1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Integros [integros.com] 25 * Copyright (c) 2018 Datto Inc. 26 */ 27 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/zap.h> 35 #include <sys/arc.h> 36 #include <sys/stat.h> 37 #include <sys/zil.h> 38 #include <sys/zil_impl.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vdev_impl.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_pool.h> 43 #include <sys/metaslab.h> 44 #include <sys/trace_zfs.h> 45 #include <sys/abd.h> 46 #include <sys/brt.h> 47 #include <sys/wmsum.h> 48 49 /* 50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system 51 * calls that change the file system. Each itx has enough information to 52 * be able to replay them after a system crash, power loss, or 53 * equivalent failure mode. These are stored in memory until either: 54 * 55 * 1. they are committed to the pool by the DMU transaction group 56 * (txg), at which point they can be discarded; or 57 * 2. they are committed to the on-disk ZIL for the dataset being 58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous 59 * requirement). 60 * 61 * In the event of a crash or power loss, the itxs contained by each 62 * dataset's on-disk ZIL will be replayed when that dataset is first 63 * instantiated (e.g. if the dataset is a normal filesystem, when it is 64 * first mounted). 65 * 66 * As hinted at above, there is one ZIL per dataset (both the in-memory 67 * representation, and the on-disk representation). The on-disk format 68 * consists of 3 parts: 69 * 70 * - a single, per-dataset, ZIL header; which points to a chain of 71 * - zero or more ZIL blocks; each of which contains 72 * - zero or more ZIL records 73 * 74 * A ZIL record holds the information necessary to replay a single 75 * system call transaction. A ZIL block can hold many ZIL records, and 76 * the blocks are chained together, similarly to a singly linked list. 77 * 78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL 79 * block in the chain, and the ZIL header points to the first block in 80 * the chain. 81 * 82 * Note, there is not a fixed place in the pool to hold these ZIL 83 * blocks; they are dynamically allocated and freed as needed from the 84 * blocks available on the pool, though they can be preferentially 85 * allocated from a dedicated "log" vdev. 86 */ 87 88 /* 89 * This controls the amount of time that a ZIL block (lwb) will remain 90 * "open" when it isn't "full", and it has a thread waiting for it to be 91 * committed to stable storage. Please refer to the zil_commit_waiter() 92 * function (and the comments within it) for more details. 93 */ 94 static uint_t zfs_commit_timeout_pct = 10; 95 96 /* 97 * See zil.h for more information about these fields. 98 */ 99 static zil_kstat_values_t zil_stats = { 100 { "zil_commit_count", KSTAT_DATA_UINT64 }, 101 { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, 102 { "zil_itx_count", KSTAT_DATA_UINT64 }, 103 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, 104 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, 105 { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, 106 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, 107 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, 108 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, 109 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, 110 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, 111 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, 112 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, 113 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, 114 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, 115 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, 116 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, 117 }; 118 119 static zil_sums_t zil_sums_global; 120 static kstat_t *zil_kstats_global; 121 122 /* 123 * Disable intent logging replay. This global ZIL switch affects all pools. 124 */ 125 int zil_replay_disable = 0; 126 127 /* 128 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to 129 * the disk(s) by the ZIL after an LWB write has completed. Setting this 130 * will cause ZIL corruption on power loss if a volatile out-of-order 131 * write cache is enabled. 132 */ 133 static int zil_nocacheflush = 0; 134 135 /* 136 * Limit SLOG write size per commit executed with synchronous priority. 137 * Any writes above that will be executed with lower (asynchronous) priority 138 * to limit potential SLOG device abuse by single active ZIL writer. 139 */ 140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024; 141 142 static kmem_cache_t *zil_lwb_cache; 143 static kmem_cache_t *zil_zcw_cache; 144 145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); 146 static itx_t *zil_itx_clone(itx_t *oitx); 147 148 static int 149 zil_bp_compare(const void *x1, const void *x2) 150 { 151 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; 152 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; 153 154 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 155 if (likely(cmp)) 156 return (cmp); 157 158 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); 159 } 160 161 static void 162 zil_bp_tree_init(zilog_t *zilog) 163 { 164 avl_create(&zilog->zl_bp_tree, zil_bp_compare, 165 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); 166 } 167 168 static void 169 zil_bp_tree_fini(zilog_t *zilog) 170 { 171 avl_tree_t *t = &zilog->zl_bp_tree; 172 zil_bp_node_t *zn; 173 void *cookie = NULL; 174 175 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) 176 kmem_free(zn, sizeof (zil_bp_node_t)); 177 178 avl_destroy(t); 179 } 180 181 int 182 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) 183 { 184 avl_tree_t *t = &zilog->zl_bp_tree; 185 const dva_t *dva; 186 zil_bp_node_t *zn; 187 avl_index_t where; 188 189 if (BP_IS_EMBEDDED(bp)) 190 return (0); 191 192 dva = BP_IDENTITY(bp); 193 194 if (avl_find(t, dva, &where) != NULL) 195 return (SET_ERROR(EEXIST)); 196 197 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); 198 zn->zn_dva = *dva; 199 avl_insert(t, zn, where); 200 201 return (0); 202 } 203 204 static zil_header_t * 205 zil_header_in_syncing_context(zilog_t *zilog) 206 { 207 return ((zil_header_t *)zilog->zl_header); 208 } 209 210 static void 211 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) 212 { 213 zio_cksum_t *zc = &bp->blk_cksum; 214 215 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], 216 sizeof (zc->zc_word[ZIL_ZC_GUID_0])); 217 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], 218 sizeof (zc->zc_word[ZIL_ZC_GUID_1])); 219 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); 220 zc->zc_word[ZIL_ZC_SEQ] = 1ULL; 221 } 222 223 static int 224 zil_kstats_global_update(kstat_t *ksp, int rw) 225 { 226 zil_kstat_values_t *zs = ksp->ks_data; 227 ASSERT3P(&zil_stats, ==, zs); 228 229 if (rw == KSTAT_WRITE) { 230 return (SET_ERROR(EACCES)); 231 } 232 233 zil_kstat_values_update(zs, &zil_sums_global); 234 235 return (0); 236 } 237 238 /* 239 * Read a log block and make sure it's valid. 240 */ 241 static int 242 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, 243 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf) 244 { 245 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 246 arc_flags_t aflags = ARC_FLAG_WAIT; 247 zbookmark_phys_t zb; 248 int error; 249 250 if (zilog->zl_header->zh_claim_txg == 0) 251 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 252 253 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 254 zio_flags |= ZIO_FLAG_SPECULATIVE; 255 256 if (!decrypt) 257 zio_flags |= ZIO_FLAG_RAW; 258 259 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], 260 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); 261 262 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, 263 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 264 265 if (error == 0) { 266 zio_cksum_t cksum = bp->blk_cksum; 267 268 /* 269 * Validate the checksummed log block. 270 * 271 * Sequence numbers should be... sequential. The checksum 272 * verifier for the next block should be bp's checksum plus 1. 273 * 274 * Also check the log chain linkage and size used. 275 */ 276 cksum.zc_word[ZIL_ZC_SEQ]++; 277 278 uint64_t size = BP_GET_LSIZE(bp); 279 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { 280 zil_chain_t *zilc = (*abuf)->b_data; 281 char *lr = (char *)(zilc + 1); 282 283 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 284 sizeof (cksum)) || 285 zilc->zc_nused < sizeof (*zilc) || 286 zilc->zc_nused > size) { 287 error = SET_ERROR(ECKSUM); 288 } else { 289 *begin = lr; 290 *end = lr + zilc->zc_nused - sizeof (*zilc); 291 *nbp = zilc->zc_next_blk; 292 } 293 } else { 294 char *lr = (*abuf)->b_data; 295 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; 296 297 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, 298 sizeof (cksum)) || 299 (zilc->zc_nused > (size - sizeof (*zilc)))) { 300 error = SET_ERROR(ECKSUM); 301 } else { 302 *begin = lr; 303 *end = lr + zilc->zc_nused; 304 *nbp = zilc->zc_next_blk; 305 } 306 } 307 } 308 309 return (error); 310 } 311 312 /* 313 * Read a TX_WRITE log data block. 314 */ 315 static int 316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) 317 { 318 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; 319 const blkptr_t *bp = &lr->lr_blkptr; 320 arc_flags_t aflags = ARC_FLAG_WAIT; 321 arc_buf_t *abuf = NULL; 322 zbookmark_phys_t zb; 323 int error; 324 325 if (BP_IS_HOLE(bp)) { 326 if (wbuf != NULL) 327 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); 328 return (0); 329 } 330 331 if (zilog->zl_header->zh_claim_txg == 0) 332 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; 333 334 /* 335 * If we are not using the resulting data, we are just checking that 336 * it hasn't been corrupted so we don't need to waste CPU time 337 * decompressing and decrypting it. 338 */ 339 if (wbuf == NULL) 340 zio_flags |= ZIO_FLAG_RAW; 341 342 ASSERT3U(BP_GET_LSIZE(bp), !=, 0); 343 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, 344 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); 345 346 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, 347 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); 348 349 if (error == 0) { 350 if (wbuf != NULL) 351 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); 352 arc_buf_destroy(abuf, &abuf); 353 } 354 355 return (error); 356 } 357 358 void 359 zil_sums_init(zil_sums_t *zs) 360 { 361 wmsum_init(&zs->zil_commit_count, 0); 362 wmsum_init(&zs->zil_commit_writer_count, 0); 363 wmsum_init(&zs->zil_itx_count, 0); 364 wmsum_init(&zs->zil_itx_indirect_count, 0); 365 wmsum_init(&zs->zil_itx_indirect_bytes, 0); 366 wmsum_init(&zs->zil_itx_copied_count, 0); 367 wmsum_init(&zs->zil_itx_copied_bytes, 0); 368 wmsum_init(&zs->zil_itx_needcopy_count, 0); 369 wmsum_init(&zs->zil_itx_needcopy_bytes, 0); 370 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); 371 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); 372 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); 373 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); 374 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); 375 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); 376 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); 377 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); 378 } 379 380 void 381 zil_sums_fini(zil_sums_t *zs) 382 { 383 wmsum_fini(&zs->zil_commit_count); 384 wmsum_fini(&zs->zil_commit_writer_count); 385 wmsum_fini(&zs->zil_itx_count); 386 wmsum_fini(&zs->zil_itx_indirect_count); 387 wmsum_fini(&zs->zil_itx_indirect_bytes); 388 wmsum_fini(&zs->zil_itx_copied_count); 389 wmsum_fini(&zs->zil_itx_copied_bytes); 390 wmsum_fini(&zs->zil_itx_needcopy_count); 391 wmsum_fini(&zs->zil_itx_needcopy_bytes); 392 wmsum_fini(&zs->zil_itx_metaslab_normal_count); 393 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); 394 wmsum_fini(&zs->zil_itx_metaslab_normal_write); 395 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); 396 wmsum_fini(&zs->zil_itx_metaslab_slog_count); 397 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); 398 wmsum_fini(&zs->zil_itx_metaslab_slog_write); 399 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); 400 } 401 402 void 403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) 404 { 405 zs->zil_commit_count.value.ui64 = 406 wmsum_value(&zil_sums->zil_commit_count); 407 zs->zil_commit_writer_count.value.ui64 = 408 wmsum_value(&zil_sums->zil_commit_writer_count); 409 zs->zil_itx_count.value.ui64 = 410 wmsum_value(&zil_sums->zil_itx_count); 411 zs->zil_itx_indirect_count.value.ui64 = 412 wmsum_value(&zil_sums->zil_itx_indirect_count); 413 zs->zil_itx_indirect_bytes.value.ui64 = 414 wmsum_value(&zil_sums->zil_itx_indirect_bytes); 415 zs->zil_itx_copied_count.value.ui64 = 416 wmsum_value(&zil_sums->zil_itx_copied_count); 417 zs->zil_itx_copied_bytes.value.ui64 = 418 wmsum_value(&zil_sums->zil_itx_copied_bytes); 419 zs->zil_itx_needcopy_count.value.ui64 = 420 wmsum_value(&zil_sums->zil_itx_needcopy_count); 421 zs->zil_itx_needcopy_bytes.value.ui64 = 422 wmsum_value(&zil_sums->zil_itx_needcopy_bytes); 423 zs->zil_itx_metaslab_normal_count.value.ui64 = 424 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); 425 zs->zil_itx_metaslab_normal_bytes.value.ui64 = 426 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); 427 zs->zil_itx_metaslab_normal_write.value.ui64 = 428 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); 429 zs->zil_itx_metaslab_normal_alloc.value.ui64 = 430 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); 431 zs->zil_itx_metaslab_slog_count.value.ui64 = 432 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); 433 zs->zil_itx_metaslab_slog_bytes.value.ui64 = 434 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); 435 zs->zil_itx_metaslab_slog_write.value.ui64 = 436 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); 437 zs->zil_itx_metaslab_slog_alloc.value.ui64 = 438 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); 439 } 440 441 /* 442 * Parse the intent log, and call parse_func for each valid record within. 443 */ 444 int 445 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, 446 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, 447 boolean_t decrypt) 448 { 449 const zil_header_t *zh = zilog->zl_header; 450 boolean_t claimed = !!zh->zh_claim_txg; 451 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; 452 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; 453 uint64_t max_blk_seq = 0; 454 uint64_t max_lr_seq = 0; 455 uint64_t blk_count = 0; 456 uint64_t lr_count = 0; 457 blkptr_t blk, next_blk = {{{{0}}}}; 458 int error = 0; 459 460 /* 461 * Old logs didn't record the maximum zh_claim_lr_seq. 462 */ 463 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) 464 claim_lr_seq = UINT64_MAX; 465 466 /* 467 * Starting at the block pointed to by zh_log we read the log chain. 468 * For each block in the chain we strongly check that block to 469 * ensure its validity. We stop when an invalid block is found. 470 * For each block pointer in the chain we call parse_blk_func(). 471 * For each record in each valid block we call parse_lr_func(). 472 * If the log has been claimed, stop if we encounter a sequence 473 * number greater than the highest claimed sequence number. 474 */ 475 zil_bp_tree_init(zilog); 476 477 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { 478 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; 479 int reclen; 480 char *lrp, *end; 481 arc_buf_t *abuf = NULL; 482 483 if (blk_seq > claim_blk_seq) 484 break; 485 486 error = parse_blk_func(zilog, &blk, arg, txg); 487 if (error != 0) 488 break; 489 ASSERT3U(max_blk_seq, <, blk_seq); 490 max_blk_seq = blk_seq; 491 blk_count++; 492 493 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) 494 break; 495 496 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, 497 &lrp, &end, &abuf); 498 if (error != 0) { 499 if (abuf) 500 arc_buf_destroy(abuf, &abuf); 501 if (claimed) { 502 char name[ZFS_MAX_DATASET_NAME_LEN]; 503 504 dmu_objset_name(zilog->zl_os, name); 505 506 cmn_err(CE_WARN, "ZFS read log block error %d, " 507 "dataset %s, seq 0x%llx\n", error, name, 508 (u_longlong_t)blk_seq); 509 } 510 break; 511 } 512 513 for (; lrp < end; lrp += reclen) { 514 lr_t *lr = (lr_t *)lrp; 515 reclen = lr->lrc_reclen; 516 ASSERT3U(reclen, >=, sizeof (lr_t)); 517 ASSERT3U(reclen, <=, end - lrp); 518 if (lr->lrc_seq > claim_lr_seq) { 519 arc_buf_destroy(abuf, &abuf); 520 goto done; 521 } 522 523 error = parse_lr_func(zilog, lr, arg, txg); 524 if (error != 0) { 525 arc_buf_destroy(abuf, &abuf); 526 goto done; 527 } 528 ASSERT3U(max_lr_seq, <, lr->lrc_seq); 529 max_lr_seq = lr->lrc_seq; 530 lr_count++; 531 } 532 arc_buf_destroy(abuf, &abuf); 533 } 534 done: 535 zilog->zl_parse_error = error; 536 zilog->zl_parse_blk_seq = max_blk_seq; 537 zilog->zl_parse_lr_seq = max_lr_seq; 538 zilog->zl_parse_blk_count = blk_count; 539 zilog->zl_parse_lr_count = lr_count; 540 541 zil_bp_tree_fini(zilog); 542 543 return (error); 544 } 545 546 static int 547 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 548 uint64_t first_txg) 549 { 550 (void) tx; 551 ASSERT(!BP_IS_HOLE(bp)); 552 553 /* 554 * As we call this function from the context of a rewind to a 555 * checkpoint, each ZIL block whose txg is later than the txg 556 * that we rewind to is invalid. Thus, we return -1 so 557 * zil_parse() doesn't attempt to read it. 558 */ 559 if (bp->blk_birth >= first_txg) 560 return (-1); 561 562 if (zil_bp_tree_add(zilog, bp) != 0) 563 return (0); 564 565 zio_free(zilog->zl_spa, first_txg, bp); 566 return (0); 567 } 568 569 static int 570 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 571 uint64_t first_txg) 572 { 573 (void) zilog, (void) lrc, (void) tx, (void) first_txg; 574 return (0); 575 } 576 577 static int 578 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 579 uint64_t first_txg) 580 { 581 /* 582 * Claim log block if not already committed and not already claimed. 583 * If tx == NULL, just verify that the block is claimable. 