1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 */ 27 28 /* 29 * The 512-byte leaf is broken into 32 16-byte chunks. 30 * chunk number n means l_chunk[n], even though the header precedes it. 31 * the names are stored null-terminated. 32 */ 33 34 #include <sys/zio.h> 35 #include <sys/spa.h> 36 #include <sys/dmu.h> 37 #include <sys/zfs_context.h> 38 #include <sys/fs/zfs.h> 39 #include <sys/zap.h> 40 #include <sys/zap_impl.h> 41 #include <sys/zap_leaf.h> 42 #include <sys/arc.h> 43 44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 45 46 #define CHAIN_END 0xffff /* end of the chunk chain */ 47 48 #define LEAF_HASH(l, h) \ 49 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 50 ((h) >> \ 51 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) 52 53 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)]) 54 55 extern inline zap_leaf_phys_t *zap_leaf_phys(zap_leaf_t *l); 56 57 static void 58 zap_memset(void *a, int c, size_t n) 59 { 60 char *cp = a; 61 char *cpend = cp + n; 62 63 while (cp < cpend) 64 *cp++ = c; 65 } 66 67 static void 68 stv(int len, void *addr, uint64_t value) 69 { 70 switch (len) { 71 case 1: 72 *(uint8_t *)addr = value; 73 return; 74 case 2: 75 *(uint16_t *)addr = value; 76 return; 77 case 4: 78 *(uint32_t *)addr = value; 79 return; 80 case 8: 81 *(uint64_t *)addr = value; 82 return; 83 default: 84 cmn_err(CE_PANIC, "bad int len %d", len); 85 } 86 } 87 88 static uint64_t 89 ldv(int len, const void *addr) 90 { 91 switch (len) { 92 case 1: 93 return (*(uint8_t *)addr); 94 case 2: 95 return (*(uint16_t *)addr); 96 case 4: 97 return (*(uint32_t *)addr); 98 case 8: 99 return (*(uint64_t *)addr); 100 default: 101 cmn_err(CE_PANIC, "bad int len %d", len); 102 } 103 return (0xFEEDFACEDEADBEEFULL); 104 } 105 106 void 107 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 108 { 109 zap_leaf_t l; 110 dmu_buf_t l_dbuf; 111 112 l_dbuf.db_data = buf; 113 l.l_bs = highbit64(size) - 1; 114 l.l_dbuf = &l_dbuf; 115 116 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 117 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 118 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 119 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 120 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 121 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 122 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 123 124 for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 125 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 126 127 for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 128 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 129 struct zap_leaf_entry *le; 130 131 switch (lc->l_free.lf_type) { 132 case ZAP_CHUNK_ENTRY: 133 le = &lc->l_entry; 134 135 le->le_type = BSWAP_8(le->le_type); 136 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 137 le->le_next = BSWAP_16(le->le_next); 138 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 139 le->le_name_numints = BSWAP_16(le->le_name_numints); 140 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 141 le->le_value_numints = BSWAP_16(le->le_value_numints); 142 le->le_cd = BSWAP_32(le->le_cd); 143 le->le_hash = BSWAP_64(le->le_hash); 144 break; 145 case ZAP_CHUNK_FREE: 146 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 147 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 148 break; 149 case ZAP_CHUNK_ARRAY: 150 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 151 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 152 /* la_array doesn't need swapping */ 153 break; 154 default: 155 cmn_err(CE_PANIC, "bad leaf type %d", 156 lc->l_free.lf_type); 157 } 158 } 159 } 160 161 void 162 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 163 { 164 l->l_bs = highbit64(l->l_dbuf->db_size) - 1; 165 zap_memset(&zap_leaf_phys(l)->l_hdr, 0, 166 sizeof (struct zap_leaf_header)); 167 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 168 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 169 for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 170 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 171 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 172 } 173 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 174 zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF; 175 zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 176 zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 177 if (sort) 178 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 179 } 180 181 /* 182 * Routines which manipulate leaf chunks (l_chunk[]). 