1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 #include <sys/zio.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/zfs_context.h> 33 #include <sys/zap.h> 34 #include <sys/zap_impl.h> 35 #include <sys/zap_leaf.h> 36 #include <sys/avl.h> 37 #include <sys/arc.h> 38 #include <sys/dmu_objset.h> 39 40 #ifdef _KERNEL 41 #include <sys/sunddi.h> 42 #endif 43 44 static int mzap_upgrade(zap_t **zapp, 45 const void *tag, dmu_tx_t *tx, zap_flags_t flags); 46 47 uint64_t 48 zap_getflags(zap_t *zap) 49 { 50 if (zap->zap_ismicro) 51 return (0); 52 return (zap_f_phys(zap)->zap_flags); 53 } 54 55 int 56 zap_hashbits(zap_t *zap) 57 { 58 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 59 return (48); 60 else 61 return (28); 62 } 63 64 uint32_t 65 zap_maxcd(zap_t *zap) 66 { 67 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 68 return ((1<<16)-1); 69 else 70 return (-1U); 71 } 72 73 static uint64_t 74 zap_hash(zap_name_t *zn) 75 { 76 zap_t *zap = zn->zn_zap; 77 uint64_t h = 0; 78 79 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 80 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 81 h = *(uint64_t *)zn->zn_key_orig; 82 } else { 83 h = zap->zap_salt; 84 ASSERT(h != 0); 85 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 86 87 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 88 const uint64_t *wp = zn->zn_key_norm; 89 90 ASSERT(zn->zn_key_intlen == 8); 91 for (int i = 0; i < zn->zn_key_norm_numints; 92 wp++, i++) { 93 uint64_t word = *wp; 94 95 for (int j = 0; j < zn->zn_key_intlen; j++) { 96 h = (h >> 8) ^ 97 zfs_crc64_table[(h ^ word) & 0xFF]; 98 word >>= NBBY; 99 } 100 } 101 } else { 102 const uint8_t *cp = zn->zn_key_norm; 103 104 /* 105 * We previously stored the terminating null on 106 * disk, but didn't hash it, so we need to 107 * continue to not hash it. (The 108 * zn_key_*_numints includes the terminating 109 * null for non-binary keys.) 110 */ 111 int len = zn->zn_key_norm_numints - 1; 112 113 ASSERT(zn->zn_key_intlen == 1); 114 for (int i = 0; i < len; cp++, i++) { 115 h = (h >> 8) ^ 116 zfs_crc64_table[(h ^ *cp) & 0xFF]; 117 } 118 } 119 } 120 /* 121 * Don't use all 64 bits, since we need some in the cookie for 122 * the collision differentiator. We MUST use the high bits, 123 * since those are the ones that we first pay attention to when 124 * choosing the bucket. 125 */ 126 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 127 128 return (h); 129 } 130 131 static int 132 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags) 133 { 134 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 135 136 size_t inlen = strlen(name) + 1; 137 size_t outlen = ZAP_MAXNAMELEN; 138 139 int err = 0; 140 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 141 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID, 142 U8_UNICODE_LATEST, &err); 143 144 return (err); 145 } 146 147 boolean_t 148 zap_match(zap_name_t *zn, const char *matchname) 149 { 150 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 151 152 if (zn->zn_matchtype & MT_NORMALIZE) { 153 char norm[ZAP_MAXNAMELEN]; 154 155 if (zap_normalize(zn->zn_zap, matchname, norm, 156 zn->zn_normflags) != 0) 157 return (B_FALSE); 158 159 return (strcmp(zn->zn_key_norm, norm) == 0); 160 } else { 161 return (strcmp(zn->zn_key_orig, matchname) == 0); 162 } 163 } 164 165 void 166 zap_name_free(zap_name_t *zn) 167 { 168 kmem_free(zn, sizeof (zap_name_t)); 169 } 170 171 zap_name_t * 172 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 173 { 174 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 175 176 zn->zn_zap = zap; 177 zn->zn_key_intlen = sizeof (*key); 178 zn->zn_key_orig = key; 179 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 180 zn->zn_matchtype = mt; 181 zn->zn_normflags = zap->zap_normflags; 182 183 /* 184 * If we're dealing with a case sensitive lookup on a mixed or 185 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup 186 * will fold case to all caps overriding the lookup request. 187 */ 188 if (mt & MT_MATCH_CASE) 189 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER; 190 191 if (zap->zap_normflags) { 192 /* 193 * We *must* use zap_normflags because this normalization is 194 * what the hash is computed from. 195 */ 196 if (zap_normalize(zap, key, zn->zn_normbuf, 197 zap->zap_normflags) != 0) { 198 zap_name_free(zn); 199 return (NULL); 200 } 201 zn->zn_key_norm = zn->zn_normbuf; 202 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 203 } else { 204 if (mt != 0) { 205 zap_name_free(zn); 206 return (NULL); 207 } 208 zn->zn_key_norm = zn->zn_key_orig; 209 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 210 } 211 212 zn->zn_hash = zap_hash(zn); 213 214 if (zap->zap_normflags != zn->zn_normflags) { 215 /* 216 * We *must* use zn_normflags because this normalization is 217 * what the matching is based on. (Not the hash!) 218 */ 219 if (zap_normalize(zap, key, zn->zn_normbuf, 220 zn->zn_normflags) != 0) { 221 zap_name_free(zn); 222 return (NULL); 223 } 224 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 225 } 226 227 return (zn); 228 } 229 230 static zap_name_t * 231 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 232 { 233 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 234 235 ASSERT(zap->zap_normflags == 0); 236 zn->zn_zap = zap; 237 zn->zn_key_intlen = sizeof (*key); 238 zn->zn_key_orig = zn->zn_key_norm = key; 239 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 240 zn->zn_matchtype = 0; 241 242 zn->zn_hash = zap_hash(zn); 243 return (zn); 244 } 245 246 static void 247 mzap_byteswap(mzap_phys_t *buf, size_t size) 248 { 249 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 250 buf->mz_salt = BSWAP_64(buf->mz_salt); 251 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 252 int max = (size / MZAP_ENT_LEN) - 