584 */ 585 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || 586 zil_bp_tree_add(zilog, bp) != 0) 587 return (0); 588 589 return (zio_wait(zio_claim(NULL, zilog->zl_spa, 590 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, 591 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); 592 } 593 594 static int 595 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) 596 { 597 lr_write_t *lr = (lr_write_t *)lrc; 598 int error; 599 600 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 601 602 /* 603 * If the block is not readable, don't claim it. This can happen 604 * in normal operation when a log block is written to disk before 605 * some of the dmu_sync() blocks it points to. In this case, the 606 * transaction cannot have been committed to anyone (we would have 607 * waited for all writes to be stable first), so it is semantically 608 * correct to declare this the end of the log. 609 */ 610 if (lr->lr_blkptr.blk_birth >= first_txg) { 611 error = zil_read_log_data(zilog, lr, NULL); 612 if (error != 0) 613 return (error); 614 } 615 616 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); 617 } 618 619 static int 620 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx, 621 uint64_t first_txg) 622 { 623 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 624 const blkptr_t *bp; 625 spa_t *spa = zilog->zl_spa; 626 uint_t ii; 627 628 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 629 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t, 630 lr_bps[lr->lr_nbps])); 631 632 if (tx == NULL) { 633 return (0); 634 } 635 636 /* 637 * XXX: Do we need to byteswap lr? 638 */ 639 640 for (ii = 0; ii < lr->lr_nbps; ii++) { 641 bp = &lr->lr_bps[ii]; 642 643 /* 644 * When data is embedded into the BP there is no need to create 645 * BRT entry as there is no data block. Just copy the BP as it 646 * contains the data. 647 */ 648 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 649 continue; 650 651 /* 652 * We can not handle block pointers from the future, since they 653 * are not yet allocated. It should not normally happen, but 654 * just in case lets be safe and just stop here now instead of 655 * corrupting the pool. 656 */ 657 if (BP_PHYSICAL_BIRTH(bp) >= first_txg) 658 return (SET_ERROR(ENOENT)); 659 660 /* 661 * Assert the block is really allocated before we reference it. 662 */ 663 metaslab_check_free(spa, bp); 664 } 665 666 for (ii = 0; ii < lr->lr_nbps; ii++) { 667 bp = &lr->lr_bps[ii]; 668 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) 669 brt_pending_add(spa, bp, tx); 670 } 671 672 return (0); 673 } 674 675 static int 676 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 677 uint64_t first_txg) 678 { 679 680 switch (lrc->lrc_txtype) { 681 case TX_WRITE: 682 return (zil_claim_write(zilog, lrc, tx, first_txg)); 683 case TX_CLONE_RANGE: 684 return (zil_claim_clone_range(zilog, lrc, tx, first_txg)); 685 default: 686 return (0); 687 } 688 } 689 690 static int 691 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, 692 uint64_t claim_txg) 693 { 694 (void) claim_txg; 695 696 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 697 698 return (0); 699 } 700 701 static int 702 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) 703 { 704 lr_write_t *lr = (lr_write_t *)lrc; 705 blkptr_t *bp = &lr->lr_blkptr; 706 707 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 708 709 /* 710 * If we previously claimed it, we need to free it. 711 */ 712 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && 713 !BP_IS_HOLE(bp)) { 714 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); 715 } 716 717 return (0); 718 } 719 720 static int 721 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) 722 { 723 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; 724 const blkptr_t *bp; 725 spa_t *spa; 726 uint_t ii; 727 728 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr)); 729 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t, 730 lr_bps[lr->lr_nbps])); 731 732 if (tx == NULL) { 733 return (0); 734 } 735 736 spa = zilog->zl_spa; 737 738 for (ii = 0; ii < lr->lr_nbps; ii++) { 739 bp = &lr->lr_bps[ii]; 740 741 if (!BP_IS_HOLE(bp)) { 742 zio_free(spa, dmu_tx_get_txg(tx), bp); 743 } 744 } 745 746 return (0); 747 } 748 749 static int 750 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, 751 uint64_t claim_txg) 752 { 753 754 if (claim_txg == 0) { 755 return (0); 756 } 757 758 switch (lrc->lrc_txtype) { 759 case TX_WRITE: 760 return (zil_free_write(zilog, lrc, tx, claim_txg)); 761 case TX_CLONE_RANGE: 762 return (zil_free_clone_range(zilog, lrc, tx)); 763 default: 764 return (0); 765 } 766 } 767 768 static int 769 zil_lwb_vdev_compare(const void *x1, const void *x2) 770 { 771 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; 772 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; 773 774 return (TREE_CMP(v1, v2)); 775 } 776 777 /* 778 * Allocate a new lwb. We may already have a block pointer for it, in which 779 * case we get size and version from there. Or we may not yet, in which case 780 * we choose them here and later make the block allocation match. 781 */ 782 static lwb_t * 783 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog, 784 uint64_t txg, lwb_state_t state) 785 { 786 lwb_t *lwb; 787 788 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); 789 lwb->lwb_zilog = zilog; 790 if (bp) { 791 lwb->lwb_blk = *bp; 792 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2); 793 sz = BP_GET_LSIZE(bp); 794 } else { 795 BP_ZERO(&lwb->lwb_blk); 796 lwb->lwb_slim = (spa_version(zilog->zl_spa) >= 797 SPA_VERSION_SLIM_ZIL); 798 } 799 lwb->lwb_slog = slog; 800 lwb->lwb_error = 0; 801 if (lwb->lwb_slim) { 802 lwb->lwb_nmax = sz; 803 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); 804 } else { 805 lwb->lwb_nmax = sz - sizeof (zil_chain_t); 806 lwb->lwb_nused = lwb->lwb_nfilled = 0; 807 } 808 lwb->lwb_sz = sz; 809 lwb->lwb_state = state; 810 lwb->lwb_buf = zio_buf_alloc(sz); 811 lwb->lwb_child_zio = NULL; 812 lwb->lwb_write_zio = NULL; 813 lwb->lwb_root_zio = NULL; 814 lwb->lwb_issued_timestamp = 0; 815 lwb->lwb_issued_txg = 0; 816 lwb->lwb_alloc_txg = txg; 817 lwb->lwb_max_txg = 0; 818 819 mutex_enter(&zilog->zl_lock); 820 list_insert_tail(&zilog->zl_lwb_list, lwb); 821 if (state != LWB_STATE_NEW) 822 zilog->zl_last_lwb_opened = lwb; 823 mutex_exit(&zilog->zl_lock); 824 825 return (lwb); 826 } 827 828 static void 829 zil_free_lwb(zilog_t *zilog, lwb_t *lwb) 830 { 831 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 832 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 833 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 834 ASSERT3P(lwb->lwb_child_zio, ==, NULL); 835 ASSERT3P(lwb->lwb_write_zio, ==, NULL); 836 ASSERT3P(lwb->lwb_root_zio, ==, NULL); 837 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa)); 838 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); 839 VERIFY(list_is_empty(&lwb->lwb_itxs)); 840 VERIFY(list_is_empty(&lwb->lwb_waiters)); 841 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 842 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); 843 844 /* 845 * Clear the zilog's field to indicate this lwb is no longer 846 * valid, and prevent use-after-free errors. 847 */ 848 if (zilog->zl_last_lwb_opened == lwb) 849 zilog->zl_last_lwb_opened = NULL; 850 851 kmem_cache_free(zil_lwb_cache, lwb); 852 } 853 854 /* 855 * Called when we create in-memory log transactions so that we know 856 * to cleanup the itxs at the end of spa_sync(). 857 */ 858 static void 859 zilog_dirty(zilog_t *zilog, uint64_t txg) 860 { 861 dsl_pool_t *dp = zilog->zl_dmu_pool; 862 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 863 864 ASSERT(spa_writeable(zilog->zl_spa)); 865 866 if (ds->ds_is_snapshot) 867 panic("dirtying snapshot!"); 868 869 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { 870 /* up the hold count until we can be written out */ 871 dmu_buf_add_ref(ds->ds_dbuf, zilog); 872 873 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); 874 } 875 } 876 877 /* 878 * Determine if the zil is dirty in the specified txg. Callers wanting to 879 * ensure that the dirty state does not change must hold the itxg_lock for 880 * the specified txg. Holding the lock will ensure that the zil cannot be 881 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current 882 * state. 883 */ 884 static boolean_t __maybe_unused 885 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) 886 { 887 dsl_pool_t *dp = zilog->zl_dmu_pool; 888 889 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) 890 return (B_TRUE); 891 return (B_FALSE); 892 } 893 894 /* 895 * Determine if the zil is dirty. The zil is considered dirty if it has 896 * any pending itx records that have not been cleaned by zil_clean(). 897 */ 898 static boolean_t 899 zilog_is_dirty(zilog_t *zilog) 900 { 901 dsl_pool_t *dp = zilog->zl_dmu_pool; 902 903 for (int t = 0; t < TXG_SIZE; t++) { 904 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) 905 return (B_TRUE); 906 } 907 return (B_FALSE); 908 } 909 910 /* 911 * Its called in zil_commit context (zil_process_commit_list()/zil_create()). 912 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. 913 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every 914 * zil_commit. 915 */ 916 static void 917 zil_commit_activate_saxattr_feature(zilog_t *zilog) 918 { 919 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 920 uint64_t txg = 0; 921 dmu_tx_t *tx = NULL; 922 923 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 924 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && 925 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { 926 tx = dmu_tx_create(zilog->zl_os); 927 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 928 dsl_dataset_dirty(ds, tx); 929 txg = dmu_tx_get_txg(tx); 930 931 mutex_enter(&ds->ds_lock); 932 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 933 (void *)B_TRUE; 934 mutex_exit(&ds->ds_lock); 935 dmu_tx_commit(tx); 936 txg_wait_synced(zilog->zl_dmu_pool, txg); 937 } 938 } 939 940 /* 941 * Create an on-disk intent log. 942 */ 943 static lwb_t * 944 zil_create(zilog_t *zilog) 945 { 946 const zil_header_t *zh = zilog->zl_header; 947 lwb_t *lwb = NULL; 948 uint64_t txg = 0; 949 dmu_tx_t *tx = NULL; 950 blkptr_t blk; 951 int error = 0; 952 boolean_t slog = FALSE; 953 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 954 955 956 /* 957 * Wait for any previous destroy to complete. 958 */ 959 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 960 961 ASSERT(zh->zh_claim_txg == 0); 962 ASSERT(zh->zh_replay_seq == 0); 963 964 blk = zh->zh_log; 965 966 /* 967 * Allocate an initial log block if: 968 * - there isn't one already 969 * - the existing block is the wrong endianness 970 */ 971 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { 972 tx = dmu_tx_create(zilog->zl_os); 973 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 974 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 975 txg = dmu_tx_get_txg(tx); 976 977 if (!BP_IS_HOLE(&blk)) { 978 zio_free(zilog->zl_spa, txg, &blk); 979 BP_ZERO(&blk); 980 } 981 982 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, 983 ZIL_MIN_BLKSZ, &slog); 984 if (error == 0) 985 zil_init_log_chain(zilog, &blk); 986 } 987 988 /* 989 * Allocate a log write block (lwb) for the first log block. 990 */ 991 if (error == 0) 992 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW); 993 994 /* 995 * If we just allocated the first log block, commit our transaction 996 * and wait for zil_sync() to stuff the block pointer into zh_log. 997 * (zh is part of the MOS, so we cannot modify it in open context.) 998 */ 999 if (tx != NULL) { 1000 /* 1001 * If "zilsaxattr" feature is enabled on zpool, then activate 1002 * it now when we're creating the ZIL chain. We can't wait with 1003 * this until we write the first xattr log record because we 1004 * need to wait for the feature activation to sync out. 1005 */ 1006 if (spa_feature_is_enabled(zilog->zl_spa, 1007 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != 1008 DMU_OST_ZVOL) { 1009 mutex_enter(&ds->ds_lock); 1010 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = 1011 (void *)B_TRUE; 1012 mutex_exit(&ds->ds_lock); 1013 } 1014 1015 dmu_tx_commit(tx); 1016 txg_wait_synced(zilog->zl_dmu_pool, txg); 1017 } else { 1018 /* 1019 * This branch covers the case where we enable the feature on a 1020 * zpool that has existing ZIL headers. 1021 */ 1022 zil_commit_activate_saxattr_feature(zilog); 1023 } 1024 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && 1025 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, 1026 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); 1027 1028 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); 1029 IMPLY(error == 0, lwb != NULL); 1030 1031 return (lwb); 1032 } 1033 1034 /* 1035 * In one tx, free all log blocks and clear the log header. If keep_first 1036 * is set, then we're replaying a log with no content. We want to keep the 1037 * first block, however, so that the first synchronous transaction doesn't 1038 * require a txg_wait_synced() in zil_create(). We don't need to 1039 * txg_wait_synced() here either when keep_first is set, because both 1040 * zil_create() and zil_destroy() will wait for any in-progress destroys 1041 * to complete. 1042 * Return B_TRUE if there were any entries to replay. 1043 */ 1044 boolean_t 1045 zil_destroy(zilog_t *zilog, boolean_t keep_first) 1046 { 1047 const zil_header_t *zh = zilog->zl_header; 1048 lwb_t *lwb; 1049 dmu_tx_t *tx; 1050 uint64_t txg; 1051 1052 /* 1053 * Wait for any previous destroy to complete. 1054 */ 1055 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 1056 1057 zilog->zl_old_header = *zh; /* debugging aid */ 1058 1059 if (BP_IS_HOLE(&zh->zh_log)) 1060 return (B_FALSE); 1061 1062 tx = dmu_tx_create(zilog->zl_os); 1063 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1064 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1065 txg = dmu_tx_get_txg(tx); 1066 1067 mutex_enter(&zilog->zl_lock); 1068 1069 ASSERT3U(zilog->zl_destroy_txg, <, txg); 1070 zilog->zl_destroy_txg = txg; 1071 zilog->zl_keep_first = keep_first; 1072 1073 if (!list_is_empty(&zilog->zl_lwb_list)) { 1074 ASSERT(zh->zh_claim_txg == 0); 1075 VERIFY(!keep_first); 1076 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { 1077 if (lwb->lwb_buf != NULL) 1078 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1079 if (!BP_IS_HOLE(&lwb->lwb_blk)) 1080 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); 1081 zil_free_lwb(zilog, lwb); 1082 } 1083 } else if (!keep_first) { 1084 zil_destroy_sync(zilog, tx); 1085 } 1086 mutex_exit(&zilog->zl_lock); 1087 1088 dmu_tx_commit(tx); 1089 1090 return (B_TRUE); 1091 } 1092 1093 void 1094 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) 1095 { 1096 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 1097 (void) zil_parse(zilog, zil_free_log_block, 1098 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); 1099 } 1100 1101 int 1102 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) 1103 { 1104 dmu_tx_t *tx = txarg; 1105 zilog_t *zilog; 1106 uint64_t first_txg; 1107 zil_header_t *zh; 1108 objset_t *os; 1109 int error; 1110 1111 error = dmu_objset_own_obj(dp, ds->ds_object, 1112 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); 1113 if (error != 0) { 1114 /* 1115 * EBUSY indicates that the objset is inconsistent, in which 1116 * case it can not have a ZIL. 1117 */ 1118 if (error != EBUSY) { 1119 cmn_err(CE_WARN, "can't open objset for %llu, error %u", 1120 (unsigned long long)ds->ds_object, error); 1121 } 1122 1123 return (0); 1124 } 1125 1126 zilog = dmu_objset_zil(os); 1127 zh = zil_header_in_syncing_context(zilog); 1128 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); 1129 first_txg = spa_min_claim_txg(zilog->zl_spa); 1130 1131 /* 1132 * If the spa_log_state is not set to be cleared, check whether 1133 * the current uberblock is a checkpoint one and if the current 1134 * header has been claimed before moving on. 1135 * 1136 * If the current uberblock is a checkpointed uberblock then 1137 * one of the following scenarios took place: 1138 * 1139 * 1] We are currently rewinding to the checkpoint of the pool. 1140 * 2] We crashed in the middle of a checkpoint rewind but we 1141 * did manage to write the checkpointed uberblock to the 1142 * vdev labels, so when we tried to import the pool again 1143 * the checkpointed uberblock was selected from the import 1144 * procedure. 1145 * 1146 * In both cases we want to zero out all the ZIL blocks, except 1147 * the ones that have been claimed at the time of the checkpoint 1148 * (their zh_claim_txg != 0). The reason is that these blocks 1149 * may be corrupted since we may have reused their locations on 1150 * disk after we took the checkpoint. 1151 * 1152 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier 1153 * when we first figure out whether the current uberblock is 1154 * checkpointed or not. Unfortunately, that would discard all 1155 * the logs, including the ones that are claimed, and we would 1156 * leak space. 1157 */ 1158 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || 1159 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1160 zh->zh_claim_txg == 0)) { 1161 if (!BP_IS_HOLE(&zh->zh_log)) { 1162 (void) zil_parse(zilog, zil_clear_log_block, 1163 zil_noop_log_record, tx, first_txg, B_FALSE); 1164 } 1165 BP_ZERO(&zh->zh_log); 1166 if (os->os_encrypted) 1167 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1168 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1169 dmu_objset_disown(os, B_FALSE, FTAG); 1170 return (0); 1171 } 1172 1173 /* 1174 * If we are not rewinding and opening the pool normally, then 1175 * the min_claim_txg should be equal to the first txg of the pool. 1176 */ 1177 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); 1178 1179 /* 1180 * Claim all log blocks if we haven't already done so, and remember 1181 * the highest claimed sequence number. This ensures that if we can 1182 * read only part of the log now (e.g. due to a missing device), 1183 * but we can read the entire log later, we will not try to replay 1184 * or destroy beyond the last block we successfully claimed. 