xref: /freebsd/sys/contrib/openzfs/module/zfs/zap_micro.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/avl.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
39 
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
43 
44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
45 
46 static int mzap_upgrade(zap_t **zapp,
47     void *tag, dmu_tx_t *tx, zap_flags_t flags);
48 
49 uint64_t
50 zap_getflags(zap_t *zap)
51 {
52 	if (zap->zap_ismicro)
53 		return (0);
54 	return (zap_f_phys(zap)->zap_flags);
55 }
56 
57 int
58 zap_hashbits(zap_t *zap)
59 {
60 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
61 		return (48);
62 	else
63 		return (28);
64 }
65 
66 uint32_t
67 zap_maxcd(zap_t *zap)
68 {
69 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
70 		return ((1<<16)-1);
71 	else
72 		return (-1U);
73 }
74 
75 static uint64_t
76 zap_hash(zap_name_t *zn)
77 {
78 	zap_t *zap = zn->zn_zap;
79 	uint64_t h = 0;
80 
81 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
82 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
83 		h = *(uint64_t *)zn->zn_key_orig;
84 	} else {
85 		h = zap->zap_salt;
86 		ASSERT(h != 0);
87 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
88 
89 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
90 			const uint64_t *wp = zn->zn_key_norm;
91 
92 			ASSERT(zn->zn_key_intlen == 8);
93 			for (int i = 0; i < zn->zn_key_norm_numints;
94 			    wp++, i++) {
95 				uint64_t word = *wp;
96 
97 				for (int j = 0; j < zn->zn_key_intlen; j++) {
98 					h = (h >> 8) ^
99 					    zfs_crc64_table[(h ^ word) & 0xFF];
100 					word >>= NBBY;
101 				}
102 			}
103 		} else {
104 			const uint8_t *cp = zn->zn_key_norm;
105 
106 			/*
107 			 * We previously stored the terminating null on
108 			 * disk, but didn't hash it, so we need to
109 			 * continue to not hash it.  (The
110 			 * zn_key_*_numints includes the terminating
111 			 * null for non-binary keys.)
112 			 */
113 			int len = zn->zn_key_norm_numints - 1;
114 
115 			ASSERT(zn->zn_key_intlen == 1);
116 			for (int i = 0; i < len; cp++, i++) {
117 				h = (h >> 8) ^
118 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
119 			}
120 		}
121 	}
122 	/*
123 	 * Don't use all 64 bits, since we need some in the cookie for
124 	 * the collision differentiator.  We MUST use the high bits,
125 	 * since those are the ones that we first pay attention to when
126 	 * choosing the bucket.
127 	 */
128 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
129 
130 	return (h);
131 }
132 
133 static int
134 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
135 {
136 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
137 
138 	size_t inlen = strlen(name) + 1;
139 	size_t outlen = ZAP_MAXNAMELEN;
140 
141 	int err = 0;
142 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
143 	    normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
144 	    U8_UNICODE_LATEST, &err);
145 
146 	return (err);
147 }
148 
149 boolean_t
150 zap_match(zap_name_t *zn, const char *matchname)
151 {
152 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
153 
154 	if (zn->zn_matchtype & MT_NORMALIZE) {
155 		char norm[ZAP_MAXNAMELEN];
156 
157 		if (zap_normalize(zn->zn_zap, matchname, norm,
158 		    zn->zn_normflags) != 0)
159 			return (B_FALSE);
160 
161 		return (strcmp(zn->zn_key_norm, norm) == 0);
162 	} else {
163 		return (strcmp(zn->zn_key_orig, matchname) == 0);
164 	}
165 }
166 
167 void
168 zap_name_free(zap_name_t *zn)
169 {
170 	kmem_free(zn, sizeof (zap_name_t));
171 }
172 
173 zap_name_t *
174 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
175 {
176 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
177 
178 	zn->zn_zap = zap;
179 	zn->zn_key_intlen = sizeof (*key);
180 	zn->zn_key_orig = key;
181 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
182 	zn->zn_matchtype = mt;
183 	zn->zn_normflags = zap->zap_normflags;
184 
185 	/*
186 	 * If we're dealing with a case sensitive lookup on a mixed or
187 	 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
188 	 * will fold case to all caps overriding the lookup request.
189 	 */
190 	if (mt & MT_MATCH_CASE)
191 		zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
192 
193 	if (zap->zap_normflags) {
194 		/*
195 		 * We *must* use zap_normflags because this normalization is
196 		 * what the hash is computed from.
197 		 */
198 		if (zap_normalize(zap, key, zn->zn_normbuf,
199 		    zap->zap_normflags) != 0) {
200 			zap_name_free(zn);
201 			return (NULL);
202 		}
203 		zn->zn_key_norm = zn->zn_normbuf;
204 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
205 	} else {
206 		if (mt != 0) {
207 			zap_name_free(zn);
208 			return (NULL);
209 		}
210 		zn->zn_key_norm = zn->zn_key_orig;
211 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
212 	}
213 
214 	zn->zn_hash = zap_hash(zn);
215 
216 	if (zap->zap_normflags != zn->zn_normflags) {
217 		/*
218 		 * We *must* use zn_normflags because this normalization is
219 		 * what the matching is based on.  (Not the hash!)
