1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 28 */ 29 30 /* Portions Copyright 2007 Jeremy Teo */ 31 /* Portions Copyright 2010 Robert Milkowski */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/sysmacros.h> 37 #include <sys/vfs.h> 38 #include <sys/uio_impl.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/cmn_err.h> 43 #include <sys/errno.h> 44 #include <sys/zfs_dir.h> 45 #include <sys/zfs_acl.h> 46 #include <sys/zfs_ioctl.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/dmu.h> 49 #include <sys/dmu_objset.h> 50 #include <sys/spa.h> 51 #include <sys/txg.h> 52 #include <sys/dbuf.h> 53 #include <sys/policy.h> 54 #include <sys/zfeature.h> 55 #include <sys/zfs_vnops.h> 56 #include <sys/zfs_quota.h> 57 #include <sys/zfs_vfsops.h> 58 #include <sys/zfs_znode.h> 59 60 61 static ulong_t zfs_fsync_sync_cnt = 4; 62 63 int 64 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr) 65 { 66 int error = 0; 67 zfsvfs_t *zfsvfs = ZTOZSB(zp); 68 69 (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt); 70 71 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 72 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 73 goto out; 74 atomic_inc_32(&zp->z_sync_writes_cnt); 75 zil_commit(zfsvfs->z_log, zp->z_id); 76 atomic_dec_32(&zp->z_sync_writes_cnt); 77 zfs_exit(zfsvfs, FTAG); 78 } 79 out: 80 tsd_set(zfs_fsyncer_key, NULL); 81 82 return (error); 83 } 84 85 86 #if defined(SEEK_HOLE) && defined(SEEK_DATA) 87 /* 88 * Lseek support for finding holes (cmd == SEEK_HOLE) and 89 * data (cmd == SEEK_DATA). "off" is an in/out parameter. 90 */ 91 static int 92 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off) 93 { 94 zfs_locked_range_t *lr; 95 uint64_t noff = (uint64_t)*off; /* new offset */ 96 uint64_t file_sz; 97 int error; 98 boolean_t hole; 99 100 file_sz = zp->z_size; 101 if (noff >= file_sz) { 102 return (SET_ERROR(ENXIO)); 103 } 104 105 if (cmd == F_SEEK_HOLE) 106 hole = B_TRUE; 107 else 108 hole = B_FALSE; 109 110 /* Flush any mmap()'d data to disk */ 111 if (zn_has_cached_data(zp, 0, file_sz - 1)) 112 zn_flush_cached_data(zp, B_FALSE); 113 114 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER); 115 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff); 116 zfs_rangelock_exit(lr); 117 118 if (error == ESRCH) 119 return (SET_ERROR(ENXIO)); 120 121 /* File was dirty, so fall back to using generic logic */ 122 if (error == EBUSY) { 123 if (hole) 124 *off = file_sz; 125 126 return (0); 127 } 128 129 /* 130 * We could find a hole that begins after the logical end-of-file, 131 * because dmu_offset_next() only works on whole blocks. If the 132 * EOF falls mid-block, then indicate that the "virtual hole" 133 * at the end of the file begins at the logical EOF, rather than 134 * at the end of the last block. 135 */ 136 if (noff > file_sz) { 137 ASSERT(hole); 138 noff = file_sz; 139 } 140 141 if (noff < *off) 142 return (error); 143 *off = noff; 144 return (error); 145 } 146 147 int 148 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off) 149 { 150 zfsvfs_t *zfsvfs = ZTOZSB(zp); 151 int error; 152 153 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 154 return (error); 155 156 error = zfs_holey_common(zp, cmd, off); 157 158 zfs_exit(zfsvfs, FTAG); 159 return (error); 160 } 161 #endif /* SEEK_HOLE && SEEK_DATA */ 162 163 int 164 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr) 165 { 166 zfsvfs_t *zfsvfs = ZTOZSB(zp); 167 int error; 168 169 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 170 return (error); 171 172 if (flag & V_ACE_MASK) 173 #if defined(__linux__) 174 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 175 zfs_init_idmap); 176 #else 177 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr, 178 NULL); 179 #endif 180 else 181 #if defined(__linux__) 182 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap); 183 #else 184 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL); 185 #endif 186 187 zfs_exit(zfsvfs, FTAG); 188 return (error); 189 } 190 191 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */ 192 193 /* 194 * Read bytes from specified file into supplied buffer. 195 * 196 * IN: zp - inode of file to be read from. 197 * uio - structure supplying read location, range info, 198 * and return buffer. 199 * ioflag - O_SYNC flags; used to provide FRSYNC semantics. 200 * O_DIRECT flag; used to bypass page cache. 201 * cr - credentials of caller. 202 * 203 * OUT: uio - updated offset and range, buffer filled. 204 * 205 * RETURN: 0 on success, error code on failure. 