	 */
2111 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2112 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2113 
2114 		mutex_enter(&itxg->itxg_lock);
2115 		if (itxg->itxg_txg != txg) {
2116 			mutex_exit(&itxg->itxg_lock);
2117 			continue;
2118 		}
2119 
2120 		/*
2121 		 * If we're adding itx records to the zl_itx_commit_list,
2122 		 * then the zil better be dirty in this "txg". We can assert
2123 		 * that here since we're holding the itxg_lock which will
2124 		 * prevent spa_sync from cleaning it. Once we add the itxs
2125 		 * to the zl_itx_commit_list we must commit it to disk even
2126 		 * if it's unnecessary (i.e. the txg was synced).
2127 		 */
2128 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2129 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2130 		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2131 
2132 		mutex_exit(&itxg->itxg_lock);
2133 	}
2134 }
2135 
2136 /*
2137  * Move the async itxs for a specified object to commit into sync lists.
2138  */
2139 void
2140 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2141 {
2142 	uint64_t otxg, txg;
2143 	itx_async_node_t *ian;
2144 	avl_tree_t *t;
2145 	avl_index_t where;
2146 
2147 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2148 		otxg = ZILTEST_TXG;
2149 	else
2150 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2151 
2152 	/*
2153 	 * This is inherently racy, since there is nothing to prevent
2154 	 * the last synced txg from changing.
2155 	 */
2156 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2157 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2158 
2159 		mutex_enter(&itxg->itxg_lock);
2160 		if (itxg->itxg_txg != txg) {
2161 			mutex_exit(&itxg->itxg_lock);
2162 			continue;
2163 		}
2164 
2165 		/*
2166 		 * If a foid is specified then find that node and append its
2167 		 * list. Otherwise walk the tree appending all the lists
2168 		 * to the sync list. We add to the end rather than the
2169 		 * beginning to ensure the create has happened.
2170 		 */
2171 		t = &itxg->itxg_itxs->i_async_tree;
2172 		if (foid != 0) {
2173 			ian = avl_find(t, &foid, &where);
2174 			if (ian != NULL) {
2175 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2176 				    &ian->ia_list);
2177 			}
2178 		} else {
2179 			void *cookie = NULL;
2180 
2181 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2182 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2183 				    &ian->ia_list);
2184 				list_destroy(&ian->ia_list);
2185 				kmem_free(ian, sizeof (itx_async_node_t));
2186 			}
2187 		}
2188 		mutex_exit(&itxg->itxg_lock);
2189 	}
2190 }
2191 
2192 /*
2193  * This function will prune commit itxs that are at the head of the
2194  * commit list (it won't prune past the first non-commit itx), and
2195  * either: a) attach them to the last lwb that's still pending
2196  * completion, or b) skip them altogether.
2197  *
2198  * This is used as a performance optimization to prevent commit itxs
2199  * from generating new lwbs when it's unnecessary to do so.
2200  */
2201 static void
2202 zil_prune_commit_list(zilog_t *zilog)
2203 {
2204 	itx_t *itx;
2205 
2206 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2207 
2208 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2209 		lr_t *lrc = &itx->itx_lr;
2210 		if (lrc->lrc_txtype != TX_COMMIT)
2211 			break;
2212 
2213 		mutex_enter(&zilog->zl_lock);
2214 
2215 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2216 		if (last_lwb == NULL ||
2217 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2218 			/*
2219 			 * All of the itxs this waiter was waiting on
2220 			 * must have already completed (or there were
2221 			 * never any itx's for it to wait on), so it's
2222 			 * safe to skip this waiter and mark it done.
2223 			 */
2224 			zil_commit_waiter_skip(itx->itx_private);
2225 		} else {
2226 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2227 			itx->itx_private = NULL;
2228 		}
2229 
2230 		mutex_exit(&zilog->zl_lock);
2231 
2232 		list_remove(&zilog->zl_itx_commit_list, itx);
2233 		zil_itx_destroy(itx);
2234 	}
2235 
2236 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2237 }
2238 
2239 static void
2240 zil_commit_writer_stall(zilog_t *zilog)
2241 {
2242 	/*
2243 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2244 	 * disk, we must call txg_wait_synced() to ensure all of the
2245 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2246 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2247 	 * to zil_process_commit_list()) will have to call zil_create(),
2248 	 * and start a new ZIL chain.
2249 	 *
2250 	 * Since zil_alloc_zil() failed, the lwb that was previously
2251 	 * issued does not have a pointer to the "next" lwb on disk.
2252 	 * Thus, if another ZIL writer thread was to allocate the "next"
2253 	 * on-disk lwb, that block could be leaked in the event of a
2254 	 * crash (because the previous lwb on-disk would not point to
2255 	 * it).
2256 	 *
2257 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2258 	 * ensure no new threads enter zil_process_commit_list() until
2259 	 * all lwb's in the zl_lwb_list have been synced and freed
2260 	 * (which is achieved via the txg_wait_synced() call).
2261 	 */
2262 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2263 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2264 	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2265 }
2266 
2267 /*
2268  * This function will traverse the commit list, creating new lwbs as
2269  * needed, and committing the itxs from the commit list to these newly
2270  * created lwbs. Additionally, as a new lwb is created, the previous
2271  * lwb will be issued to the zio layer to be written to disk.
2272  */
2273 static void
2274 zil_process_commit_list(zilog_t *zilog)
2275 {
2276 	spa_t *spa = zilog->zl_spa;
2277 	list_t nolwb_itxs;
2278 	list_t nolwb_waiters;
2279 	lwb_t *lwb;
2280 	itx_t *itx;
2281 
2282 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2283 
2284 	/*
2285 	 * Return if there's nothing to commit before we dirty the fs by
2286 	 * calling zil_create().
2287 	 */
2288 	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2289 		return;
2290 
2291 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2292 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2293 	    offsetof(zil_commit_waiter_t, zcw_node));
2294 
2295 	lwb = list_tail(&zilog->zl_lwb_list);
2296 	if (lwb == NULL) {
2297 		lwb = zil_create(zilog);
2298 	} else {
2299 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2300 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2301 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2302 	}
2303 
2304 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2305 		lr_t *lrc = &itx->itx_lr;
2306 		uint64_t txg = lrc->lrc_txg;
2307 
2308 		ASSERT3U(txg, !=, 0);
2309 
2310 		if (lrc->lrc_txtype == TX_COMMIT) {
2311 			DTRACE_PROBE2(zil__process__commit__itx,
2312 			    zilog_t *, zilog, itx_t *, itx);
2313 		} else {
2314 			DTRACE_PROBE2(zil__process__normal__itx,
2315 			    zilog_t *, zilog, itx_t *, itx);
2316 		}
2317 
2318 		list_remove(&zilog->zl_itx_commit_list, itx);
2319 
2320 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2321 		boolean_t frozen = txg > spa_freeze_txg(spa);
2322 
2323 		/*
2324 		 * If the txg of this itx has already been synced out, then
2325 		 * we don't need to commit this itx to an lwb. This is
2326 		 * because the data of this itx will have already been
2327 		 * written to the main pool. This is inherently racy, and
2328 		 * it's still ok to commit an itx whose txg has already
2329 		 * been synced; this will result in a write that's
2330 		 * unnecessary, but will do no harm.
