xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_trim.c (revision 1db64f89363c97858961c4df0b7d02f3223723cf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25  * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26  * Copyright 2023 RackTop Systems, Inc.
27  */
28 
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/txg.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/zap.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
39 
40 /*
41  * TRIM is a feature which is used to notify a SSD that some previously
42  * written space is no longer allocated by the pool.  This is useful because
43  * writes to a SSD must be performed to blocks which have first been erased.
44  * Ensuring the SSD always has a supply of erased blocks for new writes
45  * helps prevent the performance from deteriorating.
46  *
47  * There are two supported TRIM methods; manual and automatic.
48  *
49  * Manual TRIM:
50  *
51  * A manual TRIM is initiated by running the 'zpool trim' command.  A single
52  * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53  * managing that vdev TRIM process.  This involves iterating over all the
54  * metaslabs, calculating the unallocated space ranges, and then issuing the
55  * required TRIM I/Os.
56  *
57  * While a metaslab is being actively trimmed it is not eligible to perform
58  * new allocations.  After traversing all of the metaslabs the thread is
59  * terminated.  Finally, both the requested options and current progress of
60  * the TRIM are regularly written to the pool.  This allows the TRIM to be
61  * suspended and resumed as needed.
62  *
63  * Automatic TRIM:
64  *
65  * An automatic TRIM is enabled by setting the 'autotrim' pool property
66  * to 'on'.  When enabled, a `vdev_autotrim' thread is created for each
67  * top-level (not leaf) vdev in the pool.  These threads perform the same
68  * core TRIM process as a manual TRIM, but with a few key differences.
69  *
70  * 1) Automatic TRIM happens continuously in the background and operates
71  *    solely on recently freed blocks (ms_trim not ms_allocatable).
72  *
73  * 2) Each thread is associated with a top-level (not leaf) vdev.  This has
74  *    the benefit of simplifying the threading model, it makes it easier
75  *    to coordinate administrative commands, and it ensures only a single
76  *    metaslab is disabled at a time.  Unlike manual TRIM, this means each
77  *    'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
78  *    children.
79  *
80  * 3) There is no automatic TRIM progress information stored on disk, nor
81  *    is it reported by 'zpool status'.
82  *
83  * While the automatic TRIM process is highly effective it is more likely
84  * than a manual TRIM to encounter tiny ranges.  Ranges less than or equal to
85  * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86  * TRIM and are skipped.  This means small amounts of freed space may not
87  * be automatically trimmed.
88  *
89  * Furthermore, devices with attached hot spares and devices being actively
90  * replaced are skipped.  This is done to avoid adding additional stress to
91  * a potentially unhealthy device and to minimize the required rebuild time.
92  *
93  * For this reason it may be beneficial to occasionally manually TRIM a pool
94  * even when automatic TRIM is enabled.
95  */
96 
97 /*
98  * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
99  */
100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024;
101 
102 /*
103  * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
104  */
105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024;
106 
107 /*
108  * Skip uninitialized metaslabs during the TRIM process.  This option is
109  * useful for pools constructed from large thinly-provisioned devices where
110  * TRIM operations are slow.  As a pool ages an increasing fraction of
111  * the pools metaslabs will be initialized progressively degrading the
112  * usefulness of this option.  This setting is stored when starting a
113  * manual TRIM and will persist for the duration of the requested TRIM.
114  */
115 unsigned int zfs_trim_metaslab_skip = 0;
116 
117 /*
118  * Maximum number of queued TRIM I/Os per leaf vdev.  The number of
119  * concurrent TRIM I/Os issued to the device is controlled by the
120  * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
121  */
122 static unsigned int zfs_trim_queue_limit = 10;
123 
124 /*
125  * The minimum number of transaction groups between automatic trims of a
126  * metaslab.  This setting represents a trade-off between issuing more
127  * efficient TRIM operations, by allowing them to be aggregated longer,
128  * and issuing them promptly so the trimmed space is available.  Note
129  * that this value is a minimum; metaslabs can be trimmed less frequently
130  * when there are a large number of ranges which need to be trimmed.
131  *
132  * Increasing this value will allow frees to be aggregated for a longer
133  * time.  This can result is larger TRIM operations, and increased memory
134  * usage in order to track the ranges to be trimmed.  Decreasing this value
135  * has the opposite effect.  The default value of 32 was determined though
136  * testing to be a reasonable compromise.
137  */
138 static unsigned int zfs_trim_txg_batch = 32;
139 
140 /*
141  * The trim_args are a control structure which describe how a leaf vdev
142  * should be trimmed.  The core elements are the vdev, the metaslab being
143  * trimmed and a range tree containing the extents to TRIM.  All provided
144  * ranges must be within the metaslab.
145  */
146 typedef struct trim_args {
147 	/*
148 	 * These fields are set by the caller of vdev_trim_ranges().
