xref: /freebsd/sys/contrib/openzfs/module/zfs/zil.c (revision 1631382cf2820245cc72965498ff174bb548dd63)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2014 Integros [integros.com]
25  * Copyright (c) 2018 Datto Inc.
26  */
27 
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48 
49 /*
50  * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51  * calls that change the file system. Each itx has enough information to
52  * be able to replay them after a system crash, power loss, or
53  * equivalent failure mode. These are stored in memory until either:
54  *
55  *   1. they are committed to the pool by the DMU transaction group
56  *      (txg), at which point they can be discarded; or
57  *   2. they are committed to the on-disk ZIL for the dataset being
58  *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59  *      requirement).
60  *
61  * In the event of a crash or power loss, the itxs contained by each
62  * dataset's on-disk ZIL will be replayed when that dataset is first
63  * instantiated (e.g. if the dataset is a normal filesystem, when it is
64  * first mounted).
65  *
66  * As hinted at above, there is one ZIL per dataset (both the in-memory
67  * representation, and the on-disk representation). The on-disk format
68  * consists of 3 parts:
69  *
70  * 	- a single, per-dataset, ZIL header; which points to a chain of
71  * 	- zero or more ZIL blocks; each of which contains
72  * 	- zero or more ZIL records
73  *
74  * A ZIL record holds the information necessary to replay a single
75  * system call transaction. A ZIL block can hold many ZIL records, and
76  * the blocks are chained together, similarly to a singly linked list.
77  *
78  * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79  * block in the chain, and the ZIL header points to the first block in
80  * the chain.
81  *
82  * Note, there is not a fixed place in the pool to hold these ZIL
83  * blocks; they are dynamically allocated and freed as needed from the
84  * blocks available on the pool, though they can be preferentially
85  * allocated from a dedicated "log" vdev.
86  */
87 
88 /*
89  * This controls the amount of time that a ZIL block (lwb) will remain
90  * "open" when it isn't "full", and it has a thread waiting for it to be
91  * committed to stable storage. Please refer to the zil_commit_waiter()
92  * function (and the comments within it) for more details.
93  */
94 static uint_t zfs_commit_timeout_pct = 10;
95 
96 /*
97  * See zil.h for more information about these fields.
98  */
99 static zil_kstat_values_t zil_stats = {
100 	{ "zil_commit_count",			KSTAT_DATA_UINT64 },
101 	{ "zil_commit_writer_count",		KSTAT_DATA_UINT64 },
102 	{ "zil_itx_count",			KSTAT_DATA_UINT64 },
103 	{ "zil_itx_indirect_count",		KSTAT_DATA_UINT64 },
104 	{ "zil_itx_indirect_bytes",		KSTAT_DATA_UINT64 },
105 	{ "zil_itx_copied_count",		KSTAT_DATA_UINT64 },
106 	{ "zil_itx_copied_bytes",		KSTAT_DATA_UINT64 },
107 	{ "zil_itx_needcopy_count",		KSTAT_DATA_UINT64 },
108 	{ "zil_itx_needcopy_bytes",		KSTAT_DATA_UINT64 },
109 	{ "zil_itx_metaslab_normal_count",	KSTAT_DATA_UINT64 },
110 	{ "zil_itx_metaslab_normal_bytes",	KSTAT_DATA_UINT64 },
111 	{ "zil_itx_metaslab_normal_write",	KSTAT_DATA_UINT64 },
112 	{ "zil_itx_metaslab_normal_alloc",	KSTAT_DATA_UINT64 },
113 	{ "zil_itx_metaslab_slog_count",	KSTAT_DATA_UINT64 },
114 	{ "zil_itx_metaslab_slog_bytes",	KSTAT_DATA_UINT64 },
115 	{ "zil_itx_metaslab_slog_write",	KSTAT_DATA_UINT64 },
116 	{ "zil_itx_metaslab_slog_alloc",	KSTAT_DATA_UINT64 },
117 };
118 
119 static zil_sums_t zil_sums_global;
120 static kstat_t *zil_kstats_global;
121 
122 /*
123  * Disable intent logging replay.  This global ZIL switch affects all pools.
124  */
125 int zil_replay_disable = 0;
126 
127 /*
128  * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
129  * the disk(s) by the ZIL after an LWB write has completed. Setting this
130  * will cause ZIL corruption on power loss if a volatile out-of-order
131  * write cache is enabled.
132  */
133 static int zil_nocacheflush = 0;
134 
135 /*
136  * Limit SLOG write size per commit executed with synchronous priority.
137  * Any writes above that will be executed with lower (asynchronous) priority
138  * to limit potential SLOG device abuse by single active ZIL writer.
139  */
140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
141 
142 static kmem_cache_t *zil_lwb_cache;
143 static kmem_cache_t *zil_zcw_cache;
144 
145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
146 static itx_t *zil_itx_clone(itx_t *oitx);
147 
148 static int
149 zil_bp_compare(const void *x1, const void *x2)
150 {
151 	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
152 	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
153 
154 	int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
155 	if (likely(cmp))
156 		return (cmp);
157 
158 	return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
159 }
160 
161 static void
162 zil_bp_tree_init(zilog_t *zilog)
163 {
164 	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
165 	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
166 }
167 
168 static void
169 zil_bp_tree_fini(zilog_t *zilog)
170 {
171 	avl_tree_t *t = &zilog->zl_bp_tree;
172 	zil_bp_node_t *zn;
173 	void *cookie = NULL;
174 
175 	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
176 		kmem_free(zn, sizeof (zil_bp_node_t));
177 
178 	avl_destroy(t);
179 }
180 
181 int
182 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
183 {
184 	avl_tree_t *t = &zilog->zl_bp_tree;
185 	const dva_t *dva;
186 	zil_bp_node_t *zn;
187 	avl_index_t where;
188 
189 	if (BP_IS_EMBEDDED(bp))
190 		return (0);
191 
192 	dva = BP_IDENTITY(bp);
193 
194 	if (avl_find(t, dva, &where) != NULL)
195 		return (SET_ERROR(EEXIST));
196 
197 	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
198 	zn->zn_dva = *dva;
199 	avl_insert(t, zn, where);
200 
201 	return (0);
202 }
203 
204 static zil_header_t *
205 zil_header_in_syncing_context(zilog_t *zilog)
206 {
207 	return ((zil_header_t *)zilog->zl_header);
208 }
209 
210 static void
211 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
212 {
213 	zio_cksum_t *zc = &bp->blk_cksum;
214 
215 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
216 	    sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
217 	(void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
218 	    sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
219 	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
220 	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
221 }
222 
223 static int
224 zil_kstats_global_update(kstat_t *ksp, int rw)
225 {
226 	zil_kstat_values_t *zs = ksp->ks_data;
227 	ASSERT3P(&zil_stats, ==, zs);
228 
229 	if (rw == KSTAT_WRITE) {
230 		return (SET_ERROR(EACCES));
231 	}
232 
233 	zil_kstat_values_update(zs, &zil_sums_global);
234 
235 	return (0);
236 }
237 
238 /*
239  * Read a log block and make sure it's valid.
240  */
241 static int
242 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
243     blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
244 {
245 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
246 	arc_flags_t aflags = ARC_FLAG_WAIT;
247 	zbookmark_phys_t zb;
248 	int error;
249 
250 	if (zilog->zl_header->zh_claim_txg == 0)
251 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
252 
253 	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
254 		zio_flags |= ZIO_FLAG_SPECULATIVE;
255 
256 	if (!decrypt)
257 		zio_flags |= ZIO_FLAG_RAW;
258 
259 	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
260 	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
261 
262 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
263 	    abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
264 
265 	if (error == 0) {
266 		zio_cksum_t cksum = bp->blk_cksum;
267 
268 		/*
269 		 * Validate the checksummed log block.
270 		 *
271 		 * Sequence numbers should be... sequential.  The checksum
272 		 * verifier for the next block should be bp's checksum plus 1.
273 		 *
274 		 * Also check the log chain linkage and size used.
275 		 */
276 		cksum.zc_word[ZIL_ZC_SEQ]++;
277 
278 		uint64_t size = BP_GET_LSIZE(bp);
279 		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
280 			zil_chain_t *zilc = (*abuf)->b_data;
281 			char *lr = (char *)(zilc + 1);
282 
283 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
284 			    sizeof (cksum)) ||
285 			    zilc->zc_nused < sizeof (*zilc) ||
286 			    zilc->zc_nused > size) {
287 				error = SET_ERROR(ECKSUM);
288 			} else {
289 				*begin = lr;
290 				*end = lr + zilc->zc_nused - sizeof (*zilc);
291 				*nbp = zilc->zc_next_blk;
292 			}
293 		} else {
294 			char *lr = (*abuf)->b_data;
295 			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
296 
297 			if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
298 			    sizeof (cksum)) ||
299 			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
300 				error = SET_ERROR(ECKSUM);
301 			} else {
302 				*begin = lr;
303 				*end = lr + zilc->zc_nused;
304 				*nbp = zilc->zc_next_blk;
305 			}
306 		}
307 	}
308 
309 	return (error);
310 }
311 
312 /*
313  * Read a TX_WRITE log data block.
314  */
315 static int
316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
317 {
318 	zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
319 	const blkptr_t *bp = &lr->lr_blkptr;
320 	arc_flags_t aflags = ARC_FLAG_WAIT;
321 	arc_buf_t *abuf = NULL;
322 	zbookmark_phys_t zb;
323 	int error;
324 
325 	if (BP_IS_HOLE(bp)) {
326 		if (wbuf != NULL)
327 			memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
328 		return (0);
329 	}
330 
331 	if (zilog->zl_header->zh_claim_txg == 0)
332 		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
333 
334 	/*
335 	 * If we are not using the resulting data, we are just checking that
336 	 * it hasn't been corrupted so we don't need to waste CPU time
337 	 * decompressing and decrypting it.
338 	 */
339 	if (wbuf == NULL)
340 		zio_flags |= ZIO_FLAG_RAW;
341 
342 	ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
343 	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
344 	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
345 
346 	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
347 	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
348 
349 	if (error == 0) {
350 		if (wbuf != NULL)
351 			memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
352 		arc_buf_destroy(abuf, &abuf);
353 	}
354 
355 	return (error);
356 }
357 
358 void
359 zil_sums_init(zil_sums_t *zs)
360 {
361 	wmsum_init(&zs->zil_commit_count, 0);
362 	wmsum_init(&zs->zil_commit_writer_count, 0);
363 	wmsum_init(&zs->zil_itx_count, 0);
364 	wmsum_init(&zs->zil_itx_indirect_count, 0);
365 	wmsum_init(&zs->zil_itx_indirect_bytes, 0);
366 	wmsum_init(&zs->zil_itx_copied_count, 0);
367 	wmsum_init(&zs->zil_itx_copied_bytes, 0);
368 	wmsum_init(&zs->zil_itx_needcopy_count, 0);
369 	wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
370 	wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
371 	wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
372 	wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
373 	wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
374 	wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
375 	wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
376 	wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
377 	wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
378 }
379 
380 void
381 zil_sums_fini(zil_sums_t *zs)
382 {
383 	wmsum_fini(&zs->zil_commit_count);
384 	wmsum_fini(&zs->zil_commit_writer_count);
385 	wmsum_fini(&zs->zil_itx_count);
386 	wmsum_fini(&zs->zil_itx_indirect_count);
387 	wmsum_fini(&zs->zil_itx_indirect_bytes);
388 	wmsum_fini(&zs->zil_itx_copied_count);
389 	wmsum_fini(&zs->zil_itx_copied_bytes);
390 	wmsum_fini(&zs->zil_itx_needcopy_count);
391 	wmsum_fini(&zs->zil_itx_needcopy_bytes);
392 	wmsum_fini(&zs->zil_itx_metaslab_normal_count);
393 	wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
394 	wmsum_fini(&zs->zil_itx_metaslab_normal_write);
395 	wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
396 	wmsum_fini(&zs->zil_itx_metaslab_slog_count);
397 	wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
398 	wmsum_fini(&zs->zil_itx_metaslab_slog_write);
399 	wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
400 }
401 
402 void
403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
404 {
405 	zs->zil_commit_count.value.ui64 =
406 	    wmsum_value(&zil_sums->zil_commit_count);
407 	zs->zil_commit_writer_count.value.ui64 =
408 	    wmsum_value(&zil_sums->zil_commit_writer_count);
409 	zs->zil_itx_count.value.ui64 =
410 	    wmsum_value(&zil_sums->zil_itx_count);
411 	zs->zil_itx_indirect_count.value.ui64 =
412 	    wmsum_value(&zil_sums->zil_itx_indirect_count);
413 	zs->zil_itx_indirect_bytes.value.ui64 =
414 	    wmsum_value(&zil_sums->zil_itx_indirect_bytes);
415 	zs->zil_itx_copied_count.value.ui64 =
416 	    wmsum_value(&zil_sums->zil_itx_copied_count);
417 	zs->zil_itx_copied_bytes.value.ui64 =
418 	    wmsum_value(&zil_sums->zil_itx_copied_bytes);
419 	zs->zil_itx_needcopy_count.value.ui64 =
420 	    wmsum_value(&zil_sums->zil_itx_needcopy_count);
421 	zs->zil_itx_needcopy_bytes.value.ui64 =
422 	    wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
423 	zs->zil_itx_metaslab_normal_count.value.ui64 =
424 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
425 	zs->zil_itx_metaslab_normal_bytes.value.ui64 =
426 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
427 	zs->zil_itx_metaslab_normal_write.value.ui64 =
428 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
429 	zs->zil_itx_metaslab_normal_alloc.value.ui64 =
430 	    wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
431 	zs->zil_itx_metaslab_slog_count.value.ui64 =
432 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
433 	zs->zil_itx_metaslab_slog_bytes.value.ui64 =
434 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
435 	zs->zil_itx_metaslab_slog_write.value.ui64 =
436 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
437 	zs->zil_itx_metaslab_slog_alloc.value.ui64 =
438 	    wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
439 }
440 
441 /*
442  * Parse the intent log, and call parse_func for each valid record within.
443  */
444 int
445 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
446     zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
447     boolean_t decrypt)
448 {
449 	const zil_header_t *zh = zilog->zl_header;
450 	boolean_t claimed = !!zh->zh_claim_txg;
451 	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
452 	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
453 	uint64_t max_blk_seq = 0;
454 	uint64_t max_lr_seq = 0;
455 	uint64_t blk_count = 0;
456 	uint64_t lr_count = 0;
457 	blkptr_t blk, next_blk = {{{{0}}}};
458 	int error = 0;
459 
460 	/*
461 	 * Old logs didn't record the maximum zh_claim_lr_seq.
462 	 */
463 	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
464 		claim_lr_seq = UINT64_MAX;
465 
466 	/*
467 	 * Starting at the block pointed to by zh_log we read the log chain.
468 	 * For each block in the chain we strongly check that block to
469 	 * ensure its validity.  We stop when an invalid block is found.
470 	 * For each block pointer in the chain we call parse_blk_func().
471 	 * For each record in each valid block we call parse_lr_func().
472 	 * If the log has been claimed, stop if we encounter a sequence
473 	 * number greater than the highest claimed sequence number.
474 	 */
475 	zil_bp_tree_init(zilog);
476 
477 	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
478 		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
479 		int reclen;
480 		char *lrp, *end;
481 		arc_buf_t *abuf = NULL;
482 
483 		if (blk_seq > claim_blk_seq)
484 			break;
485 
486 		error = parse_blk_func(zilog, &blk, arg, txg);
487 		if (error != 0)
488 			break;
489 		ASSERT3U(max_blk_seq, <, blk_seq);
490 		max_blk_seq = blk_seq;
491 		blk_count++;
492 
493 		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
494 			break;
495 
496 		error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
497 		    &lrp, &end, &abuf);
498 		if (error != 0) {
499 			if (abuf)
500 				arc_buf_destroy(abuf, &abuf);
501 			if (claimed) {
502 				char name[ZFS_MAX_DATASET_NAME_LEN];
503 
504 				dmu_objset_name(zilog->zl_os, name);
505 
506 				cmn_err(CE_WARN, "ZFS read log block error %d, "
507 				    "dataset %s, seq 0x%llx\n", error, name,
508 				    (u_longlong_t)blk_seq);
509 			}
510 			break;
511 		}
512 
513 		for (; lrp < end; lrp += reclen) {
514 			lr_t *lr = (lr_t *)lrp;
515 			reclen = lr->lrc_reclen;
516 			ASSERT3U(reclen, >=, sizeof (lr_t));
517 			ASSERT3U(reclen, <=, end - lrp);
518 			if (lr->lrc_seq > claim_lr_seq) {
519 				arc_buf_destroy(abuf, &abuf);
520 				goto done;
521 			}
522 
523 			error = parse_lr_func(zilog, lr, arg, txg);
524 			if (error != 0) {
525 				arc_buf_destroy(abuf, &abuf);
526 				goto done;
527 			}
528 			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
529 			max_lr_seq = lr->lrc_seq;
530 			lr_count++;
531 		}
532 		arc_buf_destroy(abuf, &abuf);
533 	}
534 done:
535 	zilog->zl_parse_error = error;
536 	zilog->zl_parse_blk_seq = max_blk_seq;
537 	zilog->zl_parse_lr_seq = max_lr_seq;
538 	zilog->zl_parse_blk_count = blk_count;
539 	zilog->zl_parse_lr_count = lr_count;
540 
541 	zil_bp_tree_fini(zilog);
542 
543 	return (error);
544 }
545 
546 static int
547 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
548     uint64_t first_txg)
549 {
550 	(void) tx;
551 	ASSERT(!BP_IS_HOLE(bp));
552 
553 	/*
554 	 * As we call this function from the context of a rewind to a
555 	 * checkpoint, each ZIL block whose txg is later than the txg
556 	 * that we rewind to is invalid. Thus, we return -1 so
557 	 * zil_parse() doesn't attempt to read it.
558 	 */
559 	if (bp->blk_birth >= first_txg)
560 		return (-1);
561 
562 	if (zil_bp_tree_add(zilog, bp) != 0)
563 		return (0);
564 
565 	zio_free(zilog->zl_spa, first_txg, bp);
566 	return (0);
567 }
568 
569 static int
570 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
571     uint64_t first_txg)
572 {
573 	(void) zilog, (void) lrc, (void) tx, (void) first_txg;
574 	return (0);
575 }
576 
577 static int
578 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
579     uint64_t first_txg)
580 {
581 	/*
582 	 * Claim log block if not already committed and not already claimed.
