xref: /freebsd/sys/contrib/openzfs/module/zfs/zfs_fm.c (revision 4f8f43b06ed07e96a250855488cc531799d5b78f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012,2021 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  * 	EREPORT			POOL	VDEV	IO
48  * 	block			X	X	X
49  * 	data			X		X
50  * 	device			X	X
51  * 	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  * 	+---------------+
63  * 	| Aggregate I/O |	No associated logical data or device
64  * 	+---------------+
65  *              |
66  *              V
67  * 	+---------------+	Reads associated with a piece of logical data.
68  * 	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  * 	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  * 	+---------------+	Reads associated with a particular device, but
73  * 	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  * 	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 
105 #ifdef _KERNEL
106 /*
107  * Duplicate ereport Detection
108  *
109  * Some ereports are retained momentarily for detecting duplicates.  These
110  * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111  * tree of recent unique ereports.
112  *
113  * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114  * task is used to purge stale entries.
115  */
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
120 
121 /*
122  * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
123  *
124  * This setting can be changed dynamically and setting it to zero
125  * disables duplicate detection.
126  */
127 static unsigned int zfs_zevent_retain_max = 2000;
128 
129 /*
130  * The lifespan for a recent ereport entry. The default of 15 minutes is
131  * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132  * over a period of 10 minutes.
133  */
134 static unsigned int zfs_zevent_retain_expire_secs = 900;
135 
136 typedef enum zfs_subclass {
137 	ZSC_IO,
138 	ZSC_DATA,
139 	ZSC_CHECKSUM
140 } zfs_subclass_t;
141 
142 typedef struct {
143 	/* common criteria */
144 	uint64_t	re_pool_guid;
145 	uint64_t	re_vdev_guid;
146 	int		re_io_error;
147 	uint64_t	re_io_size;
148 	uint64_t	re_io_offset;
149 	zfs_subclass_t	re_subclass;
150 	zio_priority_t	re_io_priority;
151 
152 	/* logical zio criteria (optional) */
153 	zbookmark_phys_t re_io_bookmark;
154 
155 	/* internal state */
156 	avl_node_t	re_tree_link;
157 	list_node_t	re_list_link;
158 	uint64_t	re_timestamp;
159 } recent_events_node_t;
160 
161 static int
162 recent_events_compare(const void *a, const void *b)
163 {
164 	const recent_events_node_t *node1 = a;
165 	const recent_events_node_t *node2 = b;
166 	int cmp;
167 
168 	/*
169 	 * The comparison order here is somewhat arbitrary.
170 	 * What's important is that if every criteria matches, then it
171 	 * is a duplicate (i.e. compare returns 0)
172 	 */
173 	if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 		return (cmp);
175 	if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 		return (cmp);
177 	if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 		return (cmp);
179 	if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 		return (cmp);
181 	if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 		return (cmp);
183 	if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 		return (cmp);
185 	if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 		return (cmp);
187 
188 	const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 	const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
190 
191 	if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 		return (cmp);
193 	if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 		return (cmp);
195 	if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 		return (cmp);
197 	if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 		return (cmp);
199 
200 	return (0);
201 }
202 
203 /*
204  * workaround: vdev properties don't have inheritance
205  */
206 static uint64_t
207 vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop)
208 {
209 	uint64_t propdef, propval;
210 
211 	propdef = vdev_prop_default_numeric(prop);
212 	switch (prop) {
213 		case VDEV_PROP_CHECKSUM_N:
214 			propval = vd->vdev_checksum_n;
215 			break;
216 		case VDEV_PROP_CHECKSUM_T:
217 			propval = vd->vdev_checksum_t;
218 			break;
219 		case VDEV_PROP_IO_N:
220 			propval = vd->vdev_io_n;
221 			break;
222 		case VDEV_PROP_IO_T:
223 			propval = vd->vdev_io_t;
224 			break;
225 		default:
226 			propval = propdef;
227 			break;
228 	}
229 
230 	if (propval != propdef)
231 		return (propval);
232 
233 	if (vd->vdev_parent == NULL)
234 		return (propdef);
235 
236 	return (vdev_prop_get_inherited(vd->vdev_parent, prop));
237 }
238 
239 static void zfs_ereport_schedule_cleaner(void);
240 
241 /*
242  * background task to clean stale recent event nodes.
243  */
244 static void
245 zfs_ereport_cleaner(void *arg)
246 {
247 	recent_events_node_t *entry;
248 	uint64_t now = gethrtime();
249 
250 	/*
251 	 * purge expired entries
252 	 */
253 	mutex_enter(&recent_events_lock);
254 	while ((entry = list_tail(&recent_events_list)) != NULL) {
255 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
256 		if (age <= zfs_zevent_retain_expire_secs)
257 			break;
258 
259 		/* remove expired node */
260 		avl_remove(&recent_events_tree, entry);
261 		list_remove(&recent_events_list, entry);
262 		kmem_free(entry, sizeof (*entry));
263 	}
264 
265 	/* Restart the cleaner if more entries remain */
266 	recent_events_cleaner_tqid = 0;
267 	if (!list_is_empty(&recent_events_list))
268 		zfs_ereport_schedule_cleaner();
269 
270 	mutex_exit(&recent_events_lock);
271 }
272 
273 static void
274 zfs_ereport_schedule_cleaner(void)
275 {
276 	ASSERT(MUTEX_HELD(&recent_events_lock));
277 
278 	uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
279 
280 	recent_events_cleaner_tqid = taskq_dispatch_delay(
281 	    system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
282 	    ddi_get_lbolt() + NSEC_TO_TICK(timeout));
283 }
284 
285 /*
286  * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
287  */
288 void
289 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
290 {
291 	uint64_t vdev_guid, pool_guid;
292 
293 	ASSERT(vd != NULL || spa != NULL);
294 	if (vd == NULL) {
295 		vdev_guid = 0;
296 		pool_guid = spa_guid(spa);
297 	} else {
298 		vdev_guid = vd->vdev_guid;
299 		pool_guid = 0;
300 	}
301 
302 	mutex_enter(&recent_events_lock);
303 
304 	recent_events_node_t *next = list_head(&recent_events_list);
305 	while (next != NULL) {
306 		recent_events_node_t *entry = next;
307 
308 		next = list_next(&recent_events_list, next);
309 
310 		if (entry->re_vdev_guid == vdev_guid ||
311 		    entry->re_pool_guid == pool_guid) {
312 			avl_remove(&recent_events_tree, entry);
313 			list_remove(&recent_events_list, entry);
314 			kmem_free(entry, sizeof (*entry));
315 		}
316 	}
317 
318 	mutex_exit(&recent_events_lock);
319 }
320 
321 /*
322  * Check if an ereport would be a duplicate of one recently posted.
