xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 641efdd10cc3ad05fb7eaeeae20b15c5ad4128c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 10;
95 
96 /*
97  * See zil.h for more information about these fields.
98  */
99 static zil_kstat_values_t zil_stats = {
100 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
103 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
111 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
112 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
113 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
114 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
115 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
117 };
118 
119 static zil_sums_t zil_sums_global;
120 static kstat_t *zil_kstats_global;
121 
122 /*
123  * Disable intent logging replay.  This global ZIL switch affects all pools.
124  */
125 int zil_replay_disable = 0;
126 
127 /*
128  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
129  * the disk(s) by the ZIL after an LWB write has completed. Setting this
130  * will cause ZIL corruption on power loss if a volatile out-of-order
131  * write cache is enabled.
132  */
133 static int zil_nocacheflush = 0;
134 
135 /*
136  * Limit SLOG write size per commit executed with synchronous priority.
137  * Any writes above that will be executed with lower (asynchronous) priority
138  * to limit potential SLOG device abuse by single active ZIL writer.
139  */
140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
141 
142 static kmem_cache_t *zil_lwb_cache;
143 static kmem_cache_t *zil_zcw_cache;
144 
145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
146 static itx_t *zil_itx_clone(itx_t *oitx);
147 
148 static int
149 zil_bp_compare(const void *x1, const void *x2)
150 {
151 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
152 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
153 
154 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
155 	if (likely(cmp))
156 		return (cmp);
157 
158 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
159 }
160 
161 static void
162 zil_bp_tree_init(zilog_t *zilog)
163 {
164 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
165 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
166 }
167 
168 static void
169 zil_bp_tree_fini(zilog_t *zilog)
170 {
171 	avl_tree_t *t = &zilog->zl_bp_tree;
172 	zil_bp_node_t *zn;
173 	void *cookie = NULL;
174 
175 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
176 		kmem_free(zn, sizeof (zil_bp_node_t));
177 
178 	avl_destroy(t);
179 }
180 
181 int
182 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
183 {
184 	avl_tree_t *t = &zilog->zl_bp_tree;
185 	const dva_t *dva;
186 	zil_bp_node_t *zn;
187 	avl_index_t where;
188 
189 	if (BP_IS_EMBEDDED(bp))
190 		return (0);
191 
192 	dva = BP_IDENTITY(bp);
193 
194 	if (avl_find(t, dva, &where) != NULL)
195 		return (SET_ERROR(EEXIST));
196 
197 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
198 	zn->zn_dva = *dva;
199 	avl_insert(t, zn, where);
200 
201 	return (0);
202 }
203 
204 static zil_header_t *
205 zil_header_in_syncing_context(zilog_t *zilog)
206 {
207 	return ((zil_header_t *)zilog->zl_header);
208 }
209 
210 static void
211 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
212 {
213 	zio_cksum_t *zc = &bp->blk_cksum;
214 
215 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
216 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
217 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
218 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
219 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
220 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
221 }
222 
223 static int
224 zil_kstats_global_update(kstat_t *ksp, int rw)
225 {
226 	zil_kstat_values_t *zs = ksp->ks_data;
227 	ASSERT3P(&zil_stats, ==, zs);
228 
229 	if (rw == KSTAT_WRITE) {
230 		return (SET_ERROR(EACCES));
231 	}
232 
233 	zil_kstat_values_update(zs, &zil_sums_global);
234 
235 	return (0);
236 }
237 
238 /*
239  * Read a log block and make sure it's valid.
240  */
241 static int
242 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
243     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
244 {
245 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
246 	arc_flags_t aflags = ARC_FLAG_WAIT;
247 	zbookmark_phys_t zb;
248 	int error;
249 
250 	if (zilog->zl_header->zh_claim_txg == 0)
251 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
252 
253 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
254 		zio_flags |= ZIO_FLAG_SPECULATIVE;
255 
256 	if (!decrypt)
257 		zio_flags |= ZIO_FLAG_RAW;
258 
259 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
260 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
261 
262 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
263 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
264 
265 	if (error == 0) {
266 		zio_cksum_t cksum = bp->blk_cksum;
267 
268 		/*
269 		 * Validate the checksummed log block.
270 		 *
271 		 * Sequence numbers should be... sequential.  The checksum
272 		 * verifier for the next block should be bp's checksum plus 1.
273 		 *
274 		 * Also check the log chain linkage and size used.
275 		 */
276 		cksum.zc_word[ZIL_ZC_SEQ]++;
277 
278 		uint64_t size = BP_GET_LSIZE(bp);
279 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
280 			zil_chain_t *zilc = (*abuf)->b_data;
281 			char *lr = (char *)(zilc + 1);
282 
283 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
284 			    sizeof (cksum)) ||
285 			    zilc->zc_nused < sizeof (*zilc) ||
286 			    zilc->zc_nused > size) {
287 				error = SET_ERROR(ECKSUM);
288 			} else {
289 				*begin = lr;
290 				*end = lr + zilc->zc_nused - sizeof (*zilc);
291 				*nbp = zilc->zc_next_blk;
292 			}
293 		} else {
294 			char *lr = (*abuf)->b_data;
295 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
296 
297 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
298 			    sizeof (cksum)) ||
299 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
300 				error = SET_ERROR(ECKSUM);
301 			} else {
302 				*begin = lr;
303 				*end = lr + zilc->zc_nused;
304 				*nbp = zilc->zc_next_blk;
305 			}
306 		}
307 	}
308 
309 	return (error);
310 }
311 
312 /*
313  * Read a TX_WRITE log data block.
314  */
315 static int
316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
317 {
318 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
319 	const blkptr_t *bp = &lr->lr_blkptr;
320 	arc_flags_t aflags = ARC_FLAG_WAIT;
321 	arc_buf_t *abuf = NULL;
322 	zbookmark_phys_t zb;
323 	int error;
324 
325 	if (BP_IS_HOLE(bp)) {
326 		if (wbuf != NULL)
327 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
328 		return (0);
329 	}
330 
331 	if (zilog->zl_header->zh_claim_txg == 0)
332 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
333 
334 	/*
335 	 * If we are not using the resulting data, we are just checking that
336 	 * it hasn't been corrupted so we don't need to waste CPU time
337 	 * decompressing and decrypting it.
338 	 */
339 	if (wbuf == NULL)
340 		zio_flags |= ZIO_FLAG_RAW;
341 
342 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
343 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
344 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
345 
346 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
347 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
348 
349 	if (error == 0) {
350 		if (wbuf != NULL)
351 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
352 		arc_buf_destroy(abuf, &abuf);
353 	}
354 
355 	return (error);
356 }
357 
358 void
359 zil_sums_init(zil_sums_t *zs)
360 {
361 	wmsum_init(&zs->zil_commit_count, 0);
362 	wmsum_init(&zs->zil_commit_writer_count, 0);
363 	wmsum_init(&zs->zil_itx_count, 0);
364 	wmsum_init(&zs->zil_itx_indirect_count, 0);
365 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
366 	wmsum_init(&zs->zil_itx_copied_count, 0);
367 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
368 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
369 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
370 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
371 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
372 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
373 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
374 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
375 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
376 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
377 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
378 }
379 
380 void
381 zil_sums_fini(zil_sums_t *zs)
382 {
383 	wmsum_fini(&zs->zil_commit_count);
384 	wmsum_fini(&zs->zil_commit_writer_count);
385 	wmsum_fini(&zs->zil_itx_count);
386 	wmsum_fini(&zs->zil_itx_indirect_count);
387 	wmsum_fini(&zs->zil_itx_indirect_bytes);
388 	wmsum_fini(&zs->zil_itx_copied_count);
389 	wmsum_fini(&zs->zil_itx_copied_bytes);
390 	wmsum_fini(&zs->zil_itx_needcopy_count);
391 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
392 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
393 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
394 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
395 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
396 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
397 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
398 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
399 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
400 }
401 
402 void
403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
404 {
405 	zs->zil_commit_count.value.ui64 =
406 	    wmsum_value(&zil_sums->zil_commit_count);
407 	zs->zil_commit_writer_count.value.ui64 =
408 	    wmsum_value(&zil_sums->zil_commit_writer_count);
409 	zs->zil_itx_count.value.ui64 =
410 	    wmsum_value(&zil_sums->zil_itx_count);
411 	zs->zil_itx_indirect_count.value.ui64 =
412 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
413 	zs->zil_itx_indirect_bytes.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
415 	zs->zil_itx_copied_count.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_itx_copied_count);
417 	zs->zil_itx_copied_bytes.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
419 	zs->zil_itx_needcopy_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
421 	zs->zil_itx_needcopy_bytes.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
423 	zs->zil_itx_metaslab_normal_count.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
425 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
427 	zs->zil_itx_metaslab_normal_write.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
429 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
430 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
431 	zs->zil_itx_metaslab_slog_count.value.ui64 =
432 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
433 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
434 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
435 	zs->zil_itx_metaslab_slog_write.value.ui64 =
436 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
437 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
438 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
439 }
440 
441 /*
442  * Parse the intent log, and call parse_func for each valid record within.
443  */
444 int
445 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
446     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
447     boolean_t decrypt)
448 {
449 	const zil_header_t *zh = zilog->zl_header;
450 	boolean_t claimed = !!zh->zh_claim_txg;
451 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
452 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
453 	uint64_t max_blk_seq = 0;
454 	uint64_t max_lr_seq = 0;
455 	uint64_t blk_count = 0;
456 	uint64_t lr_count = 0;
457 	blkptr_t blk, next_blk = {{{{0}}}};
458 	int error = 0;
459 
460 	/*
461 	 * Old logs didn't record the maximum zh_claim_lr_seq.
462 	 */
463 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
464 		claim_lr_seq = UINT64_MAX;
465 
466 	/*
467 	 * Starting at the block pointed to by zh_log we read the log chain.
468 	 * For each block in the chain we strongly check that block to
469 	 * ensure its validity.  We stop when an invalid block is found.
470 	 * For each block pointer in the chain we call parse_blk_func().
471 	 * For each record in each valid block we call parse_lr_func().
472 	 * If the log has been claimed, stop if we encounter a sequence
473 	 * number greater than the highest claimed sequence number.
474 	 */
475 	zil_bp_tree_init(zilog);
476 
477 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
478 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
479 		int reclen;
480 		char *lrp, *end;
481 		arc_buf_t *abuf = NULL;
482 
483 		if (blk_seq > claim_blk_seq)
484 			break;
485 
486 		error = parse_blk_func(zilog, &blk, arg, txg);
487 		if (error != 0)
488 			break;
489 		ASSERT3U(max_blk_seq, <, blk_seq);
490 		max_blk_seq = blk_seq;
491 		blk_count++;
492 
493 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
494 			break;
495 
496 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
497 		    &lrp, &end, &abuf);
498 		if (error != 0) {
499 			if (abuf)
500 				arc_buf_destroy(abuf, &abuf);
501 			if (claimed) {
502 				char name[ZFS_MAX_DATASET_NAME_LEN];
503 
504 				dmu_objset_name(zilog->zl_os, name);
505 
506 				cmn_err(CE_WARN, "ZFS read log block error %d, "
507 				    "dataset %s, seq 0x%llx\n", error, name,
508 				    (u_longlong_t)blk_seq);
509 			}
510 			break;
511 		}
512 
513 		for (; lrp < end; lrp += reclen) {
514 			lr_t *lr = (lr_t *)lrp;
515 			reclen = lr->lrc_reclen;
516 			ASSERT3U(reclen, >=, sizeof (lr_t));
517 			ASSERT3U(reclen, <=, end - lrp);
518 			if (lr->lrc_seq > claim_lr_seq) {
519 				arc_buf_destroy(abuf, &abuf);
520 				goto done;
521 			}
522 
523 			error = parse_lr_func(zilog, lr, arg, txg);
524 			if (error != 0) {
525 				arc_buf_destroy(abuf, &abuf);
526 				goto done;
527 			}
528 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
529 			max_lr_seq = lr->lrc_seq;
530 			lr_count++;
531 		}
532 		arc_buf_destroy(abuf, &abuf);
533 	}
534 done:
535 	zilog->zl_parse_error = error;
536 	zilog->zl_parse_blk_seq = max_blk_seq;
537 	zilog->zl_parse_lr_seq = max_lr_seq;
538 	zilog->zl_parse_blk_count = blk_count;
539 	zilog->zl_parse_lr_count = lr_count;
540 
541 	zil_bp_tree_fini(zilog);
542 
543 	return (error);
544 }
545 
546 static int
547 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
548     uint64_t first_txg)
549 {
550 	(void) tx;
551 	ASSERT(!BP_IS_HOLE(bp));
552 
553 	/*
554 	 * As we call this function from the context of a rewind to a
555 	 * checkpoint, each ZIL block whose txg is later than the txg
556 	 * that we rewind to is invalid. Thus, we return -1 so
557 	 * zil_parse() doesn't attempt to read it.
558 	 */
559 	if (bp->blk_birth >= first_txg)
560 		return (-1);
561 
562 	if (zil_bp_tree_add(zilog, bp) != 0)
563 		return (0);
564 
565 	zio_free(zilog->zl_spa, first_txg, bp);
566 	return (0);
567 }
568 
569 static int
570 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
571     uint64_t first_txg)
572 {
573 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
574 	return (0);
575 }
576 
577 static int
578 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
579     uint64_t first_txg)
580 {
581 	/*
582 	 * Claim log block if not already committed and not already claimed.
583 	 * If tx == NULL, just verify that the block is claimable.
584 	 */
585 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
586 	    zil_bp_tree_add(zilog, bp) != 0)
587 		return (0);
588 
589 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
590 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
591 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
592 }
593 
594 static int
595 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
596 {
597 	lr_write_t *lr = (lr_write_t *)lrc;
598 	int error;
599 
600 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
601 
602 	/*
603 	 * If the block is not readable, don't claim it.  This can happen
604 	 * in normal operation when a log block is written to disk before
605 	 * some of the dmu_sync() blocks it points to.  In this case, the
606 	 * transaction cannot have been committed to anyone (we would have
607 	 * waited for all writes to be stable first), so it is semantically
608 	 * correct to declare this the end of the log.
609 	 */
610 	if (lr->lr_blkptr.blk_birth >= first_txg) {
611 		error = zil_read_log_data(zilog, lr, NULL);
612 		if (error != 0)
613 			return (error);
614 	}
615 
616 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
617 }
618 
619 static int
620 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
621 {
622 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
623 	const blkptr_t *bp;
624 	spa_t *spa;
625 	uint_t ii;
626 
627 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
628 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
629 	    lr_bps[lr->lr_nbps]));
630 
631 	if (tx == NULL) {
632 		return (0);
633 	}
634 
635 	/*
636 	 * XXX: Do we need to byteswap lr?
637 	 */
638 
639 	spa = zilog->zl_spa;
640 
641 	for (ii = 0; ii < lr->lr_nbps; ii++) {
642 		bp = &lr->lr_bps[ii];
643 
644 		/*
645 		 * When data in embedded into BP there is no need to create
646 		 * BRT entry as there is no data block. Just copy the BP as
647 		 * it contains the data.
648 		 */
649 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
650 			brt_pending_add(spa, bp, tx);
651 		}
652 	}
653 
654 	return (0);
655 }
656 
657 static int
658 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
659     uint64_t first_txg)
660 {
661 
662 	switch (lrc->lrc_txtype) {
663 	case TX_WRITE:
664 		return (zil_claim_write(zilog, lrc, tx, first_txg));
665 	case TX_CLONE_RANGE:
666 		return (zil_claim_clone_range(zilog, lrc, tx));
667 	default:
668 		return (0);
669 	}
670 }
671 
672 static int
673 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
674     uint64_t claim_txg)
675 {
676 	(void) claim_txg;
677 
678 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
679 
680 	return (0);
681 }
682 
683 static int
684 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
685 {
686 	lr_write_t *lr = (lr_write_t *)lrc;
687 	blkptr_t *bp = &lr->lr_blkptr;
688 
689 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
690 
691 	/*
692 	 * If we previously claimed it, we need to free it.