583 	 * If tx == NULL, just verify that the block is claimable.
584 	 */
585 	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
586 	    zil_bp_tree_add(zilog, bp) != 0)
587 		return (0);
588 
589 	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
590 	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
591 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
592 }
593 
594 static int
595 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
596 {
597 	lr_write_t *lr = (lr_write_t *)lrc;
598 	int error;
599 
600 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
601 
602 	/*
603 	 * If the block is not readable, don't claim it.  This can happen
604 	 * in normal operation when a log block is written to disk before
605 	 * some of the dmu_sync() blocks it points to.  In this case, the
606 	 * transaction cannot have been committed to anyone (we would have
607 	 * waited for all writes to be stable first), so it is semantically
608 	 * correct to declare this the end of the log.
609 	 */
610 	if (lr->lr_blkptr.blk_birth >= first_txg) {
611 		error = zil_read_log_data(zilog, lr, NULL);
612 		if (error != 0)
613 			return (error);
614 	}
615 
616 	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
617 }
618 
619 static int
620 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
621     uint64_t first_txg)
622 {
623 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
624 	const blkptr_t *bp;
625 	spa_t *spa = zilog->zl_spa;
626 	uint_t ii;
627 
628 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
629 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
630 	    lr_bps[lr->lr_nbps]));
631 
632 	if (tx == NULL) {
633 		return (0);
634 	}
635 
636 	/*
637 	 * XXX: Do we need to byteswap lr?
638 	 */
639 
640 	for (ii = 0; ii < lr->lr_nbps; ii++) {
641 		bp = &lr->lr_bps[ii];
642 
643 		/*
644 		 * When data is embedded into the BP there is no need to create
645 		 * BRT entry as there is no data block.  Just copy the BP as it
646 		 * contains the data.
647 		 */
648 		if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
649 			continue;
650 
651 		/*
652 		 * We can not handle block pointers from the future, since they
653 		 * are not yet allocated.  It should not normally happen, but
654 		 * just in case lets be safe and just stop here now instead of
655 		 * corrupting the pool.
656 		 */
657 		if (BP_PHYSICAL_BIRTH(bp) >= first_txg)
658 			return (SET_ERROR(ENOENT));
659 
660 		/*
661 		 * Assert the block is really allocated before we reference it.
662 		 */
663 		metaslab_check_free(spa, bp);
664 	}
665 
666 	for (ii = 0; ii < lr->lr_nbps; ii++) {
667 		bp = &lr->lr_bps[ii];
668 		if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
669 			brt_pending_add(spa, bp, tx);
670 	}
671 
672 	return (0);
673 }
674 
675 static int
676 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
677     uint64_t first_txg)
678 {
679 
680 	switch (lrc->lrc_txtype) {
681 	case TX_WRITE:
682 		return (zil_claim_write(zilog, lrc, tx, first_txg));
683 	case TX_CLONE_RANGE:
684 		return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
685 	default:
686 		return (0);
687 	}
688 }
689 
690 static int
691 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
692     uint64_t claim_txg)
693 {
694 	(void) claim_txg;
695 
696 	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
697 
698 	return (0);
699 }
700 
701 static int
702 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
703 {
704 	lr_write_t *lr = (lr_write_t *)lrc;
705 	blkptr_t *bp = &lr->lr_blkptr;
706 
707 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
708 
709 	/*
710 	 * If we previously claimed it, we need to free it.
711 	 */
712 	if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
713 	    !BP_IS_HOLE(bp)) {
714 		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
715 	}
716 
717 	return (0);
718 }
719 
720 static int
721 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
722 {
723 	const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
724 	const blkptr_t *bp;
725 	spa_t *spa;
726 	uint_t ii;
727 
728 	ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
729 	ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
730 	    lr_bps[lr->lr_nbps]));
731 
732 	if (tx == NULL) {
733 		return (0);
734 	}
735 
736 	spa = zilog->zl_spa;
737 
738 	for (ii = 0; ii < lr->lr_nbps; ii++) {
739 		bp = &lr->lr_bps[ii];
740 
741 		if (!BP_IS_HOLE(bp)) {
742 			zio_free(spa, dmu_tx_get_txg(tx), bp);
743 		}
744 	}
745 
746 	return (0);
747 }
748 
749 static int
750 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
751     uint64_t claim_txg)
752 {
753 
754 	if (claim_txg == 0) {
755 		return (0);
756 	}
757 
758 	switch (lrc->lrc_txtype) {
759 	case TX_WRITE:
760 		return (zil_free_write(zilog, lrc, tx, claim_txg));
761 	case TX_CLONE_RANGE:
762 		return (zil_free_clone_range(zilog, lrc, tx));
763 	default:
764 		return (0);
765 	}
766 }
767 
768 static int
769 zil_lwb_vdev_compare(const void *x1, const void *x2)
770 {
771 	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
772 	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
773 
774 	return (TREE_CMP(v1, v2));
775 }
776 
777 /*
778  * Allocate a new lwb.  We may already have a block pointer for it, in which
779  * case we get size and version from there.  Or we may not yet, in which case
780  * we choose them here and later make the block allocation match.
781  */
782 static lwb_t *
783 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
784     uint64_t txg, lwb_state_t state)
785 {
786 	lwb_t *lwb;
787 
788 	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
789 	lwb->lwb_zilog = zilog;
790 	if (bp) {
791 		lwb->lwb_blk = *bp;
792 		lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
793 		sz = BP_GET_LSIZE(bp);
794 	} else {
795 		BP_ZERO(&lwb->lwb_blk);
796 		lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
797 		    SPA_VERSION_SLIM_ZIL);
798 	}
799 	lwb->lwb_slog = slog;
800 	lwb->lwb_error = 0;
801 	if (lwb->lwb_slim) {
802 		lwb->lwb_nmax = sz;
803 		lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
804 	} else {
805 		lwb->lwb_nmax = sz - sizeof (zil_chain_t);
806 		lwb->lwb_nused = lwb->lwb_nfilled = 0;
807 	}
808 	lwb->lwb_sz = sz;
809 	lwb->lwb_state = state;
810 	lwb->lwb_buf = zio_buf_alloc(sz);
811 	lwb->lwb_child_zio = NULL;
812 	lwb->lwb_write_zio = NULL;
813 	lwb->lwb_root_zio = NULL;
814 	lwb->lwb_issued_timestamp = 0;
815 	lwb->lwb_issued_txg = 0;
816 	lwb->lwb_alloc_txg = txg;
817 	lwb->lwb_max_txg = 0;
818 
819 	mutex_enter(&zilog->zl_lock);
820 	list_insert_tail(&zilog->zl_lwb_list, lwb);
821 	if (state != LWB_STATE_NEW)
822 		zilog->zl_last_lwb_opened = lwb;
823 	mutex_exit(&zilog->zl_lock);
824 
825 	return (lwb);
826 }
827 
828 static void
829 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
830 {
831 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
832 	ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
833 	    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
834 	ASSERT3P(lwb->lwb_child_zio, ==, NULL);
835 	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
836 	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
837 	ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
838 	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
839 	VERIFY(list_is_empty(&lwb->lwb_itxs));
840 	VERIFY(list_is_empty(&lwb->lwb_waiters));
841 	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
842 	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
843 
844 	/*
845 	 * Clear the zilog's field to indicate this lwb is no longer
846 	 * valid, and prevent use-after-free errors.
847 	 */
848 	if (zilog->zl_last_lwb_opened == lwb)
849 		zilog->zl_last_lwb_opened = NULL;
850 
851 	kmem_cache_free(zil_lwb_cache, lwb);
852 }
853 
854 /*
855  * Called when we create in-memory log transactions so that we know
856  * to cleanup the itxs at the end of spa_sync().
857  */
858 static void
859 zilog_dirty(zilog_t *zilog, uint64_t txg)
860 {
861 	dsl_pool_t *dp = zilog->zl_dmu_pool;
862 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
863 
864 	ASSERT(spa_writeable(zilog->zl_spa));
865 
866 	if (ds->ds_is_snapshot)
867 		panic("dirtying snapshot!");
868 
869 	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
870 		/* up the hold count until we can be written out */
871 		dmu_buf_add_ref(ds->ds_dbuf, zilog);
872 
873 		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
874 	}
875 }
876 
877 /*
878  * Determine if the zil is dirty in the specified txg. Callers wanting to
879  * ensure that the dirty state does not change must hold the itxg_lock for
880  * the specified txg. Holding the lock will ensure that the zil cannot be
881  * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
882  * state.
883  */
884 static boolean_t __maybe_unused
885 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
886 {
887 	dsl_pool_t *dp = zilog->zl_dmu_pool;
888 
889 	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
890 		return (B_TRUE);
891 	return (B_FALSE);
892 }
893 
894 /*
895  * Determine if the zil is dirty. The zil is considered dirty if it has
896  * any pending itx records that have not been cleaned by zil_clean().
897  */
898 static boolean_t
899 zilog_is_dirty(zilog_t *zilog)
900 {
901 	dsl_pool_t *dp = zilog->zl_dmu_pool;
902 
903 	for (int t = 0; t < TXG_SIZE; t++) {
904 		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
905 			return (B_TRUE);
906 	}
907 	return (B_FALSE);
908 }
909 
910 /*
911  * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
912  * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
913  * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
914  * zil_commit.
915  */
916 static void
917 zil_commit_activate_saxattr_feature(zilog_t *zilog)
918 {
919 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
920 	uint64_t txg = 0;
921 	dmu_tx_t *tx = NULL;
922 
923 	if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
924 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
925 	    !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
926 		tx = dmu_tx_create(zilog->zl_os);
927 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
928 		dsl_dataset_dirty(ds, tx);
929 		txg = dmu_tx_get_txg(tx);
930 
931 		mutex_enter(&ds->ds_lock);
932 		ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
933 		    (void *)B_TRUE;
934 		mutex_exit(&ds->ds_lock);
935 		dmu_tx_commit(tx);
936 		txg_wait_synced(zilog->zl_dmu_pool, txg);
937 	}
938 }
939 
940 /*
941  * Create an on-disk intent log.
942  */
943 static lwb_t *
944 zil_create(zilog_t *zilog)
945 {
946 	const zil_header_t *zh = zilog->zl_header;
947 	lwb_t *lwb = NULL;
948 	uint64_t txg = 0;
949 	dmu_tx_t *tx = NULL;
950 	blkptr_t blk;
951 	int error = 0;
952 	boolean_t slog = FALSE;
953 	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
954 
955 
956 	/*
957 	 * Wait for any previous destroy to complete.
958 	 */
959 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
960 
961 	ASSERT(zh->zh_claim_txg == 0);
962 	ASSERT(zh->zh_replay_seq == 0);
963 
964 	blk = zh->zh_log;
965 
966 	/*
967 	 * Allocate an initial log block if:
968 	 *    - there isn't one already
969 	 *    - the existing block is the wrong endianness
970 	 */
971 	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
972 		tx = dmu_tx_create(zilog->zl_os);
973 		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
974 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
975 		txg = dmu_tx_get_txg(tx);
976 
977 		if (!BP_IS_HOLE(&blk)) {
978 			zio_free(zilog->zl_spa, txg, &blk);
979 			BP_ZERO(&blk);
980 		}
981 
982 		error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
983 		    ZIL_MIN_BLKSZ, &slog);
984 		if (error == 0)
985 			zil_init_log_chain(zilog, &blk);
986 	}
987 
988 	/*
989 	 * Allocate a log write block (lwb) for the first log block.
990 	 */
991 	if (error == 0)
992 		lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
993 
994 	/*
995 	 * If we just allocated the first log block, commit our transaction
996 	 * and wait for zil_sync() to stuff the block pointer into zh_log.
997 	 * (zh is part of the MOS, so we cannot modify it in open context.)
998 	 */
999 	if (tx != NULL) {
1000 		/*
1001 		 * If "zilsaxattr" feature is enabled on zpool, then activate
1002 		 * it now when we're creating the ZIL chain. We can't wait with
1003 		 * this until we write the first xattr log record because we
1004 		 * need to wait for the feature activation to sync out.
1005 		 */
1006 		if (spa_feature_is_enabled(zilog->zl_spa,
1007 		    SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1008 		    DMU_OST_ZVOL) {
1009 			mutex_enter(&ds->ds_lock);
1010 			ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1011 			    (void *)B_TRUE;
1012 			mutex_exit(&ds->ds_lock);
1013 		}
1014 
1015 		dmu_tx_commit(tx);
1016 		txg_wait_synced(zilog->zl_dmu_pool, txg);
1017 	} else {
1018 		/*
1019 		 * This branch covers the case where we enable the feature on a
1020 		 * zpool that has existing ZIL headers.
1021 		 */
1022 		zil_commit_activate_saxattr_feature(zilog);
1023 	}
1024 	IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1025 	    dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1026 	    dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1027 
1028 	ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1029 	IMPLY(error == 0, lwb != NULL);
1030 
1031 	return (lwb);
1032 }
1033 
1034 /*
1035  * In one tx, free all log blocks and clear the log header. If keep_first
1036  * is set, then we're replaying a log with no content. We want to keep the
1037  * first block, however, so that the first synchronous transaction doesn't
1038  * require a txg_wait_synced() in zil_create(). We don't need to
1039  * txg_wait_synced() here either when keep_first is set, because both
1040  * zil_create() and zil_destroy() will wait for any in-progress destroys
1041  * to complete.
1042  * Return B_TRUE if there were any entries to replay.
1043  */
1044 boolean_t
1045 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1046 {
1047 	const zil_header_t *zh = zilog->zl_header;
1048 	lwb_t *lwb;
1049 	dmu_tx_t *tx;
1050 	uint64_t txg;
1051 
1052 	/*
1053 	 * Wait for any previous destroy to complete.
1054 	 */
1055 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1056 
1057 	zilog->zl_old_header = *zh;		/* debugging aid */
1058 
1059 	if (BP_IS_HOLE(&zh->zh_log))
1060 		return (B_FALSE);
1061 
1062 	tx = dmu_tx_create(zilog->zl_os);
1063 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1064 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1065 	txg = dmu_tx_get_txg(tx);
1066 
1067 	mutex_enter(&zilog->zl_lock);
1068 
1069 	ASSERT3U(zilog->zl_destroy_txg, <, txg);
1070 	zilog->zl_destroy_txg = txg;
1071 	zilog->zl_keep_first = keep_first;
1072 
1073 	if (!list_is_empty(&zilog->zl_lwb_list)) {
1074 		ASSERT(zh->zh_claim_txg == 0);
1075 		VERIFY(!keep_first);
1076 		while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1077 			if (lwb->lwb_buf != NULL)
1078 				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1079 			if (!BP_IS_HOLE(&lwb->lwb_blk))
1080 				zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1081 			zil_free_lwb(zilog, lwb);
1082 		}
1083 	} else if (!keep_first) {
1084 		zil_destroy_sync(zilog, tx);
1085 	}
1086 	mutex_exit(&zilog->zl_lock);
1087 
1088 	dmu_tx_commit(tx);
1089 
1090 	return (B_TRUE);
1091 }
1092 
1093 void
1094 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1095 {
1096 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1097 	(void) zil_parse(zilog, zil_free_log_block,
1098 	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1099 }
1100 
1101 int
1102 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1103 {
1104 	dmu_tx_t *tx = txarg;
1105 	zilog_t *zilog;
1106 	uint64_t first_txg;
1107 	zil_header_t *zh;
1108 	objset_t *os;
1109 	int error;
1110 
1111 	error = dmu_objset_own_obj(dp, ds->ds_object,
1112 	    DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1113 	if (error != 0) {
1114 		/*
1115 		 * EBUSY indicates that the objset is inconsistent, in which
1116 		 * case it can not have a ZIL.
1117 		 */
1118 		if (error != EBUSY) {
1119 			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1120 			    (unsigned long long)ds->ds_object, error);
1121 		}
1122 
1123 		return (0);
1124 	}
1125 
1126 	zilog = dmu_objset_zil(os);
1127 	zh = zil_header_in_syncing_context(zilog);
1128 	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1129 	first_txg = spa_min_claim_txg(zilog->zl_spa);
1130 
1131 	/*
1132 	 * If the spa_log_state is not set to be cleared, check whether
1133 	 * the current uberblock is a checkpoint one and if the current
1134 	 * header has been claimed before moving on.
1135 	 *
1136 	 * If the current uberblock is a checkpointed uberblock then
1137 	 * one of the following scenarios took place:
1138 	 *
1139 	 * 1] We are currently rewinding to the checkpoint of the pool.
1140 	 * 2] We crashed in the middle of a checkpoint rewind but we
1141 	 *    did manage to write the checkpointed uberblock to the
1142 	 *    vdev labels, so when we tried to import the pool again
1143 	 *    the checkpointed uberblock was selected from the import
1144 	 *    procedure.
1145 	 *
1146 	 * In both cases we want to zero out all the ZIL blocks, except
1147 	 * the ones that have been claimed at the time of the checkpoint
1148 	 * (their zh_claim_txg != 0). The reason is that these blocks
1149 	 * may be corrupted since we may have reused their locations on
1150 	 * disk after we took the checkpoint.
1151 	 *
1152 	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1153 	 * when we first figure out whether the current uberblock is
1154 	 * checkpointed or not. Unfortunately, that would discard all
1155 	 * the logs, including the ones that are claimed, and we would
1156 	 * leak space.
1157 	 */
1158 	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1159 	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1160 	    zh->zh_claim_txg == 0)) {
1161 		if (!BP_IS_HOLE(&zh->zh_log)) {
1162 			(void) zil_parse(zilog, zil_clear_log_block,
1163 			    zil_noop_log_record, tx, first_txg, B_FALSE);
1164 		}
1165 		BP_ZERO(&zh->zh_log);
1166 		if (os->os_encrypted)
1167 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1168 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1169 		dmu_objset_disown(os, B_FALSE, FTAG);
1170 		return (0);
1171 	}
1172 
1173 	/*
1174 	 * If we are not rewinding and opening the pool normally, then
1175 	 * the min_claim_txg should be equal to the first txg of the pool.
1176 	 */
1177 	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1178 
1179 	/*
1180 	 * Claim all log blocks if we haven't already done so, and remember
1181 	 * the highest claimed sequence number.  This ensures that if we can
1182 	 * read only part of the log now (e.g. due to a missing device),
1183 	 * but we can read the entire log later, we will not try to replay
1184 	 * or destroy beyond the last block we successfully claimed.
