1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012,2021 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/vdev.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/fm/protocol.h> 39 #include <sys/fm/util.h> 40 #include <sys/sysevent.h> 41 42 /* 43 * This general routine is responsible for generating all the different ZFS 44 * ereports. The payload is dependent on the class, and which arguments are 45 * supplied to the function: 46 * 47 * EREPORT POOL VDEV IO 48 * block X X X 49 * data X X 50 * device X X 51 * pool X 52 * 53 * If we are in a loading state, all errors are chained together by the same 54 * SPA-wide ENA (Error Numeric Association). 55 * 56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation 57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want 58 * to chain together all ereports associated with a logical piece of data. For 59 * read I/Os, there are basically three 'types' of I/O, which form a roughly 60 * layered diagram: 61 * 62 * +---------------+ 63 * | Aggregate I/O | No associated logical data or device 64 * +---------------+ 65 * | 66 * V 67 * +---------------+ Reads associated with a piece of logical data. 68 * | Read I/O | This includes reads on behalf of RAID-Z, 69 * +---------------+ mirrors, gang blocks, retries, etc. 70 * | 71 * V 72 * +---------------+ Reads associated with a particular device, but 73 * | Physical I/O | no logical data. Issued as part of vdev caching 74 * +---------------+ and I/O aggregation. 75 * 76 * Note that 'physical I/O' here is not the same terminology as used in the rest 77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached 78 * blockpointer. But I/O with no associated block pointer can still be related 79 * to a logical piece of data (i.e. RAID-Z requests). 80 * 81 * Purely physical I/O always have unique ENAs. They are not related to a 82 * particular piece of logical data, and therefore cannot be chained together. 83 * We still generate an ereport, but the DE doesn't correlate it with any 84 * logical piece of data. When such an I/O fails, the delegated I/O requests 85 * will issue a retry, which will trigger the 'real' ereport with the correct 86 * ENA. 87 * 88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member. 89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os 90 * then inherit this pointer, so that when it is first set subsequent failures 91 * will use the same ENA. For vdev cache fill and queue aggregation I/O, 92 * this pointer is set to NULL, and no ereport will be generated (since it 93 * doesn't actually correspond to any particular device or piece of data, 94 * and the caller will always retry without caching or queueing anyway). 95 * 96 * For checksum errors, we want to include more information about the actual 97 * error which occurs. Accordingly, we build an ereport when the error is 98 * noticed, but instead of sending it in immediately, we hang it off of the 99 * io_cksum_report field of the logical IO. When the logical IO completes 100 * (successfully or not), zfs_ereport_finish_checksum() is called with the 101 * good and bad versions of the buffer (if available), and we annotate the 102 * ereport with information about the differences. 103 */ 104 105 #ifdef _KERNEL 106 /* 107 * Duplicate ereport Detection 108 * 109 * Some ereports are retained momentarily for detecting duplicates. These 110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL 111 * tree of recent unique ereports. 112 * 113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner 114 * task is used to purge stale entries. 115 */ 116 static list_t recent_events_list; 117 static avl_tree_t recent_events_tree; 118 static kmutex_t recent_events_lock; 119 static taskqid_t recent_events_cleaner_tqid; 120 121 /* 122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB. 123 * 124 * This setting can be changed dynamically and setting it to zero 125 * disables duplicate detection. 126 */ 127 static unsigned int zfs_zevent_retain_max = 2000; 128 129 /* 130 * The lifespan for a recent ereport entry. The default of 15 minutes is 131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors 132 * over a period of 10 minutes. 133 */ 134 static unsigned int zfs_zevent_retain_expire_secs = 900; 135 136 typedef enum zfs_subclass { 137 ZSC_IO, 138 ZSC_DATA, 139 ZSC_CHECKSUM 140 } zfs_subclass_t; 141 142 typedef struct { 143 /* common criteria */ 144 uint64_t re_pool_guid; 145 uint64_t re_vdev_guid; 146 int re_io_error; 147 uint64_t re_io_size; 148 uint64_t re_io_offset; 149 zfs_subclass_t re_subclass; 150 zio_priority_t re_io_priority; 151 152 /* logical zio criteria (optional) */ 153 zbookmark_phys_t re_io_bookmark; 154 155 /* internal state */ 156 avl_node_t re_tree_link; 157 list_node_t re_list_link; 158 uint64_t re_timestamp; 159 } recent_events_node_t; 160 161 static int 162 recent_events_compare(const void *a, const void *b) 163 { 164 const recent_events_node_t *node1 = a; 165 const recent_events_node_t *node2 = b; 166 int cmp; 167 168 /* 169 * The comparison order here is somewhat arbitrary. 170 * What's important is that if every criteria matches, then it 171 * is a duplicate (i.e. compare returns 0) 172 */ 173 if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0) 174 return (cmp); 175 if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0) 176 return (cmp); 177 if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0) 178 return (cmp); 179 if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0) 180 return (cmp); 181 if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0) 182 return (cmp); 183 if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0) 184 return (cmp); 185 if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0) 186 return (cmp); 187 188 const zbookmark_phys_t *zb1 = &node1->re_io_bookmark; 189 const zbookmark_phys_t *zb2 = &node2->re_io_bookmark; 190 191 if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0) 192 return (cmp); 193 if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0) 194 return (cmp); 195 if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0) 196 return (cmp); 197 if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0) 198 return (cmp); 199 200 return (0); 201 } 202 203 /* 204 * workaround: vdev properties don't have inheritance 205 */ 206 static uint64_t 207 vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop) 208 { 209 uint64_t propdef, propval; 210 211 propdef = vdev_prop_default_numeric(prop); 212 switch (prop) { 213 case VDEV_PROP_CHECKSUM_N: 214 propval = vd->vdev_checksum_n; 215 break; 216 case VDEV_PROP_CHECKSUM_T: 217 propval = vd->vdev_checksum_t; 218 break; 219 case VDEV_PROP_IO_N: 220 propval = vd->vdev_io_n; 221 break; 222 case VDEV_PROP_IO_T: 223 propval = vd->vdev_io_t; 224 break; 225 default: 226 propval = propdef; 227 break; 228 } 229 230 if (propval != propdef) 231 return (propval); 232 233 if (vd->vdev_parent == NULL) 234 return (propdef); 235 236 return (vdev_prop_get_inherited(vd->vdev_parent, prop)); 237 } 238 239 static void zfs_ereport_schedule_cleaner(void); 240 241 /* 242 * background task to clean stale recent event nodes. 243 */ 244 static void 245 zfs_ereport_cleaner(void *arg) 246 { 247 recent_events_node_t *entry; 248 uint64_t now = gethrtime(); 249 250 /* 251 * purge expired entries 252 */ 253 mutex_enter(&recent_events_lock); 254 while ((entry = list_tail(&recent_events_list)) != NULL) { 255 uint64_t age = NSEC2SEC(now - entry->re_timestamp); 256 if (age <= zfs_zevent_retain_expire_secs) 257 break; 258 259 /* remove expired node */ 260 avl_remove(&recent_events_tree, entry); 261 list_remove(&recent_events_list, entry); 262 kmem_free(entry, sizeof (*entry)); 263 } 264 265 /* Restart the cleaner if more entries remain */ 266 recent_events_cleaner_tqid = 0; 267 if (!list_is_empty(&recent_events_list)) 268 zfs_ereport_schedule_cleaner(); 269 270 mutex_exit(&recent_events_lock); 271 } 272 273 static void 274 zfs_ereport_schedule_cleaner(void) 275 { 276 ASSERT(MUTEX_HELD(&recent_events_lock)); 277 278 uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1); 279 280 recent_events_cleaner_tqid = taskq_dispatch_delay( 281 system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP, 282 ddi_get_lbolt() + NSEC_TO_TICK(timeout)); 283 } 284 285 /* 286 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL 287 */ 288 void 289 zfs_ereport_clear(spa_t *spa, vdev_t *vd) 290 { 291 uint64_t vdev_guid, pool_guid; 292 293 ASSERT(vd != NULL || spa != NULL); 294 if (vd == NULL) { 295 vdev_guid = 0; 296 pool_guid = spa_guid(spa); 297 } else { 298 vdev_guid = vd->vdev_guid; 299 pool_guid = 0; 300 } 301 302 mutex_enter(&recent_events_lock); 303 304 recent_events_node_t *next = list_head(&recent_events_list); 305 while (next != NULL) { 306 recent_events_node_t *entry = next; 307 308 next = list_next(&recent_events_list, next); 309 310 if (entry->re_vdev_guid == vdev_guid || 311 entry->re_pool_guid == pool_guid) { 312 avl_remove(&recent_events_tree, entry); 313 list_remove(&recent_events_list, entry); 314 kmem_free(entry, sizeof (*entry)); 315 } 316 } 317 318 mutex_exit(&recent_events_lock); 319 } 320 321 /* 322 * Check if an ereport would be a duplicate of one recently posted. 323 * 324 * An ereport is considered a duplicate if the set of criteria in 325 * recent_events_node_t all match. 326 * 327 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM 328 * are candidates for duplicate checking. 329 */ 330 static boolean_t 331 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd, 332 const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size) 333 { 334 recent_events_node_t search = {0}, *entry; 335 336 if (vd == NULL || zio == NULL) 337 return (B_FALSE); 338 339 if (zfs_zevent_retain_max == 0) 340 return (B_FALSE); 341 342 if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) 343 search.re_subclass = ZSC_IO; 344 else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0) 345 search.re_subclass = ZSC_DATA; 346 else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) 347 search.re_subclass = ZSC_CHECKSUM; 348 else 349 return (B_FALSE); 350 351 search.re_pool_guid = spa_guid(spa); 352 search.re_vdev_guid = vd->vdev_guid; 353 search.re_io_error = zio->io_error; 354 search.re_io_priority = zio->io_priority; 355 /* if size is supplied use it over what's in zio */ 356 if (size) { 357 search.re_io_size = size; 358 search.re_io_offset = offset; 359 } else { 360 search.re_io_size = zio->io_size; 361 search.re_io_offset = zio->io_offset; 362 } 363 364 /* grab optional logical zio criteria */ 365 if (zb != NULL) { 366 search.re_io_bookmark.zb_objset = zb->zb_objset; 367 search.re_io_bookmark.zb_object = zb->zb_object; 368 search.re_io_bookmark.zb_level = zb->zb_level; 369 search.re_io_bookmark.zb_blkid = zb->zb_blkid; 370 } 371 372 uint64_t now = gethrtime(); 373 374 mutex_enter(&recent_events_lock); 375 376 /* check if we have seen this one recently */ 377 entry = avl_find(&recent_events_tree, &search, NULL); 378 if (entry != NULL) { 379 uint64_t age = NSEC2SEC(now - entry->re_timestamp); 380 381 /* 382 * There is still an active cleaner (since we're here). 383 * Reset the last seen time for this duplicate entry 384 * so that its lifespand gets extended. 385 */ 386 list_remove(&recent_events_list, entry); 387 list_insert_head(&recent_events_list, entry); 388 entry->re_timestamp = now; 389 390 zfs_zevent_track_duplicate(); 391 mutex_exit(&recent_events_lock); 392 393 return (age <= zfs_zevent_retain_expire_secs); 394 } 395 396 if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) { 397 /* recycle oldest node */ 398 entry = list_tail(&recent_events_list); 399 ASSERT(entry != NULL); 400 list_remove(&recent_events_list, entry); 401 avl_remove(&recent_events_tree, entry); 402 } else { 403 entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP); 404 } 405 406 /* record this as a recent ereport */ 407 *entry = search; 408 avl_add(&recent_events_tree, entry); 409 list_insert_head(&recent_events_list, entry); 410 entry->re_timestamp = now; 411 412 /* Start a cleaner if not already scheduled */ 413 if (recent_events_cleaner_tqid == 0) 414 zfs_ereport_schedule_cleaner(); 415 416 mutex_exit(&recent_events_lock); 417 return (B_FALSE); 418 } 419 420 void 421 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector) 422 { 423 if (nvl) 424 fm_nvlist_destroy(nvl, FM_NVA_FREE); 425 426 if (detector) 427 fm_nvlist_destroy(detector, FM_NVA_FREE); 428 } 429 430 /* 431 * We want to rate limit ZIO delay, deadman, and checksum events so as to not 432 * flood zevent consumers when a disk is acting up. 433 * 434 * Returns 1 if we're ratelimiting, 0 if not. 435 */ 436 static int 437 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd) 438 { 439 int rc = 0; 440 /* 441 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we 442 * are. Invert it to get our return value. 