1; 253 for (int i = 0; i < max; i++) { 254 buf->mz_chunk[i].mze_value = 255 BSWAP_64(buf->mz_chunk[i].mze_value); 256 buf->mz_chunk[i].mze_cd = 257 BSWAP_32(buf->mz_chunk[i].mze_cd); 258 } 259 } 260 261 void 262 zap_byteswap(void *buf, size_t size) 263 { 264 uint64_t block_type = *(uint64_t *)buf; 265 266 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 267 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 268 mzap_byteswap(buf, size); 269 } else { 270 fzap_byteswap(buf, size); 271 } 272 } 273 274 static int 275 mze_compare(const void *arg1, const void *arg2) 276 { 277 const mzap_ent_t *mze1 = arg1; 278 const mzap_ent_t *mze2 = arg2; 279 280 int cmp = TREE_CMP(mze1->mze_hash, mze2->mze_hash); 281 if (likely(cmp)) 282 return (cmp); 283 284 return (TREE_CMP(mze1->mze_cd, mze2->mze_cd)); 285 } 286 287 static void 288 mze_insert(zap_t *zap, int chunkid, uint64_t hash) 289 { 290 ASSERT(zap->zap_ismicro); 291 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 292 293 mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 294 mze->mze_chunkid = chunkid; 295 mze->mze_hash = hash; 296 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd; 297 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0); 298 avl_add(&zap->zap_m.zap_avl, mze); 299 } 300 301 static mzap_ent_t * 302 mze_find(zap_name_t *zn) 303 { 304 mzap_ent_t mze_tofind; 305 mzap_ent_t *mze; 306 avl_index_t idx; 307 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 308 309 ASSERT(zn->zn_zap->zap_ismicro); 310 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 311 312 mze_tofind.mze_hash = zn->zn_hash; 313 mze_tofind.mze_cd = 0; 314 315 mze = avl_find(avl, &mze_tofind, &idx); 316 if (mze == NULL) 317 mze = avl_nearest(avl, idx, AVL_AFTER); 318 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 319 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd); 320 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name)) 321 return (mze); 322 } 323 324 return (NULL); 325 } 326 327 static uint32_t 328 mze_find_unused_cd(zap_t *zap, uint64_t hash) 329 { 330 mzap_ent_t mze_tofind; 331 avl_index_t idx; 332 avl_tree_t *avl = &zap->zap_m.zap_avl; 333 334 ASSERT(zap->zap_ismicro); 335 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 336 337 mze_tofind.mze_hash = hash; 338 mze_tofind.mze_cd = 0; 339 340 uint32_t cd = 0; 341 for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx); 342 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 343 if (mze->mze_cd != cd) 344 break; 345 cd++; 346 } 347 348 return (cd); 349 } 350 351 /* 352 * Each mzap entry requires at max : 4 chunks 353 * 3 chunks for names + 1 chunk for value. 354 */ 355 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \ 356 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t))) 357 358 /* 359 * Check if the current entry keeps the colliding entries under the fatzap leaf 360 * size. 361 */ 362 static boolean_t 363 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash) 364 { 365 zap_t *zap = zn->zn_zap; 366 mzap_ent_t mze_tofind; 367 mzap_ent_t *mze; 368 avl_index_t idx; 369 avl_tree_t *avl = &zap->zap_m.zap_avl; 370 uint32_t mzap_ents = 0; 371 372 mze_tofind.mze_hash = hash; 373 mze_tofind.mze_cd = 0; 374 375 for (mze = avl_find(avl, &mze_tofind, &idx); 376 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 377 mzap_ents++; 378 } 379 380 /* Include the new entry being added */ 381 mzap_ents++; 382 383 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS)); 384 } 385 386 static void 387 mze_remove(zap_t *zap, mzap_ent_t *mze) 388 { 389 ASSERT(zap->zap_ismicro); 390 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 391 392 avl_remove(&zap->zap_m.zap_avl, mze); 393 kmem_free(mze, sizeof (mzap_ent_t)); 394 } 395 396 static void 397 mze_destroy(zap_t *zap) 398 { 399 mzap_ent_t *mze; 400 void *avlcookie = NULL; 401 402 while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))) 403 kmem_free(mze, sizeof (mzap_ent_t)); 404 avl_destroy(&zap->zap_m.zap_avl); 405 } 406 407 static zap_t * 408 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 409 { 410 zap_t *winner; 411 uint64_t *zap_hdr = (uint64_t *)db->db_data; 412 uint64_t zap_block_type = zap_hdr[0]; 413 uint64_t zap_magic = zap_hdr[1]; 414 415 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 416 417 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 418 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL); 419 rw_enter(&zap->zap_rwlock, RW_WRITER); 420 zap->zap_objset = os; 421 zap->zap_object = obj; 422 zap->zap_dbuf = db; 423 424 if (zap_block_type != ZBT_MICRO) { 425 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 426 0); 427 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1; 428 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) { 429 winner = NULL; /* No actual winner here... */ 430 goto handle_winner; 431 } 432 } else { 433 zap->zap_ismicro = TRUE; 434 } 435 436 /* 437 * Make sure that zap_ismicro is set before we let others see 438 * it, because zap_lockdir() checks zap_ismicro without the lock 439 * held. 440 */ 441 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf); 442 winner = dmu_buf_set_user(db, &zap->zap_dbu); 443 444 if (winner != NULL) 445 goto handle_winner; 446 447 if (zap->zap_ismicro) { 448 zap->zap_salt = zap_m_phys(zap)->mz_salt; 449 zap->zap_normflags = zap_m_phys(zap)->mz_normflags; 450 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 451 avl_create(&zap->zap_m.zap_avl, mze_compare, 452 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 453 454 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { 455 mzap_ent_phys_t *mze = 456 &zap_m_phys(zap)->mz_chunk[i]; 457 if (mze->mze_name[0]) { 458 zap_name_t *zn; 459 460 zap->zap_m.zap_num_entries++; 461 zn = zap_name_alloc(zap, mze->mze_name, 0); 462 mze_insert(zap, i, zn->zn_hash); 463 zap_name_free(zn); 464 } 465 } 466 } else { 467 zap->zap_salt = zap_f_phys(zap)->zap_salt; 468 zap->zap_normflags = zap_f_phys(zap)->zap_normflags; 469 470 ASSERT3U(sizeof (struct zap_leaf_header), ==, 471 2*ZAP_LEAF_CHUNKSIZE); 472 473 /* 474 * The embedded pointer table should not overlap the 475 * other members. 