2331 		 *
2332 		 * With that said, we always want to commit TX_COMMIT itxs
2333 		 * to an lwb, regardless of whether or not that itx's txg
2334 		 * has been synced out. We do this to ensure any OPENED lwb
2335 		 * will always have at least one zil_commit_waiter_t linked
2336 		 * to the lwb.
2337 		 *
2338 		 * As a counter-example, if we skipped TX_COMMIT itx's
2339 		 * whose txg had already been synced, the following
2340 		 * situation could occur if we happened to be racing with
2341 		 * spa_sync:
2342 		 *
2343 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2344 		 *    itx's txg is 10 and the last synced txg is 9.
2345 		 * 2. spa_sync finishes syncing out txg 10.
2346 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2347 		 *    whose txg is 10, so we skip it rather than committing
2348 		 *    it to the lwb used in (1).
2349 		 *
2350 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2351 		 * itx in the commit list, than it's possible for the lwb
2352 		 * used in (1) to remain in the OPENED state indefinitely.
2353 		 *
2354 		 * To prevent the above scenario from occurring, ensuring
2355 		 * that once an lwb is OPENED it will transition to ISSUED
2356 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2357 		 * an lwb here, even if that itx's txg has already been
2358 		 * synced.
2359 		 *
2360 		 * Finally, if the pool is frozen, we _always_ commit the
2361 		 * itx.  The point of freezing the pool is to prevent data
2362 		 * from being written to the main pool via spa_sync, and
2363 		 * instead rely solely on the ZIL to persistently store the
2364 		 * data; i.e.  when the pool is frozen, the last synced txg
2365 		 * value can't be trusted.
2366 		 */
2367 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2368 			if (lwb != NULL) {
2369 				lwb = zil_lwb_commit(zilog, itx, lwb);
2370 
2371 				if (lwb == NULL)
2372 					list_insert_tail(&nolwb_itxs, itx);
2373 				else
2374 					list_insert_tail(&lwb->lwb_itxs, itx);
2375 			} else {
2376 				if (lrc->lrc_txtype == TX_COMMIT) {
2377 					zil_commit_waiter_link_nolwb(
2378 					    itx->itx_private, &nolwb_waiters);
2379 				}
2380 
2381 				list_insert_tail(&nolwb_itxs, itx);
2382 			}
2383 		} else {
2384 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2385 			zil_itx_destroy(itx);
2386 		}
2387 	}
2388 
2389 	if (lwb == NULL) {
2390 		/*
2391 		 * This indicates zio_alloc_zil() failed to allocate the
2392 		 * "next" lwb on-disk. When this happens, we must stall
2393 		 * the ZIL write pipeline; see the comment within
2394 		 * zil_commit_writer_stall() for more details.
2395 		 */
2396 		zil_commit_writer_stall(zilog);
2397 
2398 		/*
2399 		 * Additionally, we have to signal and mark the "nolwb"
2400 		 * waiters as "done" here, since without an lwb, we
2401 		 * can't do this via zil_lwb_flush_vdevs_done() like
2402 		 * normal.
2403 		 */
2404 		zil_commit_waiter_t *zcw;
2405 		while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2406 			zil_commit_waiter_skip(zcw);
2407 			list_remove(&nolwb_waiters, zcw);
2408 		}
2409 
2410 		/*
2411 		 * And finally, we have to destroy the itx's that
2412 		 * couldn't be committed to an lwb; this will also call
2413 		 * the itx's callback if one exists for the itx.
2414 		 */
2415 		while ((itx = list_head(&nolwb_itxs)) != NULL) {
2416 			list_remove(&nolwb_itxs, itx);
2417 			zil_itx_destroy(itx);
2418 		}
2419 	} else {
2420 		ASSERT(list_is_empty(&nolwb_waiters));
2421 		ASSERT3P(lwb, !=, NULL);
2422 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2423 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2424 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2425 
2426 		/*
2427 		 * At this point, the ZIL block pointed at by the "lwb"
2428 		 * variable is in one of the following states: "closed"
2429 		 * or "open".
2430 		 *
2431 		 * If it's "closed", then no itxs have been committed to
2432 		 * it, so there's no point in issuing its zio (i.e. it's
2433 		 * "empty").
2434 		 *
2435 		 * If it's "open", then it contains one or more itxs that
2436 		 * eventually need to be committed to stable storage. In
2437 		 * this case we intentionally do not issue the lwb's zio
2438 		 * to disk yet, and instead rely on one of the following
2439 		 * two mechanisms for issuing the zio:
2440 		 *
2441 		 * 1. Ideally, there will be more ZIL activity occurring
2442 		 * on the system, such that this function will be
2443 		 * immediately called again (not necessarily by the same
2444 		 * thread) and this lwb's zio will be issued via
2445 		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2446 		 * be "full" when it is issued to disk, and we'll make
2447 		 * use of the lwb's size the best we can.
2448 		 *
2449 		 * 2. If there isn't sufficient ZIL activity occurring on
2450 		 * the system, such that this lwb's zio isn't issued via
2451 		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2452 		 * lwb's zio. If this occurs, the lwb is not guaranteed
2453 		 * to be "full" by the time its zio is issued, and means
2454 		 * the size of the lwb was "too large" given the amount
2455 		 * of ZIL activity occurring on the system at that time.
2456 		 *
2457 		 * We do this for a couple of reasons:
2458 		 *
2459 		 * 1. To try and reduce the number of IOPs needed to
2460 		 * write the same number of itxs. If an lwb has space
2461 		 * available in its buffer for more itxs, and more itxs
2462 		 * will be committed relatively soon (relative to the
2463 		 * latency of performing a write), then it's beneficial
2464 		 * to wait for these "next" itxs. This way, more itxs
2465 		 * can be committed to stable storage with fewer writes.
2466 		 *
2467 		 * 2. To try and use the largest lwb block size that the
2468 		 * incoming rate of itxs can support. Again, this is to
2469 		 * try and pack as many itxs into as few lwbs as
2470 		 * possible, without significantly impacting the latency
2471 		 * of each individual itx.
2472 		 */
2473 	}
2474 }
2475 
2476 /*
2477  * This function is responsible for ensuring the passed in commit waiter
2478  * (and associated commit itx) is committed to an lwb. If the waiter is
2479  * not already committed to an lwb, all itxs in the zilog's queue of
2480  * itxs will be processed. The assumption is the passed in waiter's
2481  * commit itx will found in the queue just like the other non-commit
2482  * itxs, such that when the entire queue is processed, the waiter will
2483  * have been committed to an lwb.
2484  *
2485  * The lwb associated with the passed in waiter is not guaranteed to
2486  * have been issued by the time this function completes. If the lwb is
2487  * not issued, we rely on future calls to zil_commit_writer() to issue
2488  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2489  */
2490 static void
2491 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2492 {
2493 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2494 	ASSERT(spa_writeable(zilog->zl_spa));
2495 
2496 	mutex_enter(&zilog->zl_issuer_lock);
2497 
2498 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2499 		/*
2500 		 * It's possible that, while we were waiting to acquire
2501 		 * the "zl_issuer_lock", another thread committed this
2502 		 * waiter to an lwb. If that occurs, we bail out early,
2503 		 * without processing any of the zilog's queue of itxs.