693 	 */
694 	if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
695 	    !BP_IS_HOLE(bp)) {
696 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
697 	}
698 
699 	return (0);
700 }
701 
702 static int
703 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
704 {
705 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
706 	const blkptr_t *bp;
707 	spa_t *spa;
708 	uint_t ii;
709 
710 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
711 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
712 	    lr_bps[lr->lr_nbps]));
713 
714 	if (tx == NULL) {
715 		return (0);
716 	}
717 
718 	spa = zilog->zl_spa;
719 
720 	for (ii = 0; ii < lr->lr_nbps; ii++) {
721 		bp = &lr->lr_bps[ii];
722 
723 		if (!BP_IS_HOLE(bp)) {
724 			zio_free(spa, dmu_tx_get_txg(tx), bp);
725 		}
726 	}
727 
728 	return (0);
729 }
730 
731 static int
732 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
733     uint64_t claim_txg)
734 {
735 
736 	if (claim_txg == 0) {
737 		return (0);
738 	}
739 
740 	switch (lrc->lrc_txtype) {
741 	case TX_WRITE:
742 		return (zil_free_write(zilog, lrc, tx, claim_txg));
743 	case TX_CLONE_RANGE:
744 		return (zil_free_clone_range(zilog, lrc, tx));
745 	default:
746 		return (0);
747 	}
748 }
749 
750 static int
751 zil_lwb_vdev_compare(const void *x1, const void *x2)
752 {
753 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
754 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
755 
756 	return (TREE_CMP(v1, v2));
757 }
758 
759 /*
760  * Allocate a new lwb.  We may already have a block pointer for it, in which
761  * case we get size and version from there.  Or we may not yet, in which case
762  * we choose them here and later make the block allocation match.
763  */
764 static lwb_t *
765 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
766     uint64_t txg, lwb_state_t state)
767 {
768 	lwb_t *lwb;
769 
770 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
771 	lwb->lwb_zilog = zilog;
772 	if (bp) {
773 		lwb->lwb_blk = *bp;
774 		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
775 		sz = BP_GET_LSIZE(bp);
776 	} else {
777 		BP_ZERO(&lwb->lwb_blk);
778 		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
779 		    SPA_VERSION_SLIM_ZIL);
780 	}
781 	lwb->lwb_slog = slog;
782 	lwb->lwb_error = 0;
783 	if (lwb->lwb_slim) {
784 		lwb->lwb_nmax = sz;
785 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
786 	} else {
787 		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
788 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
789 	}
790 	lwb->lwb_sz = sz;
791 	lwb->lwb_state = state;
792 	lwb->lwb_buf = zio_buf_alloc(sz);
793 	lwb->lwb_child_zio = NULL;
794 	lwb->lwb_write_zio = NULL;
795 	lwb->lwb_root_zio = NULL;
796 	lwb->lwb_issued_timestamp = 0;
797 	lwb->lwb_issued_txg = 0;
798 	lwb->lwb_alloc_txg = txg;
799 	lwb->lwb_max_txg = 0;
800 
801 	mutex_enter(&zilog->zl_lock);
802 	list_insert_tail(&zilog->zl_lwb_list, lwb);
803 	if (state != LWB_STATE_NEW)
804 		zilog->zl_last_lwb_opened = lwb;
805 	mutex_exit(&zilog->zl_lock);
806 
807 	return (lwb);
808 }
809 
810 static void
811 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
812 {
813 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
814 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
815 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
816 	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
817 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
818 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
819 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
820 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
821 	VERIFY(list_is_empty(&lwb->lwb_itxs));
822 	VERIFY(list_is_empty(&lwb->lwb_waiters));
823 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
824 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
825 
826 	/*
827 	 * Clear the zilog's field to indicate this lwb is no longer
828 	 * valid, and prevent use-after-free errors.
829 	 */
830 	if (zilog->zl_last_lwb_opened == lwb)
831 		zilog->zl_last_lwb_opened = NULL;
832 
833 	kmem_cache_free(zil_lwb_cache, lwb);
834 }
835 
836 /*
837  * Called when we create in-memory log transactions so that we know
838  * to cleanup the itxs at the end of spa_sync().
839  */
840 static void
841 zilog_dirty(zilog_t *zilog, uint64_t txg)
842 {
843 	dsl_pool_t *dp = zilog->zl_dmu_pool;
844 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
845 
846 	ASSERT(spa_writeable(zilog->zl_spa));
847 
848 	if (ds->ds_is_snapshot)
849 		panic("dirtying snapshot!");
850 
851 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
852 		/* up the hold count until we can be written out */
853 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
854 
855 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
856 	}
857 }
858 
859 /*
860  * Determine if the zil is dirty in the specified txg. Callers wanting to
861  * ensure that the dirty state does not change must hold the itxg_lock for
862  * the specified txg. Holding the lock will ensure that the zil cannot be
863  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
864  * state.
865  */
866 static boolean_t __maybe_unused
867 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
868 {
869 	dsl_pool_t *dp = zilog->zl_dmu_pool;
870 
871 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
872 		return (B_TRUE);
873 	return (B_FALSE);
874 }
875 
876 /*
877  * Determine if the zil is dirty. The zil is considered dirty if it has
878  * any pending itx records that have not been cleaned by zil_clean().
879  */
880 static boolean_t
881 zilog_is_dirty(zilog_t *zilog)
882 {
883 	dsl_pool_t *dp = zilog->zl_dmu_pool;
884 
885 	for (int t = 0; t < TXG_SIZE; t++) {
886 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
887 			return (B_TRUE);
888 	}
889 	return (B_FALSE);
890 }
891 
892 /*
893  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
894  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
895  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
896  * zil_commit.
897  */
898 static void
899 zil_commit_activate_saxattr_feature(zilog_t *zilog)
900 {
901 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
902 	uint64_t txg = 0;
903 	dmu_tx_t *tx = NULL;
904 
905 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
906 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
907 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
908 		tx = dmu_tx_create(zilog->zl_os);
909 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
910 		dsl_dataset_dirty(ds, tx);
911 		txg = dmu_tx_get_txg(tx);
912 
913 		mutex_enter(&ds->ds_lock);
914 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
915 		    (void *)B_TRUE;
916 		mutex_exit(&ds->ds_lock);
917 		dmu_tx_commit(tx);
918 		txg_wait_synced(zilog->zl_dmu_pool, txg);
919 	}
920 }
921 
922 /*
923  * Create an on-disk intent log.
924  */
925 static lwb_t *
926 zil_create(zilog_t *zilog)
927 {
928 	const zil_header_t *zh = zilog->zl_header;
929 	lwb_t *lwb = NULL;
930 	uint64_t txg = 0;
931 	dmu_tx_t *tx = NULL;
932 	blkptr_t blk;
933 	int error = 0;
934 	boolean_t slog = FALSE;
935 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
936 
937 
938 	/*
939 	 * Wait for any previous destroy to complete.
940 	 */
941 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
942 
943 	ASSERT(zh->zh_claim_txg == 0);
944 	ASSERT(zh->zh_replay_seq == 0);
945 
946 	blk = zh->zh_log;
947 
948 	/*
949 	 * Allocate an initial log block if:
950 	 *    - there isn't one already
951 	 *    - the existing block is the wrong endianness
952 	 */
953 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
954 		tx = dmu_tx_create(zilog->zl_os);
955 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
956 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
957 		txg = dmu_tx_get_txg(tx);
958 
959 		if (!BP_IS_HOLE(&blk)) {
960 			zio_free(zilog->zl_spa, txg, &blk);
961 			BP_ZERO(&blk);
962 		}
963 
964 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
965 		    ZIL_MIN_BLKSZ, &slog);
966 		if (error == 0)
967 			zil_init_log_chain(zilog, &blk);
968 	}
969 
970 	/*
971 	 * Allocate a log write block (lwb) for the first log block.
972 	 */
973 	if (error == 0)
974 		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
975 
976 	/*
977 	 * If we just allocated the first log block, commit our transaction
978 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
979 	 * (zh is part of the MOS, so we cannot modify it in open context.)
980 	 */
981 	if (tx != NULL) {
982 		/*
983 		 * If "zilsaxattr" feature is enabled on zpool, then activate
984 		 * it now when we're creating the ZIL chain. We can't wait with
985 		 * this until we write the first xattr log record because we
986 		 * need to wait for the feature activation to sync out.
987 		 */
988 		if (spa_feature_is_enabled(zilog->zl_spa,
989 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
990 		    DMU_OST_ZVOL) {
991 			mutex_enter(&ds->ds_lock);
992 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
993 			    (void *)B_TRUE;
994 			mutex_exit(&ds->ds_lock);
995 		}
996 
997 		dmu_tx_commit(tx);
998 		txg_wait_synced(zilog->zl_dmu_pool, txg);
999 	} else {
1000 		/*
1001 		 * This branch covers the case where we enable the feature on a
1002 		 * zpool that has existing ZIL headers.
1003 		 */
1004 		zil_commit_activate_saxattr_feature(zilog);
1005 	}
1006 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1007 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1008 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1009 
1010 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1011 	IMPLY(error == 0, lwb != NULL);
1012 
1013 	return (lwb);
1014 }
1015 
1016 /*
1017  * In one tx, free all log blocks and clear the log header. If keep_first
1018  * is set, then we're replaying a log with no content. We want to keep the
1019  * first block, however, so that the first synchronous transaction doesn't
1020  * require a txg_wait_synced() in zil_create(). We don't need to
1021  * txg_wait_synced() here either when keep_first is set, because both
1022  * zil_create() and zil_destroy() will wait for any in-progress destroys
1023  * to complete.
1024  * Return B_TRUE if there were any entries to replay.
1025  */
1026 boolean_t
1027 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1028 {
1029 	const zil_header_t *zh = zilog->zl_header;
1030 	lwb_t *lwb;
1031 	dmu_tx_t *tx;
1032 	uint64_t txg;
1033 
1034 	/*
1035 	 * Wait for any previous destroy to complete.
1036 	 */
1037 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1038 
1039 	zilog->zl_old_header = *zh;		/* debugging aid */
1040 
1041 	if (BP_IS_HOLE(&zh->zh_log))
1042 		return (B_FALSE);
1043 
1044 	tx = dmu_tx_create(zilog->zl_os);
1045 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1046 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1047 	txg = dmu_tx_get_txg(tx);
1048 
1049 	mutex_enter(&zilog->zl_lock);
1050 
1051 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1052 	zilog->zl_destroy_txg = txg;
1053 	zilog->zl_keep_first = keep_first;
1054 
1055 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1056 		ASSERT(zh->zh_claim_txg == 0);
1057 		VERIFY(!keep_first);
1058 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1059 			if (lwb->lwb_buf != NULL)
1060 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1061 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1062 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1063 			zil_free_lwb(zilog, lwb);
1064 		}
1065 	} else if (!keep_first) {
1066 		zil_destroy_sync(zilog, tx);
1067 	}
1068 	mutex_exit(&zilog->zl_lock);
1069 
1070 	dmu_tx_commit(tx);
1071 
1072 	return (B_TRUE);
1073 }
1074 
1075 void
1076 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1077 {
1078 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1079 	(void) zil_parse(zilog, zil_free_log_block,
1080 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1081 }
1082 
1083 int
1084 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1085 {
1086 	dmu_tx_t *tx = txarg;
1087 	zilog_t *zilog;
1088 	uint64_t first_txg;
1089 	zil_header_t *zh;
1090 	objset_t *os;
1091 	int error;
1092 
1093 	error = dmu_objset_own_obj(dp, ds->ds_object,
1094 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1095 	if (error != 0) {
1096 		/*
1097 		 * EBUSY indicates that the objset is inconsistent, in which
1098 		 * case it can not have a ZIL.
1099 		 */
1100 		if (error != EBUSY) {
1101 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1102 			    (unsigned long long)ds->ds_object, error);
1103 		}
1104 
1105 		return (0);
1106 	}
1107 
1108 	zilog = dmu_objset_zil(os);
1109 	zh = zil_header_in_syncing_context(zilog);
1110 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1111 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1112 
1113 	/*
1114 	 * If the spa_log_state is not set to be cleared, check whether
1115 	 * the current uberblock is a checkpoint one and if the current
1116 	 * header has been claimed before moving on.
1117 	 *
1118 	 * If the current uberblock is a checkpointed uberblock then
1119 	 * one of the following scenarios took place:
1120 	 *
1121 	 * 1] We are currently rewinding to the checkpoint of the pool.
1122 	 * 2] We crashed in the middle of a checkpoint rewind but we
1123 	 *    did manage to write the checkpointed uberblock to the
1124 	 *    vdev labels, so when we tried to import the pool again
1125 	 *    the checkpointed uberblock was selected from the import
1126 	 *    procedure.
1127 	 *
1128 	 * In both cases we want to zero out all the ZIL blocks, except
1129 	 * the ones that have been claimed at the time of the checkpoint
1130 	 * (their zh_claim_txg != 0). The reason is that these blocks
1131 	 * may be corrupted since we may have reused their locations on
1132 	 * disk after we took the checkpoint.
1133 	 *
1134 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1135 	 * when we first figure out whether the current uberblock is
1136 	 * checkpointed or not. Unfortunately, that would discard all
1137 	 * the logs, including the ones that are claimed, and we would
1138 	 * leak space.
1139 	 */
1140 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1141 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1142 	    zh->zh_claim_txg == 0)) {
1143 		if (!BP_IS_HOLE(&zh->zh_log)) {
1144 			(void) zil_parse(zilog, zil_clear_log_block,
1145 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1146 		}
1147 		BP_ZERO(&zh->zh_log);
1148 		if (os->os_encrypted)
1149 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1150 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1151 		dmu_objset_disown(os, B_FALSE, FTAG);
1152 		return (0);
1153 	}
1154 
1155 	/*
1156 	 * If we are not rewinding and opening the pool normally, then
1157 	 * the min_claim_txg should be equal to the first txg of the pool.
1158 	 */
1159 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1160 
1161 	/*
1162 	 * Claim all log blocks if we haven't already done so, and remember
1163 	 * the highest claimed sequence number.  This ensures that if we can
1164 	 * read only part of the log now (e.g. due to a missing device),
1165 	 * but we can read the entire log later, we will not try to replay
1166 	 * or destroy beyond the last block we successfully claimed.
1167 	 */
1168 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1169 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1170 		(void) zil_parse(zilog, zil_claim_log_block,
1171 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1172 		zh->zh_claim_txg = first_txg;
1173 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1174 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1175 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1176 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1177 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1178 		if (os->os_encrypted)
1179 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1180 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1181 	}
1182 
1183 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1184 	dmu_objset_disown(os, B_FALSE, FTAG);
1185 	return (0);
1186 }
1187 
1188 /*
1189  * Check the log by walking the log chain.
1190  * Checksum errors are ok as they indicate the end of the chain.
1191  * Any other error (no device or read failure) returns an error.
1192  */
1193 int
1194 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1195 {
1196 	(void) dp;
1197 	zilog_t *zilog;
1198 	objset_t *os;
1199 	blkptr_t *bp;
1200 	int error;
1201 
1202 	ASSERT(tx == NULL);
1203 
1204 	error = dmu_objset_from_ds(ds, &os);
1205 	if (error != 0) {
1206 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1207 		    (unsigned long long)ds->ds_object, error);
1208 		return (0);
1209 	}
1210 
1211 	zilog = dmu_objset_zil(os);
1212 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1213 
1214 	if (!BP_IS_HOLE(bp)) {
1215 		vdev_t *vd;
1216 		boolean_t valid = B_TRUE;
1217 
1218 		/*
1219 		 * Check the first block and determine if it's on a log device
1220 		 * which may have been removed or faulted prior to loading this
1221 		 * pool.  If so, there's no point in checking the rest of the
1222 		 * log as its content should have already been synced to the
1223 		 * pool.
1224 		 */
1225 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1226 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1227 		if (vd->vdev_islog && vdev_is_dead(vd))
1228 			valid = vdev_log_state_valid(vd);
1229 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1230 
1231 		if (!valid)
1232 			return (0);
1233 
1234 		/*
1235 		 * Check whether the current uberblock is checkpointed (e.g.
1236 		 * we are rewinding) and whether the current header has been
1237 		 * claimed or not. If it hasn't then skip verifying it. We
1238 		 * do this because its ZIL blocks may be part of the pool's
1239 		 * state before the rewind, which is no longer valid.
1240 		 */
1241 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1242 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1243 		    zh->zh_claim_txg == 0)
1244 			return (0);
1245 	}
1246 
1247 	/*
1248 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1249 	 * any blocks, but just determine whether it is possible to do so.
1250 	 * In addition to checking the log chain, zil_claim_log_block()
1251 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1252 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1253 	 */
1254 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1255 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1256 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1257 
1258 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1259 }
1260 
1261 /*
1262  * When an itx is "skipped", this function is used to properly mark the
1263  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1264  * be skipped (and not committed to an lwb) for a variety of reasons,
1265  * one of them being that the itx was committed via spa_sync(), prior to
1266  * it being committed to an lwb; this can happen if a thread calling
1267  * zil_commit() is racing with spa_sync().