220 		 */
221 		if (zap_normalize(zap, key, zn->zn_normbuf,
222 		    zn->zn_normflags) != 0) {
223 			zap_name_free(zn);
224 			return (NULL);
225 		}
226 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
227 	}
228 
229 	return (zn);
230 }
231 
232 static zap_name_t *
233 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
234 {
235 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
236 
237 	ASSERT(zap->zap_normflags == 0);
238 	zn->zn_zap = zap;
239 	zn->zn_key_intlen = sizeof (*key);
240 	zn->zn_key_orig = zn->zn_key_norm = key;
241 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
242 	zn->zn_matchtype = 0;
243 
244 	zn->zn_hash = zap_hash(zn);
245 	return (zn);
246 }
247 
248 static void
249 mzap_byteswap(mzap_phys_t *buf, size_t size)
250 {
251 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
252 	buf->mz_salt = BSWAP_64(buf->mz_salt);
253 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
254 	int max = (size / MZAP_ENT_LEN) - 1;
255 	for (int i = 0; i < max; i++) {
256 		buf->mz_chunk[i].mze_value =
257 		    BSWAP_64(buf->mz_chunk[i].mze_value);
258 		buf->mz_chunk[i].mze_cd =
259 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
260 	}
261 }
262 
263 void
264 zap_byteswap(void *buf, size_t size)
265 {
266 	uint64_t block_type = *(uint64_t *)buf;
267 
268 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
269 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
270 		mzap_byteswap(buf, size);
271 	} else {
272 		fzap_byteswap(buf, size);
273 	}
274 }
275 
276 static int
277 mze_compare(const void *arg1, const void *arg2)
278 {
279 	const mzap_ent_t *mze1 = arg1;
280 	const mzap_ent_t *mze2 = arg2;
281 
282 	int cmp = TREE_CMP(mze1->mze_hash, mze2->mze_hash);
283 	if (likely(cmp))
284 		return (cmp);
285 
286 	return (TREE_CMP(mze1->mze_cd, mze2->mze_cd));
287 }
288 
289 static void
290 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
291 {
292 	ASSERT(zap->zap_ismicro);
293 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
294 
295 	mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
296 	mze->mze_chunkid = chunkid;
297 	mze->mze_hash = hash;
298 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
299 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
300 	avl_add(&zap->zap_m.zap_avl, mze);
301 }
302 
303 static mzap_ent_t *
304 mze_find(zap_name_t *zn)
305 {
306 	mzap_ent_t mze_tofind;
307 	mzap_ent_t *mze;
308 	avl_index_t idx;
309 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
310 
311 	ASSERT(zn->zn_zap->zap_ismicro);
312 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
313 
314 	mze_tofind.mze_hash = zn->zn_hash;
315 	mze_tofind.mze_cd = 0;
316 
317 	mze = avl_find(avl, &mze_tofind, &idx);
318 	if (mze == NULL)
319 		mze = avl_nearest(avl, idx, AVL_AFTER);
320 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
321 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
322 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
323 			return (mze);
324 	}
325 
326 	return (NULL);
327 }
328 
329 static uint32_t
330 mze_find_unused_cd(zap_t *zap, uint64_t hash)
331 {
332 	mzap_ent_t mze_tofind;
333 	avl_index_t idx;
334 	avl_tree_t *avl = &zap->zap_m.zap_avl;
335 
336 	ASSERT(zap->zap_ismicro);
337 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
338 
339 	mze_tofind.mze_hash = hash;
340 	mze_tofind.mze_cd = 0;
341 
342 	uint32_t cd = 0;
343 	for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx);
344 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
345 		if (mze->mze_cd != cd)
346 			break;
347 		cd++;
348 	}
349 
350 	return (cd);
351 }
352 
353 /*
354  * Each mzap entry requires at max : 4 chunks
355  * 3 chunks for names + 1 chunk for value.
356  */
357 #define	MZAP_ENT_CHUNKS	(1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
358 	ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
359 
360 /*
361  * Check if the current entry keeps the colliding entries under the fatzap leaf
362  * size.
363  */
364 static boolean_t
365 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
366 {
367 	zap_t *zap = zn->zn_zap;
368 	mzap_ent_t mze_tofind;
369 	mzap_ent_t *mze;
370 	avl_index_t idx;
371 	avl_tree_t *avl = &zap->zap_m.zap_avl;
372 	uint32_t mzap_ents = 0;
373 
374 	mze_tofind.mze_hash = hash;
375 	mze_tofind.mze_cd = 0;
376 
377 	for (mze = avl_find(avl, &mze_tofind, &idx);
378 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
379 		mzap_ents++;
380 	}
381 
382 	/* Include the new entry being added */
383 	mzap_ents++;
384 
385 	return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
386 }
387 
388 static void
389 mze_remove(zap_t *zap, mzap_ent_t *mze)
390 {
391 	ASSERT(zap->zap_ismicro);
392 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
393 
394 	avl_remove(&zap->zap_m.zap_avl, mze);
395 	kmem_free(mze, sizeof (mzap_ent_t));
396 }
397 
398 static void
399 mze_destroy(zap_t *zap)
400 {
401 	mzap_ent_t *mze;
402 	void *avlcookie = NULL;
403 
404 	while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
405 		kmem_free(mze, sizeof (mzap_ent_t));
406 	avl_destroy(&zap->zap_m.zap_avl);
407 }
408 
409 static zap_t *
410 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
411 {
412 	zap_t *winner;
413 	uint64_t *zap_hdr = (uint64_t *)db->db_data;
414 	uint64_t zap_block_type = zap_hdr[0];
415 	uint64_t zap_magic = zap_hdr[1];
416 
417 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
418 
419 	zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
420 	rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
421 	rw_enter(&zap->zap_rwlock, RW_WRITER);
422 	zap->zap_objset = os;
423 	zap->zap_object = obj;
424 	zap->zap_dbuf = db;
425 
426 	if (zap_block_type != ZBT_MICRO) {
427 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
428 		    0);
429 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
430 		if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
431 			winner = NULL;	/* No actual winner here... */
432 			goto handle_winner;
433 		}
434 	} else {
435 		zap->zap_ismicro = TRUE;
436 	}
437 
438 	/*
439 	 * Make sure that zap_ismicro is set before we let others see
440 	 * it, because zap_lockdir() checks zap_ismicro without the lock
441 	 * held.
442 	 */
443 	dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
444 	winner = dmu_buf_set_user(db, &zap->zap_dbu);
445 
446 	if (winner != NULL)
447 		goto handle_winner;
448 
449 	if (zap->zap_ismicro) {
450 		zap->zap_salt = zap_m_phys(zap)->mz_salt;
451 		zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
452 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
453 		avl_create(&zap->zap_m.zap_avl, mze_compare,
454 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
455 
456 		for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
457 			mzap_ent_phys_t *mze =
458 			    &zap_m_phys(zap)->mz_chunk[i];
459 			if (mze->mze_name[0]) {
460 				zap_name_t *zn;
461 
462 				zap->zap_m.zap_num_entries++;
463 				zn = zap_name_alloc(zap, mze->mze_name, 0);
464 				mze_insert(zap, i, zn->zn_hash);
465 				zap_name_free(zn);
466 			}
467 		}
468 	} else {
469 		zap->zap_salt = zap_f_phys(zap)->zap_salt;
470 		zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
471 
472 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
473 		    2*ZAP_LEAF_CHUNKSIZE);
474 
475 		/*
476 		 * The embedded pointer table should not overlap the
477 		 * other members.