443 */ 444 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) { 445 rc = !zfs_ratelimit(&vd->vdev_delay_rl); 446 } else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) { 447 rc = !zfs_ratelimit(&vd->vdev_deadman_rl); 448 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) { 449 rc = !zfs_ratelimit(&vd->vdev_checksum_rl); 450 } 451 452 if (rc) { 453 /* We're rate limiting */ 454 fm_erpt_dropped_increment(); 455 } 456 457 return (rc); 458 } 459 460 /* 461 * Return B_TRUE if the event actually posted, B_FALSE if not. 462 */ 463 static boolean_t 464 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out, 465 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 466 zio_t *zio, uint64_t stateoroffset, uint64_t size) 467 { 468 nvlist_t *ereport, *detector; 469 470 uint64_t ena; 471 char class[64]; 472 473 if ((ereport = fm_nvlist_create(NULL)) == NULL) 474 return (B_FALSE); 475 476 if ((detector = fm_nvlist_create(NULL)) == NULL) { 477 fm_nvlist_destroy(ereport, FM_NVA_FREE); 478 return (B_FALSE); 479 } 480 481 /* 482 * Serialize ereport generation 483 */ 484 mutex_enter(&spa->spa_errlist_lock); 485 486 /* 487 * Determine the ENA to use for this event. If we are in a loading 488 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use 489 * a root zio-wide ENA. Otherwise, simply use a unique ENA. 490 */ 491 if (spa_load_state(spa) != SPA_LOAD_NONE) { 492 if (spa->spa_ena == 0) 493 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1); 494 ena = spa->spa_ena; 495 } else if (zio != NULL && zio->io_logical != NULL) { 496 if (zio->io_logical->io_ena == 0) 497 zio->io_logical->io_ena = 498 fm_ena_generate(0, FM_ENA_FMT1); 499 ena = zio->io_logical->io_ena; 500 } else { 501 ena = fm_ena_generate(0, FM_ENA_FMT1); 502 } 503 504 /* 505 * Construct the full class, detector, and other standard FMA fields. 506 */ 507 (void) snprintf(class, sizeof (class), "%s.%s", 508 ZFS_ERROR_CLASS, subclass); 509 510 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa), 511 vd != NULL ? vd->vdev_guid : 0); 512 513 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL); 514 515 /* 516 * Construct the per-ereport payload, depending on which parameters are 517 * passed in. 518 */ 519 520 /* 521 * Generic payload members common to all ereports. 522 */ 523 fm_payload_set(ereport, 524 FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa), 525 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa), 526 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64, 527 (uint64_t)spa_state(spa), 528 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32, 529 (int32_t)spa_load_state(spa), NULL); 530 531 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, 532 DATA_TYPE_STRING, 533 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ? 534 FM_EREPORT_FAILMODE_WAIT : 535 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ? 536 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC, 537 NULL); 538 539 if (vd != NULL) { 540 vdev_t *pvd = vd->vdev_parent; 541 vdev_queue_t *vq = &vd->vdev_queue; 542 vdev_stat_t *vs = &vd->vdev_stat; 543 vdev_t *spare_vd; 544 uint64_t *spare_guids; 545 char **spare_paths; 546 int i, spare_count; 547 548 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 549 DATA_TYPE_UINT64, vd->vdev_guid, 550 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 551 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL); 552 if (vd->vdev_path != NULL) 553 fm_payload_set(ereport, 554 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, 555 DATA_TYPE_STRING, vd->vdev_path, NULL); 556 if (vd->vdev_devid != NULL) 557 fm_payload_set(ereport, 558 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, 559 DATA_TYPE_STRING, vd->vdev_devid, NULL); 560 if (vd->vdev_fru != NULL) 561 fm_payload_set(ereport, 562 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, 563 DATA_TYPE_STRING, vd->vdev_fru, NULL); 564 if (vd->vdev_enc_sysfs_path != NULL) 565 fm_payload_set(ereport, 566 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 567 DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL); 568 if (vd->vdev_ashift) 569 fm_payload_set(ereport, 570 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT, 571 DATA_TYPE_UINT64, vd->vdev_ashift, NULL); 572 573 if (vq != NULL) { 574 fm_payload_set(ereport, 575 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS, 576 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL); 577 fm_payload_set(ereport, 578 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS, 579 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL); 580 } 581 582 if (vs != NULL) { 583 fm_payload_set(ereport, 584 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS, 585 DATA_TYPE_UINT64, vs->vs_read_errors, 586 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS, 587 DATA_TYPE_UINT64, vs->vs_write_errors, 588 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS, 589 DATA_TYPE_UINT64, vs->vs_checksum_errors, 590 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS, 591 DATA_TYPE_UINT64, vs->vs_slow_ios, 592 NULL); 593 } 594 595 if (pvd != NULL) { 596 fm_payload_set(ereport, 597 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID, 598 DATA_TYPE_UINT64, pvd->vdev_guid, 599 