183 */ 184 185 static uint16_t 186 zap_leaf_chunk_alloc(zap_leaf_t *l) 187 { 188 ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0); 189 190 int chunk = zap_leaf_phys(l)->l_hdr.lh_freelist; 191 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 192 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 193 194 zap_leaf_phys(l)->l_hdr.lh_freelist = 195 ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 196 197 zap_leaf_phys(l)->l_hdr.lh_nfree--; 198 199 return (chunk); 200 } 201 202 static void 203 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 204 { 205 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 206 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 207 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 208 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 209 210 zlf->lf_type = ZAP_CHUNK_FREE; 211 zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist; 212 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 213 zap_leaf_phys(l)->l_hdr.lh_freelist = chunk; 214 215 zap_leaf_phys(l)->l_hdr.lh_nfree++; 216 } 217 218 /* 219 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 220 */ 221 222 static uint16_t 223 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 224 int integer_size, int num_integers) 225 { 226 uint16_t chunk_head; 227 uint16_t *chunkp = &chunk_head; 228 int byten = 0; 229 uint64_t value = 0; 230 int shift = (integer_size - 1) * 8; 231 int len = num_integers; 232 233 ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN); 234 235 while (len > 0) { 236 uint16_t chunk = zap_leaf_chunk_alloc(l); 237 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 238 239 la->la_type = ZAP_CHUNK_ARRAY; 240 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 241 if (byten == 0) 242 value = ldv(integer_size, buf); 243 la->la_array[i] = value >> shift; 244 value <<= 8; 245 if (++byten == integer_size) { 246 byten = 0; 247 buf += integer_size; 248 if (--len == 0) 249 break; 250 } 251 } 252 253 *chunkp = chunk; 254 chunkp = &la->la_next; 255 } 256 *chunkp = CHAIN_END; 257 258 return (chunk_head); 259 } 260 261 static void 262 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 263 { 264 uint16_t chunk = *chunkp; 265 266 *chunkp = CHAIN_END; 267 268 while (chunk != CHAIN_END) { 269 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 270 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 271 ZAP_CHUNK_ARRAY); 272 zap_leaf_chunk_free(l, chunk); 273 chunk = nextchunk; 274 } 275 } 276 277 /* array_len and buf_len are in integers, not bytes */ 278 static void 279 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 280 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 281 void *buf) 282 { 283 int len = MIN(array_len, buf_len); 284 int byten = 0; 285 uint64_t value = 0; 286 char *p = buf; 287 288 ASSERT3U(array_int_len, <=, buf_int_len); 289 290 /* Fast path for one 8-byte integer */ 291 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 292 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 293 uint8_t *ip = la->la_array; 294 uint64_t *buf64 = buf; 295 296 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 297 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 298 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 299 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 300 return; 301 } 302 303 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 304 if (array_int_len == 1 && buf_int_len == 1 && 305 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 306 while (chunk != CHAIN_END) { 307 struct zap_leaf_array *la = 308 &ZAP_LEAF_CHUNK(l, chunk).l_array; 309 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES); 310 p += ZAP_LEAF_ARRAY_BYTES; 311 chunk = la->la_next; 312 } 313 return; 314 } 315 316 while (len > 0) { 317 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 318 319 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 320 for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 321 value = (value << 8) | la->la_array[i]; 322 byten++; 323 if (byten == array_int_len) { 324 stv(buf_int_len, p, value); 325 byten = 0; 326 len--; 327 if (len == 0) 328 return; 329 p += buf_int_len; 330 } 331 } 332 chunk = la->la_next; 333 } 334 } 335 336 static boolean_t 337 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 338 int chunk, int array_numints) 339 { 340 int bseen = 0; 341 342 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 343 uint64_t *thiskey = 344 kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP); 345 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 346 347 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 348 sizeof (*thiskey), array_numints, thiskey); 349 boolean_t match = bcmp(thiskey, zn->zn_key_orig, 350 array_numints * sizeof (*thiskey)) == 0; 351 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 352 return (match); 353 } 354 355 ASSERT(zn->zn_key_intlen == 1); 356 if (zn->zn_matchtype & MT_NORMALIZE) { 357 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 358 359 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 360 sizeof (char), array_numints, thisname); 361 boolean_t match = zap_match(zn, thisname); 362 kmem_free(thisname, array_numints); 363 return (match); 364 } 365 366 /* 367 * Fast path for exact matching. 