149 	 */
150 	vdev_t		*trim_vdev;		/* Leaf vdev to TRIM */
151 	metaslab_t	*trim_msp;		/* Disabled metaslab */
152 	range_tree_t	*trim_tree;		/* TRIM ranges (in metaslab) */
153 	trim_type_t	trim_type;		/* Manual or auto TRIM */
154 	uint64_t	trim_extent_bytes_max;	/* Maximum TRIM I/O size */
155 	uint64_t	trim_extent_bytes_min;	/* Minimum TRIM I/O size */
156 	enum trim_flag	trim_flags;		/* TRIM flags (secure) */
157 
158 	/*
159 	 * These fields are updated by vdev_trim_ranges().
160 	 */
161 	hrtime_t	trim_start_time;	/* Start time */
162 	uint64_t	trim_bytes_done;	/* Bytes trimmed */
163 } trim_args_t;
164 
165 /*
166  * Determines whether a vdev_trim_thread() should be stopped.
167  */
168 static boolean_t
169 vdev_trim_should_stop(vdev_t *vd)
170 {
171 	return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) ||
172 	    vd->vdev_detached || vd->vdev_top->vdev_removing ||
173 	    vd->vdev_top->vdev_rz_expanding);
174 }
175 
176 /*
177  * Determines whether a vdev_autotrim_thread() should be stopped.
178  */
179 static boolean_t
180 vdev_autotrim_should_stop(vdev_t *tvd)
181 {
182 	return (tvd->vdev_autotrim_exit_wanted ||
183 	    !vdev_writeable(tvd) || tvd->vdev_removing ||
184 	    tvd->vdev_rz_expanding ||
185 	    spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF);
186 }
187 
188 /*
189  * Wait for given number of kicks, return true if the wait is aborted due to
190  * vdev_autotrim_exit_wanted.
191  */
192 static boolean_t
193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick)
194 {
195 	mutex_enter(&vd->vdev_autotrim_lock);
196 	for (int i = 0; i < num_of_kick; i++) {
197 		if (vd->vdev_autotrim_exit_wanted)
198 			break;
199 		cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock);
200 	}
201 	boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted;
202 	mutex_exit(&vd->vdev_autotrim_lock);
203 
204 	return (exit_wanted);
205 }
206 
207 /*
208  * The sync task for updating the on-disk state of a manual TRIM.  This
209  * is scheduled by vdev_trim_change_state().
210  */
211 static void
212 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx)
213 {
214 	/*
215 	 * We pass in the guid instead of the vdev_t since the vdev may
216 	 * have been freed prior to the sync task being processed.  This
217 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
218 	 * stop the trimming thread, schedule the sync task, and free
219 	 * the vdev. Later when the scheduled sync task is invoked, it would
220 	 * find that the vdev has been freed.
221 	 */
222 	uint64_t guid = *(uint64_t *)arg;
223 	uint64_t txg = dmu_tx_get_txg(tx);
224 	kmem_free(arg, sizeof (uint64_t));
225 
226 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
227 	if (vd == NULL || vd->vdev_top->vdev_removing ||
228 	    !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding)
229 		return;
230 
231 	uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK];
232 	vd->vdev_trim_offset[txg & TXG_MASK] = 0;
233 
234 	VERIFY3U(vd->vdev_leaf_zap, !=, 0);
235 
236 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
237 
238 	if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) {
239 
240 		if (vd->vdev_trim_last_offset == UINT64_MAX)
241 			last_offset = 0;
242 
243 		vd->vdev_trim_last_offset = last_offset;
244 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
245 		    VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
246 		    sizeof (last_offset), 1, &last_offset, tx));
247 	}
248 
249 	if (vd->vdev_trim_action_time > 0) {
250 		uint64_t val = (uint64_t)vd->vdev_trim_action_time;
251 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
252 		    VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val),
253 		    1, &val, tx));
254 	}
255 
256 	if (vd->vdev_trim_rate > 0) {
257 		uint64_t rate = (uint64_t)vd->vdev_trim_rate;
258 
259 		if (rate == UINT64_MAX)
260 			rate = 0;
261 
262 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
263 		    VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx));
264 	}
265 
266 	uint64_t partial = vd->vdev_trim_partial;
267 	if (partial == UINT64_MAX)
268 		partial = 0;
269 
270 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
271 	    sizeof (partial), 1, &partial, tx));
272 
273 	uint64_t secure = vd->vdev_trim_secure;
274 	if (secure == UINT64_MAX)
275 		secure = 0;
276 
277 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
278 	    sizeof (secure), 1, &secure, tx));
279 
280 
281 	uint64_t trim_state = vd->vdev_trim_state;
282 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
283 	    sizeof (trim_state), 1, &trim_state, tx));
284 }
285 
286 /*
287  * Update the on-disk state of a manual TRIM.  This is called to request
288  * that a TRIM be started/suspended/canceled, or to change one of the
289  * TRIM options (partial, secure, rate).