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE, 600 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type, 601 NULL); 602 if (pvd->vdev_path) 603 fm_payload_set(ereport, 604 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH, 605 DATA_TYPE_STRING, pvd->vdev_path, NULL); 606 if (pvd->vdev_devid) 607 fm_payload_set(ereport, 608 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID, 609 DATA_TYPE_STRING, pvd->vdev_devid, NULL); 610 } 611 612 spare_count = spa->spa_spares.sav_count; 613 spare_paths = kmem_zalloc(sizeof (char *) * spare_count, 614 KM_SLEEP); 615 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count, 616 KM_SLEEP); 617 618 for (i = 0; i < spare_count; i++) { 619 spare_vd = spa->spa_spares.sav_vdevs[i]; 620 if (spare_vd) { 621 spare_paths[i] = spare_vd->vdev_path; 622 spare_guids[i] = spare_vd->vdev_guid; 623 } 624 } 625 626 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS, 627 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths, 628 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS, 629 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL); 630 631 kmem_free(spare_guids, sizeof (uint64_t) * spare_count); 632 kmem_free(spare_paths, sizeof (char *) * spare_count); 633 } 634 635 if (zio != NULL) { 636 /* 637 * Payload common to all I/Os. 638 */ 639 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR, 640 DATA_TYPE_INT32, zio->io_error, NULL); 641 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, 642 DATA_TYPE_INT32, zio->io_flags, NULL); 643 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE, 644 DATA_TYPE_UINT32, zio->io_stage, NULL); 645 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE, 646 DATA_TYPE_UINT32, zio->io_pipeline, NULL); 647 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY, 648 DATA_TYPE_UINT64, zio->io_delay, NULL); 649 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP, 650 DATA_TYPE_UINT64, zio->io_timestamp, NULL); 651 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA, 652 DATA_TYPE_UINT64, zio->io_delta, NULL); 653 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY, 654 DATA_TYPE_UINT32, zio->io_priority, NULL); 655 656 /* 657 * If the 'size' parameter is non-zero, it indicates this is a 658 * RAID-Z or other I/O where the physical offset and length are 659 * provided for us, instead of within the zio_t. 660 */ 661 if (vd != NULL) { 662 if (size) 663 fm_payload_set(ereport, 664 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 665 DATA_TYPE_UINT64, stateoroffset, 666 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 667 DATA_TYPE_UINT64, size, NULL); 668 else 669 fm_payload_set(ereport, 670 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET, 671 DATA_TYPE_UINT64, zio->io_offset, 672 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE, 673 DATA_TYPE_UINT64, zio->io_size, NULL); 674 } 675 } else if (vd != NULL) { 676 /* 677 * If we have a vdev but no zio, this is a device fault, and the 678 * 'stateoroffset' parameter indicates the previous state of the 679 * vdev. 680 */ 681 fm_payload_set(ereport, 682 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE, 683 DATA_TYPE_UINT64, stateoroffset, NULL); 684 } 685 686 /* 687 * Payload for I/Os with corresponding logical information. 688 */ 689 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) { 690 fm_payload_set(ereport, 691 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET, 692 DATA_TYPE_UINT64, zb->zb_objset, 693 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT, 694 DATA_TYPE_UINT64, zb->zb_object, 695 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL, 696 DATA_TYPE_INT64, zb->zb_level, 697 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID, 698 DATA_TYPE_UINT64, zb->zb_blkid, NULL); 699 } 700 701 /* 702 * Payload for tuning the zed 703 */ 704 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) { 705 uint64_t cksum_n, cksum_t; 706 707 cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N); 708 if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N)) 709 fm_payload_set(ereport, 710 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N, 711 DATA_TYPE_UINT64, 712 cksum_n, 713 NULL); 714 715 cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T); 716 if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T)) 717 fm_payload_set(ereport, 718 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T, 719 DATA_TYPE_UINT64, 720 cksum_t, 721 NULL); 722 } 723 724 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) { 725 uint64_t io_n, io_t; 726 727 io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N); 728 if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N)) 729 fm_payload_set(ereport, 730 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N, 731 DATA_TYPE_UINT64, 732 io_n, 733 NULL); 734 735 io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T); 736 if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T)) 737 fm_payload_set(ereport, 738 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T, 739 DATA_TYPE_UINT64, 740 io_t, 741 NULL); 742 } 743 744 mutex_exit(&spa->spa_errlist_lock); 745 746 *ereport_out = ereport; 747 *detector_out = detector; 748 return (B_TRUE); 749 } 750 751 /* if it's <= 128 bytes, save the corruption directly */ 752 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t)) 753 754 #define MAX_RANGES 16 755 756 typedef struct zfs_ecksum_info { 757 /* inline arrays of bits set and cleared. */ 758 uint64_t zei_bits_set[ZFM_MAX_INLINE]; 759 uint64_t zei_bits_cleared[ZFM_MAX_INLINE]; 760 761 /* 762 * for each range, the number of bits set and cleared. The Hamming 763 * distance between the good and bad buffers is the sum of them all. 764 */ 765 uint32_t zei_range_sets[MAX_RANGES]; 766 uint32_t zei_range_clears[MAX_RANGES]; 767 768 struct zei_ranges { 769 uint32_t zr_start; 770 uint32_t zr_end; 771 } zei_ranges[MAX_RANGES]; 772 773 size_t zei_range_count; 774 uint32_t zei_mingap; 775 uint32_t zei_allowed_mingap; 776 777 } zfs_ecksum_info_t; 778 779 static void 780 update_bad_bits(uint64_t value_arg, uint32_t *count) 781 { 782 size_t i; 783 size_t bits = 0; 784 uint64_t value = BE_64(value_arg); 785 786 /* We store the bits in big-endian (largest-first) order */ 787 for (i = 0; i < 64; i++) { 788 if (value & (1ull << i)) 789 ++bits; 790 } 791 /* update the count of bits changed */ 792 *count += bits; 793 } 794 795 /* 796 * We've now filled up the range array, and need to increase "mingap" and 797 * shrink the range list accordingly. zei_mingap is always the smallest 798 * distance between array entries, so we set the new_allowed_gap to be 799 * one greater than that. We then go through the list, joining together 800 * any ranges which are closer than the new_allowed_gap. 801 * 802 * By construction, there will be at least one. We also update zei_mingap 803 * to the new smallest gap, to prepare for our next invocation. 