323  *
324  * An ereport is considered a duplicate if the set of criteria in
325  * recent_events_node_t all match.
326  *
327  * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
328  * are candidates for duplicate checking.
329  */
330 static boolean_t
331 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
332     const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
333 {
334 	recent_events_node_t search = {0}, *entry;
335 
336 	if (vd == NULL || zio == NULL)
337 		return (B_FALSE);
338 
339 	if (zfs_zevent_retain_max == 0)
340 		return (B_FALSE);
341 
342 	if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
343 		search.re_subclass = ZSC_IO;
344 	else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
345 		search.re_subclass = ZSC_DATA;
346 	else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
347 		search.re_subclass = ZSC_CHECKSUM;
348 	else
349 		return (B_FALSE);
350 
351 	search.re_pool_guid = spa_guid(spa);
352 	search.re_vdev_guid = vd->vdev_guid;
353 	search.re_io_error = zio->io_error;
354 	search.re_io_priority = zio->io_priority;
355 	/* if size is supplied use it over what's in zio */
356 	if (size) {
357 		search.re_io_size = size;
358 		search.re_io_offset = offset;
359 	} else {
360 		search.re_io_size = zio->io_size;
361 		search.re_io_offset = zio->io_offset;
362 	}
363 
364 	/* grab optional logical zio criteria */
365 	if (zb != NULL) {
366 		search.re_io_bookmark.zb_objset = zb->zb_objset;
367 		search.re_io_bookmark.zb_object = zb->zb_object;
368 		search.re_io_bookmark.zb_level = zb->zb_level;
369 		search.re_io_bookmark.zb_blkid = zb->zb_blkid;
370 	}
371 
372 	uint64_t now = gethrtime();
373 
374 	mutex_enter(&recent_events_lock);
375 
376 	/* check if we have seen this one recently */
377 	entry = avl_find(&recent_events_tree, &search, NULL);
378 	if (entry != NULL) {
379 		uint64_t age = NSEC2SEC(now - entry->re_timestamp);
380 
381 		/*
382 		 * There is still an active cleaner (since we're here).
383 		 * Reset the last seen time for this duplicate entry
384 		 * so that its lifespand gets extended.
385 		 */
386 		list_remove(&recent_events_list, entry);
387 		list_insert_head(&recent_events_list, entry);
388 		entry->re_timestamp = now;
389 
390 		zfs_zevent_track_duplicate();
391 		mutex_exit(&recent_events_lock);
392 
393 		return (age <= zfs_zevent_retain_expire_secs);
394 	}
395 
396 	if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
397 		/* recycle oldest node */
398 		entry = list_tail(&recent_events_list);
399 		ASSERT(entry != NULL);
400 		list_remove(&recent_events_list, entry);
401 		avl_remove(&recent_events_tree, entry);
402 	} else {
403 		entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
404 	}
405 
406 	/* record this as a recent ereport */
407 	*entry = search;
408 	avl_add(&recent_events_tree, entry);
409 	list_insert_head(&recent_events_list, entry);
410 	entry->re_timestamp = now;
411 
412 	/* Start a cleaner if not already scheduled */
413 	if (recent_events_cleaner_tqid == 0)
414 		zfs_ereport_schedule_cleaner();
415 
416 	mutex_exit(&recent_events_lock);
417 	return (B_FALSE);
418 }
419 
420 void
421 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
422 {
423 	if (nvl)
424 		fm_nvlist_destroy(nvl, FM_NVA_FREE);
425 
426 	if (detector)
427 		fm_nvlist_destroy(detector, FM_NVA_FREE);
428 }
429 
430 /*
431  * We want to rate limit ZIO delay, deadman, and checksum events so as to not
432  * flood zevent consumers when a disk is acting up.
433  *
434  * Returns 1 if we're ratelimiting, 0 if not.
435  */
436 static int
437 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
438 {
439 	int rc = 0;
440 	/*
441 	 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
442 	 * are.  Invert it to get our return value.
443 	 */
444 	if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
445 		rc = !zfs_ratelimit(&vd->vdev_delay_rl);
446 	} else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
447 		rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
448 	} else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
449 		rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
450 	}
451 
452 	if (rc)	{
453 		/* We're rate limiting */
454 		fm_erpt_dropped_increment();
455 	}
456 
457 	return (rc);
458 }
459 
460 /*
461  * Return B_TRUE if the event actually posted, B_FALSE if not.