290  */
291 static void
292 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state,
293     uint64_t rate, boolean_t partial, boolean_t secure)
294 {
295 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
296 	spa_t *spa = vd->vdev_spa;
297 
298 	if (new_state == vd->vdev_trim_state)
299 		return;
300 
301 	/*
302 	 * Copy the vd's guid, this will be freed by the sync task.
303 	 */
304 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
305 	*guid = vd->vdev_guid;
306 
307 	/*
308 	 * If we're suspending, then preserve the original start time.
309 	 */
310 	if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) {
311 		vd->vdev_trim_action_time = gethrestime_sec();
312 	}
313 
314 	/*
315 	 * If we're activating, then preserve the requested rate and trim
316 	 * method.  Setting the last offset and rate to UINT64_MAX is used
317 	 * as a sentinel to indicate they should be reset to default values.
318 	 */
319 	if (new_state == VDEV_TRIM_ACTIVE) {
320 		if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE ||
321 		    vd->vdev_trim_state == VDEV_TRIM_CANCELED) {
322 			vd->vdev_trim_last_offset = UINT64_MAX;
323 			vd->vdev_trim_rate = UINT64_MAX;
324 			vd->vdev_trim_partial = UINT64_MAX;
325 			vd->vdev_trim_secure = UINT64_MAX;
326 		}
327 
328 		if (rate != 0)
329 			vd->vdev_trim_rate = rate;
330 
331 		if (partial != 0)
332 			vd->vdev_trim_partial = partial;
333 
334 		if (secure != 0)
335 			vd->vdev_trim_secure = secure;
336 	}
337 
338 	vdev_trim_state_t old_state = vd->vdev_trim_state;
339 	boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED);
340 	vd->vdev_trim_state = new_state;
341 
342 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
343 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
344 	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync,
345 	    guid, tx);
346 
347 	switch (new_state) {
348 	case VDEV_TRIM_ACTIVE:
349 		spa_event_notify(spa, vd, NULL,
350 		    resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START);
351 		spa_history_log_internal(spa, "trim", tx,
352 		    "vdev=%s activated", vd->vdev_path);
353 		break;
354 	case VDEV_TRIM_SUSPENDED:
355 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND);
356 		spa_history_log_internal(spa, "trim", tx,
357 		    "vdev=%s suspended", vd->vdev_path);
358 		break;
359 	case VDEV_TRIM_CANCELED:
360 		if (old_state == VDEV_TRIM_ACTIVE ||
361 		    old_state == VDEV_TRIM_SUSPENDED) {
362 			spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL);
363 			spa_history_log_internal(spa, "trim", tx,
364 			    "vdev=%s canceled", vd->vdev_path);
365 		}
366 		break;
367 	case VDEV_TRIM_COMPLETE:
368 		spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH);
369 		spa_history_log_internal(spa, "trim", tx,
370 		    "vdev=%s complete", vd->vdev_path);
371 		break;
372 	default:
373 		panic("invalid state %llu", (unsigned long long)new_state);
374 	}
375 
376 	dmu_tx_commit(tx);
377 
378 	if (new_state != VDEV_TRIM_ACTIVE)
379 		spa_notify_waiters(spa);
380 }
381 
382 /*
383  * The zio_done_func_t done callback for each manual TRIM issued.  It is
384  * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
385  * and limiting the number of in flight TRIM I/Os.
386  */
387 static void
388 vdev_trim_cb(zio_t *zio)
389 {
390 	vdev_t *vd = zio->io_vd;
391 
392 	mutex_enter(&vd->vdev_trim_io_lock);
393 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
394 		/*
395 		 * The I/O failed because the vdev was unavailable; roll the
396 		 * last offset back. (This works because spa_sync waits on
397 		 * spa_txg_zio before it runs sync tasks.)
398 		 */
399 		uint64_t *offset =
400 		    &vd->vdev_trim_offset[zio->io_txg & TXG_MASK];
401 		*offset = MIN(*offset, zio->io_offset);
402 	} else {
403 		if (zio->io_error != 0) {
404 			vd->vdev_stat.vs_trim_errors++;
405 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
406 			    0, 0, 0, 0, 1, zio->io_orig_size);
407 		} else {
408 			spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL,
409 			    1, zio->io_orig_size, 0, 0, 0, 0);
410 		}
411 
412 		vd->vdev_trim_bytes_done += zio->io_orig_size;
413 	}
414 
415 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0);
416 	vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--;
417 	cv_broadcast(&vd->vdev_trim_io_cv);
418 	mutex_exit(&vd->vdev_trim_io_lock);
419 
420 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
421 }
422 
423 /*
424  * The zio_done_func_t done callback for each automatic TRIM issued.  It
425  * is responsible for updating the TRIM stats and limiting the number of
426  * in flight TRIM I/Os.  Automatic TRIM I/Os are best effort and are
427  * never reissued on failure.