478 		 */
479 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
480 		    &zap_f_phys(zap)->zap_salt);
481 
482 		/*
483 		 * The embedded pointer table should end at the end of
484 		 * the block
485 		 */
486 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
487 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
488 		    (uintptr_t)zap_f_phys(zap), ==,
489 		    zap->zap_dbuf->db_size);
490 	}
491 	rw_exit(&zap->zap_rwlock);
492 	return (zap);
493 
494 handle_winner:
495 	rw_exit(&zap->zap_rwlock);
496 	rw_destroy(&zap->zap_rwlock);
497 	if (!zap->zap_ismicro)
498 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
499 	kmem_free(zap, sizeof (zap_t));
500 	return (winner);
501 }
502 
503 /*
504  * This routine "consumes" the caller's hold on the dbuf, which must
505  * have the specified tag.
506  */
507 static int
508 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
509     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
510 {
511 	ASSERT0(db->db_offset);
512 	objset_t *os = dmu_buf_get_objset(db);
513 	uint64_t obj = db->db_object;
514 	dmu_object_info_t doi;
515 
516 	*zapp = NULL;
517 
518 	dmu_object_info_from_db(db, &doi);
519 	if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
520 		return (SET_ERROR(EINVAL));
521 
522 	zap_t *zap = dmu_buf_get_user(db);
523 	if (zap == NULL) {
524 		zap = mzap_open(os, obj, db);
525 		if (zap == NULL) {
526 			/*
527 			 * mzap_open() didn't like what it saw on-disk.
528 			 * Check for corruption!
529 			 */
530 			return (SET_ERROR(EIO));
531 		}
532 	}
533 
534 	/*
535 	 * We're checking zap_ismicro without the lock held, in order to
536 	 * tell what type of lock we want.  Once we have some sort of
537 	 * lock, see if it really is the right type.  In practice this
538 	 * can only be different if it was upgraded from micro to fat,
539 	 * and micro wanted WRITER but fat only needs READER.
540 	 */
541 	krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
542 	rw_enter(&zap->zap_rwlock, lt);
543 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
544 		/* it was upgraded, now we only need reader */
545 		ASSERT(lt == RW_WRITER);
546 		ASSERT(RW_READER ==
547 		    ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
548 		rw_downgrade(&zap->zap_rwlock);
549 		lt = RW_READER;
550 	}
551 
552 	zap->zap_objset = os;
553 
554 	if (lt == RW_WRITER)
555 		dmu_buf_will_dirty(db, tx);
556 
557 	ASSERT3P(zap->zap_dbuf, ==, db);
558 
559 	ASSERT(!zap->zap_ismicro ||
560 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
561 	if (zap->zap_ismicro && tx && adding &&
562 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
563 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
564 		if (newsz > MZAP_MAX_BLKSZ) {
565 			dprintf("upgrading obj %llu: num_entries=%u\n",
566 			    obj, zap->zap_m.zap_num_entries);
567 			*zapp = zap;
568 			int err = mzap_upgrade(zapp, tag, tx, 0);
569 			if (err != 0)
570 				rw_exit(&zap->zap_rwlock);
571 			return (err);
572 		}
573 		VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
574 		zap->zap_m.zap_num_chunks =
575 		    db->db_size / MZAP_ENT_LEN - 1;
576 	}
577 
578 	*zapp = zap;
579 	return (0);
580 }
581 
582 static int
583 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
584     krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
585 {
586 	dmu_buf_t *db;
587 
588 	int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
589 	if (err != 0) {
590 		return (err);
591 	}
592 #ifdef ZFS_DEBUG
593 	{
594 		dmu_object_info_t doi;
595 		dmu_object_info_from_db(db, &doi);
596 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
597 	}
598 #endif
599 
600 	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
601 	if (err != 0) {
602 		dmu_buf_rele(db, tag);
603 	}
604 	return (err);
605 }
606 
607 int
608 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
609     krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
610 {
611 	dmu_buf_t *db;
612 
613 	int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
614 	if (err != 0)
615 		return (err);
616 #ifdef ZFS_DEBUG
617 	{
618 		dmu_object_info_t doi;
619 		dmu_object_info_from_db(db, &doi);
620 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
621 	}
622 #endif
623 	err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
624 	if (err != 0)
625 		dmu_buf_rele(db, tag);
626 	return (err);
627 }
628 
629 void
630 zap_unlockdir(zap_t *zap, void *tag)
631 {
632 	rw_exit(&zap->zap_rwlock);
633 	dmu_buf_rele(zap->zap_dbuf, tag);
634 }
635 
636 static int
637 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
638 {
639 	int err = 0;
640 	zap_t *zap = *zapp;
641 
642 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
643 
644 	int sz = zap->zap_dbuf->db_size;
645 	mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
646 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
647 	int nchunks = zap->zap_m.zap_num_chunks;
648 
649 	if (!flags) {
650 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
651 		    1ULL << fzap_default_block_shift, 0, tx);
652 		if (err != 0) {
653 			vmem_free(mzp, sz);
654 			return (err);
655 		}
656 	}
657 
658 	dprintf("upgrading obj=%llu with %u chunks\n",
659 	    zap->zap_object, nchunks);
660 	/* XXX destroy the avl later, so we can use the stored hash value */
661 	mze_destroy(zap);
662 
663 	fzap_upgrade(zap, tx, flags);
664 
665 	for (int i = 0; i < nchunks; i++) {
666 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
667 		if (mze->mze_name[0] == 0)
668 			continue;
669 		dprintf("adding %s=%llu\n",
670 		    mze->mze_name, mze->mze_value);
671 		zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0);
672 		/* If we fail here, we would end up losing entries */
673 		VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
674 		    tag, tx));
675 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
676 		zap_name_free(zn);
677 	}
678 	vmem_free(mzp, sz);
679 	*zapp = zap;
680 	return (0);
681 }
682 
683 /*
684  * The "normflags" determine the behavior of the matchtype_t which is
685  * passed to zap_lookup_norm().  Names which have the same normalized
686  * version will be stored with the same hash value, and therefore we can
687  * perform normalization-insensitive lookups.  We can be Unicode form-
688  * insensitive and/or case-insensitive.  The following flags are valid for
689  * "normflags":
690  *
691  * U8_TEXTPREP_NFC
692  * U8_TEXTPREP_NFD
693  * U8_TEXTPREP_NFKC
694  * U8_TEXTPREP_NFKD
695  * U8_TEXTPREP_TOUPPER
696  *
697  * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
698  * of them may be supplied.