1185 */ 1186 ASSERT3U(zh->zh_claim_txg, <=, first_txg); 1187 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { 1188 (void) zil_parse(zilog, zil_claim_log_block, 1189 zil_claim_log_record, tx, first_txg, B_FALSE); 1190 zh->zh_claim_txg = first_txg; 1191 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; 1192 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; 1193 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) 1194 zh->zh_flags |= ZIL_REPLAY_NEEDED; 1195 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; 1196 if (os->os_encrypted) 1197 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; 1198 dsl_dataset_dirty(dmu_objset_ds(os), tx); 1199 } 1200 1201 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); 1202 dmu_objset_disown(os, B_FALSE, FTAG); 1203 return (0); 1204 } 1205 1206 /* 1207 * Check the log by walking the log chain. 1208 * Checksum errors are ok as they indicate the end of the chain. 1209 * Any other error (no device or read failure) returns an error. 1210 */ 1211 int 1212 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) 1213 { 1214 (void) dp; 1215 zilog_t *zilog; 1216 objset_t *os; 1217 blkptr_t *bp; 1218 int error; 1219 1220 ASSERT(tx == NULL); 1221 1222 error = dmu_objset_from_ds(ds, &os); 1223 if (error != 0) { 1224 cmn_err(CE_WARN, "can't open objset %llu, error %d", 1225 (unsigned long long)ds->ds_object, error); 1226 return (0); 1227 } 1228 1229 zilog = dmu_objset_zil(os); 1230 bp = (blkptr_t *)&zilog->zl_header->zh_log; 1231 1232 if (!BP_IS_HOLE(bp)) { 1233 vdev_t *vd; 1234 boolean_t valid = B_TRUE; 1235 1236 /* 1237 * Check the first block and determine if it's on a log device 1238 * which may have been removed or faulted prior to loading this 1239 * pool. If so, there's no point in checking the rest of the 1240 * log as its content should have already been synced to the 1241 * pool. 1242 */ 1243 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); 1244 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); 1245 if (vd->vdev_islog && vdev_is_dead(vd)) 1246 valid = vdev_log_state_valid(vd); 1247 spa_config_exit(os->os_spa, SCL_STATE, FTAG); 1248 1249 if (!valid) 1250 return (0); 1251 1252 /* 1253 * Check whether the current uberblock is checkpointed (e.g. 1254 * we are rewinding) and whether the current header has been 1255 * claimed or not. If it hasn't then skip verifying it. We 1256 * do this because its ZIL blocks may be part of the pool's 1257 * state before the rewind, which is no longer valid. 1258 */ 1259 zil_header_t *zh = zil_header_in_syncing_context(zilog); 1260 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && 1261 zh->zh_claim_txg == 0) 1262 return (0); 1263 } 1264 1265 /* 1266 * Because tx == NULL, zil_claim_log_block() will not actually claim 1267 * any blocks, but just determine whether it is possible to do so. 1268 * In addition to checking the log chain, zil_claim_log_block() 1269 * will invoke zio_claim() with a done func of spa_claim_notify(), 1270 * which will update spa_max_claim_txg. See spa_load() for details. 1271 */ 1272 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, 1273 zilog->zl_header->zh_claim_txg ? -1ULL : 1274 spa_min_claim_txg(os->os_spa), B_FALSE); 1275 1276 return ((error == ECKSUM || error == ENOENT) ? 0 : error); 1277 } 1278 1279 /* 1280 * When an itx is "skipped", this function is used to properly mark the 1281 * waiter as "done, and signal any thread(s) waiting on it. An itx can 1282 * be skipped (and not committed to an lwb) for a variety of reasons, 1283 * one of them being that the itx was committed via spa_sync(), prior to 1284 * it being committed to an lwb; this can happen if a thread calling 1285 * zil_commit() is racing with spa_sync(). 1286 */ 1287 static void 1288 zil_commit_waiter_skip(zil_commit_waiter_t *zcw) 1289 { 1290 mutex_enter(&zcw->zcw_lock); 1291 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1292 zcw->zcw_done = B_TRUE; 1293 cv_broadcast(&zcw->zcw_cv); 1294 mutex_exit(&zcw->zcw_lock); 1295 } 1296 1297 /* 1298 * This function is used when the given waiter is to be linked into an 1299 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. 1300 * At this point, the waiter will no longer be referenced by the itx, 1301 * and instead, will be referenced by the lwb. 1302 */ 1303 static void 1304 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) 1305 { 1306 /* 1307 * The lwb_waiters field of the lwb is protected by the zilog's 1308 * zl_issuer_lock while the lwb is open and zl_lock otherwise. 1309 * zl_issuer_lock also protects leaving the open state. 1310 * zcw_lwb setting is protected by zl_issuer_lock and state != 1311 * flush_done, which transition is protected by zl_lock. 1312 */ 1313 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock)); 1314 IMPLY(lwb->lwb_state != LWB_STATE_OPENED, 1315 MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); 1316 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 1317 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1318 1319 ASSERT(!list_link_active(&zcw->zcw_node)); 1320 list_insert_tail(&lwb->lwb_waiters, zcw); 1321 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1322 zcw->zcw_lwb = lwb; 1323 } 1324 1325 /* 1326 * This function is used when zio_alloc_zil() fails to allocate a ZIL 1327 * block, and the given waiter must be linked to the "nolwb waiters" 1328 * list inside of zil_process_commit_list(). 1329 */ 1330 static void 1331 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) 1332 { 1333 ASSERT(!list_link_active(&zcw->zcw_node)); 1334 list_insert_tail(nolwb, zcw); 1335 ASSERT3P(zcw->zcw_lwb, ==, NULL); 1336 } 1337 1338 void 1339 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) 1340 { 1341 avl_tree_t *t = &lwb->lwb_vdev_tree; 1342 avl_index_t where; 1343 zil_vdev_node_t *zv, zvsearch; 1344 int ndvas = BP_GET_NDVAS(bp); 1345 int i; 1346 1347 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1348 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1349 1350 if (zil_nocacheflush) 1351 return; 1352 1353 mutex_enter(&lwb->lwb_vdev_lock); 1354 for (i = 0; i < ndvas; i++) { 1355 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 1356 if (avl_find(t, &zvsearch, &where) == NULL) { 1357 zv = kmem_alloc(sizeof (*zv), KM_SLEEP); 1358 zv->zv_vdev = zvsearch.zv_vdev; 1359 avl_insert(t, zv, where); 1360 } 1361 } 1362 mutex_exit(&lwb->lwb_vdev_lock); 1363 } 1364 1365 static void 1366 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) 1367 { 1368 avl_tree_t *src = &lwb->lwb_vdev_tree; 1369 avl_tree_t *dst = &nlwb->lwb_vdev_tree; 1370 void *cookie = NULL; 1371 zil_vdev_node_t *zv; 1372 1373 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1374 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); 1375 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); 1376 1377 /* 1378 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does 1379 * not need the protection of lwb_vdev_lock (it will only be modified 1380 * while holding zilog->zl_lock) as its writes and those of its 1381 * children have all completed. The younger 'nlwb' may be waiting on 1382 * future writes to additional vdevs. 1383 */ 1384 mutex_enter(&nlwb->lwb_vdev_lock); 1385 /* 1386 * Tear down the 'lwb' vdev tree, ensuring that entries which do not 1387 * exist in 'nlwb' are moved to it, freeing any would-be duplicates. 1388 */ 1389 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { 1390 avl_index_t where; 1391 1392 if (avl_find(dst, zv, &where) == NULL) { 1393 avl_insert(dst, zv, where); 1394 } else { 1395 kmem_free(zv, sizeof (*zv)); 1396 } 1397 } 1398 mutex_exit(&nlwb->lwb_vdev_lock); 1399 } 1400 1401 void 1402 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) 1403 { 1404 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); 1405 } 1406 1407 /* 1408 * This function is a called after all vdevs associated with a given lwb 1409 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon 1410 * as the lwb write completes, if "zil_nocacheflush" is set. Further, 1411 * all "previous" lwb's will have completed before this function is 1412 * called; i.e. this function is called for all previous lwbs before 1413 * it's called for "this" lwb (enforced via zio the dependencies 1414 * configured in zil_lwb_set_zio_dependency()). 1415 * 1416 * The intention is for this function to be called as soon as the 1417 * contents of an lwb are considered "stable" on disk, and will survive 1418 * any sudden loss of power. At this point, any threads waiting for the 1419 * lwb to reach this state are signalled, and the "waiter" structures 1420 * are marked "done". 1421 */ 1422 static void 1423 zil_lwb_flush_vdevs_done(zio_t *zio) 1424 { 1425 lwb_t *lwb = zio->io_private; 1426 zilog_t *zilog = lwb->lwb_zilog; 1427 zil_commit_waiter_t *zcw; 1428 itx_t *itx; 1429 1430 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); 1431 1432 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; 1433 1434 mutex_enter(&zilog->zl_lock); 1435 1436 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; 1437 1438 lwb->lwb_root_zio = NULL; 1439 1440 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1441 lwb->lwb_state = LWB_STATE_FLUSH_DONE; 1442 1443 if (zilog->zl_last_lwb_opened == lwb) { 1444 /* 1445 * Remember the highest committed log sequence number 1446 * for ztest. We only update this value when all the log 1447 * writes succeeded, because ztest wants to ASSERT that 1448 * it got the whole log chain. 1449 */ 1450 zilog->zl_commit_lr_seq = zilog->zl_lr_seq; 1451 } 1452 1453 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL) 1454 zil_itx_destroy(itx); 1455 1456 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) { 1457 mutex_enter(&zcw->zcw_lock); 1458 1459 ASSERT3P(zcw->zcw_lwb, ==, lwb); 1460 zcw->zcw_lwb = NULL; 1461 /* 1462 * We expect any ZIO errors from child ZIOs to have been 1463 * propagated "up" to this specific LWB's root ZIO, in 1464 * order for this error handling to work correctly. This 1465 * includes ZIO errors from either this LWB's write or 1466 * flush, as well as any errors from other dependent LWBs 1467 * (e.g. a root LWB ZIO that might be a child of this LWB). 1468 * 1469 * With that said, it's important to note that LWB flush 1470 * errors are not propagated up to the LWB root ZIO. 1471 * This is incorrect behavior, and results in VDEV flush 1472 * errors not being handled correctly here. See the 1473 * comment above the call to "zio_flush" for details. 1474 */ 1475 1476 zcw->zcw_zio_error = zio->io_error; 1477 1478 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 1479 zcw->zcw_done = B_TRUE; 1480 cv_broadcast(&zcw->zcw_cv); 1481 1482 mutex_exit(&zcw->zcw_lock); 1483 } 1484 1485 uint64_t txg = lwb->lwb_issued_txg; 1486 1487 /* Once we drop the lock, lwb may be freed by zil_sync(). */ 1488 mutex_exit(&zilog->zl_lock); 1489 1490 mutex_enter(&zilog->zl_lwb_io_lock); 1491 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); 1492 zilog->zl_lwb_inflight[txg & TXG_MASK]--; 1493 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) 1494 cv_broadcast(&zilog->zl_lwb_io_cv); 1495 mutex_exit(&zilog->zl_lwb_io_lock); 1496 } 1497 1498 /* 1499 * Wait for the completion of all issued write/flush of that txg provided. 1500 * It guarantees zil_lwb_flush_vdevs_done() is called and returned. 1501 */ 1502 static void 1503 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) 1504 { 1505 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); 1506 1507 mutex_enter(&zilog->zl_lwb_io_lock); 1508 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) 1509 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); 1510 mutex_exit(&zilog->zl_lwb_io_lock); 1511 1512 #ifdef ZFS_DEBUG 1513 mutex_enter(&zilog->zl_lock); 1514 mutex_enter(&zilog->zl_lwb_io_lock); 1515 lwb_t *lwb = list_head(&zilog->zl_lwb_list); 1516 while (lwb != NULL) { 1517 if (lwb->lwb_issued_txg <= txg) { 1518 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); 1519 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); 1520 IMPLY(lwb->lwb_issued_txg > 0, 1521 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 1522 } 1523 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || 1524 lwb->lwb_state == LWB_STATE_FLUSH_DONE, 1525 lwb->lwb_buf == NULL); 1526 lwb = list_next(&zilog->zl_lwb_list, lwb); 1527 } 1528 mutex_exit(&zilog->zl_lwb_io_lock); 1529 mutex_exit(&zilog->zl_lock); 1530 #endif 1531 } 1532 1533 /* 1534 * This is called when an lwb's write zio completes. The callback's 1535 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs 1536 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved 1537 * in writing out this specific lwb's data, and in the case that cache 1538 * flushes have been deferred, vdevs involved in writing the data for 1539 * previous lwbs. The writes corresponding to all the vdevs in the 1540 * lwb_vdev_tree will have completed by the time this is called, due to 1541 * the zio dependencies configured in zil_lwb_set_zio_dependency(), 1542 * which takes deferred flushes into account. The lwb will be "done" 1543 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio 1544 * completion callback for the lwb's root zio. 1545 */ 1546 static void 1547 zil_lwb_write_done(zio_t *zio) 1548 { 1549 lwb_t *lwb = zio->io_private; 1550 spa_t *spa = zio->io_spa; 1551 zilog_t *zilog = lwb->lwb_zilog; 1552 avl_tree_t *t = &lwb->lwb_vdev_tree; 1553 void *cookie = NULL; 1554 zil_vdev_node_t *zv; 1555 lwb_t *nlwb; 1556 1557 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); 1558 1559 abd_free(zio->io_abd); 1560 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 1561 lwb->lwb_buf = NULL; 1562 1563 mutex_enter(&zilog->zl_lock); 1564 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); 1565 lwb->lwb_state = LWB_STATE_WRITE_DONE; 1566 lwb->lwb_child_zio = NULL; 1567 lwb->lwb_write_zio = NULL; 1568 1569 /* 1570 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not 1571 * called for it yet, and when it will be, it won't be able to make 1572 * its write ZIO a parent this ZIO. In such case we can not defer 1573 * our flushes or below may be a race between the done callbacks. 1574 */ 1575 nlwb = list_next(&zilog->zl_lwb_list, lwb); 1576 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED) 1577 nlwb = NULL; 1578 mutex_exit(&zilog->zl_lock); 1579 1580 if (avl_numnodes(t) == 0) 1581 return; 1582 1583 /* 1584 * If there was an IO error, we're not going to call zio_flush() 1585 * on these vdevs, so we simply empty the tree and free the 1586 * nodes. We avoid calling zio_flush() since there isn't any 1587 * good reason for doing so, after the lwb block failed to be 1588 * written out. 1589 * 1590 * Additionally, we don't perform any further error handling at 1591 * this point (e.g. setting "zcw_zio_error" appropriately), as 1592 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, 1593 * we expect any error seen here, to have been propagated to 1594 * that function). 1595 */ 1596 if (zio->io_error != 0) { 1597 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) 1598 kmem_free(zv, sizeof (*zv)); 1599 return; 1600 } 1601 1602 /* 1603 * If this lwb does not have any threads waiting for it to 1604 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE 1605 * command to the vdevs written to by "this" lwb, and instead 1606 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE 1607 * command for those vdevs. Thus, we merge the vdev tree of 1608 * "this" lwb with the vdev tree of the "next" lwb in the list, 1609 * and assume the "next" lwb will handle flushing the vdevs (or 1610 * deferring the flush(s) again). 1611 * 1612 * This is a useful performance optimization, especially for 1613 * workloads with lots of async write activity and few sync 1614 * write and/or fsync activity, as it has the potential to 1615 * coalesce multiple flush commands to a vdev into one. 1616 */ 1617 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { 1618 zil_lwb_flush_defer(lwb, nlwb); 1619 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); 1620 return; 1621 } 1622 1623 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { 1624 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); 1625 if (vd != NULL) { 1626 /* 1627 * The "ZIO_FLAG_DONT_PROPAGATE" is currently 1628 * always used within "zio_flush". This means, 1629 * any errors when flushing the vdev(s), will 1630 * (unfortunately) not be handled correctly, 1631 * since these "zio_flush" errors will not be 1632 * propagated up to "zil_lwb_flush_vdevs_done". 1633 */ 1634 zio_flush(lwb->lwb_root_zio, vd); 1635 } 1636 kmem_free(zv, sizeof (*zv)); 1637 } 1638 } 1639 1640 /* 1641 * Build the zio dependency chain, which is used to preserve the ordering of 1642 * lwb completions that is required by the semantics of the ZIL. Each new lwb 1643 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio 1644 * cannot complete until the previous lwb's zio completes. 1645 * 1646 * This is required by the semantics of zil_commit(): the commit waiters 1647 * attached to the lwbs will be woken in the lwb zio's completion callback, 1648 * so this zio dependency graph ensures the waiters are woken in the correct 1649 * order (the same order the lwbs were created). 1650 */ 1651 static void 1652 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) 1653 { 1654 ASSERT(MUTEX_HELD(&zilog->zl_lock)); 1655 1656 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb); 1657 if (prev_lwb == NULL || 1658 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE) 1659 return; 1660 1661 /* 1662 * If the previous lwb's write hasn't already completed, we also want 1663 * to order the completion of the lwb write zios (above, we only order 1664 * the completion of the lwb root zios). This is required because of 1665 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb. 1666 * 1667 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous 1668 * lwb will rely on this lwb to flush the vdevs written to by that 1669 * previous lwb. Thus, we need to ensure this lwb doesn't issue the 1670 * flush until after the previous lwb's write completes. We ensure 1671 * this ordering by setting the zio parent/child relationship here. 1672 * 1673 * Without this relationship on the lwb's write zio, it's possible 1674 * for this lwb's write to complete prior to the previous lwb's write 1675 * completing; and thus, the vdevs for the previous lwb would be 1676 * flushed prior to that lwb's data being written to those vdevs (the 1677 * vdevs are flushed in the lwb write zio's completion handler, 1678 * zil_lwb_write_done()). 