1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 #include <sys/zio.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/zfs_context.h> 33 #include <sys/zap.h> 34 #include <sys/zap_impl.h> 35 #include <sys/zap_leaf.h> 36 #include <sys/btree.h> 37 #include <sys/arc.h> 38 #include <sys/dmu_objset.h> 39 40 #ifdef _KERNEL 41 #include <sys/sunddi.h> 42 #endif 43 44 int zap_micro_max_size = MZAP_MAX_BLKSZ; 45 46 static int mzap_upgrade(zap_t **zapp, 47 const void *tag, dmu_tx_t *tx, zap_flags_t flags); 48 49 uint64_t 50 zap_getflags(zap_t *zap) 51 { 52 if (zap->zap_ismicro) 53 return (0); 54 return (zap_f_phys(zap)->zap_flags); 55 } 56 57 int 58 zap_hashbits(zap_t *zap) 59 { 60 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 61 return (48); 62 else 63 return (28); 64 } 65 66 uint32_t 67 zap_maxcd(zap_t *zap) 68 { 69 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 70 return ((1<<16)-1); 71 else 72 return (-1U); 73 } 74 75 static uint64_t 76 zap_hash(zap_name_t *zn) 77 { 78 zap_t *zap = zn->zn_zap; 79 uint64_t h = 0; 80 81 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 82 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 83 h = *(uint64_t *)zn->zn_key_orig; 84 } else { 85 h = zap->zap_salt; 86 ASSERT(h != 0); 87 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 88 89 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 90 const uint64_t *wp = zn->zn_key_norm; 91 92 ASSERT(zn->zn_key_intlen == 8); 93 for (int i = 0; i < zn->zn_key_norm_numints; 94 wp++, i++) { 95 uint64_t word = *wp; 96 97 for (int j = 0; j < 8; j++) { 98 h = (h >> 8) ^ 99 zfs_crc64_table[(h ^ word) & 0xFF]; 100 word >>= NBBY; 101 } 102 } 103 } else { 104 const uint8_t *cp = zn->zn_key_norm; 105 106 /* 107 * We previously stored the terminating null on 108 * disk, but didn't hash it, so we need to 109 * continue to not hash it. (The 110 * zn_key_*_numints includes the terminating 111 * null for non-binary keys.) 112 */ 113 int len = zn->zn_key_norm_numints - 1; 114 115 ASSERT(zn->zn_key_intlen == 1); 116 for (int i = 0; i < len; cp++, i++) { 117 h = (h >> 8) ^ 118 zfs_crc64_table[(h ^ *cp) & 0xFF]; 119 } 120 } 121 } 122 /* 123 * Don't use all 64 bits, since we need some in the cookie for 124 * the collision differentiator. We MUST use the high bits, 125 * since those are the ones that we first pay attention to when 126 * choosing the bucket. 127 */ 128 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 129 130 return (h); 131 } 132 133 static int 134 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags) 135 { 136 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 137 138 size_t inlen = strlen(name) + 1; 139 size_t outlen = ZAP_MAXNAMELEN; 140 141 int err = 0; 142 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 143 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, 144 U8_UNICODE_LATEST, &err); 145 146 return (err); 147 } 148 149 boolean_t 150 zap_match(zap_name_t *zn, const char *matchname) 151 { 152 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 153 154 if (zn->zn_matchtype & MT_NORMALIZE) { 155 char norm[ZAP_MAXNAMELEN]; 156 157 if (zap_normalize(zn->zn_zap, matchname, norm, 158 zn->zn_normflags) != 0) 159 return (B_FALSE); 160 161 return (strcmp(zn->zn_key_norm, norm) == 0); 162 } else { 163 return (strcmp(zn->zn_key_orig, matchname) == 0); 164 } 165 } 166 167 static zap_name_t * 168 zap_name_alloc(zap_t *zap) 169 { 170 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 171 zn->zn_zap = zap; 172 return (zn); 173 } 174 175 void 176 zap_name_free(zap_name_t *zn) 177 { 178 kmem_free(zn, sizeof (zap_name_t)); 179 } 180 181 static int 182 zap_name_init_str(zap_name_t *zn, const char *key, matchtype_t mt) 183 { 184 zap_t *zap = zn->zn_zap; 185 186 zn->zn_key_intlen = sizeof (*key); 187 zn->zn_key_orig = key; 188 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 189 zn->zn_matchtype = mt; 190 zn->zn_normflags = zap->zap_normflags; 191 192 /* 193 * If we're dealing with a case sensitive lookup on a mixed or 194 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup 195 * will fold case to all caps overriding the lookup request. 196 */ 197 if (mt & MT_MATCH_CASE) 198 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER; 199 200 if (zap->zap_normflags) { 201 /* 202 * We *must* use zap_normflags because this normalization is 203 * what the hash is computed from. 204 */ 205 if (zap_normalize(zap, key, zn->zn_normbuf, 206 zap->zap_normflags) != 0) 207 return (SET_ERROR(ENOTSUP)); 208 zn->zn_key_norm = zn->zn_normbuf; 209 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 210 } else { 211 if (mt != 0) 212 return (SET_ERROR(ENOTSUP)); 213 zn->zn_key_norm = zn->zn_key_orig; 214 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 215 } 216 217 zn->zn_hash = zap_hash(zn); 218 219 if (zap->zap_normflags != zn->zn_normflags) { 220 /* 221 * We *must* use zn_normflags because this normalization is 222 * what the matching is based on. (Not the hash!) 223 */ 224 if (zap_normalize(zap, key, zn->zn_normbuf, 225 zn->zn_normflags) != 0) 226 return (SET_ERROR(ENOTSUP)); 227 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 228 } 229 230 return (0); 231 } 232 233 zap_name_t * 234 zap_name_alloc_str(zap_t *zap, const char *key, matchtype_t mt) 235 { 236 zap_name_t *zn = zap_name_alloc(zap); 237 if (zap_name_init_str(zn, key, mt) != 0) { 238 zap_name_free(zn); 239 return (NULL); 240 } 241 return (zn); 242 } 243 244 static zap_name_t * 245 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 246 { 247 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 248 249 ASSERT(zap->zap_normflags == 0); 250 zn->zn_zap = zap; 251 zn->zn_key_intlen = sizeof (*key); 252 zn->zn_key_orig = zn->zn_key_norm = key; 253 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 254 zn->zn_matchtype = 0; 255 256 zn->zn_hash = zap_hash(zn); 257 return (zn); 258 } 259 260 static void 261 mzap_byteswap(mzap_phys_t *buf, size_t