1268  */
1269 static void
1270 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1271 {
1272 	mutex_enter(&zcw->zcw_lock);
1273 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1274 	zcw->zcw_done = B_TRUE;
1275 	cv_broadcast(&zcw->zcw_cv);
1276 	mutex_exit(&zcw->zcw_lock);
1277 }
1278 
1279 /*
1280  * This function is used when the given waiter is to be linked into an
1281  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1282  * At this point, the waiter will no longer be referenced by the itx,
1283  * and instead, will be referenced by the lwb.
1284  */
1285 static void
1286 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1287 {
1288 	/*
1289 	 * The lwb_waiters field of the lwb is protected by the zilog's
1290 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1291 	 * zl_issuer_lock also protects leaving the open state.
1292 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1293 	 * flush_done, which transition is protected by zl_lock.
1294 	 */
1295 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1296 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1297 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1298 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1299 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1300 
1301 	ASSERT(!list_link_active(&zcw->zcw_node));
1302 	list_insert_tail(&lwb->lwb_waiters, zcw);
1303 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1304 	zcw->zcw_lwb = lwb;
1305 }
1306 
1307 /*
1308  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1309  * block, and the given waiter must be linked to the "nolwb waiters"
1310  * list inside of zil_process_commit_list().
1311  */
1312 static void
1313 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1314 {
1315 	ASSERT(!list_link_active(&zcw->zcw_node));
1316 	list_insert_tail(nolwb, zcw);
1317 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1318 }
1319 
1320 void
1321 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1322 {
1323 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1324 	avl_index_t where;
1325 	zil_vdev_node_t *zv, zvsearch;
1326 	int ndvas = BP_GET_NDVAS(bp);
1327 	int i;
1328 
1329 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1330 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1331 
1332 	if (zil_nocacheflush)
1333 		return;
1334 
1335 	mutex_enter(&lwb->lwb_vdev_lock);
1336 	for (i = 0; i < ndvas; i++) {
1337 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1338 		if (avl_find(t, &zvsearch, &where) == NULL) {
1339 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1340 			zv->zv_vdev = zvsearch.zv_vdev;
1341 			avl_insert(t, zv, where);
1342 		}
1343 	}
1344 	mutex_exit(&lwb->lwb_vdev_lock);
1345 }
1346 
1347 static void
1348 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1349 {
1350 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1351 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1352 	void *cookie = NULL;
1353 	zil_vdev_node_t *zv;
1354 
1355 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1356 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1357 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1358 
1359 	/*
1360 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1361 	 * not need the protection of lwb_vdev_lock (it will only be modified
1362 	 * while holding zilog->zl_lock) as its writes and those of its
1363 	 * children have all completed.  The younger 'nlwb' may be waiting on
1364 	 * future writes to additional vdevs.
1365 	 */
1366 	mutex_enter(&nlwb->lwb_vdev_lock);
1367 	/*
1368 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1369 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1370 	 */
1371 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1372 		avl_index_t where;
1373 
1374 		if (avl_find(dst, zv, &where) == NULL) {
1375 			avl_insert(dst, zv, where);
1376 		} else {
1377 			kmem_free(zv, sizeof (*zv));
1378 		}
1379 	}
1380 	mutex_exit(&nlwb->lwb_vdev_lock);
1381 }
1382 
1383 void
1384 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1385 {
1386 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1387 }
1388 
1389 /*
1390  * This function is a called after all vdevs associated with a given lwb
1391  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1392  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1393  * all "previous" lwb's will have completed before this function is
1394  * called; i.e. this function is called for all previous lwbs before
1395  * it's called for "this" lwb (enforced via zio the dependencies
1396  * configured in zil_lwb_set_zio_dependency()).
1397  *
1398  * The intention is for this function to be called as soon as the
1399  * contents of an lwb are considered "stable" on disk, and will survive
1400  * any sudden loss of power. At this point, any threads waiting for the
1401  * lwb to reach this state are signalled, and the "waiter" structures
1402  * are marked "done".
1403  */
1404 static void
1405 zil_lwb_flush_vdevs_done(zio_t *zio)
1406 {
1407 	lwb_t *lwb = zio->io_private;
1408 	zilog_t *zilog = lwb->lwb_zilog;
1409 	zil_commit_waiter_t *zcw;
1410 	itx_t *itx;
1411 
1412 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1413 
1414 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1415 
1416 	mutex_enter(&zilog->zl_lock);
1417 
1418 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1419 
1420 	lwb->lwb_root_zio = NULL;
1421 
1422 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1423 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1424 
1425 	if (zilog->zl_last_lwb_opened == lwb) {
1426 		/*
1427 		 * Remember the highest committed log sequence number
1428 		 * for ztest. We only update this value when all the log
1429 		 * writes succeeded, because ztest wants to ASSERT that
1430 		 * it got the whole log chain.
1431 		 */
1432 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1433 	}
1434 
1435 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1436 		zil_itx_destroy(itx);
1437 
1438 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1439 		mutex_enter(&zcw->zcw_lock);
1440 
1441 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1442 		zcw->zcw_lwb = NULL;
1443 		/*
1444 		 * We expect any ZIO errors from child ZIOs to have been
1445 		 * propagated "up" to this specific LWB's root ZIO, in
1446 		 * order for this error handling to work correctly. This
1447 		 * includes ZIO errors from either this LWB's write or
1448 		 * flush, as well as any errors from other dependent LWBs
1449 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1450 		 *
1451 		 * With that said, it's important to note that LWB flush
1452 		 * errors are not propagated up to the LWB root ZIO.
1453 		 * This is incorrect behavior, and results in VDEV flush
1454 		 * errors not being handled correctly here. See the
1455 		 * comment above the call to "zio_flush" for details.
1456 		 */
1457 
1458 		zcw->zcw_zio_error = zio->io_error;
1459 
1460 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1461 		zcw->zcw_done = B_TRUE;
1462 		cv_broadcast(&zcw->zcw_cv);
1463 
1464 		mutex_exit(&zcw->zcw_lock);
1465 	}
1466 
1467 	uint64_t txg = lwb->lwb_issued_txg;
1468 
1469 	/* Once we drop the lock, lwb may be freed by zil_sync(). */
1470 	mutex_exit(&zilog->zl_lock);
1471 
1472 	mutex_enter(&zilog->zl_lwb_io_lock);
1473 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1474 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1475 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1476 		cv_broadcast(&zilog->zl_lwb_io_cv);
1477 	mutex_exit(&zilog->zl_lwb_io_lock);
1478 }
1479 
1480 /*
1481  * Wait for the completion of all issued write/flush of that txg provided.
1482  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1483  */
1484 static void
1485 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1486 {
1487 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1488 
1489 	mutex_enter(&zilog->zl_lwb_io_lock);
1490 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1491 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1492 	mutex_exit(&zilog->zl_lwb_io_lock);
1493 
1494 #ifdef ZFS_DEBUG
1495 	mutex_enter(&zilog->zl_lock);
1496 	mutex_enter(&zilog->zl_lwb_io_lock);
1497 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1498 	while (lwb != NULL) {
1499 		if (lwb->lwb_issued_txg <= txg) {
1500 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1501 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1502 			IMPLY(lwb->lwb_issued_txg > 0,
1503 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1504 		}
1505 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1506 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1507 		    lwb->lwb_buf == NULL);
1508 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1509 	}
1510 	mutex_exit(&zilog->zl_lwb_io_lock);
1511 	mutex_exit(&zilog->zl_lock);
1512 #endif
1513 }
1514 
1515 /*
1516  * This is called when an lwb's write zio completes. The callback's
1517  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1518  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1519  * in writing out this specific lwb's data, and in the case that cache
1520  * flushes have been deferred, vdevs involved in writing the data for
1521  * previous lwbs. The writes corresponding to all the vdevs in the
1522  * lwb_vdev_tree will have completed by the time this is called, due to
1523  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1524  * which takes deferred flushes into account. The lwb will be "done"
1525  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1526  * completion callback for the lwb's root zio.
1527  */
1528 static void
1529 zil_lwb_write_done(zio_t *zio)
1530 {
1531 	lwb_t *lwb = zio->io_private;
1532 	spa_t *spa = zio->io_spa;
1533 	zilog_t *zilog = lwb->lwb_zilog;
1534 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1535 	void *cookie = NULL;
1536 	zil_vdev_node_t *zv;
1537 	lwb_t *nlwb;
1538 
1539 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1540 
1541 	abd_free(zio->io_abd);
1542 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1543 	lwb->lwb_buf = NULL;
1544 
1545 	mutex_enter(&zilog->zl_lock);
1546 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1547 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1548 	lwb->lwb_child_zio = NULL;
1549 	lwb->lwb_write_zio = NULL;
1550 
1551 	/*
1552 	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1553 	 * called for it yet, and when it will be, it won't be able to make
1554 	 * its write ZIO a parent this ZIO.  In such case we can not defer
1555 	 * our flushes or below may be a race between the done callbacks.
1556 	 */
1557 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1558 	if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1559 		nlwb = NULL;
1560 	mutex_exit(&zilog->zl_lock);
1561 
1562 	if (avl_numnodes(t) == 0)
1563 		return;
1564 
1565 	/*
1566 	 * If there was an IO error, we're not going to call zio_flush()
1567 	 * on these vdevs, so we simply empty the tree and free the
1568 	 * nodes. We avoid calling zio_flush() since there isn't any
1569 	 * good reason for doing so, after the lwb block failed to be
1570 	 * written out.
1571 	 *
1572 	 * Additionally, we don't perform any further error handling at
1573 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1574 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1575 	 * we expect any error seen here, to have been propagated to
1576 	 * that function).
1577 	 */
1578 	if (zio->io_error != 0) {
1579 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1580 			kmem_free(zv, sizeof (*zv));
1581 		return;
1582 	}
1583 
1584 	/*
1585 	 * If this lwb does not have any threads waiting for it to
1586 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1587 	 * command to the vdevs written to by "this" lwb, and instead
1588 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1589 	 * command for those vdevs. Thus, we merge the vdev tree of
1590 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1591 	 * and assume the "next" lwb will handle flushing the vdevs (or
1592 	 * deferring the flush(s) again).
1593 	 *
1594 	 * This is a useful performance optimization, especially for
1595 	 * workloads with lots of async write activity and few sync
1596 	 * write and/or fsync activity, as it has the potential to
1597 	 * coalesce multiple flush commands to a vdev into one.
1598 	 */
1599 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1600 		zil_lwb_flush_defer(lwb, nlwb);
1601 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1602 		return;
1603 	}
1604 
1605 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1606 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1607 		if (vd != NULL) {
1608 			/*
1609 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1610 			 * always used within "zio_flush". This means,
1611 			 * any errors when flushing the vdev(s), will
1612 			 * (unfortunately) not be handled correctly,
1613 			 * since these "zio_flush" errors will not be
1614 			 * propagated up to "zil_lwb_flush_vdevs_done".
1615 			 */
1616 			zio_flush(lwb->lwb_root_zio, vd);
1617 		}
1618 		kmem_free(zv, sizeof (*zv));
1619 	}
1620 }
1621 
1622 /*
1623  * Build the zio dependency chain, which is used to preserve the ordering of
1624  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1625  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1626  * cannot complete until the previous lwb's zio completes.
1627  *
1628  * This is required by the semantics of zil_commit(): the commit waiters
1629  * attached to the lwbs will be woken in the lwb zio's completion callback,
1630  * so this zio dependency graph ensures the waiters are woken in the correct
1631  * order (the same order the lwbs were created).
1632  */
1633 static void
1634 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1635 {
1636 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1637 
1638 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1639 	if (prev_lwb == NULL ||
1640 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1641 		return;
1642 
1643 	/*
1644 	 * If the previous lwb's write hasn't already completed, we also want
1645 	 * to order the completion of the lwb write zios (above, we only order
1646 	 * the completion of the lwb root zios). This is required because of
1647 	 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1648 	 *
1649 	 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
1650 	 * lwb will rely on this lwb to flush the vdevs written to by that
1651 	 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
1652 	 * flush until after the previous lwb's write completes. We ensure
1653 	 * this ordering by setting the zio parent/child relationship here.
1654 	 *
1655 	 * Without this relationship on the lwb's write zio, it's possible
1656 	 * for this lwb's write to complete prior to the previous lwb's write
1657 	 * completing; and thus, the vdevs for the previous lwb would be
1658 	 * flushed prior to that lwb's data being written to those vdevs (the
1659 	 * vdevs are flushed in the lwb write zio's completion handler,
1660 	 * zil_lwb_write_done()).
1661 	 */
1662 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1663 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1664 		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1665 	} else {
1666 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1667 	}
1668 
1669 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1670 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1671 }
1672 
1673 
1674 /*
1675  * This function's purpose is to "open" an lwb such that it is ready to
1676  * accept new itxs being committed to it. This function is idempotent; if
1677  * the passed in lwb has already been opened, it is essentially a no-op.
1678  */
1679 static void
1680 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1681 {
1682 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1683 
1684 	if (lwb->lwb_state != LWB_STATE_NEW) {
1685 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1686 		return;
1687 	}
1688 
1689 	mutex_enter(&zilog->zl_lock);
1690 	lwb->lwb_state = LWB_STATE_OPENED;
1691 	zilog->zl_last_lwb_opened = lwb;
1692 	mutex_exit(&zilog->zl_lock);
1693 }
1694 
1695 /*
1696  * Define a limited set of intent log block sizes.
1697  *
1698  * These must be a multiple of 4KB. Note only the amount used (again
1699  * aligned to 4KB) actually gets written. However, we can't always just
1700  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1701  */
1702 static const struct {
1703 	uint64_t	limit;
1704 	uint64_t	blksz;
1705 } zil_block_buckets[] = {
1706 	{ 4096,		4096 },			/* non TX_WRITE */
1707 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1708 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1709 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1710 	{ 131072,	131072 },		/* < 128KB writes */
1711 	{ 131072 +4096,	65536 + 4096 },		/* 128KB writes */
1712 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1713 };
1714 
1715 /*
1716  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1717  * initialized.  Otherwise this should not be used directly; see
1718  * zl_max_block_size instead.
1719  */
1720 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1721 
1722 /*
1723  * Close the log block for being issued and allocate the next one.
1724  * Has to be called under zl_issuer_lock to chain more lwbs.
1725  */
1726 static lwb_t *
1727 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1728 {
1729 	int i;
1730 
1731 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1732 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1733 	lwb->lwb_state = LWB_STATE_CLOSED;
1734 
1735 	/*
1736 	 * If there was an allocation failure then returned NULL will trigger
1737 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1738 	 * since allocation may not have happened yet.
1739 	 */
1740 	if (lwb->lwb_error != 0)
1741 		return (NULL);
1742 
1743 	/*
1744 	 * Log blocks are pre-allocated. Here we select the size of the next
1745 	 * block, based on size used in the last block.
1746 	 * - first find the smallest bucket that will fit the block from a
1747 	 *   limited set of block sizes. This is because it's faster to write
1748 	 *   blocks allocated from the same metaslab as they are adjacent or
1749 	 *   close.
1750 	 * - next find the maximum from the new suggested size and an array of
1751 	 *   previous sizes. This lessens a picket fence effect of wrongly
1752 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1753 	 *   requests.
1754 	 *
1755 	 * Note we only write what is used, but we can't just allocate
1756 	 * the maximum block size because we can exhaust the available
1757 	 * pool log space.
1758 	 */
1759 	uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1760 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1761 		continue;
1762 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1763 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1764 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1765 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1766 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog,
1767 	    uint64_t, zil_blksz,
1768 	    uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]);
1769 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1770 
1771 	return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state));
1772 }
1773 
1774 /*
1775  * Finalize previously closed block and issue the write zio.
1776  */
1777 static void
1778 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1779 {
1780 	spa_t *spa = zilog->zl_spa;
1781 	zil_chain_t *zilc;
1782 	boolean_t slog;
1783 	zbookmark_phys_t zb;
1784 	zio_priority_t prio;
1785 	int error;
1786 
1787 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1788 
1789 	/* Actually fill the lwb with the data. */
1790 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1791 	    itx = list_next(&lwb->lwb_itxs, itx))
1792 		zil_lwb_commit(zilog, lwb, itx);
1793 	lwb->lwb_nused = lwb->lwb_nfilled;
1794 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1795 
1796 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1797 	    ZIO_FLAG_CANFAIL);
1798 
1799 	/*
1800 	 * The lwb is now ready to be issued, but it can be only if it already
1801 	 * got its block pointer allocated or the allocation has failed.
1802 	 * Otherwise leave it as-is, relying on some other thread to issue it
1803 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1804 	 * for the previous lwb(s) in the chain.