476 */ 477 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 478 &zap_f_phys(zap)->zap_salt); 479 480 /* 481 * The embedded pointer table should end at the end of 482 * the block 483 */ 484 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 485 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 486 (uintptr_t)zap_f_phys(zap), ==, 487 zap->zap_dbuf->db_size); 488 } 489 rw_exit(&zap->zap_rwlock); 490 return (zap); 491 492 handle_winner: 493 rw_exit(&zap->zap_rwlock); 494 rw_destroy(&zap->zap_rwlock); 495 if (!zap->zap_ismicro) 496 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 497 kmem_free(zap, sizeof (zap_t)); 498 return (winner); 499 } 500 501 /* 502 * This routine "consumes" the caller's hold on the dbuf, which must 503 * have the specified tag. 504 */ 505 static int 506 zap_lockdir_impl(dmu_buf_t *db, const void *tag, dmu_tx_t *tx, 507 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 508 { 509 ASSERT0(db->db_offset); 510 objset_t *os = dmu_buf_get_objset(db); 511 uint64_t obj = db->db_object; 512 dmu_object_info_t doi; 513 514 *zapp = NULL; 515 516 dmu_object_info_from_db(db, &doi); 517 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP) 518 return (SET_ERROR(EINVAL)); 519 520 zap_t *zap = dmu_buf_get_user(db); 521 if (zap == NULL) { 522 zap = mzap_open(os, obj, db); 523 if (zap == NULL) { 524 /* 525 * mzap_open() didn't like what it saw on-disk. 526 * Check for corruption! 527 */ 528 return (SET_ERROR(EIO)); 529 } 530 } 531 532 /* 533 * We're checking zap_ismicro without the lock held, in order to 534 * tell what type of lock we want. Once we have some sort of 535 * lock, see if it really is the right type. In practice this 536 * can only be different if it was upgraded from micro to fat, 537 * and micro wanted WRITER but fat only needs READER. 538 */ 539 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 540 rw_enter(&zap->zap_rwlock, lt); 541 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 542 /* it was upgraded, now we only need reader */ 543 ASSERT(lt == RW_WRITER); 544 ASSERT(RW_READER == 545 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)); 546 rw_downgrade(&zap->zap_rwlock); 547 lt = RW_READER; 548 } 549 550 zap->zap_objset = os; 551 552 if (lt == RW_WRITER) 553 dmu_buf_will_dirty(db, tx); 554 555 ASSERT3P(zap->zap_dbuf, ==, db); 556 557 ASSERT(!zap->zap_ismicro || 558 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 559 if (zap->zap_ismicro && tx && adding && 560 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 561 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 562 if (newsz > MZAP_MAX_BLKSZ) { 563 dprintf("upgrading obj %llu: num_entries=%u\n", 564 (u_longlong_t)obj, zap->zap_m.zap_num_entries); 565 *zapp = zap; 566 int err = mzap_upgrade(zapp, tag, tx, 0); 567 if (err != 0) 568 rw_exit(&zap->zap_rwlock); 569 return (err); 570 } 571 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx)); 572 zap->zap_m.zap_num_chunks = 573 db->db_size / MZAP_ENT_LEN - 1; 574 } 575 576 *zapp = zap; 577 return (0); 578 } 579 580 static int 581 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx, 582 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, 583 zap_t **zapp) 584 { 585 dmu_buf_t *db; 586 587 int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH); 588 if (err != 0) { 589 return (err); 590 } 591 #ifdef ZFS_DEBUG 592 { 593 dmu_object_info_t doi; 594 dmu_object_info_from_db(db, &doi); 595 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 596 } 597 #endif 598 599 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 600 if (err != 0) { 601 dmu_buf_rele(db, tag); 602 } 603 return (err); 604 } 605 606 int 607 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 608 krw_t lti, boolean_t fatreader, boolean_t adding, const void *tag, 609 zap_t **zapp) 610 { 611 dmu_buf_t *db; 612 613 int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH); 614 if (err != 0) 615 return (err); 616 #ifdef ZFS_DEBUG 617 { 618 dmu_object_info_t doi; 619 dmu_object_info_from_db(db, &doi); 620 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP); 621 } 622 #endif 623 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp); 624 if (err != 0) 625 dmu_buf_rele(db, tag); 626 return (err); 627 } 628 629 void 630 zap_unlockdir(zap_t *zap, const void *tag) 631 { 632 rw_exit(&zap->zap_rwlock); 633 dmu_buf_rele(zap->zap_dbuf, tag); 634 } 635 636 static int 637 mzap_upgrade(zap_t **zapp, const void *tag, dmu_tx_t *tx, zap_flags_t flags) 638 { 639 int err = 0; 640 zap_t *zap = *zapp; 641 642 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 643 644 int sz = zap->zap_dbuf->db_size; 645 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP); 646 memcpy(mzp, zap->zap_dbuf->db_data, sz); 647 int nchunks = zap->zap_m.zap_num_chunks; 648 649 if (!flags) { 650 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 651 1ULL << fzap_default_block_shift, 0, tx); 652 if (err != 0) { 653 vmem_free(mzp, sz); 654 return (err); 655 } 656 } 657 658 dprintf("upgrading obj=%llu with %u chunks\n", 659 (u_longlong_t)zap->zap_object, nchunks); 660 /* XXX destroy the avl later, so we can use the stored hash value */ 661 mze_destroy(zap); 662 663 fzap_upgrade(zap, tx, flags); 664 665 for (int i = 0; i < nchunks; i++) { 666 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 667 if (mze->mze_name[0] == 0) 668 continue; 669 dprintf("adding %s=%llu\n", 670 