699  */
700 void
701 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
702 {
703 	dmu_buf_t *db;
704 
705 	VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
706 
707 	dmu_buf_will_dirty(db, tx);
708 	mzap_phys_t *zp = db->db_data;
709 	zp->mz_block_type = ZBT_MICRO;
710 	zp->mz_salt =
711 	    ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
712 	zp->mz_normflags = normflags;
713 
714 	if (flags != 0) {
715 		zap_t *zap;
716 		/* Only fat zap supports flags; upgrade immediately. */
717 		VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
718 		    B_FALSE, B_FALSE, &zap));
719 		VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
720 		zap_unlockdir(zap, FTAG);
721 	} else {
722 		dmu_buf_rele(db, FTAG);
723 	}
724 }
725 
726 static uint64_t
727 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
728     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
729     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
730     dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
731 {
732 	uint64_t obj;
733 
734 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
735 
736 	if (allocated_dnode == NULL) {
737 		dnode_t *dn;
738 		obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
739 		    indirect_blockshift, bonustype, bonuslen, dnodesize,
740 		    &dn, FTAG, tx);
741 		mzap_create_impl(dn, normflags, flags, tx);
742 		dnode_rele(dn, FTAG);
743 	} else {
744 		obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
745 		    indirect_blockshift, bonustype, bonuslen, dnodesize,
746 		    allocated_dnode, tag, tx);
747 		mzap_create_impl(*allocated_dnode, normflags, flags, tx);
748 	}
749 
750 	return (obj);
751 }
752 
753 int
754 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
755     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
756 {
757 	return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
758 	    0, tx));
759 }
760 
761 int
762 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
763     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
764 {
765 	return (zap_create_claim_norm_dnsize(os, obj,
766 	    0, ot, bonustype, bonuslen, dnodesize, tx));
767 }
768 
769 int
770 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
771     dmu_object_type_t ot,
772     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
773 {
774 	return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
775 	    bonuslen, 0, tx));
776 }
777 
778 int
779 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
780     dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
781     int dnodesize, dmu_tx_t *tx)
782 {
783 	dnode_t *dn;
784 	int error;
785 
786 	ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
787 	error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
788 	    dnodesize, tx);
789 	if (error != 0)
790 		return (error);
791 
792 	error = dnode_hold(os, obj, FTAG, &dn);
793 	if (error != 0)
794 		return (error);
795 
796 	mzap_create_impl(dn, normflags, 0, tx);
797 
798 	dnode_rele(dn, FTAG);
799 
800 	return (0);
801 }
802 
803 uint64_t
804 zap_create(objset_t *os, dmu_object_type_t ot,
805     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
806 {
807 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
808 }
809 
810 uint64_t
811 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
812     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
813 {
814 	return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
815 	    dnodesize, tx));
816 }
817 
818 uint64_t
819 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
820     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
821 {
822 	return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
823 	    0, tx));
824 }
825 
826 uint64_t
827 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
828     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
829 {
830 	return (zap_create_impl(os, normflags, 0, ot, 0, 0,
831 	    bonustype, bonuslen, dnodesize, NULL, NULL, tx));
832 }
833 
834 uint64_t
835 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
836     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
837     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
838 {
839 	return (zap_create_flags_dnsize(os, normflags, flags, ot,
840 	    leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
841 }
842 
843 uint64_t
844 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
845     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
846     dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
847 {
848 	return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
849 	    indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
850 	    tx));
851 }
852 
853 /*
854  * Create a zap object and return a pointer to the newly allocated dnode via
855  * the allocated_dnode argument.  The returned dnode will be held and the
856  * caller is responsible for releasing the hold by calling dnode_rele().
857  */
858 uint64_t
859 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
860     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
861     dmu_object_type_t bonustype, int bonuslen, int dnodesize,
862     dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
863 {
864 	return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
865 	    indirect_blockshift, bonustype, bonuslen, dnodesize,
866 	    allocated_dnode, tag, tx));
867 }
868 
869 int
870 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
871 {
872 	/*
873 	 * dmu_object_free will free the object number and free the
874 	 * data.  Freeing the data will cause our pageout function to be
875 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
876 	 */
877 
878 	return (dmu_object_free(os, zapobj, tx));
879 }
880 
881 void
882 zap_evict_sync(void *dbu)
883 {
884 	zap_t *zap = dbu;
885 
886 	rw_destroy(&zap->zap_rwlock);
887 
888 	if (zap->zap_ismicro)
889 		mze_destroy(zap);
890 	else
891 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
892 
893 	kmem_free(zap, sizeof (zap_t));
894 }
895 
896 int
897 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
898 {
899 	zap_t *zap;
900 
901 	int err =
902 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
903 	if (err != 0)
904 		return (err);
905 	if (!zap->zap_ismicro) {
906 		err = fzap_count(zap, count);
907 	} else {
908 		*count = zap->zap_m.zap_num_entries;
909 	}
910 	zap_unlockdir(zap, FTAG);
911 	return (err);
912 }
913 
914 /*
915  * zn may be NULL; if not specified, it will be computed if needed.
916  * See also the comment above zap_entry_normalization_conflict().