206 * 207 * Side Effects: 208 * inode - atime updated if byte count > 0 209 */ 210 int 211 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 212 { 213 (void) cr; 214 int error = 0; 215 boolean_t frsync = B_FALSE; 216 217 zfsvfs_t *zfsvfs = ZTOZSB(zp); 218 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 219 return (error); 220 221 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 222 zfs_exit(zfsvfs, FTAG); 223 return (SET_ERROR(EACCES)); 224 } 225 226 /* We don't copy out anything useful for directories. */ 227 if (Z_ISDIR(ZTOTYPE(zp))) { 228 zfs_exit(zfsvfs, FTAG); 229 return (SET_ERROR(EISDIR)); 230 } 231 232 /* 233 * Validate file offset 234 */ 235 if (zfs_uio_offset(uio) < (offset_t)0) { 236 zfs_exit(zfsvfs, FTAG); 237 return (SET_ERROR(EINVAL)); 238 } 239 240 /* 241 * Fasttrack empty reads 242 */ 243 if (zfs_uio_resid(uio) == 0) { 244 zfs_exit(zfsvfs, FTAG); 245 return (0); 246 } 247 248 #ifdef FRSYNC 249 /* 250 * If we're in FRSYNC mode, sync out this znode before reading it. 251 * Only do this for non-snapshots. 252 * 253 * Some platforms do not support FRSYNC and instead map it 254 * to O_SYNC, which results in unnecessary calls to zil_commit. We 255 * only honor FRSYNC requests on platforms which support it. 256 */ 257 frsync = !!(ioflag & FRSYNC); 258 #endif 259 if (zfsvfs->z_log && 260 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)) 261 zil_commit(zfsvfs->z_log, zp->z_id); 262 263 /* 264 * Lock the range against changes. 265 */ 266 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 267 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER); 268 269 /* 270 * If we are reading past end-of-file we can skip 271 * to the end; but we might still need to set atime. 272 */ 273 if (zfs_uio_offset(uio) >= zp->z_size) { 274 error = 0; 275 goto out; 276 } 277 278 ASSERT(zfs_uio_offset(uio) < zp->z_size); 279 #if defined(__linux__) 280 ssize_t start_offset = zfs_uio_offset(uio); 281 #endif 282 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio)); 283 ssize_t start_resid = n; 284 285 while (n > 0) { 286 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size - 287 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size)); 288 #ifdef UIO_NOCOPY 289 if (zfs_uio_segflg(uio) == UIO_NOCOPY) 290 error = mappedread_sf(zp, nbytes, uio); 291 else 292 #endif 293 if (zn_has_cached_data(zp, zfs_uio_offset(uio), 294 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) { 295 error = mappedread(zp, nbytes, uio); 296 } else { 297 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 298 uio, nbytes); 299 } 300 301 if (error) { 302 /* convert checksum errors into IO errors */ 303 if (error == ECKSUM) 304 error = SET_ERROR(EIO); 305 306 #if defined(__linux__) 307 /* 308 * if we actually read some bytes, bubbling EFAULT 309 * up to become EAGAIN isn't what we want here... 310 * 311 * ...on Linux, at least. On FBSD, doing this breaks. 312 */ 313 if (error == EFAULT && 314 (zfs_uio_offset(uio) - start_offset) != 0) 315 error = 0; 316 #endif 317 break; 318 } 319 320 n -= nbytes; 321 } 322 323 int64_t nread = start_resid - n; 324 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread); 325 task_io_account_read(nread); 326 out: 327 zfs_rangelock_exit(lr); 328 329 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 330 zfs_exit(zfsvfs, FTAG); 331 return (error); 332 } 333 334 static void 335 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr, 336 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx) 337 { 338 zilog_t *zilog = zfsvfs->z_log; 339 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 340 341 ASSERT(clear_setid_bits_txgp != NULL); 342 ASSERT(tx != NULL); 343 344 /* 345 * Clear Set-UID/Set-GID bits on successful write if not 346 * privileged and at least one of the execute bits is set. 347 * 348 * It would be nice to do this after all writes have 349 * been done, but that would still expose the ISUID/ISGID 350 * to another app after the partial write is committed. 351 * 352 * Note: we don't call zfs_fuid_map_id() here because 353 * user 0 is not an ephemeral uid. 354 */ 355 mutex_enter(&zp->z_acl_lock); 356 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 && 357 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 358 secpolicy_vnode_setid_retain(zp, cr, 359 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) { 360 uint64_t newmode; 361 362 zp->z_mode &= ~(S_ISUID | S_ISGID); 363 newmode = zp->z_mode; 364 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 365 (void *)&newmode, sizeof (uint64_t), tx); 366 367 mutex_exit(&zp->z_acl_lock); 368 369 /* 370 * Make sure SUID/SGID bits will be removed when we replay the 371 * log. If the setid bits are keep coming back, don't log more 372 * than one TX_SETATTR per transaction group. 373 */ 374 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) { 375 vattr_t va = {0}; 376 377 va.va_mask = ATTR_MODE; 378 va.va_nodeid = zp->z_id; 379 va.va_mode = newmode; 380 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va, 381 ATTR_MODE, NULL); 382 *clear_setid_bits_txgp = dmu_tx_get_txg(tx); 383 } 384 } else { 385 mutex_exit(&zp->z_acl_lock); 386 } 387 } 388 389 /* 390 * Write the bytes to a file. 391 * 392 * IN: zp - znode of file to be written to. 393 * uio - structure supplying write location, range info, 394 * and data buffer. 395 * ioflag - O_APPEND flag set if in append mode. 396 * O_DIRECT flag; used to bypass page cache. 