mze->mze_name, (u_longlong_t)mze->mze_value); 671 zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0); 672 /* If we fail here, we would end up losing entries */ 673 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, 674 tag, tx)); 675 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 676 zap_name_free(zn); 677 } 678 vmem_free(mzp, sz); 679 *zapp = zap; 680 return (0); 681 } 682 683 /* 684 * The "normflags" determine the behavior of the matchtype_t which is 685 * passed to zap_lookup_norm(). Names which have the same normalized 686 * version will be stored with the same hash value, and therefore we can 687 * perform normalization-insensitive lookups. We can be Unicode form- 688 * insensitive and/or case-insensitive. The following flags are valid for 689 * "normflags": 690 * 691 * U8_TEXTPREP_NFC 692 * U8_TEXTPREP_NFD 693 * U8_TEXTPREP_NFKC 694 * U8_TEXTPREP_NFKD 695 * U8_TEXTPREP_TOUPPER 696 * 697 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one 698 * of them may be supplied. 699 */ 700 void 701 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx) 702 { 703 dmu_buf_t *db; 704 705 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH)); 706 707 dmu_buf_will_dirty(db, tx); 708 mzap_phys_t *zp = db->db_data; 709 zp->mz_block_type = ZBT_MICRO; 710 zp->mz_salt = 711 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL; 712 zp->mz_normflags = normflags; 713 714 if (flags != 0) { 715 zap_t *zap; 716 /* Only fat zap supports flags; upgrade immediately. */ 717 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER, 718 B_FALSE, B_FALSE, &zap)); 719 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags)); 720 zap_unlockdir(zap, FTAG); 721 } else { 722 dmu_buf_rele(db, FTAG); 723 } 724 } 725 726 static uint64_t 727 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags, 728 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 729 dmu_object_type_t bonustype, int bonuslen, int dnodesize, 730 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) 731 { 732 uint64_t obj; 733 734 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 735 736 if (allocated_dnode == NULL) { 737 dnode_t *dn; 738 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, 739 indirect_blockshift, bonustype, bonuslen, dnodesize, 740 &dn, FTAG, tx); 741 mzap_create_impl(dn, normflags, flags, tx); 742 dnode_rele(dn, FTAG); 743 } else { 744 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift, 745 indirect_blockshift, bonustype, bonuslen, dnodesize, 746 allocated_dnode, tag, tx); 747 mzap_create_impl(*allocated_dnode, normflags, flags, tx); 748 } 749 750 return (obj); 751 } 752 753 int 754 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 755 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 756 { 757 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen, 758 0, tx)); 759 } 760 761 int 762 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot, 763 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 764 { 765 return (zap_create_claim_norm_dnsize(os, obj, 766 0, ot, bonustype, bonuslen, dnodesize, tx)); 767 } 768 769 int 770 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 771 dmu_object_type_t ot, 772 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 773 { 774 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype, 775 bonuslen, 0, tx)); 776 } 777 778 int 779 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags, 780 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen, 781 int dnodesize, dmu_tx_t *tx) 782 { 783 dnode_t *dn; 784 int error; 785 786 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP); 787 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen, 788 dnodesize, tx); 789 if (error != 0) 790 return (error); 791 792 error = dnode_hold(os, obj, FTAG, &dn); 793 if (error != 0) 794 return (error); 795 796 mzap_create_impl(dn, normflags, 0, tx); 797 798 dnode_rele(dn, FTAG); 799 800 return (0); 801 } 802 803 uint64_t 804 zap_create(objset_t *os, dmu_object_type_t ot, 805 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 806 { 807 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 808 } 809 810 uint64_t 811 zap_create_dnsize(objset_t *os, dmu_object_type_t ot, 812 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 813 { 814 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen, 815 dnodesize, tx)); 816 } 817 818 uint64_t 819 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 820 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 821 { 822 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen, 823 0, tx)); 824 } 825 826 uint64_t 827 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot, 828 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 829 { 830 return (zap_create_impl(os, normflags, 0, ot, 0, 0, 831 bonustype, bonuslen, dnodesize, NULL, NULL, tx)); 832 } 833 834 uint64_t 835 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 836 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 837 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 838 { 839 return (zap_create_flags_dnsize(os, normflags, flags, ot, 840 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx)); 841 } 842 843 uint64_t 844 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags, 845 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 846 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx) 847 { 848 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, 849 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL, 850 tx)); 851 } 852 853 /* 854 * Create a zap object and return a pointer to the newly allocated dnode via 855 * the allocated_dnode argument. The returned dnode will be held and the 856 * caller is responsible for releasing the hold by calling dnode_rele(). 