804 */ 805 static void 806 zei_shrink_ranges(zfs_ecksum_info_t *eip) 807 { 808 uint32_t mingap = UINT32_MAX; 809 uint32_t new_allowed_gap = eip->zei_mingap + 1; 810 811 size_t idx, output; 812 size_t max = eip->zei_range_count; 813 814 struct zei_ranges *r = eip->zei_ranges; 815 816 ASSERT3U(eip->zei_range_count, >, 0); 817 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES); 818 819 output = idx = 0; 820 while (idx < max - 1) { 821 uint32_t start = r[idx].zr_start; 822 uint32_t end = r[idx].zr_end; 823 824 while (idx < max - 1) { 825 idx++; 826 827 uint32_t nstart = r[idx].zr_start; 828 uint32_t nend = r[idx].zr_end; 829 830 uint32_t gap = nstart - end; 831 if (gap < new_allowed_gap) { 832 end = nend; 833 continue; 834 } 835 if (gap < mingap) 836 mingap = gap; 837 break; 838 } 839 r[output].zr_start = start; 840 r[output].zr_end = end; 841 output++; 842 } 843 ASSERT3U(output, <, eip->zei_range_count); 844 eip->zei_range_count = output; 845 eip->zei_mingap = mingap; 846 eip->zei_allowed_mingap = new_allowed_gap; 847 } 848 849 static void 850 zei_add_range(zfs_ecksum_info_t *eip, int start, int end) 851 { 852 struct zei_ranges *r = eip->zei_ranges; 853 size_t count = eip->zei_range_count; 854 855 if (count >= MAX_RANGES) { 856 zei_shrink_ranges(eip); 857 count = eip->zei_range_count; 858 } 859 if (count == 0) { 860 eip->zei_mingap = UINT32_MAX; 861 eip->zei_allowed_mingap = 1; 862 } else { 863 int gap = start - r[count - 1].zr_end; 864 865 if (gap < eip->zei_allowed_mingap) { 866 r[count - 1].zr_end = end; 867 return; 868 } 869 if (gap < eip->zei_mingap) 870 eip->zei_mingap = gap; 871 } 872 r[count].zr_start = start; 873 r[count].zr_end = end; 874 eip->zei_range_count++; 875 } 876 877 static size_t 878 zei_range_total_size(zfs_ecksum_info_t *eip) 879 { 880 struct zei_ranges *r = eip->zei_ranges; 881 size_t count = eip->zei_range_count; 882 size_t result = 0; 883 size_t idx; 884 885 for (idx = 0; idx < count; idx++) 886 result += (r[idx].zr_end - r[idx].zr_start); 887 888 return (result); 889 } 890 891 static zfs_ecksum_info_t * 892 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info, 893 const abd_t *goodabd, const abd_t *badabd, size_t size, 894 boolean_t drop_if_identical) 895 { 896 const uint64_t *good; 897 const uint64_t *bad; 898 899 size_t nui64s = size / sizeof (uint64_t); 900 901 size_t inline_size; 902 int no_inline = 0; 903 size_t idx; 904 size_t range; 905 906 size_t offset = 0; 907 ssize_t start = -1; 908 909 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP); 910 911 /* don't do any annotation for injected checksum errors */ 912 if (info != NULL && info->zbc_injected) 913 return (eip); 914 915 if (info != NULL && info->zbc_has_cksum) { 916 fm_payload_set(ereport, 917 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO, 918 DATA_TYPE_STRING, 919 info->zbc_checksum_name, 920 NULL); 921 922 if (info->zbc_byteswapped) { 923 fm_payload_set(ereport, 924 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP, 925 DATA_TYPE_BOOLEAN, 1, 926 NULL); 927 } 928 } 929 930 if (badabd == NULL || goodabd == NULL) 931 return (eip); 932 933 ASSERT3U(nui64s, <=, UINT32_MAX); 934 ASSERT3U(size, ==, nui64s * sizeof (uint64_t)); 935 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 936 ASSERT3U(size, <=, UINT32_MAX); 937 938 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size); 939 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size); 940 941 /* build up the range list by comparing the two buffers. */ 942 for (idx = 0; idx < nui64s; idx++) { 943 if (good[idx] == bad[idx]) { 944 if (start == -1) 945 continue; 946 947 zei_add_range(eip, start, idx); 948 start = -1; 949 } else { 950 if (start != -1) 951 continue; 952 953 start = idx; 954 } 955 } 956 if (start != -1) 957 zei_add_range(eip, start, idx); 958 959 /* See if it will fit in our inline buffers */ 960 inline_size = zei_range_total_size(eip); 961 if (inline_size > ZFM_MAX_INLINE) 962 no_inline = 1; 963 964 /* 965 * If there is no change and we want to drop if the buffers are 966 * identical, do so. 967 */ 968 if (inline_size == 0 && drop_if_identical) { 969 kmem_free(eip, sizeof (*eip)); 970 abd_return_buf((abd_t *)goodabd, (void *)good, size); 971 abd_return_buf((abd_t *)badabd, (void *)bad, size); 972 return (NULL); 973 } 974 975 /* 976 * Now walk through the ranges, filling in the details of the 977 * differences. Also convert our uint64_t-array offsets to byte 978 * offsets. 