397 * cr - credentials of caller. 398 * 399 * OUT: uio - updated offset and range. 400 * 401 * RETURN: 0 if success 402 * error code if failure 403 * 404 * Timestamps: 405 * ip - ctime|mtime updated if byte count > 0 406 */ 407 int 408 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr) 409 { 410 int error = 0, error1; 411 ssize_t start_resid = zfs_uio_resid(uio); 412 uint64_t clear_setid_bits_txg = 0; 413 414 /* 415 * Fasttrack empty write 416 */ 417 ssize_t n = start_resid; 418 if (n == 0) 419 return (0); 420 421 zfsvfs_t *zfsvfs = ZTOZSB(zp); 422 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 423 return (error); 424 425 sa_bulk_attr_t bulk[4]; 426 int count = 0; 427 uint64_t mtime[2], ctime[2]; 428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 431 &zp->z_size, 8); 432 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 433 &zp->z_pflags, 8); 434 435 /* 436 * Callers might not be able to detect properly that we are read-only, 437 * so check it explicitly here. 438 */ 439 if (zfs_is_readonly(zfsvfs)) { 440 zfs_exit(zfsvfs, FTAG); 441 return (SET_ERROR(EROFS)); 442 } 443 444 /* 445 * If immutable or not appending then return EPERM. 446 * Intentionally allow ZFS_READONLY through here. 447 * See zfs_zaccess_common() 448 */ 449 if ((zp->z_pflags & ZFS_IMMUTABLE) || 450 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) && 451 (zfs_uio_offset(uio) < zp->z_size))) { 452 zfs_exit(zfsvfs, FTAG); 453 return (SET_ERROR(EPERM)); 454 } 455 456 /* 457 * Validate file offset 458 */ 459 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio); 460 if (woff < 0) { 461 zfs_exit(zfsvfs, FTAG); 462 return (SET_ERROR(EINVAL)); 463 } 464 465 const uint64_t max_blksz = zfsvfs->z_max_blksz; 466 467 /* 468 * Pre-fault the pages to ensure slow (eg NFS) pages 469 * don't hold up txg. 470 * Skip this if uio contains loaned arc_buf. 471 */ 472 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 473 zfs_exit(zfsvfs, FTAG); 474 return (SET_ERROR(EFAULT)); 475 } 476 477 /* 478 * If in append mode, set the io offset pointer to eof. 479 */ 480 zfs_locked_range_t *lr; 481 if (ioflag & O_APPEND) { 482 /* 483 * Obtain an appending range lock to guarantee file append 484 * semantics. We reset the write offset once we have the lock. 485 */ 486 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND); 487 woff = lr->lr_offset; 488 if (lr->lr_length == UINT64_MAX) { 489 /* 490 * We overlocked the file because this write will cause 491 * the file block size to increase. 492 * Note that zp_size cannot change with this lock held. 493 */ 494 woff = zp->z_size; 495 } 496 zfs_uio_setoffset(uio, woff); 497 } else { 498 /* 499 * Note that if the file block size will change as a result of 500 * this write, then this range lock will lock the entire file 501 * so that we can re-write the block safely. 502 */ 503 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER); 504 } 505 506 if (zn_rlimit_fsize_uio(zp, uio)) { 507 zfs_rangelock_exit(lr); 508 zfs_exit(zfsvfs, FTAG); 509 return (SET_ERROR(EFBIG)); 510 } 511 512 const rlim64_t limit = MAXOFFSET_T; 513 514 if (woff >= limit) { 515 zfs_rangelock_exit(lr); 516 zfs_exit(zfsvfs, FTAG); 517 return (SET_ERROR(EFBIG)); 518 } 519 520 if (n > limit - woff) 521 n = limit - woff; 522 523 uint64_t end_size = MAX(zp->z_size, woff + n); 524 zilog_t *zilog = zfsvfs->z_log; 525 526 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp)); 527 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp)); 528 const uint64_t projid = zp->z_projid; 529 530 /* 531 * Write the file in reasonable size chunks. Each chunk is written 532 * in a separate transaction; this keeps the intent log records small 533 * and allows us to do more fine-grained space accounting. 534 */ 535 while (n > 0) { 536 woff = zfs_uio_offset(uio); 537 538 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) || 539 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) || 540 (projid != ZFS_DEFAULT_PROJID && 541 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 542 projid))) { 543 error = SET_ERROR(EDQUOT); 544 break; 545 } 546 547 arc_buf_t *abuf = NULL; 548 if (n >= max_blksz && woff >= zp->z_size && 549 P2PHASE(woff, max_blksz) == 0 && 550 zp->z_blksz == max_blksz) { 551 /* 552 * This write covers a full block. "Borrow" a buffer 553 * from the dmu so that we can fill it before we enter 554 * a transaction. This avoids the possibility of 555 * holding up the transaction if the data copy hangs 556 * up on a pagefault (e.g., from an NFS server mapping). 557 */ 558 size_t cbytes; 559 560 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 561 max_blksz); 562 ASSERT(abuf != NULL); 563 ASSERT(arc_buf_size(abuf) == max_blksz); 564 if ((error = zfs_uiocopy(abuf->b_data, max_blksz, 565 UIO_WRITE, uio, &cbytes))) { 566 dmu_return_arcbuf(abuf); 567 break; 568 } 569 ASSERT3S(cbytes, ==, max_blksz); 570 } 571 572 /* 573 * Start a transaction. 