1679 */ 1680 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) { 1681 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL); 1682 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio); 1683 } else { 1684 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); 1685 } 1686 1687 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL); 1688 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio); 1689 } 1690 1691 1692 /* 1693 * This function's purpose is to "open" an lwb such that it is ready to 1694 * accept new itxs being committed to it. This function is idempotent; if 1695 * the passed in lwb has already been opened, it is essentially a no-op. 1696 */ 1697 static void 1698 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) 1699 { 1700 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1701 1702 if (lwb->lwb_state != LWB_STATE_NEW) { 1703 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1704 return; 1705 } 1706 1707 mutex_enter(&zilog->zl_lock); 1708 lwb->lwb_state = LWB_STATE_OPENED; 1709 zilog->zl_last_lwb_opened = lwb; 1710 mutex_exit(&zilog->zl_lock); 1711 } 1712 1713 /* 1714 * Define a limited set of intent log block sizes. 1715 * 1716 * These must be a multiple of 4KB. Note only the amount used (again 1717 * aligned to 4KB) actually gets written. However, we can't always just 1718 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. 1719 */ 1720 static const struct { 1721 uint64_t limit; 1722 uint64_t blksz; 1723 } zil_block_buckets[] = { 1724 { 4096, 4096 }, /* non TX_WRITE */ 1725 { 8192 + 4096, 8192 + 4096 }, /* database */ 1726 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ 1727 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ 1728 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ 1729 }; 1730 1731 /* 1732 * Maximum block size used by the ZIL. This is picked up when the ZIL is 1733 * initialized. Otherwise this should not be used directly; see 1734 * zl_max_block_size instead. 1735 */ 1736 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; 1737 1738 /* 1739 * Close the log block for being issued and allocate the next one. 1740 * Has to be called under zl_issuer_lock to chain more lwbs. 1741 */ 1742 static lwb_t * 1743 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state) 1744 { 1745 int i; 1746 1747 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 1748 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); 1749 lwb->lwb_state = LWB_STATE_CLOSED; 1750 1751 /* 1752 * If there was an allocation failure then returned NULL will trigger 1753 * zil_commit_writer_stall() at the caller. This is inherently racy, 1754 * since allocation may not have happened yet. 1755 */ 1756 if (lwb->lwb_error != 0) 1757 return (NULL); 1758 1759 /* 1760 * Log blocks are pre-allocated. Here we select the size of the next 1761 * block, based on size used in the last block. 1762 * - first find the smallest bucket that will fit the block from a 1763 * limited set of block sizes. This is because it's faster to write 1764 * blocks allocated from the same metaslab as they are adjacent or 1765 * close. 1766 * - next find the maximum from the new suggested size and an array of 1767 * previous sizes. This lessens a picket fence effect of wrongly 1768 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k 1769 * requests. 1770 * 1771 * Note we only write what is used, but we can't just allocate 1772 * the maximum block size because we can exhaust the available 1773 * pool log space. 1774 */ 1775 uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); 1776 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) 1777 continue; 1778 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); 1779 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; 1780 for (i = 0; i < ZIL_PREV_BLKS; i++) 1781 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); 1782 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, 1783 uint64_t, zil_blksz, 1784 uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]); 1785 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); 1786 1787 return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state)); 1788 } 1789 1790 /* 1791 * Finalize previously closed block and issue the write zio. 1792 */ 1793 static void 1794 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) 1795 { 1796 spa_t *spa = zilog->zl_spa; 1797 zil_chain_t *zilc; 1798 boolean_t slog; 1799 zbookmark_phys_t zb; 1800 zio_priority_t prio; 1801 int error; 1802 1803 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 1804 1805 /* Actually fill the lwb with the data. */ 1806 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; 1807 itx = list_next(&lwb->lwb_itxs, itx)) 1808 zil_lwb_commit(zilog, lwb, itx); 1809 lwb->lwb_nused = lwb->lwb_nfilled; 1810 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 1811 1812 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb, 1813 ZIO_FLAG_CANFAIL); 1814 1815 /* 1816 * The lwb is now ready to be issued, but it can be only if it already 1817 * got its block pointer allocated or the allocation has failed. 1818 * Otherwise leave it as-is, relying on some other thread to issue it 1819 * after allocating its block pointer via calling zil_lwb_write_issue() 1820 * for the previous lwb(s) in the chain. 1821 */ 1822 mutex_enter(&zilog->zl_lock); 1823 lwb->lwb_state = LWB_STATE_READY; 1824 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) { 1825 mutex_exit(&zilog->zl_lock); 1826 return; 1827 } 1828 mutex_exit(&zilog->zl_lock); 1829 1830 next_lwb: 1831 if (lwb->lwb_slim) 1832 zilc = (zil_chain_t *)lwb->lwb_buf; 1833 else 1834 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax); 1835 int wsz = lwb->lwb_sz; 1836 if (lwb->lwb_error == 0) { 1837 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz); 1838 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) 1839 prio = ZIO_PRIORITY_SYNC_WRITE; 1840 else 1841 prio = ZIO_PRIORITY_ASYNC_WRITE; 1842 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], 1843 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, 1844 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); 1845 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0, 1846 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done, 1847 lwb, prio, ZIO_FLAG_CANFAIL, &zb); 1848 zil_lwb_add_block(lwb, &lwb->lwb_blk); 1849 1850 if (lwb->lwb_slim) { 1851 /* For Slim ZIL only write what is used. */ 1852 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, 1853 int); 1854 ASSERT3S(wsz, <=, lwb->lwb_sz); 1855 zio_shrink(lwb->lwb_write_zio, wsz); 1856 wsz = lwb->lwb_write_zio->io_size; 1857 } 1858 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); 1859 zilc->zc_pad = 0; 1860 zilc->zc_nused = lwb->lwb_nused; 1861 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; 1862 } else { 1863 /* 1864 * We can't write the lwb if there was an allocation failure, 1865 * so create a null zio instead just to maintain dependencies. 1866 */ 1867 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL, 1868 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL); 1869 lwb->lwb_write_zio->io_error = lwb->lwb_error; 1870 } 1871 if (lwb->lwb_child_zio) 1872 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio); 1873 1874 /* 1875 * Open transaction to allocate the next block pointer. 1876 */ 1877 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 1878 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 1879 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 1880 uint64_t txg = dmu_tx_get_txg(tx); 1881 1882 /* 1883 * Allocate next the block pointer unless we are already in error. 1884 */ 1885 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb); 1886 blkptr_t *bp = &zilc->zc_next_blk; 1887 BP_ZERO(bp); 1888 error = lwb->lwb_error; 1889 if (error == 0) { 1890 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz, 1891 &slog); 1892 } 1893 if (error == 0) { 1894 ASSERT3U(bp->blk_birth, ==, txg); 1895 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 : 1896 ZIO_CHECKSUM_ZILOG); 1897 bp->blk_cksum = lwb->lwb_blk.blk_cksum; 1898 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; 1899 } 1900 1901 /* 1902 * Reduce TXG open time by incrementing inflight counter and committing 1903 * the transaciton. zil_sync() will wait for it to return to zero. 1904 */ 1905 mutex_enter(&zilog->zl_lwb_io_lock); 1906 lwb->lwb_issued_txg = txg; 1907 zilog->zl_lwb_inflight[txg & TXG_MASK]++; 1908 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); 1909 mutex_exit(&zilog->zl_lwb_io_lock); 1910 dmu_tx_commit(tx); 1911 1912 spa_config_enter(spa, SCL_STATE, lwb, RW_READER); 1913 1914 /* 1915 * We've completed all potentially blocking operations. Update the 1916 * nlwb and allow it proceed without possible lock order reversals. 1917 */ 1918 mutex_enter(&zilog->zl_lock); 1919 zil_lwb_set_zio_dependency(zilog, lwb); 1920 lwb->lwb_state = LWB_STATE_ISSUED; 1921 1922 if (nlwb) { 1923 nlwb->lwb_blk = *bp; 1924 nlwb->lwb_error = error; 1925 nlwb->lwb_slog = slog; 1926 nlwb->lwb_alloc_txg = txg; 1927 if (nlwb->lwb_state != LWB_STATE_READY) 1928 nlwb = NULL; 1929 } 1930 mutex_exit(&zilog->zl_lock); 1931 1932 if (lwb->lwb_slog) { 1933 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); 1934 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, 1935 lwb->lwb_nused); 1936 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, 1937 wsz); 1938 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, 1939 BP_GET_LSIZE(&lwb->lwb_blk)); 1940 } else { 1941 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); 1942 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, 1943 lwb->lwb_nused); 1944 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, 1945 wsz); 1946 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, 1947 BP_GET_LSIZE(&lwb->lwb_blk)); 1948 } 1949 lwb->lwb_issued_timestamp = gethrtime(); 1950 if (lwb->lwb_child_zio) 1951 zio_nowait(lwb->lwb_child_zio); 1952 zio_nowait(lwb->lwb_write_zio); 1953 zio_nowait(lwb->lwb_root_zio); 1954 1955 /* 1956 * If nlwb was ready when we gave it the block pointer, 1957 * it is on us to issue it and possibly following ones. 1958 */ 1959 lwb = nlwb; 1960 if (lwb) 1961 goto next_lwb; 1962 } 1963 1964 /* 1965 * Maximum amount of data that can be put into single log block. 1966 */ 1967 uint64_t 1968 zil_max_log_data(zilog_t *zilog, size_t hdrsize) 1969 { 1970 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); 1971 } 1972 1973 /* 1974 * Maximum amount of log space we agree to waste to reduce number of 1975 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%). 1976 */ 1977 static inline uint64_t 1978 zil_max_waste_space(zilog_t *zilog) 1979 { 1980 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16); 1981 } 1982 1983 /* 1984 * Maximum amount of write data for WR_COPIED. For correctness, consumers 1985 * must fall back to WR_NEED_COPY if we can't fit the entire record into one 1986 * maximum sized log block, because each WR_COPIED record must fit in a 1987 * single log block. Below that it is a tradeoff of additional memory copy 1988 * and possibly worse log space efficiency vs additional range lock/unlock. 1989 */ 1990 static uint_t zil_maxcopied = 7680; 1991 1992 uint64_t 1993 zil_max_copied_data(zilog_t *zilog) 1994 { 1995 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 1996 return (MIN(max_data, zil_maxcopied)); 1997 } 1998 1999 /* 2000 * Estimate space needed in the lwb for the itx. Allocate more lwbs or 2001 * split the itx as needed, but don't touch the actual transaction data. 2002 * Has to be called under zl_issuer_lock to call zil_lwb_write_close() 2003 * to chain more lwbs. 2004 */ 2005 static lwb_t * 2006 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) 2007 { 2008 itx_t *citx; 2009 lr_t *lr, *clr; 2010 lr_write_t *lrw; 2011 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; 2012 2013 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2014 ASSERT3P(lwb, !=, NULL); 2015 ASSERT3P(lwb->lwb_buf, !=, NULL); 2016 2017 zil_lwb_write_open(zilog, lwb); 2018 2019 lr = &itx->itx_lr; 2020 lrw = (lr_write_t *)lr; 2021 2022 /* 2023 * A commit itx doesn't represent any on-disk state; instead 2024 * it's simply used as a place holder on the commit list, and 2025 * provides a mechanism for attaching a "commit waiter" onto the 2026 * correct lwb (such that the waiter can be signalled upon 2027 * completion of that lwb). Thus, we don't process this itx's 2028 * log record if it's a commit itx (these itx's don't have log 2029 * records), and instead link the itx's waiter onto the lwb's 2030 * list of waiters. 2031 * 2032 * For more details, see the comment above zil_commit(). 2033 */ 2034 if (lr->lrc_txtype == TX_COMMIT) { 2035 zil_commit_waiter_link_lwb(itx->itx_private, lwb); 2036 list_insert_tail(&lwb->lwb_itxs, itx); 2037 return (lwb); 2038 } 2039 2040 reclen = lr->lrc_reclen; 2041 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2042 ASSERT3U(reclen, ==, sizeof (lr_write_t)); 2043 dlen = P2ROUNDUP_TYPED( 2044 lrw->lr_length, sizeof (uint64_t), uint64_t); 2045 } else { 2046 ASSERT3U(reclen, >=, sizeof (lr_t)); 2047 dlen = 0; 2048 } 2049 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0)); 2050 zilog->zl_cur_used += (reclen + dlen); 2051 2052 cont: 2053 /* 2054 * If this record won't fit in the current log block, start a new one. 2055 * For WR_NEED_COPY optimize layout for minimal number of chunks. 2056 */ 2057 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2058 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); 2059 if (reclen > lwb_sp || (reclen + dlen > lwb_sp && 2060 lwb_sp < zil_max_waste_space(zilog) && 2061 (dlen % max_log_data == 0 || 2062 lwb_sp < reclen + dlen % max_log_data))) { 2063 list_insert_tail(ilwbs, lwb); 2064 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED); 2065 if (lwb == NULL) 2066 return (NULL); 2067 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused; 2068 } 2069 2070 /* 2071 * There must be enough space in the log block to hold reclen. 2072 * For WR_COPIED, we need to fit the whole record in one block, 2073 * and reclen is the write record header size + the data size. 2074 * For WR_NEED_COPY, we can create multiple records, splitting 2075 * the data into multiple blocks, so we only need to fit one 2076 * word of data per block; in this case reclen is just the header 2077 * size (no data). 2078 */ 2079 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); 2080 2081 dnow = MIN(dlen, lwb_sp - reclen); 2082 if (dlen > dnow) { 2083 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); 2084 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); 2085 citx = zil_itx_clone(itx); 2086 clr = &citx->itx_lr; 2087 lr_write_t *clrw = (lr_write_t *)clr; 2088 clrw->lr_length = dnow; 2089 lrw->lr_offset += dnow; 2090 lrw->lr_length -= dnow; 2091 } else { 2092 citx = itx; 2093 clr = lr; 2094 } 2095 2096 /* 2097 * We're actually making an entry, so update lrc_seq to be the 2098 * log record sequence number. Note that this is generally not 2099 * equal to the itx sequence number because not all transactions 2100 * are synchronous, and sometimes spa_sync() gets there first. 2101 */ 2102 clr->lrc_seq = ++zilog->zl_lr_seq; 2103 2104 lwb->lwb_nused += reclen + dnow; 2105 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax); 2106 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); 2107 2108 zil_lwb_add_txg(lwb, lr->lrc_txg); 2109 list_insert_tail(&lwb->lwb_itxs, citx); 2110 2111 dlen -= dnow; 2112 if (dlen > 0) { 2113 zilog->zl_cur_used += reclen; 2114 goto cont; 2115 } 2116 2117 if (lr->lrc_txtype == TX_WRITE && 2118 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa)) 2119 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); 2120 2121 return (lwb); 2122 } 2123 2124 /* 2125 * Fill the actual transaction data into the lwb, following zil_lwb_assign(). 2126 * Does not require locking. 2127 */ 2128 static void 2129 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) 2130 { 2131 lr_t *lr, *lrb; 2132 lr_write_t *lrw, *lrwb; 2133 char *lr_buf; 2134 uint64_t dlen, reclen; 2135 2136 lr = &itx->itx_lr; 2137 lrw = (lr_write_t *)lr; 2138 2139 if (lr->lrc_txtype == TX_COMMIT) 2140 return; 2141 2142 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { 2143 dlen = P2ROUNDUP_TYPED( 2144 lrw->lr_length, sizeof (uint64_t), uint64_t); 2145 } else { 2146 dlen = 0; 2147 } 2148 reclen = lr->lrc_reclen; 2149 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); 2150 2151 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; 2152 memcpy(lr_buf, lr, reclen); 2153 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ 2154 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ 2155 2156 ZIL_STAT_BUMP(zilog, zil_itx_count); 2157 2158 /* 2159 * If it's a write, fetch the data or get its blkptr as appropriate. 2160 */ 2161 if (lr->lrc_txtype == TX_WRITE) { 2162 if (itx->itx_wr_state == WR_COPIED) { 2163 ZIL_STAT_BUMP(zilog, zil_itx_copied_count); 2164 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, 2165 lrw->lr_length); 2166 } else { 2167 char *dbuf; 2168 int error; 2169 2170 if (itx->itx_wr_state == WR_NEED_COPY) { 2171 dbuf = lr_buf + reclen; 2172 lrb->lrc_reclen += dlen; 2173 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); 2174 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, 2175 dlen); 2176 } else { 2177 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); 2178 dbuf = NULL; 2179 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); 2180 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, 2181 lrw->lr_length); 2182 if (lwb->lwb_child_zio == NULL) { 2183 lwb->lwb_child_zio = zio_null(NULL, 2184 zilog->zl_spa, NULL, NULL, NULL, 2185 ZIO_FLAG_CANFAIL); 2186 } 2187 } 2188 2189 /* 2190 * The "lwb_child_zio" we pass in will become a child of 2191 * "lwb_write_zio", when one is created, so one will be 2192 * a parent of any zio's created by the "zl_get_data". 