2504 		 *
2505 		 * On certain workloads and system configurations, the
2506 		 * "zl_issuer_lock" can become highly contended. In an
2507 		 * attempt to reduce this contention, we immediately drop
2508 		 * the lock if the waiter has already been processed.
2509 		 *
2510 		 * We've measured this optimization to reduce CPU spent
2511 		 * contending on this lock by up to 5%, using a system
2512 		 * with 32 CPUs, low latency storage (~50 usec writes),
2513 		 * and 1024 threads performing sync writes.
2514 		 */
2515 		goto out;
2516 	}
2517 
2518 	ZIL_STAT_BUMP(zil_commit_writer_count);
2519 
2520 	zil_get_commit_list(zilog);
2521 	zil_prune_commit_list(zilog);
2522 	zil_process_commit_list(zilog);
2523 
2524 out:
2525 	mutex_exit(&zilog->zl_issuer_lock);
2526 }
2527 
2528 static void
2529 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2530 {
2531 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2532 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2533 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2534 
2535 	lwb_t *lwb = zcw->zcw_lwb;
2536 	ASSERT3P(lwb, !=, NULL);
2537 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2538 
2539 	/*
2540 	 * If the lwb has already been issued by another thread, we can
2541 	 * immediately return since there's no work to be done (the
2542 	 * point of this function is to issue the lwb). Additionally, we
2543 	 * do this prior to acquiring the zl_issuer_lock, to avoid
2544 	 * acquiring it when it's not necessary to do so.
2545 	 */
2546 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2547 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2548 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2549 		return;
2550 
2551 	/*
2552 	 * In order to call zil_lwb_write_issue() we must hold the
2553 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2554 	 * since we're already holding the commit waiter's "zcw_lock",
2555 	 * and those two locks are acquired in the opposite order
2556 	 * elsewhere.
2557 	 */
2558 	mutex_exit(&zcw->zcw_lock);
2559 	mutex_enter(&zilog->zl_issuer_lock);
2560 	mutex_enter(&zcw->zcw_lock);
2561 
2562 	/*
2563 	 * Since we just dropped and re-acquired the commit waiter's
2564 	 * lock, we have to re-check to see if the waiter was marked
2565 	 * "done" during that process. If the waiter was marked "done",
2566 	 * the "lwb" pointer is no longer valid (it can be free'd after
2567 	 * the waiter is marked "done"), so without this check we could
2568 	 * wind up with a use-after-free error below.
2569 	 */
2570 	if (zcw->zcw_done)
2571 		goto out;
2572 
2573 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2574 
2575 	/*
2576 	 * We've already checked this above, but since we hadn't acquired
2577 	 * the zilog's zl_issuer_lock, we have to perform this check a
2578 	 * second time while holding the lock.
2579 	 *
2580 	 * We don't need to hold the zl_lock since the lwb cannot transition
2581 	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2582 	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2583 	 * that transition since we treat the lwb the same, whether it's in
2584 	 * the ISSUED or DONE states.
2585 	 *
2586 	 * The important thing, is we treat the lwb differently depending on
2587 	 * if it's ISSUED or OPENED, and block any other threads that might
2588 	 * attempt to issue this lwb. For that reason we hold the
2589 	 * zl_issuer_lock when checking the lwb_state; we must not call
2590 	 * zil_lwb_write_issue() if the lwb had already been issued.
2591 	 *
2592 	 * See the comment above the lwb_state_t structure definition for
2593 	 * more details on the lwb states, and locking requirements.
2594 	 */
2595 	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2596 	    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2597 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2598 		goto out;
2599 
2600 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2601 
2602 	/*
2603 	 * As described in the comments above zil_commit_waiter() and
2604 	 * zil_process_commit_list(), we need to issue this lwb's zio
2605 	 * since we've reached the commit waiter's timeout and it still
2606 	 * hasn't been issued.
2607 	 */
2608 	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2609 
2610 	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2611 
2612 	/*
2613 	 * Since the lwb's zio hadn't been issued by the time this thread
2614 	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2615 	 * to influence the zil block size selection algorithm.
2616 	 *
2617 	 * By having to issue the lwb's zio here, it means the size of the
2618 	 * lwb was too large, given the incoming throughput of itxs.  By
2619 	 * setting "zl_cur_used" to zero, we communicate this fact to the
2620 	 * block size selection algorithm, so it can take this information
2621 	 * into account, and potentially select a smaller size for the
2622 	 * next lwb block that is allocated.
2623 	 */
2624 	zilog->zl_cur_used = 0;
2625 
2626 	if (nlwb == NULL) {
2627 		/*
2628 		 * When zil_lwb_write_issue() returns NULL, this
2629 		 * indicates zio_alloc_zil() failed to allocate the
2630 		 * "next" lwb on-disk. When this occurs, the ZIL write
2631 		 * pipeline must be stalled; see the comment within the
2632 		 * zil_commit_writer_stall() function for more details.
2633 		 *
2634 		 * We must drop the commit waiter's lock prior to
2635 		 * calling zil_commit_writer_stall() or else we can wind
2636 		 * up with the following deadlock:
2637 		 *
2638 		 * - This thread is waiting for the txg to sync while
2639 		 *   holding the waiter's lock; txg_wait_synced() is
2640 		 *   used within txg_commit_writer_stall().
2641 		 *
2642 		 * - The txg can't sync because it is waiting for this
2643 		 *   lwb's zio callback to call dmu_tx_commit().
2644 		 *
2645 		 * - The lwb's zio callback can't call dmu_tx_commit()
2646 		 *   because it's blocked trying to acquire the waiter's
2647 		 *   lock, which occurs prior to calling dmu_tx_commit()
2648 		 */
2649 		mutex_exit(&zcw->zcw_lock);
2650 		zil_commit_writer_stall(zilog);
2651 		mutex_enter(&zcw->zcw_lock);
2652 	}
2653 
2654 out:
2655 	mutex_exit(&zilog->zl_issuer_lock);
2656 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2657 }
2658 
2659 /*
2660  * This function is responsible for performing the following two tasks:
2661  *
2662  * 1. its primary responsibility is to block until the given "commit
2663  *    waiter" is considered "done".
2664  *
2665  * 2. its secondary responsibility is to issue the zio for the lwb that
2666  *    the given "commit waiter" is waiting on, if this function has
2667  *    waited "long enough" and the lwb is still in the "open" state.
2668  *
2669  * Given a sufficient amount of itxs being generated and written using
2670  * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2671  * function. If this does not occur, this secondary responsibility will
2672  * ensure the lwb is issued even if there is not other synchronous
2673  * activity on the system.
2674  *
2675  * For more details, see zil_process_commit_list(); more specifically,
2676  * the comment at the bottom of that function.
2677  */
2678 static void
2679 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2680 {
2681 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2682 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2683 	ASSERT(spa_writeable(zilog->zl_spa));
2684 
2685 	mutex_enter(&zcw->zcw_lock);
2686 
2687 	/*
2688 	 * The timeout is scaled based on the lwb latency to avoid
2689 	 * significantly impacting the latency of each individual itx.
2690 	 * For more details, see the comment at the bottom of the
2691 	 * zil_process_commit_list() function.