size) 262 { 263 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 264 buf->mz_salt = BSWAP_64(buf->mz_salt); 265 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 266 int max = (size / MZAP_ENT_LEN) - 1; 267 for (int i = 0; i < max; i++) { 268 buf->mz_chunk[i].mze_value = 269 BSWAP_64(buf->mz_chunk[i].mze_value); 270 buf->mz_chunk[i].mze_cd = 271 BSWAP_32(buf->mz_chunk[i].mze_cd); 272 } 273 } 274 275 void 276 zap_byteswap(void *buf, size_t size) 277 { 278 uint64_t block_type = *(uint64_t *)buf; 279 280 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 281 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 282 mzap_byteswap(buf, size); 283 } else { 284 fzap_byteswap(buf, size); 285 } 286 } 287 288 static int 289 mze_compare(const void *arg1, const void *arg2) 290 { 291 const mzap_ent_t *mze1 = arg1; 292 const mzap_ent_t *mze2 = arg2; 293 294 return (TREE_CMP((uint64_t)(mze1->mze_hash) << 32 | mze1->mze_cd, 295 (uint64_t)(mze2->mze_hash) << 32 | mze2->mze_cd)); 296 } 297 298 static void 299 mze_insert(zap_t *zap, uint16_t chunkid, uint64_t hash) 300 { 301 mzap_ent_t mze; 302 303 ASSERT(zap->zap_ismicro); 304 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 305 306 mze.mze_chunkid = chunkid; 307 ASSERT0(hash & 0xffffffff); 308 mze.mze_hash = hash >> 32; 309 ASSERT3U(MZE_PHYS(zap, &mze)->mze_cd, <=, 0xffff); 310 mze.mze_cd = (uint16_t)MZE_PHYS(zap, &mze)->mze_cd; 311 ASSERT(MZE_PHYS(zap, &mze)->mze_name[0] != 0); 312 zfs_btree_add(&zap->zap_m.zap_tree, &mze); 313 } 314 315 static mzap_ent_t * 316 mze_find(zap_name_t *zn, zfs_btree_index_t *idx) 317 { 318 mzap_ent_t mze_tofind; 319 mzap_ent_t *mze; 320 zfs_btree_t *tree = &zn->zn_zap->zap_m.zap_tree; 321 322 ASSERT(zn->zn_zap->zap_ismicro); 323 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 324 325 ASSERT0(zn->zn_hash & 0xffffffff); 326 mze_tofind.mze_hash = zn->zn_hash >> 32; 327 mze_tofind.mze_cd = 0; 328 329 mze = zfs_btree_find(tree, &mze_tofind, idx); 330 if (mze == NULL) 331 mze = zfs_btree_next(tree, idx, idx); 332 for (; mze && mze->mze_hash == mze_tofind.mze_hash; 333 mze = zfs_btree_next(tree, idx, idx)) { 334 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 335 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 336 return (mze); 337 } 338 339 return (NULL); 340 } 341 342 static uint32_t 343 mze_find_unused_cd(zap_t *zap, uint64_t hash) 344 { 345 mzap_ent_t mze_tofind; 346 zfs_btree_index_t idx; 347 zfs_btree_t *tree = &zap->zap_m.zap_tree; 348 349 ASSERT(zap->zap_ismicro); 350 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 351 352 ASSERT0(hash & 0xffffffff); 353 hash >>= 32; 354 mze_tofind.mze_hash = hash; 355 mze_tofind.mze_cd = 0; 356 357 uint32_t cd = 0; 358 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx); 359 mze && mze->mze_hash == hash; 360 mze = zfs_btree_next(tree, &idx, &idx)) { 361 if (mze->mze_cd != cd) 362 break; 363 cd++; 364 } 365 366 return (cd); 367 } 368 369 /* 370 * Each mzap entry requires at max : 4 chunks 371 * 3 chunks for names + 1 chunk for value. 372 */ 373 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \ 374 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t))) 375 376 /* 377 * Check if the current entry keeps the colliding entries under the fatzap leaf 378 * size. 379 */ 380 static boolean_t 381 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash) 382 { 383 zap_t *zap = zn->zn_zap; 384 mzap_ent_t mze_tofind; 385 zfs_btree_index_t idx; 386 zfs_btree_t *tree = &zap->zap_m.zap_tree; 387 uint32_t mzap_ents = 0; 388 389 ASSERT0(hash & 0xffffffff); 390 hash >>= 32; 391 mze_tofind.mze_hash = hash; 392 mze_tofind.mze_cd = 0; 393 394 for (mzap_ent_t *mze = zfs_btree_find(tree, &mze_tofind, &idx); 395 mze && mze->mze_hash == hash; 396 mze = zfs_btree_next(tree, &idx, &idx)) { 397 mzap_ents++; 398 } 399 400 /* Include the new entry being added */ 401 mzap_ents++; 402 403 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS)); 404 } 405 406 static void 407 mze_destroy(zap_t *zap) 408 { 409 zfs_btree_clear(&zap->zap_m.zap_tree); 410 zfs_btree_destroy(&zap->zap_m.zap_tree); 411 } 412 413 static zap_t * 414 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 415 { 416 zap_t *winner; 417 uint64_t *zap_hdr = (uint64_t *)db->db_data; 418 uint64_t zap_block_type = zap_hdr[0]; 419 uint64_t zap_magic = zap_hdr[1]; 420 421 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 422 423 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 424 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL); 425 rw_enter(&zap->zap_rwlock, RW_WRITER); 426 zap->zap_objset = os; 427 zap->zap_object = obj; 428 zap->zap_dbuf = db; 429 430 if (zap_block_type != ZBT_MICRO) { 431 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 432 0); 433 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 434 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { 435 winner = NULL; /* No actual winner here... */ 436 goto handle_winner; 437 } 438 } else { 439 zap->zap_ismicro = TRUE; 440 } 441 442 /* 443 * Make sure that zap_ismicro is set before we let others see 444 * it, because zap_lockdir() checks zap_ismicro without the lock 445 * held. 446 */ 447 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); 448 winner = dmu_buf_set_user(db, &zap->zap_dbu); 449 450 if (winner != NULL) 451 goto handle_winner; 452 453 if (zap->zap_ismicro) { 454 zap->zap_salt = zap_m_phys(zap)->mz_salt; 455 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 456 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 457 458 /* 459 * Reduce B-tree leaf from 4KB to 512 bytes to reduce memmove() 460 * overhead on massive inserts below. It still allows to store 461 * 62 entries before we have to add 2KB B-tree core node. 462 */ 463 zfs_btree_create_custom(&zap->zap_m.zap_tree, mze_compare, 464 sizeof (mzap_ent_t), 512); 465 466 zap_name_t *zn = zap_name_alloc(zap); 467 for (uint16_t i = 0; i < zap->zap_m.zap_num_chunks; i++) { 468 mzap_ent_phys_t *mze = 469 &zap_m_phys(zap)->mz_chunk[i]; 470 if (mze->mze_name[0]) { 471 zap->zap_m.zap_num_entries++; 472 zap_name_init_str(zn, mze->mze_name, 0); 473 mze_insert(zap, i, zn->zn_hash); 474 } 475 } 476 zap_name_free(zn); 477 } else { 478 zap->zap_salt = zap_f_phys(zap)->zap_salt; 479 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 480 481 ASSERT3U(sizeof (struct zap_leaf_header), ==, 482 2*ZAP_LEAF_CHUNKSIZE); 483 484 /* 485 * The embedded pointer table should not overlap the 486 * other members. 