428  */
429 static void
430 vdev_autotrim_cb(zio_t *zio)
431 {
432 	vdev_t *vd = zio->io_vd;
433 
434 	mutex_enter(&vd->vdev_trim_io_lock);
435 
436 	if (zio->io_error != 0) {
437 		vd->vdev_stat.vs_trim_errors++;
438 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
439 		    0, 0, 0, 0, 1, zio->io_orig_size);
440 	} else {
441 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO,
442 		    1, zio->io_orig_size, 0, 0, 0, 0);
443 	}
444 
445 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0);
446 	vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--;
447 	cv_broadcast(&vd->vdev_trim_io_cv);
448 	mutex_exit(&vd->vdev_trim_io_lock);
449 
450 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
451 }
452 
453 /*
454  * The zio_done_func_t done callback for each TRIM issued via
455  * vdev_trim_simple(). It is responsible for updating the TRIM stats and
456  * limiting the number of in flight TRIM I/Os.  Simple TRIM I/Os are best
457  * effort and are never reissued on failure.
458  */
459 static void
460 vdev_trim_simple_cb(zio_t *zio)
461 {
462 	vdev_t *vd = zio->io_vd;
463 
464 	mutex_enter(&vd->vdev_trim_io_lock);
465 
466 	if (zio->io_error != 0) {
467 		vd->vdev_stat.vs_trim_errors++;
468 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
469 		    0, 0, 0, 0, 1, zio->io_orig_size);
470 	} else {
471 		spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE,
472 		    1, zio->io_orig_size, 0, 0, 0, 0);
473 	}
474 
475 	ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0);
476 	vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--;
477 	cv_broadcast(&vd->vdev_trim_io_cv);
478 	mutex_exit(&vd->vdev_trim_io_lock);
479 
480 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
481 }
482 /*
483  * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
484  */
485 static uint64_t
486 vdev_trim_calculate_rate(trim_args_t *ta)
487 {
488 	return (ta->trim_bytes_done * 1000 /
489 	    (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1));
490 }
491 
492 /*
493  * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
494  * and number of concurrent TRIM I/Os.
495  */
496 static int
497 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size)
498 {
499 	vdev_t *vd = ta->trim_vdev;
500 	spa_t *spa = vd->vdev_spa;
501 	void *cb;
502 
503 	mutex_enter(&vd->vdev_trim_io_lock);
504 
505 	/*
506 	 * Limit manual TRIM I/Os to the requested rate.  This does not
507 	 * apply to automatic TRIM since no per vdev rate can be specified.
508 	 */
509 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
510 		while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) &&
511 		    vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) {
512 			cv_timedwait_idle(&vd->vdev_trim_io_cv,
513 			    &vd->vdev_trim_io_lock, ddi_get_lbolt() +
514 			    MSEC_TO_TICK(10));
515 		}
516 	}
517 	ta->trim_bytes_done += size;
518 
519 	/* Limit in flight trimming I/Os */
520 	while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] +
521 	    vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) {
522 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
523 	}
524 	vd->vdev_trim_inflight[ta->trim_type]++;
525 	mutex_exit(&vd->vdev_trim_io_lock);
526 
527 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
528 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
529 	uint64_t txg = dmu_tx_get_txg(tx);
530 
531 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
532 	mutex_enter(&vd->vdev_trim_lock);
533 
534 	if (ta->trim_type == TRIM_TYPE_MANUAL &&
535 	    vd->vdev_trim_offset[txg & TXG_MASK] == 0) {
536 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
537 		*guid = vd->vdev_guid;
538 
539 		/* This is the first write of this txg. */
540 		dsl_sync_task_nowait(spa_get_dsl(spa),
541 		    vdev_trim_zap_update_sync, guid, tx);
542 	}
543 
544 	/*
545 	 * We know the vdev_t will still be around since all consumers of
546 	 * vdev_free must stop the trimming first.
547 	 */
548 	if ((ta->trim_type == TRIM_TYPE_MANUAL &&
549 	    vdev_trim_should_stop(vd)) ||
550 	    (ta->trim_type == TRIM_TYPE_AUTO &&
551 	    vdev_autotrim_should_stop(vd->vdev_top))) {
552 		mutex_enter(&vd->vdev_trim_io_lock);
553 		vd->vdev_trim_inflight[ta->trim_type]--;
554 		mutex_exit(&vd->vdev_trim_io_lock);
555 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
556 		mutex_exit(&vd->vdev_trim_lock);
557 		dmu_tx_commit(tx);
558 		return (SET_ERROR(EINTR));
559 	}
560 	mutex_exit(&vd->vdev_trim_lock);
561 
562 	if (ta->trim_type == TRIM_TYPE_MANUAL)
563 		vd->vdev_trim_offset[txg & TXG_MASK] = start + size;
564 
565 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
566 		cb = vdev_trim_cb;
567 	} else if (ta->trim_type == TRIM_TYPE_AUTO) {
568 		cb = vdev_autotrim_cb;
569 	} else {
570 		cb = vdev_trim_simple_cb;
571 	}
572 
573 	zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd,
574 	    start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL,
575 	    ta->trim_flags));
576 	/* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
577 
578 	dmu_tx_commit(tx);
579 
580 	return (0);
581 }
582 
583 /*
584  * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
585  * Additional parameters describing how the TRIM should be performed must
586  * be set in the trim_args structure.  See the trim_args definition for
587  * additional information.