1805 	 */
1806 	mutex_enter(&zilog->zl_lock);
1807 	lwb->lwb_state = LWB_STATE_READY;
1808 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1809 		mutex_exit(&zilog->zl_lock);
1810 		return;
1811 	}
1812 	mutex_exit(&zilog->zl_lock);
1813 
1814 next_lwb:
1815 	if (lwb->lwb_slim)
1816 		zilc = (zil_chain_t *)lwb->lwb_buf;
1817 	else
1818 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1819 	int wsz = lwb->lwb_sz;
1820 	if (lwb->lwb_error == 0) {
1821 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1822 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1823 			prio = ZIO_PRIORITY_SYNC_WRITE;
1824 		else
1825 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1826 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1827 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1828 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1829 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1830 		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1831 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1832 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1833 
1834 		if (lwb->lwb_slim) {
1835 			/* For Slim ZIL only write what is used. */
1836 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1837 			    int);
1838 			ASSERT3S(wsz, <=, lwb->lwb_sz);
1839 			zio_shrink(lwb->lwb_write_zio, wsz);
1840 			wsz = lwb->lwb_write_zio->io_size;
1841 		}
1842 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1843 		zilc->zc_pad = 0;
1844 		zilc->zc_nused = lwb->lwb_nused;
1845 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1846 	} else {
1847 		/*
1848 		 * We can't write the lwb if there was an allocation failure,
1849 		 * so create a null zio instead just to maintain dependencies.
1850 		 */
1851 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1852 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1853 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
1854 	}
1855 	if (lwb->lwb_child_zio)
1856 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1857 
1858 	/*
1859 	 * Open transaction to allocate the next block pointer.
1860 	 */
1861 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1862 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1863 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1864 	uint64_t txg = dmu_tx_get_txg(tx);
1865 
1866 	/*
1867 	 * Allocate next the block pointer unless we are already in error.
1868 	 */
1869 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1870 	blkptr_t *bp = &zilc->zc_next_blk;
1871 	BP_ZERO(bp);
1872 	error = lwb->lwb_error;
1873 	if (error == 0) {
1874 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1875 		    &slog);
1876 	}
1877 	if (error == 0) {
1878 		ASSERT3U(bp->blk_birth, ==, txg);
1879 		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1880 		    ZIO_CHECKSUM_ZILOG);
1881 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1882 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1883 	}
1884 
1885 	/*
1886 	 * Reduce TXG open time by incrementing inflight counter and committing
1887 	 * the transaciton.  zil_sync() will wait for it to return to zero.
1888 	 */
1889 	mutex_enter(&zilog->zl_lwb_io_lock);
1890 	lwb->lwb_issued_txg = txg;
1891 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1892 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1893 	mutex_exit(&zilog->zl_lwb_io_lock);
1894 	dmu_tx_commit(tx);
1895 
1896 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1897 
1898 	/*
1899 	 * We've completed all potentially blocking operations.  Update the
1900 	 * nlwb and allow it proceed without possible lock order reversals.
1901 	 */
1902 	mutex_enter(&zilog->zl_lock);
1903 	zil_lwb_set_zio_dependency(zilog, lwb);
1904 	lwb->lwb_state = LWB_STATE_ISSUED;
1905 
1906 	if (nlwb) {
1907 		nlwb->lwb_blk = *bp;
1908 		nlwb->lwb_error = error;
1909 		nlwb->lwb_slog = slog;
1910 		nlwb->lwb_alloc_txg = txg;
1911 		if (nlwb->lwb_state != LWB_STATE_READY)
1912 			nlwb = NULL;
1913 	}
1914 	mutex_exit(&zilog->zl_lock);
1915 
1916 	if (lwb->lwb_slog) {
1917 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1918 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1919 		    lwb->lwb_nused);
1920 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
1921 		    wsz);
1922 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
1923 		    BP_GET_LSIZE(&lwb->lwb_blk));
1924 	} else {
1925 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1926 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1927 		    lwb->lwb_nused);
1928 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
1929 		    wsz);
1930 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
1931 		    BP_GET_LSIZE(&lwb->lwb_blk));
1932 	}
1933 	lwb->lwb_issued_timestamp = gethrtime();
1934 	if (lwb->lwb_child_zio)
1935 		zio_nowait(lwb->lwb_child_zio);
1936 	zio_nowait(lwb->lwb_write_zio);
1937 	zio_nowait(lwb->lwb_root_zio);
1938 
1939 	/*
1940 	 * If nlwb was ready when we gave it the block pointer,
1941 	 * it is on us to issue it and possibly following ones.
1942 	 */
1943 	lwb = nlwb;
1944 	if (lwb)
1945 		goto next_lwb;
1946 }
1947 
1948 /*
1949  * Maximum amount of data that can be put into single log block.
1950  */
1951 uint64_t
1952 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
1953 {
1954 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
1955 }
1956 
1957 /*
1958  * Maximum amount of log space we agree to waste to reduce number of
1959  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
1960  */
1961 static inline uint64_t
1962 zil_max_waste_space(zilog_t *zilog)
1963 {
1964 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
1965 }
1966 
1967 /*
1968  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1969  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1970  * maximum sized log block, because each WR_COPIED record must fit in a
1971  * single log block.  Below that it is a tradeoff of additional memory copy
1972  * and possibly worse log space efficiency vs additional range lock/unlock.
1973  */
1974 static uint_t zil_maxcopied = 7680;
1975 
1976 uint64_t
1977 zil_max_copied_data(zilog_t *zilog)
1978 {
1979 	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
1980 	return (MIN(max_data, zil_maxcopied));
1981 }
1982 
1983 /*
1984  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
1985  * split the itx as needed, but don't touch the actual transaction data.
1986  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
1987  * to chain more lwbs.
1988  */
1989 static lwb_t *
1990 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
1991 {
1992 	itx_t *citx;
1993 	lr_t *lr, *clr;
1994 	lr_write_t *lrw;
1995 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
1996 
1997 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1998 	ASSERT3P(lwb, !=, NULL);
1999 	ASSERT3P(lwb->lwb_buf, !=, NULL);
2000 
2001 	zil_lwb_write_open(zilog, lwb);
2002 
2003 	lr = &itx->itx_lr;
2004 	lrw = (lr_write_t *)lr;
2005 
2006 	/*
2007 	 * A commit itx doesn't represent any on-disk state; instead
2008 	 * it's simply used as a place holder on the commit list, and
2009 	 * provides a mechanism for attaching a "commit waiter" onto the
2010 	 * correct lwb (such that the waiter can be signalled upon
2011 	 * completion of that lwb). Thus, we don't process this itx's
2012 	 * log record if it's a commit itx (these itx's don't have log
2013 	 * records), and instead link the itx's waiter onto the lwb's
2014 	 * list of waiters.
2015 	 *
2016 	 * For more details, see the comment above zil_commit().
2017 	 */
2018 	if (lr->lrc_txtype == TX_COMMIT) {
2019 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2020 		list_insert_tail(&lwb->lwb_itxs, itx);
2021 		return (lwb);
2022 	}
2023 
2024 	reclen = lr->lrc_reclen;
2025 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2026 		ASSERT3U(reclen, ==, sizeof (lr_write_t));
2027 		dlen = P2ROUNDUP_TYPED(
2028 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2029 	} else {
2030 		ASSERT3U(reclen, >=, sizeof (lr_t));
2031 		dlen = 0;
2032 	}
2033 	ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2034 	zilog->zl_cur_used += (reclen + dlen);
2035 
2036 cont:
2037 	/*
2038 	 * If this record won't fit in the current log block, start a new one.
2039 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2040 	 */
2041 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2042 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2043 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2044 	    lwb_sp < zil_max_waste_space(zilog) &&
2045 	    (dlen % max_log_data == 0 ||
2046 	    lwb_sp < reclen + dlen % max_log_data))) {
2047 		list_insert_tail(ilwbs, lwb);
2048 		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2049 		if (lwb == NULL)
2050 			return (NULL);
2051 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2052 	}
2053 
2054 	/*
2055 	 * There must be enough space in the log block to hold reclen.
2056 	 * For WR_COPIED, we need to fit the whole record in one block,
2057 	 * and reclen is the write record header size + the data size.
2058 	 * For WR_NEED_COPY, we can create multiple records, splitting
2059 	 * the data into multiple blocks, so we only need to fit one
2060 	 * word of data per block; in this case reclen is just the header
2061 	 * size (no data).
2062 	 */
2063 	ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2064 
2065 	dnow = MIN(dlen, lwb_sp - reclen);
2066 	if (dlen > dnow) {
2067 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2068 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2069 		citx = zil_itx_clone(itx);
2070 		clr = &citx->itx_lr;
2071 		lr_write_t *clrw = (lr_write_t *)clr;
2072 		clrw->lr_length = dnow;
2073 		lrw->lr_offset += dnow;
2074 		lrw->lr_length -= dnow;
2075 	} else {
2076 		citx = itx;
2077 		clr = lr;
2078 	}
2079 
2080 	/*
2081 	 * We're actually making an entry, so update lrc_seq to be the
2082 	 * log record sequence number.  Note that this is generally not
2083 	 * equal to the itx sequence number because not all transactions
2084 	 * are synchronous, and sometimes spa_sync() gets there first.
2085 	 */
2086 	clr->lrc_seq = ++zilog->zl_lr_seq;
2087 
2088 	lwb->lwb_nused += reclen + dnow;
2089 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2090 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2091 
2092 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2093 	list_insert_tail(&lwb->lwb_itxs, citx);
2094 
2095 	dlen -= dnow;
2096 	if (dlen > 0) {
2097 		zilog->zl_cur_used += reclen;
2098 		goto cont;
2099 	}
2100 
2101 	if (lr->lrc_txtype == TX_WRITE &&
2102 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2103 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2104 
2105 	return (lwb);
2106 }
2107 
2108 /*
2109  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2110  * Does not require locking.
2111  */
2112 static void
2113 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2114 {
2115 	lr_t *lr, *lrb;
2116 	lr_write_t *lrw, *lrwb;
2117 	char *lr_buf;
2118 	uint64_t dlen, reclen;
2119 
2120 	lr = &itx->itx_lr;
2121 	lrw = (lr_write_t *)lr;
2122 
2123 	if (lr->lrc_txtype == TX_COMMIT)
2124 		return;
2125 
2126 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2127 		dlen = P2ROUNDUP_TYPED(
2128 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2129 	} else {
2130 		dlen = 0;
2131 	}
2132 	reclen = lr->lrc_reclen;
2133 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2134 
2135 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2136 	memcpy(lr_buf, lr, reclen);
2137 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2138 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2139 
2140 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2141 
2142 	/*
2143 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2144 	 */
2145 	if (lr->lrc_txtype == TX_WRITE) {
2146 		if (itx->itx_wr_state == WR_COPIED) {
2147 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2148 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2149 			    lrw->lr_length);
2150 		} else {
2151 			char *dbuf;
2152 			int error;
2153 
2154 			if (itx->itx_wr_state == WR_NEED_COPY) {
2155 				dbuf = lr_buf + reclen;
2156 				lrb->lrc_reclen += dlen;
2157 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2158 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2159 				    dlen);
2160 			} else {
2161 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2162 				dbuf = NULL;
2163 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2164 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2165 				    lrw->lr_length);
2166 				if (lwb->lwb_child_zio == NULL) {
2167 					lwb->lwb_child_zio = zio_null(NULL,
2168 					    zilog->zl_spa, NULL, NULL, NULL,
2169 					    ZIO_FLAG_CANFAIL);
2170 				}
2171 			}
2172 
2173 			/*
2174 			 * The "lwb_child_zio" we pass in will become a child of
2175 			 * "lwb_write_zio", when one is created, so one will be
2176 			 * a parent of any zio's created by the "zl_get_data".
2177 			 * This way "lwb_write_zio" will first wait for children
2178 			 * block pointers before own writing, and then for their
2179 			 * writing completion before the vdev cache flushing.
2180 			 */
2181 			error = zilog->zl_get_data(itx->itx_private,
2182 			    itx->itx_gen, lrwb, dbuf, lwb,
2183 			    lwb->lwb_child_zio);
2184 			if (dbuf != NULL && error == 0) {
2185 				/* Zero any padding bytes in the last block. */
2186 				memset((char *)dbuf + lrwb->lr_length, 0,
2187 				    dlen - lrwb->lr_length);
2188 			}
2189 
2190 			/*
2191 			 * Typically, the only return values we should see from
2192 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2193 			 *  EALREADY. However, it is also possible to see other
2194 			 *  error values such as ENOSPC or EINVAL from
2195 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2196 			 *  ENXIO as well as a multitude of others from the
2197 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2198 			 *  -> zio_wait(), as well as through dmu_read() ->
2199 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2200 			 *  zio_wait(). When these errors happen, we can assume
2201 			 *  that neither an immediate write nor an indirect
2202 			 *  write occurred, so we need to fall back to
2203 			 *  txg_wait_synced(). This is unusual, so we print to
2204 			 *  dmesg whenever one of these errors occurs.
2205 			 */
2206 			switch (error) {
2207 			case 0:
2208 				break;
2209 			default:
2210 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2211 				    "unexpected error %d from ->zl_get_data()"
2212 				    ". Falling back to txg_wait_synced().",
2213 				    error);
2214 				zfs_fallthrough;
2215 			case EIO:
2216 				txg_wait_synced(zilog->zl_dmu_pool,
2217 				    lr->lrc_txg);
2218 				zfs_fallthrough;
2219 			case ENOENT:
2220 				zfs_fallthrough;
2221 			case EEXIST:
2222 				zfs_fallthrough;
2223 			case EALREADY:
2224 				return;
2225 			}
2226 		}
2227 	}
2228 
2229 	lwb->lwb_nfilled += reclen + dlen;
2230 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2231 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2232 }
2233 
2234 itx_t *
2235 zil_itx_create(uint64_t txtype, size_t olrsize)
2236 {
2237 	size_t itxsize, lrsize;
2238 	itx_t *itx;
2239 
2240 	ASSERT3U(olrsize, >=, sizeof (lr_t));
2241 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2242 	ASSERT3U(lrsize, >=, olrsize);
2243 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2244 
2245 	itx = zio_data_buf_alloc(itxsize);
2246 	itx->itx_lr.lrc_txtype = txtype;
2247 	itx->itx_lr.lrc_reclen = lrsize;
2248 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2249 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2250 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2251 	itx->itx_callback = NULL;
2252 	itx->itx_callback_data = NULL;
2253 	itx->itx_size = itxsize;
2254 
2255 	return (itx);
2256 }
2257 
2258 static itx_t *
2259 zil_itx_clone(itx_t *oitx)
2260 {
2261 	ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2262 	ASSERT3U(oitx->itx_size, ==,
2263 	    offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2264 
2265 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2266 	memcpy(itx, oitx, oitx->itx_size);
2267 	itx->itx_callback = NULL;
2268 	itx->itx_callback_data = NULL;
2269 	return (itx);
2270 }
2271 
2272 void
2273 zil_itx_destroy(itx_t *itx)
2274 {
2275 	ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2276 	ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2277 	    itx->itx_size - offsetof(itx_t, itx_lr));
2278 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2279 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2280 
2281 	if (itx->itx_callback != NULL)
2282 		itx->itx_callback(itx->itx_callback_data);
2283 
2284 	zio_data_buf_free(itx, itx->itx_size);
2285 }
2286 
2287 /*
2288  * Free up the sync and async itxs. The itxs_t has already been detached
2289  * so no locks are needed.
2290  */
2291 static void
2292 zil_itxg_clean(void *arg)
2293 {
2294 	itx_t *itx;
2295 	list_t *list;
2296 	avl_tree_t *t;
2297 	void *cookie;
2298 	itxs_t *itxs = arg;
2299 	itx_async_node_t *ian;
2300 
2301 	list = &itxs->i_sync_list;
2302 	while ((itx = list_remove_head(list)) != NULL) {
2303 		/*
2304 		 * In the general case, commit itxs will not be found
2305 		 * here, as they'll be committed to an lwb via
2306 		 * zil_lwb_assign(), and free'd in that function. Having
2307 		 * said that, it is still possible for commit itxs to be
2308 		 * found here, due to the following race:
2309 		 *
2310 		 *	- a thread calls zil_commit() which assigns the
2311 		 *	  commit itx to a per-txg i_sync_list
2312 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2313 		 *	  while the waiter is still on the i_sync_list
2314 		 *
2315 		 * There's nothing to prevent syncing the txg while the
2316 		 * waiter is on the i_sync_list. This normally doesn't
2317 		 * happen because spa_sync() is slower than zil_commit(),
2318 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2319 		 * because zil_create() or zil_commit_writer_stall() is
2320 		 * called) we will hit this case.