487 */ 488 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 489 &zap_f_phys(zap)->zap_salt); 490 491 /* 492 * The embedded pointer table should end at the end of 493 * the block 494 */ 495 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 496 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 497 (uintptr_t)zap_f_phys(zap), ==, 498 zap->zap_dbuf->db_size); 499 } 500 rw_exit(&zap->zap_rwlock); 501 return (zap); 502 503 handle_winner: 504 rw_exit(&zap->zap_rwlock); 505 rw_destroy(&zap->zap_rwlock); 506 if (!zap->zap_ismicro) 507 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 508 kmem_free(zap, sizeof (zap_t)); 509 return (winner); 510 } 511 512 /* 513 * This routine "consumes" the caller's hold on the dbuf, which must 514 * have the specified tag. 515 */ 516 static int 517 zap_lockdir_impl(dmu_buf_t *db, const void *tag, dmu_tx_t *tx, 518 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 519 { 520 ASSERT0(db->db_offset); 521 objset_t *os = dmu_buf_get_objset(db); 522 uint64_t obj = db->db_object; 523 dmu_object_info_t doi; 524 525 *zapp = NULL; 526 527 dmu_object_info_from_db(db, &doi); 528 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP) 529 return (SET_ERROR(EINVAL)); 530 531 zap_t *zap = dmu_buf_get_user(db); 532 if (zap == NULL) { 533 zap = mzap_open(os, obj, db); 534 if (zap == NULL) { 535 /* 536 * mzap_open() didn't like what it saw on-disk. 537 * Check for corruption! 538 */ 539 return (SET_ERROR(EIO)); 540 } 541 } 542 543 /* 544 * We're checking zap_ismicro without the lock held, in order to 545 * tell what type of lock we want. Once we have some sort of 546 * lock, see if it really is the right type. In practice this 547 * can only be different if it was upgraded from micro to fat, 548 * and micro wanted WRITER but fat only needs READER. 549 */ 550 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 551 rw_enter(&zap->zap_rwlock, lt); 552 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 553 /* it was upgraded, now we only need reader */ 554 ASSERT(lt == RW_WRITER); 555 ASSERT(RW_READER == 556 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)); 557 rw_downgrade(&zap->zap_rwlock); 558 lt = RW_READER; 559 } 560 561 zap->zap_objset = os; 562 563 if (lt == RW_WRITER) 564 dmu_buf_will_dirty(db, tx); 565 566 ASSERT3P(zap->zap_dbuf, ==, db); 567 568 ASSERT(!zap->zap_ismicro || 569 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 570 if (zap->zap_ismicro && tx && adding && 571 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 572 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 573 if (newsz > zap_micro_max_size) { 574 dprintf("upgrading obj %llu: num_entries=%u\n", 575 (u_longlong_t)obj, zap->zap_m.zap_num_entries); 576 *zapp = zap; 577 int err = mzap_upgrade(zapp, tag, tx, 0); 578 if (err != 0) 579 rw_exit(&zap->zap_rwlock); 580 return (err); 581 } 582 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx)); 583 zap->zap_m.zap_num_chunks = 584 db->db_size / MZAP_ENT_LEN - 1; 585 } 586 587 *zapp = zap; 588 return (0); 589 } 590 591 static int 592 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx, 593 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, 594 zap_t **zapp) 595 { 596 dmu_buf_t *db; 597 598 int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); 599 if (err != 0) { 600 return (err); 601 } 602 #ifdef ZFS_DEBUG 603 { 604 dmu_object_info_t doi; 605 dmu_object_info_from_db(db, &doi); 606 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 607 } 608 #endif 609 610 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 611 if (err != 0) { 612 dmu_buf_rele(db, tag); 613 } 614 return (err); 615 } 616 617 int 618 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 619 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, 620 zap_t **zapp) 621 { 622 dmu_buf_t *db; 623 624 int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH); 625 if (err != 0) 626 return (err); 627 #ifdef ZFS_DEBUG 628 { 629 dmu_object_info_t doi; 630 dmu_object_info_from_db(db, &doi); 631 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 632 } 633 #endif 634 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 635 if (err != 0) 636 dmu_buf_rele(db, tag); 637 return (err); 638 } 639 640 void 641 zap_unlockdir(zap_t *zap, const void *tag) 642 { 643 rw_exit(&zap->zap_rwlock); 644 dmu_buf_rele(zap->zap_dbuf, tag); 645 } 646 647 static int 648 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags) 649 { 650 int err = 0; 651 zap_t *zap = *zapp; 652 653 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 654 655 int sz = zap->zap_dbuf->db_size; 656 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP); 657 memcpy(mzp, zap->zap_dbuf->db_data, sz); 658 int nchunks = zap->zap_m.zap_num_chunks; 659 660 if (!flags) { 661 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 662 1ULL << fzap_default_block_shift, 0, tx); 663 if (err != 0) { 664 vmem_free(mzp, sz); 665 return (err); 666 } 667 } 668 669 dprintf("upgrading obj=%llu with %u chunks\n", 670 (u_longlong_t)zap->zap_object, nchunks); 671 /* XXX destroy the tree later, so we can use the stored hash value */ 672 mze_destroy(zap); 673 674 fzap_upgrade(zap, tx, flags); 675 676 zap_name_t *zn = zap_name_alloc(zap); 677 for (int i = 0; i < nchunks; i++) { 678 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 679 if (mze->mze_name[0] == 0) 680 continue; 681 dprintf("adding %s=%llu\n", 682 