857 */ 858 uint64_t 859 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags, 860 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 861 dmu_object_type_t bonustype, int bonuslen, int dnodesize, 862 dnode_t **allocated_dnode, const void *tag, dmu_tx_t *tx) 863 { 864 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift, 865 indirect_blockshift, bonustype, bonuslen, dnodesize, 866 allocated_dnode, tag, tx)); 867 } 868 869 int 870 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 871 { 872 /* 873 * dmu_object_free will free the object number and free the 874 * data. Freeing the data will cause our pageout function to be 875 * called, which will destroy our data (zap_leaf_t's and zap_t). 876 */ 877 878 return (dmu_object_free(os, zapobj, tx)); 879 } 880 881 void 882 zap_evict_sync(void *dbu) 883 { 884 zap_t *zap = dbu; 885 886 rw_destroy(&zap->zap_rwlock); 887 888 if (zap->zap_ismicro) 889 mze_destroy(zap); 890 else 891 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 892 893 kmem_free(zap, sizeof (zap_t)); 894 } 895 896 int 897 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 898 { 899 zap_t *zap; 900 901 int err = 902 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 903 if (err != 0) 904 return (err); 905 if (!zap->zap_ismicro) { 906 err = fzap_count(zap, count); 907 } else { 908 *count = zap->zap_m.zap_num_entries; 909 } 910 zap_unlockdir(zap, FTAG); 911 return (err); 912 } 913 914 /* 915 * zn may be NULL; if not specified, it will be computed if needed. 916 * See also the comment above zap_entry_normalization_conflict(). 917 */ 918 static boolean_t 919 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 920 { 921 int direction = AVL_BEFORE; 922 boolean_t allocdzn = B_FALSE; 923 924 if (zap->zap_normflags == 0) 925 return (B_FALSE); 926 927 again: 928 for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 929 other && other->mze_hash == mze->mze_hash; 930 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 931 932 if (zn == NULL) { 933 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name, 934 MT_NORMALIZE); 935 allocdzn = B_TRUE; 936 } 937 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) { 938 if (allocdzn) 939 zap_name_free(zn); 940 return (B_TRUE); 941 } 942 } 943 944 if (direction == AVL_BEFORE) { 945 direction = AVL_AFTER; 946 goto again; 947 } 948 949 if (allocdzn) 950 zap_name_free(zn); 951 return (B_FALSE); 952 } 953 954 /* 955 * Routines for manipulating attributes. 956 */ 957 958 int 959 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 960 uint64_t integer_size, uint64_t num_integers, void *buf) 961 { 962 return (zap_lookup_norm(os, zapobj, name, integer_size, 963 num_integers, buf, 0, NULL, 0, NULL)); 964 } 965 966 static int 967 zap_lookup_impl(zap_t *zap, const char *name, 968 uint64_t integer_size, uint64_t num_integers, void *buf, 969 matchtype_t mt, char *realname, int rn_len, 970 boolean_t *ncp) 971 { 972 int err = 0; 973 974 zap_name_t *zn = zap_name_alloc(zap, name, mt); 975 if (zn == NULL) 976 return (SET_ERROR(ENOTSUP)); 977 978 if (!zap->zap_ismicro) { 979 err = fzap_lookup(zn, integer_size, num_integers, buf, 980 realname, rn_len, ncp); 981 } else { 982 mzap_ent_t *mze = mze_find(zn); 983 if (mze == NULL) { 984 err = SET_ERROR(ENOENT); 985 } else { 986 if (num_integers < 1) { 987 err = SET_ERROR(EOVERFLOW); 988 } else if (integer_size != 8) { 989 err = SET_ERROR(EINVAL); 990 } else { 991 *(uint64_t *)buf = 992 MZE_PHYS(zap, mze)->mze_value; 993 (void) strlcpy(realname, 994 MZE_PHYS(zap, mze)->mze_name, rn_len); 995 if (ncp) { 996 *ncp = mzap_normalization_conflict(zap, 997 zn, mze); 998 } 999 } 1000 } 1001 } 1002 zap_name_free(zn); 1003 return (err); 1004 } 1005 1006 int 1007 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 1008 uint64_t integer_size, uint64_t num_integers, void *buf, 1009 matchtype_t mt, char *realname, int rn_len, 1010 boolean_t *ncp) 1011 { 1012 zap_t *zap; 1013 1014 int err = 1015 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1016 if (err != 0) 1017 return (err); 1018 err = zap_lookup_impl(zap, name, integer_size, 1019 num_integers, buf, mt, realname, rn_len, ncp); 1020 zap_unlockdir(zap, FTAG); 1021 return (err); 1022 } 1023 1024 int 1025 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name) 1026 { 1027 zap_t *zap; 1028 int err; 1029 zap_name_t *zn; 1030 1031 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1032 if (err) 1033 return (err); 1034 zn = zap_name_alloc(zap, name, 0); 1035 if (zn == NULL) { 1036 zap_unlockdir(zap, FTAG); 1037 return (SET_ERROR(ENOTSUP)); 1038 } 1039 1040 fzap_prefetch(zn); 1041 zap_name_free(zn); 1042 zap_unlockdir(zap, FTAG); 1043 return (err); 1044 } 1045 1046 int 1047 zap_lookup_by_dnode(dnode_t *dn, const char *name, 1048 uint64_t integer_size, uint64_t num_integers, void *buf) 1049 { 1050 return (zap_lookup_norm_by_dnode(dn, name, integer_size, 1051 num_integers, buf, 0, NULL, 0, NULL)); 1052 } 1053 1054 int 1055 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name, 1056 uint64_t integer_size, uint64_t num_integers, void *buf, 1057 matchtype_t mt, char *realname, int rn_len, 1058 boolean_t *ncp) 1059 { 1060 zap_t *zap; 1061 1062 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE, 1063 FTAG, &zap); 1064 if (err != 0) 1065 return (err); 1066 err = zap_lookup_impl(zap, name, integer_size, 1067 num_integers, buf, mt, realname, rn_len, ncp); 1068 zap_unlockdir(zap, FTAG); 1069 return (err); 1070 } 1071 1072 int 1073 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1074 int key_numints) 1075 { 1076 zap_t *zap; 1077 1078 int err = 1079 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1080 if (err != 0) 1081 return (err); 1082 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1083 if (zn == NULL) { 1084 zap_unlockdir(zap, FTAG); 1085 return (SET_ERROR(ENOTSUP)); 