462  */
463 static boolean_t
464 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
465     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
466     zio_t *zio, uint64_t stateoroffset, uint64_t size)
467 {
468 	nvlist_t *ereport, *detector;
469 
470 	uint64_t ena;
471 	char class[64];
472 
473 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
474 		return (B_FALSE);
475 
476 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
477 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
478 		return (B_FALSE);
479 	}
480 
481 	/*
482 	 * Serialize ereport generation
483 	 */
484 	mutex_enter(&spa->spa_errlist_lock);
485 
486 	/*
487 	 * Determine the ENA to use for this event.  If we are in a loading
488 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
489 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
490 	 */
491 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
492 		if (spa->spa_ena == 0)
493 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
494 		ena = spa->spa_ena;
495 	} else if (zio != NULL && zio->io_logical != NULL) {
496 		if (zio->io_logical->io_ena == 0)
497 			zio->io_logical->io_ena =
498 			    fm_ena_generate(0, FM_ENA_FMT1);
499 		ena = zio->io_logical->io_ena;
500 	} else {
501 		ena = fm_ena_generate(0, FM_ENA_FMT1);
502 	}
503 
504 	/*
505 	 * Construct the full class, detector, and other standard FMA fields.
506 	 */
507 	(void) snprintf(class, sizeof (class), "%s.%s",
508 	    ZFS_ERROR_CLASS, subclass);
509 
510 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
511 	    vd != NULL ? vd->vdev_guid : 0);
512 
513 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
514 
515 	/*
516 	 * Construct the per-ereport payload, depending on which parameters are
517 	 * passed in.
518 	 */
519 
520 	/*
521 	 * Generic payload members common to all ereports.
522 	 */
523 	fm_payload_set(ereport,
524 	    FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
525 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
526 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
527 	    (uint64_t)spa_state(spa),
528 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
529 	    (int32_t)spa_load_state(spa), NULL);
530 
531 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
532 	    DATA_TYPE_STRING,
533 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
534 	    FM_EREPORT_FAILMODE_WAIT :
535 	    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
536 	    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
537 	    NULL);
538 
539 	if (vd != NULL) {
540 		vdev_t *pvd = vd->vdev_parent;
541 		vdev_queue_t *vq = &vd->vdev_queue;
542 		vdev_stat_t *vs = &vd->vdev_stat;
543 		vdev_t *spare_vd;
544 		uint64_t *spare_guids;
545 		char **spare_paths;
546 		int i, spare_count;
547 
548 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
549 		    DATA_TYPE_UINT64, vd->vdev_guid,
550 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
551 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
552 		if (vd->vdev_path != NULL)
553 			fm_payload_set(ereport,
554 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
555 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
556 		if (vd->vdev_devid != NULL)
557 			fm_payload_set(ereport,
558 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
559 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
560 		if (vd->vdev_fru != NULL)
561 			fm_payload_set(ereport,
562 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
563 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
564 		if (vd->vdev_enc_sysfs_path != NULL)
565 			fm_payload_set(ereport,
566 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
567 			    DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
568 		if (vd->vdev_ashift)
569 			fm_payload_set(ereport,
570 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
571 			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
572 
573 		if (vq != NULL) {
574 			fm_payload_set(ereport,
575 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
576 			    DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
577 			fm_payload_set(ereport,
578 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
579 			    DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
580 		}
581 
582 		if (vs != NULL) {
583 			fm_payload_set(ereport,
584 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
585 			    DATA_TYPE_UINT64, vs->vs_read_errors,
586 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
587 			    DATA_TYPE_UINT64, vs->vs_write_errors,
588 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
589 			    DATA_TYPE_UINT64, vs->vs_checksum_errors,
590 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
591 			    DATA_TYPE_UINT64, vs->vs_slow_ios,
592 			    NULL);
593 		}
594 
595 		if (pvd != NULL) {
596 			fm_payload_set(ereport,
597 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
598 			    DATA_TYPE_UINT64, pvd->vdev_guid,
599 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
600 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
601 			    NULL);
602 			if (pvd->vdev_path)
603 				fm_payload_set(ereport,
604 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
605 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
606 			if (pvd->vdev_devid)
607 				fm_payload_set(ereport,
608 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
609 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
610 		}
611 
612 		spare_count = spa->spa_spares.sav_count;
613 		spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
614 		    KM_SLEEP);
615 		spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
616 		    KM_SLEEP);
617 
618 		for (i = 0; i < spare_count; i++) {
619 			spare_vd = spa->spa_spares.sav_vdevs[i];
620 			if (spare_vd) {
621 				spare_paths[i] = spare_vd->vdev_path;
622 				spare_guids[i] = spare_vd->vdev_guid;
623 			}
624 		}
625 
626 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
627 		    DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
628 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
629 		    DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
630 
631 		kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
632 		kmem_free(spare_paths, sizeof (char *) * spare_count);
633 	}
634 
635 	if (zio != NULL) {
636 		/*
637 		 * Payload common to all I/Os.
638 		 */
639 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
640 		    DATA_TYPE_INT32, zio->io_error, NULL);
641 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
642 		    DATA_TYPE_INT32, zio->io_flags, NULL);
643 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
644 		    DATA_TYPE_UINT32, zio->io_stage, NULL);
645 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
646 		    DATA_TYPE_UINT32, zio->io_pipeline, NULL);
647 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
648 		    DATA_TYPE_UINT64, zio->io_delay, NULL);
649 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
650 		    DATA_TYPE_UINT64, zio->io_timestamp, NULL);
651 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
652 		    DATA_TYPE_UINT64, zio->io_delta, NULL);
653 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
654 		    DATA_TYPE_UINT32, zio->io_priority, NULL);
655 
656 		/*
657 		 * If the 'size' parameter is non-zero, it indicates this is a
658 		 * RAID-Z or other I/O where the physical offset and length are
659 		 * provided for us, instead of within the zio_t.