917  */
918 static boolean_t
919 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
920 {
921 	int direction = AVL_BEFORE;
922 	boolean_t allocdzn = B_FALSE;
923 
924 	if (zap->zap_normflags == 0)
925 		return (B_FALSE);
926 
927 again:
928 	for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
929 	    other && other->mze_hash == mze->mze_hash;
930 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
931 
932 		if (zn == NULL) {
933 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
934 			    MT_NORMALIZE);
935 			allocdzn = B_TRUE;
936 		}
937 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
938 			if (allocdzn)
939 				zap_name_free(zn);
940 			return (B_TRUE);
941 		}
942 	}
943 
944 	if (direction == AVL_BEFORE) {
945 		direction = AVL_AFTER;
946 		goto again;
947 	}
948 
949 	if (allocdzn)
950 		zap_name_free(zn);
951 	return (B_FALSE);
952 }
953 
954 /*
955  * Routines for manipulating attributes.
956  */
957 
958 int
959 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
960     uint64_t integer_size, uint64_t num_integers, void *buf)
961 {
962 	return (zap_lookup_norm(os, zapobj, name, integer_size,
963 	    num_integers, buf, 0, NULL, 0, NULL));
964 }
965 
966 static int
967 zap_lookup_impl(zap_t *zap, const char *name,
968     uint64_t integer_size, uint64_t num_integers, void *buf,
969     matchtype_t mt, char *realname, int rn_len,
970     boolean_t *ncp)
971 {
972 	int err = 0;
973 
974 	zap_name_t *zn = zap_name_alloc(zap, name, mt);
975 	if (zn == NULL)
976 		return (SET_ERROR(ENOTSUP));
977 
978 	if (!zap->zap_ismicro) {
979 		err = fzap_lookup(zn, integer_size, num_integers, buf,
980 		    realname, rn_len, ncp);
981 	} else {
982 		mzap_ent_t *mze = mze_find(zn);
983 		if (mze == NULL) {
984 			err = SET_ERROR(ENOENT);
985 		} else {
986 			if (num_integers < 1) {
987 				err = SET_ERROR(EOVERFLOW);
988 			} else if (integer_size != 8) {
989 				err = SET_ERROR(EINVAL);
990 			} else {
991 				*(uint64_t *)buf =
992 				    MZE_PHYS(zap, mze)->mze_value;
993 				(void) strlcpy(realname,
994 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
995 				if (ncp) {
996 					*ncp = mzap_normalization_conflict(zap,
997 					    zn, mze);
998 				}
999 			}
1000 		}
1001 	}
1002 	zap_name_free(zn);
1003 	return (err);
1004 }
1005 
1006 int
1007 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1008     uint64_t integer_size, uint64_t num_integers, void *buf,
1009     matchtype_t mt, char *realname, int rn_len,
1010     boolean_t *ncp)
1011 {
1012 	zap_t *zap;
1013 
1014 	int err =
1015 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1016 	if (err != 0)
1017 		return (err);
1018 	err = zap_lookup_impl(zap, name, integer_size,
1019 	    num_integers, buf, mt, realname, rn_len, ncp);
1020 	zap_unlockdir(zap, FTAG);
1021 	return (err);
1022 }
1023 
1024 int
1025 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1026 {
1027 	zap_t *zap;
1028 	int err;
1029 	zap_name_t *zn;
1030 
1031 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1032 	if (err)
1033 		return (err);
1034 	zn = zap_name_alloc(zap, name, 0);
1035 	if (zn == NULL) {
1036 		zap_unlockdir(zap, FTAG);
1037 		return (SET_ERROR(ENOTSUP));
1038 	}
1039 
1040 	fzap_prefetch(zn);
1041 	zap_name_free(zn);
1042 	zap_unlockdir(zap, FTAG);
1043 	return (err);
1044 }
1045 
1046 int
1047 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1048     uint64_t integer_size, uint64_t num_integers, void *buf)
1049 {
1050 	return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1051 	    num_integers, buf, 0, NULL, 0, NULL));
1052 }
1053 
1054 int
1055 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1056     uint64_t integer_size, uint64_t num_integers, void *buf,
1057     matchtype_t mt, char *realname, int rn_len,
1058     boolean_t *ncp)
1059 {
1060 	zap_t *zap;
1061 
1062 	int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1063 	    FTAG, &zap);
1064 	if (err != 0)
1065 		return (err);
1066 	err = zap_lookup_impl(zap, name, integer_size,
1067 	    num_integers, buf, mt, realname, rn_len, ncp);
1068 	zap_unlockdir(zap, FTAG);
1069 	return (err);
1070 }
1071 
1072 int
1073 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1074     int key_numints)
1075 {
1076 	zap_t *zap;
1077 
1078 	int err =
1079 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1080 	if (err != 0)
1081 		return (err);
1082 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1083 	if (zn == NULL) {
1084 		zap_unlockdir(zap, FTAG);
1085 		return (SET_ERROR(ENOTSUP));
1086 	}
1087 
1088 	fzap_prefetch(zn);
1089 	zap_name_free(zn);
1090 	zap_unlockdir(zap, FTAG);
1091 	return (err);
1092 }
1093 
1094 int
1095 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1096     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1097 {
1098 	zap_t *zap;
1099 
1100 	int err =
1101 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1102 	if (err != 0)
1103 		return (err);
1104 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1105 	if (zn == NULL) {
1106 		zap_unlockdir(zap, FTAG);
1107 		return (SET_ERROR(ENOTSUP));
1108 	}
1109 
1110 	err = fzap_lookup(zn, integer_size, num_integers, buf,
1111 	    NULL, 0, NULL);
1112 	zap_name_free(zn);
1113 	zap_unlockdir(zap, FTAG);
1114 	return (err);
1115 }
1116 
1117 int
1118 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1119 {
1120 	int err = zap_lookup_norm(os, zapobj, name, 0,
1121 	    0, NULL, 0, NULL, 0, NULL);
1122 	if (err == EOVERFLOW || err == EINVAL)
1123 		err = 0; /* found, but skipped reading the value */
1124 	return (err);
1125 }
1126 
1127 int
1128 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1129     uint64_t *integer_size, uint64_t *num_integers)
1130 {
1131 	zap_t *zap;
1132 
1133 	int err =
1134 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1135 	if (err != 0)
1136 		return (err);