1086 } 1087 1088 fzap_prefetch(zn); 1089 zap_name_free(zn); 1090 zap_unlockdir(zap, FTAG); 1091 return (err); 1092 } 1093 1094 int 1095 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1096 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 1097 { 1098 zap_t *zap; 1099 1100 int err = 1101 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1102 if (err != 0) 1103 return (err); 1104 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1105 if (zn == NULL) { 1106 zap_unlockdir(zap, FTAG); 1107 return (SET_ERROR(ENOTSUP)); 1108 } 1109 1110 err = fzap_lookup(zn, integer_size, num_integers, buf, 1111 NULL, 0, NULL); 1112 zap_name_free(zn); 1113 zap_unlockdir(zap, FTAG); 1114 return (err); 1115 } 1116 1117 int 1118 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 1119 { 1120 int err = zap_lookup_norm(os, zapobj, name, 0, 1121 0, NULL, 0, NULL, 0, NULL); 1122 if (err == EOVERFLOW || err == EINVAL) 1123 err = 0; /* found, but skipped reading the value */ 1124 return (err); 1125 } 1126 1127 int 1128 zap_length(objset_t *os, uint64_t zapobj, const char *name, 1129 uint64_t *integer_size, uint64_t *num_integers) 1130 { 1131 zap_t *zap; 1132 1133 int err = 1134 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1135 if (err != 0) 1136 return (err); 1137 zap_name_t *zn = zap_name_alloc(zap, name, 0); 1138 if (zn == NULL) { 1139 zap_unlockdir(zap, FTAG); 1140 return (SET_ERROR(ENOTSUP)); 1141 } 1142 if (!zap->zap_ismicro) { 1143 err = fzap_length(zn, integer_size, num_integers); 1144 } else { 1145 mzap_ent_t *mze = mze_find(zn); 1146 if (mze == NULL) { 1147 err = SET_ERROR(ENOENT); 1148 } else { 1149 if (integer_size) 1150 *integer_size = 8; 1151 if (num_integers) 1152 *num_integers = 1; 1153 } 1154 } 1155 zap_name_free(zn); 1156 zap_unlockdir(zap, FTAG); 1157 return (err); 1158 } 1159 1160 int 1161 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1162 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 1163 { 1164 zap_t *zap; 1165 1166 int err = 1167 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1168 if (err != 0) 1169 return (err); 1170 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1171 if (zn == NULL) { 1172 zap_unlockdir(zap, FTAG); 1173 return (SET_ERROR(ENOTSUP)); 1174 } 1175 err = fzap_length(zn, integer_size, num_integers); 1176 zap_name_free(zn); 1177 zap_unlockdir(zap, FTAG); 1178 return (err); 1179 } 1180 1181 static void 1182 mzap_addent(zap_name_t *zn, uint64_t value) 1183 { 1184 zap_t *zap = zn->zn_zap; 1185 int start = zap->zap_m.zap_alloc_next; 1186 1187 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 1188 1189 #ifdef ZFS_DEBUG 1190 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) { 1191 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1192 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 1193 } 1194 #endif 1195 1196 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash); 1197 /* given the limited size of the microzap, this can't happen */ 1198 ASSERT(cd < zap_maxcd(zap)); 1199 1200 again: 1201 for (int i = start; i < zap->zap_m.zap_num_chunks; i++) { 1202 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i]; 1203 if (mze->mze_name[0] == 0) { 1204 mze->mze_value = value; 1205 mze->mze_cd = cd; 1206 (void) strlcpy(mze->mze_name, zn->zn_key_orig, 1207 sizeof (mze->mze_name)); 1208 zap->zap_m.zap_num_entries++; 1209 zap->zap_m.zap_alloc_next = i+1; 1210 if (zap->zap_m.zap_alloc_next == 1211 zap->zap_m.zap_num_chunks) 1212 zap->zap_m.zap_alloc_next = 0; 1213 mze_insert(zap, i, zn->zn_hash); 1214 return; 1215 } 1216 } 1217 if (start != 0) { 1218 start = 0; 1219 goto again; 1220 } 1221 cmn_err(CE_PANIC, "out of entries!"); 1222 } 1223 1224 static int 1225 zap_add_impl(zap_t *zap, const char *key, 1226 int integer_size, uint64_t num_integers, 1227 const void *val, dmu_tx_t *tx, const void *tag) 1228 { 1229 const uint64_t *intval = val; 1230 int err = 0; 1231 1232 zap_name_t *zn = zap_name_alloc(zap, key, 0); 1233 if (zn == NULL) { 1234 zap_unlockdir(zap, tag); 1235 return (SET_ERROR(ENOTSUP)); 1236 } 1237 if (!zap->zap_ismicro) { 1238 err = fzap_add(zn, integer_size, num_integers, val, tag, tx); 1239 zap = zn->zn_zap; /* fzap_add() may change zap */ 1240 } else if (integer_size != 8 || num_integers != 1 || 1241 strlen(key) >= MZAP_NAME_LEN || 1242 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) { 1243 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0); 1244 if (err == 0) { 1245 err = fzap_add(zn, integer_size, num_integers, val, 1246 tag, tx); 1247 } 1248 zap = zn->zn_zap; /* fzap_add() may change zap */ 1249 } else { 1250 if (mze_find(zn) != NULL) { 1251 err = SET_ERROR(EEXIST); 1252 } else { 1253 mzap_addent(zn, *intval); 1254 } 1255 } 1256 ASSERT(zap == zn->zn_zap); 1257 zap_name_free(zn); 1258 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1259 zap_unlockdir(zap, tag); 1260 return (err); 1261 } 1262 1263 int 1264 zap_add(objset_t *os, uint64_t zapobj, const char *key, 1265 int integer_size, uint64_t num_integers, 1266 const void *val, dmu_tx_t *tx) 1267 { 1268 zap_t *zap; 1269 int err; 1270 1271 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1272 if (err != 0) 1273 return (err); 1274 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1275 /* zap_add_impl() calls zap_unlockdir() */ 1276 return (err); 1277 } 1278 1279 int 1280 zap_add_by_dnode(dnode_t *dn, const char *key, 1281 int integer_size, uint64_t num_integers, 1282 const void *val, dmu_tx_t *tx) 1283 { 1284 zap_t *zap; 1285 int err; 1286 1287 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1288 if (err != 0) 1289 return (err); 1290 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG); 1291 /* zap_add_impl() calls zap_unlockdir() */ 1292 return (err); 1293 } 1294 1295 int 1296 