660 		 */
661 		if (vd != NULL) {
662 			if (size)
663 				fm_payload_set(ereport,
664 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
665 				    DATA_TYPE_UINT64, stateoroffset,
666 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
667 				    DATA_TYPE_UINT64, size, NULL);
668 			else
669 				fm_payload_set(ereport,
670 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
671 				    DATA_TYPE_UINT64, zio->io_offset,
672 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
673 				    DATA_TYPE_UINT64, zio->io_size, NULL);
674 		}
675 	} else if (vd != NULL) {
676 		/*
677 		 * If we have a vdev but no zio, this is a device fault, and the
678 		 * 'stateoroffset' parameter indicates the previous state of the
679 		 * vdev.
680 		 */
681 		fm_payload_set(ereport,
682 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
683 		    DATA_TYPE_UINT64, stateoroffset, NULL);
684 	}
685 
686 	/*
687 	 * Payload for I/Os with corresponding logical information.
688 	 */
689 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
690 		fm_payload_set(ereport,
691 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
692 		    DATA_TYPE_UINT64, zb->zb_objset,
693 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
694 		    DATA_TYPE_UINT64, zb->zb_object,
695 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
696 		    DATA_TYPE_INT64, zb->zb_level,
697 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
698 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
699 	}
700 
701 	/*
702 	 * Payload for tuning the zed
703 	 */
704 	if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
705 		uint64_t cksum_n, cksum_t;
706 
707 		cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N);
708 		if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N))
709 			fm_payload_set(ereport,
710 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
711 			    DATA_TYPE_UINT64,
712 			    cksum_n,
713 			    NULL);
714 
715 		cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T);
716 		if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T))
717 			fm_payload_set(ereport,
718 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
719 			    DATA_TYPE_UINT64,
720 			    cksum_t,
721 			    NULL);
722 	}
723 
724 	if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) {
725 		uint64_t io_n, io_t;
726 
727 		io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N);
728 		if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N))
729 			fm_payload_set(ereport,
730 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
731 			    DATA_TYPE_UINT64,
732 			    io_n,
733 			    NULL);
734 
735 		io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T);
736 		if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T))
737 			fm_payload_set(ereport,
738 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
739 			    DATA_TYPE_UINT64,
740 			    io_t,
741 			    NULL);
742 	}
743 
744 	mutex_exit(&spa->spa_errlist_lock);
745 
746 	*ereport_out = ereport;
747 	*detector_out = detector;
748 	return (B_TRUE);
749 }
750 
751 /* if it's <= 128 bytes, save the corruption directly */
752 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
753 
754 #define	MAX_RANGES		16
755 
756 typedef struct zfs_ecksum_info {
757 	/* inline arrays of bits set and cleared. */
758 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
759 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
760 
761 	/*
762 	 * for each range, the number of bits set and cleared.  The Hamming
763 	 * distance between the good and bad buffers is the sum of them all.
764 	 */
765 	uint32_t zei_range_sets[MAX_RANGES];
766 	uint32_t zei_range_clears[MAX_RANGES];
767 
768 	struct zei_ranges {
769 		uint32_t	zr_start;
770 		uint32_t	zr_end;
771 	} zei_ranges[MAX_RANGES];
772 
773 	size_t	zei_range_count;
774 	uint32_t zei_mingap;
775 	uint32_t zei_allowed_mingap;
776 
777 } zfs_ecksum_info_t;
778 
779 static void
780 update_bad_bits(uint64_t value_arg, uint32_t *count)
781 {
782 	size_t i;
783 	size_t bits = 0;
784 	uint64_t value = BE_64(value_arg);
785 
786 	/* We store the bits in big-endian (largest-first) order */
787 	for (i = 0; i < 64; i++) {
788 		if (value & (1ull << i))
789 			++bits;
790 	}
791 	/* update the count of bits changed */
792 	*count += bits;
793 }
794 
795 /*
796  * We've now filled up the range array, and need to increase "mingap" and
797  * shrink the range list accordingly.  zei_mingap is always the smallest
798  * distance between array entries, so we set the new_allowed_gap to be
799  * one greater than that.  We then go through the list, joining together
800  * any ranges which are closer than the new_allowed_gap.
801  *
802  * By construction, there will be at least one.  We also update zei_mingap
803  * to the new smallest gap, to prepare for our next invocation.