588  */
589 static int
590 vdev_trim_ranges(trim_args_t *ta)
591 {
592 	vdev_t *vd = ta->trim_vdev;
593 	zfs_btree_t *t = &ta->trim_tree->rt_root;
594 	zfs_btree_index_t idx;
595 	uint64_t extent_bytes_max = ta->trim_extent_bytes_max;
596 	uint64_t extent_bytes_min = ta->trim_extent_bytes_min;
597 	spa_t *spa = vd->vdev_spa;
598 	int error = 0;
599 
600 	ta->trim_start_time = gethrtime();
601 	ta->trim_bytes_done = 0;
602 
603 	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
604 	    rs = zfs_btree_next(t, &idx, &idx)) {
605 		uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs,
606 		    ta->trim_tree);
607 
608 		if (extent_bytes_min && size < extent_bytes_min) {
609 			spa_iostats_trim_add(spa, ta->trim_type,
610 			    0, 0, 1, size, 0, 0);
611 			continue;
612 		}
613 
614 		/* Split range into legally-sized physical chunks */
615 		uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1;
616 
617 		for (uint64_t w = 0; w < writes_required; w++) {
618 			error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE +
619 			    rs_get_start(rs, ta->trim_tree) +
620 			    (w *extent_bytes_max), MIN(size -
621 			    (w * extent_bytes_max), extent_bytes_max));
622 			if (error != 0) {
623 				goto done;
624 			}
625 		}
626 	}
627 
628 done:
629 	/*
630 	 * Make sure all TRIMs for this metaslab have completed before
631 	 * returning. TRIM zios have lower priority over regular or syncing
632 	 * zios, so all TRIM zios for this metaslab must complete before the
633 	 * metaslab is re-enabled. Otherwise it's possible write zios to
634 	 * this metaslab could cut ahead of still queued TRIM zios for this
635 	 * metaslab causing corruption if the ranges overlap.
636 	 */
637 	mutex_enter(&vd->vdev_trim_io_lock);
638 	while (vd->vdev_trim_inflight[0] > 0) {
639 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
640 	}
641 	mutex_exit(&vd->vdev_trim_io_lock);
642 
643 	return (error);
644 }
645 
646 static void
647 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
648 {
649 	uint64_t *last_rs_end = (uint64_t *)arg;
650 
651 	if (physical_rs->rs_end > *last_rs_end)
652 		*last_rs_end = physical_rs->rs_end;
653 }
654 
655 static void
656 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs)
657 {
658 	vdev_t *vd = (vdev_t *)arg;
659 
660 	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
661 	vd->vdev_trim_bytes_est += size;
662 
663 	if (vd->vdev_trim_last_offset >= physical_rs->rs_end) {
664 		vd->vdev_trim_bytes_done += size;
665 	} else if (vd->vdev_trim_last_offset > physical_rs->rs_start &&
666 	    vd->vdev_trim_last_offset <= physical_rs->rs_end) {
667 		vd->vdev_trim_bytes_done +=
668 		    vd->vdev_trim_last_offset - physical_rs->rs_start;
669 	}
670 }
671 
672 /*
673  * Calculates the completion percentage of a manual TRIM.
674  */
675 static void
676 vdev_trim_calculate_progress(vdev_t *vd)
677 {
678 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
679 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
680 	ASSERT(vd->vdev_leaf_zap != 0);
681 
682 	vd->vdev_trim_bytes_est = 0;
683 	vd->vdev_trim_bytes_done = 0;
684 
685 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
686 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
687 		mutex_enter(&msp->ms_lock);
688 
689 		uint64_t ms_free = (msp->ms_size -
690 		    metaslab_allocated_space(msp)) /
691 		    vdev_get_ndisks(vd->vdev_top);
692 
693 		/*
694 		 * Convert the metaslab range to a physical range
695 		 * on our vdev. We use this to determine if we are
696 		 * in the middle of this metaslab range.