1185 	 */
1186 	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1187 	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1188 		(void) zil_parse(zilog, zil_claim_log_block,
1189 		    zil_claim_log_record, tx, first_txg, B_FALSE);
1190 		zh->zh_claim_txg = first_txg;
1191 		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1192 		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1193 		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1194 			zh->zh_flags |= ZIL_REPLAY_NEEDED;
1195 		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1196 		if (os->os_encrypted)
1197 			os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1198 		dsl_dataset_dirty(dmu_objset_ds(os), tx);
1199 	}
1200 
1201 	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1202 	dmu_objset_disown(os, B_FALSE, FTAG);
1203 	return (0);
1204 }
1205 
1206 /*
1207  * Check the log by walking the log chain.
1208  * Checksum errors are ok as they indicate the end of the chain.
1209  * Any other error (no device or read failure) returns an error.
1210  */
1211 int
1212 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1213 {
1214 	(void) dp;
1215 	zilog_t *zilog;
1216 	objset_t *os;
1217 	blkptr_t *bp;
1218 	int error;
1219 
1220 	ASSERT(tx == NULL);
1221 
1222 	error = dmu_objset_from_ds(ds, &os);
1223 	if (error != 0) {
1224 		cmn_err(CE_WARN, "can't open objset %llu, error %d",
1225 		    (unsigned long long)ds->ds_object, error);
1226 		return (0);
1227 	}
1228 
1229 	zilog = dmu_objset_zil(os);
1230 	bp = (blkptr_t *)&zilog->zl_header->zh_log;
1231 
1232 	if (!BP_IS_HOLE(bp)) {
1233 		vdev_t *vd;
1234 		boolean_t valid = B_TRUE;
1235 
1236 		/*
1237 		 * Check the first block and determine if it's on a log device
1238 		 * which may have been removed or faulted prior to loading this
1239 		 * pool.  If so, there's no point in checking the rest of the
1240 		 * log as its content should have already been synced to the
1241 		 * pool.
1242 		 */
1243 		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1244 		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1245 		if (vd->vdev_islog && vdev_is_dead(vd))
1246 			valid = vdev_log_state_valid(vd);
1247 		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1248 
1249 		if (!valid)
1250 			return (0);
1251 
1252 		/*
1253 		 * Check whether the current uberblock is checkpointed (e.g.
1254 		 * we are rewinding) and whether the current header has been
1255 		 * claimed or not. If it hasn't then skip verifying it. We
1256 		 * do this because its ZIL blocks may be part of the pool's
1257 		 * state before the rewind, which is no longer valid.
1258 		 */
1259 		zil_header_t *zh = zil_header_in_syncing_context(zilog);
1260 		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1261 		    zh->zh_claim_txg == 0)
1262 			return (0);
1263 	}
1264 
1265 	/*
1266 	 * Because tx == NULL, zil_claim_log_block() will not actually claim
1267 	 * any blocks, but just determine whether it is possible to do so.
1268 	 * In addition to checking the log chain, zil_claim_log_block()
1269 	 * will invoke zio_claim() with a done func of spa_claim_notify(),
1270 	 * which will update spa_max_claim_txg.  See spa_load() for details.
1271 	 */
1272 	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1273 	    zilog->zl_header->zh_claim_txg ? -1ULL :
1274 	    spa_min_claim_txg(os->os_spa), B_FALSE);
1275 
1276 	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1277 }
1278 
1279 /*
1280  * When an itx is "skipped", this function is used to properly mark the
1281  * waiter as "done, and signal any thread(s) waiting on it. An itx can
1282  * be skipped (and not committed to an lwb) for a variety of reasons,
1283  * one of them being that the itx was committed via spa_sync(), prior to
1284  * it being committed to an lwb; this can happen if a thread calling
1285  * zil_commit() is racing with spa_sync().
1286  */
1287 static void
1288 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1289 {
1290 	mutex_enter(&zcw->zcw_lock);
1291 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1292 	zcw->zcw_done = B_TRUE;
1293 	cv_broadcast(&zcw->zcw_cv);
1294 	mutex_exit(&zcw->zcw_lock);
1295 }
1296 
1297 /*
1298  * This function is used when the given waiter is to be linked into an
1299  * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1300  * At this point, the waiter will no longer be referenced by the itx,
1301  * and instead, will be referenced by the lwb.
1302  */
1303 static void
1304 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1305 {
1306 	/*
1307 	 * The lwb_waiters field of the lwb is protected by the zilog's
1308 	 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1309 	 * zl_issuer_lock also protects leaving the open state.
1310 	 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1311 	 * flush_done, which transition is protected by zl_lock.
1312 	 */
1313 	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1314 	IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1315 	    MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1316 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1317 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1318 
1319 	ASSERT(!list_link_active(&zcw->zcw_node));
1320 	list_insert_tail(&lwb->lwb_waiters, zcw);
1321 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1322 	zcw->zcw_lwb = lwb;
1323 }
1324 
1325 /*
1326  * This function is used when zio_alloc_zil() fails to allocate a ZIL
1327  * block, and the given waiter must be linked to the "nolwb waiters"
1328  * list inside of zil_process_commit_list().
1329  */
1330 static void
1331 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1332 {
1333 	ASSERT(!list_link_active(&zcw->zcw_node));
1334 	list_insert_tail(nolwb, zcw);
1335 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
1336 }
1337 
1338 void
1339 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1340 {
1341 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1342 	avl_index_t where;
1343 	zil_vdev_node_t *zv, zvsearch;
1344 	int ndvas = BP_GET_NDVAS(bp);
1345 	int i;
1346 
1347 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1348 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1349 
1350 	if (zil_nocacheflush)
1351 		return;
1352 
1353 	mutex_enter(&lwb->lwb_vdev_lock);
1354 	for (i = 0; i < ndvas; i++) {
1355 		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1356 		if (avl_find(t, &zvsearch, &where) == NULL) {
1357 			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1358 			zv->zv_vdev = zvsearch.zv_vdev;
1359 			avl_insert(t, zv, where);
1360 		}
1361 	}
1362 	mutex_exit(&lwb->lwb_vdev_lock);
1363 }
1364 
1365 static void
1366 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1367 {
1368 	avl_tree_t *src = &lwb->lwb_vdev_tree;
1369 	avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1370 	void *cookie = NULL;
1371 	zil_vdev_node_t *zv;
1372 
1373 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1374 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1375 	ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1376 
1377 	/*
1378 	 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1379 	 * not need the protection of lwb_vdev_lock (it will only be modified
1380 	 * while holding zilog->zl_lock) as its writes and those of its
1381 	 * children have all completed.  The younger 'nlwb' may be waiting on
1382 	 * future writes to additional vdevs.
1383 	 */
1384 	mutex_enter(&nlwb->lwb_vdev_lock);
1385 	/*
1386 	 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1387 	 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1388 	 */
1389 	while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1390 		avl_index_t where;
1391 
1392 		if (avl_find(dst, zv, &where) == NULL) {
1393 			avl_insert(dst, zv, where);
1394 		} else {
1395 			kmem_free(zv, sizeof (*zv));
1396 		}
1397 	}
1398 	mutex_exit(&nlwb->lwb_vdev_lock);
1399 }
1400 
1401 void
1402 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1403 {
1404 	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1405 }
1406 
1407 /*
1408  * This function is a called after all vdevs associated with a given lwb
1409  * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1410  * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1411  * all "previous" lwb's will have completed before this function is
1412  * called; i.e. this function is called for all previous lwbs before
1413  * it's called for "this" lwb (enforced via zio the dependencies
1414  * configured in zil_lwb_set_zio_dependency()).
1415  *
1416  * The intention is for this function to be called as soon as the
1417  * contents of an lwb are considered "stable" on disk, and will survive
1418  * any sudden loss of power. At this point, any threads waiting for the
1419  * lwb to reach this state are signalled, and the "waiter" structures
1420  * are marked "done".
1421  */
1422 static void
1423 zil_lwb_flush_vdevs_done(zio_t *zio)
1424 {
1425 	lwb_t *lwb = zio->io_private;
1426 	zilog_t *zilog = lwb->lwb_zilog;
1427 	zil_commit_waiter_t *zcw;
1428 	itx_t *itx;
1429 
1430 	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1431 
1432 	hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1433 
1434 	mutex_enter(&zilog->zl_lock);
1435 
1436 	zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1437 
1438 	lwb->lwb_root_zio = NULL;
1439 
1440 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1441 	lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1442 
1443 	if (zilog->zl_last_lwb_opened == lwb) {
1444 		/*
1445 		 * Remember the highest committed log sequence number
1446 		 * for ztest. We only update this value when all the log
1447 		 * writes succeeded, because ztest wants to ASSERT that
1448 		 * it got the whole log chain.
1449 		 */
1450 		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1451 	}
1452 
1453 	while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1454 		zil_itx_destroy(itx);
1455 
1456 	while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1457 		mutex_enter(&zcw->zcw_lock);
1458 
1459 		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1460 		zcw->zcw_lwb = NULL;
1461 		/*
1462 		 * We expect any ZIO errors from child ZIOs to have been
1463 		 * propagated "up" to this specific LWB's root ZIO, in
1464 		 * order for this error handling to work correctly. This
1465 		 * includes ZIO errors from either this LWB's write or
1466 		 * flush, as well as any errors from other dependent LWBs
1467 		 * (e.g. a root LWB ZIO that might be a child of this LWB).
1468 		 *
1469 		 * With that said, it's important to note that LWB flush
1470 		 * errors are not propagated up to the LWB root ZIO.
1471 		 * This is incorrect behavior, and results in VDEV flush
1472 		 * errors not being handled correctly here. See the
1473 		 * comment above the call to "zio_flush" for details.
1474 		 */
1475 
1476 		zcw->zcw_zio_error = zio->io_error;
1477 
1478 		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1479 		zcw->zcw_done = B_TRUE;
1480 		cv_broadcast(&zcw->zcw_cv);
1481 
1482 		mutex_exit(&zcw->zcw_lock);
1483 	}
1484 
1485 	uint64_t txg = lwb->lwb_issued_txg;
1486 
1487 	/* Once we drop the lock, lwb may be freed by zil_sync(). */
1488 	mutex_exit(&zilog->zl_lock);
1489 
1490 	mutex_enter(&zilog->zl_lwb_io_lock);
1491 	ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1492 	zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1493 	if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1494 		cv_broadcast(&zilog->zl_lwb_io_cv);
1495 	mutex_exit(&zilog->zl_lwb_io_lock);
1496 }
1497 
1498 /*
1499  * Wait for the completion of all issued write/flush of that txg provided.
1500  * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1501  */
1502 static void
1503 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1504 {
1505 	ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1506 
1507 	mutex_enter(&zilog->zl_lwb_io_lock);
1508 	while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1509 		cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1510 	mutex_exit(&zilog->zl_lwb_io_lock);
1511 
1512 #ifdef ZFS_DEBUG
1513 	mutex_enter(&zilog->zl_lock);
1514 	mutex_enter(&zilog->zl_lwb_io_lock);
1515 	lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1516 	while (lwb != NULL) {
1517 		if (lwb->lwb_issued_txg <= txg) {
1518 			ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1519 			ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1520 			IMPLY(lwb->lwb_issued_txg > 0,
1521 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1522 		}
1523 		IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1524 		    lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1525 		    lwb->lwb_buf == NULL);
1526 		lwb = list_next(&zilog->zl_lwb_list, lwb);
1527 	}
1528 	mutex_exit(&zilog->zl_lwb_io_lock);
1529 	mutex_exit(&zilog->zl_lock);
1530 #endif
1531 }
1532 
1533 /*
1534  * This is called when an lwb's write zio completes. The callback's
1535  * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1536  * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1537  * in writing out this specific lwb's data, and in the case that cache
1538  * flushes have been deferred, vdevs involved in writing the data for
1539  * previous lwbs. The writes corresponding to all the vdevs in the
1540  * lwb_vdev_tree will have completed by the time this is called, due to
1541  * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1542  * which takes deferred flushes into account. The lwb will be "done"
1543  * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1544  * completion callback for the lwb's root zio.
1545  */
1546 static void
1547 zil_lwb_write_done(zio_t *zio)
1548 {
1549 	lwb_t *lwb = zio->io_private;
1550 	spa_t *spa = zio->io_spa;
1551 	zilog_t *zilog = lwb->lwb_zilog;
1552 	avl_tree_t *t = &lwb->lwb_vdev_tree;
1553 	void *cookie = NULL;
1554 	zil_vdev_node_t *zv;
1555 	lwb_t *nlwb;
1556 
1557 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1558 
1559 	abd_free(zio->io_abd);
1560 	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1561 	lwb->lwb_buf = NULL;
1562 
1563 	mutex_enter(&zilog->zl_lock);
1564 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1565 	lwb->lwb_state = LWB_STATE_WRITE_DONE;
1566 	lwb->lwb_child_zio = NULL;
1567 	lwb->lwb_write_zio = NULL;
1568 
1569 	/*
1570 	 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1571 	 * called for it yet, and when it will be, it won't be able to make
1572 	 * its write ZIO a parent this ZIO.  In such case we can not defer
1573 	 * our flushes or below may be a race between the done callbacks.
1574 	 */
1575 	nlwb = list_next(&zilog->zl_lwb_list, lwb);
1576 	if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1577 		nlwb = NULL;
1578 	mutex_exit(&zilog->zl_lock);
1579 
1580 	if (avl_numnodes(t) == 0)
1581 		return;
1582 
1583 	/*
1584 	 * If there was an IO error, we're not going to call zio_flush()
1585 	 * on these vdevs, so we simply empty the tree and free the
1586 	 * nodes. We avoid calling zio_flush() since there isn't any
1587 	 * good reason for doing so, after the lwb block failed to be
1588 	 * written out.
1589 	 *
1590 	 * Additionally, we don't perform any further error handling at
1591 	 * this point (e.g. setting "zcw_zio_error" appropriately), as
1592 	 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1593 	 * we expect any error seen here, to have been propagated to
1594 	 * that function).
1595 	 */
1596 	if (zio->io_error != 0) {
1597 		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1598 			kmem_free(zv, sizeof (*zv));
1599 		return;
1600 	}
1601 
1602 	/*
1603 	 * If this lwb does not have any threads waiting for it to
1604 	 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1605 	 * command to the vdevs written to by "this" lwb, and instead
1606 	 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1607 	 * command for those vdevs. Thus, we merge the vdev tree of
1608 	 * "this" lwb with the vdev tree of the "next" lwb in the list,
1609 	 * and assume the "next" lwb will handle flushing the vdevs (or
1610 	 * deferring the flush(s) again).
1611 	 *
1612 	 * This is a useful performance optimization, especially for
1613 	 * workloads with lots of async write activity and few sync
1614 	 * write and/or fsync activity, as it has the potential to
1615 	 * coalesce multiple flush commands to a vdev into one.
1616 	 */
1617 	if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1618 		zil_lwb_flush_defer(lwb, nlwb);
1619 		ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1620 		return;
1621 	}
1622 
1623 	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1624 		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1625 		if (vd != NULL) {
1626 			/*
1627 			 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1628 			 * always used within "zio_flush". This means,
1629 			 * any errors when flushing the vdev(s), will
1630 			 * (unfortunately) not be handled correctly,
1631 			 * since these "zio_flush" errors will not be
1632 			 * propagated up to "zil_lwb_flush_vdevs_done".
1633 			 */
1634 			zio_flush(lwb->lwb_root_zio, vd);
1635 		}
1636 		kmem_free(zv, sizeof (*zv));
1637 	}
1638 }
1639 
1640 /*
1641  * Build the zio dependency chain, which is used to preserve the ordering of
1642  * lwb completions that is required by the semantics of the ZIL. Each new lwb
1643  * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1644  * cannot complete until the previous lwb's zio completes.
1645  *
1646  * This is required by the semantics of zil_commit(): the commit waiters
1647  * attached to the lwbs will be woken in the lwb zio's completion callback,
1648  * so this zio dependency graph ensures the waiters are woken in the correct
1649  * order (the same order the lwbs were created).
1650  */
1651 static void
1652 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1653 {
1654 	ASSERT(MUTEX_HELD(&zilog->zl_lock));
1655 
1656 	lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1657 	if (prev_lwb == NULL ||
1658 	    prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1659 		return;
1660 
1661 	/*
1662 	 * If the previous lwb's write hasn't already completed, we also want
1663 	 * to order the completion of the lwb write zios (above, we only order
1664 	 * the completion of the lwb root zios). This is required because of
1665 	 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1666 	 *
1667 	 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
1668 	 * lwb will rely on this lwb to flush the vdevs written to by that
1669 	 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
1670 	 * flush until after the previous lwb's write completes. We ensure
1671 	 * this ordering by setting the zio parent/child relationship here.
1672 	 *
1673 	 * Without this relationship on the lwb's write zio, it's possible
1674 	 * for this lwb's write to complete prior to the previous lwb's write
1675 	 * completing; and thus, the vdevs for the previous lwb would be
1676 	 * flushed prior to that lwb's data being written to those vdevs (the
1677 	 * vdevs are flushed in the lwb write zio's completion handler,
1678 	 * zil_lwb_write_done()).
1679 	 */
1680 	if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1681 		ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1682 		zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1683 	} else {
1684 		ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1685 	}
1686 
1687 	ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1688 	zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1689 }
1690 
1691 
1692 /*
1693  * This function's purpose is to "open" an lwb such that it is ready to
1694  * accept new itxs being committed to it. This function is idempotent; if
1695  * the passed in lwb has already been opened, it is essentially a no-op.
1696  */
1697 static void
1698 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1699 {
1700 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1701 
1702 	if (lwb->lwb_state != LWB_STATE_NEW) {
1703 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1704 		return;
1705 	}
1706 
1707 	mutex_enter(&zilog->zl_lock);
1708 	lwb->lwb_state = LWB_STATE_OPENED;
1709 	zilog->zl_last_lwb_opened = lwb;
1710 	mutex_exit(&zilog->zl_lock);
1711 }
1712 
1713 /*
1714  * Define a limited set of intent log block sizes.
1715  *
1716  * These must be a multiple of 4KB. Note only the amount used (again
1717  * aligned to 4KB) actually gets written. However, we can't always just
1718  * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1719  */
1720 static const struct {
1721 	uint64_t	limit;
1722 	uint64_t	blksz;
1723 } zil_block_buckets[] = {
1724 	{ 4096,		4096 },			/* non TX_WRITE */
1725 	{ 8192 + 4096,	8192 + 4096 },		/* database */
1726 	{ 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1727 	{ 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1728 	{ UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1729 };
1730 
1731 /*
1732  * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1733  * initialized.  Otherwise this should not be used directly; see
1734  * zl_max_block_size instead.