mze->mze_name, (u_longlong_t)mze->mze_value); 683 zap_name_init_str(zn, mze->mze_name, 0); 684 /* If we fail here, we would end up losing entries */ 685 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, 686 tag, tx)); 687 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 688 } 689 zap_name_free(zn); 690 vmem_free(mzp, sz); 691 *zapp = zap; 692 return (0); 693 } 694 695 /* 696 * The "normflags" determine the behavior of the matchtype_t which is 697 * passed to zap_lookup_norm(). Names which have the same normalized 698 * version will be stored with the same hash value, and therefore we can 699 * perform normalization-insensitive lookups. We can be Unicode form- 700 * insensitive and/or case-insensitive. The following flags are valid for 701 * "normflags": 702 * 703 * U8_TEXTPREP_NFC 704 * U8_TEXTPREP_NFD 705 * U8_TEXTPREP_NFKC 706 * U8_TEXTPREP_NFKD 707 * U8_TEXTPREP_TOUPPER 708 * 709 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one 710 * of them may be supplied. 711 */ 712 void 713 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx) 714 { 715 dmu_buf_t *db; 716 717 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 718 719 dmu_buf_will_dirty(db, tx); 720 mzap_phys_t *zp = db->db_data; 721 zp->mz_block_type = ZBT_MICRO; 722 zp->mz_salt = 723 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL; 724 zp->mz_normflags = normflags; 725 726 if (flags != 0) { 727 zap_t *zap; 728 /* Only fat zap supports flags; upgrade immediately. */ 729 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER, 730 B_FALSE, B_FALSE, &zap)); 731 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags)); 732 zap_unlockdir(zap, FTAG); 733 } else { 734 dmu_buf_rele(db, FTAG); 735 } 736 } 737 738 static uint64_t 739 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags, 740 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 741 dmu_object_type_t bonustype, int bonuslen, int dnodesize, 742 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) 743 { 744 uint64_t obj; 745 746 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 747 748 if (allocated_dnode == NULL) { 749 dnode_t *dn; 750 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, 751 indirect_blockshift, bonustype, bonuslen, dnodesize, 752 &dn, FTAG, tx); 753 mzap_create_impl(dn, normflags, flags, tx); 754 dnode_rele(dn, FTAG); 755 } else { 756 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, 757 indirect_blockshift, bonustype, bonuslen, dnodesize, 758 allocated_dnode, tag, tx); 759 mzap_create_impl(*allocated_dnode, normflags, flags, tx); 760 } 761 762 return (obj); 763 } 764 765 int 766 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 767 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 768 { 769 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen, 770 0, tx)); 771 } 772 773 int 774 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot, 775 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 776 { 777 return (zap_create_claim_norm_dnsize(os, obj, 778 0, ot, bonustype, bonuslen, dnodesize, tx)); 779 } 780 781 int 782 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 783 dmu_object_type_t ot, 784 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 785 { 786 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype, 787 bonuslen, 0, tx)); 788 } 789 790 int 791 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags, 792 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, 793 int dnodesize, dmu_tx_t *tx) 794 { 795 dnode_t *dn; 796 int error; 797 798 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 799 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen, 800 dnodesize, tx); 801 if (error != 0) 802 return (error); 803 804 error = dnode_hold(os, obj, FTAG, &dn); 805 if (error != 0) 806 return (error); 807 808 mzap_create_impl(dn, normflags, 0, tx); 809 810 dnode_rele(dn, FTAG); 811 812 return (0); 813 } 814 815 uint64_t 816 zap_create(objset_t *os, dmu_object_type_t ot, 817 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 818 { 819 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 820 } 821 822 uint64_t 823 zap_create_dnsize(objset_t *os, dmu_object_type_t ot, 824 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 825 { 826 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen, 827 dnodesize, tx)); 828 } 829 830 uint64_t 831 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 832 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 833 { 834 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen, 835 0, tx)); 836 } 837 838 uint64_t 839 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot, 840 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 841 { 842 return (zap_create_impl(os, normflags, 0, ot, 0, 0, 843 bonustype, bonuslen, dnodesize, NULL, NULL, tx)); 844 } 845 846 uint64_t 847 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 848 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 849 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 850 { 851 return (zap_create_flags_dnsize(os, normflags, flags, ot, 852 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx)); 853 } 854 855 uint64_t 856 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags, 857 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 858 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 859 { 860 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, 861 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL, 862 tx)); 863 } 864 865 /* 866 * Create a zap object and return a pointer to the newly allocated dnode via 867 * the allocated_dnode argument. The returned dnode will be held and the 868 * caller is responsible for releasing the hold by calling dnode_rele(). 