697 		 */
698 		range_seg64_t logical_rs, physical_rs, remain_rs;
699 		logical_rs.rs_start = msp->ms_start;
700 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
701 
702 		/* Metaslab space after this offset has not been trimmed. */
703 		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
704 		if (vd->vdev_trim_last_offset <= physical_rs.rs_start) {
705 			vd->vdev_trim_bytes_est += ms_free;
706 			mutex_exit(&msp->ms_lock);
707 			continue;
708 		}
709 
710 		/* Metaslab space before this offset has been trimmed */
711 		uint64_t last_rs_end = physical_rs.rs_end;
712 		if (!vdev_xlate_is_empty(&remain_rs)) {
713 			vdev_xlate_walk(vd, &remain_rs,
714 			    vdev_trim_xlate_last_rs_end, &last_rs_end);
715 		}
716 
717 		if (vd->vdev_trim_last_offset > last_rs_end) {
718 			vd->vdev_trim_bytes_done += ms_free;
719 			vd->vdev_trim_bytes_est += ms_free;
720 			mutex_exit(&msp->ms_lock);
721 			continue;
722 		}
723 
724 		/*
725 		 * If we get here, we're in the middle of trimming this
726 		 * metaslab.  Load it and walk the free tree for more
727 		 * accurate progress estimation.
728 		 */
729 		VERIFY0(metaslab_load(msp));
730 
731 		range_tree_t *rt = msp->ms_allocatable;
732 		zfs_btree_t *bt = &rt->rt_root;
733 		zfs_btree_index_t idx;
734 		for (range_seg_t *rs = zfs_btree_first(bt, &idx);
735 		    rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) {
736 			logical_rs.rs_start = rs_get_start(rs, rt);
737 			logical_rs.rs_end = rs_get_end(rs, rt);
738 
739 			vdev_xlate_walk(vd, &logical_rs,
740 			    vdev_trim_xlate_progress, vd);
741 		}
742 		mutex_exit(&msp->ms_lock);
743 	}
744 }
745 
746 /*
747  * Load from disk the vdev's manual TRIM information.  This includes the
748  * state, progress, and options provided when initiating the manual TRIM.
749  */
750 static int
751 vdev_trim_load(vdev_t *vd)
752 {
753 	int err = 0;
754 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
755 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
756 	ASSERT(vd->vdev_leaf_zap != 0);
757 
758 	if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE ||
759 	    vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) {
760 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
761 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET,
762 		    sizeof (vd->vdev_trim_last_offset), 1,
763 		    &vd->vdev_trim_last_offset);
764 		if (err == ENOENT) {
765 			vd->vdev_trim_last_offset = 0;
766 			err = 0;
767 		}
768 
769 		if (err == 0) {
770 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
771 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE,
772 			    sizeof (vd->vdev_trim_rate), 1,
773 			    &vd->vdev_trim_rate);
774 			if (err == ENOENT) {
775 				vd->vdev_trim_rate = 0;
776 				err = 0;
777 			}
778 		}
779 
780 		if (err == 0) {
781 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
782 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL,
783 			    sizeof (vd->vdev_trim_partial), 1,
784 			    &vd->vdev_trim_partial);
785 			if (err == ENOENT) {
786 				vd->vdev_trim_partial = 0;
787 				err = 0;
788 			}
789 		}
790 
791 		if (err == 0) {
792 			err = zap_lookup(vd->vdev_spa->spa_meta_objset,
793 			    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE,
794 			    sizeof (vd->vdev_trim_secure), 1,
795 			    &vd->vdev_trim_secure);
796 			if (err == ENOENT) {
797 				vd->vdev_trim_secure = 0;
798 				err = 0;
799 			}
800 		}
801 	}
802 
803 	vdev_trim_calculate_progress(vd);
804 
805 	return (err);
806 }
807 
808 static void
809 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs)
810 {
811 	trim_args_t *ta = arg;
812 	vdev_t *vd = ta->trim_vdev;
813 
814 	/*
815 	 * Only a manual trim will be traversing the vdev sequentially.
816 	 * For an auto trim all valid ranges should be added.
817 	 */
818 	if (ta->trim_type == TRIM_TYPE_MANUAL) {
819 
820 		/* Only add segments that we have not visited yet */
821 		if (physical_rs->rs_end <= vd->vdev_trim_last_offset)
822 			return;
823 
824 		/* Pick up where we left off mid-range. */
825 		if (vd->vdev_trim_last_offset > physical_rs->rs_start) {
826 			ASSERT3U(physical_rs->rs_end, >,
827 			    vd->vdev_trim_last_offset);
828 			physical_rs->rs_start = vd->vdev_trim_last_offset;
829 		}
830 	}
831 
832 	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
833 
834 	range_tree_add(ta->trim_tree, physical_rs->rs_start,
835 	    physical_rs->rs_end - physical_rs->rs_start);
836 }
837 
838 /*
839  * Convert the logical range into physical ranges and add them to the
840  * range tree passed in the trim_args_t.
841  */
842 static void
843 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size)
844 {
845 	trim_args_t *ta = arg;
846 	vdev_t *vd = ta->trim_vdev;
847 	range_seg64_t logical_rs;
848 	logical_rs.rs_start = start;
849 	logical_rs.rs_end = start + size;
850 
851 	/*
852 	 * Every range to be trimmed must be part of ms_allocatable.