2321 		 */
2322 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2323 			zil_commit_waiter_skip(itx->itx_private);
2324 
2325 		zil_itx_destroy(itx);
2326 	}
2327 
2328 	cookie = NULL;
2329 	t = &itxs->i_async_tree;
2330 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2331 		list = &ian->ia_list;
2332 		while ((itx = list_remove_head(list)) != NULL) {
2333 			/* commit itxs should never be on the async lists. */
2334 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2335 			zil_itx_destroy(itx);
2336 		}
2337 		list_destroy(list);
2338 		kmem_free(ian, sizeof (itx_async_node_t));
2339 	}
2340 	avl_destroy(t);
2341 
2342 	kmem_free(itxs, sizeof (itxs_t));
2343 }
2344 
2345 static int
2346 zil_aitx_compare(const void *x1, const void *x2)
2347 {
2348 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2349 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2350 
2351 	return (TREE_CMP(o1, o2));
2352 }
2353 
2354 /*
2355  * Remove all async itx with the given oid.
2356  */
2357 void
2358 zil_remove_async(zilog_t *zilog, uint64_t oid)
2359 {
2360 	uint64_t otxg, txg;
2361 	itx_async_node_t *ian, ian_search;
2362 	avl_tree_t *t;
2363 	avl_index_t where;
2364 	list_t clean_list;
2365 	itx_t *itx;
2366 
2367 	ASSERT(oid != 0);
2368 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2369 
2370 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2371 		otxg = ZILTEST_TXG;
2372 	else
2373 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2374 
2375 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2376 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2377 
2378 		mutex_enter(&itxg->itxg_lock);
2379 		if (itxg->itxg_txg != txg) {
2380 			mutex_exit(&itxg->itxg_lock);
2381 			continue;
2382 		}
2383 
2384 		/*
2385 		 * Locate the object node and append its list.
2386 		 */
2387 		t = &itxg->itxg_itxs->i_async_tree;
2388 		ian_search.ia_foid = oid;
2389 		ian = avl_find(t, &ian_search, &where);
2390 		if (ian != NULL)
2391 			list_move_tail(&clean_list, &ian->ia_list);
2392 		mutex_exit(&itxg->itxg_lock);
2393 	}
2394 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2395 		/* commit itxs should never be on the async lists. */
2396 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2397 		zil_itx_destroy(itx);
2398 	}
2399 	list_destroy(&clean_list);
2400 }
2401 
2402 void
2403 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2404 {
2405 	uint64_t txg;
2406 	itxg_t *itxg;
2407 	itxs_t *itxs, *clean = NULL;
2408 
2409 	/*
2410 	 * Ensure the data of a renamed file is committed before the rename.
2411 	 */
2412 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2413 		zil_async_to_sync(zilog, itx->itx_oid);
2414 
2415 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2416 		txg = ZILTEST_TXG;
2417 	else
2418 		txg = dmu_tx_get_txg(tx);
2419 
2420 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2421 	mutex_enter(&itxg->itxg_lock);
2422 	itxs = itxg->itxg_itxs;
2423 	if (itxg->itxg_txg != txg) {
2424 		if (itxs != NULL) {
2425 			/*
2426 			 * The zil_clean callback hasn't got around to cleaning
2427 			 * this itxg. Save the itxs for release below.
2428 			 * This should be rare.
2429 			 */
2430 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2431 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2432 			clean = itxg->itxg_itxs;
2433 		}
2434 		itxg->itxg_txg = txg;
2435 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2436 		    KM_SLEEP);
2437 
2438 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2439 		    offsetof(itx_t, itx_node));
2440 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2441 		    sizeof (itx_async_node_t),
2442 		    offsetof(itx_async_node_t, ia_node));
2443 	}
2444 	if (itx->itx_sync) {
2445 		list_insert_tail(&itxs->i_sync_list, itx);
2446 	} else {
2447 		avl_tree_t *t = &itxs->i_async_tree;
2448 		uint64_t foid =
2449 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2450 		itx_async_node_t *ian;
2451 		avl_index_t where;
2452 
2453 		ian = avl_find(t, &foid, &where);
2454 		if (ian == NULL) {
2455 			ian = kmem_alloc(sizeof (itx_async_node_t),
2456 			    KM_SLEEP);
2457 			list_create(&ian->ia_list, sizeof (itx_t),
2458 			    offsetof(itx_t, itx_node));
2459 			ian->ia_foid = foid;
2460 			avl_insert(t, ian, where);
2461 		}
2462 		list_insert_tail(&ian->ia_list, itx);
2463 	}
2464 
2465 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2466 
2467 	/*
2468 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2469 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2470 	 * need to be careful to always dirty the ZIL using the "real"
2471 	 * TXG (not itxg_txg) even when the SPA is frozen.
2472 	 */
2473 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2474 	mutex_exit(&itxg->itxg_lock);
2475 
2476 	/* Release the old itxs now we've dropped the lock */
2477 	if (clean != NULL)
2478 		zil_itxg_clean(clean);
2479 }
2480 
2481 /*
2482  * If there are any in-memory intent log transactions which have now been
2483  * synced then start up a taskq to free them. We should only do this after we
2484  * have written out the uberblocks (i.e. txg has been committed) so that
2485  * don't inadvertently clean out in-memory log records that would be required
2486  * by zil_commit().
2487  */
2488 void
2489 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2490 {
2491 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2492 	itxs_t *clean_me;
2493 
2494 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2495 
2496 	mutex_enter(&itxg->itxg_lock);
2497 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2498 		mutex_exit(&itxg->itxg_lock);
2499 		return;
2500 	}
2501 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2502 	ASSERT3U(itxg->itxg_txg, !=, 0);
2503 	clean_me = itxg->itxg_itxs;
2504 	itxg->itxg_itxs = NULL;
2505 	itxg->itxg_txg = 0;
2506 	mutex_exit(&itxg->itxg_lock);
2507 	/*
2508 	 * Preferably start a task queue to free up the old itxs but
2509 	 * if taskq_dispatch can't allocate resources to do that then
2510 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2511 	 * created a bad performance problem.
2512 	 */
2513 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2514 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2515 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2516 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2517 	if (id == TASKQID_INVALID)
2518 		zil_itxg_clean(clean_me);
2519 }
2520 
2521 /*
2522  * This function will traverse the queue of itxs that need to be
2523  * committed, and move them onto the ZIL's zl_itx_commit_list.
2524  */
2525 static uint64_t
2526 zil_get_commit_list(zilog_t *zilog)
2527 {
2528 	uint64_t otxg, txg, wtxg = 0;
2529 	list_t *commit_list = &zilog->zl_itx_commit_list;
2530 
2531 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2532 
2533 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2534 		otxg = ZILTEST_TXG;
2535 	else
2536 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2537 
2538 	/*
2539 	 * This is inherently racy, since there is nothing to prevent
2540 	 * the last synced txg from changing. That's okay since we'll
2541 	 * only commit things in the future.
2542 	 */
2543 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2544 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2545 
2546 		mutex_enter(&itxg->itxg_lock);
2547 		if (itxg->itxg_txg != txg) {
2548 			mutex_exit(&itxg->itxg_lock);
2549 			continue;
2550 		}
2551 
2552 		/*
2553 		 * If we're adding itx records to the zl_itx_commit_list,
2554 		 * then the zil better be dirty in this "txg". We can assert
2555 		 * that here since we're holding the itxg_lock which will
2556 		 * prevent spa_sync from cleaning it. Once we add the itxs
2557 		 * to the zl_itx_commit_list we must commit it to disk even
2558 		 * if it's unnecessary (i.e. the txg was synced).
2559 		 */
2560 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2561 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2562 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2563 		if (unlikely(zilog->zl_suspend > 0)) {
2564 			/*
2565 			 * ZIL was just suspended, but we lost the race.
2566 			 * Allow all earlier itxs to be committed, but ask
2567 			 * caller to do txg_wait_synced(txg) for any new.
2568 			 */
2569 			if (!list_is_empty(sync_list))
2570 				wtxg = MAX(wtxg, txg);
2571 		} else {
2572 			list_move_tail(commit_list, sync_list);
2573 		}
2574 
2575 		mutex_exit(&itxg->itxg_lock);
2576 	}
2577 	return (wtxg);
2578 }
2579 
2580 /*
2581  * Move the async itxs for a specified object to commit into sync lists.
2582  */
2583 void
2584 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2585 {
2586 	uint64_t otxg, txg;
2587 	itx_async_node_t *ian, ian_search;
2588 	avl_tree_t *t;
2589 	avl_index_t where;
2590 
2591 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2592 		otxg = ZILTEST_TXG;
2593 	else
2594 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2595 
2596 	/*
2597 	 * This is inherently racy, since there is nothing to prevent
2598 	 * the last synced txg from changing.
2599 	 */
2600 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2601 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2602 
2603 		mutex_enter(&itxg->itxg_lock);
2604 		if (itxg->itxg_txg != txg) {
2605 			mutex_exit(&itxg->itxg_lock);
2606 			continue;
2607 		}
2608 
2609 		/*
2610 		 * If a foid is specified then find that node and append its
2611 		 * list. Otherwise walk the tree appending all the lists
2612 		 * to the sync list. We add to the end rather than the
2613 		 * beginning to ensure the create has happened.
2614 		 */
2615 		t = &itxg->itxg_itxs->i_async_tree;
2616 		if (foid != 0) {
2617 			ian_search.ia_foid = foid;
2618 			ian = avl_find(t, &ian_search, &where);
2619 			if (ian != NULL) {
2620 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2621 				    &ian->ia_list);
2622 			}
2623 		} else {
2624 			void *cookie = NULL;
2625 
2626 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2627 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2628 				    &ian->ia_list);
2629 				list_destroy(&ian->ia_list);
2630 				kmem_free(ian, sizeof (itx_async_node_t));
2631 			}
2632 		}
2633 		mutex_exit(&itxg->itxg_lock);
2634 	}
2635 }
2636 
2637 /*
2638  * This function will prune commit itxs that are at the head of the
2639  * commit list (it won't prune past the first non-commit itx), and
2640  * either: a) attach them to the last lwb that's still pending
2641  * completion, or b) skip them altogether.
2642  *
2643  * This is used as a performance optimization to prevent commit itxs
2644  * from generating new lwbs when it's unnecessary to do so.
2645  */
2646 static void
2647 zil_prune_commit_list(zilog_t *zilog)
2648 {
2649 	itx_t *itx;
2650 
2651 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2652 
2653 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2654 		lr_t *lrc = &itx->itx_lr;
2655 		if (lrc->lrc_txtype != TX_COMMIT)
2656 			break;
2657 
2658 		mutex_enter(&zilog->zl_lock);
2659 
2660 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2661 		if (last_lwb == NULL ||
2662 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2663 			/*
2664 			 * All of the itxs this waiter was waiting on
2665 			 * must have already completed (or there were
2666 			 * never any itx's for it to wait on), so it's
2667 			 * safe to skip this waiter and mark it done.
2668 			 */
2669 			zil_commit_waiter_skip(itx->itx_private);
2670 		} else {
2671 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2672 		}
2673 
2674 		mutex_exit(&zilog->zl_lock);
2675 
2676 		list_remove(&zilog->zl_itx_commit_list, itx);
2677 		zil_itx_destroy(itx);
2678 	}
2679 
2680 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2681 }
2682 
2683 static void
2684 zil_commit_writer_stall(zilog_t *zilog)
2685 {
2686 	/*
2687 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2688 	 * disk, we must call txg_wait_synced() to ensure all of the
2689 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2690 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2691 	 * to zil_process_commit_list()) will have to call zil_create(),
2692 	 * and start a new ZIL chain.
2693 	 *
2694 	 * Since zil_alloc_zil() failed, the lwb that was previously
2695 	 * issued does not have a pointer to the "next" lwb on disk.
2696 	 * Thus, if another ZIL writer thread was to allocate the "next"
2697 	 * on-disk lwb, that block could be leaked in the event of a
2698 	 * crash (because the previous lwb on-disk would not point to
2699 	 * it).
2700 	 *
2701 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2702 	 * ensure no new threads enter zil_process_commit_list() until
2703 	 * all lwb's in the zl_lwb_list have been synced and freed
2704 	 * (which is achieved via the txg_wait_synced() call).
2705 	 */
2706 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2707 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2708 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2709 }
2710 
2711 static void
2712 zil_burst_done(zilog_t *zilog)
2713 {
2714 	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2715 	    zilog->zl_cur_used == 0)
2716 		return;
2717 
2718 	if (zilog->zl_parallel)
2719 		zilog->zl_parallel--;
2720 
2721 	zilog->zl_cur_used = 0;
2722 }
2723 
2724 /*
2725  * This function will traverse the commit list, creating new lwbs as
2726  * needed, and committing the itxs from the commit list to these newly
2727  * created lwbs. Additionally, as a new lwb is created, the previous
2728  * lwb will be issued to the zio layer to be written to disk.
2729  */
2730 static void
2731 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2732 {
2733 	spa_t *spa = zilog->zl_spa;
2734 	list_t nolwb_itxs;
2735 	list_t nolwb_waiters;
2736 	lwb_t *lwb, *plwb;
2737 	itx_t *itx;
2738 
2739 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2740 
2741 	/*
2742 	 * Return if there's nothing to commit before we dirty the fs by
2743 	 * calling zil_create().
2744 	 */
2745 	if (list_is_empty(&zilog->zl_itx_commit_list))
2746 		return;
2747 
2748 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2749 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2750 	    offsetof(zil_commit_waiter_t, zcw_node));
2751 
2752 	lwb = list_tail(&zilog->zl_lwb_list);
2753 	if (lwb == NULL) {
2754 		lwb = zil_create(zilog);
2755 	} else {
2756 		/*
2757 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2758 		 * have already been created (zl_lwb_list not empty).
2759 		 */
2760 		zil_commit_activate_saxattr_feature(zilog);
2761 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2762 		    lwb->lwb_state == LWB_STATE_OPENED);
2763 
2764 		/*
2765 		 * If the lwb is still opened, it means the workload is really
2766 		 * multi-threaded and we won the chance of write aggregation.
2767 		 * If it is not opened yet, but previous lwb is still not
2768 		 * flushed, it still means the workload is multi-threaded, but
2769 		 * there was too much time between the commits to aggregate, so
2770 		 * we try aggregation next times, but without too much hopes.
2771 		 */
2772 		if (lwb->lwb_state == LWB_STATE_OPENED) {
2773 			zilog->zl_parallel = ZIL_BURSTS;
2774 		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2775 		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2776 			zilog->zl_parallel = MAX(zilog->zl_parallel,
2777 			    ZIL_BURSTS / 2);
2778 		}
2779 	}
2780 
2781 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2782 		lr_t *lrc = &itx->itx_lr;
2783 		uint64_t txg = lrc->lrc_txg;
2784 
2785 		ASSERT3U(txg, !=, 0);
2786 
2787 		if (lrc->lrc_txtype == TX_COMMIT) {
2788 			DTRACE_PROBE2(zil__process__commit__itx,
2789 			    zilog_t *, zilog, itx_t *, itx);
2790 		} else {
2791 			DTRACE_PROBE2(zil__process__normal__itx,
2792 			    zilog_t *, zilog, itx_t *, itx);
2793 		}
2794 
2795 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2796 		boolean_t frozen = txg > spa_freeze_txg(spa);
2797 
2798 		/*
2799 		 * If the txg of this itx has already been synced out, then
2800 		 * we don't need to commit this itx to an lwb. This is
2801 		 * because the data of this itx will have already been
2802 		 * written to the main pool. This is inherently racy, and
2803 		 * it's still ok to commit an itx whose txg has already
2804 		 * been synced; this will result in a write that's
2805 		 * unnecessary, but will do no harm.
2806 		 *
2807 		 * With that said, we always want to commit TX_COMMIT itxs
2808 		 * to an lwb, regardless of whether or not that itx's txg
2809 		 * has been synced out. We do this to ensure any OPENED lwb
2810 		 * will always have at least one zil_commit_waiter_t linked
2811 		 * to the lwb.
2812 		 *
2813 		 * As a counter-example, if we skipped TX_COMMIT itx's
2814 		 * whose txg had already been synced, the following
2815 		 * situation could occur if we happened to be racing with
2816 		 * spa_sync:
2817 		 *
2818 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2819 		 *    itx's txg is 10 and the last synced txg is 9.
2820 		 * 2. spa_sync finishes syncing out txg 10.
2821 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2822 		 *    whose txg is 10, so we skip it rather than committing
2823 		 *    it to the lwb used in (1).