869 */ 870 uint64_t 871 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags, 872 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 873 dmu_object_type_t bonustype, int bonuslen, int dnodesize, 874 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) 875 { 876 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, 877 indirect_blockshift, bonustype, bonuslen, dnodesize, 878 allocated_dnode, tag, tx)); 879 } 880 881 int 882 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 883 { 884 /* 885 * dmu_object_free will free the object number and free the 886 * data. Freeing the data will cause our pageout function to be 887 * called, which will destroy our data (zap_leaf_t's and zap_t). 888 */ 889 890 return (dmu_object_free(os, zapobj, tx)); 891 } 892 893 void 894 zap_evict_sync(void *dbu) 895 { 896 zap_t *zap = dbu; 897 898 rw_destroy(&zap->zap_rwlock); 899 900 if (zap->zap_ismicro) 901 mze_destroy(zap); 902 else 903 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 904 905 kmem_free(zap, sizeof (zap_t)); 906 } 907 908 int 909 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 910 { 911 zap_t *zap; 912 913 int err = 914 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 915 if (err != 0) 916 return (err); 917 if (!zap->zap_ismicro) { 918 err = fzap_count(zap, count); 919 } else { 920 *count = zap->zap_m.zap_num_entries; 921 } 922 zap_unlockdir(zap, FTAG); 923 return (err); 924 } 925 926 /* 927 * zn may be NULL; if not specified, it will be computed if needed. 928 * See also the comment above zap_entry_normalization_conflict(). 929 */ 930 static boolean_t 931 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze, 932 zfs_btree_index_t *idx) 933 { 934 boolean_t allocdzn = B_FALSE; 935 mzap_ent_t *other; 936 zfs_btree_index_t oidx; 937 938 if (zap->zap_normflags == 0) 939 return (B_FALSE); 940 941 for (other = zfs_btree_prev(&zap->zap_m.zap_tree, idx, &oidx); 942 other && other->mze_hash == mze->mze_hash; 943 other = zfs_btree_prev(&zap->zap_m.zap_tree, &oidx, &oidx)) { 944 945 if (zn == NULL) { 946 zn = zap_name_alloc_str(zap, 947 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE); 948 allocdzn = B_TRUE; 949 } 950 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 951 if (allocdzn) 952 zap_name_free(zn); 953 return (B_TRUE); 954 } 955 } 956 957 for (other = zfs_btree_next(&zap->zap_m.zap_tree, idx, &oidx); 958 other && other->mze_hash == mze->mze_hash; 959 other = zfs_btree_next(&zap->zap_m.zap_tree, &oidx, &oidx)) { 960 961 if (zn == NULL) { 962 zn = zap_name_alloc_str(zap, 963 MZE_PHYS(zap, mze)->mze_name, MT_NORMALIZE); 964 allocdzn = B_TRUE; 965 } 966 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 967 if (allocdzn) 968 zap_name_free(zn); 969 return (B_TRUE); 970 } 971 } 972 973 if (allocdzn) 974 zap_name_free(zn); 975 return (B_FALSE); 976 } 977 978 /* 979 * Routines for manipulating attributes. 980 */ 981 982 int 983 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 984 uint64_t integer_size, uint64_t num_integers, void *buf) 985 { 986 return (zap_lookup_norm(os, zapobj, name, integer_size, 987 num_integers, buf, 0, NULL, 0, NULL)); 988 } 989 990 static int 991 zap_lookup_impl(zap_t *zap, const char *name, 992 uint64_t integer_size, uint64_t num_integers, void *buf, 993 matchtype_t mt, char *realname, int rn_len, 994 boolean_t *ncp) 995 { 996 int err = 0; 997 998 zap_name_t *zn = zap_name_alloc_str(zap, name, mt); 999 if (zn == NULL) 1000 return (SET_ERROR(ENOTSUP)); 1001 1002 if (!zap->zap_ismicro) { 1003 err = fzap_lookup(zn, integer_size, num_integers, buf, 1004 realname, rn_len, ncp); 1005 } else { 1006 zfs_btree_index_t idx; 1007 mzap_ent_t *mze = mze_find(zn, &idx); 1008 if (mze == NULL) { 1009 err = SET_ERROR(ENOENT); 1010 } else { 1011 if (num_integers < 1) { 1012 err = SET_ERROR(EOVERFLOW); 1013 } else if (integer_size != 8) { 1014 err = SET_ERROR(EINVAL); 1015 } else { 1016 *(uint64_t *)buf = 1017 MZE_PHYS(zap, mze)->mze_value; 1018 if (realname != NULL) 1019 (void) strlcpy(realname, 1020 MZE_PHYS(zap, mze)->mze_name, 1021 rn_len); 1022 if (ncp) { 1023 *ncp = mzap_normalization_conflict(zap, 1024 zn, mze, &idx); 1025 } 1026 } 1027 } 1028 } 1029 zap_name_free(zn); 1030 return (err); 1031 } 1032 1033 int 1034 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 1035 uint64_t integer_size, uint64_t num_integers, void *buf, 1036 matchtype_t mt, char *realname, int rn_len, 1037 boolean_t *ncp) 1038 { 1039 zap_t *zap; 1040 1041 int err = 1042 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1043 if (err != 0) 1044 return (err); 1045 err = zap_lookup_impl(zap, name, integer_size, 1046 num_integers, buf, mt, realname, rn_len, ncp); 1047 zap_unlockdir(zap, FTAG); 1048 return (err); 1049 } 1050 1051 int 1052 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name) 1053 { 1054 zap_t *zap; 1055 int err; 1056 zap_name_t *zn; 1057 1058 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1059 if (err) 1060 return (err); 1061 zn = zap_name_alloc_str(zap, name, 0); 1062 if (zn == NULL) { 1063 zap_unlockdir(zap, FTAG); 1064 return (SET_ERROR(ENOTSUP)); 1065 } 1066 1067 fzap_prefetch(zn); 1068 zap_name_free(zn); 1069 zap_unlockdir(zap, FTAG); 1070 return (err); 1071 } 1072 1073 int 1074 zap_lookup_by_dnode(dnode_t *dn, const char *name, 1075 uint64_t integer_size, uint64_t num_integers, void *buf) 1076 { 1077 return (zap_lookup_norm_by_dnode(dn, name, integer_size, 1078 num_integers, buf, 0, NULL, 0, NULL)); 1079 } 1080 1081 int 1082 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, 1083 uint64_t integer_size, uint64_t num_integers, void *buf, 1084 matchtype_t mt, char *realname, int rn_len, 1085 boolean_t *ncp) 1086 { 1087 zap_t *zap; 1088 1089 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, 1090 FTAG, &zap); 1091 if (err != 0) 1092 return (err); 1093 err = zap_lookup_impl(zap, name, integer_size, 1094 num_integers, buf, mt, realname, rn_len, ncp); 1095 zap_unlockdir(zap, FTAG); 1096 return (err); 1097 } 1098 1099 int 1100 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1101 int key_numints) 1102 { 1103 zap_t *zap; 1104 1105 int err = 1106 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1107 