1137 	zap_name_t *zn = zap_name_alloc(zap, name, 0);
1138 	if (zn == NULL) {
1139 		zap_unlockdir(zap, FTAG);
1140 		return (SET_ERROR(ENOTSUP));
1141 	}
1142 	if (!zap->zap_ismicro) {
1143 		err = fzap_length(zn, integer_size, num_integers);
1144 	} else {
1145 		mzap_ent_t *mze = mze_find(zn);
1146 		if (mze == NULL) {
1147 			err = SET_ERROR(ENOENT);
1148 		} else {
1149 			if (integer_size)
1150 				*integer_size = 8;
1151 			if (num_integers)
1152 				*num_integers = 1;
1153 		}
1154 	}
1155 	zap_name_free(zn);
1156 	zap_unlockdir(zap, FTAG);
1157 	return (err);
1158 }
1159 
1160 int
1161 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1162     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1163 {
1164 	zap_t *zap;
1165 
1166 	int err =
1167 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1168 	if (err != 0)
1169 		return (err);
1170 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1171 	if (zn == NULL) {
1172 		zap_unlockdir(zap, FTAG);
1173 		return (SET_ERROR(ENOTSUP));
1174 	}
1175 	err = fzap_length(zn, integer_size, num_integers);
1176 	zap_name_free(zn);
1177 	zap_unlockdir(zap, FTAG);
1178 	return (err);
1179 }
1180 
1181 static void
1182 mzap_addent(zap_name_t *zn, uint64_t value)
1183 {
1184 	zap_t *zap = zn->zn_zap;
1185 	int start = zap->zap_m.zap_alloc_next;
1186 
1187 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1188 
1189 #ifdef ZFS_DEBUG
1190 	for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1191 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1192 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1193 	}
1194 #endif
1195 
1196 	uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1197 	/* given the limited size of the microzap, this can't happen */
1198 	ASSERT(cd < zap_maxcd(zap));
1199 
1200 again:
1201 	for (int i = start; i < zap->zap_m.zap_num_chunks; i++) {
1202 		mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1203 		if (mze->mze_name[0] == 0) {
1204 			mze->mze_value = value;
1205 			mze->mze_cd = cd;
1206 			(void) strlcpy(mze->mze_name, zn->zn_key_orig,
1207 			    sizeof (mze->mze_name));
1208 			zap->zap_m.zap_num_entries++;
1209 			zap->zap_m.zap_alloc_next = i+1;
1210 			if (zap->zap_m.zap_alloc_next ==
1211 			    zap->zap_m.zap_num_chunks)
1212 				zap->zap_m.zap_alloc_next = 0;
1213 			mze_insert(zap, i, zn->zn_hash);
1214 			return;
1215 		}
1216 	}
1217 	if (start != 0) {
1218 		start = 0;
1219 		goto again;
1220 	}
1221 	cmn_err(CE_PANIC, "out of entries!");
1222 }
1223 
1224 static int
1225 zap_add_impl(zap_t *zap, const char *key,
1226     int integer_size, uint64_t num_integers,
1227     const void *val, dmu_tx_t *tx, void *tag)
1228 {
1229 	const uint64_t *intval = val;
1230 	int err = 0;
1231 
1232 	zap_name_t *zn = zap_name_alloc(zap, key, 0);
1233 	if (zn == NULL) {
1234 		zap_unlockdir(zap, tag);
1235 		return (SET_ERROR(ENOTSUP));
1236 	}
1237 	if (!zap->zap_ismicro) {
1238 		err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1239 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1240 	} else if (integer_size != 8 || num_integers != 1 ||
1241 	    strlen(key) >= MZAP_NAME_LEN ||
1242 	    !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1243 		err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1244 		if (err == 0) {
1245 			err = fzap_add(zn, integer_size, num_integers, val,
1246 			    tag, tx);
1247 		}
1248 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1249 	} else {
1250 		if (mze_find(zn) != NULL) {
1251 			err = SET_ERROR(EEXIST);
1252 		} else {
1253 			mzap_addent(zn, *intval);
1254 		}
1255 	}
1256 	ASSERT(zap == zn->zn_zap);
1257 	zap_name_free(zn);
1258 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1259 		zap_unlockdir(zap, tag);
1260 	return (err);
1261 }
1262 
1263 int
1264 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1265     int integer_size, uint64_t num_integers,
1266     const void *val, dmu_tx_t *tx)
1267 {
1268 	zap_t *zap;
1269 	int err;
1270 
1271 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1272 	if (err != 0)
1273 		return (err);
1274 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1275 	/* zap_add_impl() calls zap_unlockdir() */
1276 	return (err);
1277 }
1278 
1279 int
1280 zap_add_by_dnode(dnode_t *dn, const char *key,
1281     int integer_size, uint64_t num_integers,
1282     const void *val, dmu_tx_t *tx)
1283 {
1284 	zap_t *zap;
1285 	int err;
1286 
1287 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1288 	if (err != 0)
1289 		return (err);
1290 	err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1291 	/* zap_add_impl() calls zap_unlockdir() */
1292 	return (err);
1293 }
1294 
1295 int
1296 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1297     int key_numints, int integer_size, uint64_t num_integers,
1298     const void *val, dmu_tx_t *tx)
1299 {
1300 	zap_t *zap;
1301 
1302 	int err =
1303 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1304 	if (err != 0)
1305 		return (err);
1306 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1307 	if (zn == NULL) {
1308 		zap_unlockdir(zap, FTAG);
1309 		return (SET_ERROR(ENOTSUP));
1310 	}
1311 	err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1312 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1313 	zap_name_free(zn);
1314 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1315 		zap_unlockdir(zap, FTAG);
1316 	return (err);
1317 }
1318 
1319 int
1320 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1321     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1322 {
1323 	zap_t *zap;
1324 	const uint64_t *intval = val;
1325 
1326 	int err =
1327 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1328 	if (err != 0)
1329 		return (err);
1330 	zap_name_t *zn = zap_name_alloc(zap, name, 0);
1331 	if (zn == NULL) {
1332 		zap_unlockdir(zap, FTAG);
1333 		return (SET_ERROR(ENOTSUP));
1334 	}
1335 	if (!zap->zap_ismicro) {