2824 		 *
2825 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2826 		 * itx in the commit list, than it's possible for the lwb
2827 		 * used in (1) to remain in the OPENED state indefinitely.
2828 		 *
2829 		 * To prevent the above scenario from occurring, ensuring
2830 		 * that once an lwb is OPENED it will transition to ISSUED
2831 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2832 		 * an lwb here, even if that itx's txg has already been
2833 		 * synced.
2834 		 *
2835 		 * Finally, if the pool is frozen, we _always_ commit the
2836 		 * itx.  The point of freezing the pool is to prevent data
2837 		 * from being written to the main pool via spa_sync, and
2838 		 * instead rely solely on the ZIL to persistently store the
2839 		 * data; i.e.  when the pool is frozen, the last synced txg
2840 		 * value can't be trusted.
2841 		 */
2842 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2843 			if (lwb != NULL) {
2844 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2845 				if (lwb == NULL) {
2846 					list_insert_tail(&nolwb_itxs, itx);
2847 				} else if ((zcw->zcw_lwb != NULL &&
2848 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2849 					/*
2850 					 * Our lwb is done, leave the rest of
2851 					 * itx list to somebody else who care.
2852 					 */
2853 					zilog->zl_parallel = ZIL_BURSTS;
2854 					break;
2855 				}
2856 			} else {
2857 				if (lrc->lrc_txtype == TX_COMMIT) {
2858 					zil_commit_waiter_link_nolwb(
2859 					    itx->itx_private, &nolwb_waiters);
2860 				}
2861 				list_insert_tail(&nolwb_itxs, itx);
2862 			}
2863 		} else {
2864 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2865 			zil_itx_destroy(itx);
2866 		}
2867 	}
2868 
2869 	if (lwb == NULL) {
2870 		/*
2871 		 * This indicates zio_alloc_zil() failed to allocate the
2872 		 * "next" lwb on-disk. When this happens, we must stall
2873 		 * the ZIL write pipeline; see the comment within
2874 		 * zil_commit_writer_stall() for more details.
2875 		 */
2876 		while ((lwb = list_remove_head(ilwbs)) != NULL)
2877 			zil_lwb_write_issue(zilog, lwb);
2878 		zil_commit_writer_stall(zilog);
2879 
2880 		/*
2881 		 * Additionally, we have to signal and mark the "nolwb"
2882 		 * waiters as "done" here, since without an lwb, we
2883 		 * can't do this via zil_lwb_flush_vdevs_done() like
2884 		 * normal.
2885 		 */
2886 		zil_commit_waiter_t *zcw;
2887 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
2888 			zil_commit_waiter_skip(zcw);
2889 
2890 		/*
2891 		 * And finally, we have to destroy the itx's that
2892 		 * couldn't be committed to an lwb; this will also call
2893 		 * the itx's callback if one exists for the itx.
2894 		 */
2895 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
2896 			zil_itx_destroy(itx);
2897 	} else {
2898 		ASSERT(list_is_empty(&nolwb_waiters));
2899 		ASSERT3P(lwb, !=, NULL);
2900 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2901 		    lwb->lwb_state == LWB_STATE_OPENED);
2902 
2903 		/*
2904 		 * At this point, the ZIL block pointed at by the "lwb"
2905 		 * variable is in "new" or "opened" state.
2906 		 *
2907 		 * If it's "new", then no itxs have been committed to it, so
2908 		 * there's no point in issuing its zio (i.e. it's "empty").
2909 		 *
2910 		 * If it's "opened", then it contains one or more itxs that
2911 		 * eventually need to be committed to stable storage. In
2912 		 * this case we intentionally do not issue the lwb's zio
2913 		 * to disk yet, and instead rely on one of the following
2914 		 * two mechanisms for issuing the zio:
2915 		 *
2916 		 * 1. Ideally, there will be more ZIL activity occurring on
2917 		 * the system, such that this function will be immediately
2918 		 * called again by different thread and this lwb will be
2919 		 * closed by zil_lwb_assign().  This way, the lwb will be
2920 		 * "full" when it is issued to disk, and we'll make use of
2921 		 * the lwb's size the best we can.
2922 		 *
2923 		 * 2. If there isn't sufficient ZIL activity occurring on
2924 		 * the system, zil_commit_waiter() will close it and issue
2925 		 * the zio.  If this occurs, the lwb is not guaranteed
2926 		 * to be "full" by the time its zio is issued, and means
2927 		 * the size of the lwb was "too large" given the amount
2928 		 * of ZIL activity occurring on the system at that time.
2929 		 *
2930 		 * We do this for a couple of reasons:
2931 		 *
2932 		 * 1. To try and reduce the number of IOPs needed to
2933 		 * write the same number of itxs. If an lwb has space
2934 		 * available in its buffer for more itxs, and more itxs
2935 		 * will be committed relatively soon (relative to the
2936 		 * latency of performing a write), then it's beneficial
2937 		 * to wait for these "next" itxs. This way, more itxs
2938 		 * can be committed to stable storage with fewer writes.
2939 		 *
2940 		 * 2. To try and use the largest lwb block size that the
2941 		 * incoming rate of itxs can support. Again, this is to
2942 		 * try and pack as many itxs into as few lwbs as
2943 		 * possible, without significantly impacting the latency
2944 		 * of each individual itx.
2945 		 */
2946 		if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
2947 			list_insert_tail(ilwbs, lwb);
2948 			lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
2949 			zil_burst_done(zilog);
2950 			if (lwb == NULL) {
2951 				while ((lwb = list_remove_head(ilwbs)) != NULL)
2952 					zil_lwb_write_issue(zilog, lwb);
2953 				zil_commit_writer_stall(zilog);
2954 			}
2955 		}
2956 	}
2957 }
2958 
2959 /*
2960  * This function is responsible for ensuring the passed in commit waiter
2961  * (and associated commit itx) is committed to an lwb. If the waiter is
2962  * not already committed to an lwb, all itxs in the zilog's queue of
2963  * itxs will be processed. The assumption is the passed in waiter's
2964  * commit itx will found in the queue just like the other non-commit
2965  * itxs, such that when the entire queue is processed, the waiter will
2966  * have been committed to an lwb.
2967  *
2968  * The lwb associated with the passed in waiter is not guaranteed to
2969  * have been issued by the time this function completes. If the lwb is
2970  * not issued, we rely on future calls to zil_commit_writer() to issue
2971  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2972  */
2973 static uint64_t
2974 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2975 {
2976 	list_t ilwbs;
2977 	lwb_t *lwb;
2978 	uint64_t wtxg = 0;
2979 
2980 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2981 	ASSERT(spa_writeable(zilog->zl_spa));
2982 
2983 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
2984 	mutex_enter(&zilog->zl_issuer_lock);
2985 
2986 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2987 		/*
2988 		 * It's possible that, while we were waiting to acquire
2989 		 * the "zl_issuer_lock", another thread committed this
2990 		 * waiter to an lwb. If that occurs, we bail out early,
2991 		 * without processing any of the zilog's queue of itxs.
2992 		 *
2993 		 * On certain workloads and system configurations, the
2994 		 * "zl_issuer_lock" can become highly contended. In an
2995 		 * attempt to reduce this contention, we immediately drop
2996 		 * the lock if the waiter has already been processed.
2997 		 *
2998 		 * We've measured this optimization to reduce CPU spent
2999 		 * contending on this lock by up to 5%, using a system
3000 		 * with 32 CPUs, low latency storage (~50 usec writes),
3001 		 * and 1024 threads performing sync writes.
3002 		 */
3003 		goto out;
3004 	}
3005 
3006 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3007 
3008 	wtxg = zil_get_commit_list(zilog);
3009 	zil_prune_commit_list(zilog);
3010 	zil_process_commit_list(zilog, zcw, &ilwbs);
3011 
3012 out:
3013 	mutex_exit(&zilog->zl_issuer_lock);
3014 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
3015 		zil_lwb_write_issue(zilog, lwb);
3016 	list_destroy(&ilwbs);
3017 	return (wtxg);
3018 }
3019 
3020 static void
3021 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3022 {
3023 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3024 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3025 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3026 
3027 	lwb_t *lwb = zcw->zcw_lwb;
3028 	ASSERT3P(lwb, !=, NULL);
3029 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3030 
3031 	/*
3032 	 * If the lwb has already been issued by another thread, we can
3033 	 * immediately return since there's no work to be done (the
3034 	 * point of this function is to issue the lwb). Additionally, we
3035 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3036 	 * acquiring it when it's not necessary to do so.
3037 	 */
3038 	if (lwb->lwb_state != LWB_STATE_OPENED)
3039 		return;
3040 
3041 	/*
3042 	 * In order to call zil_lwb_write_close() we must hold the
3043 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3044 	 * since we're already holding the commit waiter's "zcw_lock",
3045 	 * and those two locks are acquired in the opposite order
3046 	 * elsewhere.
3047 	 */
3048 	mutex_exit(&zcw->zcw_lock);
3049 	mutex_enter(&zilog->zl_issuer_lock);
3050 	mutex_enter(&zcw->zcw_lock);
3051 
3052 	/*
3053 	 * Since we just dropped and re-acquired the commit waiter's
3054 	 * lock, we have to re-check to see if the waiter was marked
3055 	 * "done" during that process. If the waiter was marked "done",
3056 	 * the "lwb" pointer is no longer valid (it can be free'd after
3057 	 * the waiter is marked "done"), so without this check we could
3058 	 * wind up with a use-after-free error below.
3059 	 */
3060 	if (zcw->zcw_done) {
3061 		mutex_exit(&zilog->zl_issuer_lock);
3062 		return;
3063 	}
3064 
3065 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3066 
3067 	/*
3068 	 * We've already checked this above, but since we hadn't acquired
3069 	 * the zilog's zl_issuer_lock, we have to perform this check a
3070 	 * second time while holding the lock.
3071 	 *
3072 	 * We don't need to hold the zl_lock since the lwb cannot transition
3073 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3074 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3075 	 * that transition since we treat the lwb the same, whether it's in
3076 	 * the CLOSED, ISSUED or DONE states.
3077 	 *
3078 	 * The important thing, is we treat the lwb differently depending on
3079 	 * if it's OPENED or CLOSED, and block any other threads that might
3080 	 * attempt to close/issue this lwb. For that reason we hold the
3081 	 * zl_issuer_lock when checking the lwb_state; we must not call
3082 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3083 	 *
3084 	 * See the comment above the lwb_state_t structure definition for
3085 	 * more details on the lwb states, and locking requirements.
3086 	 */
3087 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3088 		mutex_exit(&zilog->zl_issuer_lock);
3089 		return;
3090 	}
3091 
3092 	/*
3093 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3094 	 * is still open.  But we have to drop it to avoid a deadlock in case
3095 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3096 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3097 	 * lwb it found in LWB_STATE_READY state.
3098 	 */
3099 	mutex_exit(&zcw->zcw_lock);
3100 
3101 	/*
3102 	 * As described in the comments above zil_commit_waiter() and
3103 	 * zil_process_commit_list(), we need to issue this lwb's zio
3104 	 * since we've reached the commit waiter's timeout and it still
3105 	 * hasn't been issued.
3106 	 */
3107 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3108 
3109 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3110 
3111 	zil_burst_done(zilog);
3112 
3113 	if (nlwb == NULL) {
3114 		/*
3115 		 * When zil_lwb_write_close() returns NULL, this
3116 		 * indicates zio_alloc_zil() failed to allocate the
3117 		 * "next" lwb on-disk. When this occurs, the ZIL write
3118 		 * pipeline must be stalled; see the comment within the
3119 		 * zil_commit_writer_stall() function for more details.
3120 		 */
3121 		zil_lwb_write_issue(zilog, lwb);
3122 		zil_commit_writer_stall(zilog);
3123 		mutex_exit(&zilog->zl_issuer_lock);
3124 	} else {
3125 		mutex_exit(&zilog->zl_issuer_lock);
3126 		zil_lwb_write_issue(zilog, lwb);
3127 	}
3128 	mutex_enter(&zcw->zcw_lock);
3129 }
3130 
3131 /*
3132  * This function is responsible for performing the following two tasks:
3133  *
3134  * 1. its primary responsibility is to block until the given "commit
3135  *    waiter" is considered "done".
3136  *
3137  * 2. its secondary responsibility is to issue the zio for the lwb that
3138  *    the given "commit waiter" is waiting on, if this function has
3139  *    waited "long enough" and the lwb is still in the "open" state.
3140  *
3141  * Given a sufficient amount of itxs being generated and written using
3142  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3143  * function. If this does not occur, this secondary responsibility will
3144  * ensure the lwb is issued even if there is not other synchronous
3145  * activity on the system.
3146  *
3147  * For more details, see zil_process_commit_list(); more specifically,
3148  * the comment at the bottom of that function.
3149  */
3150 static void
3151 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3152 {
3153 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3154 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3155 	ASSERT(spa_writeable(zilog->zl_spa));
3156 
3157 	mutex_enter(&zcw->zcw_lock);
3158 
3159 	/*
3160 	 * The timeout is scaled based on the lwb latency to avoid
3161 	 * significantly impacting the latency of each individual itx.
3162 	 * For more details, see the comment at the bottom of the
3163 	 * zil_process_commit_list() function.
3164 	 */
3165 	int pct = MAX(zfs_commit_timeout_pct, 1);
3166 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3167 	hrtime_t wakeup = gethrtime() + sleep;
3168 	boolean_t timedout = B_FALSE;
3169 
3170 	while (!zcw->zcw_done) {
3171 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3172 
3173 		lwb_t *lwb = zcw->zcw_lwb;
3174 
3175 		/*
3176 		 * Usually, the waiter will have a non-NULL lwb field here,
3177 		 * but it's possible for it to be NULL as a result of
3178 		 * zil_commit() racing with spa_sync().
3179 		 *
3180 		 * When zil_clean() is called, it's possible for the itxg
3181 		 * list (which may be cleaned via a taskq) to contain
3182 		 * commit itxs. When this occurs, the commit waiters linked
3183 		 * off of these commit itxs will not be committed to an
3184 		 * lwb.  Additionally, these commit waiters will not be
3185 		 * marked done until zil_commit_waiter_skip() is called via
3186 		 * zil_itxg_clean().
3187 		 *
3188 		 * Thus, it's possible for this commit waiter (i.e. the
3189 		 * "zcw" variable) to be found in this "in between" state;
3190 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3191 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3192 		 */
3193 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3194 
3195 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3196 			ASSERT3B(timedout, ==, B_FALSE);
3197 
3198 			/*
3199 			 * If the lwb hasn't been issued yet, then we
3200 			 * need to wait with a timeout, in case this
3201 			 * function needs to issue the lwb after the
3202 			 * timeout is reached; responsibility (2) from
3203 			 * the comment above this function.
3204 			 */
3205 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3206 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3207 			    CALLOUT_FLAG_ABSOLUTE);
3208 
3209 			if (rc != -1 || zcw->zcw_done)
3210 				continue;
3211 
3212 			timedout = B_TRUE;
3213 			zil_commit_waiter_timeout(zilog, zcw);
3214 
3215 			if (!zcw->zcw_done) {
3216 				/*
3217 				 * If the commit waiter has already been
3218 				 * marked "done", it's possible for the
3219 				 * waiter's lwb structure to have already
3220 				 * been freed.  Thus, we can only reliably
3221 				 * make these assertions if the waiter
3222 				 * isn't done.
3223 				 */
3224 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3225 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3226 			}
3227 		} else {
3228 			/*
3229 			 * If the lwb isn't open, then it must have already
3230 			 * been issued. In that case, there's no need to
3231 			 * use a timeout when waiting for the lwb to
3232 			 * complete.
3233 			 *
3234 			 * Additionally, if the lwb is NULL, the waiter
3235 			 * will soon be signaled and marked done via
3236 			 * zil_clean() and zil_itxg_clean(), so no timeout
3237 			 * is required.
3238 			 */
3239 
3240 			IMPLY(lwb != NULL,
3241 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3242 			    lwb->lwb_state == LWB_STATE_READY ||
3243 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3244 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3245 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3246 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3247 		}
3248 	}
3249 
3250 	mutex_exit(&zcw->zcw_lock);
3251 }
3252 
3253 static zil_commit_waiter_t *
3254 zil_alloc_commit_waiter(void)
3255 {
3256 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3257 
3258 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3259 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3260 	list_link_init(&zcw->zcw_node);
3261 	zcw->zcw_lwb = NULL;
3262 	zcw->zcw_done = B_FALSE;
3263 	zcw->zcw_zio_error = 0;
3264 
3265 	return (zcw);
3266 }
3267 
3268 static void
3269 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3270 {
3271 	ASSERT(!list_link_active(&zcw->zcw_node));
3272 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3273 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3274 	mutex_destroy(&zcw->zcw_lock);
3275 	cv_destroy(&zcw->zcw_cv);
3276 	kmem_cache_free(zil_zcw_cache, zcw);
3277 }
3278 
3279 /*
3280  * This function is used to create a TX_COMMIT itx and assign it. This
3281  * way, it will be linked into the ZIL's list of synchronous itxs, and
3282  * then later committed to an lwb (or skipped) when
3283  * zil_process_commit_list() is called.