853 	 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
854 	 * is always the case.
855 	 */
856 	if (zfs_flags & ZFS_DEBUG_TRIM) {
857 		metaslab_t *msp = ta->trim_msp;
858 		VERIFY0(metaslab_load(msp));
859 		VERIFY3B(msp->ms_loaded, ==, B_TRUE);
860 		VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
861 	}
862 
863 	ASSERT(vd->vdev_ops->vdev_op_leaf);
864 	vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg);
865 }
866 
867 /*
868  * Each manual TRIM thread is responsible for trimming the unallocated
869  * space for each leaf vdev.  This is accomplished by sequentially iterating
870  * over its top-level metaslabs and issuing TRIM I/O for the space described
871  * by its ms_allocatable.  While a metaslab is undergoing trimming it is
872  * not eligible for new allocations.
873  */
874 static __attribute__((noreturn)) void
875 vdev_trim_thread(void *arg)
876 {
877 	vdev_t *vd = arg;
878 	spa_t *spa = vd->vdev_spa;
879 	trim_args_t ta;
880 	int error = 0;
881 
882 	/*
883 	 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
884 	 * vdev_trim().  Wait for the updated values to be reflected
885 	 * in the zap in order to start with the requested settings.
886 	 */
887 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
888 
889 	ASSERT(vdev_is_concrete(vd));
890 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
891 
892 	vd->vdev_trim_last_offset = 0;
893 	vd->vdev_trim_rate = 0;
894 	vd->vdev_trim_partial = 0;
895 	vd->vdev_trim_secure = 0;
896 
897 	VERIFY0(vdev_trim_load(vd));
898 
899 	ta.trim_vdev = vd;
900 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
901 	ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min;
902 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
903 	ta.trim_type = TRIM_TYPE_MANUAL;
904 	ta.trim_flags = 0;
905 
906 	/*
907 	 * When a secure TRIM has been requested infer that the intent
908 	 * is that everything must be trimmed.  Override the default
909 	 * minimum TRIM size to prevent ranges from being skipped.
910 	 */
911 	if (vd->vdev_trim_secure) {
912 		ta.trim_flags |= ZIO_TRIM_SECURE;
913 		ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
914 	}
915 
916 	uint64_t ms_count = 0;
917 	for (uint64_t i = 0; !vd->vdev_detached &&
918 	    i < vd->vdev_top->vdev_ms_count; i++) {
919 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
920 
921 		/*
922 		 * If we've expanded the top-level vdev or it's our
923 		 * first pass, calculate our progress.
924 		 */
925 		if (vd->vdev_top->vdev_ms_count != ms_count) {
926 			vdev_trim_calculate_progress(vd);
927 			ms_count = vd->vdev_top->vdev_ms_count;
928 		}
929 
930 		spa_config_exit(spa, SCL_CONFIG, FTAG);
931 		metaslab_disable(msp);
932 		mutex_enter(&msp->ms_lock);
933 		VERIFY0(metaslab_load(msp));
934 
935 		/*
936 		 * If a partial TRIM was requested skip metaslabs which have
937 		 * never been initialized and thus have never been written.
938 		 */
939 		if (msp->ms_sm == NULL && vd->vdev_trim_partial) {
940 			mutex_exit(&msp->ms_lock);
941 			metaslab_enable(msp, B_FALSE, B_FALSE);
942 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
943 			vdev_trim_calculate_progress(vd);
944 			continue;
945 		}
946 
947 		ta.trim_msp = msp;
948 		range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta);
949 		range_tree_vacate(msp->ms_trim, NULL, NULL);
950 		mutex_exit(&msp->ms_lock);
951 
952 		error = vdev_trim_ranges(&ta);
953 		metaslab_enable(msp, B_TRUE, B_FALSE);
954 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
955 
956 		range_tree_vacate(ta.trim_tree, NULL, NULL);
957 		if (error != 0)
958 			break;
959 	}
960 
961 	spa_config_exit(spa, SCL_CONFIG, FTAG);
962 
963 	range_tree_destroy(ta.trim_tree);
964 
965 	mutex_enter(&vd->vdev_trim_lock);
966 	if (!vd->vdev_trim_exit_wanted) {
967 		if (vdev_writeable(vd)) {
968 			vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
969 			    vd->vdev_trim_rate, vd->vdev_trim_partial,
970 			    vd->vdev_trim_secure);
971 		} else if (vd->vdev_faulted) {
972 			vdev_trim_change_state(vd, VDEV_TRIM_CANCELED,
973 			    vd->vdev_trim_rate, vd->vdev_trim_partial,
974 			    vd->vdev_trim_secure);
975 		}
976 	}
977 	ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0);
978 
979 	/*
980 	 * Drop the vdev_trim_lock while we sync out the txg since it's
981 	 * possible that a device might be trying to come online and must
982 	 * check to see if it needs to restart a trim. That thread will be
983 	 * holding the spa_config_lock which would prevent the txg_wait_synced
984 	 * from completing.