1735  */
1736 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1737 
1738 /*
1739  * Close the log block for being issued and allocate the next one.
1740  * Has to be called under zl_issuer_lock to chain more lwbs.
1741  */
1742 static lwb_t *
1743 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1744 {
1745 	int i;
1746 
1747 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1748 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1749 	lwb->lwb_state = LWB_STATE_CLOSED;
1750 
1751 	/*
1752 	 * If there was an allocation failure then returned NULL will trigger
1753 	 * zil_commit_writer_stall() at the caller.  This is inherently racy,
1754 	 * since allocation may not have happened yet.
1755 	 */
1756 	if (lwb->lwb_error != 0)
1757 		return (NULL);
1758 
1759 	/*
1760 	 * Log blocks are pre-allocated. Here we select the size of the next
1761 	 * block, based on size used in the last block.
1762 	 * - first find the smallest bucket that will fit the block from a
1763 	 *   limited set of block sizes. This is because it's faster to write
1764 	 *   blocks allocated from the same metaslab as they are adjacent or
1765 	 *   close.
1766 	 * - next find the maximum from the new suggested size and an array of
1767 	 *   previous sizes. This lessens a picket fence effect of wrongly
1768 	 *   guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1769 	 *   requests.
1770 	 *
1771 	 * Note we only write what is used, but we can't just allocate
1772 	 * the maximum block size because we can exhaust the available
1773 	 * pool log space.
1774 	 */
1775 	uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1776 	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1777 		continue;
1778 	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1779 	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1780 	for (i = 0; i < ZIL_PREV_BLKS; i++)
1781 		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1782 	DTRACE_PROBE3(zil__block__size, zilog_t *, zilog,
1783 	    uint64_t, zil_blksz,
1784 	    uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]);
1785 	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1786 
1787 	return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state));
1788 }
1789 
1790 /*
1791  * Finalize previously closed block and issue the write zio.
1792  */
1793 static void
1794 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1795 {
1796 	spa_t *spa = zilog->zl_spa;
1797 	zil_chain_t *zilc;
1798 	boolean_t slog;
1799 	zbookmark_phys_t zb;
1800 	zio_priority_t prio;
1801 	int error;
1802 
1803 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1804 
1805 	/* Actually fill the lwb with the data. */
1806 	for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1807 	    itx = list_next(&lwb->lwb_itxs, itx))
1808 		zil_lwb_commit(zilog, lwb, itx);
1809 	lwb->lwb_nused = lwb->lwb_nfilled;
1810 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1811 
1812 	lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1813 	    ZIO_FLAG_CANFAIL);
1814 
1815 	/*
1816 	 * The lwb is now ready to be issued, but it can be only if it already
1817 	 * got its block pointer allocated or the allocation has failed.
1818 	 * Otherwise leave it as-is, relying on some other thread to issue it
1819 	 * after allocating its block pointer via calling zil_lwb_write_issue()
1820 	 * for the previous lwb(s) in the chain.
1821 	 */
1822 	mutex_enter(&zilog->zl_lock);
1823 	lwb->lwb_state = LWB_STATE_READY;
1824 	if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1825 		mutex_exit(&zilog->zl_lock);
1826 		return;
1827 	}
1828 	mutex_exit(&zilog->zl_lock);
1829 
1830 next_lwb:
1831 	if (lwb->lwb_slim)
1832 		zilc = (zil_chain_t *)lwb->lwb_buf;
1833 	else
1834 		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1835 	int wsz = lwb->lwb_sz;
1836 	if (lwb->lwb_error == 0) {
1837 		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1838 		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1839 			prio = ZIO_PRIORITY_SYNC_WRITE;
1840 		else
1841 			prio = ZIO_PRIORITY_ASYNC_WRITE;
1842 		SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1843 		    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1844 		    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1845 		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1846 		    &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1847 		    lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1848 		zil_lwb_add_block(lwb, &lwb->lwb_blk);
1849 
1850 		if (lwb->lwb_slim) {
1851 			/* For Slim ZIL only write what is used. */
1852 			wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1853 			    int);
1854 			ASSERT3S(wsz, <=, lwb->lwb_sz);
1855 			zio_shrink(lwb->lwb_write_zio, wsz);
1856 			wsz = lwb->lwb_write_zio->io_size;
1857 		}
1858 		memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1859 		zilc->zc_pad = 0;
1860 		zilc->zc_nused = lwb->lwb_nused;
1861 		zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1862 	} else {
1863 		/*
1864 		 * We can't write the lwb if there was an allocation failure,
1865 		 * so create a null zio instead just to maintain dependencies.
1866 		 */
1867 		lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1868 		    zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1869 		lwb->lwb_write_zio->io_error = lwb->lwb_error;
1870 	}
1871 	if (lwb->lwb_child_zio)
1872 		zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1873 
1874 	/*
1875 	 * Open transaction to allocate the next block pointer.
1876 	 */
1877 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1878 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1879 	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1880 	uint64_t txg = dmu_tx_get_txg(tx);
1881 
1882 	/*
1883 	 * Allocate next the block pointer unless we are already in error.
1884 	 */
1885 	lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1886 	blkptr_t *bp = &zilc->zc_next_blk;
1887 	BP_ZERO(bp);
1888 	error = lwb->lwb_error;
1889 	if (error == 0) {
1890 		error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1891 		    &slog);
1892 	}
1893 	if (error == 0) {
1894 		ASSERT3U(bp->blk_birth, ==, txg);
1895 		BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1896 		    ZIO_CHECKSUM_ZILOG);
1897 		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1898 		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1899 	}
1900 
1901 	/*
1902 	 * Reduce TXG open time by incrementing inflight counter and committing
1903 	 * the transaciton.  zil_sync() will wait for it to return to zero.
1904 	 */
1905 	mutex_enter(&zilog->zl_lwb_io_lock);
1906 	lwb->lwb_issued_txg = txg;
1907 	zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1908 	zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1909 	mutex_exit(&zilog->zl_lwb_io_lock);
1910 	dmu_tx_commit(tx);
1911 
1912 	spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1913 
1914 	/*
1915 	 * We've completed all potentially blocking operations.  Update the
1916 	 * nlwb and allow it proceed without possible lock order reversals.
1917 	 */
1918 	mutex_enter(&zilog->zl_lock);
1919 	zil_lwb_set_zio_dependency(zilog, lwb);
1920 	lwb->lwb_state = LWB_STATE_ISSUED;
1921 
1922 	if (nlwb) {
1923 		nlwb->lwb_blk = *bp;
1924 		nlwb->lwb_error = error;
1925 		nlwb->lwb_slog = slog;
1926 		nlwb->lwb_alloc_txg = txg;
1927 		if (nlwb->lwb_state != LWB_STATE_READY)
1928 			nlwb = NULL;
1929 	}
1930 	mutex_exit(&zilog->zl_lock);
1931 
1932 	if (lwb->lwb_slog) {
1933 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1934 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1935 		    lwb->lwb_nused);
1936 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
1937 		    wsz);
1938 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
1939 		    BP_GET_LSIZE(&lwb->lwb_blk));
1940 	} else {
1941 		ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1942 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1943 		    lwb->lwb_nused);
1944 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
1945 		    wsz);
1946 		ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
1947 		    BP_GET_LSIZE(&lwb->lwb_blk));
1948 	}
1949 	lwb->lwb_issued_timestamp = gethrtime();
1950 	if (lwb->lwb_child_zio)
1951 		zio_nowait(lwb->lwb_child_zio);
1952 	zio_nowait(lwb->lwb_write_zio);
1953 	zio_nowait(lwb->lwb_root_zio);
1954 
1955 	/*
1956 	 * If nlwb was ready when we gave it the block pointer,
1957 	 * it is on us to issue it and possibly following ones.
1958 	 */
1959 	lwb = nlwb;
1960 	if (lwb)
1961 		goto next_lwb;
1962 }
1963 
1964 /*
1965  * Maximum amount of data that can be put into single log block.
1966  */
1967 uint64_t
1968 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
1969 {
1970 	return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
1971 }
1972 
1973 /*
1974  * Maximum amount of log space we agree to waste to reduce number of
1975  * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
1976  */
1977 static inline uint64_t
1978 zil_max_waste_space(zilog_t *zilog)
1979 {
1980 	return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
1981 }
1982 
1983 /*
1984  * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1985  * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1986  * maximum sized log block, because each WR_COPIED record must fit in a
1987  * single log block.  Below that it is a tradeoff of additional memory copy
1988  * and possibly worse log space efficiency vs additional range lock/unlock.
1989  */
1990 static uint_t zil_maxcopied = 7680;
1991 
1992 uint64_t
1993 zil_max_copied_data(zilog_t *zilog)
1994 {
1995 	uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
1996 	return (MIN(max_data, zil_maxcopied));
1997 }
1998 
1999 /*
2000  * Estimate space needed in the lwb for the itx.  Allocate more lwbs or
2001  * split the itx as needed, but don't touch the actual transaction data.
2002  * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2003  * to chain more lwbs.
2004  */
2005 static lwb_t *
2006 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2007 {
2008 	itx_t *citx;
2009 	lr_t *lr, *clr;
2010 	lr_write_t *lrw;
2011 	uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2012 
2013 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2014 	ASSERT3P(lwb, !=, NULL);
2015 	ASSERT3P(lwb->lwb_buf, !=, NULL);
2016 
2017 	zil_lwb_write_open(zilog, lwb);
2018 
2019 	lr = &itx->itx_lr;
2020 	lrw = (lr_write_t *)lr;
2021 
2022 	/*
2023 	 * A commit itx doesn't represent any on-disk state; instead
2024 	 * it's simply used as a place holder on the commit list, and
2025 	 * provides a mechanism for attaching a "commit waiter" onto the
2026 	 * correct lwb (such that the waiter can be signalled upon
2027 	 * completion of that lwb). Thus, we don't process this itx's
2028 	 * log record if it's a commit itx (these itx's don't have log
2029 	 * records), and instead link the itx's waiter onto the lwb's
2030 	 * list of waiters.
2031 	 *
2032 	 * For more details, see the comment above zil_commit().
2033 	 */
2034 	if (lr->lrc_txtype == TX_COMMIT) {
2035 		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2036 		list_insert_tail(&lwb->lwb_itxs, itx);
2037 		return (lwb);
2038 	}
2039 
2040 	reclen = lr->lrc_reclen;
2041 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2042 		ASSERT3U(reclen, ==, sizeof (lr_write_t));
2043 		dlen = P2ROUNDUP_TYPED(
2044 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2045 	} else {
2046 		ASSERT3U(reclen, >=, sizeof (lr_t));
2047 		dlen = 0;
2048 	}
2049 	ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2050 	zilog->zl_cur_used += (reclen + dlen);
2051 
2052 cont:
2053 	/*
2054 	 * If this record won't fit in the current log block, start a new one.
2055 	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2056 	 */
2057 	lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2058 	max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2059 	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2060 	    lwb_sp < zil_max_waste_space(zilog) &&
2061 	    (dlen % max_log_data == 0 ||
2062 	    lwb_sp < reclen + dlen % max_log_data))) {
2063 		list_insert_tail(ilwbs, lwb);
2064 		lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2065 		if (lwb == NULL)
2066 			return (NULL);
2067 		lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2068 	}
2069 
2070 	/*
2071 	 * There must be enough space in the log block to hold reclen.
2072 	 * For WR_COPIED, we need to fit the whole record in one block,
2073 	 * and reclen is the write record header size + the data size.
2074 	 * For WR_NEED_COPY, we can create multiple records, splitting
2075 	 * the data into multiple blocks, so we only need to fit one
2076 	 * word of data per block; in this case reclen is just the header
2077 	 * size (no data).
2078 	 */
2079 	ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2080 
2081 	dnow = MIN(dlen, lwb_sp - reclen);
2082 	if (dlen > dnow) {
2083 		ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2084 		ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2085 		citx = zil_itx_clone(itx);
2086 		clr = &citx->itx_lr;
2087 		lr_write_t *clrw = (lr_write_t *)clr;
2088 		clrw->lr_length = dnow;
2089 		lrw->lr_offset += dnow;
2090 		lrw->lr_length -= dnow;
2091 	} else {
2092 		citx = itx;
2093 		clr = lr;
2094 	}
2095 
2096 	/*
2097 	 * We're actually making an entry, so update lrc_seq to be the
2098 	 * log record sequence number.  Note that this is generally not
2099 	 * equal to the itx sequence number because not all transactions
2100 	 * are synchronous, and sometimes spa_sync() gets there first.
2101 	 */
2102 	clr->lrc_seq = ++zilog->zl_lr_seq;
2103 
2104 	lwb->lwb_nused += reclen + dnow;
2105 	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2106 	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2107 
2108 	zil_lwb_add_txg(lwb, lr->lrc_txg);
2109 	list_insert_tail(&lwb->lwb_itxs, citx);
2110 
2111 	dlen -= dnow;
2112 	if (dlen > 0) {
2113 		zilog->zl_cur_used += reclen;
2114 		goto cont;
2115 	}
2116 
2117 	if (lr->lrc_txtype == TX_WRITE &&
2118 	    lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2119 		txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2120 
2121 	return (lwb);
2122 }
2123 
2124 /*
2125  * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2126  * Does not require locking.
2127  */
2128 static void
2129 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2130 {
2131 	lr_t *lr, *lrb;
2132 	lr_write_t *lrw, *lrwb;
2133 	char *lr_buf;
2134 	uint64_t dlen, reclen;
2135 
2136 	lr = &itx->itx_lr;
2137 	lrw = (lr_write_t *)lr;
2138 
2139 	if (lr->lrc_txtype == TX_COMMIT)
2140 		return;
2141 
2142 	if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2143 		dlen = P2ROUNDUP_TYPED(
2144 		    lrw->lr_length, sizeof (uint64_t), uint64_t);
2145 	} else {
2146 		dlen = 0;
2147 	}
2148 	reclen = lr->lrc_reclen;
2149 	ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2150 
2151 	lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2152 	memcpy(lr_buf, lr, reclen);
2153 	lrb = (lr_t *)lr_buf;		/* Like lr, but inside lwb. */
2154 	lrwb = (lr_write_t *)lrb;	/* Like lrw, but inside lwb. */
2155 
2156 	ZIL_STAT_BUMP(zilog, zil_itx_count);
2157 
2158 	/*
2159 	 * If it's a write, fetch the data or get its blkptr as appropriate.
2160 	 */
2161 	if (lr->lrc_txtype == TX_WRITE) {
2162 		if (itx->itx_wr_state == WR_COPIED) {
2163 			ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2164 			ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2165 			    lrw->lr_length);
2166 		} else {
2167 			char *dbuf;
2168 			int error;
2169 
2170 			if (itx->itx_wr_state == WR_NEED_COPY) {
2171 				dbuf = lr_buf + reclen;
2172 				lrb->lrc_reclen += dlen;
2173 				ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2174 				ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2175 				    dlen);
2176 			} else {
2177 				ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2178 				dbuf = NULL;
2179 				ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2180 				ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2181 				    lrw->lr_length);
2182 				if (lwb->lwb_child_zio == NULL) {
2183 					lwb->lwb_child_zio = zio_null(NULL,
2184 					    zilog->zl_spa, NULL, NULL, NULL,
2185 					    ZIO_FLAG_CANFAIL);
2186 				}
2187 			}
2188 
2189 			/*
2190 			 * The "lwb_child_zio" we pass in will become a child of
2191 			 * "lwb_write_zio", when one is created, so one will be
2192 			 * a parent of any zio's created by the "zl_get_data".
2193 			 * This way "lwb_write_zio" will first wait for children
2194 			 * block pointers before own writing, and then for their
2195 			 * writing completion before the vdev cache flushing.
2196 			 */
2197 			error = zilog->zl_get_data(itx->itx_private,
2198 			    itx->itx_gen, lrwb, dbuf, lwb,
2199 			    lwb->lwb_child_zio);
2200 			if (dbuf != NULL && error == 0) {
2201 				/* Zero any padding bytes in the last block. */
2202 				memset((char *)dbuf + lrwb->lr_length, 0,
2203 				    dlen - lrwb->lr_length);
2204 			}
2205 
2206 			/*
2207 			 * Typically, the only return values we should see from
2208 			 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2209 			 *  EALREADY. However, it is also possible to see other
2210 			 *  error values such as ENOSPC or EINVAL from
2211 			 *  dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2212 			 *  ENXIO as well as a multitude of others from the
2213 			 *  block layer through dmu_buf_hold() -> dbuf_read()
2214 			 *  -> zio_wait(), as well as through dmu_read() ->
2215 			 *  dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2216 			 *  zio_wait(). When these errors happen, we can assume
2217 			 *  that neither an immediate write nor an indirect
2218 			 *  write occurred, so we need to fall back to
2219 			 *  txg_wait_synced(). This is unusual, so we print to
2220 			 *  dmesg whenever one of these errors occurs.