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1297 int key_numints, int integer_size, uint64_t num_integers, 1298 const void *val, dmu_tx_t *tx) 1299 { 1300 zap_t *zap; 1301 1302 int err = 1303 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1304 if (err != 0) 1305 return (err); 1306 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1307 if (zn == NULL) { 1308 zap_unlockdir(zap, FTAG); 1309 return (SET_ERROR(ENOTSUP)); 1310 } 1311 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx); 1312 zap = zn->zn_zap; /* fzap_add() may change zap */ 1313 zap_name_free(zn); 1314 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1315 zap_unlockdir(zap, FTAG); 1316 return (err); 1317 } 1318 1319 int 1320 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1321 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1322 { 1323 zap_t *zap; 1324 const uint64_t *intval = val; 1325 1326 int err = 1327 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1328 if (err != 0) 1329 return (err); 1330 zap_name_t *zn = zap_name_alloc(zap, name, 0); 1331 if (zn == NULL) { 1332 zap_unlockdir(zap, FTAG); 1333 return (SET_ERROR(ENOTSUP)); 1334 } 1335 if (!zap->zap_ismicro) { 1336 err = fzap_update(zn, integer_size, num_integers, val, 1337 FTAG, tx); 1338 zap = zn->zn_zap; /* fzap_update() may change zap */ 1339 } else if (integer_size != 8 || num_integers != 1 || 1340 strlen(name) >= MZAP_NAME_LEN) { 1341 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1342 (u_longlong_t)zapobj, integer_size, 1343 (u_longlong_t)num_integers, name); 1344 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0); 1345 if (err == 0) { 1346 err = fzap_update(zn, integer_size, num_integers, 1347 val, FTAG, tx); 1348 } 1349 zap = zn->zn_zap; /* fzap_update() may change zap */ 1350 } else { 1351 mzap_ent_t *mze = mze_find(zn); 1352 if (mze != NULL) { 1353 MZE_PHYS(zap, mze)->mze_value = *intval; 1354 } else { 1355 mzap_addent(zn, *intval); 1356 } 1357 } 1358 ASSERT(zap == zn->zn_zap); 1359 zap_name_free(zn); 1360 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1361 zap_unlockdir(zap, FTAG); 1362 return (err); 1363 } 1364 1365 int 1366 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1367 int key_numints, 1368 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1369 { 1370 zap_t *zap; 1371 1372 int err = 1373 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap); 1374 if (err != 0) 1375 return (err); 1376 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1377 if (zn == NULL) { 1378 zap_unlockdir(zap, FTAG); 1379 return (SET_ERROR(ENOTSUP)); 1380 } 1381 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx); 1382 zap = zn->zn_zap; /* fzap_update() may change zap */ 1383 zap_name_free(zn); 1384 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1385 zap_unlockdir(zap, FTAG); 1386 return (err); 1387 } 1388 1389 int 1390 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1391 { 1392 return (zap_remove_norm(os, zapobj, name, 0, tx)); 1393 } 1394 1395 static int 1396 zap_remove_impl(zap_t *zap, const char *name, 1397 matchtype_t mt, dmu_tx_t *tx) 1398 { 1399 int err = 0; 1400 1401 zap_name_t *zn = zap_name_alloc(zap, name, mt); 1402 if (zn == NULL) 1403 return (SET_ERROR(ENOTSUP)); 1404 if (!zap->zap_ismicro) { 1405 err = fzap_remove(zn, tx); 1406 } else { 1407 mzap_ent_t *mze = mze_find(zn); 1408 if (mze == NULL) { 1409 err = SET_ERROR(ENOENT); 1410 } else { 1411 zap->zap_m.zap_num_entries--; 1412 memset(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 0, 1413 sizeof (mzap_ent_phys_t)); 1414 mze_remove(zap, mze); 1415 } 1416 } 1417 zap_name_free(zn); 1418 return (err); 1419 } 1420 1421 int 1422 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1423 matchtype_t mt, dmu_tx_t *tx) 1424 { 1425 zap_t *zap; 1426 int err; 1427 1428 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1429 if (err) 1430 return (err); 1431 err = zap_remove_impl(zap, name, mt, tx); 1432 zap_unlockdir(zap, FTAG); 1433 return (err); 1434 } 1435 1436 int 1437 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx) 1438 { 1439 zap_t *zap; 1440 int err; 1441 1442 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1443 if (err) 1444 return (err); 1445 err = zap_remove_impl(zap, name, 0, tx); 1446 zap_unlockdir(zap, FTAG); 1447 return (err); 1448 } 1449 1450 int 1451 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1452 int key_numints, dmu_tx_t *tx) 1453 { 1454 zap_t *zap; 1455 1456 int err = 1457 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap); 1458 if (err != 0) 1459 return (err); 1460 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints); 1461 if (zn == NULL) { 1462 zap_unlockdir(zap, FTAG); 1463 return (SET_ERROR(ENOTSUP)); 1464 } 1465 err = fzap_remove(zn, tx); 1466 zap_name_free(zn); 1467 zap_unlockdir(zap, FTAG); 1468 return (err); 1469 } 1470 1471 /* 1472 * Routines for iterating over the attributes. 1473 */ 1474 1475 static void 1476 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1477 uint64_t serialized, boolean_t prefetch) 1478 { 1479 zc->zc_objset = os; 1480 zc->zc_zap = NULL; 1481 zc->zc_leaf = NULL; 1482 zc->zc_zapobj = zapobj; 1483 zc->zc_serialized = serialized; 1484 zc->zc_hash = 0; 1485 zc->zc_cd = 0; 1486 zc->zc_prefetch = prefetch; 1487 } 1488 void 1489 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1490 uint64_t serialized) 1491 { 1492 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE); 1493 } 1494 1495 /* 1496 * Initialize a cursor at the beginning of the ZAP object. The entire 1497 * ZAP object will be prefetched. 1498 */ 1499 void 1500 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1501 { 1502 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE); 1503 } 1504 1505 /* 1506 * Initialize a cursor at the beginning, but request that we not prefetch 1507 * the entire ZAP object. 