574 */ 575 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 576 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 577 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 578 DB_DNODE_ENTER(db); 579 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, 580 MIN(n, max_blksz)); 581 DB_DNODE_EXIT(db); 582 zfs_sa_upgrade_txholds(tx, zp); 583 error = dmu_tx_assign(tx, TXG_WAIT); 584 if (error) { 585 dmu_tx_abort(tx); 586 if (abuf != NULL) 587 dmu_return_arcbuf(abuf); 588 break; 589 } 590 591 /* 592 * NB: We must call zfs_clear_setid_bits_if_necessary before 593 * committing the transaction! 594 */ 595 596 /* 597 * If rangelock_enter() over-locked we grow the blocksize 598 * and then reduce the lock range. This will only happen 599 * on the first iteration since rangelock_reduce() will 600 * shrink down lr_length to the appropriate size. 601 */ 602 if (lr->lr_length == UINT64_MAX) { 603 uint64_t new_blksz; 604 605 if (zp->z_blksz > max_blksz) { 606 /* 607 * File's blocksize is already larger than the 608 * "recordsize" property. Only let it grow to 609 * the next power of 2. 610 */ 611 ASSERT(!ISP2(zp->z_blksz)); 612 new_blksz = MIN(end_size, 613 1 << highbit64(zp->z_blksz)); 614 } else { 615 new_blksz = MIN(end_size, max_blksz); 616 } 617 zfs_grow_blocksize(zp, new_blksz, tx); 618 zfs_rangelock_reduce(lr, woff, n); 619 } 620 621 /* 622 * XXX - should we really limit each write to z_max_blksz? 623 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 624 */ 625 const ssize_t nbytes = 626 MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 627 628 ssize_t tx_bytes; 629 if (abuf == NULL) { 630 tx_bytes = zfs_uio_resid(uio); 631 zfs_uio_fault_disable(uio, B_TRUE); 632 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 633 uio, nbytes, tx); 634 zfs_uio_fault_disable(uio, B_FALSE); 635 #ifdef __linux__ 636 if (error == EFAULT) { 637 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 638 cr, &clear_setid_bits_txg, tx); 639 dmu_tx_commit(tx); 640 /* 641 * Account for partial writes before 642 * continuing the loop. 643 * Update needs to occur before the next 644 * zfs_uio_prefaultpages, or prefaultpages may 645 * error, and we may break the loop early. 646 */ 647 if (tx_bytes != zfs_uio_resid(uio)) 648 n -= tx_bytes - zfs_uio_resid(uio); 649 if (zfs_uio_prefaultpages(MIN(n, max_blksz), 650 uio)) { 651 break; 652 } 653 continue; 654 } 655 #endif 656 /* 657 * On FreeBSD, EFAULT should be propagated back to the 658 * VFS, which will handle faulting and will retry. 659 */ 660 if (error != 0 && error != EFAULT) { 661 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 662 cr, &clear_setid_bits_txg, tx); 663 dmu_tx_commit(tx); 664 break; 665 } 666 tx_bytes -= zfs_uio_resid(uio); 667 } else { 668 /* Implied by abuf != NULL: */ 669 ASSERT3S(n, >=, max_blksz); 670 ASSERT0(P2PHASE(woff, max_blksz)); 671 /* 672 * We can simplify nbytes to MIN(n, max_blksz) since 673 * P2PHASE(woff, max_blksz) is 0, and knowing 674 * n >= max_blksz lets us simplify further: 675 */ 676 ASSERT3S(nbytes, ==, max_blksz); 677 /* 678 * Thus, we're writing a full block at a block-aligned 679 * offset and extending the file past EOF. 680 * 681 * dmu_assign_arcbuf_by_dbuf() will directly assign the 682 * arc buffer to a dbuf. 683 */ 684 error = dmu_assign_arcbuf_by_dbuf( 685 sa_get_db(zp->z_sa_hdl), woff, abuf, tx); 686 if (error != 0) { 687 /* 688 * XXX This might not be necessary if 689 * dmu_assign_arcbuf_by_dbuf is guaranteed 690 * to be atomic. 691 */ 692 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, 693 cr, &clear_setid_bits_txg, tx); 694 dmu_return_arcbuf(abuf); 695 dmu_tx_commit(tx); 696 break; 697 } 698 ASSERT3S(nbytes, <=, zfs_uio_resid(uio)); 699 zfs_uioskip(uio, nbytes); 700 tx_bytes = nbytes; 701 } 702 if (tx_bytes && 703 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) && 704 !(ioflag & O_DIRECT)) { 705 update_pages(zp, woff, tx_bytes, zfsvfs->z_os); 706 } 707 708 /* 709 * If we made no progress, we're done. If we made even 710 * partial progress, update the znode and ZIL accordingly. 711 */ 712 if (tx_bytes == 0) { 713 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 714 (void *)&zp->z_size, sizeof (uint64_t), tx); 715 dmu_tx_commit(tx); 716 ASSERT(error != 0); 717 break; 718 } 719 720 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr, 721 &clear_setid_bits_txg, tx); 722 723 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 724 725 /* 726 * Update the file size (zp_size) if it has changed; 727 * account for possible concurrent updates. 728 */ 729 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) { 730 (void) atomic_cas_64(&zp->z_size, end_size, 731 zfs_uio_offset(uio)); 732 ASSERT(error == 0 || error == EFAULT); 733 } 734 /* 735 * If we are replaying and eof is non zero then force 736 * the file size to the specified eof. Note, there's no 737 * concurrency during replay. 