3284  */
3285 static void
3286 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3287 {
3288 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3289 
3290 	/*
3291 	 * Since we are not going to create any new dirty data, and we
3292 	 * can even help with clearing the existing dirty data, we
3293 	 * should not be subject to the dirty data based delays. We
3294 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3295 	 */
3296 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3297 
3298 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3299 	itx->itx_sync = B_TRUE;
3300 	itx->itx_private = zcw;
3301 
3302 	zil_itx_assign(zilog, itx, tx);
3303 
3304 	dmu_tx_commit(tx);
3305 }
3306 
3307 /*
3308  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3309  *
3310  * When writing ZIL transactions to the on-disk representation of the
3311  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3312  * itxs can be committed to a single lwb. Once a lwb is written and
3313  * committed to stable storage (i.e. the lwb is written, and vdevs have
3314  * been flushed), each itx that was committed to that lwb is also
3315  * considered to be committed to stable storage.
3316  *
3317  * When an itx is committed to an lwb, the log record (lr_t) contained
3318  * by the itx is copied into the lwb's zio buffer, and once this buffer
3319  * is written to disk, it becomes an on-disk ZIL block.
3320  *
3321  * As itxs are generated, they're inserted into the ZIL's queue of
3322  * uncommitted itxs. The semantics of zil_commit() are such that it will
3323  * block until all itxs that were in the queue when it was called, are
3324  * committed to stable storage.
3325  *
3326  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3327  * itxs, for all objects in the dataset, will be committed to stable
3328  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3329  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3330  * that correspond to the foid passed in, will be committed to stable
3331  * storage prior to zil_commit() returning.
3332  *
3333  * Generally speaking, when zil_commit() is called, the consumer doesn't
3334  * actually care about _all_ of the uncommitted itxs. Instead, they're
3335  * simply trying to waiting for a specific itx to be committed to disk,
3336  * but the interface(s) for interacting with the ZIL don't allow such
3337  * fine-grained communication. A better interface would allow a consumer
3338  * to create and assign an itx, and then pass a reference to this itx to
3339  * zil_commit(); such that zil_commit() would return as soon as that
3340  * specific itx was committed to disk (instead of waiting for _all_
3341  * itxs to be committed).
3342  *
3343  * When a thread calls zil_commit() a special "commit itx" will be
3344  * generated, along with a corresponding "waiter" for this commit itx.
3345  * zil_commit() will wait on this waiter's CV, such that when the waiter
3346  * is marked done, and signaled, zil_commit() will return.
3347  *
3348  * This commit itx is inserted into the queue of uncommitted itxs. This
3349  * provides an easy mechanism for determining which itxs were in the
3350  * queue prior to zil_commit() having been called, and which itxs were
3351  * added after zil_commit() was called.
3352  *
3353  * The commit itx is special; it doesn't have any on-disk representation.
3354  * When a commit itx is "committed" to an lwb, the waiter associated
3355  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3356  * completes, each waiter on the lwb's list is marked done and signaled
3357  * -- allowing the thread waiting on the waiter to return from zil_commit().
3358  *
3359  * It's important to point out a few critical factors that allow us
3360  * to make use of the commit itxs, commit waiters, per-lwb lists of
3361  * commit waiters, and zio completion callbacks like we're doing:
3362  *
3363  *   1. The list of waiters for each lwb is traversed, and each commit
3364  *      waiter is marked "done" and signaled, in the zio completion
3365  *      callback of the lwb's zio[*].
3366  *
3367  *      * Actually, the waiters are signaled in the zio completion
3368  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3369  *        that are sent to the vdevs upon completion of the lwb zio.
3370  *
3371  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3372  *      itxs, the order in which they are inserted is preserved[*]; as
3373  *      itxs are added to the queue, they are added to the tail of
3374  *      in-memory linked lists.
3375  *
3376  *      When committing the itxs to lwbs (to be written to disk), they
3377  *      are committed in the same order in which the itxs were added to
3378  *      the uncommitted queue's linked list(s); i.e. the linked list of
3379  *      itxs to commit is traversed from head to tail, and each itx is
3380  *      committed to an lwb in that order.
3381  *
3382  *      * To clarify:
3383  *
3384  *        - the order of "sync" itxs is preserved w.r.t. other
3385  *          "sync" itxs, regardless of the corresponding objects.
3386  *        - the order of "async" itxs is preserved w.r.t. other
3387  *          "async" itxs corresponding to the same object.
3388  *        - the order of "async" itxs is *not* preserved w.r.t. other
3389  *          "async" itxs corresponding to different objects.
3390  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3391  *          versa) is *not* preserved, even for itxs that correspond
3392  *          to the same object.
3393  *
3394  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3395  *      zil_get_commit_list(), and zil_process_commit_list().
3396  *
3397  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3398  *      lwb cannot be considered committed to stable storage, until its
3399  *      "previous" lwb is also committed to stable storage. This fact,
3400  *      coupled with the fact described above, means that itxs are
3401  *      committed in (roughly) the order in which they were generated.
3402  *      This is essential because itxs are dependent on prior itxs.
3403  *      Thus, we *must not* deem an itx as being committed to stable
3404  *      storage, until *all* prior itxs have also been committed to
3405  *      stable storage.
3406  *
3407  *      To enforce this ordering of lwb zio's, while still leveraging as
3408  *      much of the underlying storage performance as possible, we rely
3409  *      on two fundamental concepts:
3410  *
3411  *          1. The creation and issuance of lwb zio's is protected by
3412  *             the zilog's "zl_issuer_lock", which ensures only a single
3413  *             thread is creating and/or issuing lwb's at a time
3414  *          2. The "previous" lwb is a child of the "current" lwb
3415  *             (leveraging the zio parent-child dependency graph)
3416  *
3417  *      By relying on this parent-child zio relationship, we can have
3418  *      many lwb zio's concurrently issued to the underlying storage,
3419  *      but the order in which they complete will be the same order in
3420  *      which they were created.
3421  */
3422 void
3423 zil_commit(zilog_t *zilog, uint64_t foid)
3424 {
3425 	/*
3426 	 * We should never attempt to call zil_commit on a snapshot for
3427 	 * a couple of reasons:
3428 	 *
3429 	 * 1. A snapshot may never be modified, thus it cannot have any
3430 	 *    in-flight itxs that would have modified the dataset.
3431 	 *
3432 	 * 2. By design, when zil_commit() is called, a commit itx will
3433 	 *    be assigned to this zilog; as a result, the zilog will be
3434 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3435 	 *    checks in the code that enforce this invariant, and will
3436 	 *    cause a panic if it's not upheld.
3437 	 */
3438 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3439 
3440 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3441 		return;
3442 
3443 	if (!spa_writeable(zilog->zl_spa)) {
3444 		/*
3445 		 * If the SPA is not writable, there should never be any
3446 		 * pending itxs waiting to be committed to disk. If that
3447 		 * weren't true, we'd skip writing those itxs out, and
3448 		 * would break the semantics of zil_commit(); thus, we're
3449 		 * verifying that truth before we return to the caller.
3450 		 */
3451 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3452 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3453 		for (int i = 0; i < TXG_SIZE; i++)
3454 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3455 		return;
3456 	}
3457 
3458 	/*
3459 	 * If the ZIL is suspended, we don't want to dirty it by calling
3460 	 * zil_commit_itx_assign() below, nor can we write out
3461 	 * lwbs like would be done in zil_commit_write(). Thus, we
3462 	 * simply rely on txg_wait_synced() to maintain the necessary
3463 	 * semantics, and avoid calling those functions altogether.
3464 	 */
3465 	if (zilog->zl_suspend > 0) {
3466 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3467 		return;
3468 	}
3469 
3470 	zil_commit_impl(zilog, foid);
3471 }
3472 
3473 void
3474 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3475 {
3476 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3477 
3478 	/*
3479 	 * Move the "async" itxs for the specified foid to the "sync"
3480 	 * queues, such that they will be later committed (or skipped)
3481 	 * to an lwb when zil_process_commit_list() is called.
3482 	 *
3483 	 * Since these "async" itxs must be committed prior to this
3484 	 * call to zil_commit returning, we must perform this operation
3485 	 * before we call zil_commit_itx_assign().
3486 	 */
3487 	zil_async_to_sync(zilog, foid);
3488 
3489 	/*
3490 	 * We allocate a new "waiter" structure which will initially be
3491 	 * linked to the commit itx using the itx's "itx_private" field.
3492 	 * Since the commit itx doesn't represent any on-disk state,
3493 	 * when it's committed to an lwb, rather than copying the its
3494 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3495 	 * added to the lwb's list of waiters. Then, when the lwb is
3496 	 * committed to stable storage, each waiter in the lwb's list of
3497 	 * waiters will be marked "done", and signalled.
3498 	 *
3499 	 * We must create the waiter and assign the commit itx prior to
3500 	 * calling zil_commit_writer(), or else our specific commit itx
3501 	 * is not guaranteed to be committed to an lwb prior to calling
3502 	 * zil_commit_waiter().
3503 	 */
3504 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3505 	zil_commit_itx_assign(zilog, zcw);
3506 
3507 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3508 	zil_commit_waiter(zilog, zcw);
3509 
3510 	if (zcw->zcw_zio_error != 0) {
3511 		/*
3512 		 * If there was an error writing out the ZIL blocks that
3513 		 * this thread is waiting on, then we fallback to
3514 		 * relying on spa_sync() to write out the data this
3515 		 * thread is waiting on. Obviously this has performance
3516 		 * implications, but the expectation is for this to be
3517 		 * an exceptional case, and shouldn't occur often.
3518 		 */
3519 		DTRACE_PROBE2(zil__commit__io__error,
3520 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3521 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3522 	} else if (wtxg != 0) {
3523 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3524 	}
3525 
3526 	zil_free_commit_waiter(zcw);
3527 }
3528 
3529 /*
3530  * Called in syncing context to free committed log blocks and update log header.
3531  */
3532 void
3533 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3534 {
3535 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3536 	uint64_t txg = dmu_tx_get_txg(tx);
3537 	spa_t *spa = zilog->zl_spa;
3538 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3539 	lwb_t *lwb;
3540 
3541 	/*
3542 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3543 	 * to destroy it twice.
3544 	 */
3545 	if (spa_sync_pass(spa) != 1)
3546 		return;
3547 
3548 	zil_lwb_flush_wait_all(zilog, txg);
3549 
3550 	mutex_enter(&zilog->zl_lock);
3551 
3552 	ASSERT(zilog->zl_stop_sync == 0);
3553 
3554 	if (*replayed_seq != 0) {
3555 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3556 		zh->zh_replay_seq = *replayed_seq;
3557 		*replayed_seq = 0;
3558 	}
3559 
3560 	if (zilog->zl_destroy_txg == txg) {
3561 		blkptr_t blk = zh->zh_log;
3562 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3563 
3564 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3565 
3566 		memset(zh, 0, sizeof (zil_header_t));
3567 		memset(zilog->zl_replayed_seq, 0,
3568 		    sizeof (zilog->zl_replayed_seq));
3569 
3570 		if (zilog->zl_keep_first) {
3571 			/*
3572 			 * If this block was part of log chain that couldn't
3573 			 * be claimed because a device was missing during
3574 			 * zil_claim(), but that device later returns,
3575 			 * then this block could erroneously appear valid.
3576 			 * To guard against this, assign a new GUID to the new
3577 			 * log chain so it doesn't matter what blk points to.
3578 			 */
3579 			zil_init_log_chain(zilog, &blk);
3580 			zh->zh_log = blk;
3581 		} else {
3582 			/*
3583 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3584 			 * records. So, deactivate the feature for this dataset.
3585 			 * We activate it again when we start a new ZIL chain.
3586 			 */
3587 			if (dsl_dataset_feature_is_active(ds,
3588 			    SPA_FEATURE_ZILSAXATTR))
3589 				dsl_dataset_deactivate_feature(ds,
3590 				    SPA_FEATURE_ZILSAXATTR, tx);
3591 		}
3592 	}
3593 
3594 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3595 		zh->zh_log = lwb->lwb_blk;
3596 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3597 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3598 			break;
3599 		list_remove(&zilog->zl_lwb_list, lwb);
3600 		if (!BP_IS_HOLE(&lwb->lwb_blk))
3601 			zio_free(spa, txg, &lwb->lwb_blk);
3602 		zil_free_lwb(zilog, lwb);
3603 
3604 		/*
3605 		 * If we don't have anything left in the lwb list then
3606 		 * we've had an allocation failure and we need to zero
3607 		 * out the zil_header blkptr so that we don't end
3608 		 * up freeing the same block twice.
3609 		 */
3610 		if (list_is_empty(&zilog->zl_lwb_list))
3611 			BP_ZERO(&zh->zh_log);
3612 	}
3613 
3614 	mutex_exit(&zilog->zl_lock);
3615 }
3616 
3617 static int
3618 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3619 {
3620 	(void) unused, (void) kmflag;
3621 	lwb_t *lwb = vbuf;
3622 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3623 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3624 	    offsetof(zil_commit_waiter_t, zcw_node));
3625 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3626 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3627 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3628 	return (0);
3629 }
3630 
3631 static void
3632 zil_lwb_dest(void *vbuf, void *unused)
3633 {
3634 	(void) unused;
3635 	lwb_t *lwb = vbuf;
3636 	mutex_destroy(&lwb->lwb_vdev_lock);
3637 	avl_destroy(&lwb->lwb_vdev_tree);
3638 	list_destroy(&lwb->lwb_waiters);
3639 	list_destroy(&lwb->lwb_itxs);
3640 }
3641 
3642 void
3643 zil_init(void)
3644 {
3645 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3646 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3647 
3648 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3649 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3650 
3651 	zil_sums_init(&zil_sums_global);
3652 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3653 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3654 	    KSTAT_FLAG_VIRTUAL);
3655 
3656 	if (zil_kstats_global != NULL) {
3657 		zil_kstats_global->ks_data = &zil_stats;
3658 		zil_kstats_global->ks_update = zil_kstats_global_update;
3659 		zil_kstats_global->ks_private = NULL;
3660 		kstat_install(zil_kstats_global);
3661 	}
3662 }
3663 
3664 void
3665 zil_fini(void)
3666 {
3667 	kmem_cache_destroy(zil_zcw_cache);
3668 	kmem_cache_destroy(zil_lwb_cache);
3669 
3670 	if (zil_kstats_global != NULL) {
3671 		kstat_delete(zil_kstats_global);
3672 		zil_kstats_global = NULL;
3673 	}
3674 
3675 	zil_sums_fini(&zil_sums_global);
3676 }
3677 
3678 void
3679 zil_set_sync(zilog_t *zilog, uint64_t sync)
3680 {
3681 	zilog->zl_sync = sync;
3682 }
3683 
3684 void
3685 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3686 {
3687 	zilog->zl_logbias = logbias;
3688 }
3689 
3690 zilog_t *
3691 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3692 {
3693 	zilog_t *zilog;
3694 
3695 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3696 
3697 	zilog->zl_header = zh_phys;
3698 	zilog->zl_os = os;
3699 	zilog->zl_spa = dmu_objset_spa(os);
3700 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3701 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3702 	zilog->zl_logbias = dmu_objset_logbias(os);
3703 	zilog->zl_sync = dmu_objset_syncprop(os);
3704 	zilog->zl_dirty_max_txg = 0;
3705 	zilog->zl_last_lwb_opened = NULL;
3706 	zilog->zl_last_lwb_latency = 0;
3707 	zilog->zl_max_block_size = zil_maxblocksize;
3708 
3709 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3710 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3711 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3712 
3713 	for (int i = 0; i < TXG_SIZE; i++) {
3714 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3715 		    MUTEX_DEFAULT, NULL);
3716 	}
3717 
3718 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3719 	    offsetof(lwb_t, lwb_node));
3720 
3721 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3722 	    offsetof(itx_t, itx_node));
3723 
3724 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3725 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3726 
3727 	return (zilog);
3728 }
3729 
3730 void
3731 zil_free(zilog_t *zilog)
3732 {
3733 	int i;
3734 
3735 	zilog->zl_stop_sync = 1;
3736 
3737 	ASSERT0(zilog->zl_suspend);
3738 	ASSERT0(zilog->zl_suspending);
3739 
3740 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3741 	list_destroy(&zilog->zl_lwb_list);
3742 
3743 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3744 	list_destroy(&zilog->zl_itx_commit_list);
3745 
3746 	for (i = 0; i < TXG_SIZE; i++) {
3747 		/*
3748 		 * It's possible for an itx to be generated that doesn't dirty
3749 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3750 		 * callback to remove the entry. We remove those here.