1336 		err = fzap_update(zn, integer_size, num_integers, val,
1337 		    FTAG, tx);
1338 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1339 	} else if (integer_size != 8 || num_integers != 1 ||
1340 	    strlen(name) >= MZAP_NAME_LEN) {
1341 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1342 		    zapobj, integer_size, num_integers, name);
1343 		err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1344 		if (err == 0) {
1345 			err = fzap_update(zn, integer_size, num_integers,
1346 			    val, FTAG, tx);
1347 		}
1348 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1349 	} else {
1350 		mzap_ent_t *mze = mze_find(zn);
1351 		if (mze != NULL) {
1352 			MZE_PHYS(zap, mze)->mze_value = *intval;
1353 		} else {
1354 			mzap_addent(zn, *intval);
1355 		}
1356 	}
1357 	ASSERT(zap == zn->zn_zap);
1358 	zap_name_free(zn);
1359 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1360 		zap_unlockdir(zap, FTAG);
1361 	return (err);
1362 }
1363 
1364 int
1365 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1366     int key_numints,
1367     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1368 {
1369 	zap_t *zap;
1370 
1371 	int err =
1372 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1373 	if (err != 0)
1374 		return (err);
1375 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1376 	if (zn == NULL) {
1377 		zap_unlockdir(zap, FTAG);
1378 		return (SET_ERROR(ENOTSUP));
1379 	}
1380 	err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1381 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1382 	zap_name_free(zn);
1383 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1384 		zap_unlockdir(zap, FTAG);
1385 	return (err);
1386 }
1387 
1388 int
1389 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1390 {
1391 	return (zap_remove_norm(os, zapobj, name, 0, tx));
1392 }
1393 
1394 static int
1395 zap_remove_impl(zap_t *zap, const char *name,
1396     matchtype_t mt, dmu_tx_t *tx)
1397 {
1398 	int err = 0;
1399 
1400 	zap_name_t *zn = zap_name_alloc(zap, name, mt);
1401 	if (zn == NULL)
1402 		return (SET_ERROR(ENOTSUP));
1403 	if (!zap->zap_ismicro) {
1404 		err = fzap_remove(zn, tx);
1405 	} else {
1406 		mzap_ent_t *mze = mze_find(zn);
1407 		if (mze == NULL) {
1408 			err = SET_ERROR(ENOENT);
1409 		} else {
1410 			zap->zap_m.zap_num_entries--;
1411 			bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1412 			    sizeof (mzap_ent_phys_t));
1413 			mze_remove(zap, mze);
1414 		}
1415 	}
1416 	zap_name_free(zn);
1417 	return (err);
1418 }
1419 
1420 int
1421 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1422     matchtype_t mt, dmu_tx_t *tx)
1423 {
1424 	zap_t *zap;
1425 	int err;
1426 
1427 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1428 	if (err)
1429 		return (err);
1430 	err = zap_remove_impl(zap, name, mt, tx);
1431 	zap_unlockdir(zap, FTAG);
1432 	return (err);
1433 }
1434 
1435 int
1436 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1437 {
1438 	zap_t *zap;
1439 	int err;
1440 
1441 	err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1442 	if (err)
1443 		return (err);
1444 	err = zap_remove_impl(zap, name, 0, tx);
1445 	zap_unlockdir(zap, FTAG);
1446 	return (err);
1447 }
1448 
1449 int
1450 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1451     int key_numints, dmu_tx_t *tx)
1452 {
1453 	zap_t *zap;
1454 
1455 	int err =
1456 	    zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1457 	if (err != 0)
1458 		return (err);
1459 	zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1460 	if (zn == NULL) {
1461 		zap_unlockdir(zap, FTAG);
1462 		return (SET_ERROR(ENOTSUP));
1463 	}
1464 	err = fzap_remove(zn, tx);
1465 	zap_name_free(zn);
1466 	zap_unlockdir(zap, FTAG);
1467 	return (err);
1468 }
1469 
1470 /*
1471  * Routines for iterating over the attributes.
1472  */
1473 
1474 static void
1475 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1476     uint64_t serialized, boolean_t prefetch)
1477 {
1478 	zc->zc_objset = os;
1479 	zc->zc_zap = NULL;
1480 	zc->zc_leaf = NULL;
1481 	zc->zc_zapobj = zapobj;
1482 	zc->zc_serialized = serialized;
1483 	zc->zc_hash = 0;
1484 	zc->zc_cd = 0;
1485 	zc->zc_prefetch = prefetch;
1486 }
1487 void
1488 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1489     uint64_t serialized)
1490 {
1491 	zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1492 }
1493 
1494 /*
1495  * Initialize a cursor at the beginning of the ZAP object.  The entire
1496  * ZAP object will be prefetched.
1497  */
1498 void
1499 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1500 {
1501 	zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1502 }
1503 
1504 /*
1505  * Initialize a cursor at the beginning, but request that we not prefetch
1506  * the entire ZAP object.
1507  */
1508 void
1509 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1510 {
1511 	zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1512 }
1513 
1514 void
1515 zap_cursor_fini(zap_cursor_t *zc)
1516 {
1517 	if (zc->zc_zap) {
1518 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1519 		zap_unlockdir(zc->zc_zap, NULL);
1520 		zc->zc_zap = NULL;
1521 	}
1522 	if (zc->zc_leaf) {
1523 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1524 		zap_put_leaf(zc->zc_leaf);
1525 		zc->zc_leaf = NULL;
1526 	}
1527 	zc->zc_objset = NULL;
1528 }
1529 
1530 uint64_t
1531 zap_cursor_serialize(zap_cursor_t *zc)
1532 {
1533 	if (zc->zc_hash == -1ULL)
1534 		return (-1ULL);
1535 	if (zc->zc_zap == NULL)
1536 		return (zc->zc_serialized);
1537 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1538 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1539 
1540 	/*
1541 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1542 	 * that 32-bit programs can access this.  So usually use a small
1543 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1544 	 * of the cursor.