979 */ 980 for (range = 0; range < eip->zei_range_count; range++) { 981 size_t start = eip->zei_ranges[range].zr_start; 982 size_t end = eip->zei_ranges[range].zr_end; 983 984 for (idx = start; idx < end; idx++) { 985 uint64_t set, cleared; 986 987 // bits set in bad, but not in good 988 set = ((~good[idx]) & bad[idx]); 989 // bits set in good, but not in bad 990 cleared = (good[idx] & (~bad[idx])); 991 992 if (!no_inline) { 993 ASSERT3U(offset, <, inline_size); 994 eip->zei_bits_set[offset] = set; 995 eip->zei_bits_cleared[offset] = cleared; 996 offset++; 997 } 998 999 update_bad_bits(set, &eip->zei_range_sets[range]); 1000 update_bad_bits(cleared, &eip->zei_range_clears[range]); 1001 } 1002 1003 /* convert to byte offsets */ 1004 eip->zei_ranges[range].zr_start *= sizeof (uint64_t); 1005 eip->zei_ranges[range].zr_end *= sizeof (uint64_t); 1006 } 1007 1008 abd_return_buf((abd_t *)goodabd, (void *)good, size); 1009 abd_return_buf((abd_t *)badabd, (void *)bad, size); 1010 1011 eip->zei_allowed_mingap *= sizeof (uint64_t); 1012 inline_size *= sizeof (uint64_t); 1013 1014 /* fill in ereport */ 1015 fm_payload_set(ereport, 1016 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES, 1017 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count, 1018 (uint32_t *)eip->zei_ranges, 1019 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP, 1020 DATA_TYPE_UINT32, eip->zei_allowed_mingap, 1021 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS, 1022 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets, 1023 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS, 1024 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears, 1025 NULL); 1026 1027 if (!no_inline) { 1028 fm_payload_set(ereport, 1029 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS, 1030 DATA_TYPE_UINT8_ARRAY, 1031 inline_size, (uint8_t *)eip->zei_bits_set, 1032 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS, 1033 DATA_TYPE_UINT8_ARRAY, 1034 inline_size, (uint8_t *)eip->zei_bits_cleared, 1035 NULL); 1036 } 1037 return (eip); 1038 } 1039 #else 1040 void 1041 zfs_ereport_clear(spa_t *spa, vdev_t *vd) 1042 { 1043 (void) spa, (void) vd; 1044 } 1045 #endif 1046 1047 /* 1048 * Make sure our event is still valid for the given zio/vdev/pool. For example, 1049 * we don't want to keep logging events for a faulted or missing vdev. 1050 */ 1051 boolean_t 1052 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio) 1053 { 1054 #ifdef _KERNEL 1055 /* 1056 * If we are doing a spa_tryimport() or in recovery mode, 1057 * ignore errors. 1058 */ 1059 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT || 1060 spa_load_state(spa) == SPA_LOAD_RECOVER) 1061 return (B_FALSE); 1062 1063 /* 1064 * If we are in the middle of opening a pool, and the previous attempt 1065 * failed, don't bother logging any new ereports - we're just going to 1066 * get the same diagnosis anyway. 1067 */ 1068 if (spa_load_state(spa) != SPA_LOAD_NONE && 1069 spa->spa_last_open_failed) 1070 return (B_FALSE); 1071 1072 if (zio != NULL) { 1073 /* 1074 * If this is not a read or write zio, ignore the error. This 1075 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails. 1076 */ 1077 if (zio->io_type != ZIO_TYPE_READ && 1078 zio->io_type != ZIO_TYPE_WRITE) 1079 return (B_FALSE); 1080 1081 if (vd != NULL) { 1082 /* 1083 * If the vdev has already been marked as failing due 1084 * to a failed probe, then ignore any subsequent I/O 1085 * errors, as the DE will automatically fault the vdev 1086 * on the first such failure. This also catches cases 1087 * where vdev_remove_wanted is set and the device has 1088 * not yet been asynchronously placed into the REMOVED 1089 * state. 1090 */ 1091 if (zio->io_vd == vd && !vdev_accessible(vd, zio)) 1092 return (B_FALSE); 1093 1094 /* 1095 * Ignore checksum errors for reads from DTL regions of 1096 * leaf vdevs. 1097 */ 1098 if (zio->io_type == ZIO_TYPE_READ && 1099 zio->io_error == ECKSUM && 1100 vd->vdev_ops->vdev_op_leaf && 1101 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1)) 1102 return (B_FALSE); 1103 } 1104 } 1105 1106 /* 1107 * For probe failure, we want to avoid posting ereports if we've 1108 * already removed the device in the meantime. 1109 */ 1110 if (vd != NULL && 1111 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 && 1112 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED)) 1113 return (B_FALSE); 1114 1115 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */ 1116 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) && 1117 (zio != NULL) && (!zio->io_timestamp)) { 1118 return (B_FALSE); 1119 } 1120 #else 1121 (void) subclass, (void) spa, (void) vd, (void) zio; 1122 #endif 1123 return (B_TRUE); 1124 } 1125 1126 /* 1127 * Post an ereport for the given subclass 1128 * 1129 * Returns 1130 * - 0 if an event was posted 1131 * - EINVAL if there was a problem posting event 1132 * - EBUSY if the event was rate limited 1133 * - EALREADY if the event was already posted (duplicate) 1134 */ 1135 int 1136 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, 1137 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state) 1138 { 1139 int rc = 0; 1140 #ifdef _KERNEL 1141 nvlist_t *ereport = NULL; 1142 nvlist_t *detector = NULL; 1143 1144 if (!zfs_ereport_is_valid(subclass, spa, vd, zio)) 1145 return (EINVAL); 1146 1147 if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0)) 1148 return (SET_ERROR(EALREADY)); 1149 1150 if (zfs_is_ratelimiting_event(subclass, vd)) 1151 return (SET_ERROR(EBUSY)); 1152 1153 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd, 1154 zb, zio, state, 0)) 1155 return (SET_ERROR(EINVAL)); /* couldn't post event */ 1156 1157 if (ereport == NULL) 1158 return (SET_ERROR(EINVAL)); 1159 1160 /* Cleanup is handled by the callback function */ 1161 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); 1162 #else 1163 (void) subclass, (void) spa, (void) vd, (void) zb, (void) zio, 1164 (void) state; 1165 #endif 1166 return (rc); 1167 } 1168 1169 /* 1170 * Prepare a checksum ereport 1171 * 1172 * Returns 1173 * - 0 if an event was posted 1174 * - EINVAL if there was a problem posting event 1175 * - EBUSY if the event was rate limited 1176 * - EALREADY if the event was already posted (duplicate) 1177 */ 1178 int 1179 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 1180 struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info) 1181 { 1182 zio_cksum_report_t *report; 1183 1184 #ifdef _KERNEL 1185 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio)) 1186 return (SET_ERROR(EINVAL)); 1187 1188 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, 1189 offset, length)) 1190 return (SET_ERROR(EALREADY)); 1191 1192 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd)) 1193 return (SET_ERROR(EBUSY)); 