2692 	 */
2693 	int pct = MAX(zfs_commit_timeout_pct, 1);
2694 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2695 	hrtime_t wakeup = gethrtime() + sleep;
2696 	boolean_t timedout = B_FALSE;
2697 
2698 	while (!zcw->zcw_done) {
2699 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2700 
2701 		lwb_t *lwb = zcw->zcw_lwb;
2702 
2703 		/*
2704 		 * Usually, the waiter will have a non-NULL lwb field here,
2705 		 * but it's possible for it to be NULL as a result of
2706 		 * zil_commit() racing with spa_sync().
2707 		 *
2708 		 * When zil_clean() is called, it's possible for the itxg
2709 		 * list (which may be cleaned via a taskq) to contain
2710 		 * commit itxs. When this occurs, the commit waiters linked
2711 		 * off of these commit itxs will not be committed to an
2712 		 * lwb.  Additionally, these commit waiters will not be
2713 		 * marked done until zil_commit_waiter_skip() is called via
2714 		 * zil_itxg_clean().
2715 		 *
2716 		 * Thus, it's possible for this commit waiter (i.e. the
2717 		 * "zcw" variable) to be found in this "in between" state;
2718 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2719 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2720 		 */
2721 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2722 
2723 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2724 			ASSERT3B(timedout, ==, B_FALSE);
2725 
2726 			/*
2727 			 * If the lwb hasn't been issued yet, then we
2728 			 * need to wait with a timeout, in case this
2729 			 * function needs to issue the lwb after the
2730 			 * timeout is reached; responsibility (2) from
2731 			 * the comment above this function.
2732 			 */
2733 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
2734 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2735 			    CALLOUT_FLAG_ABSOLUTE);
2736 
2737 			if (rc != -1 || zcw->zcw_done)
2738 				continue;
2739 
2740 			timedout = B_TRUE;
2741 			zil_commit_waiter_timeout(zilog, zcw);
2742 
2743 			if (!zcw->zcw_done) {
2744 				/*
2745 				 * If the commit waiter has already been
2746 				 * marked "done", it's possible for the
2747 				 * waiter's lwb structure to have already
2748 				 * been freed.  Thus, we can only reliably
2749 				 * make these assertions if the waiter
2750 				 * isn't done.
2751 				 */
2752 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2753 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2754 			}
2755 		} else {
2756 			/*
2757 			 * If the lwb isn't open, then it must have already
2758 			 * been issued. In that case, there's no need to
2759 			 * use a timeout when waiting for the lwb to
2760 			 * complete.
2761 			 *
2762 			 * Additionally, if the lwb is NULL, the waiter
2763 			 * will soon be signaled and marked done via
2764 			 * zil_clean() and zil_itxg_clean(), so no timeout
2765 			 * is required.
2766 			 */
2767 
2768 			IMPLY(lwb != NULL,
2769 			    lwb->lwb_state == LWB_STATE_ISSUED ||
2770 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2771 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2772 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2773 		}
2774 	}
2775 
2776 	mutex_exit(&zcw->zcw_lock);
2777 }
2778 
2779 static zil_commit_waiter_t *
2780 zil_alloc_commit_waiter(void)
2781 {
2782 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2783 
2784 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2785 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2786 	list_link_init(&zcw->zcw_node);
2787 	zcw->zcw_lwb = NULL;
2788 	zcw->zcw_done = B_FALSE;
2789 	zcw->zcw_zio_error = 0;
2790 
2791 	return (zcw);
2792 }
2793 
2794 static void
2795 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2796 {
2797 	ASSERT(!list_link_active(&zcw->zcw_node));
2798 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2799 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2800 	mutex_destroy(&zcw->zcw_lock);
2801 	cv_destroy(&zcw->zcw_cv);
2802 	kmem_cache_free(zil_zcw_cache, zcw);
2803 }
2804 
2805 /*
2806  * This function is used to create a TX_COMMIT itx and assign it. This
2807  * way, it will be linked into the ZIL's list of synchronous itxs, and
2808  * then later committed to an lwb (or skipped) when
2809  * zil_process_commit_list() is called.
2810  */
2811 static void
2812 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2813 {
2814 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2815 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2816 
2817 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2818 	itx->itx_sync = B_TRUE;
2819 	itx->itx_private = zcw;
2820 
2821 	zil_itx_assign(zilog, itx, tx);
2822 
2823 	dmu_tx_commit(tx);
2824 }
2825 
2826 /*
2827  * Commit ZFS Intent Log transactions (itxs) to stable storage.
2828  *
2829  * When writing ZIL transactions to the on-disk representation of the
2830  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2831  * itxs can be committed to a single lwb. Once a lwb is written and
2832  * committed to stable storage (i.e. the lwb is written, and vdevs have
2833  * been flushed), each itx that was committed to that lwb is also
2834  * considered to be committed to stable storage.
2835  *
2836  * When an itx is committed to an lwb, the log record (lr_t) contained
2837  * by the itx is copied into the lwb's zio buffer, and once this buffer
2838  * is written to disk, it becomes an on-disk ZIL block.
2839  *
2840  * As itxs are generated, they're inserted into the ZIL's queue of
2841  * uncommitted itxs. The semantics of zil_commit() are such that it will
2842  * block until all itxs that were in the queue when it was called, are
2843  * committed to stable storage.
2844  *
2845  * If "foid" is zero, this means all "synchronous" and "asynchronous"
2846  * itxs, for all objects in the dataset, will be committed to stable
2847  * storage prior to zil_commit() returning. If "foid" is non-zero, all
2848  * "synchronous" itxs for all objects, but only "asynchronous" itxs
2849  * that correspond to the foid passed in, will be committed to stable
2850  * storage prior to zil_commit() returning.
2851  *
2852  * Generally speaking, when zil_commit() is called, the consumer doesn't
2853  * actually care about _all_ of the uncommitted itxs. Instead, they're
2854  * simply trying to waiting for a specific itx to be committed to disk,
2855  * but the interface(s) for interacting with the ZIL don't allow such
2856  * fine-grained communication. A better interface would allow a consumer
2857  * to create and assign an itx, and then pass a reference to this itx to
2858  * zil_commit(); such that zil_commit() would return as soon as that
2859  * specific itx was committed to disk (instead of waiting for _all_
2860  * itxs to be committed).
2861  *
2862  * When a thread calls zil_commit() a special "commit itx" will be
2863  * generated, along with a corresponding "waiter" for this commit itx.
2864  * zil_commit() will wait on this waiter's CV, such that when the waiter
2865  * is marked done, and signaled, zil_commit() will return.
2866  *
2867  * This commit itx is inserted into the queue of uncommitted itxs. This
2868  * provides an easy mechanism for determining which itxs were in the
2869  * queue prior to zil_commit() having been called, and which itxs were
2870  * added after zil_commit() was called.
2871  *
2872  * The commit it is special; it doesn't have any on-disk representation.
2873  * When a commit itx is "committed" to an lwb, the waiter associated
2874  * with it is linked onto the lwb's list of waiters. Then, when that lwb
2875  * completes, each waiter on the lwb's list is marked done and signaled
2876  * -- allowing the thread waiting on the waiter to return from zil_commit().