368 * First check that the lengths match, so that we don't read 369 * past the end of the zn_key_orig array. 370 */ 371 if (array_numints != zn->zn_key_orig_numints) 372 return (B_FALSE); 373 while (bseen < array_numints) { 374 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 375 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 376 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 377 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) 378 break; 379 chunk = la->la_next; 380 bseen += toread; 381 } 382 return (bseen == array_numints); 383 } 384 385 /* 386 * Routines which manipulate leaf entries. 387 */ 388 389 int 390 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 391 { 392 struct zap_leaf_entry *le; 393 394 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 395 396 for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 397 *chunkp != CHAIN_END; chunkp = &le->le_next) { 398 uint16_t chunk = *chunkp; 399 le = ZAP_LEAF_ENTRY(l, chunk); 400 401 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 402 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 403 404 if (le->le_hash != zn->zn_hash) 405 continue; 406 407 /* 408 * NB: the entry chain is always sorted by cd on 409 * normalized zap objects, so this will find the 410 * lowest-cd match for MT_NORMALIZE. 411 */ 412 ASSERT((zn->zn_matchtype == 0) || 413 (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 414 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 415 le->le_name_numints)) { 416 zeh->zeh_num_integers = le->le_value_numints; 417 zeh->zeh_integer_size = le->le_value_intlen; 418 zeh->zeh_cd = le->le_cd; 419 zeh->zeh_hash = le->le_hash; 420 zeh->zeh_chunkp = chunkp; 421 zeh->zeh_leaf = l; 422 return (0); 423 } 424 } 425 426 return (SET_ERROR(ENOENT)); 427 } 428 429 /* Return (h1,cd1 >= h2,cd2) */ 430 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 431 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 432 433 int 434 zap_leaf_lookup_closest(zap_leaf_t *l, 435 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 436 { 437 uint64_t besth = -1ULL; 438 uint32_t bestcd = -1U; 439 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 440 struct zap_leaf_entry *le; 441 442 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 443 444 for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 445 for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh]; 446 chunk != CHAIN_END; chunk = le->le_next) { 447 le = ZAP_LEAF_ENTRY(l, chunk); 448 449 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 450 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 451 452 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 453 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 454 ASSERT3U(bestlh, >=, lh); 455 bestlh = lh; 456 besth = le->le_hash; 457 bestcd = le->le_cd; 458 459 zeh->zeh_num_integers = le->le_value_numints; 460 zeh->zeh_integer_size = le->le_value_intlen; 461 zeh->zeh_cd = le->le_cd; 462 zeh->zeh_hash = le->le_hash; 463 zeh->zeh_fakechunk = chunk; 464 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 465 zeh->zeh_leaf = l; 466 } 467 } 468 } 469 470 return (bestcd == -1U ? SET_ERROR(ENOENT) : 0); 471 } 472 473 int 474 zap_entry_read(const zap_entry_handle_t *zeh, 475 uint8_t integer_size, uint64_t num_integers, void *buf) 476 { 477 struct zap_leaf_entry *le = 478 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 479 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 480 481 if (le->le_value_intlen > integer_size) 482 return (SET_ERROR(EINVAL)); 483 484 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 485 le->le_value_intlen, le->le_value_numints, 486 integer_size, num_integers, buf); 487 488 if (zeh->zeh_num_integers > num_integers) 489 return (SET_ERROR(EOVERFLOW)); 490 return (0); 491 492 } 493 494 int 495 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 496 char *buf) 497 { 498 struct zap_leaf_entry *le = 499 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 500 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 501 502 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 503 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 504 le->le_name_numints, 8, buflen / 8, buf); 505 } else { 506 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 507 le->le_name_numints, 1, buflen, buf); 508 } 509 if (le->le_name_numints > buflen) 510 return (SET_ERROR(EOVERFLOW)); 511 return (0); 512 } 513 514 int 515 zap_entry_update(zap_entry_handle_t *zeh, 516 uint8_t integer_size, uint64_t num_integers, const void *buf) 517 { 518 zap_leaf_t *l = zeh->zeh_leaf; 519 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 520 521 int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 522 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 523 524 if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks) 525 return (SET_ERROR(EAGAIN)); 526 527 