2221 			 */
2222 			switch (error) {
2223 			case 0:
2224 				break;
2225 			default:
2226 				cmn_err(CE_WARN, "zil_lwb_commit() received "
2227 				    "unexpected error %d from ->zl_get_data()"
2228 				    ". Falling back to txg_wait_synced().",
2229 				    error);
2230 				zfs_fallthrough;
2231 			case EIO:
2232 				txg_wait_synced(zilog->zl_dmu_pool,
2233 				    lr->lrc_txg);
2234 				zfs_fallthrough;
2235 			case ENOENT:
2236 				zfs_fallthrough;
2237 			case EEXIST:
2238 				zfs_fallthrough;
2239 			case EALREADY:
2240 				return;
2241 			}
2242 		}
2243 	}
2244 
2245 	lwb->lwb_nfilled += reclen + dlen;
2246 	ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2247 	ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2248 }
2249 
2250 itx_t *
2251 zil_itx_create(uint64_t txtype, size_t olrsize)
2252 {
2253 	size_t itxsize, lrsize;
2254 	itx_t *itx;
2255 
2256 	ASSERT3U(olrsize, >=, sizeof (lr_t));
2257 	lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2258 	ASSERT3U(lrsize, >=, olrsize);
2259 	itxsize = offsetof(itx_t, itx_lr) + lrsize;
2260 
2261 	itx = zio_data_buf_alloc(itxsize);
2262 	itx->itx_lr.lrc_txtype = txtype;
2263 	itx->itx_lr.lrc_reclen = lrsize;
2264 	itx->itx_lr.lrc_seq = 0;	/* defensive */
2265 	memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2266 	itx->itx_sync = B_TRUE;		/* default is synchronous */
2267 	itx->itx_callback = NULL;
2268 	itx->itx_callback_data = NULL;
2269 	itx->itx_size = itxsize;
2270 
2271 	return (itx);
2272 }
2273 
2274 static itx_t *
2275 zil_itx_clone(itx_t *oitx)
2276 {
2277 	ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2278 	ASSERT3U(oitx->itx_size, ==,
2279 	    offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2280 
2281 	itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2282 	memcpy(itx, oitx, oitx->itx_size);
2283 	itx->itx_callback = NULL;
2284 	itx->itx_callback_data = NULL;
2285 	return (itx);
2286 }
2287 
2288 void
2289 zil_itx_destroy(itx_t *itx)
2290 {
2291 	ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2292 	ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2293 	    itx->itx_size - offsetof(itx_t, itx_lr));
2294 	IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2295 	IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2296 
2297 	if (itx->itx_callback != NULL)
2298 		itx->itx_callback(itx->itx_callback_data);
2299 
2300 	zio_data_buf_free(itx, itx->itx_size);
2301 }
2302 
2303 /*
2304  * Free up the sync and async itxs. The itxs_t has already been detached
2305  * so no locks are needed.
2306  */
2307 static void
2308 zil_itxg_clean(void *arg)
2309 {
2310 	itx_t *itx;
2311 	list_t *list;
2312 	avl_tree_t *t;
2313 	void *cookie;
2314 	itxs_t *itxs = arg;
2315 	itx_async_node_t *ian;
2316 
2317 	list = &itxs->i_sync_list;
2318 	while ((itx = list_remove_head(list)) != NULL) {
2319 		/*
2320 		 * In the general case, commit itxs will not be found
2321 		 * here, as they'll be committed to an lwb via
2322 		 * zil_lwb_assign(), and free'd in that function. Having
2323 		 * said that, it is still possible for commit itxs to be
2324 		 * found here, due to the following race:
2325 		 *
2326 		 *	- a thread calls zil_commit() which assigns the
2327 		 *	  commit itx to a per-txg i_sync_list
2328 		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
2329 		 *	  while the waiter is still on the i_sync_list
2330 		 *
2331 		 * There's nothing to prevent syncing the txg while the
2332 		 * waiter is on the i_sync_list. This normally doesn't
2333 		 * happen because spa_sync() is slower than zil_commit(),
2334 		 * but if zil_commit() calls txg_wait_synced() (e.g.
2335 		 * because zil_create() or zil_commit_writer_stall() is
2336 		 * called) we will hit this case.
2337 		 */
2338 		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2339 			zil_commit_waiter_skip(itx->itx_private);
2340 
2341 		zil_itx_destroy(itx);
2342 	}
2343 
2344 	cookie = NULL;
2345 	t = &itxs->i_async_tree;
2346 	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2347 		list = &ian->ia_list;
2348 		while ((itx = list_remove_head(list)) != NULL) {
2349 			/* commit itxs should never be on the async lists. */
2350 			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2351 			zil_itx_destroy(itx);
2352 		}
2353 		list_destroy(list);
2354 		kmem_free(ian, sizeof (itx_async_node_t));
2355 	}
2356 	avl_destroy(t);
2357 
2358 	kmem_free(itxs, sizeof (itxs_t));
2359 }
2360 
2361 static int
2362 zil_aitx_compare(const void *x1, const void *x2)
2363 {
2364 	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2365 	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2366 
2367 	return (TREE_CMP(o1, o2));
2368 }
2369 
2370 /*
2371  * Remove all async itx with the given oid.
2372  */
2373 void
2374 zil_remove_async(zilog_t *zilog, uint64_t oid)
2375 {
2376 	uint64_t otxg, txg;
2377 	itx_async_node_t *ian, ian_search;
2378 	avl_tree_t *t;
2379 	avl_index_t where;
2380 	list_t clean_list;
2381 	itx_t *itx;
2382 
2383 	ASSERT(oid != 0);
2384 	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2385 
2386 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2387 		otxg = ZILTEST_TXG;
2388 	else
2389 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2390 
2391 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2392 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2393 
2394 		mutex_enter(&itxg->itxg_lock);
2395 		if (itxg->itxg_txg != txg) {
2396 			mutex_exit(&itxg->itxg_lock);
2397 			continue;
2398 		}
2399 
2400 		/*
2401 		 * Locate the object node and append its list.
2402 		 */
2403 		t = &itxg->itxg_itxs->i_async_tree;
2404 		ian_search.ia_foid = oid;
2405 		ian = avl_find(t, &ian_search, &where);
2406 		if (ian != NULL)
2407 			list_move_tail(&clean_list, &ian->ia_list);
2408 		mutex_exit(&itxg->itxg_lock);
2409 	}
2410 	while ((itx = list_remove_head(&clean_list)) != NULL) {
2411 		/* commit itxs should never be on the async lists. */
2412 		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2413 		zil_itx_destroy(itx);
2414 	}
2415 	list_destroy(&clean_list);
2416 }
2417 
2418 void
2419 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2420 {
2421 	uint64_t txg;
2422 	itxg_t *itxg;
2423 	itxs_t *itxs, *clean = NULL;
2424 
2425 	/*
2426 	 * Ensure the data of a renamed file is committed before the rename.
2427 	 */
2428 	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2429 		zil_async_to_sync(zilog, itx->itx_oid);
2430 
2431 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2432 		txg = ZILTEST_TXG;
2433 	else
2434 		txg = dmu_tx_get_txg(tx);
2435 
2436 	itxg = &zilog->zl_itxg[txg & TXG_MASK];
2437 	mutex_enter(&itxg->itxg_lock);
2438 	itxs = itxg->itxg_itxs;
2439 	if (itxg->itxg_txg != txg) {
2440 		if (itxs != NULL) {
2441 			/*
2442 			 * The zil_clean callback hasn't got around to cleaning
2443 			 * this itxg. Save the itxs for release below.
2444 			 * This should be rare.
2445 			 */
2446 			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2447 			    "txg %llu", (u_longlong_t)itxg->itxg_txg);
2448 			clean = itxg->itxg_itxs;
2449 		}
2450 		itxg->itxg_txg = txg;
2451 		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2452 		    KM_SLEEP);
2453 
2454 		list_create(&itxs->i_sync_list, sizeof (itx_t),
2455 		    offsetof(itx_t, itx_node));
2456 		avl_create(&itxs->i_async_tree, zil_aitx_compare,
2457 		    sizeof (itx_async_node_t),
2458 		    offsetof(itx_async_node_t, ia_node));
2459 	}
2460 	if (itx->itx_sync) {
2461 		list_insert_tail(&itxs->i_sync_list, itx);
2462 	} else {
2463 		avl_tree_t *t = &itxs->i_async_tree;
2464 		uint64_t foid =
2465 		    LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2466 		itx_async_node_t *ian;
2467 		avl_index_t where;
2468 
2469 		ian = avl_find(t, &foid, &where);
2470 		if (ian == NULL) {
2471 			ian = kmem_alloc(sizeof (itx_async_node_t),
2472 			    KM_SLEEP);
2473 			list_create(&ian->ia_list, sizeof (itx_t),
2474 			    offsetof(itx_t, itx_node));
2475 			ian->ia_foid = foid;
2476 			avl_insert(t, ian, where);
2477 		}
2478 		list_insert_tail(&ian->ia_list, itx);
2479 	}
2480 
2481 	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2482 
2483 	/*
2484 	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2485 	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2486 	 * need to be careful to always dirty the ZIL using the "real"
2487 	 * TXG (not itxg_txg) even when the SPA is frozen.
2488 	 */
2489 	zilog_dirty(zilog, dmu_tx_get_txg(tx));
2490 	mutex_exit(&itxg->itxg_lock);
2491 
2492 	/* Release the old itxs now we've dropped the lock */
2493 	if (clean != NULL)
2494 		zil_itxg_clean(clean);
2495 }
2496 
2497 /*
2498  * If there are any in-memory intent log transactions which have now been
2499  * synced then start up a taskq to free them. We should only do this after we
2500  * have written out the uberblocks (i.e. txg has been committed) so that
2501  * don't inadvertently clean out in-memory log records that would be required
2502  * by zil_commit().
2503  */
2504 void
2505 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2506 {
2507 	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2508 	itxs_t *clean_me;
2509 
2510 	ASSERT3U(synced_txg, <, ZILTEST_TXG);
2511 
2512 	mutex_enter(&itxg->itxg_lock);
2513 	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2514 		mutex_exit(&itxg->itxg_lock);
2515 		return;
2516 	}
2517 	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2518 	ASSERT3U(itxg->itxg_txg, !=, 0);
2519 	clean_me = itxg->itxg_itxs;
2520 	itxg->itxg_itxs = NULL;
2521 	itxg->itxg_txg = 0;
2522 	mutex_exit(&itxg->itxg_lock);
2523 	/*
2524 	 * Preferably start a task queue to free up the old itxs but
2525 	 * if taskq_dispatch can't allocate resources to do that then
2526 	 * free it in-line. This should be rare. Note, using TQ_SLEEP
2527 	 * created a bad performance problem.
2528 	 */
2529 	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2530 	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2531 	taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2532 	    zil_itxg_clean, clean_me, TQ_NOSLEEP);
2533 	if (id == TASKQID_INVALID)
2534 		zil_itxg_clean(clean_me);
2535 }
2536 
2537 /*
2538  * This function will traverse the queue of itxs that need to be
2539  * committed, and move them onto the ZIL's zl_itx_commit_list.
2540  */
2541 static uint64_t
2542 zil_get_commit_list(zilog_t *zilog)
2543 {
2544 	uint64_t otxg, txg, wtxg = 0;
2545 	list_t *commit_list = &zilog->zl_itx_commit_list;
2546 
2547 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2548 
2549 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2550 		otxg = ZILTEST_TXG;
2551 	else
2552 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2553 
2554 	/*
2555 	 * This is inherently racy, since there is nothing to prevent
2556 	 * the last synced txg from changing. That's okay since we'll
2557 	 * only commit things in the future.
2558 	 */
2559 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2560 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2561 
2562 		mutex_enter(&itxg->itxg_lock);
2563 		if (itxg->itxg_txg != txg) {
2564 			mutex_exit(&itxg->itxg_lock);
2565 			continue;
2566 		}
2567 
2568 		/*
2569 		 * If we're adding itx records to the zl_itx_commit_list,
2570 		 * then the zil better be dirty in this "txg". We can assert
2571 		 * that here since we're holding the itxg_lock which will
2572 		 * prevent spa_sync from cleaning it. Once we add the itxs
2573 		 * to the zl_itx_commit_list we must commit it to disk even
2574 		 * if it's unnecessary (i.e. the txg was synced).
2575 		 */
2576 		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2577 		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2578 		list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2579 		if (unlikely(zilog->zl_suspend > 0)) {
2580 			/*
2581 			 * ZIL was just suspended, but we lost the race.
2582 			 * Allow all earlier itxs to be committed, but ask
2583 			 * caller to do txg_wait_synced(txg) for any new.
2584 			 */
2585 			if (!list_is_empty(sync_list))
2586 				wtxg = MAX(wtxg, txg);
2587 		} else {
2588 			list_move_tail(commit_list, sync_list);
2589 		}
2590 
2591 		mutex_exit(&itxg->itxg_lock);
2592 	}
2593 	return (wtxg);
2594 }
2595 
2596 /*
2597  * Move the async itxs for a specified object to commit into sync lists.
2598  */
2599 void
2600 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2601 {
2602 	uint64_t otxg, txg;
2603 	itx_async_node_t *ian, ian_search;
2604 	avl_tree_t *t;
2605 	avl_index_t where;
2606 
2607 	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2608 		otxg = ZILTEST_TXG;
2609 	else
2610 		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2611 
2612 	/*
2613 	 * This is inherently racy, since there is nothing to prevent
2614 	 * the last synced txg from changing.
2615 	 */
2616 	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2617 		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2618 
2619 		mutex_enter(&itxg->itxg_lock);
2620 		if (itxg->itxg_txg != txg) {
2621 			mutex_exit(&itxg->itxg_lock);
2622 			continue;
2623 		}
2624 
2625 		/*
2626 		 * If a foid is specified then find that node and append its
2627 		 * list. Otherwise walk the tree appending all the lists
2628 		 * to the sync list. We add to the end rather than the
2629 		 * beginning to ensure the create has happened.
2630 		 */
2631 		t = &itxg->itxg_itxs->i_async_tree;
2632 		if (foid != 0) {
2633 			ian_search.ia_foid = foid;
2634 			ian = avl_find(t, &ian_search, &where);
2635 			if (ian != NULL) {
2636 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2637 				    &ian->ia_list);
2638 			}
2639 		} else {
2640 			void *cookie = NULL;
2641 
2642 			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2643 				list_move_tail(&itxg->itxg_itxs->i_sync_list,
2644 				    &ian->ia_list);
2645 				list_destroy(&ian->ia_list);
2646 				kmem_free(ian, sizeof (itx_async_node_t));
2647 			}
2648 		}
2649 		mutex_exit(&itxg->itxg_lock);
2650 	}
2651 }
2652 
2653 /*
2654  * This function will prune commit itxs that are at the head of the
2655  * commit list (it won't prune past the first non-commit itx), and
2656  * either: a) attach them to the last lwb that's still pending
2657  * completion, or b) skip them altogether.
2658  *
2659  * This is used as a performance optimization to prevent commit itxs
2660  * from generating new lwbs when it's unnecessary to do so.
2661  */
2662 static void
2663 zil_prune_commit_list(zilog_t *zilog)
2664 {
2665 	itx_t *itx;
2666 
2667 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2668 
2669 	while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2670 		lr_t *lrc = &itx->itx_lr;
2671 		if (lrc->lrc_txtype != TX_COMMIT)
2672 			break;
2673 
2674 		mutex_enter(&zilog->zl_lock);
2675 
2676 		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2677 		if (last_lwb == NULL ||
2678 		    last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2679 			/*
2680 			 * All of the itxs this waiter was waiting on
2681 			 * must have already completed (or there were
2682 			 * never any itx's for it to wait on), so it's
2683 			 * safe to skip this waiter and mark it done.
2684 			 */
2685 			zil_commit_waiter_skip(itx->itx_private);
2686 		} else {
2687 			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2688 		}
2689 
2690 		mutex_exit(&zilog->zl_lock);
2691 
2692 		list_remove(&zilog->zl_itx_commit_list, itx);
2693 		zil_itx_destroy(itx);
2694 	}
2695 
2696 	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2697 }
2698 
2699 static void
2700 zil_commit_writer_stall(zilog_t *zilog)
2701 {
2702 	/*
2703 	 * When zio_alloc_zil() fails to allocate the next lwb block on
2704 	 * disk, we must call txg_wait_synced() to ensure all of the
2705 	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2706 	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2707 	 * to zil_process_commit_list()) will have to call zil_create(),
2708 	 * and start a new ZIL chain.
2709 	 *
2710 	 * Since zil_alloc_zil() failed, the lwb that was previously
2711 	 * issued does not have a pointer to the "next" lwb on disk.
2712 	 * Thus, if another ZIL writer thread was to allocate the "next"
2713 	 * on-disk lwb, that block could be leaked in the event of a
2714 	 * crash (because the previous lwb on-disk would not point to
2715 	 * it).
2716 	 *
2717 	 * We must hold the zilog's zl_issuer_lock while we do this, to
2718 	 * ensure no new threads enter zil_process_commit_list() until
2719 	 * all lwb's in the zl_lwb_list have been synced and freed
2720 	 * (which is achieved via the txg_wait_synced() call).
2721 	 */
2722 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2723 	txg_wait_synced(zilog->zl_dmu_pool, 0);
2724 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2725 }
2726 
2727 static void
2728 zil_burst_done(zilog_t *zilog)
2729 {
2730 	if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2731 	    zilog->zl_cur_used == 0)
2732 		return;
2733 
2734 	if (zilog->zl_parallel)
2735 		zilog->zl_parallel--;
2736 
2737 	zilog->zl_cur_used = 0;
2738 }
2739 
2740 /*
2741  * This function will traverse the commit list, creating new lwbs as
2742  * needed, and committing the itxs from the commit list to these newly
2743  * created lwbs. Additionally, as a new lwb is created, the previous
2744  * lwb will be issued to the zio layer to be written to disk.
2745  */
2746 static void
2747 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2748 {
2749 	spa_t *spa = zilog->zl_spa;
2750 	list_t nolwb_itxs;
2751 	list_t nolwb_waiters;
2752 	lwb_t *lwb, *plwb;
2753 	itx_t *itx;
2754 
2755 	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2756 
2757 	/*
2758 	 * Return if there's nothing to commit before we dirty the fs by
2759 	 * calling zil_create().
2760 	 */
2761 	if (list_is_empty(&zilog->zl_itx_commit_list))
2762 		return;
2763 
2764 	list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2765 	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2766 	    offsetof(zil_commit_waiter_t, zcw_node));
2767 
2768 	lwb = list_tail(&zilog->zl_lwb_list);
2769 	if (lwb == NULL) {
2770 		lwb = zil_create(zilog);
2771 	} else {
2772 		/*
2773 		 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2774 		 * have already been created (zl_lwb_list not empty).
2775 		 */
2776 		zil_commit_activate_saxattr_feature(zilog);
2777 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2778 		    lwb->lwb_state == LWB_STATE_OPENED);
2779 
2780 		/*
2781 		 * If the lwb is still opened, it means the workload is really
2782 		 * multi-threaded and we won the chance of write aggregation.
2783 		 * If it is not opened yet, but previous lwb is still not
2784 		 * flushed, it still means the workload is multi-threaded, but
2785 		 * there was too much time between the commits to aggregate, so
2786 		 * we try aggregation next times, but without too much hopes.