2877  *
2878  * It's important to point out a few critical factors that allow us
2879  * to make use of the commit itxs, commit waiters, per-lwb lists of
2880  * commit waiters, and zio completion callbacks like we're doing:
2881  *
2882  *   1. The list of waiters for each lwb is traversed, and each commit
2883  *      waiter is marked "done" and signaled, in the zio completion
2884  *      callback of the lwb's zio[*].
2885  *
2886  *      * Actually, the waiters are signaled in the zio completion
2887  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2888  *        that are sent to the vdevs upon completion of the lwb zio.
2889  *
2890  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2891  *      itxs, the order in which they are inserted is preserved[*]; as
2892  *      itxs are added to the queue, they are added to the tail of
2893  *      in-memory linked lists.
2894  *
2895  *      When committing the itxs to lwbs (to be written to disk), they
2896  *      are committed in the same order in which the itxs were added to
2897  *      the uncommitted queue's linked list(s); i.e. the linked list of
2898  *      itxs to commit is traversed from head to tail, and each itx is
2899  *      committed to an lwb in that order.
2900  *
2901  *      * To clarify:
2902  *
2903  *        - the order of "sync" itxs is preserved w.r.t. other
2904  *          "sync" itxs, regardless of the corresponding objects.
2905  *        - the order of "async" itxs is preserved w.r.t. other
2906  *          "async" itxs corresponding to the same object.
2907  *        - the order of "async" itxs is *not* preserved w.r.t. other
2908  *          "async" itxs corresponding to different objects.
2909  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2910  *          versa) is *not* preserved, even for itxs that correspond
2911  *          to the same object.
2912  *
2913  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2914  *      zil_get_commit_list(), and zil_process_commit_list().
2915  *
2916  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2917  *      lwb cannot be considered committed to stable storage, until its
2918  *      "previous" lwb is also committed to stable storage. This fact,
2919  *      coupled with the fact described above, means that itxs are
2920  *      committed in (roughly) the order in which they were generated.
2921  *      This is essential because itxs are dependent on prior itxs.
2922  *      Thus, we *must not* deem an itx as being committed to stable
2923  *      storage, until *all* prior itxs have also been committed to
2924  *      stable storage.
2925  *
2926  *      To enforce this ordering of lwb zio's, while still leveraging as
2927  *      much of the underlying storage performance as possible, we rely
2928  *      on two fundamental concepts:
2929  *
2930  *          1. The creation and issuance of lwb zio's is protected by
2931  *             the zilog's "zl_issuer_lock", which ensures only a single
2932  *             thread is creating and/or issuing lwb's at a time
2933  *          2. The "previous" lwb is a child of the "current" lwb
2934  *             (leveraging the zio parent-child dependency graph)
2935  *
2936  *      By relying on this parent-child zio relationship, we can have
2937  *      many lwb zio's concurrently issued to the underlying storage,
2938  *      but the order in which they complete will be the same order in
2939  *      which they were created.
2940  */
2941 void
2942 zil_commit(zilog_t *zilog, uint64_t foid)
2943 {
2944 	/*
2945 	 * We should never attempt to call zil_commit on a snapshot for
2946 	 * a couple of reasons:
2947 	 *
2948 	 * 1. A snapshot may never be modified, thus it cannot have any
2949 	 *    in-flight itxs that would have modified the dataset.
2950 	 *
2951 	 * 2. By design, when zil_commit() is called, a commit itx will
2952 	 *    be assigned to this zilog; as a result, the zilog will be
2953 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2954 	 *    checks in the code that enforce this invariant, and will
2955 	 *    cause a panic if it's not upheld.
2956 	 */
2957 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2958 
2959 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2960 		return;
2961 
2962 	if (!spa_writeable(zilog->zl_spa)) {
2963 		/*
2964 		 * If the SPA is not writable, there should never be any
2965 		 * pending itxs waiting to be committed to disk. If that
2966 		 * weren't true, we'd skip writing those itxs out, and
2967 		 * would break the semantics of zil_commit(); thus, we're
2968 		 * verifying that truth before we return to the caller.
2969 		 */
2970 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2971 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2972 		for (int i = 0; i < TXG_SIZE; i++)
2973 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2974 		return;
2975 	}
2976 
2977 	/*
2978 	 * If the ZIL is suspended, we don't want to dirty it by calling
2979 	 * zil_commit_itx_assign() below, nor can we write out
2980 	 * lwbs like would be done in zil_commit_write(). Thus, we
2981 	 * simply rely on txg_wait_synced() to maintain the necessary
2982 	 * semantics, and avoid calling those functions altogether.
2983 	 */
2984 	if (zilog->zl_suspend > 0) {
2985 		txg_wait_synced(zilog->zl_dmu_pool, 0);
2986 		return;
2987 	}
2988 
2989 	zil_commit_impl(zilog, foid);
2990 }
2991 
2992 void
2993 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2994 {
2995 	ZIL_STAT_BUMP(zil_commit_count);
2996 
2997 	/*
2998 	 * Move the "async" itxs for the specified foid to the "sync"
2999 	 * queues, such that they will be later committed (or skipped)
3000 	 * to an lwb when zil_process_commit_list() is called.
3001 	 *
3002 	 * Since these "async" itxs must be committed prior to this
3003 	 * call to zil_commit returning, we must perform this operation
3004 	 * before we call zil_commit_itx_assign().
3005 	 */
3006 	zil_async_to_sync(zilog, foid);
3007 
3008 	/*
3009 	 * We allocate a new "waiter" structure which will initially be
3010 	 * linked to the commit itx using the itx's "itx_private" field.
3011 	 * Since the commit itx doesn't represent any on-disk state,
3012 	 * when it's committed to an lwb, rather than copying the its
3013 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3014 	 * added to the lwb's list of waiters. Then, when the lwb is
3015 	 * committed to stable storage, each waiter in the lwb's list of
3016 	 * waiters will be marked "done", and signalled.
3017 	 *
3018 	 * We must create the waiter and assign the commit itx prior to
3019 	 * calling zil_commit_writer(), or else our specific commit itx
3020 	 * is not guaranteed to be committed to an lwb prior to calling
3021 	 * zil_commit_waiter().
3022 	 */
3023 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3024 	zil_commit_itx_assign(zilog, zcw);
3025 
3026 	zil_commit_writer(zilog, zcw);
3027 	zil_commit_waiter(zilog, zcw);
3028 
3029 	if (zcw->zcw_zio_error != 0) {
3030 		/*
3031 		 * If there was an error writing out the ZIL blocks that
3032 		 * this thread is waiting on, then we fallback to
3033 		 * relying on spa_sync() to write out the data this
3034 		 * thread is waiting on. Obviously this has performance
3035 		 * implications, but the expectation is for this to be
3036 		 * an exceptional case, and shouldn't occur often.
3037 		 */
3038 		DTRACE_PROBE2(zil__commit__io__error,
3039 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3040 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3041 	}
3042 
3043 	zil_free_commit_waiter(zcw);
3044 }
3045 
3046 /*
3047  * Called in syncing context to free committed log blocks and update log header.
3048  */
3049 void
3050 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3051 {
3052 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3053 	uint64_t txg = dmu_tx_get_txg(tx);
3054 	spa_t *spa = zilog->zl_spa;
3055 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3056 	lwb_t *lwb;
3057 
3058 	/*
3059 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3060 	 * to destroy it twice.