zap_leaf_array_free(l, &le->le_value_chunk); 528 le->le_value_chunk = 529 zap_leaf_array_create(l, buf, integer_size, num_integers); 530 le->le_value_numints = num_integers; 531 le->le_value_intlen = integer_size; 532 return (0); 533 } 534 535 void 536 zap_entry_remove(zap_entry_handle_t *zeh) 537 { 538 zap_leaf_t *l = zeh->zeh_leaf; 539 540 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 541 542 uint16_t entry_chunk = *zeh->zeh_chunkp; 543 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk); 544 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 545 546 zap_leaf_array_free(l, &le->le_name_chunk); 547 zap_leaf_array_free(l, &le->le_value_chunk); 548 549 *zeh->zeh_chunkp = le->le_next; 550 zap_leaf_chunk_free(l, entry_chunk); 551 552 zap_leaf_phys(l)->l_hdr.lh_nentries--; 553 } 554 555 int 556 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 557 uint8_t integer_size, uint64_t num_integers, const void *buf, 558 zap_entry_handle_t *zeh) 559 { 560 uint16_t chunk; 561 struct zap_leaf_entry *le; 562 uint64_t h = zn->zn_hash; 563 564 uint64_t valuelen = integer_size * num_integers; 565 566 int numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 567 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 568 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 569 return (SET_ERROR(E2BIG)); 570 571 if (cd == ZAP_NEED_CD) { 572 /* find the lowest unused cd */ 573 if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 574 cd = 0; 575 576 for (chunk = *LEAF_HASH_ENTPTR(l, h); 577 chunk != CHAIN_END; chunk = le->le_next) { 578 le = ZAP_LEAF_ENTRY(l, chunk); 579 if (le->le_cd > cd) 580 break; 581 if (le->le_hash == h) { 582 ASSERT3U(cd, ==, le->le_cd); 583 cd++; 584 } 585 } 586 } else { 587 /* old unsorted format; do it the O(n^2) way */ 588 for (cd = 0; ; cd++) { 589 for (chunk = *LEAF_HASH_ENTPTR(l, h); 590 chunk != CHAIN_END; chunk = le->le_next) { 591 le = ZAP_LEAF_ENTRY(l, chunk); 592 if (le->le_hash == h && 593 le->le_cd == cd) { 594 break; 595 } 596 } 597 /* If this cd is not in use, we are good. */ 598 if (chunk == CHAIN_END) 599 break; 600 } 601 } 602 /* 603 * We would run out of space in a block before we could 604 * store enough entries to run out of CD values. 605 */ 606 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 607 } 608 609 if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks) 610 return (SET_ERROR(EAGAIN)); 611 612 /* make the entry */ 613 chunk = zap_leaf_chunk_alloc(l); 614 le = ZAP_LEAF_ENTRY(l, chunk); 615 le->le_type = ZAP_CHUNK_ENTRY; 616 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 617 zn->zn_key_intlen, zn->zn_key_orig_numints); 618 le->le_name_numints = zn->zn_key_orig_numints; 619 le->le_value_chunk = 620 zap_leaf_array_create(l, buf, integer_size, num_integers); 621 le->le_value_numints = num_integers; 622 le->le_value_intlen = integer_size; 623 le->le_hash = h; 624 le->le_cd = cd; 625 626 /* link it into the hash chain */ 627 /* XXX if we did the search above, we could just use that */ 628 uint16_t *chunkp = zap_leaf_rehash_entry(l, chunk); 629 630 zap_leaf_phys(l)->l_hdr.lh_nentries++; 631 632 zeh->zeh_leaf = l; 633 zeh->zeh_num_integers = num_integers; 634 zeh->zeh_integer_size = le->le_value_intlen; 635 zeh->zeh_cd = le->le_cd; 636 zeh->zeh_hash = le->le_hash; 637 zeh->zeh_chunkp = chunkp; 638 639 return (0); 640 } 641 642 /* 643 * Determine if there is another entry with the same normalized form. 644 * For performance purposes, either zn or name must be provided (the 645 * other can be NULL). Note, there usually won't be any hash 646 * conflicts, in which case we don't need the concatenated/normalized 647 * form of the name. But all callers have one of these on hand anyway, 648 * so might as well take advantage. A cleaner but slower interface 649 * would accept neither argument, and compute the normalized name as 650 * needed (using zap_name_alloc(zap_entry_read_name(zeh))). 651 */ 652 boolean_t 653 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 654 const char *name, zap_t *zap) 655 { 656 struct zap_leaf_entry *le; 657 boolean_t allocdzn = B_FALSE; 658 659 if (zap->zap_normflags == 0) 660 return (B_FALSE); 661 662 for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 663 chunk != CHAIN_END; chunk = le->le_next) { 664 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 665 if (le->le_hash != zeh->zeh_hash) 666 continue; 667 if (le->le_cd == zeh->zeh_cd) 668 continue; 669 670 if (zn == NULL) { 671 zn = zap_name_alloc(zap, name, MT_NORMALIZE); 672 allocdzn = B_TRUE; 673 } 674 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 675 le->le_name_chunk, le->le_name_numints)) { 676 if (allocdzn) 677 zap_name_free(zn); 678 return (B_TRUE); 679 } 680 } 681 if (allocdzn) 682 zap_name_free(zn); 683 return (B_FALSE); 684 } 685 686 /* 687 * Routines for transferring entries between leafs. 