if (err != 0) 1108 return (err); 1109 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1110 if (zn == NULL) { 1111 zap_unlockdir(zap, FTAG); 1112 return (SET_ERROR(ENOTSUP)); 1113 } 1114 1115 fzap_prefetch(zn); 1116 zap_name_free(zn); 1117 zap_unlockdir(zap, FTAG); 1118 return (err); 1119 } 1120 1121 int 1122 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1123 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 1124 { 1125 zap_t *zap; 1126 1127 int err = 1128 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1129 if (err != 0) 1130 return (err); 1131 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1132 if (zn == NULL) { 1133 zap_unlockdir(zap, FTAG); 1134 return (SET_ERROR(ENOTSUP)); 1135 } 1136 1137 err = fzap_lookup(zn, integer_size, num_integers, buf, 1138 NULL, 0, NULL); 1139 zap_name_free(zn); 1140 zap_unlockdir(zap, FTAG); 1141 return (err); 1142 } 1143 1144 int 1145 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 1146 { 1147 int err = zap_lookup_norm(os, zapobj, name, 0, 1148 0, NULL, 0, NULL, 0, NULL); 1149 if (err == EOVERFLOW || err == EINVAL) 1150 err = 0; /* found, but skipped reading the value */ 1151 return (err); 1152 } 1153 1154 int 1155 zap_length(objset_t *os, uint64_t zapobj, const char *name, 1156 uint64_t *integer_size, uint64_t *num_integers) 1157 { 1158 zap_t *zap; 1159 1160 int err = 1161 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1162 if (err != 0) 1163 return (err); 1164 zap_name_t *zn = zap_name_alloc_str(zap, name, 0); 1165 if (zn == NULL) { 1166 zap_unlockdir(zap, FTAG); 1167 return (SET_ERROR(ENOTSUP)); 1168 } 1169 if (!zap->zap_ismicro) { 1170 err = fzap_length(zn, integer_size, num_integers); 1171 } else { 1172 zfs_btree_index_t idx; 1173 mzap_ent_t *mze = mze_find(zn, &idx); 1174 if (mze == NULL) { 1175 err = SET_ERROR(ENOENT); 1176 } else { 1177 if (integer_size) 1178 *integer_size = 8; 1179 if (num_integers) 1180 *num_integers = 1; 1181 } 1182 } 1183 zap_name_free(zn); 1184 zap_unlockdir(zap, FTAG); 1185 return (err); 1186 } 1187 1188 int 1189 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1190 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 1191 { 1192 zap_t *zap; 1193 1194 int err = 1195 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1196 if (err != 0) 1197 return (err); 1198 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1199 if (zn == NULL) { 1200 zap_unlockdir(zap, FTAG); 1201 return (SET_ERROR(ENOTSUP)); 1202 } 1203 err = fzap_length(zn, integer_size, num_integers); 1204 zap_name_free(zn); 1205 zap_unlockdir(zap, FTAG); 1206 return (err); 1207 } 1208 1209 static void 1210 mzap_addent(zap_name_t *zn, uint64_t value) 1211 { 1212 zap_t *zap = zn->zn_zap; 1213 uint16_t start = zap->zap_m.zap_alloc_next; 1214 1215 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 1216 1217 #ifdef ZFS_DEBUG 1218 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { 1219 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1220 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 1221 } 1222 #endif 1223 1224 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash); 1225 /* given the limited size of the microzap, this can't happen */ 1226 ASSERT(cd < zap_maxcd(zap)); 1227 1228 again: 1229 for (uint16_t i = start; i < zap->zap_m.zap_num_chunks; i++) { 1230 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1231 if (mze->mze_name[0] == 0) { 1232 mze->mze_value = value; 1233 mze->mze_cd = cd; 1234 (void) strlcpy(mze->mze_name, zn->zn_key_orig, 1235 sizeof (mze->mze_name)); 1236 zap->zap_m.zap_num_entries++; 1237 zap->zap_m.zap_alloc_next = i+1; 1238 if (zap->zap_m.zap_alloc_next == 1239 zap->zap_m.zap_num_chunks) 1240 zap->zap_m.zap_alloc_next = 0; 1241 mze_insert(zap, i, zn->zn_hash); 1242 return; 1243 } 1244 } 1245 if (start != 0) { 1246 start = 0; 1247 goto again; 1248 } 1249 cmn_err(CE_PANIC, "out of entries!"); 1250 } 1251 1252 static int 1253 zap_add_impl(zap_t *zap, const char *key, 1254 int integer_size, uint64_t num_integers, 1255 const void *val, dmu_tx_t *tx, const void *tag) 1256 { 1257 const uint64_t *intval = val; 1258 int err = 0; 1259 1260 zap_name_t *zn = zap_name_alloc_str(zap, key, 0); 1261 if (zn == NULL) { 1262 zap_unlockdir(zap, tag); 1263 return (SET_ERROR(ENOTSUP)); 1264 } 1265 if (!zap->zap_ismicro) { 1266 err = fzap_add(zn, integer_size, num_integers, val, tag, tx); 1267 zap = zn->zn_zap; /* fzap_add() may change zap */ 1268 } else if (integer_size != 8 || num_integers != 1 || 1269 strlen(key) >= MZAP_NAME_LEN || 1270 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) { 1271 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0); 1272 if (err == 0) { 1273 err = fzap_add(zn, integer_size, num_integers, val, 1274 tag, tx); 1275 } 1276 zap = zn->zn_zap; /* fzap_add() may change zap */ 1277 } else { 1278 zfs_btree_index_t idx; 1279 if (mze_find(zn, &idx) != NULL) { 1280 err = SET_ERROR(EEXIST); 1281 } else { 1282 mzap_addent(zn, *intval); 1283 } 1284 } 1285 ASSERT(zap == zn->zn_zap); 1286 zap_name_free(zn); 1287 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1288 zap_unlockdir(zap, tag); 1289 return (err); 1290 } 1291 1292 int 1293 zap_add(objset_t *os, uint64_t zapobj, const char *key, 1294 int integer_size, uint64_t num_integers, 1295 const void *val, dmu_tx_t *tx) 1296 { 1297 zap_t *zap; 1298 int err; 1299 1300 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1301 if (err != 0) 1302 return (err); 1303 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1304 /* zap_add_impl() calls zap_unlockdir() */ 1305 return (err); 1306 } 1307 1308 int 1309 zap_add_by_dnode(dnode_t *dn, const char *key, 1310 int integer_size, uint64_t num_integers, 1311 const void *val, dmu_tx_t *tx) 1312 { 1313 zap_t *zap; 1314 int err; 1315 1316 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1317 if (err != 0) 1318 return (err); 1319 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1320 /* zap_add_impl() calls