3061 	 */
3062 	if (spa_sync_pass(spa) != 1)
3063 		return;
3064 
3065 	mutex_enter(&zilog->zl_lock);
3066 
3067 	ASSERT(zilog->zl_stop_sync == 0);
3068 
3069 	if (*replayed_seq != 0) {
3070 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3071 		zh->zh_replay_seq = *replayed_seq;
3072 		*replayed_seq = 0;
3073 	}
3074 
3075 	if (zilog->zl_destroy_txg == txg) {
3076 		blkptr_t blk = zh->zh_log;
3077 
3078 		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3079 
3080 		bzero(zh, sizeof (zil_header_t));
3081 		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
3082 
3083 		if (zilog->zl_keep_first) {
3084 			/*
3085 			 * If this block was part of log chain that couldn't
3086 			 * be claimed because a device was missing during
3087 			 * zil_claim(), but that device later returns,
3088 			 * then this block could erroneously appear valid.
3089 			 * To guard against this, assign a new GUID to the new
3090 			 * log chain so it doesn't matter what blk points to.
3091 			 */
3092 			zil_init_log_chain(zilog, &blk);
3093 			zh->zh_log = blk;
3094 		}
3095 	}
3096 
3097 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3098 		zh->zh_log = lwb->lwb_blk;
3099 		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3100 			break;
3101 		list_remove(&zilog->zl_lwb_list, lwb);
3102 		zio_free(spa, txg, &lwb->lwb_blk);
3103 		zil_free_lwb(zilog, lwb);
3104 
3105 		/*
3106 		 * If we don't have anything left in the lwb list then
3107 		 * we've had an allocation failure and we need to zero
3108 		 * out the zil_header blkptr so that we don't end
3109 		 * up freeing the same block twice.
3110 		 */
3111 		if (list_head(&zilog->zl_lwb_list) == NULL)
3112 			BP_ZERO(&zh->zh_log);
3113 	}
3114 
3115 	/*
3116 	 * Remove fastwrite on any blocks that have been pre-allocated for
3117 	 * the next commit. This prevents fastwrite counter pollution by
3118 	 * unused, long-lived LWBs.
3119 	 */
3120 	for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3121 		if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3122 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3123 			lwb->lwb_fastwrite = 0;
3124 		}
3125 	}
3126 
3127 	mutex_exit(&zilog->zl_lock);
3128 }
3129 
3130 /* ARGSUSED */
3131 static int
3132 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3133 {
3134 	lwb_t *lwb = vbuf;
3135 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3136 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3137 	    offsetof(zil_commit_waiter_t, zcw_node));
3138 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3139 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3140 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3141 	return (0);
3142 }
3143 
3144 /* ARGSUSED */
3145 static void
3146 zil_lwb_dest(void *vbuf, void *unused)
3147 {
3148 	lwb_t *lwb = vbuf;
3149 	mutex_destroy(&lwb->lwb_vdev_lock);
3150 	avl_destroy(&lwb->lwb_vdev_tree);
3151 	list_destroy(&lwb->lwb_waiters);
3152 	list_destroy(&lwb->lwb_itxs);
3153 }
3154 
3155 void
3156 zil_init(void)
3157 {
3158 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3159 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3160 
3161 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3162 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3163 
3164 	zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3165 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3166 	    KSTAT_FLAG_VIRTUAL);
3167 
3168 	if (zil_ksp != NULL) {
3169 		zil_ksp->ks_data = &zil_stats;
3170 		kstat_install(zil_ksp);
3171 	}
3172 }
3173 
3174 void
3175 zil_fini(void)
3176 {
3177 	kmem_cache_destroy(zil_zcw_cache);
3178 	kmem_cache_destroy(zil_lwb_cache);
3179 
3180 	if (zil_ksp != NULL) {
3181 		kstat_delete(zil_ksp);
3182 		zil_ksp = NULL;
3183 	}
3184 }
3185 
3186 void
3187 zil_set_sync(zilog_t *zilog, uint64_t sync)
3188 {
3189 	zilog->zl_sync = sync;
3190 }
3191 
3192 void
3193 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3194 {
3195 	zilog->zl_logbias = logbias;
3196 }
3197 
3198 zilog_t *
3199 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3200 {
3201 	zilog_t *zilog;
3202 
3203 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3204 
3205 	zilog->zl_header = zh_phys;
3206 	zilog->zl_os = os;
3207 	zilog->zl_spa = dmu_objset_spa(os);
3208 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3209 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3210 	zilog->zl_logbias = dmu_objset_logbias(os);
3211 	zilog->zl_sync = dmu_objset_syncprop(os);
3212 	zilog->zl_dirty_max_txg = 0;
3213 	zilog->zl_last_lwb_opened = NULL;
3214 	zilog->zl_last_lwb_latency = 0;
3215 	zilog->zl_max_block_size = zil_maxblocksize;
3216 
3217 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3218 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3219 
3220 	for (int i = 0; i < TXG_SIZE; i++) {
3221 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3222 		    MUTEX_DEFAULT, NULL);
3223 	}
3224 
3225 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3226 	    offsetof(lwb_t, lwb_node));
3227 
3228 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3229 	    offsetof(itx_t, itx_node));
3230 
3231 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3232 
3233 	return (zilog);
3234 }
3235 
3236 void
3237 zil_free(zilog_t *zilog)
3238 {
3239 	int i;
3240 
3241 	zilog->zl_stop_sync = 1;
3242 
3243 	ASSERT0(zilog->zl_suspend);
3244 	ASSERT0(zilog->zl_suspending);
3245 
3246 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3247 	list_destroy(&zilog->zl_lwb_list);
3248 
3249 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3250 	list_destroy(&zilog->zl_itx_commit_list);
3251 
3252 	for (i = 0; i < TXG_SIZE; i++) {
3253 		/*
3254 		 * It's possible for an itx to be generated that doesn't dirty
3255 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3256 		 * callback to remove the entry. We remove those here.
3257 		 *
3258 		 * Also free up the ziltest itxs.
3259 		 */
3260 		if (zilog->zl_itxg[i].itxg_itxs)
3261 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3262 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3263 	}
3264 
3265 	mutex_destroy(&zilog->zl_issuer_lock);
3266 	mutex_destroy(&zilog->zl_lock);
3267 
3268 	cv_destroy(&zilog->zl_cv_suspend);
3269 
3270 	kmem_free(zilog, sizeof (zilog_t));
3271 }
3272 
3273 /*
3274  * Open an intent log.
3275  */
3276 zilog_t *
3277 zil_open(objset_t *os, zil_get_data_t *get_data)
3278 {
3279 	zilog_t *zilog = dmu_objset_zil(os);
3280 
3281 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3282 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3283 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3284 
3285 	zilog->zl_get_data = get_data;
3286 
3287 	return (zilog);
3288 }
3289 
3290 /*
3291  * Close an intent log.