2193 * This way "lwb_write_zio" will first wait for children 2194 * block pointers before own writing, and then for their 2195 * writing completion before the vdev cache flushing. 2196 */ 2197 error = zilog->zl_get_data(itx->itx_private, 2198 itx->itx_gen, lrwb, dbuf, lwb, 2199 lwb->lwb_child_zio); 2200 if (dbuf != NULL && error == 0) { 2201 /* Zero any padding bytes in the last block. */ 2202 memset((char *)dbuf + lrwb->lr_length, 0, 2203 dlen - lrwb->lr_length); 2204 } 2205 2206 /* 2207 * Typically, the only return values we should see from 2208 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or 2209 * EALREADY. However, it is also possible to see other 2210 * error values such as ENOSPC or EINVAL from 2211 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or 2212 * ENXIO as well as a multitude of others from the 2213 * block layer through dmu_buf_hold() -> dbuf_read() 2214 * -> zio_wait(), as well as through dmu_read() -> 2215 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> 2216 * zio_wait(). When these errors happen, we can assume 2217 * that neither an immediate write nor an indirect 2218 * write occurred, so we need to fall back to 2219 * txg_wait_synced(). This is unusual, so we print to 2220 * dmesg whenever one of these errors occurs. 2221 */ 2222 switch (error) { 2223 case 0: 2224 break; 2225 default: 2226 cmn_err(CE_WARN, "zil_lwb_commit() received " 2227 "unexpected error %d from ->zl_get_data()" 2228 ". Falling back to txg_wait_synced().", 2229 error); 2230 zfs_fallthrough; 2231 case EIO: 2232 txg_wait_synced(zilog->zl_dmu_pool, 2233 lr->lrc_txg); 2234 zfs_fallthrough; 2235 case ENOENT: 2236 zfs_fallthrough; 2237 case EEXIST: 2238 zfs_fallthrough; 2239 case EALREADY: 2240 return; 2241 } 2242 } 2243 } 2244 2245 lwb->lwb_nfilled += reclen + dlen; 2246 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); 2247 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); 2248 } 2249 2250 itx_t * 2251 zil_itx_create(uint64_t txtype, size_t olrsize) 2252 { 2253 size_t itxsize, lrsize; 2254 itx_t *itx; 2255 2256 ASSERT3U(olrsize, >=, sizeof (lr_t)); 2257 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); 2258 ASSERT3U(lrsize, >=, olrsize); 2259 itxsize = offsetof(itx_t, itx_lr) + lrsize; 2260 2261 itx = zio_data_buf_alloc(itxsize); 2262 itx->itx_lr.lrc_txtype = txtype; 2263 itx->itx_lr.lrc_reclen = lrsize; 2264 itx->itx_lr.lrc_seq = 0; /* defensive */ 2265 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); 2266 itx->itx_sync = B_TRUE; /* default is synchronous */ 2267 itx->itx_callback = NULL; 2268 itx->itx_callback_data = NULL; 2269 itx->itx_size = itxsize; 2270 2271 return (itx); 2272 } 2273 2274 static itx_t * 2275 zil_itx_clone(itx_t *oitx) 2276 { 2277 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t)); 2278 ASSERT3U(oitx->itx_size, ==, 2279 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen); 2280 2281 itx_t *itx = zio_data_buf_alloc(oitx->itx_size); 2282 memcpy(itx, oitx, oitx->itx_size); 2283 itx->itx_callback = NULL; 2284 itx->itx_callback_data = NULL; 2285 return (itx); 2286 } 2287 2288 void 2289 zil_itx_destroy(itx_t *itx) 2290 { 2291 ASSERT3U(itx->itx_size, >=, sizeof (itx_t)); 2292 ASSERT3U(itx->itx_lr.lrc_reclen, ==, 2293 itx->itx_size - offsetof(itx_t, itx_lr)); 2294 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); 2295 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2296 2297 if (itx->itx_callback != NULL) 2298 itx->itx_callback(itx->itx_callback_data); 2299 2300 zio_data_buf_free(itx, itx->itx_size); 2301 } 2302 2303 /* 2304 * Free up the sync and async itxs. The itxs_t has already been detached 2305 * so no locks are needed. 2306 */ 2307 static void 2308 zil_itxg_clean(void *arg) 2309 { 2310 itx_t *itx; 2311 list_t *list; 2312 avl_tree_t *t; 2313 void *cookie; 2314 itxs_t *itxs = arg; 2315 itx_async_node_t *ian; 2316 2317 list = &itxs->i_sync_list; 2318 while ((itx = list_remove_head(list)) != NULL) { 2319 /* 2320 * In the general case, commit itxs will not be found 2321 * here, as they'll be committed to an lwb via 2322 * zil_lwb_assign(), and free'd in that function. Having 2323 * said that, it is still possible for commit itxs to be 2324 * found here, due to the following race: 2325 * 2326 * - a thread calls zil_commit() which assigns the 2327 * commit itx to a per-txg i_sync_list 2328 * - zil_itxg_clean() is called (e.g. via spa_sync()) 2329 * while the waiter is still on the i_sync_list 2330 * 2331 * There's nothing to prevent syncing the txg while the 2332 * waiter is on the i_sync_list. This normally doesn't 2333 * happen because spa_sync() is slower than zil_commit(), 2334 * but if zil_commit() calls txg_wait_synced() (e.g. 2335 * because zil_create() or zil_commit_writer_stall() is 2336 * called) we will hit this case. 2337 */ 2338 if (itx->itx_lr.lrc_txtype == TX_COMMIT) 2339 zil_commit_waiter_skip(itx->itx_private); 2340 2341 zil_itx_destroy(itx); 2342 } 2343 2344 cookie = NULL; 2345 t = &itxs->i_async_tree; 2346 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2347 list = &ian->ia_list; 2348 while ((itx = list_remove_head(list)) != NULL) { 2349 /* commit itxs should never be on the async lists. */ 2350 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2351 zil_itx_destroy(itx); 2352 } 2353 list_destroy(list); 2354 kmem_free(ian, sizeof (itx_async_node_t)); 2355 } 2356 avl_destroy(t); 2357 2358 kmem_free(itxs, sizeof (itxs_t)); 2359 } 2360 2361 static int 2362 zil_aitx_compare(const void *x1, const void *x2) 2363 { 2364 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; 2365 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; 2366 2367 return (TREE_CMP(o1, o2)); 2368 } 2369 2370 /* 2371 * Remove all async itx with the given oid. 2372 */ 2373 void 2374 zil_remove_async(zilog_t *zilog, uint64_t oid) 2375 { 2376 uint64_t otxg, txg; 2377 itx_async_node_t *ian, ian_search; 2378 avl_tree_t *t; 2379 avl_index_t where; 2380 list_t clean_list; 2381 itx_t *itx; 2382 2383 ASSERT(oid != 0); 2384 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); 2385 2386 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2387 otxg = ZILTEST_TXG; 2388 else 2389 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2390 2391 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2392 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2393 2394 mutex_enter(&itxg->itxg_lock); 2395 if (itxg->itxg_txg != txg) { 2396 mutex_exit(&itxg->itxg_lock); 2397 continue; 2398 } 2399 2400 /* 2401 * Locate the object node and append its list. 2402 */ 2403 t = &itxg->itxg_itxs->i_async_tree; 2404 ian_search.ia_foid = oid; 2405 ian = avl_find(t, &ian_search, &where); 2406 if (ian != NULL) 2407 list_move_tail(&clean_list, &ian->ia_list); 2408 mutex_exit(&itxg->itxg_lock); 2409 } 2410 while ((itx = list_remove_head(&clean_list)) != NULL) { 2411 /* commit itxs should never be on the async lists. */ 2412 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); 2413 zil_itx_destroy(itx); 2414 } 2415 list_destroy(&clean_list); 2416 } 2417 2418 void 2419 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) 2420 { 2421 uint64_t txg; 2422 itxg_t *itxg; 2423 itxs_t *itxs, *clean = NULL; 2424 2425 /* 2426 * Ensure the data of a renamed file is committed before the rename. 2427 */ 2428 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) 2429 zil_async_to_sync(zilog, itx->itx_oid); 2430 2431 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) 2432 txg = ZILTEST_TXG; 2433 else 2434 txg = dmu_tx_get_txg(tx); 2435 2436 itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2437 mutex_enter(&itxg->itxg_lock); 2438 itxs = itxg->itxg_itxs; 2439 if (itxg->itxg_txg != txg) { 2440 if (itxs != NULL) { 2441 /* 2442 * The zil_clean callback hasn't got around to cleaning 2443 * this itxg. Save the itxs for release below. 2444 * This should be rare. 2445 */ 2446 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " 2447 "txg %llu", (u_longlong_t)itxg->itxg_txg); 2448 clean = itxg->itxg_itxs; 2449 } 2450 itxg->itxg_txg = txg; 2451 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), 2452 KM_SLEEP); 2453 2454 list_create(&itxs->i_sync_list, sizeof (itx_t), 2455 offsetof(itx_t, itx_node)); 2456 avl_create(&itxs->i_async_tree, zil_aitx_compare, 2457 sizeof (itx_async_node_t), 2458 offsetof(itx_async_node_t, ia_node)); 2459 } 2460 if (itx->itx_sync) { 2461 list_insert_tail(&itxs->i_sync_list, itx); 2462 } else { 2463 avl_tree_t *t = &itxs->i_async_tree; 2464 uint64_t foid = 2465 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); 2466 itx_async_node_t *ian; 2467 avl_index_t where; 2468 2469 ian = avl_find(t, &foid, &where); 2470 if (ian == NULL) { 2471 ian = kmem_alloc(sizeof (itx_async_node_t), 2472 KM_SLEEP); 2473 list_create(&ian->ia_list, sizeof (itx_t), 2474 offsetof(itx_t, itx_node)); 2475 ian->ia_foid = foid; 2476 avl_insert(t, ian, where); 2477 } 2478 list_insert_tail(&ian->ia_list, itx); 2479 } 2480 2481 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); 2482 2483 /* 2484 * We don't want to dirty the ZIL using ZILTEST_TXG, because 2485 * zil_clean() will never be called using ZILTEST_TXG. Thus, we 2486 * need to be careful to always dirty the ZIL using the "real" 2487 * TXG (not itxg_txg) even when the SPA is frozen. 2488 */ 2489 zilog_dirty(zilog, dmu_tx_get_txg(tx)); 2490 mutex_exit(&itxg->itxg_lock); 2491 2492 /* Release the old itxs now we've dropped the lock */ 2493 if (clean != NULL) 2494 zil_itxg_clean(clean); 2495 } 2496 2497 /* 2498 * If there are any in-memory intent log transactions which have now been 2499 * synced then start up a taskq to free them. We should only do this after we 2500 * have written out the uberblocks (i.e. txg has been committed) so that 2501 * don't inadvertently clean out in-memory log records that would be required 2502 * by zil_commit(). 2503 */ 2504 void 2505 zil_clean(zilog_t *zilog, uint64_t synced_txg) 2506 { 2507 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; 2508 itxs_t *clean_me; 2509 2510 ASSERT3U(synced_txg, <, ZILTEST_TXG); 2511 2512 mutex_enter(&itxg->itxg_lock); 2513 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { 2514 mutex_exit(&itxg->itxg_lock); 2515 return; 2516 } 2517 ASSERT3U(itxg->itxg_txg, <=, synced_txg); 2518 ASSERT3U(itxg->itxg_txg, !=, 0); 2519 clean_me = itxg->itxg_itxs; 2520 itxg->itxg_itxs = NULL; 2521 itxg->itxg_txg = 0; 2522 mutex_exit(&itxg->itxg_lock); 2523 /* 2524 * Preferably start a task queue to free up the old itxs but 2525 * if taskq_dispatch can't allocate resources to do that then 2526 * free it in-line. This should be rare. Note, using TQ_SLEEP 2527 * created a bad performance problem. 2528 */ 2529 ASSERT3P(zilog->zl_dmu_pool, !=, NULL); 2530 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); 2531 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, 2532 zil_itxg_clean, clean_me, TQ_NOSLEEP); 2533 if (id == TASKQID_INVALID) 2534 zil_itxg_clean(clean_me); 2535 } 2536 2537 /* 2538 * This function will traverse the queue of itxs that need to be 2539 * committed, and move them onto the ZIL's zl_itx_commit_list. 2540 */ 2541 static uint64_t 2542 zil_get_commit_list(zilog_t *zilog) 2543 { 2544 uint64_t otxg, txg, wtxg = 0; 2545 list_t *commit_list = &zilog->zl_itx_commit_list; 2546 2547 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2548 2549 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2550 otxg = ZILTEST_TXG; 2551 else 2552 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2553 2554 /* 2555 * This is inherently racy, since there is nothing to prevent 2556 * the last synced txg from changing. That's okay since we'll 2557 * only commit things in the future. 2558 */ 2559 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2560 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2561 2562 mutex_enter(&itxg->itxg_lock); 2563 if (itxg->itxg_txg != txg) { 2564 mutex_exit(&itxg->itxg_lock); 2565 continue; 2566 } 2567 2568 /* 2569 * If we're adding itx records to the zl_itx_commit_list, 2570 * then the zil better be dirty in this "txg". We can assert 2571 * that here since we're holding the itxg_lock which will 2572 * prevent spa_sync from cleaning it. Once we add the itxs 2573 * to the zl_itx_commit_list we must commit it to disk even 2574 * if it's unnecessary (i.e. the txg was synced). 2575 */ 2576 ASSERT(zilog_is_dirty_in_txg(zilog, txg) || 2577 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); 2578 list_t *sync_list = &itxg->itxg_itxs->i_sync_list; 2579 if (unlikely(zilog->zl_suspend > 0)) { 2580 /* 2581 * ZIL was just suspended, but we lost the race. 2582 * Allow all earlier itxs to be committed, but ask 2583 * caller to do txg_wait_synced(txg) for any new. 2584 */ 2585 if (!list_is_empty(sync_list)) 2586 wtxg = MAX(wtxg, txg); 2587 } else { 2588 list_move_tail(commit_list, sync_list); 2589 } 2590 2591 mutex_exit(&itxg->itxg_lock); 2592 } 2593 return (wtxg); 2594 } 2595 2596 /* 2597 * Move the async itxs for a specified object to commit into sync lists. 2598 */ 2599 void 2600 zil_async_to_sync(zilog_t *zilog, uint64_t foid) 2601 { 2602 uint64_t otxg, txg; 2603 itx_async_node_t *ian, ian_search; 2604 avl_tree_t *t; 2605 avl_index_t where; 2606 2607 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ 2608 otxg = ZILTEST_TXG; 2609 else 2610 otxg = spa_last_synced_txg(zilog->zl_spa) + 1; 2611 2612 /* 2613 * This is inherently racy, since there is nothing to prevent 2614 * the last synced txg from changing. 2615 */ 2616 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { 2617 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; 2618 2619 mutex_enter(&itxg->itxg_lock); 2620 if (itxg->itxg_txg != txg) { 2621 mutex_exit(&itxg->itxg_lock); 2622 continue; 2623 } 2624 2625 /* 2626 * If a foid is specified then find that node and append its 2627 * list. Otherwise walk the tree appending all the lists 2628 * to the sync list. We add to the end rather than the 2629 * beginning to ensure the create has happened. 2630 */ 2631 t = &itxg->itxg_itxs->i_async_tree; 2632 if (foid != 0) { 2633 ian_search.ia_foid = foid; 2634 ian = avl_find(t, &ian_search, &where); 2635 if (ian != NULL) { 2636 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2637 &ian->ia_list); 2638 } 2639 } else { 2640 void *cookie = NULL; 2641 2642 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { 2643 list_move_tail(&itxg->itxg_itxs->i_sync_list, 2644 &ian->ia_list); 2645 list_destroy(&ian->ia_list); 2646 kmem_free(ian, sizeof (itx_async_node_t)); 2647 } 2648 } 2649 mutex_exit(&itxg->itxg_lock); 2650 } 2651 } 2652 2653 /* 2654 * This function will prune commit itxs that are at the head of the 2655 * commit list (it won't prune past the first non-commit itx), and 2656 * either: a) attach them to the last lwb that's still pending 2657 * completion, or b) skip them altogether. 2658 * 2659 * This is used as a performance optimization to prevent commit itxs 2660 * from generating new lwbs when it's unnecessary to do so. 2661 */ 2662 static void 2663 zil_prune_commit_list(zilog_t *zilog) 2664 { 2665 itx_t *itx; 2666 2667 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2668 2669 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { 2670 lr_t *lrc = &itx->itx_lr; 2671 if (lrc->lrc_txtype != TX_COMMIT) 2672 break; 2673 2674 mutex_enter(&zilog->zl_lock); 2675 2676 lwb_t *last_lwb = zilog->zl_last_lwb_opened; 2677 if (last_lwb == NULL || 2678 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { 2679 /* 2680 * All of the itxs this waiter was waiting on 2681 * must have already completed (or there were 2682 * never any itx's for it to wait on), so it's 2683 * safe to skip this waiter and mark it done. 2684 */ 2685 zil_commit_waiter_skip(itx->itx_private); 2686 } else { 2687 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); 2688 } 2689 2690 mutex_exit(&zilog->zl_lock); 2691 2692 list_remove(&zilog->zl_itx_commit_list, itx); 2693 zil_itx_destroy(itx); 2694 } 2695 2696 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); 2697 } 2698 2699 static void 2700 zil_commit_writer_stall(zilog_t *zilog) 2701 { 2702 /* 2703 * When zio_alloc_zil() fails to allocate the next lwb block on 2704 * disk, we must call txg_wait_synced() to ensure all of the 2705 * lwbs in the zilog's zl_lwb_list are synced and then freed (in 2706 * zil_sync()), such that any subsequent ZIL writer (i.e. a call 2707 * to zil_process_commit_list()) will have to call zil_create(), 2708 * and start a new ZIL chain. 2709 * 2710 * Since zil_alloc_zil() failed, the lwb that was previously 2711 * issued does not have a pointer to the "next" lwb on disk. 2712 * Thus, if another ZIL writer thread was to allocate the "next" 2713 * on-disk lwb, that block could be leaked in the event of a 2714 * crash (because the previous lwb on-disk would not point to 2715 * it). 2716 * 2717 * We must hold the zilog's zl_issuer_lock while we do this, to 2718 * ensure no new threads enter zil_process_commit_list() until 2719 * all lwb's in the zl_lwb_list have been synced and freed 2720 * (which is achieved via the txg_wait_synced() call). 