804  */
805 static void
806 zei_shrink_ranges(zfs_ecksum_info_t *eip)
807 {
808 	uint32_t mingap = UINT32_MAX;
809 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
810 
811 	size_t idx, output;
812 	size_t max = eip->zei_range_count;
813 
814 	struct zei_ranges *r = eip->zei_ranges;
815 
816 	ASSERT3U(eip->zei_range_count, >, 0);
817 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
818 
819 	output = idx = 0;
820 	while (idx < max - 1) {
821 		uint32_t start = r[idx].zr_start;
822 		uint32_t end = r[idx].zr_end;
823 
824 		while (idx < max - 1) {
825 			idx++;
826 
827 			uint32_t nstart = r[idx].zr_start;
828 			uint32_t nend = r[idx].zr_end;
829 
830 			uint32_t gap = nstart - end;
831 			if (gap < new_allowed_gap) {
832 				end = nend;
833 				continue;
834 			}
835 			if (gap < mingap)
836 				mingap = gap;
837 			break;
838 		}
839 		r[output].zr_start = start;
840 		r[output].zr_end = end;
841 		output++;
842 	}
843 	ASSERT3U(output, <, eip->zei_range_count);
844 	eip->zei_range_count = output;
845 	eip->zei_mingap = mingap;
846 	eip->zei_allowed_mingap = new_allowed_gap;
847 }
848 
849 static void
850 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
851 {
852 	struct zei_ranges *r = eip->zei_ranges;
853 	size_t count = eip->zei_range_count;
854 
855 	if (count >= MAX_RANGES) {
856 		zei_shrink_ranges(eip);
857 		count = eip->zei_range_count;
858 	}
859 	if (count == 0) {
860 		eip->zei_mingap = UINT32_MAX;
861 		eip->zei_allowed_mingap = 1;
862 	} else {
863 		int gap = start - r[count - 1].zr_end;
864 
865 		if (gap < eip->zei_allowed_mingap) {
866 			r[count - 1].zr_end = end;
867 			return;
868 		}
869 		if (gap < eip->zei_mingap)
870 			eip->zei_mingap = gap;
871 	}
872 	r[count].zr_start = start;
873 	r[count].zr_end = end;
874 	eip->zei_range_count++;
875 }
876 
877 static size_t
878 zei_range_total_size(zfs_ecksum_info_t *eip)
879 {
880 	struct zei_ranges *r = eip->zei_ranges;
881 	size_t count = eip->zei_range_count;
882 	size_t result = 0;
883 	size_t idx;
884 
885 	for (idx = 0; idx < count; idx++)
886 		result += (r[idx].zr_end - r[idx].zr_start);
887 
888 	return (result);
889 }
890 
891 static zfs_ecksum_info_t *
892 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
893     const abd_t *goodabd, const abd_t *badabd, size_t size,
894     boolean_t drop_if_identical)
895 {
896 	const uint64_t *good;
897 	const uint64_t *bad;
898 
899 	size_t nui64s = size / sizeof (uint64_t);
900 
901 	size_t inline_size;
902 	int no_inline = 0;
903 	size_t idx;
904 	size_t range;
905 
906 	size_t offset = 0;
907 	ssize_t start = -1;
908 
909 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
910 
911 	/* don't do any annotation for injected checksum errors */
912 	if (info != NULL && info->zbc_injected)
913 		return (eip);
914 
915 	if (info != NULL && info->zbc_has_cksum) {
916 		fm_payload_set(ereport,
917 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
918 		    DATA_TYPE_STRING,
919 		    info->zbc_checksum_name,
920 		    NULL);
921 
922 		if (info->zbc_byteswapped) {
923 			fm_payload_set(ereport,
924 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
925 			    DATA_TYPE_BOOLEAN, 1,
926 			    NULL);
927 		}
928 	}
929 
930 	if (badabd == NULL || goodabd == NULL)
931 		return (eip);
932 
933 	ASSERT3U(nui64s, <=, UINT32_MAX);
934 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
935 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
936 	ASSERT3U(size, <=, UINT32_MAX);
937 
938 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
939 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
940 
941 	/* build up the range list by comparing the two buffers. */
942 	for (idx = 0; idx < nui64s; idx++) {
943 		if (good[idx] == bad[idx]) {
944 			if (start == -1)
945 				continue;
946 
947 			zei_add_range(eip, start, idx);
948 			start = -1;
949 		} else {
950 			if (start != -1)
951 				continue;
952 
953 			start = idx;
954 		}
955 	}
956 	if (start != -1)
957 		zei_add_range(eip, start, idx);
958 
959 	/* See if it will fit in our inline buffers */
960 	inline_size = zei_range_total_size(eip);
961 	if (inline_size > ZFM_MAX_INLINE)
962 		no_inline = 1;
963 
964 	/*
965 	 * If there is no change and we want to drop if the buffers are
966 	 * identical, do so.
967 	 */
968 	if (inline_size == 0 && drop_if_identical) {
969 		kmem_free(eip, sizeof (*eip));
970 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
971 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
972 		return (NULL);
973 	}
974 
975 	/*
976 	 * Now walk through the ranges, filling in the details of the
977 	 * differences.  Also convert our uint64_t-array offsets to byte
978 	 * offsets.
979 	 */
980 	for (range = 0; range < eip->zei_range_count; range++) {
981 		size_t start = eip->zei_ranges[range].zr_start;
982 		size_t end = eip->zei_ranges[range].zr_end;
983 
984 		for (idx = start; idx < end; idx++) {
985 			uint64_t set, cleared;
986 
987 			// bits set in bad, but not in good
988 			set = ((~good[idx]) & bad[idx]);
989 			// bits set in good, but not in bad
990 			cleared = (good[idx] & (~bad[idx]));
991 
992 			if (!no_inline) {
993 				ASSERT3U(offset, <, inline_size);
994 				eip->zei_bits_set[offset] = set;
995 				eip->zei_bits_cleared[offset] = cleared;
996 				offset++;
997 			}
998 
999 			update_bad_bits(set, &eip->zei_range_sets[range]);
1000 			update_bad_bits(cleared, &eip->zei_range_clears[range]);
1001 		}
1002 
1003 		/* convert to byte offsets */
1004 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
1005 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
1006 	}
1007 
1008 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
1009 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
1010 
1011 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
1012 	inline_size		*= sizeof (uint64_t);
1013 
1014 	/* fill in ereport */
1015 	fm_payload_set(ereport,
1016 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
1017 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
1018 	    (uint32_t *)eip->zei_ranges,
1019 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
1020 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
1021 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
1022 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
1023 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
1024 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
1025 	    NULL);
1026 
1027 	if (!no_inline) {
1028 		fm_payload_set(ereport,
1029 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
1030 		    DATA_TYPE_UINT8_ARRAY,
1031 		    inline_size, (uint8_t *)eip->zei_bits_set,
1032 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
1033 		    DATA_TYPE_UINT8_ARRAY,
1034 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
1035 		    NULL);
1036 	}
1037 	return (eip);
1038 }
1039 #else
1040 void
1041 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
1042 {
1043 	(void) spa, (void) vd;
1044 }
1045 #endif
1046 
1047 /*
1048  * Make sure our event is still valid for the given zio/vdev/pool.  For example,
1049  * we don't want to keep logging events for a faulted or missing vdev.