738 */ 739 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 740 zp->z_size = zfsvfs->z_replay_eof; 741 742 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 743 if (error1 != 0) 744 /* Avoid clobbering EFAULT. */ 745 error = error1; 746 747 /* 748 * NB: During replay, the TX_SETATTR record logged by 749 * zfs_clear_setid_bits_if_necessary must precede any of 750 * the TX_WRITE records logged here. 751 */ 752 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag, 753 NULL, NULL); 754 755 dmu_tx_commit(tx); 756 757 if (error != 0) 758 break; 759 ASSERT3S(tx_bytes, ==, nbytes); 760 n -= nbytes; 761 762 if (n > 0) { 763 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) { 764 error = SET_ERROR(EFAULT); 765 break; 766 } 767 } 768 } 769 770 zfs_znode_update_vfs(zp); 771 zfs_rangelock_exit(lr); 772 773 /* 774 * If we're in replay mode, or we made no progress, or the 775 * uio data is inaccessible return an error. Otherwise, it's 776 * at least a partial write, so it's successful. 777 */ 778 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid || 779 error == EFAULT) { 780 zfs_exit(zfsvfs, FTAG); 781 return (error); 782 } 783 784 if (ioflag & (O_SYNC | O_DSYNC) || 785 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 786 zil_commit(zilog, zp->z_id); 787 788 const int64_t nwritten = start_resid - zfs_uio_resid(uio); 789 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten); 790 task_io_account_write(nwritten); 791 792 zfs_exit(zfsvfs, FTAG); 793 return (0); 794 } 795 796 int 797 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 798 { 799 zfsvfs_t *zfsvfs = ZTOZSB(zp); 800 int error; 801 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 802 803 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 804 return (error); 805 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 806 zfs_exit(zfsvfs, FTAG); 807 808 return (error); 809 } 810 811 int 812 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr) 813 { 814 zfsvfs_t *zfsvfs = ZTOZSB(zp); 815 int error; 816 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 817 zilog_t *zilog = zfsvfs->z_log; 818 819 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 820 return (error); 821 822 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 823 824 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 825 zil_commit(zilog, 0); 826 827 zfs_exit(zfsvfs, FTAG); 828 return (error); 829 } 830 831 #ifdef ZFS_DEBUG 832 static int zil_fault_io = 0; 833 #endif 834 835 static void zfs_get_done(zgd_t *zgd, int error); 836 837 /* 838 * Get data to generate a TX_WRITE intent log record. 839 */ 840 int 841 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf, 842 struct lwb *lwb, zio_t *zio) 843 { 844 zfsvfs_t *zfsvfs = arg; 845 objset_t *os = zfsvfs->z_os; 846 znode_t *zp; 847 uint64_t object = lr->lr_foid; 848 uint64_t offset = lr->lr_offset; 849 uint64_t size = lr->lr_length; 850 dmu_buf_t *db; 851 zgd_t *zgd; 852 int error = 0; 853 uint64_t zp_gen; 854 855 ASSERT3P(lwb, !=, NULL); 856 ASSERT3P(zio, !=, NULL); 857 ASSERT3U(size, !=, 0); 858 859 /* 860 * Nothing to do if the file has been removed 861 */ 862 if (zfs_zget(zfsvfs, object, &zp) != 0) 863 return (SET_ERROR(ENOENT)); 864 if (zp->z_unlinked) { 865 /* 866 * Release the vnode asynchronously as we currently have the 867 * txg stopped from syncing. 868 */ 869 zfs_zrele_async(zp); 870 return (SET_ERROR(ENOENT)); 871 } 872 /* check if generation number matches */ 873 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 874 sizeof (zp_gen)) != 0) { 875 zfs_zrele_async(zp); 876 return (SET_ERROR(EIO)); 877 } 878 if (zp_gen != gen) { 879 zfs_zrele_async(zp); 880 return (SET_ERROR(ENOENT)); 881 } 882 883 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 884 zgd->zgd_lwb = lwb; 885 zgd->zgd_private = zp; 886 887 /* 888 * Write records come in two flavors: immediate and indirect. 889 * For small writes it's cheaper to store the data with the 890 * log record (immediate); for large writes it's cheaper to 891 * sync the data and get a pointer to it (indirect) so that 892 * we don't have to write the data twice. 893 */ 894 if (buf != NULL) { /* immediate write */ 895 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 896 offset, size, RL_READER); 897 /* test for truncation needs to be done while range locked */ 898 if (offset >= zp->z_size) { 899 error = SET_ERROR(ENOENT); 900 } else { 901 error = dmu_read(os, object, offset, size, buf, 902 DMU_READ_NO_PREFETCH); 903 } 904 ASSERT(error == 0 || error == ENOENT); 905 } else { /* indirect write */ 906 /* 907 * Have to lock the whole block to ensure when it's 908 * written out and its checksum is being calculated 909 * that no one can change the data. We need to re-check 910 * blocksize after we get the lock in case it's changed! 