2721 */ 2722 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2723 txg_wait_synced(zilog->zl_dmu_pool, 0); 2724 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 2725 } 2726 2727 static void 2728 zil_burst_done(zilog_t *zilog) 2729 { 2730 if (!list_is_empty(&zilog->zl_itx_commit_list) || 2731 zilog->zl_cur_used == 0) 2732 return; 2733 2734 if (zilog->zl_parallel) 2735 zilog->zl_parallel--; 2736 2737 zilog->zl_cur_used = 0; 2738 } 2739 2740 /* 2741 * This function will traverse the commit list, creating new lwbs as 2742 * needed, and committing the itxs from the commit list to these newly 2743 * created lwbs. Additionally, as a new lwb is created, the previous 2744 * lwb will be issued to the zio layer to be written to disk. 2745 */ 2746 static void 2747 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) 2748 { 2749 spa_t *spa = zilog->zl_spa; 2750 list_t nolwb_itxs; 2751 list_t nolwb_waiters; 2752 lwb_t *lwb, *plwb; 2753 itx_t *itx; 2754 2755 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); 2756 2757 /* 2758 * Return if there's nothing to commit before we dirty the fs by 2759 * calling zil_create(). 2760 */ 2761 if (list_is_empty(&zilog->zl_itx_commit_list)) 2762 return; 2763 2764 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 2765 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), 2766 offsetof(zil_commit_waiter_t, zcw_node)); 2767 2768 lwb = list_tail(&zilog->zl_lwb_list); 2769 if (lwb == NULL) { 2770 lwb = zil_create(zilog); 2771 } else { 2772 /* 2773 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will 2774 * have already been created (zl_lwb_list not empty). 2775 */ 2776 zil_commit_activate_saxattr_feature(zilog); 2777 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2778 lwb->lwb_state == LWB_STATE_OPENED); 2779 2780 /* 2781 * If the lwb is still opened, it means the workload is really 2782 * multi-threaded and we won the chance of write aggregation. 2783 * If it is not opened yet, but previous lwb is still not 2784 * flushed, it still means the workload is multi-threaded, but 2785 * there was too much time between the commits to aggregate, so 2786 * we try aggregation next times, but without too much hopes. 2787 */ 2788 if (lwb->lwb_state == LWB_STATE_OPENED) { 2789 zilog->zl_parallel = ZIL_BURSTS; 2790 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) 2791 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) { 2792 zilog->zl_parallel = MAX(zilog->zl_parallel, 2793 ZIL_BURSTS / 2); 2794 } 2795 } 2796 2797 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { 2798 lr_t *lrc = &itx->itx_lr; 2799 uint64_t txg = lrc->lrc_txg; 2800 2801 ASSERT3U(txg, !=, 0); 2802 2803 if (lrc->lrc_txtype == TX_COMMIT) { 2804 DTRACE_PROBE2(zil__process__commit__itx, 2805 zilog_t *, zilog, itx_t *, itx); 2806 } else { 2807 DTRACE_PROBE2(zil__process__normal__itx, 2808 zilog_t *, zilog, itx_t *, itx); 2809 } 2810 2811 boolean_t synced = txg <= spa_last_synced_txg(spa); 2812 boolean_t frozen = txg > spa_freeze_txg(spa); 2813 2814 /* 2815 * If the txg of this itx has already been synced out, then 2816 * we don't need to commit this itx to an lwb. This is 2817 * because the data of this itx will have already been 2818 * written to the main pool. This is inherently racy, and 2819 * it's still ok to commit an itx whose txg has already 2820 * been synced; this will result in a write that's 2821 * unnecessary, but will do no harm. 2822 * 2823 * With that said, we always want to commit TX_COMMIT itxs 2824 * to an lwb, regardless of whether or not that itx's txg 2825 * has been synced out. We do this to ensure any OPENED lwb 2826 * will always have at least one zil_commit_waiter_t linked 2827 * to the lwb. 2828 * 2829 * As a counter-example, if we skipped TX_COMMIT itx's 2830 * whose txg had already been synced, the following 2831 * situation could occur if we happened to be racing with 2832 * spa_sync: 2833 * 2834 * 1. We commit a non-TX_COMMIT itx to an lwb, where the 2835 * itx's txg is 10 and the last synced txg is 9. 2836 * 2. spa_sync finishes syncing out txg 10. 2837 * 3. We move to the next itx in the list, it's a TX_COMMIT 2838 * whose txg is 10, so we skip it rather than committing 2839 * it to the lwb used in (1). 2840 * 2841 * If the itx that is skipped in (3) is the last TX_COMMIT 2842 * itx in the commit list, than it's possible for the lwb 2843 * used in (1) to remain in the OPENED state indefinitely. 2844 * 2845 * To prevent the above scenario from occurring, ensuring 2846 * that once an lwb is OPENED it will transition to ISSUED 2847 * and eventually DONE, we always commit TX_COMMIT itx's to 2848 * an lwb here, even if that itx's txg has already been 2849 * synced. 2850 * 2851 * Finally, if the pool is frozen, we _always_ commit the 2852 * itx. The point of freezing the pool is to prevent data 2853 * from being written to the main pool via spa_sync, and 2854 * instead rely solely on the ZIL to persistently store the 2855 * data; i.e. when the pool is frozen, the last synced txg 2856 * value can't be trusted. 2857 */ 2858 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { 2859 if (lwb != NULL) { 2860 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); 2861 if (lwb == NULL) { 2862 list_insert_tail(&nolwb_itxs, itx); 2863 } else if ((zcw->zcw_lwb != NULL && 2864 zcw->zcw_lwb != lwb) || zcw->zcw_done) { 2865 /* 2866 * Our lwb is done, leave the rest of 2867 * itx list to somebody else who care. 2868 */ 2869 zilog->zl_parallel = ZIL_BURSTS; 2870 break; 2871 } 2872 } else { 2873 if (lrc->lrc_txtype == TX_COMMIT) { 2874 zil_commit_waiter_link_nolwb( 2875 itx->itx_private, &nolwb_waiters); 2876 } 2877 list_insert_tail(&nolwb_itxs, itx); 2878 } 2879 } else { 2880 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); 2881 zil_itx_destroy(itx); 2882 } 2883 } 2884 2885 if (lwb == NULL) { 2886 /* 2887 * This indicates zio_alloc_zil() failed to allocate the 2888 * "next" lwb on-disk. When this happens, we must stall 2889 * the ZIL write pipeline; see the comment within 2890 * zil_commit_writer_stall() for more details. 2891 */ 2892 while ((lwb = list_remove_head(ilwbs)) != NULL) 2893 zil_lwb_write_issue(zilog, lwb); 2894 zil_commit_writer_stall(zilog); 2895 2896 /* 2897 * Additionally, we have to signal and mark the "nolwb" 2898 * waiters as "done" here, since without an lwb, we 2899 * can't do this via zil_lwb_flush_vdevs_done() like 2900 * normal. 2901 */ 2902 zil_commit_waiter_t *zcw; 2903 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) 2904 zil_commit_waiter_skip(zcw); 2905 2906 /* 2907 * And finally, we have to destroy the itx's that 2908 * couldn't be committed to an lwb; this will also call 2909 * the itx's callback if one exists for the itx. 2910 */ 2911 while ((itx = list_remove_head(&nolwb_itxs)) != NULL) 2912 zil_itx_destroy(itx); 2913 } else { 2914 ASSERT(list_is_empty(&nolwb_waiters)); 2915 ASSERT3P(lwb, !=, NULL); 2916 ASSERT(lwb->lwb_state == LWB_STATE_NEW || 2917 lwb->lwb_state == LWB_STATE_OPENED); 2918 2919 /* 2920 * At this point, the ZIL block pointed at by the "lwb" 2921 * variable is in "new" or "opened" state. 2922 * 2923 * If it's "new", then no itxs have been committed to it, so 2924 * there's no point in issuing its zio (i.e. it's "empty"). 2925 * 2926 * If it's "opened", then it contains one or more itxs that 2927 * eventually need to be committed to stable storage. In 2928 * this case we intentionally do not issue the lwb's zio 2929 * to disk yet, and instead rely on one of the following 2930 * two mechanisms for issuing the zio: 2931 * 2932 * 1. Ideally, there will be more ZIL activity occurring on 2933 * the system, such that this function will be immediately 2934 * called again by different thread and this lwb will be 2935 * closed by zil_lwb_assign(). This way, the lwb will be 2936 * "full" when it is issued to disk, and we'll make use of 2937 * the lwb's size the best we can. 2938 * 2939 * 2. If there isn't sufficient ZIL activity occurring on 2940 * the system, zil_commit_waiter() will close it and issue 2941 * the zio. If this occurs, the lwb is not guaranteed 2942 * to be "full" by the time its zio is issued, and means 2943 * the size of the lwb was "too large" given the amount 2944 * of ZIL activity occurring on the system at that time. 2945 * 2946 * We do this for a couple of reasons: 2947 * 2948 * 1. To try and reduce the number of IOPs needed to 2949 * write the same number of itxs. If an lwb has space 2950 * available in its buffer for more itxs, and more itxs 2951 * will be committed relatively soon (relative to the 2952 * latency of performing a write), then it's beneficial 2953 * to wait for these "next" itxs. This way, more itxs 2954 * can be committed to stable storage with fewer writes. 2955 * 2956 * 2. To try and use the largest lwb block size that the 2957 * incoming rate of itxs can support. Again, this is to 2958 * try and pack as many itxs into as few lwbs as 2959 * possible, without significantly impacting the latency 2960 * of each individual itx. 2961 */ 2962 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) { 2963 list_insert_tail(ilwbs, lwb); 2964 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 2965 zil_burst_done(zilog); 2966 if (lwb == NULL) { 2967 while ((lwb = list_remove_head(ilwbs)) != NULL) 2968 zil_lwb_write_issue(zilog, lwb); 2969 zil_commit_writer_stall(zilog); 2970 } 2971 } 2972 } 2973 } 2974 2975 /* 2976 * This function is responsible for ensuring the passed in commit waiter 2977 * (and associated commit itx) is committed to an lwb. If the waiter is 2978 * not already committed to an lwb, all itxs in the zilog's queue of 2979 * itxs will be processed. The assumption is the passed in waiter's 2980 * commit itx will found in the queue just like the other non-commit 2981 * itxs, such that when the entire queue is processed, the waiter will 2982 * have been committed to an lwb. 2983 * 2984 * The lwb associated with the passed in waiter is not guaranteed to 2985 * have been issued by the time this function completes. If the lwb is 2986 * not issued, we rely on future calls to zil_commit_writer() to issue 2987 * the lwb, or the timeout mechanism found in zil_commit_waiter(). 2988 */ 2989 static uint64_t 2990 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) 2991 { 2992 list_t ilwbs; 2993 lwb_t *lwb; 2994 uint64_t wtxg = 0; 2995 2996 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 2997 ASSERT(spa_writeable(zilog->zl_spa)); 2998 2999 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); 3000 mutex_enter(&zilog->zl_issuer_lock); 3001 3002 if (zcw->zcw_lwb != NULL || zcw->zcw_done) { 3003 /* 3004 * It's possible that, while we were waiting to acquire 3005 * the "zl_issuer_lock", another thread committed this 3006 * waiter to an lwb. If that occurs, we bail out early, 3007 * without processing any of the zilog's queue of itxs. 3008 * 3009 * On certain workloads and system configurations, the 3010 * "zl_issuer_lock" can become highly contended. In an 3011 * attempt to reduce this contention, we immediately drop 3012 * the lock if the waiter has already been processed. 3013 * 3014 * We've measured this optimization to reduce CPU spent 3015 * contending on this lock by up to 5%, using a system 3016 * with 32 CPUs, low latency storage (~50 usec writes), 3017 * and 1024 threads performing sync writes. 3018 */ 3019 goto out; 3020 } 3021 3022 ZIL_STAT_BUMP(zilog, zil_commit_writer_count); 3023 3024 wtxg = zil_get_commit_list(zilog); 3025 zil_prune_commit_list(zilog); 3026 zil_process_commit_list(zilog, zcw, &ilwbs); 3027 3028 out: 3029 mutex_exit(&zilog->zl_issuer_lock); 3030 while ((lwb = list_remove_head(&ilwbs)) != NULL) 3031 zil_lwb_write_issue(zilog, lwb); 3032 list_destroy(&ilwbs); 3033 return (wtxg); 3034 } 3035 3036 static void 3037 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) 3038 { 3039 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3040 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3041 ASSERT3B(zcw->zcw_done, ==, B_FALSE); 3042 3043 lwb_t *lwb = zcw->zcw_lwb; 3044 ASSERT3P(lwb, !=, NULL); 3045 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW); 3046 3047 /* 3048 * If the lwb has already been issued by another thread, we can 3049 * immediately return since there's no work to be done (the 3050 * point of this function is to issue the lwb). Additionally, we 3051 * do this prior to acquiring the zl_issuer_lock, to avoid 3052 * acquiring it when it's not necessary to do so. 3053 */ 3054 if (lwb->lwb_state != LWB_STATE_OPENED) 3055 return; 3056 3057 /* 3058 * In order to call zil_lwb_write_close() we must hold the 3059 * zilog's "zl_issuer_lock". We can't simply acquire that lock, 3060 * since we're already holding the commit waiter's "zcw_lock", 3061 * and those two locks are acquired in the opposite order 3062 * elsewhere. 3063 */ 3064 mutex_exit(&zcw->zcw_lock); 3065 mutex_enter(&zilog->zl_issuer_lock); 3066 mutex_enter(&zcw->zcw_lock); 3067 3068 /* 3069 * Since we just dropped and re-acquired the commit waiter's 3070 * lock, we have to re-check to see if the waiter was marked 3071 * "done" during that process. If the waiter was marked "done", 3072 * the "lwb" pointer is no longer valid (it can be free'd after 3073 * the waiter is marked "done"), so without this check we could 3074 * wind up with a use-after-free error below. 3075 */ 3076 if (zcw->zcw_done) { 3077 mutex_exit(&zilog->zl_issuer_lock); 3078 return; 3079 } 3080 3081 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3082 3083 /* 3084 * We've already checked this above, but since we hadn't acquired 3085 * the zilog's zl_issuer_lock, we have to perform this check a 3086 * second time while holding the lock. 3087 * 3088 * We don't need to hold the zl_lock since the lwb cannot transition 3089 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb 3090 * _can_ transition from CLOSED to DONE, but it's OK to race with 3091 * that transition since we treat the lwb the same, whether it's in 3092 * the CLOSED, ISSUED or DONE states. 3093 * 3094 * The important thing, is we treat the lwb differently depending on 3095 * if it's OPENED or CLOSED, and block any other threads that might 3096 * attempt to close/issue this lwb. For that reason we hold the 3097 * zl_issuer_lock when checking the lwb_state; we must not call 3098 * zil_lwb_write_close() if the lwb had already been closed/issued. 3099 * 3100 * See the comment above the lwb_state_t structure definition for 3101 * more details on the lwb states, and locking requirements. 3102 */ 3103 if (lwb->lwb_state != LWB_STATE_OPENED) { 3104 mutex_exit(&zilog->zl_issuer_lock); 3105 return; 3106 } 3107 3108 /* 3109 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb 3110 * is still open. But we have to drop it to avoid a deadlock in case 3111 * callback of zio issued by zil_lwb_write_issue() try to get it, 3112 * while zil_lwb_write_issue() is blocked on attempt to issue next 3113 * lwb it found in LWB_STATE_READY state. 3114 */ 3115 mutex_exit(&zcw->zcw_lock); 3116 3117 /* 3118 * As described in the comments above zil_commit_waiter() and 3119 * zil_process_commit_list(), we need to issue this lwb's zio 3120 * since we've reached the commit waiter's timeout and it still 3121 * hasn't been issued. 3122 */ 3123 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW); 3124 3125 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED); 3126 3127 zil_burst_done(zilog); 3128 3129 if (nlwb == NULL) { 3130 /* 3131 * When zil_lwb_write_close() returns NULL, this 3132 * indicates zio_alloc_zil() failed to allocate the 3133 * "next" lwb on-disk. When this occurs, the ZIL write 3134 * pipeline must be stalled; see the comment within the 3135 * zil_commit_writer_stall() function for more details. 3136 */ 3137 zil_lwb_write_issue(zilog, lwb); 3138 zil_commit_writer_stall(zilog); 3139 mutex_exit(&zilog->zl_issuer_lock); 3140 } else { 3141 mutex_exit(&zilog->zl_issuer_lock); 3142 zil_lwb_write_issue(zilog, lwb); 3143 } 3144 mutex_enter(&zcw->zcw_lock); 3145 } 3146 3147 /* 3148 * This function is responsible for performing the following two tasks: 3149 * 3150 * 1. its primary responsibility is to block until the given "commit 3151 * waiter" is considered "done". 3152 * 3153 * 2. its secondary responsibility is to issue the zio for the lwb that 3154 * the given "commit waiter" is waiting on, if this function has 3155 * waited "long enough" and the lwb is still in the "open" state. 3156 * 3157 * Given a sufficient amount of itxs being generated and written using 3158 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() 3159 * function. If this does not occur, this secondary responsibility will 3160 * ensure the lwb is issued even if there is not other synchronous 3161 * activity on the system. 3162 * 3163 * For more details, see zil_process_commit_list(); more specifically, 3164 * the comment at the bottom of that function. 3165 */ 3166 static void 3167 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) 3168 { 3169 ASSERT(!MUTEX_HELD(&zilog->zl_lock)); 3170 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); 3171 ASSERT(spa_writeable(zilog->zl_spa)); 3172 3173 mutex_enter(&zcw->zcw_lock); 3174 3175 /* 3176 * The timeout is scaled based on the lwb latency to avoid 3177 * significantly impacting the latency of each individual itx. 3178 * For more details, see the comment at the bottom of the 3179 * zil_process_commit_list() function. 3180 */ 3181 int pct = MAX(zfs_commit_timeout_pct, 1); 3182 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; 3183 hrtime_t wakeup = gethrtime() + sleep; 3184 boolean_t timedout = B_FALSE; 3185 3186 while (!zcw->zcw_done) { 3187 ASSERT(MUTEX_HELD(&zcw->zcw_lock)); 3188 3189 lwb_t *lwb = zcw->zcw_lwb; 3190 3191 /* 3192 * Usually, the waiter will have a non-NULL lwb field here, 3193 * but it's possible for it to be NULL as a result of 3194 * zil_commit() racing with spa_sync(). 3195 * 3196 * When zil_clean() is called, it's possible for the itxg 3197 * list (which may be cleaned via a taskq) to contain 3198 * commit itxs. When this occurs, the commit waiters linked 3199 * off of these commit itxs will not be committed to an 3200 * lwb. Additionally, these commit waiters will not be 3201 * marked done until zil_commit_waiter_skip() is called via 3202 * zil_itxg_clean(). 3203 * 3204 * Thus, it's possible for this commit waiter (i.e. the 3205 * "zcw" variable) to be found in this "in between" state; 3206 * where it's "zcw_lwb" field is NULL, and it hasn't yet 3207 * been skipped, so it's "zcw_done" field is still B_FALSE. 