1194 #else 1195 (void) zb, (void) offset; 1196 #endif 1197 1198 report = kmem_zalloc(sizeof (*report), KM_SLEEP); 1199 1200 zio_vsd_default_cksum_report(zio, report); 1201 1202 /* copy the checksum failure information if it was provided */ 1203 if (info != NULL) { 1204 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP); 1205 memcpy(report->zcr_ckinfo, info, sizeof (*info)); 1206 } 1207 1208 report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift; 1209 report->zcr_align = 1210 vdev_psize_to_asize(vd->vdev_top, report->zcr_sector); 1211 report->zcr_length = length; 1212 1213 #ifdef _KERNEL 1214 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector, 1215 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length); 1216 1217 if (report->zcr_ereport == NULL) { 1218 zfs_ereport_free_checksum(report); 1219 return (0); 1220 } 1221 #endif 1222 1223 mutex_enter(&spa->spa_errlist_lock); 1224 report->zcr_next = zio->io_logical->io_cksum_report; 1225 zio->io_logical->io_cksum_report = report; 1226 mutex_exit(&spa->spa_errlist_lock); 1227 return (0); 1228 } 1229 1230 void 1231 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data, 1232 const abd_t *bad_data, boolean_t drop_if_identical) 1233 { 1234 #ifdef _KERNEL 1235 zfs_ecksum_info_t *info; 1236 1237 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo, 1238 good_data, bad_data, report->zcr_length, drop_if_identical); 1239 if (info != NULL) 1240 zfs_zevent_post(report->zcr_ereport, 1241 report->zcr_detector, zfs_zevent_post_cb); 1242 else 1243 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector); 1244 1245 report->zcr_ereport = report->zcr_detector = NULL; 1246 if (info != NULL) 1247 kmem_free(info, sizeof (*info)); 1248 #else 1249 (void) report, (void) good_data, (void) bad_data, 1250 (void) drop_if_identical; 1251 #endif 1252 } 1253 1254 void 1255 zfs_ereport_free_checksum(zio_cksum_report_t *rpt) 1256 { 1257 #ifdef _KERNEL 1258 if (rpt->zcr_ereport != NULL) { 1259 fm_nvlist_destroy(rpt->zcr_ereport, 1260 FM_NVA_FREE); 1261 fm_nvlist_destroy(rpt->zcr_detector, 1262 FM_NVA_FREE); 1263 } 1264 #endif 1265 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo); 1266 1267 if (rpt->zcr_ckinfo != NULL) 1268 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo)); 1269 1270 kmem_free(rpt, sizeof (*rpt)); 1271 } 1272 1273 /* 1274 * Post a checksum ereport 1275 * 1276 * Returns 1277 * - 0 if an event was posted 1278 * - EINVAL if there was a problem posting event 1279 * - EBUSY if the event was rate limited 1280 * - EALREADY if the event was already posted (duplicate) 1281 */ 1282 int 1283 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb, 1284 struct zio *zio, uint64_t offset, uint64_t length, 1285 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc) 1286 { 1287 int rc = 0; 1288 #ifdef _KERNEL 1289 nvlist_t *ereport = NULL; 1290 nvlist_t *detector = NULL; 1291 zfs_ecksum_info_t *info; 1292 1293 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio)) 1294 return (SET_ERROR(EINVAL)); 1295 1296 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, 1297 offset, length)) 1298 return (SET_ERROR(EALREADY)); 1299 1300 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd)) 1301 return (SET_ERROR(EBUSY)); 1302 1303 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM, 1304 spa, vd, zb, zio, offset, length) || (ereport == NULL)) { 1305 return (SET_ERROR(EINVAL)); 1306 } 1307 1308 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length, 1309 B_FALSE); 1310 1311 if (info != NULL) { 1312 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb); 1313 kmem_free(info, sizeof (*info)); 1314 } 1315 #else 1316 (void) spa, (void) vd, (void) zb, (void) zio, (void) offset, 1317 (void) length, (void) good_data, (void) bad_data, (void) zbc; 1318 #endif 1319 return (rc); 1320 } 1321 1322 /* 1323 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of 1324 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h 1325 * and are designed to be consumed by the ZFS Event Daemon (ZED). For 1326 * additional details refer to the zed(8) man page. 1327 */ 1328 nvlist_t * 1329 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name, 1330 nvlist_t *aux) 1331 { 1332 nvlist_t *resource = NULL; 1333 #ifdef _KERNEL 1334 char class[64]; 1335 1336 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT) 1337 return (NULL); 1338 1339 if ((resource = fm_nvlist_create(NULL)) == NULL) 1340 return (NULL); 1341 1342 (void) snprintf(class, sizeof (class), "%s.%s.%s", type, 1343 ZFS_ERROR_CLASS, name); 1344 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION)); 1345 VERIFY0(nvlist_add_string(resource, FM_CLASS, class)); 1346 VERIFY0(nvlist_add_string(resource, 1347 FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa))); 1348 VERIFY0(nvlist_add_uint64(resource, 1349 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa))); 1350 VERIFY0(nvlist_add_uint64(resource, 1351 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa))); 1352 VERIFY0(nvlist_add_int32(resource, 1353 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa))); 1354 1355 if (vd) { 1356 VERIFY0(nvlist_add_uint64(resource, 1357 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid)); 1358 VERIFY0(nvlist_add_uint64(resource, 1359 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state)); 1360 if (vd->vdev_path != NULL) 1361 VERIFY0(nvlist_add_string(resource, 1362 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path)); 1363 if (vd->vdev_devid != NULL) 1364 VERIFY0(nvlist_add_string(resource, 1365 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid)); 1366 if (vd->vdev_fru != NULL) 1367 VERIFY0(nvlist_add_string(resource, 1368 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru)); 1369 if (vd->vdev_enc_sysfs_path != NULL) 1370 VERIFY0(nvlist_add_string(resource, 1371 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 1372 vd->vdev_enc_sysfs_path)); 1373 } 1374 1375 /* also copy any optional payload data */ 1376 if (aux) { 1377 nvpair_t *elem = NULL; 1378 1379 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL) 1380 (void) nvlist_add_nvpair(resource, elem); 1381 } 1382 #else 1383 (void) spa, (void) vd, (void) type, (void) name, (void) aux; 1384 #endif 1385 return (resource); 1386 } 1387 1388 static void 1389 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name, 1390 nvlist_t *aux) 1391 { 1392 #ifdef _KERNEL 1393 nvlist_t *resource; 1394 1395 resource = zfs_event_create(spa, vd, type, name, aux); 1396 if (resource) 1397 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb); 1398 #else 1399 (void) spa, (void) vd, (void) type, (void) name, (void) aux; 1400 #endif 1401 } 1402 1403 /* 1404 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev 1405 * has been removed from the system. This will cause the DE to ignore any 1406 * recent I/O errors, inferring that they are due to the asynchronous device 1407 * removal. 