3751 		 *
3752 		 * Also free up the ziltest itxs.
3753 		 */
3754 		if (zilog->zl_itxg[i].itxg_itxs)
3755 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3756 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3757 	}
3758 
3759 	mutex_destroy(&zilog->zl_issuer_lock);
3760 	mutex_destroy(&zilog->zl_lock);
3761 	mutex_destroy(&zilog->zl_lwb_io_lock);
3762 
3763 	cv_destroy(&zilog->zl_cv_suspend);
3764 	cv_destroy(&zilog->zl_lwb_io_cv);
3765 
3766 	kmem_free(zilog, sizeof (zilog_t));
3767 }
3768 
3769 /*
3770  * Open an intent log.
3771  */
3772 zilog_t *
3773 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3774 {
3775 	zilog_t *zilog = dmu_objset_zil(os);
3776 
3777 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3778 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3779 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3780 
3781 	zilog->zl_get_data = get_data;
3782 	zilog->zl_sums = zil_sums;
3783 
3784 	return (zilog);
3785 }
3786 
3787 /*
3788  * Close an intent log.
3789  */
3790 void
3791 zil_close(zilog_t *zilog)
3792 {
3793 	lwb_t *lwb;
3794 	uint64_t txg;
3795 
3796 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3797 		zil_commit(zilog, 0);
3798 	} else {
3799 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3800 		ASSERT0(zilog->zl_dirty_max_txg);
3801 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3802 	}
3803 
3804 	mutex_enter(&zilog->zl_lock);
3805 	txg = zilog->zl_dirty_max_txg;
3806 	lwb = list_tail(&zilog->zl_lwb_list);
3807 	if (lwb != NULL) {
3808 		txg = MAX(txg, lwb->lwb_alloc_txg);
3809 		txg = MAX(txg, lwb->lwb_max_txg);
3810 	}
3811 	mutex_exit(&zilog->zl_lock);
3812 
3813 	/*
3814 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3815 	 * on the time when the dmu_tx transaction is assigned in
3816 	 * zil_lwb_write_issue().
3817 	 */
3818 	mutex_enter(&zilog->zl_lwb_io_lock);
3819 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3820 	mutex_exit(&zilog->zl_lwb_io_lock);
3821 
3822 	/*
3823 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3824 	 * zil_sync() will guarantee all lwbs up to that txg have been
3825 	 * written out, flushed, and cleaned.
3826 	 */
3827 	if (txg != 0)
3828 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3829 
3830 	if (zilog_is_dirty(zilog))
3831 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3832 		    (u_longlong_t)txg);
3833 	if (txg < spa_freeze_txg(zilog->zl_spa))
3834 		VERIFY(!zilog_is_dirty(zilog));
3835 
3836 	zilog->zl_get_data = NULL;
3837 
3838 	/*
3839 	 * We should have only one lwb left on the list; remove it now.
3840 	 */
3841 	mutex_enter(&zilog->zl_lock);
3842 	lwb = list_remove_head(&zilog->zl_lwb_list);
3843 	if (lwb != NULL) {
3844 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3845 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3846 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3847 		zil_free_lwb(zilog, lwb);
3848 	}
3849 	mutex_exit(&zilog->zl_lock);
3850 }
3851 
3852 static const char *suspend_tag = "zil suspending";
3853 
3854 /*
3855  * Suspend an intent log.  While in suspended mode, we still honor
3856  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3857  * On old version pools, we suspend the log briefly when taking a
3858  * snapshot so that it will have an empty intent log.
3859  *
3860  * Long holds are not really intended to be used the way we do here --
3861  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3862  * could fail.  Therefore we take pains to only put a long hold if it is
3863  * actually necessary.  Fortunately, it will only be necessary if the
3864  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3865  * will already have a long hold, so we are not really making things any worse.
3866  *
3867  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3868  * zvol_state_t), and use their mechanism to prevent their hold from being
3869  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3870  * very little gain.
3871  *
3872  * if cookiep == NULL, this does both the suspend & resume.
3873  * Otherwise, it returns with the dataset "long held", and the cookie
3874  * should be passed into zil_resume().
3875  */
3876 int
3877 zil_suspend(const char *osname, void **cookiep)
3878 {
3879 	objset_t *os;
3880 	zilog_t *zilog;
3881 	const zil_header_t *zh;
3882 	int error;
3883 
3884 	error = dmu_objset_hold(osname, suspend_tag, &os);
3885 	if (error != 0)
3886 		return (error);
3887 	zilog = dmu_objset_zil(os);
3888 
3889 	mutex_enter(&zilog->zl_lock);
3890 	zh = zilog->zl_header;
3891 
3892 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3893 		mutex_exit(&zilog->zl_lock);
3894 		dmu_objset_rele(os, suspend_tag);
3895 		return (SET_ERROR(EBUSY));
3896 	}
3897 
3898 	/*
3899 	 * Don't put a long hold in the cases where we can avoid it.  This
3900 	 * is when there is no cookie so we are doing a suspend & resume
3901 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3902 	 * for the suspend because it's already suspended, or there's no ZIL.
3903 	 */
3904 	if (cookiep == NULL && !zilog->zl_suspending &&
3905 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3906 		mutex_exit(&zilog->zl_lock);
3907 		dmu_objset_rele(os, suspend_tag);
3908 		return (0);
3909 	}
3910 
3911 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3912 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3913 
3914 	zilog->zl_suspend++;
3915 
3916 	if (zilog->zl_suspend > 1) {
3917 		/*
3918 		 * Someone else is already suspending it.
3919 		 * Just wait for them to finish.
3920 		 */
3921 
3922 		while (zilog->zl_suspending)
3923 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3924 		mutex_exit(&zilog->zl_lock);
3925 
3926 		if (cookiep == NULL)
3927 			zil_resume(os);
3928 		else
3929 			*cookiep = os;
3930 		return (0);
3931 	}
3932 
3933 	/*
3934 	 * If there is no pointer to an on-disk block, this ZIL must not
3935 	 * be active (e.g. filesystem not mounted), so there's nothing
3936 	 * to clean up.
3937 	 */
3938 	if (BP_IS_HOLE(&zh->zh_log)) {
3939 		ASSERT(cookiep != NULL); /* fast path already handled */
3940 
3941 		*cookiep = os;
3942 		mutex_exit(&zilog->zl_lock);
3943 		return (0);
3944 	}
3945 
3946 	/*
3947 	 * The ZIL has work to do. Ensure that the associated encryption
3948 	 * key will remain mapped while we are committing the log by
3949 	 * grabbing a reference to it. If the key isn't loaded we have no
3950 	 * choice but to return an error until the wrapping key is loaded.
3951 	 */
3952 	if (os->os_encrypted &&
3953 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3954 		zilog->zl_suspend--;
3955 		mutex_exit(&zilog->zl_lock);
3956 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3957 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3958 		return (SET_ERROR(EACCES));
3959 	}
3960 
3961 	zilog->zl_suspending = B_TRUE;
3962 	mutex_exit(&zilog->zl_lock);
3963 
3964 	/*
3965 	 * We need to use zil_commit_impl to ensure we wait for all
3966 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
3967 	 * to disk before proceeding. If we used zil_commit instead, it
3968 	 * would just call txg_wait_synced(), because zl_suspend is set.
3969 	 * txg_wait_synced() doesn't wait for these lwb's to be
3970 	 * LWB_STATE_FLUSH_DONE before returning.
3971 	 */
3972 	zil_commit_impl(zilog, 0);
3973 
3974 	/*
3975 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3976 	 * use txg_wait_synced() to ensure the data from the zilog has
3977 	 * migrated to the main pool before calling zil_destroy().
3978 	 */
3979 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3980 
3981 	zil_destroy(zilog, B_FALSE);
3982 
3983 	mutex_enter(&zilog->zl_lock);
3984 	zilog->zl_suspending = B_FALSE;
3985 	cv_broadcast(&zilog->zl_cv_suspend);
3986 	mutex_exit(&zilog->zl_lock);
3987 
3988 	if (os->os_encrypted)
3989 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3990 
3991 	if (cookiep == NULL)
3992 		zil_resume(os);
3993 	else
3994 		*cookiep = os;
3995 	return (0);
3996 }
3997 
3998 void
3999 zil_resume(void *cookie)
4000 {
4001 	objset_t *os = cookie;
4002 	zilog_t *zilog = dmu_objset_zil(os);
4003 
4004 	mutex_enter(&zilog->zl_lock);
4005 	ASSERT(zilog->zl_suspend != 0);
4006 	zilog->zl_suspend--;
4007 	mutex_exit(&zilog->zl_lock);
4008 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4009 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4010 }
4011 
4012 typedef struct zil_replay_arg {
4013 	zil_replay_func_t *const *zr_replay;
4014 	void		*zr_arg;
4015 	boolean_t	zr_byteswap;
4016 	char		*zr_lr;
4017 } zil_replay_arg_t;
4018 
4019 static int
4020 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4021 {
4022 	char name[ZFS_MAX_DATASET_NAME_LEN];
4023 
4024 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4025 
4026 	dmu_objset_name(zilog->zl_os, name);
4027 
4028 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4029 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4030 	    (u_longlong_t)lr->lrc_seq,
4031 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4032 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4033 
4034 	return (error);
4035 }
4036 
4037 static int
4038 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4039     uint64_t claim_txg)
4040 {
4041 	zil_replay_arg_t *zr = zra;
4042 	const zil_header_t *zh = zilog->zl_header;
4043 	uint64_t reclen = lr->lrc_reclen;
4044 	uint64_t txtype = lr->lrc_txtype;
4045 	int error = 0;
4046 
4047 	zilog->zl_replaying_seq = lr->lrc_seq;
4048 
4049 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4050 		return (0);
4051 
4052 	if (lr->lrc_txg < claim_txg)		/* already committed */
4053 		return (0);
4054 
4055 	/* Strip case-insensitive bit, still present in log record */
4056 	txtype &= ~TX_CI;
4057 
4058 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4059 		return (zil_replay_error(zilog, lr, EINVAL));
4060 
4061 	/*
4062 	 * If this record type can be logged out of order, the object
4063 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4064 	 */
4065 	if (TX_OOO(txtype)) {
4066 		error = dmu_object_info(zilog->zl_os,
4067 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4068 		if (error == ENOENT || error == EEXIST)
4069 			return (0);
4070 	}
4071 
4072 	/*
4073 	 * Make a copy of the data so we can revise and extend it.
4074 	 */
4075 	memcpy(zr->zr_lr, lr, reclen);
4076 
4077 	/*
4078 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4079 	 */
4080 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4081 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4082 		    zr->zr_lr + reclen);
4083 		if (error != 0)
4084 			return (zil_replay_error(zilog, lr, error));
4085 	}
4086 
4087 	/*
4088 	 * The log block containing this lr may have been byteswapped
4089 	 * so that we can easily examine common fields like lrc_txtype.
4090 	 * However, the log is a mix of different record types, and only the
4091 	 * replay vectors know how to byteswap their records.  Therefore, if
4092 	 * the lr was byteswapped, undo it before invoking the replay vector.
4093 	 */
4094 	if (zr->zr_byteswap)
4095 		byteswap_uint64_array(zr->zr_lr, reclen);
4096 
4097 	/*
4098 	 * We must now do two things atomically: replay this log record,
4099 	 * and update the log header sequence number to reflect the fact that
4100 	 * we did so. At the end of each replay function the sequence number
4101 	 * is updated if we are in replay mode.
4102 	 */
4103 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4104 	if (error != 0) {
4105 		/*
4106 		 * The DMU's dnode layer doesn't see removes until the txg
4107 		 * commits, so a subsequent claim can spuriously fail with
4108 		 * EEXIST. So if we receive any error we try syncing out
4109 		 * any removes then retry the transaction.  Note that we
4110 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4111 		 */
4112 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4113 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4114 		if (error != 0)
4115 			return (zil_replay_error(zilog, lr, error));
4116 	}
4117 	return (0);
4118 }
4119 
4120 static int
4121 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4122 {
4123 	(void) bp, (void) arg, (void) claim_txg;
4124 
4125 	zilog->zl_replay_blks++;
4126 
4127 	return (0);
4128 }
4129 
4130 /*
4131  * If this dataset has a non-empty intent log, replay it and destroy it.
4132  * Return B_TRUE if there were any entries to replay.
4133  */
4134 boolean_t
4135 zil_replay(objset_t *os, void *arg,
4136     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4137 {
4138 	zilog_t *zilog = dmu_objset_zil(os);
4139 	const zil_header_t *zh = zilog->zl_header;
4140 	zil_replay_arg_t zr;
4141 
4142 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4143 		return (zil_destroy(zilog, B_TRUE));
4144 	}
4145 
4146 	zr.zr_replay = replay_func;
4147 	zr.zr_arg = arg;
4148 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4149 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4150 
4151 	/*
4152 	 * Wait for in-progress removes to sync before starting replay.
4153 	 */
4154 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4155 
4156 	zilog->zl_replay = B_TRUE;
4157 	zilog->zl_replay_time = ddi_get_lbolt();
4158 	ASSERT(zilog->zl_replay_blks == 0);
4159 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4160 	    zh->zh_claim_txg, B_TRUE);
4161 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4162 
4163 	zil_destroy(zilog, B_FALSE);
4164 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4165 	zilog->zl_replay = B_FALSE;
4166 
4167 	return (B_TRUE);
4168 }
4169 
4170 boolean_t
4171 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4172 {
4173 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4174 		return (B_TRUE);
4175 
4176 	if (zilog->zl_replay) {
4177 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4178 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4179 		    zilog->zl_replaying_seq;
4180 		return (B_TRUE);
4181 	}
4182 
4183 	return (B_FALSE);
4184 }
4185 
4186 int
4187 zil_reset(const char *osname, void *arg)
4188 {
4189 	(void) arg;
4190 
4191 	int error = zil_suspend(osname, NULL);
4192 	/* EACCES means crypto key not loaded */
4193 	if ((error == EACCES) || (error == EBUSY))
4194 		return (SET_ERROR(error));
4195 	if (error != 0)
4196 		return (SET_ERROR(EEXIST));
4197 	return (0);
4198 }
4199 
4200 EXPORT_SYMBOL(zil_alloc);
4201 EXPORT_SYMBOL(zil_free);
4202 EXPORT_SYMBOL(zil_open);
4203 EXPORT_SYMBOL(zil_close);
4204 EXPORT_SYMBOL(zil_replay);
4205 EXPORT_SYMBOL(zil_replaying);
4206 EXPORT_SYMBOL(zil_destroy);
4207 EXPORT_SYMBOL(zil_destroy_sync);
4208 EXPORT_SYMBOL(zil_itx_create);
4209 EXPORT_SYMBOL(zil_itx_destroy);
4210 EXPORT_SYMBOL(zil_itx_assign);
4211 EXPORT_SYMBOL(zil_commit);
4212 EXPORT_SYMBOL(zil_claim);
4213 EXPORT_SYMBOL(zil_check_log_chain);
4214 EXPORT_SYMBOL(zil_sync);
4215 EXPORT_SYMBOL(zil_clean);
4216 EXPORT_SYMBOL(zil_suspend);
4217 EXPORT_SYMBOL(zil_resume);
4218 EXPORT_SYMBOL(zil_lwb_add_block);
4219 EXPORT_SYMBOL(zil_bp_tree_add);
4220 EXPORT_SYMBOL(zil_set_sync);
4221 EXPORT_SYMBOL(zil_set_logbias);
4222 EXPORT_SYMBOL(zil_sums_init);
4223 EXPORT_SYMBOL(zil_sums_fini);
4224 EXPORT_SYMBOL(zil_kstat_values_update);
4225 
4226 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4227 	"ZIL block open timeout percentage");
4228 
4229 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4230 	"Disable intent logging replay");
4231 
4232 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4233 	"Disable ZIL cache flushes");
4234 
4235 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4236 	"Limit in bytes slog sync writes per commit");
4237 
4238 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4239 	"Limit in bytes of ZIL log block size");
4240 
4241 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4242 	"Limit in bytes WR_COPIED size");
4243