911 */ 912 for (;;) { 913 uint64_t blkoff; 914 size = zp->z_blksz; 915 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 916 offset -= blkoff; 917 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock, 918 offset, size, RL_READER); 919 if (zp->z_blksz == size) 920 break; 921 offset += blkoff; 922 zfs_rangelock_exit(zgd->zgd_lr); 923 } 924 /* test for truncation needs to be done while range locked */ 925 if (lr->lr_offset >= zp->z_size) 926 error = SET_ERROR(ENOENT); 927 #ifdef ZFS_DEBUG 928 if (zil_fault_io) { 929 error = SET_ERROR(EIO); 930 zil_fault_io = 0; 931 } 932 #endif 933 if (error == 0) 934 error = dmu_buf_hold(os, object, offset, zgd, &db, 935 DMU_READ_NO_PREFETCH); 936 937 if (error == 0) { 938 blkptr_t *bp = &lr->lr_blkptr; 939 940 zgd->zgd_db = db; 941 zgd->zgd_bp = bp; 942 943 ASSERT(db->db_offset == offset); 944 ASSERT(db->db_size == size); 945 946 error = dmu_sync(zio, lr->lr_common.lrc_txg, 947 zfs_get_done, zgd); 948 ASSERT(error || lr->lr_length <= size); 949 950 /* 951 * On success, we need to wait for the write I/O 952 * initiated by dmu_sync() to complete before we can 953 * release this dbuf. We will finish everything up 954 * in the zfs_get_done() callback. 955 */ 956 if (error == 0) 957 return (0); 958 959 if (error == EALREADY) { 960 lr->lr_common.lrc_txtype = TX_WRITE2; 961 /* 962 * TX_WRITE2 relies on the data previously 963 * written by the TX_WRITE that caused 964 * EALREADY. We zero out the BP because 965 * it is the old, currently-on-disk BP. 966 */ 967 zgd->zgd_bp = NULL; 968 BP_ZERO(bp); 969 error = 0; 970 } 971 } 972 } 973 974 zfs_get_done(zgd, error); 975 976 return (error); 977 } 978 979 980 static void 981 zfs_get_done(zgd_t *zgd, int error) 982 { 983 (void) error; 984 znode_t *zp = zgd->zgd_private; 985 986 if (zgd->zgd_db) 987 dmu_buf_rele(zgd->zgd_db, zgd); 988 989 zfs_rangelock_exit(zgd->zgd_lr); 990 991 /* 992 * Release the vnode asynchronously as we currently have the 993 * txg stopped from syncing. 994 */ 995 zfs_zrele_async(zp); 996 997 kmem_free(zgd, sizeof (zgd_t)); 998 } 999 1000 static int 1001 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) 1002 { 1003 int error; 1004 1005 /* Swap. Not sure if the order of zfs_enter()s is important. */ 1006 if (zfsvfs1 > zfsvfs2) { 1007 zfsvfs_t *tmpzfsvfs; 1008 1009 tmpzfsvfs = zfsvfs2; 1010 zfsvfs2 = zfsvfs1; 1011 zfsvfs1 = tmpzfsvfs; 1012 } 1013 1014 error = zfs_enter(zfsvfs1, tag); 1015 if (error != 0) 1016 return (error); 1017 if (zfsvfs1 != zfsvfs2) { 1018 error = zfs_enter(zfsvfs2, tag); 1019 if (error != 0) { 1020 zfs_exit(zfsvfs1, tag); 1021 return (error); 1022 } 1023 } 1024 1025 return (0); 1026 } 1027 1028 static void 1029 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag) 1030 { 1031 1032 zfs_exit(zfsvfs1, tag); 1033 if (zfsvfs1 != zfsvfs2) 1034 zfs_exit(zfsvfs2, tag); 1035 } 1036 1037 /* 1038 * We split each clone request in chunks that can fit into a single ZIL 1039 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning 1040 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives 1041 * us room for storing 1022 block pointers. 1042 * 1043 * On success, the function return the number of bytes copied in *lenp. 1044 * Note, it doesn't return how much bytes are left to be copied. 1045 */ 1046 int 1047 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp, 1048 uint64_t *outoffp, uint64_t *lenp, cred_t *cr) 1049 { 1050 zfsvfs_t *inzfsvfs, *outzfsvfs; 1051 objset_t *inos, *outos; 1052 zfs_locked_range_t *inlr, *outlr; 1053 dmu_buf_impl_t *db; 1054 dmu_tx_t *tx; 1055 zilog_t *zilog; 1056 uint64_t inoff, outoff, len, done; 1057 uint64_t outsize, size; 1058 int error; 1059 int count = 0; 1060 sa_bulk_attr_t bulk[3]; 1061 uint64_t mtime[2], ctime[2]; 1062 uint64_t uid, gid, projid; 1063 blkptr_t *bps; 1064 size_t maxblocks, nbps; 1065 uint_t inblksz; 1066 uint64_t clear_setid_bits_txg = 0; 1067 1068 inoff = *inoffp; 1069 outoff = *outoffp; 1070 len = *lenp; 1071 done = 0; 1072 1073 inzfsvfs = ZTOZSB(inzp); 1074 outzfsvfs = ZTOZSB(outzp); 1075 1076 /* 1077 * We need to call zfs_enter() potentially on two different datasets, 1078 * so we need a dedicated function for that. 1079 */ 1080 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG); 1081 if (error != 0) 1082 return (error); 1083 1084 inos = inzfsvfs->z_os; 1085 outos = outzfsvfs->z_os; 1086 1087 /* 1088 * Both source and destination have to belong to the same storage pool. 1089 */ 1090 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) { 1091 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1092 return (SET_ERROR(EXDEV)); 1093 } 1094 1095 ASSERT(!outzfsvfs->z_replay); 1096 1097 error = zfs_verify_zp(inzp); 1098 if (error == 0) 1099 error = zfs_verify_zp(outzp); 1100 if (error != 0) { 1101 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1102 return (error); 1103 } 1104 1105 if (!spa_feature_is_enabled(dmu_objset_spa(outos), 1106 SPA_FEATURE_BLOCK_CLONING)) { 1107 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1108 return (SET_ERROR(EXDEV)); 1109 } 1110 1111 /* 1112 * We don't copy source file's flags that's why we don't allow to clone 1113 * files that are in quarantine. 