zap_unlockdir() */ 1321 return (err); 1322 } 1323 1324 int 1325 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1326 int key_numints, int integer_size, uint64_t num_integers, 1327 const void *val, dmu_tx_t *tx) 1328 { 1329 zap_t *zap; 1330 1331 int err = 1332 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1333 if (err != 0) 1334 return (err); 1335 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1336 if (zn == NULL) { 1337 zap_unlockdir(zap, FTAG); 1338 return (SET_ERROR(ENOTSUP)); 1339 } 1340 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx); 1341 zap = zn->zn_zap; /* fzap_add() may change zap */ 1342 zap_name_free(zn); 1343 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1344 zap_unlockdir(zap, FTAG); 1345 return (err); 1346 } 1347 1348 int 1349 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1350 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1351 { 1352 zap_t *zap; 1353 const uint64_t *intval = val; 1354 1355 int err = 1356 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1357 if (err != 0) 1358 return (err); 1359 zap_name_t *zn = zap_name_alloc_str(zap, name, 0); 1360 if (zn == NULL) { 1361 zap_unlockdir(zap, FTAG); 1362 return (SET_ERROR(ENOTSUP)); 1363 } 1364 if (!zap->zap_ismicro) { 1365 err = fzap_update(zn, integer_size, num_integers, val, 1366 FTAG, tx); 1367 zap = zn->zn_zap; /* fzap_update() may change zap */ 1368 } else if (integer_size != 8 || num_integers != 1 || 1369 strlen(name) >= MZAP_NAME_LEN) { 1370 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1371 (u_longlong_t)zapobj, integer_size, 1372 (u_longlong_t)num_integers, name); 1373 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0); 1374 if (err == 0) { 1375 err = fzap_update(zn, integer_size, num_integers, 1376 val, FTAG, tx); 1377 } 1378 zap = zn->zn_zap; /* fzap_update() may change zap */ 1379 } else { 1380 zfs_btree_index_t idx; 1381 mzap_ent_t *mze = mze_find(zn, &idx); 1382 if (mze != NULL) { 1383 MZE_PHYS(zap, mze)->mze_value = *intval; 1384 } else { 1385 mzap_addent(zn, *intval); 1386 } 1387 } 1388 ASSERT(zap == zn->zn_zap); 1389 zap_name_free(zn); 1390 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1391 zap_unlockdir(zap, FTAG); 1392 return (err); 1393 } 1394 1395 int 1396 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1397 int key_numints, 1398 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1399 { 1400 zap_t *zap; 1401 1402 int err = 1403 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1404 if (err != 0) 1405 return (err); 1406 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1407 if (zn == NULL) { 1408 zap_unlockdir(zap, FTAG); 1409 return (SET_ERROR(ENOTSUP)); 1410 } 1411 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); 1412 zap = zn->zn_zap; /* fzap_update() may change zap */ 1413 zap_name_free(zn); 1414 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1415 zap_unlockdir(zap, FTAG); 1416 return (err); 1417 } 1418 1419 int 1420 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1421 { 1422 return (zap_remove_norm(os, zapobj, name, 0, tx)); 1423 } 1424 1425 static int 1426 zap_remove_impl(zap_t *zap, const char *name, 1427 matchtype_t mt, dmu_tx_t *tx) 1428 { 1429 int err = 0; 1430 1431 zap_name_t *zn = zap_name_alloc_str(zap, name, mt); 1432 if (zn == NULL) 1433 return (SET_ERROR(ENOTSUP)); 1434 if (!zap->zap_ismicro) { 1435 err = fzap_remove(zn, tx); 1436 } else { 1437 zfs_btree_index_t idx; 1438 mzap_ent_t *mze = mze_find(zn, &idx); 1439 if (mze == NULL) { 1440 err = SET_ERROR(ENOENT); 1441 } else { 1442 zap->zap_m.zap_num_entries--; 1443 memset(MZE_PHYS(zap, mze), 0, sizeof (mzap_ent_phys_t)); 1444 zfs_btree_remove_idx(&zap->zap_m.zap_tree, &idx); 1445 } 1446 } 1447 zap_name_free(zn); 1448 return (err); 1449 } 1450 1451 int 1452 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1453 matchtype_t mt, dmu_tx_t *tx) 1454 { 1455 zap_t *zap; 1456 int err; 1457 1458 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1459 if (err) 1460 return (err); 1461 err = zap_remove_impl(zap, name, mt, tx); 1462 zap_unlockdir(zap, FTAG); 1463 return (err); 1464 } 1465 1466 int 1467 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx) 1468 { 1469 zap_t *zap; 1470 int err; 1471 1472 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1473 if (err) 1474 return (err); 1475 err = zap_remove_impl(zap, name, 0, tx); 1476 zap_unlockdir(zap, FTAG); 1477 return (err); 1478 } 1479 1480 int 1481 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1482 int key_numints, dmu_tx_t *tx) 1483 { 1484 zap_t *zap; 1485 1486 int err = 1487 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1488 if (err != 0) 1489 return (err); 1490 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1491 if (zn == NULL) { 1492 zap_unlockdir(zap, FTAG); 1493 return (SET_ERROR(ENOTSUP)); 1494 } 1495 err = fzap_remove(zn, tx); 1496 zap_name_free(zn); 1497 zap_unlockdir(zap, FTAG); 1498 return (err); 1499 } 1500 1501 /* 1502 * Routines for iterating over the attributes. 1503 */ 1504 1505 static void 1506 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1507 uint64_t serialized, boolean_t prefetch) 1508 { 1509 zc->zc_objset = os; 1510 zc->zc_zap = NULL; 1511 zc->zc_leaf = NULL; 1512 zc->zc_zapobj = zapobj; 1513 zc->zc_serialized = serialized; 1514 zc->zc_hash = 0; 1515 zc->zc_cd = 0; 1516 zc->zc_prefetch = prefetch; 1517 } 1518 void 1519 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1520 uint64_t serialized) 1521 { 1522 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE); 1523 } 1524 1525 /* 1526 * Initialize a cursor at the beginning of the ZAP object. The entire 1527 * ZAP object will be prefetched. 1528 */ 1529 void 1530 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1531 { 1532 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE); 1533 } 1534 1535 /* 1536 * Initialize a cursor at the beginning, but request that we not prefetch 1537 * the entire ZAP object. 