3292  */
3293 void
3294 zil_close(zilog_t *zilog)
3295 {
3296 	lwb_t *lwb;
3297 	uint64_t txg;
3298 
3299 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3300 		zil_commit(zilog, 0);
3301 	} else {
3302 		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3303 		ASSERT0(zilog->zl_dirty_max_txg);
3304 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3305 	}
3306 
3307 	mutex_enter(&zilog->zl_lock);
3308 	lwb = list_tail(&zilog->zl_lwb_list);
3309 	if (lwb == NULL)
3310 		txg = zilog->zl_dirty_max_txg;
3311 	else
3312 		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3313 	mutex_exit(&zilog->zl_lock);
3314 
3315 	/*
3316 	 * We need to use txg_wait_synced() to wait long enough for the
3317 	 * ZIL to be clean, and to wait for all pending lwbs to be
3318 	 * written out.
3319 	 */
3320 	if (txg != 0)
3321 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3322 
3323 	if (zilog_is_dirty(zilog))
3324 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3325 		    (u_longlong_t)txg);
3326 	if (txg < spa_freeze_txg(zilog->zl_spa))
3327 		VERIFY(!zilog_is_dirty(zilog));
3328 
3329 	zilog->zl_get_data = NULL;
3330 
3331 	/*
3332 	 * We should have only one lwb left on the list; remove it now.
3333 	 */
3334 	mutex_enter(&zilog->zl_lock);
3335 	lwb = list_head(&zilog->zl_lwb_list);
3336 	if (lwb != NULL) {
3337 		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3338 		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3339 
3340 		if (lwb->lwb_fastwrite)
3341 			metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3342 
3343 		list_remove(&zilog->zl_lwb_list, lwb);
3344 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3345 		zil_free_lwb(zilog, lwb);
3346 	}
3347 	mutex_exit(&zilog->zl_lock);
3348 }
3349 
3350 static char *suspend_tag = "zil suspending";
3351 
3352 /*
3353  * Suspend an intent log.  While in suspended mode, we still honor
3354  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3355  * On old version pools, we suspend the log briefly when taking a
3356  * snapshot so that it will have an empty intent log.
3357  *
3358  * Long holds are not really intended to be used the way we do here --
3359  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3360  * could fail.  Therefore we take pains to only put a long hold if it is
3361  * actually necessary.  Fortunately, it will only be necessary if the
3362  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3363  * will already have a long hold, so we are not really making things any worse.
3364  *
3365  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3366  * zvol_state_t), and use their mechanism to prevent their hold from being
3367  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3368  * very little gain.
3369  *
3370  * if cookiep == NULL, this does both the suspend & resume.
3371  * Otherwise, it returns with the dataset "long held", and the cookie
3372  * should be passed into zil_resume().
3373  */
3374 int
3375 zil_suspend(const char *osname, void **cookiep)
3376 {
3377 	objset_t *os;
3378 	zilog_t *zilog;
3379 	const zil_header_t *zh;
3380 	int error;
3381 
3382 	error = dmu_objset_hold(osname, suspend_tag, &os);
3383 	if (error != 0)
3384 		return (error);
3385 	zilog = dmu_objset_zil(os);
3386 
3387 	mutex_enter(&zilog->zl_lock);
3388 	zh = zilog->zl_header;
3389 
3390 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3391 		mutex_exit(&zilog->zl_lock);
3392 		dmu_objset_rele(os, suspend_tag);
3393 		return (SET_ERROR(EBUSY));
3394 	}
3395 
3396 	/*
3397 	 * Don't put a long hold in the cases where we can avoid it.  This
3398 	 * is when there is no cookie so we are doing a suspend & resume
3399 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3400 	 * for the suspend because it's already suspended, or there's no ZIL.
3401 	 */
3402 	if (cookiep == NULL && !zilog->zl_suspending &&
3403 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3404 		mutex_exit(&zilog->zl_lock);
3405 		dmu_objset_rele(os, suspend_tag);
3406 		return (0);
3407 	}
3408 
3409 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3410 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3411 
3412 	zilog->zl_suspend++;
3413 
3414 	if (zilog->zl_suspend > 1) {
3415 		/*
3416 		 * Someone else is already suspending it.
3417 		 * Just wait for them to finish.
3418 		 */
3419 
3420 		while (zilog->zl_suspending)
3421 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3422 		mutex_exit(&zilog->zl_lock);
3423 
3424 		if (cookiep == NULL)
3425 			zil_resume(os);
3426 		else
3427 			*cookiep = os;
3428 		return (0);
3429 	}
3430 
3431 	/*
3432 	 * If there is no pointer to an on-disk block, this ZIL must not
3433 	 * be active (e.g. filesystem not mounted), so there's nothing
3434 	 * to clean up.
3435 	 */
3436 	if (BP_IS_HOLE(&zh->zh_log)) {
3437 		ASSERT(cookiep != NULL); /* fast path already handled */
3438 
3439 		*cookiep = os;
3440 		mutex_exit(&zilog->zl_lock);
3441 		return (0);
3442 	}
3443 
3444 	/*
3445 	 * The ZIL has work to do. Ensure that the associated encryption
3446 	 * key will remain mapped while we are committing the log by
3447 	 * grabbing a reference to it. If the key isn't loaded we have no
3448 	 * choice but to return an error until the wrapping key is loaded.
3449 	 */
3450 	if (os->os_encrypted &&
3451 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3452 		zilog->zl_suspend--;
3453 		mutex_exit(&zilog->zl_lock);
3454 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3455 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3456 		return (SET_ERROR(EACCES));
3457 	}
3458 
3459 	zilog->zl_suspending = B_TRUE;
3460 	mutex_exit(&zilog->zl_lock);
3461 
3462 	/*
3463 	 * We need to use zil_commit_impl to ensure we wait for all
3464 	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3465 	 * to disk before proceeding. If we used zil_commit instead, it
3466 	 * would just call txg_wait_synced(), because zl_suspend is set.
3467 	 * txg_wait_synced() doesn't wait for these lwb's to be
3468 	 * LWB_STATE_FLUSH_DONE before returning.
3469 	 */
3470 	zil_commit_impl(zilog, 0);
3471 
3472 	/*
3473 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3474 	 * use txg_wait_synced() to ensure the data from the zilog has
3475 	 * migrated to the main pool before calling zil_destroy().