1114 */ 1115 if (inzp->z_pflags & ZFS_AV_QUARANTINED) { 1116 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1117 return (SET_ERROR(EACCES)); 1118 } 1119 1120 if (inoff >= inzp->z_size) { 1121 *lenp = 0; 1122 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1123 return (0); 1124 } 1125 if (len > inzp->z_size - inoff) { 1126 len = inzp->z_size - inoff; 1127 } 1128 if (len == 0) { 1129 *lenp = 0; 1130 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1131 return (0); 1132 } 1133 1134 /* 1135 * Callers might not be able to detect properly that we are read-only, 1136 * so check it explicitly here. 1137 */ 1138 if (zfs_is_readonly(outzfsvfs)) { 1139 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1140 return (SET_ERROR(EROFS)); 1141 } 1142 1143 /* 1144 * If immutable or not appending then return EPERM. 1145 * Intentionally allow ZFS_READONLY through here. 1146 * See zfs_zaccess_common() 1147 */ 1148 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) { 1149 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1150 return (SET_ERROR(EPERM)); 1151 } 1152 1153 /* 1154 * No overlapping if we are cloning within the same file. 1155 */ 1156 if (inzp == outzp) { 1157 if (inoff < outoff + len && outoff < inoff + len) { 1158 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1159 return (SET_ERROR(EINVAL)); 1160 } 1161 } 1162 1163 /* 1164 * Maintain predictable lock order. 1165 */ 1166 if (inzp < outzp || (inzp == outzp && inoff < outoff)) { 1167 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, 1168 RL_READER); 1169 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, 1170 RL_WRITER); 1171 } else { 1172 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len, 1173 RL_WRITER); 1174 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len, 1175 RL_READER); 1176 } 1177 1178 inblksz = inzp->z_blksz; 1179 1180 /* 1181 * We cannot clone into files with different block size. 1182 */ 1183 if (inblksz != outzp->z_blksz && outzp->z_size > inblksz) { 1184 error = SET_ERROR(EXDEV); 1185 goto unlock; 1186 } 1187 1188 /* 1189 * Offsets and len must be at block boundries. 1190 */ 1191 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) { 1192 error = SET_ERROR(EXDEV); 1193 goto unlock; 1194 } 1195 /* 1196 * Length must be multipe of blksz, except for the end of the file. 1197 */ 1198 if ((len % inblksz) != 0 && 1199 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) { 1200 error = SET_ERROR(EXDEV); 1201 goto unlock; 1202 } 1203 1204 error = zn_rlimit_fsize(outoff + len); 1205 if (error != 0) { 1206 goto unlock; 1207 } 1208 1209 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) { 1210 error = SET_ERROR(EFBIG); 1211 goto unlock; 1212 } 1213 1214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL, 1215 &mtime, 16); 1216 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL, 1217 &ctime, 16); 1218 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL, 1219 &outzp->z_size, 8); 1220 1221 zilog = outzfsvfs->z_log; 1222 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) / 1223 sizeof (bps[0]); 1224 1225 uid = KUID_TO_SUID(ZTOUID(outzp)); 1226 gid = KGID_TO_SGID(ZTOGID(outzp)); 1227 projid = outzp->z_projid; 1228 1229 bps = kmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP); 1230 1231 /* 1232 * Clone the file in reasonable size chunks. Each chunk is cloned 1233 * in a separate transaction; this keeps the intent log records small 1234 * and allows us to do more fine-grained space accounting. 1235 */ 1236 while (len > 0) { 1237 size = MIN(inblksz * maxblocks, len); 1238 1239 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT, 1240 uid) || 1241 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT, 1242 gid) || 1243 (projid != ZFS_DEFAULT_PROJID && 1244 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT, 1245 projid))) { 1246 error = SET_ERROR(EDQUOT); 1247 break; 1248 } 1249 1250 nbps = maxblocks; 1251 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps, 1252 &nbps); 1253 if (error != 0) { 1254 /* 1255 * If we are tyring to clone a block that was created 1256 * in the current transaction group. Return an error, 1257 * so the caller can fallback to just copying the data. 1258 */ 1259 if (error == EAGAIN) { 1260 error = SET_ERROR(EXDEV); 1261 } 1262 break; 1263 } 1264 /* 1265 * Encrypted data is fine as long as it comes from the same 1266 * dataset. 1267 * TODO: We want to extend it in the future to allow cloning to 1268 * datasets with the same keys, like clones or to be able to 1269 * clone a file from a snapshot of an encrypted dataset into the 1270 * dataset itself. 1271 */ 1272 if (BP_IS_PROTECTED(&bps[0])) { 1273 if (inzfsvfs != outzfsvfs) { 1274 error = SET_ERROR(EXDEV); 1275 break; 1276 } 1277 } 1278 1279 /* 1280 * Start a transaction. 