2787 		 */
2788 		if (lwb->lwb_state == LWB_STATE_OPENED) {
2789 			zilog->zl_parallel = ZIL_BURSTS;
2790 		} else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2791 		    != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2792 			zilog->zl_parallel = MAX(zilog->zl_parallel,
2793 			    ZIL_BURSTS / 2);
2794 		}
2795 	}
2796 
2797 	while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2798 		lr_t *lrc = &itx->itx_lr;
2799 		uint64_t txg = lrc->lrc_txg;
2800 
2801 		ASSERT3U(txg, !=, 0);
2802 
2803 		if (lrc->lrc_txtype == TX_COMMIT) {
2804 			DTRACE_PROBE2(zil__process__commit__itx,
2805 			    zilog_t *, zilog, itx_t *, itx);
2806 		} else {
2807 			DTRACE_PROBE2(zil__process__normal__itx,
2808 			    zilog_t *, zilog, itx_t *, itx);
2809 		}
2810 
2811 		boolean_t synced = txg <= spa_last_synced_txg(spa);
2812 		boolean_t frozen = txg > spa_freeze_txg(spa);
2813 
2814 		/*
2815 		 * If the txg of this itx has already been synced out, then
2816 		 * we don't need to commit this itx to an lwb. This is
2817 		 * because the data of this itx will have already been
2818 		 * written to the main pool. This is inherently racy, and
2819 		 * it's still ok to commit an itx whose txg has already
2820 		 * been synced; this will result in a write that's
2821 		 * unnecessary, but will do no harm.
2822 		 *
2823 		 * With that said, we always want to commit TX_COMMIT itxs
2824 		 * to an lwb, regardless of whether or not that itx's txg
2825 		 * has been synced out. We do this to ensure any OPENED lwb
2826 		 * will always have at least one zil_commit_waiter_t linked
2827 		 * to the lwb.
2828 		 *
2829 		 * As a counter-example, if we skipped TX_COMMIT itx's
2830 		 * whose txg had already been synced, the following
2831 		 * situation could occur if we happened to be racing with
2832 		 * spa_sync:
2833 		 *
2834 		 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2835 		 *    itx's txg is 10 and the last synced txg is 9.
2836 		 * 2. spa_sync finishes syncing out txg 10.
2837 		 * 3. We move to the next itx in the list, it's a TX_COMMIT
2838 		 *    whose txg is 10, so we skip it rather than committing
2839 		 *    it to the lwb used in (1).
2840 		 *
2841 		 * If the itx that is skipped in (3) is the last TX_COMMIT
2842 		 * itx in the commit list, than it's possible for the lwb
2843 		 * used in (1) to remain in the OPENED state indefinitely.
2844 		 *
2845 		 * To prevent the above scenario from occurring, ensuring
2846 		 * that once an lwb is OPENED it will transition to ISSUED
2847 		 * and eventually DONE, we always commit TX_COMMIT itx's to
2848 		 * an lwb here, even if that itx's txg has already been
2849 		 * synced.
2850 		 *
2851 		 * Finally, if the pool is frozen, we _always_ commit the
2852 		 * itx.  The point of freezing the pool is to prevent data
2853 		 * from being written to the main pool via spa_sync, and
2854 		 * instead rely solely on the ZIL to persistently store the
2855 		 * data; i.e.  when the pool is frozen, the last synced txg
2856 		 * value can't be trusted.
2857 		 */
2858 		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2859 			if (lwb != NULL) {
2860 				lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2861 				if (lwb == NULL) {
2862 					list_insert_tail(&nolwb_itxs, itx);
2863 				} else if ((zcw->zcw_lwb != NULL &&
2864 				    zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2865 					/*
2866 					 * Our lwb is done, leave the rest of
2867 					 * itx list to somebody else who care.
2868 					 */
2869 					zilog->zl_parallel = ZIL_BURSTS;
2870 					break;
2871 				}
2872 			} else {
2873 				if (lrc->lrc_txtype == TX_COMMIT) {
2874 					zil_commit_waiter_link_nolwb(
2875 					    itx->itx_private, &nolwb_waiters);
2876 				}
2877 				list_insert_tail(&nolwb_itxs, itx);
2878 			}
2879 		} else {
2880 			ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2881 			zil_itx_destroy(itx);
2882 		}
2883 	}
2884 
2885 	if (lwb == NULL) {
2886 		/*
2887 		 * This indicates zio_alloc_zil() failed to allocate the
2888 		 * "next" lwb on-disk. When this happens, we must stall
2889 		 * the ZIL write pipeline; see the comment within
2890 		 * zil_commit_writer_stall() for more details.
2891 		 */
2892 		while ((lwb = list_remove_head(ilwbs)) != NULL)
2893 			zil_lwb_write_issue(zilog, lwb);
2894 		zil_commit_writer_stall(zilog);
2895 
2896 		/*
2897 		 * Additionally, we have to signal and mark the "nolwb"
2898 		 * waiters as "done" here, since without an lwb, we
2899 		 * can't do this via zil_lwb_flush_vdevs_done() like
2900 		 * normal.
2901 		 */
2902 		zil_commit_waiter_t *zcw;
2903 		while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
2904 			zil_commit_waiter_skip(zcw);
2905 
2906 		/*
2907 		 * And finally, we have to destroy the itx's that
2908 		 * couldn't be committed to an lwb; this will also call
2909 		 * the itx's callback if one exists for the itx.
2910 		 */
2911 		while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
2912 			zil_itx_destroy(itx);
2913 	} else {
2914 		ASSERT(list_is_empty(&nolwb_waiters));
2915 		ASSERT3P(lwb, !=, NULL);
2916 		ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2917 		    lwb->lwb_state == LWB_STATE_OPENED);
2918 
2919 		/*
2920 		 * At this point, the ZIL block pointed at by the "lwb"
2921 		 * variable is in "new" or "opened" state.
2922 		 *
2923 		 * If it's "new", then no itxs have been committed to it, so
2924 		 * there's no point in issuing its zio (i.e. it's "empty").
2925 		 *
2926 		 * If it's "opened", then it contains one or more itxs that
2927 		 * eventually need to be committed to stable storage. In
2928 		 * this case we intentionally do not issue the lwb's zio
2929 		 * to disk yet, and instead rely on one of the following
2930 		 * two mechanisms for issuing the zio:
2931 		 *
2932 		 * 1. Ideally, there will be more ZIL activity occurring on
2933 		 * the system, such that this function will be immediately
2934 		 * called again by different thread and this lwb will be
2935 		 * closed by zil_lwb_assign().  This way, the lwb will be
2936 		 * "full" when it is issued to disk, and we'll make use of
2937 		 * the lwb's size the best we can.
2938 		 *
2939 		 * 2. If there isn't sufficient ZIL activity occurring on
2940 		 * the system, zil_commit_waiter() will close it and issue
2941 		 * the zio.  If this occurs, the lwb is not guaranteed
2942 		 * to be "full" by the time its zio is issued, and means
2943 		 * the size of the lwb was "too large" given the amount
2944 		 * of ZIL activity occurring on the system at that time.
2945 		 *
2946 		 * We do this for a couple of reasons:
2947 		 *
2948 		 * 1. To try and reduce the number of IOPs needed to
2949 		 * write the same number of itxs. If an lwb has space
2950 		 * available in its buffer for more itxs, and more itxs
2951 		 * will be committed relatively soon (relative to the
2952 		 * latency of performing a write), then it's beneficial
2953 		 * to wait for these "next" itxs. This way, more itxs
2954 		 * can be committed to stable storage with fewer writes.
2955 		 *
2956 		 * 2. To try and use the largest lwb block size that the
2957 		 * incoming rate of itxs can support. Again, this is to
2958 		 * try and pack as many itxs into as few lwbs as
2959 		 * possible, without significantly impacting the latency
2960 		 * of each individual itx.
2961 		 */
2962 		if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
2963 			list_insert_tail(ilwbs, lwb);
2964 			lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
2965 			zil_burst_done(zilog);
2966 			if (lwb == NULL) {
2967 				while ((lwb = list_remove_head(ilwbs)) != NULL)
2968 					zil_lwb_write_issue(zilog, lwb);
2969 				zil_commit_writer_stall(zilog);
2970 			}
2971 		}
2972 	}
2973 }
2974 
2975 /*
2976  * This function is responsible for ensuring the passed in commit waiter
2977  * (and associated commit itx) is committed to an lwb. If the waiter is
2978  * not already committed to an lwb, all itxs in the zilog's queue of
2979  * itxs will be processed. The assumption is the passed in waiter's
2980  * commit itx will found in the queue just like the other non-commit
2981  * itxs, such that when the entire queue is processed, the waiter will
2982  * have been committed to an lwb.
2983  *
2984  * The lwb associated with the passed in waiter is not guaranteed to
2985  * have been issued by the time this function completes. If the lwb is
2986  * not issued, we rely on future calls to zil_commit_writer() to issue
2987  * the lwb, or the timeout mechanism found in zil_commit_waiter().
2988  */
2989 static uint64_t
2990 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2991 {
2992 	list_t ilwbs;
2993 	lwb_t *lwb;
2994 	uint64_t wtxg = 0;
2995 
2996 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2997 	ASSERT(spa_writeable(zilog->zl_spa));
2998 
2999 	list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3000 	mutex_enter(&zilog->zl_issuer_lock);
3001 
3002 	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3003 		/*
3004 		 * It's possible that, while we were waiting to acquire
3005 		 * the "zl_issuer_lock", another thread committed this
3006 		 * waiter to an lwb. If that occurs, we bail out early,
3007 		 * without processing any of the zilog's queue of itxs.
3008 		 *
3009 		 * On certain workloads and system configurations, the
3010 		 * "zl_issuer_lock" can become highly contended. In an
3011 		 * attempt to reduce this contention, we immediately drop
3012 		 * the lock if the waiter has already been processed.
3013 		 *
3014 		 * We've measured this optimization to reduce CPU spent
3015 		 * contending on this lock by up to 5%, using a system
3016 		 * with 32 CPUs, low latency storage (~50 usec writes),
3017 		 * and 1024 threads performing sync writes.
3018 		 */
3019 		goto out;
3020 	}
3021 
3022 	ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3023 
3024 	wtxg = zil_get_commit_list(zilog);
3025 	zil_prune_commit_list(zilog);
3026 	zil_process_commit_list(zilog, zcw, &ilwbs);
3027 
3028 out:
3029 	mutex_exit(&zilog->zl_issuer_lock);
3030 	while ((lwb = list_remove_head(&ilwbs)) != NULL)
3031 		zil_lwb_write_issue(zilog, lwb);
3032 	list_destroy(&ilwbs);
3033 	return (wtxg);
3034 }
3035 
3036 static void
3037 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3038 {
3039 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3040 	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3041 	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3042 
3043 	lwb_t *lwb = zcw->zcw_lwb;
3044 	ASSERT3P(lwb, !=, NULL);
3045 	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3046 
3047 	/*
3048 	 * If the lwb has already been issued by another thread, we can
3049 	 * immediately return since there's no work to be done (the
3050 	 * point of this function is to issue the lwb). Additionally, we
3051 	 * do this prior to acquiring the zl_issuer_lock, to avoid
3052 	 * acquiring it when it's not necessary to do so.
3053 	 */
3054 	if (lwb->lwb_state != LWB_STATE_OPENED)
3055 		return;
3056 
3057 	/*
3058 	 * In order to call zil_lwb_write_close() we must hold the
3059 	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3060 	 * since we're already holding the commit waiter's "zcw_lock",
3061 	 * and those two locks are acquired in the opposite order
3062 	 * elsewhere.
3063 	 */
3064 	mutex_exit(&zcw->zcw_lock);
3065 	mutex_enter(&zilog->zl_issuer_lock);
3066 	mutex_enter(&zcw->zcw_lock);
3067 
3068 	/*
3069 	 * Since we just dropped and re-acquired the commit waiter's
3070 	 * lock, we have to re-check to see if the waiter was marked
3071 	 * "done" during that process. If the waiter was marked "done",
3072 	 * the "lwb" pointer is no longer valid (it can be free'd after
3073 	 * the waiter is marked "done"), so without this check we could
3074 	 * wind up with a use-after-free error below.
3075 	 */
3076 	if (zcw->zcw_done) {
3077 		mutex_exit(&zilog->zl_issuer_lock);
3078 		return;
3079 	}
3080 
3081 	ASSERT3P(lwb, ==, zcw->zcw_lwb);
3082 
3083 	/*
3084 	 * We've already checked this above, but since we hadn't acquired
3085 	 * the zilog's zl_issuer_lock, we have to perform this check a
3086 	 * second time while holding the lock.
3087 	 *
3088 	 * We don't need to hold the zl_lock since the lwb cannot transition
3089 	 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3090 	 * _can_ transition from CLOSED to DONE, but it's OK to race with
3091 	 * that transition since we treat the lwb the same, whether it's in
3092 	 * the CLOSED, ISSUED or DONE states.
3093 	 *
3094 	 * The important thing, is we treat the lwb differently depending on
3095 	 * if it's OPENED or CLOSED, and block any other threads that might
3096 	 * attempt to close/issue this lwb. For that reason we hold the
3097 	 * zl_issuer_lock when checking the lwb_state; we must not call
3098 	 * zil_lwb_write_close() if the lwb had already been closed/issued.
3099 	 *
3100 	 * See the comment above the lwb_state_t structure definition for
3101 	 * more details on the lwb states, and locking requirements.
3102 	 */
3103 	if (lwb->lwb_state != LWB_STATE_OPENED) {
3104 		mutex_exit(&zilog->zl_issuer_lock);
3105 		return;
3106 	}
3107 
3108 	/*
3109 	 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3110 	 * is still open.  But we have to drop it to avoid a deadlock in case
3111 	 * callback of zio issued by zil_lwb_write_issue() try to get it,
3112 	 * while zil_lwb_write_issue() is blocked on attempt to issue next
3113 	 * lwb it found in LWB_STATE_READY state.
3114 	 */
3115 	mutex_exit(&zcw->zcw_lock);
3116 
3117 	/*
3118 	 * As described in the comments above zil_commit_waiter() and
3119 	 * zil_process_commit_list(), we need to issue this lwb's zio
3120 	 * since we've reached the commit waiter's timeout and it still
3121 	 * hasn't been issued.
3122 	 */
3123 	lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3124 
3125 	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3126 
3127 	zil_burst_done(zilog);
3128 
3129 	if (nlwb == NULL) {
3130 		/*
3131 		 * When zil_lwb_write_close() returns NULL, this
3132 		 * indicates zio_alloc_zil() failed to allocate the
3133 		 * "next" lwb on-disk. When this occurs, the ZIL write
3134 		 * pipeline must be stalled; see the comment within the
3135 		 * zil_commit_writer_stall() function for more details.
3136 		 */
3137 		zil_lwb_write_issue(zilog, lwb);
3138 		zil_commit_writer_stall(zilog);
3139 		mutex_exit(&zilog->zl_issuer_lock);
3140 	} else {
3141 		mutex_exit(&zilog->zl_issuer_lock);
3142 		zil_lwb_write_issue(zilog, lwb);
3143 	}
3144 	mutex_enter(&zcw->zcw_lock);
3145 }
3146 
3147 /*
3148  * This function is responsible for performing the following two tasks:
3149  *
3150  * 1. its primary responsibility is to block until the given "commit
3151  *    waiter" is considered "done".
3152  *
3153  * 2. its secondary responsibility is to issue the zio for the lwb that
3154  *    the given "commit waiter" is waiting on, if this function has
3155  *    waited "long enough" and the lwb is still in the "open" state.
3156  *
3157  * Given a sufficient amount of itxs being generated and written using
3158  * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3159  * function. If this does not occur, this secondary responsibility will
3160  * ensure the lwb is issued even if there is not other synchronous
3161  * activity on the system.
3162  *
3163  * For more details, see zil_process_commit_list(); more specifically,
3164  * the comment at the bottom of that function.
3165  */
3166 static void
3167 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3168 {
3169 	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3170 	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3171 	ASSERT(spa_writeable(zilog->zl_spa));
3172 
3173 	mutex_enter(&zcw->zcw_lock);
3174 
3175 	/*
3176 	 * The timeout is scaled based on the lwb latency to avoid
3177 	 * significantly impacting the latency of each individual itx.
3178 	 * For more details, see the comment at the bottom of the
3179 	 * zil_process_commit_list() function.
3180 	 */
3181 	int pct = MAX(zfs_commit_timeout_pct, 1);
3182 	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3183 	hrtime_t wakeup = gethrtime() + sleep;
3184 	boolean_t timedout = B_FALSE;
3185 
3186 	while (!zcw->zcw_done) {
3187 		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3188 
3189 		lwb_t *lwb = zcw->zcw_lwb;
3190 
3191 		/*
3192 		 * Usually, the waiter will have a non-NULL lwb field here,
3193 		 * but it's possible for it to be NULL as a result of
3194 		 * zil_commit() racing with spa_sync().
3195 		 *
3196 		 * When zil_clean() is called, it's possible for the itxg
3197 		 * list (which may be cleaned via a taskq) to contain
3198 		 * commit itxs. When this occurs, the commit waiters linked
3199 		 * off of these commit itxs will not be committed to an
3200 		 * lwb.  Additionally, these commit waiters will not be
3201 		 * marked done until zil_commit_waiter_skip() is called via
3202 		 * zil_itxg_clean().
3203 		 *
3204 		 * Thus, it's possible for this commit waiter (i.e. the
3205 		 * "zcw" variable) to be found in this "in between" state;
3206 		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3207 		 * been skipped, so it's "zcw_done" field is still B_FALSE.
3208 		 */
3209 		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3210 
3211 		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3212 			ASSERT3B(timedout, ==, B_FALSE);
3213 
3214 			/*
3215 			 * If the lwb hasn't been issued yet, then we
3216 			 * need to wait with a timeout, in case this
3217 			 * function needs to issue the lwb after the
3218 			 * timeout is reached; responsibility (2) from
3219 			 * the comment above this function.
3220 			 */
3221 			int rc = cv_timedwait_hires(&zcw->zcw_cv,
3222 			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3223 			    CALLOUT_FLAG_ABSOLUTE);
3224 
3225 			if (rc != -1 || zcw->zcw_done)
3226 				continue;
3227 
3228 			timedout = B_TRUE;
3229 			zil_commit_waiter_timeout(zilog, zcw);
3230 
3231 			if (!zcw->zcw_done) {
3232 				/*
3233 				 * If the commit waiter has already been
3234 				 * marked "done", it's possible for the
3235 				 * waiter's lwb structure to have already
3236 				 * been freed.  Thus, we can only reliably
3237 				 * make these assertions if the waiter
3238 				 * isn't done.