1508 */ 1509 void 1510 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1511 { 1512 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE); 1513 } 1514 1515 void 1516 zap_cursor_fini(zap_cursor_t *zc) 1517 { 1518 if (zc->zc_zap) { 1519 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1520 zap_unlockdir(zc->zc_zap, NULL); 1521 zc->zc_zap = NULL; 1522 } 1523 if (zc->zc_leaf) { 1524 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1525 zap_put_leaf(zc->zc_leaf); 1526 zc->zc_leaf = NULL; 1527 } 1528 zc->zc_objset = NULL; 1529 } 1530 1531 uint64_t 1532 zap_cursor_serialize(zap_cursor_t *zc) 1533 { 1534 if (zc->zc_hash == -1ULL) 1535 return (-1ULL); 1536 if (zc->zc_zap == NULL) 1537 return (zc->zc_serialized); 1538 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1539 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1540 1541 /* 1542 * We want to keep the high 32 bits of the cursor zero if we can, so 1543 * that 32-bit programs can access this. So usually use a small 1544 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1545 * of the cursor. 1546 * 1547 * [ collision differentiator | zap_hashbits()-bit hash value ] 1548 */ 1549 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1550 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1551 } 1552 1553 int 1554 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1555 { 1556 int err; 1557 1558 if (zc->zc_hash == -1ULL) 1559 return (SET_ERROR(ENOENT)); 1560 1561 if (zc->zc_zap == NULL) { 1562 int hb; 1563 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1564 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap); 1565 if (err != 0) 1566 return (err); 1567 1568 /* 1569 * To support zap_cursor_init_serialized, advance, retrieve, 1570 * we must add to the existing zc_cd, which may already 1571 * be 1 due to the zap_cursor_advance. 1572 */ 1573 ASSERT(zc->zc_hash == 0); 1574 hb = zap_hashbits(zc->zc_zap); 1575 zc->zc_hash = zc->zc_serialized << (64 - hb); 1576 zc->zc_cd += zc->zc_serialized >> hb; 1577 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1578 zc->zc_cd = 0; 1579 } else { 1580 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1581 } 1582 if (!zc->zc_zap->zap_ismicro) { 1583 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1584 } else { 1585 avl_index_t idx; 1586 mzap_ent_t mze_tofind; 1587 1588 mze_tofind.mze_hash = zc->zc_hash; 1589 mze_tofind.mze_cd = zc->zc_cd; 1590 1591 mzap_ent_t *mze = 1592 avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1593 if (mze == NULL) { 1594 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1595 idx, AVL_AFTER); 1596 } 1597 if (mze) { 1598 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze); 1599 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd); 1600 za->za_normalization_conflict = 1601 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1602 za->za_integer_length = 8; 1603 za->za_num_integers = 1; 1604 za->za_first_integer = mzep->mze_value; 1605 (void) strlcpy(za->za_name, mzep->mze_name, 1606 sizeof (za->za_name)); 1607 zc->zc_hash = mze->mze_hash; 1608 zc->zc_cd = mze->mze_cd; 1609 err = 0; 1610 } else { 1611 zc->zc_hash = -1ULL; 1612 err = SET_ERROR(ENOENT); 1613 } 1614 } 1615 rw_exit(&zc->zc_zap->zap_rwlock); 1616 return (err); 1617 } 1618 1619 void 1620 zap_cursor_advance(zap_cursor_t *zc) 1621 { 1622 if (zc->zc_hash == -1ULL) 1623 return; 1624 zc->zc_cd++; 1625 } 1626 1627 int 1628 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1629 { 1630 zap_t *zap; 1631 1632 int err = 1633 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap); 1634 if (err != 0) 1635 return (err); 1636 1637 memset(zs, 0, sizeof (zap_stats_t)); 1638 1639 if (zap->zap_ismicro) { 1640 zs->zs_blocksize = zap->zap_dbuf->db_size; 1641 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1642 zs->zs_num_blocks = 1; 1643 } else { 1644 fzap_get_stats(zap, zs); 1645 } 1646 zap_unlockdir(zap, FTAG); 1647 return (0); 1648 } 1649 1650 #if defined(_KERNEL) 1651 EXPORT_SYMBOL(zap_create); 1652 EXPORT_SYMBOL(zap_create_dnsize); 1653 EXPORT_SYMBOL(zap_create_norm); 1654 EXPORT_SYMBOL(zap_create_norm_dnsize); 1655 EXPORT_SYMBOL(zap_create_flags); 1656 EXPORT_SYMBOL(zap_create_flags_dnsize); 1657 EXPORT_SYMBOL(zap_create_claim); 1658 EXPORT_SYMBOL(zap_create_claim_norm); 1659 EXPORT_SYMBOL(zap_create_claim_norm_dnsize); 1660 EXPORT_SYMBOL(zap_create_hold); 1661 EXPORT_SYMBOL(zap_destroy); 1662 EXPORT_SYMBOL(zap_lookup); 1663 EXPORT_SYMBOL(zap_lookup_by_dnode); 1664 EXPORT_SYMBOL(zap_lookup_norm); 1665 EXPORT_SYMBOL(zap_lookup_uint64); 1666 EXPORT_SYMBOL(zap_contains); 1667 EXPORT_SYMBOL(zap_prefetch); 1668 EXPORT_SYMBOL(zap_prefetch_uint64); 1669 EXPORT_SYMBOL(zap_add); 1670 EXPORT_SYMBOL(zap_add_by_dnode); 1671 EXPORT_SYMBOL(zap_add_uint64); 1672 EXPORT_SYMBOL(zap_update); 1673 EXPORT_SYMBOL(zap_update_uint64); 1674 EXPORT_SYMBOL(zap_length); 1675 EXPORT_SYMBOL(zap_length_uint64); 1676 EXPORT_SYMBOL(zap_remove); 1677 EXPORT_SYMBOL(zap_remove_by_dnode); 1678 EXPORT_SYMBOL(zap_remove_norm); 1679 EXPORT_SYMBOL(zap_remove_uint64); 1680 EXPORT_SYMBOL(zap_count); 1681 EXPORT_SYMBOL(zap_value_search); 1682 EXPORT_SYMBOL(zap_join); 1683 EXPORT_SYMBOL(zap_join_increment); 1684 EXPORT_SYMBOL(zap_add_int); 1685 EXPORT_SYMBOL(zap_remove_int); 1686 EXPORT_SYMBOL(zap_lookup_int); 1687 EXPORT_SYMBOL(zap_increment_int); 1688 EXPORT_SYMBOL(zap_add_int_key); 1689 EXPORT_SYMBOL(zap_lookup_int_key); 1690 EXPORT_SYMBOL(zap_increment); 1691 EXPORT_SYMBOL(zap_cursor_init); 1692 EXPORT_SYMBOL(zap_cursor_fini); 1693 EXPORT_SYMBOL(zap_cursor_retrieve); 1694 EXPORT_SYMBOL(zap_cursor_advance); 1695 EXPORT_SYMBOL(zap_cursor_serialize); 1696 EXPORT_SYMBOL(zap_cursor_init_serialized); 1697 EXPORT_SYMBOL(zap_get_stats); 1698 #endif 1699