3476 	 */
3477 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3478 
3479 	zil_destroy(zilog, B_FALSE);
3480 
3481 	mutex_enter(&zilog->zl_lock);
3482 	zilog->zl_suspending = B_FALSE;
3483 	cv_broadcast(&zilog->zl_cv_suspend);
3484 	mutex_exit(&zilog->zl_lock);
3485 
3486 	if (os->os_encrypted)
3487 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3488 
3489 	if (cookiep == NULL)
3490 		zil_resume(os);
3491 	else
3492 		*cookiep = os;
3493 	return (0);
3494 }
3495 
3496 void
3497 zil_resume(void *cookie)
3498 {
3499 	objset_t *os = cookie;
3500 	zilog_t *zilog = dmu_objset_zil(os);
3501 
3502 	mutex_enter(&zilog->zl_lock);
3503 	ASSERT(zilog->zl_suspend != 0);
3504 	zilog->zl_suspend--;
3505 	mutex_exit(&zilog->zl_lock);
3506 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3507 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3508 }
3509 
3510 typedef struct zil_replay_arg {
3511 	zil_replay_func_t **zr_replay;
3512 	void		*zr_arg;
3513 	boolean_t	zr_byteswap;
3514 	char		*zr_lr;
3515 } zil_replay_arg_t;
3516 
3517 static int
3518 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3519 {
3520 	char name[ZFS_MAX_DATASET_NAME_LEN];
3521 
3522 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3523 
3524 	dmu_objset_name(zilog->zl_os, name);
3525 
3526 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3527 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3528 	    (u_longlong_t)lr->lrc_seq,
3529 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3530 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3531 
3532 	return (error);
3533 }
3534 
3535 static int
3536 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3537     uint64_t claim_txg)
3538 {
3539 	zil_replay_arg_t *zr = zra;
3540 	const zil_header_t *zh = zilog->zl_header;
3541 	uint64_t reclen = lr->lrc_reclen;
3542 	uint64_t txtype = lr->lrc_txtype;
3543 	int error = 0;
3544 
3545 	zilog->zl_replaying_seq = lr->lrc_seq;
3546 
3547 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3548 		return (0);
3549 
3550 	if (lr->lrc_txg < claim_txg)		/* already committed */
3551 		return (0);
3552 
3553 	/* Strip case-insensitive bit, still present in log record */
3554 	txtype &= ~TX_CI;
3555 
3556 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3557 		return (zil_replay_error(zilog, lr, EINVAL));
3558 
3559 	/*
3560 	 * If this record type can be logged out of order, the object
3561 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3562 	 */
3563 	if (TX_OOO(txtype)) {
3564 		error = dmu_object_info(zilog->zl_os,
3565 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3566 		if (error == ENOENT || error == EEXIST)
3567 			return (0);
3568 	}
3569 
3570 	/*
3571 	 * Make a copy of the data so we can revise and extend it.
3572 	 */
3573 	bcopy(lr, zr->zr_lr, reclen);
3574 
3575 	/*
3576 	 * If this is a TX_WRITE with a blkptr, suck in the data.
3577 	 */
3578 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3579 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3580 		    zr->zr_lr + reclen);
3581 		if (error != 0)
3582 			return (zil_replay_error(zilog, lr, error));
3583 	}
3584 
3585 	/*
3586 	 * The log block containing this lr may have been byteswapped
3587 	 * so that we can easily examine common fields like lrc_txtype.
3588 	 * However, the log is a mix of different record types, and only the
3589 	 * replay vectors know how to byteswap their records.  Therefore, if
3590 	 * the lr was byteswapped, undo it before invoking the replay vector.
3591 	 */
3592 	if (zr->zr_byteswap)
3593 		byteswap_uint64_array(zr->zr_lr, reclen);
3594 
3595 	/*
3596 	 * We must now do two things atomically: replay this log record,
3597 	 * and update the log header sequence number to reflect the fact that
3598 	 * we did so. At the end of each replay function the sequence number
3599 	 * is updated if we are in replay mode.
3600 	 */
3601 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3602 	if (error != 0) {
3603 		/*
3604 		 * The DMU's dnode layer doesn't see removes until the txg
3605 		 * commits, so a subsequent claim can spuriously fail with
3606 		 * EEXIST. So if we receive any error we try syncing out
3607 		 * any removes then retry the transaction.  Note that we
3608 		 * specify B_FALSE for byteswap now, so we don't do it twice.
3609 		 */
3610 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3611 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3612 		if (error != 0)
3613 			return (zil_replay_error(zilog, lr, error));
3614 	}
3615 	return (0);
3616 }
3617 
3618 /* ARGSUSED */
3619 static int
3620 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3621 {
3622 	zilog->zl_replay_blks++;
3623 
3624 	return (0);
3625 }
3626 
3627 /*
3628  * If this dataset has a non-empty intent log, replay it and destroy it.
3629  */
3630 void
3631 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3632 {
3633 	zilog_t *zilog = dmu_objset_zil(os);
3634 	const zil_header_t *zh = zilog->zl_header;
3635 	zil_replay_arg_t zr;
3636 
3637 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3638 		zil_destroy(zilog, B_TRUE);
3639 		return;
3640 	}
3641 
3642 	zr.zr_replay = replay_func;
3643 	zr.zr_arg = arg;
3644 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3645 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3646 
3647 	/*
3648 	 * Wait for in-progress removes to sync before starting replay.
3649 	 */
3650 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3651 
3652 	zilog->zl_replay = B_TRUE;
3653 	zilog->zl_replay_time = ddi_get_lbolt();
3654 	ASSERT(zilog->zl_replay_blks == 0);
3655 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3656 	    zh->zh_claim_txg, B_TRUE);
3657 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3658 
3659 	zil_destroy(zilog, B_FALSE);
3660 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3661 	zilog->zl_replay = B_FALSE;
3662 }
3663 
3664 boolean_t
3665 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3666 {
3667 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3668 		return (B_TRUE);
3669 
3670 	if (zilog->zl_replay) {
3671 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3672 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3673 		    zilog->zl_replaying_seq;
3674 		return (B_TRUE);
3675 	}
3676 
3677 	return (B_FALSE);
3678 }
3679 
3680 /* ARGSUSED */
3681 int
3682 zil_reset(const char *osname, void *arg)
3683 {
3684 	int error;
3685 
3686 	error = zil_suspend(osname, NULL);
3687 	/* EACCES means crypto key not loaded */
3688 	if ((error == EACCES) || (error == EBUSY))
3689 		return (SET_ERROR(error));
3690 	if (error != 0)
3691 		return (SET_ERROR(EEXIST));
3692 	return (0);
3693 }
3694 
3695 EXPORT_SYMBOL(zil_alloc);
3696 EXPORT_SYMBOL(zil_free);
3697 EXPORT_SYMBOL(zil_open);
3698 EXPORT_SYMBOL(zil_close);
3699 EXPORT_SYMBOL(zil_replay);
3700 EXPORT_SYMBOL(zil_replaying);
3701 EXPORT_SYMBOL(zil_destroy);
3702 EXPORT_SYMBOL(zil_destroy_sync);
3703 EXPORT_SYMBOL(zil_itx_create);
3704 EXPORT_SYMBOL(zil_itx_destroy);
3705 EXPORT_SYMBOL(zil_itx_assign);
3706 EXPORT_SYMBOL(zil_commit);
3707 EXPORT_SYMBOL(zil_claim);
3708 EXPORT_SYMBOL(zil_check_log_chain);
3709 EXPORT_SYMBOL(zil_sync);
3710 EXPORT_SYMBOL(zil_clean);
3711 EXPORT_SYMBOL(zil_suspend);
3712 EXPORT_SYMBOL(zil_resume);
3713 EXPORT_SYMBOL(zil_lwb_add_block);
3714 EXPORT_SYMBOL(zil_bp_tree_add);
3715 EXPORT_SYMBOL(zil_set_sync);
3716 EXPORT_SYMBOL(zil_set_logbias);
3717 
3718 /* BEGIN CSTYLED */
3719 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3720 	"ZIL block open timeout percentage");
3721 
3722 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3723 	"Disable intent logging replay");
3724 
3725 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3726 	"Disable ZIL cache flushes");
3727 
3728 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3729 	"Limit in bytes slog sync writes per commit");
3730 
3731 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3732 	"Limit in bytes of ZIL log block size");
3733 /* END CSTYLED */
3734