3239 				 */
3240 				ASSERT3P(lwb, ==, zcw->zcw_lwb);
3241 				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3242 			}
3243 		} else {
3244 			/*
3245 			 * If the lwb isn't open, then it must have already
3246 			 * been issued. In that case, there's no need to
3247 			 * use a timeout when waiting for the lwb to
3248 			 * complete.
3249 			 *
3250 			 * Additionally, if the lwb is NULL, the waiter
3251 			 * will soon be signaled and marked done via
3252 			 * zil_clean() and zil_itxg_clean(), so no timeout
3253 			 * is required.
3254 			 */
3255 
3256 			IMPLY(lwb != NULL,
3257 			    lwb->lwb_state == LWB_STATE_CLOSED ||
3258 			    lwb->lwb_state == LWB_STATE_READY ||
3259 			    lwb->lwb_state == LWB_STATE_ISSUED ||
3260 			    lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3261 			    lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3262 			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3263 		}
3264 	}
3265 
3266 	mutex_exit(&zcw->zcw_lock);
3267 }
3268 
3269 static zil_commit_waiter_t *
3270 zil_alloc_commit_waiter(void)
3271 {
3272 	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3273 
3274 	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3275 	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3276 	list_link_init(&zcw->zcw_node);
3277 	zcw->zcw_lwb = NULL;
3278 	zcw->zcw_done = B_FALSE;
3279 	zcw->zcw_zio_error = 0;
3280 
3281 	return (zcw);
3282 }
3283 
3284 static void
3285 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3286 {
3287 	ASSERT(!list_link_active(&zcw->zcw_node));
3288 	ASSERT3P(zcw->zcw_lwb, ==, NULL);
3289 	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3290 	mutex_destroy(&zcw->zcw_lock);
3291 	cv_destroy(&zcw->zcw_cv);
3292 	kmem_cache_free(zil_zcw_cache, zcw);
3293 }
3294 
3295 /*
3296  * This function is used to create a TX_COMMIT itx and assign it. This
3297  * way, it will be linked into the ZIL's list of synchronous itxs, and
3298  * then later committed to an lwb (or skipped) when
3299  * zil_process_commit_list() is called.
3300  */
3301 static void
3302 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3303 {
3304 	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3305 
3306 	/*
3307 	 * Since we are not going to create any new dirty data, and we
3308 	 * can even help with clearing the existing dirty data, we
3309 	 * should not be subject to the dirty data based delays. We
3310 	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3311 	 */
3312 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3313 
3314 	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3315 	itx->itx_sync = B_TRUE;
3316 	itx->itx_private = zcw;
3317 
3318 	zil_itx_assign(zilog, itx, tx);
3319 
3320 	dmu_tx_commit(tx);
3321 }
3322 
3323 /*
3324  * Commit ZFS Intent Log transactions (itxs) to stable storage.
3325  *
3326  * When writing ZIL transactions to the on-disk representation of the
3327  * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3328  * itxs can be committed to a single lwb. Once a lwb is written and
3329  * committed to stable storage (i.e. the lwb is written, and vdevs have
3330  * been flushed), each itx that was committed to that lwb is also
3331  * considered to be committed to stable storage.
3332  *
3333  * When an itx is committed to an lwb, the log record (lr_t) contained
3334  * by the itx is copied into the lwb's zio buffer, and once this buffer
3335  * is written to disk, it becomes an on-disk ZIL block.
3336  *
3337  * As itxs are generated, they're inserted into the ZIL's queue of
3338  * uncommitted itxs. The semantics of zil_commit() are such that it will
3339  * block until all itxs that were in the queue when it was called, are
3340  * committed to stable storage.
3341  *
3342  * If "foid" is zero, this means all "synchronous" and "asynchronous"
3343  * itxs, for all objects in the dataset, will be committed to stable
3344  * storage prior to zil_commit() returning. If "foid" is non-zero, all
3345  * "synchronous" itxs for all objects, but only "asynchronous" itxs
3346  * that correspond to the foid passed in, will be committed to stable
3347  * storage prior to zil_commit() returning.
3348  *
3349  * Generally speaking, when zil_commit() is called, the consumer doesn't
3350  * actually care about _all_ of the uncommitted itxs. Instead, they're
3351  * simply trying to waiting for a specific itx to be committed to disk,
3352  * but the interface(s) for interacting with the ZIL don't allow such
3353  * fine-grained communication. A better interface would allow a consumer
3354  * to create and assign an itx, and then pass a reference to this itx to
3355  * zil_commit(); such that zil_commit() would return as soon as that
3356  * specific itx was committed to disk (instead of waiting for _all_
3357  * itxs to be committed).
3358  *
3359  * When a thread calls zil_commit() a special "commit itx" will be
3360  * generated, along with a corresponding "waiter" for this commit itx.
3361  * zil_commit() will wait on this waiter's CV, such that when the waiter
3362  * is marked done, and signaled, zil_commit() will return.
3363  *
3364  * This commit itx is inserted into the queue of uncommitted itxs. This
3365  * provides an easy mechanism for determining which itxs were in the
3366  * queue prior to zil_commit() having been called, and which itxs were
3367  * added after zil_commit() was called.
3368  *
3369  * The commit itx is special; it doesn't have any on-disk representation.
3370  * When a commit itx is "committed" to an lwb, the waiter associated
3371  * with it is linked onto the lwb's list of waiters. Then, when that lwb
3372  * completes, each waiter on the lwb's list is marked done and signaled
3373  * -- allowing the thread waiting on the waiter to return from zil_commit().
3374  *
3375  * It's important to point out a few critical factors that allow us
3376  * to make use of the commit itxs, commit waiters, per-lwb lists of
3377  * commit waiters, and zio completion callbacks like we're doing:
3378  *
3379  *   1. The list of waiters for each lwb is traversed, and each commit
3380  *      waiter is marked "done" and signaled, in the zio completion
3381  *      callback of the lwb's zio[*].
3382  *
3383  *      * Actually, the waiters are signaled in the zio completion
3384  *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3385  *        that are sent to the vdevs upon completion of the lwb zio.
3386  *
3387  *   2. When the itxs are inserted into the ZIL's queue of uncommitted
3388  *      itxs, the order in which they are inserted is preserved[*]; as
3389  *      itxs are added to the queue, they are added to the tail of
3390  *      in-memory linked lists.
3391  *
3392  *      When committing the itxs to lwbs (to be written to disk), they
3393  *      are committed in the same order in which the itxs were added to
3394  *      the uncommitted queue's linked list(s); i.e. the linked list of
3395  *      itxs to commit is traversed from head to tail, and each itx is
3396  *      committed to an lwb in that order.
3397  *
3398  *      * To clarify:
3399  *
3400  *        - the order of "sync" itxs is preserved w.r.t. other
3401  *          "sync" itxs, regardless of the corresponding objects.
3402  *        - the order of "async" itxs is preserved w.r.t. other
3403  *          "async" itxs corresponding to the same object.
3404  *        - the order of "async" itxs is *not* preserved w.r.t. other
3405  *          "async" itxs corresponding to different objects.
3406  *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
3407  *          versa) is *not* preserved, even for itxs that correspond
3408  *          to the same object.
3409  *
3410  *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
3411  *      zil_get_commit_list(), and zil_process_commit_list().
3412  *
3413  *   3. The lwbs represent a linked list of blocks on disk. Thus, any
3414  *      lwb cannot be considered committed to stable storage, until its
3415  *      "previous" lwb is also committed to stable storage. This fact,
3416  *      coupled with the fact described above, means that itxs are
3417  *      committed in (roughly) the order in which they were generated.
3418  *      This is essential because itxs are dependent on prior itxs.
3419  *      Thus, we *must not* deem an itx as being committed to stable
3420  *      storage, until *all* prior itxs have also been committed to
3421  *      stable storage.
3422  *
3423  *      To enforce this ordering of lwb zio's, while still leveraging as
3424  *      much of the underlying storage performance as possible, we rely
3425  *      on two fundamental concepts:
3426  *
3427  *          1. The creation and issuance of lwb zio's is protected by
3428  *             the zilog's "zl_issuer_lock", which ensures only a single
3429  *             thread is creating and/or issuing lwb's at a time
3430  *          2. The "previous" lwb is a child of the "current" lwb
3431  *             (leveraging the zio parent-child dependency graph)
3432  *
3433  *      By relying on this parent-child zio relationship, we can have
3434  *      many lwb zio's concurrently issued to the underlying storage,
3435  *      but the order in which they complete will be the same order in
3436  *      which they were created.
3437  */
3438 void
3439 zil_commit(zilog_t *zilog, uint64_t foid)
3440 {
3441 	/*
3442 	 * We should never attempt to call zil_commit on a snapshot for
3443 	 * a couple of reasons:
3444 	 *
3445 	 * 1. A snapshot may never be modified, thus it cannot have any
3446 	 *    in-flight itxs that would have modified the dataset.
3447 	 *
3448 	 * 2. By design, when zil_commit() is called, a commit itx will
3449 	 *    be assigned to this zilog; as a result, the zilog will be
3450 	 *    dirtied. We must not dirty the zilog of a snapshot; there's
3451 	 *    checks in the code that enforce this invariant, and will
3452 	 *    cause a panic if it's not upheld.
3453 	 */
3454 	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3455 
3456 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3457 		return;
3458 
3459 	if (!spa_writeable(zilog->zl_spa)) {
3460 		/*
3461 		 * If the SPA is not writable, there should never be any
3462 		 * pending itxs waiting to be committed to disk. If that
3463 		 * weren't true, we'd skip writing those itxs out, and
3464 		 * would break the semantics of zil_commit(); thus, we're
3465 		 * verifying that truth before we return to the caller.
3466 		 */
3467 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3468 		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3469 		for (int i = 0; i < TXG_SIZE; i++)
3470 			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3471 		return;
3472 	}
3473 
3474 	/*
3475 	 * If the ZIL is suspended, we don't want to dirty it by calling
3476 	 * zil_commit_itx_assign() below, nor can we write out
3477 	 * lwbs like would be done in zil_commit_write(). Thus, we
3478 	 * simply rely on txg_wait_synced() to maintain the necessary
3479 	 * semantics, and avoid calling those functions altogether.
3480 	 */
3481 	if (zilog->zl_suspend > 0) {
3482 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3483 		return;
3484 	}
3485 
3486 	zil_commit_impl(zilog, foid);
3487 }
3488 
3489 void
3490 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3491 {
3492 	ZIL_STAT_BUMP(zilog, zil_commit_count);
3493 
3494 	/*
3495 	 * Move the "async" itxs for the specified foid to the "sync"
3496 	 * queues, such that they will be later committed (or skipped)
3497 	 * to an lwb when zil_process_commit_list() is called.
3498 	 *
3499 	 * Since these "async" itxs must be committed prior to this
3500 	 * call to zil_commit returning, we must perform this operation
3501 	 * before we call zil_commit_itx_assign().
3502 	 */
3503 	zil_async_to_sync(zilog, foid);
3504 
3505 	/*
3506 	 * We allocate a new "waiter" structure which will initially be
3507 	 * linked to the commit itx using the itx's "itx_private" field.
3508 	 * Since the commit itx doesn't represent any on-disk state,
3509 	 * when it's committed to an lwb, rather than copying the its
3510 	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3511 	 * added to the lwb's list of waiters. Then, when the lwb is
3512 	 * committed to stable storage, each waiter in the lwb's list of
3513 	 * waiters will be marked "done", and signalled.
3514 	 *
3515 	 * We must create the waiter and assign the commit itx prior to
3516 	 * calling zil_commit_writer(), or else our specific commit itx
3517 	 * is not guaranteed to be committed to an lwb prior to calling
3518 	 * zil_commit_waiter().
3519 	 */
3520 	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3521 	zil_commit_itx_assign(zilog, zcw);
3522 
3523 	uint64_t wtxg = zil_commit_writer(zilog, zcw);
3524 	zil_commit_waiter(zilog, zcw);
3525 
3526 	if (zcw->zcw_zio_error != 0) {
3527 		/*
3528 		 * If there was an error writing out the ZIL blocks that
3529 		 * this thread is waiting on, then we fallback to
3530 		 * relying on spa_sync() to write out the data this
3531 		 * thread is waiting on. Obviously this has performance
3532 		 * implications, but the expectation is for this to be
3533 		 * an exceptional case, and shouldn't occur often.
3534 		 */
3535 		DTRACE_PROBE2(zil__commit__io__error,
3536 		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3537 		txg_wait_synced(zilog->zl_dmu_pool, 0);
3538 	} else if (wtxg != 0) {
3539 		txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3540 	}
3541 
3542 	zil_free_commit_waiter(zcw);
3543 }
3544 
3545 /*
3546  * Called in syncing context to free committed log blocks and update log header.
3547  */
3548 void
3549 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3550 {
3551 	zil_header_t *zh = zil_header_in_syncing_context(zilog);
3552 	uint64_t txg = dmu_tx_get_txg(tx);
3553 	spa_t *spa = zilog->zl_spa;
3554 	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3555 	lwb_t *lwb;
3556 
3557 	/*
3558 	 * We don't zero out zl_destroy_txg, so make sure we don't try
3559 	 * to destroy it twice.
3560 	 */
3561 	if (spa_sync_pass(spa) != 1)
3562 		return;
3563 
3564 	zil_lwb_flush_wait_all(zilog, txg);
3565 
3566 	mutex_enter(&zilog->zl_lock);
3567 
3568 	ASSERT(zilog->zl_stop_sync == 0);
3569 
3570 	if (*replayed_seq != 0) {
3571 		ASSERT(zh->zh_replay_seq < *replayed_seq);
3572 		zh->zh_replay_seq = *replayed_seq;
3573 		*replayed_seq = 0;
3574 	}
3575 
3576 	if (zilog->zl_destroy_txg == txg) {
3577 		blkptr_t blk = zh->zh_log;
3578 		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3579 
3580 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3581 
3582 		memset(zh, 0, sizeof (zil_header_t));
3583 		memset(zilog->zl_replayed_seq, 0,
3584 		    sizeof (zilog->zl_replayed_seq));
3585 
3586 		if (zilog->zl_keep_first) {
3587 			/*
3588 			 * If this block was part of log chain that couldn't
3589 			 * be claimed because a device was missing during
3590 			 * zil_claim(), but that device later returns,
3591 			 * then this block could erroneously appear valid.
3592 			 * To guard against this, assign a new GUID to the new
3593 			 * log chain so it doesn't matter what blk points to.
3594 			 */
3595 			zil_init_log_chain(zilog, &blk);
3596 			zh->zh_log = blk;
3597 		} else {
3598 			/*
3599 			 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3600 			 * records. So, deactivate the feature for this dataset.
3601 			 * We activate it again when we start a new ZIL chain.
3602 			 */
3603 			if (dsl_dataset_feature_is_active(ds,
3604 			    SPA_FEATURE_ZILSAXATTR))
3605 				dsl_dataset_deactivate_feature(ds,
3606 				    SPA_FEATURE_ZILSAXATTR, tx);
3607 		}
3608 	}
3609 
3610 	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3611 		zh->zh_log = lwb->lwb_blk;
3612 		if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3613 		    lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3614 			break;
3615 		list_remove(&zilog->zl_lwb_list, lwb);
3616 		if (!BP_IS_HOLE(&lwb->lwb_blk))
3617 			zio_free(spa, txg, &lwb->lwb_blk);
3618 		zil_free_lwb(zilog, lwb);
3619 
3620 		/*
3621 		 * If we don't have anything left in the lwb list then
3622 		 * we've had an allocation failure and we need to zero
3623 		 * out the zil_header blkptr so that we don't end
3624 		 * up freeing the same block twice.
3625 		 */
3626 		if (list_is_empty(&zilog->zl_lwb_list))
3627 			BP_ZERO(&zh->zh_log);
3628 	}
3629 
3630 	mutex_exit(&zilog->zl_lock);
3631 }
3632 
3633 static int
3634 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3635 {
3636 	(void) unused, (void) kmflag;
3637 	lwb_t *lwb = vbuf;
3638 	list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3639 	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3640 	    offsetof(zil_commit_waiter_t, zcw_node));
3641 	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3642 	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3643 	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3644 	return (0);
3645 }
3646 
3647 static void
3648 zil_lwb_dest(void *vbuf, void *unused)
3649 {
3650 	(void) unused;
3651 	lwb_t *lwb = vbuf;
3652 	mutex_destroy(&lwb->lwb_vdev_lock);
3653 	avl_destroy(&lwb->lwb_vdev_tree);
3654 	list_destroy(&lwb->lwb_waiters);
3655 	list_destroy(&lwb->lwb_itxs);
3656 }
3657 
3658 void
3659 zil_init(void)
3660 {
3661 	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3662 	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3663 
3664 	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3665 	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3666 
3667 	zil_sums_init(&zil_sums_global);
3668 	zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3669 	    KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3670 	    KSTAT_FLAG_VIRTUAL);
3671 
3672 	if (zil_kstats_global != NULL) {
3673 		zil_kstats_global->ks_data = &zil_stats;
3674 		zil_kstats_global->ks_update = zil_kstats_global_update;
3675 		zil_kstats_global->ks_private = NULL;
3676 		kstat_install(zil_kstats_global);
3677 	}
3678 }
3679 
3680 void
3681 zil_fini(void)
3682 {
3683 	kmem_cache_destroy(zil_zcw_cache);
3684 	kmem_cache_destroy(zil_lwb_cache);
3685 
3686 	if (zil_kstats_global != NULL) {
3687 		kstat_delete(zil_kstats_global);
3688 		zil_kstats_global = NULL;
3689 	}
3690 
3691 	zil_sums_fini(&zil_sums_global);
3692 }
3693 
3694 void
3695 zil_set_sync(zilog_t *zilog, uint64_t sync)
3696 {
3697 	zilog->zl_sync = sync;
3698 }
3699 
3700 void
3701 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3702 {
3703 	zilog->zl_logbias = logbias;
3704 }
3705 
3706 zilog_t *
3707 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3708 {
3709 	zilog_t *zilog;
3710 
3711 	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3712 
3713 	zilog->zl_header = zh_phys;
3714 	zilog->zl_os = os;
3715 	zilog->zl_spa = dmu_objset_spa(os);
3716 	zilog->zl_dmu_pool = dmu_objset_pool(os);
3717 	zilog->zl_destroy_txg = TXG_INITIAL - 1;
3718 	zilog->zl_logbias = dmu_objset_logbias(os);
3719 	zilog->zl_sync = dmu_objset_syncprop(os);
3720 	zilog->zl_dirty_max_txg = 0;
3721 	zilog->zl_last_lwb_opened = NULL;
3722 	zilog->zl_last_lwb_latency = 0;
3723 	zilog->zl_max_block_size = zil_maxblocksize;
3724 
3725 	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3726 	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3727 	mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3728 
3729 	for (int i = 0; i < TXG_SIZE; i++) {
3730 		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3731 		    MUTEX_DEFAULT, NULL);
3732 	}
3733 
3734 	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3735 	    offsetof(lwb_t, lwb_node));
3736 
3737 	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3738 	    offsetof(itx_t, itx_node));
3739 
3740 	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3741 	cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3742 
3743 	return (zilog);
3744 }
3745 
3746 void
3747 zil_free(zilog_t *zilog)
3748 {
3749 	int i;
3750 
3751 	zilog->zl_stop_sync = 1;
3752 
3753 	ASSERT0(zilog->zl_suspend);
3754 	ASSERT0(zilog->zl_suspending);
3755 
3756 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3757 	list_destroy(&zilog->zl_lwb_list);
3758 
3759 	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3760 	list_destroy(&zilog->zl_itx_commit_list);
3761 
3762 	for (i = 0; i < TXG_SIZE; i++) {
3763 		/*
3764 		 * It's possible for an itx to be generated that doesn't dirty
3765 		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3766 		 * callback to remove the entry. We remove those here.