1538 */ 1539 void 1540 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1541 { 1542 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE); 1543 } 1544 1545 void 1546 zap_cursor_fini(zap_cursor_t *zc) 1547 { 1548 if (zc->zc_zap) { 1549 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1550 zap_unlockdir(zc->zc_zap, NULL); 1551 zc->zc_zap = NULL; 1552 } 1553 if (zc->zc_leaf) { 1554 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1555 zap_put_leaf(zc->zc_leaf); 1556 zc->zc_leaf = NULL; 1557 } 1558 zc->zc_objset = NULL; 1559 } 1560 1561 uint64_t 1562 zap_cursor_serialize(zap_cursor_t *zc) 1563 { 1564 if (zc->zc_hash == -1ULL) 1565 return (-1ULL); 1566 if (zc->zc_zap == NULL) 1567 return (zc->zc_serialized); 1568 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1569 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1570 1571 /* 1572 * We want to keep the high 32 bits of the cursor zero if we can, so 1573 * that 32-bit programs can access this. So usually use a small 1574 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1575 * of the cursor. 1576 * 1577 * [ collision differentiator | zap_hashbits()-bit hash value ] 1578 */ 1579 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1580 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1581 } 1582 1583 int 1584 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1585 { 1586 int err; 1587 1588 if (zc->zc_hash == -1ULL) 1589 return (SET_ERROR(ENOENT)); 1590 1591 if (zc->zc_zap == NULL) { 1592 int hb; 1593 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1594 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap); 1595 if (err != 0) 1596 return (err); 1597 1598 /* 1599 * To support zap_cursor_init_serialized, advance, retrieve, 1600 * we must add to the existing zc_cd, which may already 1601 * be 1 due to the zap_cursor_advance. 1602 */ 1603 ASSERT(zc->zc_hash == 0); 1604 hb = zap_hashbits(zc->zc_zap); 1605 zc->zc_hash = zc->zc_serialized << (64 - hb); 1606 zc->zc_cd += zc->zc_serialized >> hb; 1607 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1608 zc->zc_cd = 0; 1609 } else { 1610 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1611 } 1612 if (!zc->zc_zap->zap_ismicro) { 1613 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1614 } else { 1615 zfs_btree_index_t idx; 1616 mzap_ent_t mze_tofind; 1617 1618 mze_tofind.mze_hash = zc->zc_hash >> 32; 1619 mze_tofind.mze_cd = zc->zc_cd; 1620 1621 mzap_ent_t *mze = zfs_btree_find(&zc->zc_zap->zap_m.zap_tree, 1622 &mze_tofind, &idx); 1623 if (mze == NULL) { 1624 mze = zfs_btree_next(&zc->zc_zap->zap_m.zap_tree, 1625 &idx, &idx); 1626 } 1627 if (mze) { 1628 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1629 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1630 za->za_normalization_conflict = 1631 mzap_normalization_conflict(zc->zc_zap, NULL, 1632 mze, &idx); 1633 za->za_integer_length = 8; 1634 za->za_num_integers = 1; 1635 za->za_first_integer = mzep->mze_value; 1636 (void) strlcpy(za->za_name, mzep->mze_name, 1637 sizeof (za->za_name)); 1638 zc->zc_hash = (uint64_t)mze->mze_hash << 32; 1639 zc->zc_cd = mze->mze_cd; 1640 err = 0; 1641 } else { 1642 zc->zc_hash = -1ULL; 1643 err = SET_ERROR(ENOENT); 1644 } 1645 } 1646 rw_exit(&zc->zc_zap->zap_rwlock); 1647 return (err); 1648 } 1649 1650 void 1651 zap_cursor_advance(zap_cursor_t *zc) 1652 { 1653 if (zc->zc_hash == -1ULL) 1654 return; 1655 zc->zc_cd++; 1656 } 1657 1658 int 1659 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1660 { 1661 zap_t *zap; 1662 1663 int err = 1664 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1665 if (err != 0) 1666 return (err); 1667 1668 memset(zs, 0, sizeof (zap_stats_t)); 1669 1670 if (zap->zap_ismicro) { 1671 zs->zs_blocksize = zap->zap_dbuf->db_size; 1672 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1673 zs->zs_num_blocks = 1; 1674 } else { 1675 fzap_get_stats(zap, zs); 1676 } 1677 zap_unlockdir(zap, FTAG); 1678 return (0); 1679 } 1680 1681 #if defined(_KERNEL) 1682 EXPORT_SYMBOL(zap_create); 1683 EXPORT_SYMBOL(zap_create_dnsize); 1684 EXPORT_SYMBOL(zap_create_norm); 1685 EXPORT_SYMBOL(zap_create_norm_dnsize); 1686 EXPORT_SYMBOL(zap_create_flags); 1687 EXPORT_SYMBOL(zap_create_flags_dnsize); 1688 EXPORT_SYMBOL(zap_create_claim); 1689 EXPORT_SYMBOL(zap_create_claim_norm); 1690 EXPORT_SYMBOL(zap_create_claim_norm_dnsize); 1691 EXPORT_SYMBOL(zap_create_hold); 1692 EXPORT_SYMBOL(zap_destroy); 1693 EXPORT_SYMBOL(zap_lookup); 1694 EXPORT_SYMBOL(zap_lookup_by_dnode); 1695 EXPORT_SYMBOL(zap_lookup_norm); 1696 EXPORT_SYMBOL(zap_lookup_uint64); 1697 EXPORT_SYMBOL(zap_contains); 1698 EXPORT_SYMBOL(zap_prefetch); 1699 EXPORT_SYMBOL(zap_prefetch_uint64); 1700 EXPORT_SYMBOL(zap_add); 1701 EXPORT_SYMBOL(zap_add_by_dnode); 1702 EXPORT_SYMBOL(zap_add_uint64); 1703 EXPORT_SYMBOL(zap_update); 1704 EXPORT_SYMBOL(zap_update_uint64); 1705 EXPORT_SYMBOL(zap_length); 1706 EXPORT_SYMBOL(zap_length_uint64); 1707 EXPORT_SYMBOL(zap_remove); 1708 EXPORT_SYMBOL(zap_remove_by_dnode); 1709 EXPORT_SYMBOL(zap_remove_norm); 1710 EXPORT_SYMBOL(zap_remove_uint64); 1711 EXPORT_SYMBOL(zap_count); 1712 EXPORT_SYMBOL(zap_value_search); 1713 EXPORT_SYMBOL(zap_join); 1714 EXPORT_SYMBOL(zap_join_increment); 1715 EXPORT_SYMBOL(zap_add_int); 1716 EXPORT_SYMBOL(zap_remove_int); 1717 EXPORT_SYMBOL(zap_lookup_int); 1718 EXPORT_SYMBOL(zap_increment_int); 1719 EXPORT_SYMBOL(zap_add_int_key); 1720 EXPORT_SYMBOL(zap_lookup_int_key); 1721 EXPORT_SYMBOL(zap_increment); 1722 EXPORT_SYMBOL(zap_cursor_init); 1723 EXPORT_SYMBOL(zap_cursor_fini); 1724 EXPORT_SYMBOL(zap_cursor_retrieve); 1725 EXPORT_SYMBOL(zap_cursor_advance); 1726 EXPORT_SYMBOL(zap_cursor_serialize); 1727 EXPORT_SYMBOL(zap_cursor_init_serialized); 1728 EXPORT_SYMBOL(zap_get_stats); 1729 1730 /* CSTYLED */ 1731 ZFS_MODULE_PARAM(zfs, , zap_micro_max_size, INT, ZMOD_RW, 1732 "Maximum micro ZAP size, before converting to a fat ZAP, in bytes"); 1733 #endif 1734