1050  */
1051 boolean_t
1052 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1053 {
1054 #ifdef _KERNEL
1055 	/*
1056 	 * If we are doing a spa_tryimport() or in recovery mode,
1057 	 * ignore errors.
1058 	 */
1059 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1060 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
1061 		return (B_FALSE);
1062 
1063 	/*
1064 	 * If we are in the middle of opening a pool, and the previous attempt
1065 	 * failed, don't bother logging any new ereports - we're just going to
1066 	 * get the same diagnosis anyway.
1067 	 */
1068 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
1069 	    spa->spa_last_open_failed)
1070 		return (B_FALSE);
1071 
1072 	if (zio != NULL) {
1073 		/*
1074 		 * If this is not a read or write zio, ignore the error.  This
1075 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1076 		 */
1077 		if (zio->io_type != ZIO_TYPE_READ &&
1078 		    zio->io_type != ZIO_TYPE_WRITE)
1079 			return (B_FALSE);
1080 
1081 		if (vd != NULL) {
1082 			/*
1083 			 * If the vdev has already been marked as failing due
1084 			 * to a failed probe, then ignore any subsequent I/O
1085 			 * errors, as the DE will automatically fault the vdev
1086 			 * on the first such failure.  This also catches cases
1087 			 * where vdev_remove_wanted is set and the device has
1088 			 * not yet been asynchronously placed into the REMOVED
1089 			 * state.
1090 			 */
1091 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1092 				return (B_FALSE);
1093 
1094 			/*
1095 			 * Ignore checksum errors for reads from DTL regions of
1096 			 * leaf vdevs.
1097 			 */
1098 			if (zio->io_type == ZIO_TYPE_READ &&
1099 			    zio->io_error == ECKSUM &&
1100 			    vd->vdev_ops->vdev_op_leaf &&
1101 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1102 				return (B_FALSE);
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * For probe failure, we want to avoid posting ereports if we've
1108 	 * already removed the device in the meantime.
1109 	 */
1110 	if (vd != NULL &&
1111 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1112 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1113 		return (B_FALSE);
1114 
1115 	/* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1116 	if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1117 	    (zio != NULL) && (!zio->io_timestamp)) {
1118 		return (B_FALSE);
1119 	}
1120 #else
1121 	(void) subclass, (void) spa, (void) vd, (void) zio;
1122 #endif
1123 	return (B_TRUE);
1124 }
1125 
1126 /*
1127  * Post an ereport for the given subclass
1128  *
1129  * Returns
1130  * - 0 if an event was posted
1131  * - EINVAL if there was a problem posting event
1132  * - EBUSY if the event was rate limited
1133  * - EALREADY if the event was already posted (duplicate)
1134  */
1135 int
1136 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1137     const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1138 {
1139 	int rc = 0;
1140 #ifdef _KERNEL
1141 	nvlist_t *ereport = NULL;
1142 	nvlist_t *detector = NULL;
1143 
1144 	if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1145 		return (EINVAL);
1146 
1147 	if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1148 		return (SET_ERROR(EALREADY));
1149 
1150 	if (zfs_is_ratelimiting_event(subclass, vd))
1151 		return (SET_ERROR(EBUSY));
1152 
1153 	if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1154 	    zb, zio, state, 0))
1155 		return (SET_ERROR(EINVAL));	/* couldn't post event */
1156 
1157 	if (ereport == NULL)
1158 		return (SET_ERROR(EINVAL));
1159 
1160 	/* Cleanup is handled by the callback function */
1161 	rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1162 #else
1163 	(void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
1164 	    (void) state;
1165 #endif
1166 	return (rc);
1167 }
1168 
1169 /*
1170  * Prepare a checksum ereport
1171  *
1172  * Returns
1173  * - 0 if an event was posted
1174  * - EINVAL if there was a problem posting event
1175  * - EBUSY if the event was rate limited
1176  * - EALREADY if the event was already posted (duplicate)
1177  */
1178 int
1179 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1180     struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1181 {
1182 	zio_cksum_report_t *report;
1183 
1184 #ifdef _KERNEL
1185 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1186 		return (SET_ERROR(EINVAL));
1187 
1188 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1189 	    offset, length))
1190 		return (SET_ERROR(EALREADY));
1191 
1192 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1193 		return (SET_ERROR(EBUSY));
1194 #else
1195 	(void) zb, (void) offset;
1196 #endif
1197 
1198 	report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1199 
1200 	zio_vsd_default_cksum_report(zio, report);
1201 
1202 	/* copy the checksum failure information if it was provided */
1203 	if (info != NULL) {
1204 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1205 		memcpy(report->zcr_ckinfo, info, sizeof (*info));
1206 	}
1207 
1208 	report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1209 	report->zcr_align =
1210 	    vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1211 	report->zcr_length = length;
1212 
1213 #ifdef _KERNEL
1214 	(void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1215 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1216 
1217 	if (report->zcr_ereport == NULL) {
1218 		zfs_ereport_free_checksum(report);
1219 		return (0);
1220 	}
1221 #endif
1222 
1223 	mutex_enter(&spa->spa_errlist_lock);
1224 	report->zcr_next = zio->io_logical->io_cksum_report;
1225 	zio->io_logical->io_cksum_report = report;
1226 	mutex_exit(&spa->spa_errlist_lock);
1227 	return (0);
1228 }
1229 
1230 void
1231 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1232     const abd_t *bad_data, boolean_t drop_if_identical)