1545 	 *
1546 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1547 	 */
1548 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1549 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1550 }
1551 
1552 int
1553 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1554 {
1555 	int err;
1556 
1557 	if (zc->zc_hash == -1ULL)
1558 		return (SET_ERROR(ENOENT));
1559 
1560 	if (zc->zc_zap == NULL) {
1561 		int hb;
1562 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1563 		    RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1564 		if (err != 0)
1565 			return (err);
1566 
1567 		/*
1568 		 * To support zap_cursor_init_serialized, advance, retrieve,
1569 		 * we must add to the existing zc_cd, which may already
1570 		 * be 1 due to the zap_cursor_advance.
1571 		 */
1572 		ASSERT(zc->zc_hash == 0);
1573 		hb = zap_hashbits(zc->zc_zap);
1574 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1575 		zc->zc_cd += zc->zc_serialized >> hb;
1576 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1577 			zc->zc_cd = 0;
1578 	} else {
1579 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1580 	}
1581 	if (!zc->zc_zap->zap_ismicro) {
1582 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1583 	} else {
1584 		avl_index_t idx;
1585 		mzap_ent_t mze_tofind;
1586 
1587 		mze_tofind.mze_hash = zc->zc_hash;
1588 		mze_tofind.mze_cd = zc->zc_cd;
1589 
1590 		mzap_ent_t *mze =
1591 		    avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1592 		if (mze == NULL) {
1593 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1594 			    idx, AVL_AFTER);
1595 		}
1596 		if (mze) {
1597 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1598 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1599 			za->za_normalization_conflict =
1600 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1601 			za->za_integer_length = 8;
1602 			za->za_num_integers = 1;
1603 			za->za_first_integer = mzep->mze_value;
1604 			(void) strlcpy(za->za_name, mzep->mze_name,
1605 			    sizeof (za->za_name));
1606 			zc->zc_hash = mze->mze_hash;
1607 			zc->zc_cd = mze->mze_cd;
1608 			err = 0;
1609 		} else {
1610 			zc->zc_hash = -1ULL;
1611 			err = SET_ERROR(ENOENT);
1612 		}
1613 	}
1614 	rw_exit(&zc->zc_zap->zap_rwlock);
1615 	return (err);
1616 }
1617 
1618 void
1619 zap_cursor_advance(zap_cursor_t *zc)
1620 {
1621 	if (zc->zc_hash == -1ULL)
1622 		return;
1623 	zc->zc_cd++;
1624 }
1625 
1626 int
1627 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1628 {
1629 	zap_t *zap;
1630 
1631 	int err =
1632 	    zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1633 	if (err != 0)
1634 		return (err);
1635 
1636 	bzero(zs, sizeof (zap_stats_t));
1637 
1638 	if (zap->zap_ismicro) {
1639 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1640 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1641 		zs->zs_num_blocks = 1;
1642 	} else {
1643 		fzap_get_stats(zap, zs);
1644 	}
1645 	zap_unlockdir(zap, FTAG);
1646 	return (0);
1647 }
1648 
1649 #if defined(_KERNEL)
1650 EXPORT_SYMBOL(zap_create);
1651 EXPORT_SYMBOL(zap_create_dnsize);
1652 EXPORT_SYMBOL(zap_create_norm);
1653 EXPORT_SYMBOL(zap_create_norm_dnsize);
1654 EXPORT_SYMBOL(zap_create_flags);
1655 EXPORT_SYMBOL(zap_create_flags_dnsize);
1656 EXPORT_SYMBOL(zap_create_claim);
1657 EXPORT_SYMBOL(zap_create_claim_norm);
1658 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1659 EXPORT_SYMBOL(zap_create_hold);
1660 EXPORT_SYMBOL(zap_destroy);
1661 EXPORT_SYMBOL(zap_lookup);
1662 EXPORT_SYMBOL(zap_lookup_by_dnode);
1663 EXPORT_SYMBOL(zap_lookup_norm);
1664 EXPORT_SYMBOL(zap_lookup_uint64);
1665 EXPORT_SYMBOL(zap_contains);
1666 EXPORT_SYMBOL(zap_prefetch);
1667 EXPORT_SYMBOL(zap_prefetch_uint64);
1668 EXPORT_SYMBOL(zap_add);
1669 EXPORT_SYMBOL(zap_add_by_dnode);
1670 EXPORT_SYMBOL(zap_add_uint64);
1671 EXPORT_SYMBOL(zap_update);
1672 EXPORT_SYMBOL(zap_update_uint64);
1673 EXPORT_SYMBOL(zap_length);
1674 EXPORT_SYMBOL(zap_length_uint64);
1675 EXPORT_SYMBOL(zap_remove);
1676 EXPORT_SYMBOL(zap_remove_by_dnode);
1677 EXPORT_SYMBOL(zap_remove_norm);
1678 EXPORT_SYMBOL(zap_remove_uint64);
1679 EXPORT_SYMBOL(zap_count);
1680 EXPORT_SYMBOL(zap_value_search);
1681 EXPORT_SYMBOL(zap_join);
1682 EXPORT_SYMBOL(zap_join_increment);
1683 EXPORT_SYMBOL(zap_add_int);
1684 EXPORT_SYMBOL(zap_remove_int);
1685 EXPORT_SYMBOL(zap_lookup_int);
1686 EXPORT_SYMBOL(zap_increment_int);
1687 EXPORT_SYMBOL(zap_add_int_key);
1688 EXPORT_SYMBOL(zap_lookup_int_key);
1689 EXPORT_SYMBOL(zap_increment);
1690 EXPORT_SYMBOL(zap_cursor_init);
1691 EXPORT_SYMBOL(zap_cursor_fini);
1692 EXPORT_SYMBOL(zap_cursor_retrieve);
1693 EXPORT_SYMBOL(zap_cursor_advance);
1694 EXPORT_SYMBOL(zap_cursor_serialize);
1695 EXPORT_SYMBOL(zap_cursor_init_serialized);
1696 EXPORT_SYMBOL(zap_get_stats);
1697 #endif
1698