3208 */ 3209 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW); 3210 3211 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { 3212 ASSERT3B(timedout, ==, B_FALSE); 3213 3214 /* 3215 * If the lwb hasn't been issued yet, then we 3216 * need to wait with a timeout, in case this 3217 * function needs to issue the lwb after the 3218 * timeout is reached; responsibility (2) from 3219 * the comment above this function. 3220 */ 3221 int rc = cv_timedwait_hires(&zcw->zcw_cv, 3222 &zcw->zcw_lock, wakeup, USEC2NSEC(1), 3223 CALLOUT_FLAG_ABSOLUTE); 3224 3225 if (rc != -1 || zcw->zcw_done) 3226 continue; 3227 3228 timedout = B_TRUE; 3229 zil_commit_waiter_timeout(zilog, zcw); 3230 3231 if (!zcw->zcw_done) { 3232 /* 3233 * If the commit waiter has already been 3234 * marked "done", it's possible for the 3235 * waiter's lwb structure to have already 3236 * been freed. Thus, we can only reliably 3237 * make these assertions if the waiter 3238 * isn't done. 3239 */ 3240 ASSERT3P(lwb, ==, zcw->zcw_lwb); 3241 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); 3242 } 3243 } else { 3244 /* 3245 * If the lwb isn't open, then it must have already 3246 * been issued. In that case, there's no need to 3247 * use a timeout when waiting for the lwb to 3248 * complete. 3249 * 3250 * Additionally, if the lwb is NULL, the waiter 3251 * will soon be signaled and marked done via 3252 * zil_clean() and zil_itxg_clean(), so no timeout 3253 * is required. 3254 */ 3255 3256 IMPLY(lwb != NULL, 3257 lwb->lwb_state == LWB_STATE_CLOSED || 3258 lwb->lwb_state == LWB_STATE_READY || 3259 lwb->lwb_state == LWB_STATE_ISSUED || 3260 lwb->lwb_state == LWB_STATE_WRITE_DONE || 3261 lwb->lwb_state == LWB_STATE_FLUSH_DONE); 3262 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); 3263 } 3264 } 3265 3266 mutex_exit(&zcw->zcw_lock); 3267 } 3268 3269 static zil_commit_waiter_t * 3270 zil_alloc_commit_waiter(void) 3271 { 3272 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); 3273 3274 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); 3275 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); 3276 list_link_init(&zcw->zcw_node); 3277 zcw->zcw_lwb = NULL; 3278 zcw->zcw_done = B_FALSE; 3279 zcw->zcw_zio_error = 0; 3280 3281 return (zcw); 3282 } 3283 3284 static void 3285 zil_free_commit_waiter(zil_commit_waiter_t *zcw) 3286 { 3287 ASSERT(!list_link_active(&zcw->zcw_node)); 3288 ASSERT3P(zcw->zcw_lwb, ==, NULL); 3289 ASSERT3B(zcw->zcw_done, ==, B_TRUE); 3290 mutex_destroy(&zcw->zcw_lock); 3291 cv_destroy(&zcw->zcw_cv); 3292 kmem_cache_free(zil_zcw_cache, zcw); 3293 } 3294 3295 /* 3296 * This function is used to create a TX_COMMIT itx and assign it. This 3297 * way, it will be linked into the ZIL's list of synchronous itxs, and 3298 * then later committed to an lwb (or skipped) when 3299 * zil_process_commit_list() is called. 3300 */ 3301 static void 3302 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) 3303 { 3304 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); 3305 3306 /* 3307 * Since we are not going to create any new dirty data, and we 3308 * can even help with clearing the existing dirty data, we 3309 * should not be subject to the dirty data based delays. We 3310 * use TXG_NOTHROTTLE to bypass the delay mechanism. 3311 */ 3312 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); 3313 3314 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); 3315 itx->itx_sync = B_TRUE; 3316 itx->itx_private = zcw; 3317 3318 zil_itx_assign(zilog, itx, tx); 3319 3320 dmu_tx_commit(tx); 3321 } 3322 3323 /* 3324 * Commit ZFS Intent Log transactions (itxs) to stable storage. 3325 * 3326 * When writing ZIL transactions to the on-disk representation of the 3327 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple 3328 * itxs can be committed to a single lwb. Once a lwb is written and 3329 * committed to stable storage (i.e. the lwb is written, and vdevs have 3330 * been flushed), each itx that was committed to that lwb is also 3331 * considered to be committed to stable storage. 3332 * 3333 * When an itx is committed to an lwb, the log record (lr_t) contained 3334 * by the itx is copied into the lwb's zio buffer, and once this buffer 3335 * is written to disk, it becomes an on-disk ZIL block. 3336 * 3337 * As itxs are generated, they're inserted into the ZIL's queue of 3338 * uncommitted itxs. The semantics of zil_commit() are such that it will 3339 * block until all itxs that were in the queue when it was called, are 3340 * committed to stable storage. 3341 * 3342 * If "foid" is zero, this means all "synchronous" and "asynchronous" 3343 * itxs, for all objects in the dataset, will be committed to stable 3344 * storage prior to zil_commit() returning. If "foid" is non-zero, all 3345 * "synchronous" itxs for all objects, but only "asynchronous" itxs 3346 * that correspond to the foid passed in, will be committed to stable 3347 * storage prior to zil_commit() returning. 3348 * 3349 * Generally speaking, when zil_commit() is called, the consumer doesn't 3350 * actually care about _all_ of the uncommitted itxs. Instead, they're 3351 * simply trying to waiting for a specific itx to be committed to disk, 3352 * but the interface(s) for interacting with the ZIL don't allow such 3353 * fine-grained communication. A better interface would allow a consumer 3354 * to create and assign an itx, and then pass a reference to this itx to 3355 * zil_commit(); such that zil_commit() would return as soon as that 3356 * specific itx was committed to disk (instead of waiting for _all_ 3357 * itxs to be committed). 3358 * 3359 * When a thread calls zil_commit() a special "commit itx" will be 3360 * generated, along with a corresponding "waiter" for this commit itx. 3361 * zil_commit() will wait on this waiter's CV, such that when the waiter 3362 * is marked done, and signaled, zil_commit() will return. 3363 * 3364 * This commit itx is inserted into the queue of uncommitted itxs. This 3365 * provides an easy mechanism for determining which itxs were in the 3366 * queue prior to zil_commit() having been called, and which itxs were 3367 * added after zil_commit() was called. 3368 * 3369 * The commit itx is special; it doesn't have any on-disk representation. 3370 * When a commit itx is "committed" to an lwb, the waiter associated 3371 * with it is linked onto the lwb's list of waiters. Then, when that lwb 3372 * completes, each waiter on the lwb's list is marked done and signaled 3373 * -- allowing the thread waiting on the waiter to return from zil_commit(). 3374 * 3375 * It's important to point out a few critical factors that allow us 3376 * to make use of the commit itxs, commit waiters, per-lwb lists of 3377 * commit waiters, and zio completion callbacks like we're doing: 3378 * 3379 * 1. The list of waiters for each lwb is traversed, and each commit 3380 * waiter is marked "done" and signaled, in the zio completion 3381 * callback of the lwb's zio[*]. 3382 * 3383 * * Actually, the waiters are signaled in the zio completion 3384 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands 3385 * that are sent to the vdevs upon completion of the lwb zio. 3386 * 3387 * 2. When the itxs are inserted into the ZIL's queue of uncommitted 3388 * itxs, the order in which they are inserted is preserved[*]; as 3389 * itxs are added to the queue, they are added to the tail of 3390 * in-memory linked lists. 3391 * 3392 * When committing the itxs to lwbs (to be written to disk), they 3393 * are committed in the same order in which the itxs were added to 3394 * the uncommitted queue's linked list(s); i.e. the linked list of 3395 * itxs to commit is traversed from head to tail, and each itx is 3396 * committed to an lwb in that order. 3397 * 3398 * * To clarify: 3399 * 3400 * - the order of "sync" itxs is preserved w.r.t. other 3401 * "sync" itxs, regardless of the corresponding objects. 3402 * - the order of "async" itxs is preserved w.r.t. other 3403 * "async" itxs corresponding to the same object. 3404 * - the order of "async" itxs is *not* preserved w.r.t. other 3405 * "async" itxs corresponding to different objects. 3406 * - the order of "sync" itxs w.r.t. "async" itxs (or vice 3407 * versa) is *not* preserved, even for itxs that correspond 3408 * to the same object. 3409 * 3410 * For more details, see: zil_itx_assign(), zil_async_to_sync(), 3411 * zil_get_commit_list(), and zil_process_commit_list(). 3412 * 3413 * 3. The lwbs represent a linked list of blocks on disk. Thus, any 3414 * lwb cannot be considered committed to stable storage, until its 3415 * "previous" lwb is also committed to stable storage. This fact, 3416 * coupled with the fact described above, means that itxs are 3417 * committed in (roughly) the order in which they were generated. 3418 * This is essential because itxs are dependent on prior itxs. 3419 * Thus, we *must not* deem an itx as being committed to stable 3420 * storage, until *all* prior itxs have also been committed to 3421 * stable storage. 3422 * 3423 * To enforce this ordering of lwb zio's, while still leveraging as 3424 * much of the underlying storage performance as possible, we rely 3425 * on two fundamental concepts: 3426 * 3427 * 1. The creation and issuance of lwb zio's is protected by 3428 * the zilog's "zl_issuer_lock", which ensures only a single 3429 * thread is creating and/or issuing lwb's at a time 3430 * 2. The "previous" lwb is a child of the "current" lwb 3431 * (leveraging the zio parent-child dependency graph) 3432 * 3433 * By relying on this parent-child zio relationship, we can have 3434 * many lwb zio's concurrently issued to the underlying storage, 3435 * but the order in which they complete will be the same order in 3436 * which they were created. 3437 */ 3438 void 3439 zil_commit(zilog_t *zilog, uint64_t foid) 3440 { 3441 /* 3442 * We should never attempt to call zil_commit on a snapshot for 3443 * a couple of reasons: 3444 * 3445 * 1. A snapshot may never be modified, thus it cannot have any 3446 * in-flight itxs that would have modified the dataset. 3447 * 3448 * 2. By design, when zil_commit() is called, a commit itx will 3449 * be assigned to this zilog; as a result, the zilog will be 3450 * dirtied. We must not dirty the zilog of a snapshot; there's 3451 * checks in the code that enforce this invariant, and will 3452 * cause a panic if it's not upheld. 3453 */ 3454 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); 3455 3456 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 3457 return; 3458 3459 if (!spa_writeable(zilog->zl_spa)) { 3460 /* 3461 * If the SPA is not writable, there should never be any 3462 * pending itxs waiting to be committed to disk. If that 3463 * weren't true, we'd skip writing those itxs out, and 3464 * would break the semantics of zil_commit(); thus, we're 3465 * verifying that truth before we return to the caller. 3466 */ 3467 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3468 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3469 for (int i = 0; i < TXG_SIZE; i++) 3470 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); 3471 return; 3472 } 3473 3474 /* 3475 * If the ZIL is suspended, we don't want to dirty it by calling 3476 * zil_commit_itx_assign() below, nor can we write out 3477 * lwbs like would be done in zil_commit_write(). Thus, we 3478 * simply rely on txg_wait_synced() to maintain the necessary 3479 * semantics, and avoid calling those functions altogether. 3480 */ 3481 if (zilog->zl_suspend > 0) { 3482 txg_wait_synced(zilog->zl_dmu_pool, 0); 3483 return; 3484 } 3485 3486 zil_commit_impl(zilog, foid); 3487 } 3488 3489 void 3490 zil_commit_impl(zilog_t *zilog, uint64_t foid) 3491 { 3492 ZIL_STAT_BUMP(zilog, zil_commit_count); 3493 3494 /* 3495 * Move the "async" itxs for the specified foid to the "sync" 3496 * queues, such that they will be later committed (or skipped) 3497 * to an lwb when zil_process_commit_list() is called. 3498 * 3499 * Since these "async" itxs must be committed prior to this 3500 * call to zil_commit returning, we must perform this operation 3501 * before we call zil_commit_itx_assign(). 3502 */ 3503 zil_async_to_sync(zilog, foid); 3504 3505 /* 3506 * We allocate a new "waiter" structure which will initially be 3507 * linked to the commit itx using the itx's "itx_private" field. 3508 * Since the commit itx doesn't represent any on-disk state, 3509 * when it's committed to an lwb, rather than copying the its 3510 * lr_t into the lwb's buffer, the commit itx's "waiter" will be 3511 * added to the lwb's list of waiters. Then, when the lwb is 3512 * committed to stable storage, each waiter in the lwb's list of 3513 * waiters will be marked "done", and signalled. 3514 * 3515 * We must create the waiter and assign the commit itx prior to 3516 * calling zil_commit_writer(), or else our specific commit itx 3517 * is not guaranteed to be committed to an lwb prior to calling 3518 * zil_commit_waiter(). 3519 */ 3520 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); 3521 zil_commit_itx_assign(zilog, zcw); 3522 3523 uint64_t wtxg = zil_commit_writer(zilog, zcw); 3524 zil_commit_waiter(zilog, zcw); 3525 3526 if (zcw->zcw_zio_error != 0) { 3527 /* 3528 * If there was an error writing out the ZIL blocks that 3529 * this thread is waiting on, then we fallback to 3530 * relying on spa_sync() to write out the data this 3531 * thread is waiting on. Obviously this has performance 3532 * implications, but the expectation is for this to be 3533 * an exceptional case, and shouldn't occur often. 3534 */ 3535 DTRACE_PROBE2(zil__commit__io__error, 3536 zilog_t *, zilog, zil_commit_waiter_t *, zcw); 3537 txg_wait_synced(zilog->zl_dmu_pool, 0); 3538 } else if (wtxg != 0) { 3539 txg_wait_synced(zilog->zl_dmu_pool, wtxg); 3540 } 3541 3542 zil_free_commit_waiter(zcw); 3543 } 3544 3545 /* 3546 * Called in syncing context to free committed log blocks and update log header. 3547 */ 3548 void 3549 zil_sync(zilog_t *zilog, dmu_tx_t *tx) 3550 { 3551 zil_header_t *zh = zil_header_in_syncing_context(zilog); 3552 uint64_t txg = dmu_tx_get_txg(tx); 3553 spa_t *spa = zilog->zl_spa; 3554 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; 3555 lwb_t *lwb; 3556 3557 /* 3558 * We don't zero out zl_destroy_txg, so make sure we don't try 3559 * to destroy it twice. 3560 */ 3561 if (spa_sync_pass(spa) != 1) 3562 return; 3563 3564 zil_lwb_flush_wait_all(zilog, txg); 3565 3566 mutex_enter(&zilog->zl_lock); 3567 3568 ASSERT(zilog->zl_stop_sync == 0); 3569 3570 if (*replayed_seq != 0) { 3571 ASSERT(zh->zh_replay_seq < *replayed_seq); 3572 zh->zh_replay_seq = *replayed_seq; 3573 *replayed_seq = 0; 3574 } 3575 3576 if (zilog->zl_destroy_txg == txg) { 3577 blkptr_t blk = zh->zh_log; 3578 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); 3579 3580 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3581 3582 memset(zh, 0, sizeof (zil_header_t)); 3583 memset(zilog->zl_replayed_seq, 0, 3584 sizeof (zilog->zl_replayed_seq)); 3585 3586 if (zilog->zl_keep_first) { 3587 /* 3588 * If this block was part of log chain that couldn't 3589 * be claimed because a device was missing during 3590 * zil_claim(), but that device later returns, 3591 * then this block could erroneously appear valid. 3592 * To guard against this, assign a new GUID to the new 3593 * log chain so it doesn't matter what blk points to. 3594 */ 3595 zil_init_log_chain(zilog, &blk); 3596 zh->zh_log = blk; 3597 } else { 3598 /* 3599 * A destroyed ZIL chain can't contain any TX_SETSAXATTR 3600 * records. So, deactivate the feature for this dataset. 3601 * We activate it again when we start a new ZIL chain. 3602 */ 3603 if (dsl_dataset_feature_is_active(ds, 3604 SPA_FEATURE_ZILSAXATTR)) 3605 dsl_dataset_deactivate_feature(ds, 3606 SPA_FEATURE_ZILSAXATTR, tx); 3607 } 3608 } 3609 3610 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { 3611 zh->zh_log = lwb->lwb_blk; 3612 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || 3613 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg) 3614 break; 3615 list_remove(&zilog->zl_lwb_list, lwb); 3616 if (!BP_IS_HOLE(&lwb->lwb_blk)) 3617 zio_free(spa, txg, &lwb->lwb_blk); 3618 zil_free_lwb(zilog, lwb); 3619 3620 /* 3621 * If we don't have anything left in the lwb list then 3622 * we've had an allocation failure and we need to zero 3623 * out the zil_header blkptr so that we don't end 3624 * up freeing the same block twice. 