1233 {
1234 #ifdef _KERNEL
1235 	zfs_ecksum_info_t *info;
1236 
1237 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1238 	    good_data, bad_data, report->zcr_length, drop_if_identical);
1239 	if (info != NULL)
1240 		zfs_zevent_post(report->zcr_ereport,
1241 		    report->zcr_detector, zfs_zevent_post_cb);
1242 	else
1243 		zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1244 
1245 	report->zcr_ereport = report->zcr_detector = NULL;
1246 	if (info != NULL)
1247 		kmem_free(info, sizeof (*info));
1248 #else
1249 	(void) report, (void) good_data, (void) bad_data,
1250 	    (void) drop_if_identical;
1251 #endif
1252 }
1253 
1254 void
1255 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1256 {
1257 #ifdef _KERNEL
1258 	if (rpt->zcr_ereport != NULL) {
1259 		fm_nvlist_destroy(rpt->zcr_ereport,
1260 		    FM_NVA_FREE);
1261 		fm_nvlist_destroy(rpt->zcr_detector,
1262 		    FM_NVA_FREE);
1263 	}
1264 #endif
1265 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1266 
1267 	if (rpt->zcr_ckinfo != NULL)
1268 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1269 
1270 	kmem_free(rpt, sizeof (*rpt));
1271 }
1272 
1273 /*
1274  * Post a checksum ereport
1275  *
1276  * Returns
1277  * - 0 if an event was posted
1278  * - EINVAL if there was a problem posting event
1279  * - EBUSY if the event was rate limited
1280  * - EALREADY if the event was already posted (duplicate)
1281  */
1282 int
1283 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1284     struct zio *zio, uint64_t offset, uint64_t length,
1285     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1286 {
1287 	int rc = 0;
1288 #ifdef _KERNEL
1289 	nvlist_t *ereport = NULL;
1290 	nvlist_t *detector = NULL;
1291 	zfs_ecksum_info_t *info;
1292 
1293 	if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1294 		return (SET_ERROR(EINVAL));
1295 
1296 	if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1297 	    offset, length))
1298 		return (SET_ERROR(EALREADY));
1299 
1300 	if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1301 		return (SET_ERROR(EBUSY));
1302 
1303 	if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1304 	    spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1305 		return (SET_ERROR(EINVAL));
1306 	}
1307 
1308 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1309 	    B_FALSE);
1310 
1311 	if (info != NULL) {
1312 		rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1313 		kmem_free(info, sizeof (*info));
1314 	}
1315 #else
1316 	(void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
1317 	    (void) length, (void) good_data, (void) bad_data, (void) zbc;
1318 #endif
1319 	return (rc);
1320 }
1321 
1322 /*
1323  * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1324  * change in the pool.  All sysevents are listed in sys/sysevent/eventdefs.h
1325  * and are designed to be consumed by the ZFS Event Daemon (ZED).  For
1326  * additional details refer to the zed(8) man page.
1327  */
1328 nvlist_t *
1329 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1330     nvlist_t *aux)
1331 {
1332 	nvlist_t *resource = NULL;
1333 #ifdef _KERNEL
1334 	char class[64];
1335 
1336 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1337 		return (NULL);
1338 
1339 	if ((resource = fm_nvlist_create(NULL)) == NULL)
1340 		return (NULL);
1341 
1342 	(void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1343 	    ZFS_ERROR_CLASS, name);
1344 	VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1345 	VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1346 	VERIFY0(nvlist_add_string(resource,
1347 	    FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1348 	VERIFY0(nvlist_add_uint64(resource,
1349 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1350 	VERIFY0(nvlist_add_uint64(resource,
1351 	    FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1352 	VERIFY0(nvlist_add_int32(resource,
1353 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1354 
1355 	if (vd) {
1356 		VERIFY0(nvlist_add_uint64(resource,
1357 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1358 		VERIFY0(nvlist_add_uint64(resource,
1359 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1360 		if (vd->vdev_path != NULL)
1361 			VERIFY0(nvlist_add_string(resource,
1362 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1363 		if (vd->vdev_devid != NULL)
1364 			VERIFY0(nvlist_add_string(resource,
1365 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1366 		if (vd->vdev_fru != NULL)
1367 			VERIFY0(nvlist_add_string(resource,
1368 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1369 		if (vd->vdev_enc_sysfs_path != NULL)
1370 			VERIFY0(nvlist_add_string(resource,
1371 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1372 			    vd->vdev_enc_sysfs_path));
1373 	}
1374 
1375 	/* also copy any optional payload data */
1376 	if (aux) {
1377 		nvpair_t *elem = NULL;
1378 
1379 		while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1380 			(void) nvlist_add_nvpair(resource, elem);
1381 	}
1382 #else
1383 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1384 #endif
1385 	return (resource);
1386 }
1387 
1388 static void
1389 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1390     nvlist_t *aux)
1391 {
1392 #ifdef _KERNEL
1393 	nvlist_t *resource;
1394 
1395 	resource = zfs_event_create(spa, vd, type, name, aux);
1396 	if (resource)
1397 		zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1398 #else
1399 	(void) spa, (void) vd, (void) type, (void) name, (void) aux;
1400 #endif
1401 }
1402 
1403 /*
1404  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1405  * has been removed from the system.  This will cause the DE to ignore any
1406  * recent I/O errors, inferring that they are due to the asynchronous device
1407  * removal.