1408 */ 1409 void 1410 zfs_post_remove(spa_t *spa, vdev_t *vd) 1411 { 1412 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL); 1413 } 1414 1415 /* 1416 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool 1417 * has the 'autoreplace' property set, and therefore any broken vdevs will be 1418 * handled by higher level logic, and no vdev fault should be generated. 1419 */ 1420 void 1421 zfs_post_autoreplace(spa_t *spa, vdev_t *vd) 1422 { 1423 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL); 1424 } 1425 1426 /* 1427 * The 'resource.fs.zfs.statechange' event is an internal signal that the 1428 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will 1429 * cause the retire agent to repair any outstanding fault management cases 1430 * open because the device was not found (fault.fs.zfs.device). 1431 */ 1432 void 1433 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate) 1434 { 1435 #ifdef _KERNEL 1436 nvlist_t *aux; 1437 1438 /* 1439 * Add optional supplemental keys to payload 1440 */ 1441 aux = fm_nvlist_create(NULL); 1442 if (vd && aux) { 1443 if (vd->vdev_physpath) { 1444 fnvlist_add_string(aux, 1445 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH, 1446 vd->vdev_physpath); 1447 } 1448 if (vd->vdev_enc_sysfs_path) { 1449 fnvlist_add_string(aux, 1450 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH, 1451 vd->vdev_enc_sysfs_path); 1452 } 1453 1454 fnvlist_add_uint64(aux, 1455 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate); 1456 } 1457 1458 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE, 1459 aux); 1460 1461 if (aux) 1462 fm_nvlist_destroy(aux, FM_NVA_FREE); 1463 #else 1464 (void) spa, (void) vd, (void) laststate; 1465 #endif 1466 } 1467 1468 #ifdef _KERNEL 1469 void 1470 zfs_ereport_init(void) 1471 { 1472 mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL); 1473 list_create(&recent_events_list, sizeof (recent_events_node_t), 1474 offsetof(recent_events_node_t, re_list_link)); 1475 avl_create(&recent_events_tree, recent_events_compare, 1476 sizeof (recent_events_node_t), offsetof(recent_events_node_t, 1477 re_tree_link)); 1478 } 1479 1480 /* 1481 * This 'early' fini needs to run before zfs_fini() which on Linux waits 1482 * for the system_delay_taskq to drain. 1483 */ 1484 void 1485 zfs_ereport_taskq_fini(void) 1486 { 1487 mutex_enter(&recent_events_lock); 1488 if (recent_events_cleaner_tqid != 0) { 1489 taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid); 1490 recent_events_cleaner_tqid = 0; 1491 } 1492 mutex_exit(&recent_events_lock); 1493 } 1494 1495 void 1496 zfs_ereport_fini(void) 1497 { 1498 recent_events_node_t *entry; 1499 1500 while ((entry = list_remove_head(&recent_events_list)) != NULL) { 1501 avl_remove(&recent_events_tree, entry); 1502 kmem_free(entry, sizeof (*entry)); 1503 } 1504 avl_destroy(&recent_events_tree); 1505 list_destroy(&recent_events_list); 1506 mutex_destroy(&recent_events_lock); 1507 } 1508 1509 void 1510 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name) 1511 { 1512 nvlist_t *aux; 1513 1514 aux = fm_nvlist_create(NULL); 1515 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name); 1516 1517 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux); 1518 fm_nvlist_destroy(aux, FM_NVA_FREE); 1519 } 1520 1521 /* 1522 * Post when a event when a zvol is created or removed 1523 * 1524 * This is currently only used by macOS, since it uses the event to create 1525 * symlinks between the volume name (mypool/myvol) and the actual /dev 1526 * device (/dev/disk3). For example: 1527 * 1528 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3 1529 * 1530 * name: The full name of the zvol ("mypool/myvol") 1531 * dev_name: The full /dev name for the zvol ("/dev/disk3") 1532 * raw_name: The raw /dev name for the zvol ("/dev/rdisk3") 1533 */ 1534 void 1535 zfs_ereport_zvol_post(const char *subclass, const char *name, 1536 const char *dev_name, const char *raw_name) 1537 { 1538 nvlist_t *aux; 1539 char *r; 1540 1541 boolean_t locked = mutex_owned(&spa_namespace_lock); 1542 if (!locked) mutex_enter(&spa_namespace_lock); 1543 spa_t *spa = spa_lookup(name); 1544 if (!locked) mutex_exit(&spa_namespace_lock); 1545 1546 if (spa == NULL) 1547 return; 1548 1549 aux = fm_nvlist_create(NULL); 1550 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name); 1551 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME, 1552 raw_name); 1553 r = strchr(name, '/'); 1554 if (r && r[1]) 1555 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]); 1556 1557 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux); 1558 fm_nvlist_destroy(aux, FM_NVA_FREE); 1559 } 1560 1561 EXPORT_SYMBOL(zfs_ereport_post); 1562 EXPORT_SYMBOL(zfs_ereport_is_valid); 1563 EXPORT_SYMBOL(zfs_ereport_post_checksum); 1564 EXPORT_SYMBOL(zfs_post_remove); 1565 EXPORT_SYMBOL(zfs_post_autoreplace); 1566 EXPORT_SYMBOL(zfs_post_state_change); 1567 1568 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW, 1569 "Maximum recent zevents records to retain for duplicate checking"); 1570 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW, 1571 "Expiration time for recent zevents records"); 1572 #endif /* _KERNEL */ 1573