3625 */ 3626 if (list_is_empty(&zilog->zl_lwb_list)) 3627 BP_ZERO(&zh->zh_log); 3628 } 3629 3630 mutex_exit(&zilog->zl_lock); 3631 } 3632 3633 static int 3634 zil_lwb_cons(void *vbuf, void *unused, int kmflag) 3635 { 3636 (void) unused, (void) kmflag; 3637 lwb_t *lwb = vbuf; 3638 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); 3639 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), 3640 offsetof(zil_commit_waiter_t, zcw_node)); 3641 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, 3642 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); 3643 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 3644 return (0); 3645 } 3646 3647 static void 3648 zil_lwb_dest(void *vbuf, void *unused) 3649 { 3650 (void) unused; 3651 lwb_t *lwb = vbuf; 3652 mutex_destroy(&lwb->lwb_vdev_lock); 3653 avl_destroy(&lwb->lwb_vdev_tree); 3654 list_destroy(&lwb->lwb_waiters); 3655 list_destroy(&lwb->lwb_itxs); 3656 } 3657 3658 void 3659 zil_init(void) 3660 { 3661 zil_lwb_cache = kmem_cache_create("zil_lwb_cache", 3662 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); 3663 3664 zil_zcw_cache = kmem_cache_create("zil_zcw_cache", 3665 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3666 3667 zil_sums_init(&zil_sums_global); 3668 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", 3669 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), 3670 KSTAT_FLAG_VIRTUAL); 3671 3672 if (zil_kstats_global != NULL) { 3673 zil_kstats_global->ks_data = &zil_stats; 3674 zil_kstats_global->ks_update = zil_kstats_global_update; 3675 zil_kstats_global->ks_private = NULL; 3676 kstat_install(zil_kstats_global); 3677 } 3678 } 3679 3680 void 3681 zil_fini(void) 3682 { 3683 kmem_cache_destroy(zil_zcw_cache); 3684 kmem_cache_destroy(zil_lwb_cache); 3685 3686 if (zil_kstats_global != NULL) { 3687 kstat_delete(zil_kstats_global); 3688 zil_kstats_global = NULL; 3689 } 3690 3691 zil_sums_fini(&zil_sums_global); 3692 } 3693 3694 void 3695 zil_set_sync(zilog_t *zilog, uint64_t sync) 3696 { 3697 zilog->zl_sync = sync; 3698 } 3699 3700 void 3701 zil_set_logbias(zilog_t *zilog, uint64_t logbias) 3702 { 3703 zilog->zl_logbias = logbias; 3704 } 3705 3706 zilog_t * 3707 zil_alloc(objset_t *os, zil_header_t *zh_phys) 3708 { 3709 zilog_t *zilog; 3710 3711 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); 3712 3713 zilog->zl_header = zh_phys; 3714 zilog->zl_os = os; 3715 zilog->zl_spa = dmu_objset_spa(os); 3716 zilog->zl_dmu_pool = dmu_objset_pool(os); 3717 zilog->zl_destroy_txg = TXG_INITIAL - 1; 3718 zilog->zl_logbias = dmu_objset_logbias(os); 3719 zilog->zl_sync = dmu_objset_syncprop(os); 3720 zilog->zl_dirty_max_txg = 0; 3721 zilog->zl_last_lwb_opened = NULL; 3722 zilog->zl_last_lwb_latency = 0; 3723 zilog->zl_max_block_size = zil_maxblocksize; 3724 3725 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); 3726 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); 3727 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); 3728 3729 for (int i = 0; i < TXG_SIZE; i++) { 3730 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, 3731 MUTEX_DEFAULT, NULL); 3732 } 3733 3734 list_create(&zilog->zl_lwb_list, sizeof (lwb_t), 3735 offsetof(lwb_t, lwb_node)); 3736 3737 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), 3738 offsetof(itx_t, itx_node)); 3739 3740 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); 3741 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); 3742 3743 return (zilog); 3744 } 3745 3746 void 3747 zil_free(zilog_t *zilog) 3748 { 3749 int i; 3750 3751 zilog->zl_stop_sync = 1; 3752 3753 ASSERT0(zilog->zl_suspend); 3754 ASSERT0(zilog->zl_suspending); 3755 3756 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3757 list_destroy(&zilog->zl_lwb_list); 3758 3759 ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); 3760 list_destroy(&zilog->zl_itx_commit_list); 3761 3762 for (i = 0; i < TXG_SIZE; i++) { 3763 /* 3764 * It's possible for an itx to be generated that doesn't dirty 3765 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() 3766 * callback to remove the entry. We remove those here. 3767 * 3768 * Also free up the ziltest itxs. 3769 */ 3770 if (zilog->zl_itxg[i].itxg_itxs) 3771 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); 3772 mutex_destroy(&zilog->zl_itxg[i].itxg_lock); 3773 } 3774 3775 mutex_destroy(&zilog->zl_issuer_lock); 3776 mutex_destroy(&zilog->zl_lock); 3777 mutex_destroy(&zilog->zl_lwb_io_lock); 3778 3779 cv_destroy(&zilog->zl_cv_suspend); 3780 cv_destroy(&zilog->zl_lwb_io_cv); 3781 3782 kmem_free(zilog, sizeof (zilog_t)); 3783 } 3784 3785 /* 3786 * Open an intent log. 3787 */ 3788 zilog_t * 3789 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) 3790 { 3791 zilog_t *zilog = dmu_objset_zil(os); 3792 3793 ASSERT3P(zilog->zl_get_data, ==, NULL); 3794 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); 3795 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3796 3797 zilog->zl_get_data = get_data; 3798 zilog->zl_sums = zil_sums; 3799 3800 return (zilog); 3801 } 3802 3803 /* 3804 * Close an intent log. 3805 */ 3806 void 3807 zil_close(zilog_t *zilog) 3808 { 3809 lwb_t *lwb; 3810 uint64_t txg; 3811 3812 if (!dmu_objset_is_snapshot(zilog->zl_os)) { 3813 zil_commit(zilog, 0); 3814 } else { 3815 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3816 ASSERT0(zilog->zl_dirty_max_txg); 3817 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); 3818 } 3819 3820 mutex_enter(&zilog->zl_lock); 3821 txg = zilog->zl_dirty_max_txg; 3822 lwb = list_tail(&zilog->zl_lwb_list); 3823 if (lwb != NULL) { 3824 txg = MAX(txg, lwb->lwb_alloc_txg); 3825 txg = MAX(txg, lwb->lwb_max_txg); 3826 } 3827 mutex_exit(&zilog->zl_lock); 3828 3829 /* 3830 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends 3831 * on the time when the dmu_tx transaction is assigned in 3832 * zil_lwb_write_issue(). 3833 */ 3834 mutex_enter(&zilog->zl_lwb_io_lock); 3835 txg = MAX(zilog->zl_lwb_max_issued_txg, txg); 3836 mutex_exit(&zilog->zl_lwb_io_lock); 3837 3838 /* 3839 * We need to use txg_wait_synced() to wait until that txg is synced. 3840 * zil_sync() will guarantee all lwbs up to that txg have been 3841 * written out, flushed, and cleaned. 3842 */ 3843 if (txg != 0) 3844 txg_wait_synced(zilog->zl_dmu_pool, txg); 3845 3846 if (zilog_is_dirty(zilog)) 3847 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, 3848 (u_longlong_t)txg); 3849 if (txg < spa_freeze_txg(zilog->zl_spa)) 3850 VERIFY(!zilog_is_dirty(zilog)); 3851 3852 zilog->zl_get_data = NULL; 3853 3854 /* 3855 * We should have only one lwb left on the list; remove it now. 3856 */ 3857 mutex_enter(&zilog->zl_lock); 3858 lwb = list_remove_head(&zilog->zl_lwb_list); 3859 if (lwb != NULL) { 3860 ASSERT(list_is_empty(&zilog->zl_lwb_list)); 3861 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW); 3862 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); 3863 zil_free_lwb(zilog, lwb); 3864 } 3865 mutex_exit(&zilog->zl_lock); 3866 } 3867 3868 static const char *suspend_tag = "zil suspending"; 3869 3870 /* 3871 * Suspend an intent log. While in suspended mode, we still honor 3872 * synchronous semantics, but we rely on txg_wait_synced() to do it. 3873 * On old version pools, we suspend the log briefly when taking a 3874 * snapshot so that it will have an empty intent log. 3875 * 3876 * Long holds are not really intended to be used the way we do here -- 3877 * held for such a short time. A concurrent caller of dsl_dataset_long_held() 3878 * could fail. Therefore we take pains to only put a long hold if it is 3879 * actually necessary. Fortunately, it will only be necessary if the 3880 * objset is currently mounted (or the ZVOL equivalent). In that case it 3881 * will already have a long hold, so we are not really making things any worse. 3882 * 3883 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or 3884 * zvol_state_t), and use their mechanism to prevent their hold from being 3885 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for 3886 * very little gain. 3887 * 3888 * if cookiep == NULL, this does both the suspend & resume. 3889 * Otherwise, it returns with the dataset "long held", and the cookie 3890 * should be passed into zil_resume(). 3891 */ 3892 int 3893 zil_suspend(const char *osname, void **cookiep) 3894 { 3895 objset_t *os; 3896 zilog_t *zilog; 3897 const zil_header_t *zh; 3898 int error; 3899 3900 error = dmu_objset_hold(osname, suspend_tag, &os); 3901 if (error != 0) 3902 return (error); 3903 zilog = dmu_objset_zil(os); 3904 3905 mutex_enter(&zilog->zl_lock); 3906 zh = zilog->zl_header; 3907 3908 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ 3909 mutex_exit(&zilog->zl_lock); 3910 dmu_objset_rele(os, suspend_tag); 3911 return (SET_ERROR(EBUSY)); 3912 } 3913 3914 /* 3915 * Don't put a long hold in the cases where we can avoid it. This 3916 * is when there is no cookie so we are doing a suspend & resume 3917 * (i.e. called from zil_vdev_offline()), and there's nothing to do 3918 * for the suspend because it's already suspended, or there's no ZIL. 3919 */ 3920 if (cookiep == NULL && !zilog->zl_suspending && 3921 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { 3922 mutex_exit(&zilog->zl_lock); 3923 dmu_objset_rele(os, suspend_tag); 3924 return (0); 3925 } 3926 3927 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); 3928 dsl_pool_rele(dmu_objset_pool(os), suspend_tag); 3929 3930 zilog->zl_suspend++; 3931 3932 if (zilog->zl_suspend > 1) { 3933 /* 3934 * Someone else is already suspending it. 3935 * Just wait for them to finish. 3936 */ 3937 3938 while (zilog->zl_suspending) 3939 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); 3940 mutex_exit(&zilog->zl_lock); 3941 3942 if (cookiep == NULL) 3943 zil_resume(os); 3944 else 3945 *cookiep = os; 3946 return (0); 3947 } 3948 3949 /* 3950 * If there is no pointer to an on-disk block, this ZIL must not 3951 * be active (e.g. filesystem not mounted), so there's nothing 3952 * to clean up. 3953 */ 3954 if (BP_IS_HOLE(&zh->zh_log)) { 3955 ASSERT(cookiep != NULL); /* fast path already handled */ 3956 3957 *cookiep = os; 3958 mutex_exit(&zilog->zl_lock); 3959 return (0); 3960 } 3961 3962 /* 3963 * The ZIL has work to do. Ensure that the associated encryption 3964 * key will remain mapped while we are committing the log by 3965 * grabbing a reference to it. If the key isn't loaded we have no 3966 * choice but to return an error until the wrapping key is loaded. 3967 */ 3968 if (os->os_encrypted && 3969 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { 3970 zilog->zl_suspend--; 3971 mutex_exit(&zilog->zl_lock); 3972 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 3973 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 3974 return (SET_ERROR(EACCES)); 3975 } 3976 3977 zilog->zl_suspending = B_TRUE; 3978 mutex_exit(&zilog->zl_lock); 3979 3980 /* 3981 * We need to use zil_commit_impl to ensure we wait for all 3982 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed 3983 * to disk before proceeding. If we used zil_commit instead, it 3984 * would just call txg_wait_synced(), because zl_suspend is set. 3985 * txg_wait_synced() doesn't wait for these lwb's to be 3986 * LWB_STATE_FLUSH_DONE before returning. 3987 */ 3988 zil_commit_impl(zilog, 0); 3989 3990 /* 3991 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we 3992 * use txg_wait_synced() to ensure the data from the zilog has 3993 * migrated to the main pool before calling zil_destroy(). 3994 */ 3995 txg_wait_synced(zilog->zl_dmu_pool, 0); 3996 3997 zil_destroy(zilog, B_FALSE); 3998 3999 mutex_enter(&zilog->zl_lock); 4000 zilog->zl_suspending = B_FALSE; 4001 cv_broadcast(&zilog->zl_cv_suspend); 4002 mutex_exit(&zilog->zl_lock); 4003 4004 if (os->os_encrypted) 4005 dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); 4006 4007 if (cookiep == NULL) 4008 zil_resume(os); 4009 else 4010 *cookiep = os; 4011 return (0); 4012 } 4013 4014 void 4015 zil_resume(void *cookie) 4016 { 4017 objset_t *os = cookie; 4018 zilog_t *zilog = dmu_objset_zil(os); 4019 4020 mutex_enter(&zilog->zl_lock); 4021 ASSERT(zilog->zl_suspend != 0); 4022 zilog->zl_suspend--; 4023 mutex_exit(&zilog->zl_lock); 4024 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); 4025 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); 4026 } 4027 4028 typedef struct zil_replay_arg { 4029 zil_replay_func_t *const *zr_replay; 4030 void *zr_arg; 4031 boolean_t zr_byteswap; 4032 char *zr_lr; 4033 } zil_replay_arg_t; 4034 4035 static int 4036 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) 4037 { 4038 char name[ZFS_MAX_DATASET_NAME_LEN]; 4039 4040 zilog->zl_replaying_seq--; /* didn't actually replay this one */ 4041 4042 dmu_objset_name(zilog->zl_os, name); 4043 4044 cmn_err(CE_WARN, "ZFS replay transaction error %d, " 4045 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, 4046 (u_longlong_t)lr->lrc_seq, 4047 (u_longlong_t)(lr->lrc_txtype & ~TX_CI), 4048 (lr->lrc_txtype & TX_CI) ? "CI" : ""); 4049 4050 return (error); 4051 } 4052 4053 static int 4054 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, 4055 uint64_t claim_txg) 4056 { 4057 zil_replay_arg_t *zr = zra; 4058 const zil_header_t *zh = zilog->zl_header; 4059 uint64_t reclen = lr->lrc_reclen; 4060 uint64_t txtype = lr->lrc_txtype; 4061 int error = 0; 4062 4063 zilog->zl_replaying_seq = lr->lrc_seq; 4064 4065 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ 4066 return (0); 4067 4068 if (lr->lrc_txg < claim_txg) /* already committed */ 4069 return (0); 4070 4071 /* Strip case-insensitive bit, still present in log record */ 4072 txtype &= ~TX_CI; 4073 4074 if (txtype == 0 || txtype >= TX_MAX_TYPE) 4075 return (zil_replay_error(zilog, lr, EINVAL)); 4076 4077 /* 4078 * If this record type can be logged out of order, the object 4079 * (lr_foid) may no longer exist. That's legitimate, not an error. 4080 */ 4081 if (TX_OOO(txtype)) { 4082 error = dmu_object_info(zilog->zl_os, 4083 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); 4084 if (error == ENOENT || error == EEXIST) 4085 return (0); 4086 } 4087 4088 /* 4089 * Make a copy of the data so we can revise and extend it. 4090 */ 4091 memcpy(zr->zr_lr, lr, reclen); 4092 4093 /* 4094 * If this is a TX_WRITE with a blkptr, suck in the data. 4095 */ 4096 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { 4097 error = zil_read_log_data(zilog, (lr_write_t *)lr, 4098 zr->zr_lr + reclen); 4099 if (error != 0) 4100 return (zil_replay_error(zilog, lr, error)); 4101 } 4102 4103 /* 4104 * The log block containing this lr may have been byteswapped 4105 * so that we can easily examine common fields like lrc_txtype. 4106 * However, the log is a mix of different record types, and only the 4107 * replay vectors know how to byteswap their records. Therefore, if 4108 * the lr was byteswapped, undo it before invoking the replay vector. 4109 */ 4110 if (zr->zr_byteswap) 4111 byteswap_uint64_array(zr->zr_lr, reclen); 4112 4113 /* 4114 * We must now do two things atomically: replay this log record, 4115 * and update the log header sequence number to reflect the fact that 4116 * we did so. At the end of each replay function the sequence number 4117 * is updated if we are in replay mode. 4118 */ 4119 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); 4120 if (error != 0) { 4121 /* 4122 * The DMU's dnode layer doesn't see removes until the txg 4123 * commits, so a subsequent claim can spuriously fail with 4124 * EEXIST. So if we receive any error we try syncing out 4125 * any removes then retry the transaction. Note that we 4126 * specify B_FALSE for byteswap now, so we don't do it twice. 4127 */ 4128 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); 4129 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); 4130 if (error != 0) 4131 return (zil_replay_error(zilog, lr, error)); 4132 } 4133 return (0); 4134 } 4135 4136 static int 4137 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) 4138 { 4139 (void) bp, (void) arg, (void) claim_txg; 4140 4141 zilog->zl_replay_blks++; 4142 4143 return (0); 4144 } 4145 4146 /* 4147 * If this dataset has a non-empty intent log, replay it and destroy it. 4148 * Return B_TRUE if there were any entries to replay. 4149 */ 4150 boolean_t 4151 zil_replay(objset_t *os, void *arg, 4152 zil_replay_func_t *const replay_func[TX_MAX_TYPE]) 4153 { 4154 zilog_t *zilog = dmu_objset_zil(os); 4155 const zil_header_t *zh = zilog->zl_header; 4156 zil_replay_arg_t zr; 4157 4158 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { 4159 return (zil_destroy(zilog, B_TRUE)); 4160 } 4161 4162 zr.zr_replay = replay_func; 4163 zr.zr_arg = arg; 4164 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); 4165 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); 4166 4167 /* 4168 * Wait for in-progress removes to sync before starting replay. 4169 */ 4170 txg_wait_synced(zilog->zl_dmu_pool, 0); 4171 4172 zilog->zl_replay = B_TRUE; 4173 zilog->zl_replay_time = ddi_get_lbolt(); 4174 ASSERT(zilog->zl_replay_blks == 0); 4175 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, 4176 zh->zh_claim_txg, B_TRUE); 4177 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); 4178 4179 zil_destroy(zilog, B_FALSE); 4180 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); 4181 zilog->zl_replay = B_FALSE; 4182 4183 return (B_TRUE); 4184 } 4185 4186 boolean_t 4187 zil_replaying(zilog_t *zilog, dmu_tx_t *tx) 4188 { 4189 if (zilog->zl_sync == ZFS_SYNC_DISABLED) 4190 return (B_TRUE); 4191 4192 if (zilog->zl_replay) { 4193 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); 4194 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = 4195 zilog->zl_replaying_seq; 4196 return (B_TRUE); 4197 } 4198 4199 return (B_FALSE); 4200 } 4201 4202 int 4203 zil_reset(const char *osname, void *arg) 4204 { 4205 (void) arg; 4206 4207 int error = zil_suspend(osname, NULL); 4208 /* EACCES means crypto key not loaded */ 4209 if ((error == EACCES) || (error == EBUSY)) 4210 return (SET_ERROR(error)); 4211 if (error != 0) 4212 return (SET_ERROR(EEXIST)); 4213 return (0); 4214 } 4215 4216 EXPORT_SYMBOL(zil_alloc); 4217 EXPORT_SYMBOL(zil_free); 4218 EXPORT_SYMBOL(zil_open); 4219 EXPORT_SYMBOL(zil_close); 4220 EXPORT_SYMBOL(zil_replay); 4221 EXPORT_SYMBOL(zil_replaying); 4222 EXPORT_SYMBOL(zil_destroy); 4223 EXPORT_SYMBOL(zil_destroy_sync); 4224 EXPORT_SYMBOL(zil_itx_create); 4225 EXPORT_SYMBOL(zil_itx_destroy); 4226 EXPORT_SYMBOL(zil_itx_assign); 4227 EXPORT_SYMBOL(zil_commit); 4228 EXPORT_SYMBOL(zil_claim); 4229 EXPORT_SYMBOL(zil_check_log_chain); 4230 EXPORT_SYMBOL(zil_sync); 4231 EXPORT_SYMBOL(zil_clean); 4232 EXPORT_SYMBOL(zil_suspend); 4233 EXPORT_SYMBOL(zil_resume); 4234 EXPORT_SYMBOL(zil_lwb_add_block); 4235 EXPORT_SYMBOL(zil_bp_tree_add); 4236 EXPORT_SYMBOL(zil_set_sync); 4237 EXPORT_SYMBOL(zil_set_logbias); 4238 EXPORT_SYMBOL(zil_sums_init); 4239 EXPORT_SYMBOL(zil_sums_fini); 4240 EXPORT_SYMBOL(zil_kstat_values_update); 4241 4242 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, 4243 "ZIL block open timeout percentage"); 4244 4245 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, 4246 "Disable intent logging replay"); 4247 4248 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, 4249 "Disable ZIL cache flushes"); 4250 4251 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, 4252 "Limit in bytes slog sync writes per commit"); 4253 4254 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, 4255 "Limit in bytes of ZIL log block size"); 4256 4257 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW, 4258 "Limit in bytes WR_COPIED size"); 4259