1408  */
1409 void
1410 zfs_post_remove(spa_t *spa, vdev_t *vd)
1411 {
1412 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1413 }
1414 
1415 /*
1416  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1417  * has the 'autoreplace' property set, and therefore any broken vdevs will be
1418  * handled by higher level logic, and no vdev fault should be generated.
1419  */
1420 void
1421 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1422 {
1423 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1424 }
1425 
1426 /*
1427  * The 'resource.fs.zfs.statechange' event is an internal signal that the
1428  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
1429  * cause the retire agent to repair any outstanding fault management cases
1430  * open because the device was not found (fault.fs.zfs.device).
1431  */
1432 void
1433 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1434 {
1435 #ifdef _KERNEL
1436 	nvlist_t *aux;
1437 
1438 	/*
1439 	 * Add optional supplemental keys to payload
1440 	 */
1441 	aux = fm_nvlist_create(NULL);
1442 	if (vd && aux) {
1443 		if (vd->vdev_physpath) {
1444 			fnvlist_add_string(aux,
1445 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1446 			    vd->vdev_physpath);
1447 		}
1448 		if (vd->vdev_enc_sysfs_path) {
1449 			fnvlist_add_string(aux,
1450 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1451 			    vd->vdev_enc_sysfs_path);
1452 		}
1453 
1454 		fnvlist_add_uint64(aux,
1455 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1456 	}
1457 
1458 	zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1459 	    aux);
1460 
1461 	if (aux)
1462 		fm_nvlist_destroy(aux, FM_NVA_FREE);
1463 #else
1464 	(void) spa, (void) vd, (void) laststate;
1465 #endif
1466 }
1467 
1468 #ifdef _KERNEL
1469 void
1470 zfs_ereport_init(void)
1471 {
1472 	mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1473 	list_create(&recent_events_list, sizeof (recent_events_node_t),
1474 	    offsetof(recent_events_node_t, re_list_link));
1475 	avl_create(&recent_events_tree,  recent_events_compare,
1476 	    sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1477 	    re_tree_link));
1478 }
1479 
1480 /*
1481  * This 'early' fini needs to run before zfs_fini() which on Linux waits
1482  * for the system_delay_taskq to drain.
1483  */
1484 void
1485 zfs_ereport_taskq_fini(void)
1486 {
1487 	mutex_enter(&recent_events_lock);
1488 	if (recent_events_cleaner_tqid != 0) {
1489 		taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1490 		recent_events_cleaner_tqid = 0;
1491 	}
1492 	mutex_exit(&recent_events_lock);
1493 }
1494 
1495 void
1496 zfs_ereport_fini(void)
1497 {
1498 	recent_events_node_t *entry;
1499 
1500 	while ((entry = list_remove_head(&recent_events_list)) != NULL) {
1501 		avl_remove(&recent_events_tree, entry);
1502 		kmem_free(entry, sizeof (*entry));
1503 	}
1504 	avl_destroy(&recent_events_tree);
1505 	list_destroy(&recent_events_list);
1506 	mutex_destroy(&recent_events_lock);
1507 }
1508 
1509 void
1510 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1511 {
1512 	nvlist_t *aux;
1513 
1514 	aux = fm_nvlist_create(NULL);
1515 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1516 
1517 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1518 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1519 }
1520 
1521 /*
1522  * Post when a event when a zvol is created or removed
1523  *
1524  * This is currently only used by macOS, since it uses the event to create
1525  * symlinks between the volume name (mypool/myvol) and the actual /dev
1526  * device (/dev/disk3).  For example:
1527  *
1528  * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1529  *
1530  * name: The full name of the zvol ("mypool/myvol")
1531  * dev_name: The full /dev name for the zvol ("/dev/disk3")
1532  * raw_name: The raw  /dev name for the zvol ("/dev/rdisk3")
1533  */
1534 void
1535 zfs_ereport_zvol_post(const char *subclass, const char *name,
1536     const char *dev_name, const char *raw_name)
1537 {
1538 	nvlist_t *aux;
1539 	char *r;
1540 
1541 	boolean_t locked = mutex_owned(&spa_namespace_lock);
1542 	if (!locked) mutex_enter(&spa_namespace_lock);
1543 	spa_t *spa = spa_lookup(name);
1544 	if (!locked) mutex_exit(&spa_namespace_lock);
1545 
1546 	if (spa == NULL)
1547 		return;
1548 
1549 	aux = fm_nvlist_create(NULL);
1550 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1551 	fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1552 	    raw_name);
1553 	r = strchr(name, '/');
1554 	if (r && r[1])
1555 		fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1556 
1557 	zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1558 	fm_nvlist_destroy(aux, FM_NVA_FREE);
1559 }
1560 
1561 EXPORT_SYMBOL(zfs_ereport_post);
1562 EXPORT_SYMBOL(zfs_ereport_is_valid);
1563 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1564 EXPORT_SYMBOL(zfs_post_remove);
1565 EXPORT_SYMBOL(zfs_post_autoreplace);
1566 EXPORT_SYMBOL(zfs_post_state_change);
1567 
1568 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1569 	"Maximum recent zevents records to retain for duplicate checking");
1570 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1571 	"Expiration time for recent zevents records");
1572 #endif /* _KERNEL */
1573