1281 */ 1282 tx = dmu_tx_create(outos); 1283 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE); 1284 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl); 1285 DB_DNODE_ENTER(db); 1286 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size); 1287 DB_DNODE_EXIT(db); 1288 zfs_sa_upgrade_txholds(tx, outzp); 1289 error = dmu_tx_assign(tx, TXG_WAIT); 1290 if (error != 0) { 1291 dmu_tx_abort(tx); 1292 break; 1293 } 1294 1295 /* 1296 * Copy source znode's block size. This only happens on the 1297 * first iteration since zfs_rangelock_reduce() will shrink down 1298 * lr_len to the appropriate size. 1299 */ 1300 if (outlr->lr_length == UINT64_MAX) { 1301 zfs_grow_blocksize(outzp, inblksz, tx); 1302 /* 1303 * Round range lock up to the block boundary, so we 1304 * prevent appends until we are done. 1305 */ 1306 zfs_rangelock_reduce(outlr, outoff, 1307 ((len - 1) / inblksz + 1) * inblksz); 1308 } 1309 1310 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx, 1311 bps, nbps, B_FALSE); 1312 if (error != 0) { 1313 dmu_tx_commit(tx); 1314 break; 1315 } 1316 1317 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr, 1318 &clear_setid_bits_txg, tx); 1319 1320 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime); 1321 1322 /* 1323 * Update the file size (zp_size) if it has changed; 1324 * account for possible concurrent updates. 1325 */ 1326 while ((outsize = outzp->z_size) < outoff + size) { 1327 (void) atomic_cas_64(&outzp->z_size, outsize, 1328 outoff + size); 1329 } 1330 1331 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx); 1332 1333 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff, 1334 size, inblksz, bps, nbps); 1335 1336 dmu_tx_commit(tx); 1337 1338 if (error != 0) 1339 break; 1340 1341 inoff += size; 1342 outoff += size; 1343 len -= size; 1344 done += size; 1345 } 1346 1347 kmem_free(bps, sizeof (bps[0]) * maxblocks); 1348 zfs_znode_update_vfs(outzp); 1349 1350 unlock: 1351 zfs_rangelock_exit(outlr); 1352 zfs_rangelock_exit(inlr); 1353 1354 if (done > 0) { 1355 /* 1356 * If we have made at least partial progress, reset the error. 1357 */ 1358 error = 0; 1359 1360 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp); 1361 1362 if (outos->os_sync == ZFS_SYNC_ALWAYS) { 1363 zil_commit(zilog, outzp->z_id); 1364 } 1365 1366 *inoffp += done; 1367 *outoffp += done; 1368 *lenp = done; 1369 } 1370 1371 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG); 1372 1373 return (error); 1374 } 1375 1376 /* 1377 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(), 1378 * but we cannot do that, because when replaying we don't have source znode 1379 * available. This is why we need a dedicated replay function. 1380 */ 1381 int 1382 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz, 1383 const blkptr_t *bps, size_t nbps) 1384 { 1385 zfsvfs_t *zfsvfs; 1386 dmu_buf_impl_t *db; 1387 dmu_tx_t *tx; 1388 int error; 1389 int count = 0; 1390 sa_bulk_attr_t bulk[3]; 1391 uint64_t mtime[2], ctime[2]; 1392 1393 ASSERT3U(off, <, MAXOFFSET_T); 1394 ASSERT3U(len, >, 0); 1395 ASSERT3U(nbps, >, 0); 1396 1397 zfsvfs = ZTOZSB(zp); 1398 1399 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os), 1400 SPA_FEATURE_BLOCK_CLONING)); 1401 1402 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 1403 return (error); 1404 1405 ASSERT(zfsvfs->z_replay); 1406 ASSERT(!zfs_is_readonly(zfsvfs)); 1407 1408 if ((off % blksz) != 0) { 1409 zfs_exit(zfsvfs, FTAG); 1410 return (SET_ERROR(EINVAL)); 1411 } 1412 1413 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 1414 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 1415 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1416 &zp->z_size, 8); 1417 1418 /* 1419 * Start a transaction. 1420 */ 1421 tx = dmu_tx_create(zfsvfs->z_os); 1422 1423 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1424 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl); 1425 DB_DNODE_ENTER(db); 1426 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len); 1427 DB_DNODE_EXIT(db); 1428 zfs_sa_upgrade_txholds(tx, zp); 1429 error = dmu_tx_assign(tx, TXG_WAIT); 1430 if (error != 0) { 1431 dmu_tx_abort(tx); 1432 zfs_exit(zfsvfs, FTAG); 1433 return (error); 1434 } 1435 1436 if (zp->z_blksz < blksz) 1437 zfs_grow_blocksize(zp, blksz, tx); 1438 1439 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE); 1440 1441 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 1442 1443 if (zp->z_size < off + len) 1444 zp->z_size = off + len; 1445 1446 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1447 1448 /* 1449 * zil_replaying() not only check if we are replaying ZIL, but also 1450 * updates the ZIL header to record replay progress. 1451 */ 1452 VERIFY(zil_replaying(zfsvfs->z_log, tx)); 1453 1454 dmu_tx_commit(tx); 1455 1456 zfs_znode_update_vfs(zp); 1457 1458 zfs_exit(zfsvfs, FTAG); 1459 1460 return (error); 1461 } 1462 1463 EXPORT_SYMBOL(zfs_access); 1464 EXPORT_SYMBOL(zfs_fsync); 1465 EXPORT_SYMBOL(zfs_holey); 1466 EXPORT_SYMBOL(zfs_read); 1467 EXPORT_SYMBOL(zfs_write); 1468 EXPORT_SYMBOL(zfs_getsecattr); 1469 EXPORT_SYMBOL(zfs_setsecattr); 1470 EXPORT_SYMBOL(zfs_clone_range); 1471 EXPORT_SYMBOL(zfs_clone_range_replay); 1472 1473 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW, 1474 "Bytes to read per chunk"); 1475