688 */ 689 690 static uint16_t * 691 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 692 { 693 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 694 struct zap_leaf_entry *le2; 695 uint16_t *chunkp; 696 697 /* 698 * keep the entry chain sorted by cd 699 * NB: this will not cause problems for unsorted leafs, though 700 * it is unnecessary there. 701 */ 702 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 703 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 704 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 705 if (le2->le_cd > le->le_cd) 706 break; 707 } 708 709 le->le_next = *chunkp; 710 *chunkp = entry; 711 return (chunkp); 712 } 713 714 static uint16_t 715 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 716 { 717 uint16_t new_chunk; 718 uint16_t *nchunkp = &new_chunk; 719 720 while (chunk != CHAIN_END) { 721 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 722 struct zap_leaf_array *nla = 723 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 724 struct zap_leaf_array *la = 725 &ZAP_LEAF_CHUNK(l, chunk).l_array; 726 int nextchunk = la->la_next; 727 728 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 729 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 730 731 *nla = *la; /* structure assignment */ 732 733 zap_leaf_chunk_free(l, chunk); 734 chunk = nextchunk; 735 *nchunkp = nchunk; 736 nchunkp = &nla->la_next; 737 } 738 *nchunkp = CHAIN_END; 739 return (new_chunk); 740 } 741 742 static void 743 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 744 { 745 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 746 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 747 748 uint16_t chunk = zap_leaf_chunk_alloc(nl); 749 struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk); 750 *nle = *le; /* structure assignment */ 751 752 (void) zap_leaf_rehash_entry(nl, chunk); 753 754 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 755 nle->le_value_chunk = 756 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 757 758 zap_leaf_chunk_free(l, entry); 759 760 zap_leaf_phys(l)->l_hdr.lh_nentries--; 761 zap_leaf_phys(nl)->l_hdr.lh_nentries++; 762 } 763 764 /* 765 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 766 */ 767 void 768 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 769 { 770 int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len; 771 772 /* set new prefix and prefix_len */ 773 zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1; 774 zap_leaf_phys(l)->l_hdr.lh_prefix_len++; 775 zap_leaf_phys(nl)->l_hdr.lh_prefix = 776 zap_leaf_phys(l)->l_hdr.lh_prefix | 1; 777 zap_leaf_phys(nl)->l_hdr.lh_prefix_len = 778 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 779 780 /* break existing hash chains */ 781 zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END, 782 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 783 784 if (sort) 785 zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 786 787 /* 788 * Transfer entries whose hash bit 'bit' is set to nl; rehash 789 * the remaining entries 790 * 791 * NB: We could find entries via the hashtable instead. That 792 * would be O(hashents+numents) rather than O(numblks+numents), 793 * but this accesses memory more sequentially, and when we're 794 * called, the block is usually pretty full. 795 */ 796 for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 797 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 798 if (le->le_type != ZAP_CHUNK_ENTRY) 799 continue; 800 801 if (le->le_hash & (1ULL << bit)) 802 zap_leaf_transfer_entry(l, i, nl); 803 else 804 (void) zap_leaf_rehash_entry(l, i); 805 } 806 } 807 808 void 809 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 810 { 811 int n = zap_f_phys(zap)->zap_ptrtbl.zt_shift - 812 zap_leaf_phys(l)->l_hdr.lh_prefix_len; 813 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 814 zs->zs_leafs_with_2n_pointers[n]++; 815 816 817 n = zap_leaf_phys(l)->l_hdr.lh_nentries/5; 818 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 819 zs->zs_blocks_with_n5_entries[n]++; 820 821 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 822 zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 823 (1<<FZAP_BLOCK_SHIFT(zap)); 824 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 825 zs->zs_blocks_n_tenths_full[n]++; 826 827 for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 828 int nentries = 0; 829 int chunk = zap_leaf_phys(l)->l_hash[i]; 830 831 while (chunk != CHAIN_END) { 832 struct zap_leaf_entry *le = 833 ZAP_LEAF_ENTRY(l, chunk); 834 835 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 836 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 837 le->le_value_intlen); 838 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 839 zs->zs_entries_using_n_chunks[n]++; 840 841 chunk = le->le_next; 842 nentries++; 843 } 844 845 n = nentries; 846 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 847 zs->zs_buckets_with_n_entries[n]++; 848 } 849 } 850