3767 		 *
3768 		 * Also free up the ziltest itxs.
3769 		 */
3770 		if (zilog->zl_itxg[i].itxg_itxs)
3771 			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3772 		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3773 	}
3774 
3775 	mutex_destroy(&zilog->zl_issuer_lock);
3776 	mutex_destroy(&zilog->zl_lock);
3777 	mutex_destroy(&zilog->zl_lwb_io_lock);
3778 
3779 	cv_destroy(&zilog->zl_cv_suspend);
3780 	cv_destroy(&zilog->zl_lwb_io_cv);
3781 
3782 	kmem_free(zilog, sizeof (zilog_t));
3783 }
3784 
3785 /*
3786  * Open an intent log.
3787  */
3788 zilog_t *
3789 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3790 {
3791 	zilog_t *zilog = dmu_objset_zil(os);
3792 
3793 	ASSERT3P(zilog->zl_get_data, ==, NULL);
3794 	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3795 	ASSERT(list_is_empty(&zilog->zl_lwb_list));
3796 
3797 	zilog->zl_get_data = get_data;
3798 	zilog->zl_sums = zil_sums;
3799 
3800 	return (zilog);
3801 }
3802 
3803 /*
3804  * Close an intent log.
3805  */
3806 void
3807 zil_close(zilog_t *zilog)
3808 {
3809 	lwb_t *lwb;
3810 	uint64_t txg;
3811 
3812 	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3813 		zil_commit(zilog, 0);
3814 	} else {
3815 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3816 		ASSERT0(zilog->zl_dirty_max_txg);
3817 		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3818 	}
3819 
3820 	mutex_enter(&zilog->zl_lock);
3821 	txg = zilog->zl_dirty_max_txg;
3822 	lwb = list_tail(&zilog->zl_lwb_list);
3823 	if (lwb != NULL) {
3824 		txg = MAX(txg, lwb->lwb_alloc_txg);
3825 		txg = MAX(txg, lwb->lwb_max_txg);
3826 	}
3827 	mutex_exit(&zilog->zl_lock);
3828 
3829 	/*
3830 	 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3831 	 * on the time when the dmu_tx transaction is assigned in
3832 	 * zil_lwb_write_issue().
3833 	 */
3834 	mutex_enter(&zilog->zl_lwb_io_lock);
3835 	txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3836 	mutex_exit(&zilog->zl_lwb_io_lock);
3837 
3838 	/*
3839 	 * We need to use txg_wait_synced() to wait until that txg is synced.
3840 	 * zil_sync() will guarantee all lwbs up to that txg have been
3841 	 * written out, flushed, and cleaned.
3842 	 */
3843 	if (txg != 0)
3844 		txg_wait_synced(zilog->zl_dmu_pool, txg);
3845 
3846 	if (zilog_is_dirty(zilog))
3847 		zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3848 		    (u_longlong_t)txg);
3849 	if (txg < spa_freeze_txg(zilog->zl_spa))
3850 		VERIFY(!zilog_is_dirty(zilog));
3851 
3852 	zilog->zl_get_data = NULL;
3853 
3854 	/*
3855 	 * We should have only one lwb left on the list; remove it now.
3856 	 */
3857 	mutex_enter(&zilog->zl_lock);
3858 	lwb = list_remove_head(&zilog->zl_lwb_list);
3859 	if (lwb != NULL) {
3860 		ASSERT(list_is_empty(&zilog->zl_lwb_list));
3861 		ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3862 		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3863 		zil_free_lwb(zilog, lwb);
3864 	}
3865 	mutex_exit(&zilog->zl_lock);
3866 }
3867 
3868 static const char *suspend_tag = "zil suspending";
3869 
3870 /*
3871  * Suspend an intent log.  While in suspended mode, we still honor
3872  * synchronous semantics, but we rely on txg_wait_synced() to do it.
3873  * On old version pools, we suspend the log briefly when taking a
3874  * snapshot so that it will have an empty intent log.
3875  *
3876  * Long holds are not really intended to be used the way we do here --
3877  * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3878  * could fail.  Therefore we take pains to only put a long hold if it is
3879  * actually necessary.  Fortunately, it will only be necessary if the
3880  * objset is currently mounted (or the ZVOL equivalent).  In that case it
3881  * will already have a long hold, so we are not really making things any worse.
3882  *
3883  * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3884  * zvol_state_t), and use their mechanism to prevent their hold from being
3885  * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3886  * very little gain.
3887  *
3888  * if cookiep == NULL, this does both the suspend & resume.
3889  * Otherwise, it returns with the dataset "long held", and the cookie
3890  * should be passed into zil_resume().
3891  */
3892 int
3893 zil_suspend(const char *osname, void **cookiep)
3894 {
3895 	objset_t *os;
3896 	zilog_t *zilog;
3897 	const zil_header_t *zh;
3898 	int error;
3899 
3900 	error = dmu_objset_hold(osname, suspend_tag, &os);
3901 	if (error != 0)
3902 		return (error);
3903 	zilog = dmu_objset_zil(os);
3904 
3905 	mutex_enter(&zilog->zl_lock);
3906 	zh = zilog->zl_header;
3907 
3908 	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3909 		mutex_exit(&zilog->zl_lock);
3910 		dmu_objset_rele(os, suspend_tag);
3911 		return (SET_ERROR(EBUSY));
3912 	}
3913 
3914 	/*
3915 	 * Don't put a long hold in the cases where we can avoid it.  This
3916 	 * is when there is no cookie so we are doing a suspend & resume
3917 	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3918 	 * for the suspend because it's already suspended, or there's no ZIL.
3919 	 */
3920 	if (cookiep == NULL && !zilog->zl_suspending &&
3921 	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3922 		mutex_exit(&zilog->zl_lock);
3923 		dmu_objset_rele(os, suspend_tag);
3924 		return (0);
3925 	}
3926 
3927 	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3928 	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3929 
3930 	zilog->zl_suspend++;
3931 
3932 	if (zilog->zl_suspend > 1) {
3933 		/*
3934 		 * Someone else is already suspending it.
3935 		 * Just wait for them to finish.
3936 		 */
3937 
3938 		while (zilog->zl_suspending)
3939 			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3940 		mutex_exit(&zilog->zl_lock);
3941 
3942 		if (cookiep == NULL)
3943 			zil_resume(os);
3944 		else
3945 			*cookiep = os;
3946 		return (0);
3947 	}
3948 
3949 	/*
3950 	 * If there is no pointer to an on-disk block, this ZIL must not
3951 	 * be active (e.g. filesystem not mounted), so there's nothing
3952 	 * to clean up.
3953 	 */
3954 	if (BP_IS_HOLE(&zh->zh_log)) {
3955 		ASSERT(cookiep != NULL); /* fast path already handled */
3956 
3957 		*cookiep = os;
3958 		mutex_exit(&zilog->zl_lock);
3959 		return (0);
3960 	}
3961 
3962 	/*
3963 	 * The ZIL has work to do. Ensure that the associated encryption
3964 	 * key will remain mapped while we are committing the log by
3965 	 * grabbing a reference to it. If the key isn't loaded we have no
3966 	 * choice but to return an error until the wrapping key is loaded.
3967 	 */
3968 	if (os->os_encrypted &&
3969 	    dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3970 		zilog->zl_suspend--;
3971 		mutex_exit(&zilog->zl_lock);
3972 		dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3973 		dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3974 		return (SET_ERROR(EACCES));
3975 	}
3976 
3977 	zilog->zl_suspending = B_TRUE;
3978 	mutex_exit(&zilog->zl_lock);
3979 
3980 	/*
3981 	 * We need to use zil_commit_impl to ensure we wait for all
3982 	 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
3983 	 * to disk before proceeding. If we used zil_commit instead, it
3984 	 * would just call txg_wait_synced(), because zl_suspend is set.
3985 	 * txg_wait_synced() doesn't wait for these lwb's to be
3986 	 * LWB_STATE_FLUSH_DONE before returning.
3987 	 */
3988 	zil_commit_impl(zilog, 0);
3989 
3990 	/*
3991 	 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3992 	 * use txg_wait_synced() to ensure the data from the zilog has
3993 	 * migrated to the main pool before calling zil_destroy().
3994 	 */
3995 	txg_wait_synced(zilog->zl_dmu_pool, 0);
3996 
3997 	zil_destroy(zilog, B_FALSE);
3998 
3999 	mutex_enter(&zilog->zl_lock);
4000 	zilog->zl_suspending = B_FALSE;
4001 	cv_broadcast(&zilog->zl_cv_suspend);
4002 	mutex_exit(&zilog->zl_lock);
4003 
4004 	if (os->os_encrypted)
4005 		dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4006 
4007 	if (cookiep == NULL)
4008 		zil_resume(os);
4009 	else
4010 		*cookiep = os;
4011 	return (0);
4012 }
4013 
4014 void
4015 zil_resume(void *cookie)
4016 {
4017 	objset_t *os = cookie;
4018 	zilog_t *zilog = dmu_objset_zil(os);
4019 
4020 	mutex_enter(&zilog->zl_lock);
4021 	ASSERT(zilog->zl_suspend != 0);
4022 	zilog->zl_suspend--;
4023 	mutex_exit(&zilog->zl_lock);
4024 	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4025 	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4026 }
4027 
4028 typedef struct zil_replay_arg {
4029 	zil_replay_func_t *const *zr_replay;
4030 	void		*zr_arg;
4031 	boolean_t	zr_byteswap;
4032 	char		*zr_lr;
4033 } zil_replay_arg_t;
4034 
4035 static int
4036 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4037 {
4038 	char name[ZFS_MAX_DATASET_NAME_LEN];
4039 
4040 	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
4041 
4042 	dmu_objset_name(zilog->zl_os, name);
4043 
4044 	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4045 	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4046 	    (u_longlong_t)lr->lrc_seq,
4047 	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4048 	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
4049 
4050 	return (error);
4051 }
4052 
4053 static int
4054 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4055     uint64_t claim_txg)
4056 {
4057 	zil_replay_arg_t *zr = zra;
4058 	const zil_header_t *zh = zilog->zl_header;
4059 	uint64_t reclen = lr->lrc_reclen;
4060 	uint64_t txtype = lr->lrc_txtype;
4061 	int error = 0;
4062 
4063 	zilog->zl_replaying_seq = lr->lrc_seq;
4064 
4065 	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
4066 		return (0);
4067 
4068 	if (lr->lrc_txg < claim_txg)		/* already committed */
4069 		return (0);
4070 
4071 	/* Strip case-insensitive bit, still present in log record */
4072 	txtype &= ~TX_CI;
4073 
4074 	if (txtype == 0 || txtype >= TX_MAX_TYPE)
4075 		return (zil_replay_error(zilog, lr, EINVAL));
4076 
4077 	/*
4078 	 * If this record type can be logged out of order, the object
4079 	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
4080 	 */
4081 	if (TX_OOO(txtype)) {
4082 		error = dmu_object_info(zilog->zl_os,
4083 		    LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4084 		if (error == ENOENT || error == EEXIST)
4085 			return (0);
4086 	}
4087 
4088 	/*
4089 	 * Make a copy of the data so we can revise and extend it.
4090 	 */
4091 	memcpy(zr->zr_lr, lr, reclen);
4092 
4093 	/*
4094 	 * If this is a TX_WRITE with a blkptr, suck in the data.
4095 	 */
4096 	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4097 		error = zil_read_log_data(zilog, (lr_write_t *)lr,
4098 		    zr->zr_lr + reclen);
4099 		if (error != 0)
4100 			return (zil_replay_error(zilog, lr, error));
4101 	}
4102 
4103 	/*
4104 	 * The log block containing this lr may have been byteswapped
4105 	 * so that we can easily examine common fields like lrc_txtype.
4106 	 * However, the log is a mix of different record types, and only the
4107 	 * replay vectors know how to byteswap their records.  Therefore, if
4108 	 * the lr was byteswapped, undo it before invoking the replay vector.
4109 	 */
4110 	if (zr->zr_byteswap)
4111 		byteswap_uint64_array(zr->zr_lr, reclen);
4112 
4113 	/*
4114 	 * We must now do two things atomically: replay this log record,
4115 	 * and update the log header sequence number to reflect the fact that
4116 	 * we did so. At the end of each replay function the sequence number
4117 	 * is updated if we are in replay mode.
4118 	 */
4119 	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4120 	if (error != 0) {
4121 		/*
4122 		 * The DMU's dnode layer doesn't see removes until the txg
4123 		 * commits, so a subsequent claim can spuriously fail with
4124 		 * EEXIST. So if we receive any error we try syncing out
4125 		 * any removes then retry the transaction.  Note that we
4126 		 * specify B_FALSE for byteswap now, so we don't do it twice.
4127 		 */
4128 		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4129 		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4130 		if (error != 0)
4131 			return (zil_replay_error(zilog, lr, error));
4132 	}
4133 	return (0);
4134 }
4135 
4136 static int
4137 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4138 {
4139 	(void) bp, (void) arg, (void) claim_txg;
4140 
4141 	zilog->zl_replay_blks++;
4142 
4143 	return (0);
4144 }
4145 
4146 /*
4147  * If this dataset has a non-empty intent log, replay it and destroy it.
4148  * Return B_TRUE if there were any entries to replay.
4149  */
4150 boolean_t
4151 zil_replay(objset_t *os, void *arg,
4152     zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4153 {
4154 	zilog_t *zilog = dmu_objset_zil(os);
4155 	const zil_header_t *zh = zilog->zl_header;
4156 	zil_replay_arg_t zr;
4157 
4158 	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4159 		return (zil_destroy(zilog, B_TRUE));
4160 	}
4161 
4162 	zr.zr_replay = replay_func;
4163 	zr.zr_arg = arg;
4164 	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4165 	zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4166 
4167 	/*
4168 	 * Wait for in-progress removes to sync before starting replay.
4169 	 */
4170 	txg_wait_synced(zilog->zl_dmu_pool, 0);
4171 
4172 	zilog->zl_replay = B_TRUE;
4173 	zilog->zl_replay_time = ddi_get_lbolt();
4174 	ASSERT(zilog->zl_replay_blks == 0);
4175 	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4176 	    zh->zh_claim_txg, B_TRUE);
4177 	vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4178 
4179 	zil_destroy(zilog, B_FALSE);
4180 	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4181 	zilog->zl_replay = B_FALSE;
4182 
4183 	return (B_TRUE);
4184 }
4185 
4186 boolean_t
4187 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4188 {
4189 	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4190 		return (B_TRUE);
4191 
4192 	if (zilog->zl_replay) {
4193 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4194 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4195 		    zilog->zl_replaying_seq;
4196 		return (B_TRUE);
4197 	}
4198 
4199 	return (B_FALSE);
4200 }
4201 
4202 int
4203 zil_reset(const char *osname, void *arg)
4204 {
4205 	(void) arg;
4206 
4207 	int error = zil_suspend(osname, NULL);
4208 	/* EACCES means crypto key not loaded */
4209 	if ((error == EACCES) || (error == EBUSY))
4210 		return (SET_ERROR(error));
4211 	if (error != 0)
4212 		return (SET_ERROR(EEXIST));
4213 	return (0);
4214 }
4215 
4216 EXPORT_SYMBOL(zil_alloc);
4217 EXPORT_SYMBOL(zil_free);
4218 EXPORT_SYMBOL(zil_open);
4219 EXPORT_SYMBOL(zil_close);
4220 EXPORT_SYMBOL(zil_replay);
4221 EXPORT_SYMBOL(zil_replaying);
4222 EXPORT_SYMBOL(zil_destroy);
4223 EXPORT_SYMBOL(zil_destroy_sync);
4224 EXPORT_SYMBOL(zil_itx_create);
4225 EXPORT_SYMBOL(zil_itx_destroy);
4226 EXPORT_SYMBOL(zil_itx_assign);
4227 EXPORT_SYMBOL(zil_commit);
4228 EXPORT_SYMBOL(zil_claim);
4229 EXPORT_SYMBOL(zil_check_log_chain);
4230 EXPORT_SYMBOL(zil_sync);
4231 EXPORT_SYMBOL(zil_clean);
4232 EXPORT_SYMBOL(zil_suspend);
4233 EXPORT_SYMBOL(zil_resume);
4234 EXPORT_SYMBOL(zil_lwb_add_block);
4235 EXPORT_SYMBOL(zil_bp_tree_add);
4236 EXPORT_SYMBOL(zil_set_sync);
4237 EXPORT_SYMBOL(zil_set_logbias);
4238 EXPORT_SYMBOL(zil_sums_init);
4239 EXPORT_SYMBOL(zil_sums_fini);
4240 EXPORT_SYMBOL(zil_kstat_values_update);
4241 
4242 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4243 	"ZIL block open timeout percentage");
4244 
4245 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4246 	"Disable intent logging replay");
4247 
4248 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4249 	"Disable ZIL cache flushes");
4250 
4251 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4252 	"Limit in bytes slog sync writes per commit");
4253 
4254 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4255 	"Limit in bytes of ZIL log block size");
4256 
4257 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4258 	"Limit in bytes WR_COPIED size");
4259