985 	 */
986 	mutex_exit(&vd->vdev_trim_lock);
987 	txg_wait_synced(spa_get_dsl(spa), 0);
988 	mutex_enter(&vd->vdev_trim_lock);
989 
990 	vd->vdev_trim_thread = NULL;
991 	cv_broadcast(&vd->vdev_trim_cv);
992 	mutex_exit(&vd->vdev_trim_lock);
993 
994 	thread_exit();
995 }
996 
997 /*
998  * Initiates a manual TRIM for the vdev_t.  Callers must hold vdev_trim_lock,
999  * the vdev_t must be a leaf and cannot already be manually trimming.
1000  */
1001 void
1002 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure)
1003 {
1004 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1005 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1006 	ASSERT(vdev_is_concrete(vd));
1007 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1008 	ASSERT(!vd->vdev_detached);
1009 	ASSERT(!vd->vdev_trim_exit_wanted);
1010 	ASSERT(!vd->vdev_top->vdev_removing);
1011 	ASSERT(!vd->vdev_rz_expanding);
1012 
1013 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure);
1014 	vd->vdev_trim_thread = thread_create(NULL, 0,
1015 	    vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1016 }
1017 
1018 /*
1019  * Wait for the trimming thread to be terminated (canceled or stopped).
1020  */
1021 static void
1022 vdev_trim_stop_wait_impl(vdev_t *vd)
1023 {
1024 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1025 
1026 	while (vd->vdev_trim_thread != NULL)
1027 		cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock);
1028 
1029 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1030 	vd->vdev_trim_exit_wanted = B_FALSE;
1031 }
1032 
1033 /*
1034  * Wait for vdev trim threads which were listed to cleanly exit.
1035  */
1036 void
1037 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list)
1038 {
1039 	(void) spa;
1040 	vdev_t *vd;
1041 
1042 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1043 
1044 	while ((vd = list_remove_head(vd_list)) != NULL) {
1045 		mutex_enter(&vd->vdev_trim_lock);
1046 		vdev_trim_stop_wait_impl(vd);
1047 		mutex_exit(&vd->vdev_trim_lock);
1048 	}
1049 }
1050 
1051 /*
1052  * Stop trimming a device, with the resultant trimming state being tgt_state.
1053  * For blocking behavior pass NULL for vd_list.  Otherwise, when a list_t is
1054  * provided the stopping vdev is inserted in to the list.  Callers are then
1055  * required to call vdev_trim_stop_wait() to block for all the trim threads
1056  * to exit.  The caller must hold vdev_trim_lock and must not be writing to
1057  * the spa config, as the trimming thread may try to enter the config as a
1058  * reader before exiting.
1059  */
1060 void
1061 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list)
1062 {
1063 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
1064 	ASSERT(MUTEX_HELD(&vd->vdev_trim_lock));
1065 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1066 	ASSERT(vdev_is_concrete(vd));
1067 
1068 	/*
1069 	 * Allow cancel requests to proceed even if the trim thread has
1070 	 * stopped.
1071 	 */
1072 	if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED)
1073 		return;
1074 
1075 	vdev_trim_change_state(vd, tgt_state, 0, 0, 0);
1076 	vd->vdev_trim_exit_wanted = B_TRUE;
1077 
1078 	if (vd_list == NULL) {
1079 		vdev_trim_stop_wait_impl(vd);
1080 	} else {
1081 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
1082 		list_insert_tail(vd_list, vd);
1083 	}
1084 }
1085 
1086 /*
1087  * Requests that all listed vdevs stop trimming.
1088  */
1089 static void
1090 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state,
1091     list_t *vd_list)
1092 {
1093 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
1094 		mutex_enter(&vd->vdev_trim_lock);
1095 		vdev_trim_stop(vd, tgt_state, vd_list);
1096 		mutex_exit(&vd->vdev_trim_lock);
1097 		return;
1098 	}
1099 
1100 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1101 		vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state,
1102 		    vd_list);
1103 	}
1104 }
1105 
1106 /*
1107  * Convenience function to stop trimming of a vdev tree and set all trim
1108  * thread pointers to NULL.
1109  */
1110 void
1111 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state)
1112 {
1113 	spa_t *spa = vd->vdev_spa;
1114 	list_t vd_list;
1115 	vdev_t *vd_l2cache;
1116 
1117 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1118 
1119 	list_create(&vd_list, sizeof (vdev_t),
1120 	    offsetof(vdev_t, vdev_trim_node));
1121 
1122 	vdev_trim_stop_all_impl(vd, tgt_state, &vd_list);
1123 
1124 	/*
1125 	 * Iterate over cache devices and request stop trimming the
1126 	 * whole device in case we export the pool or remove the cache
1127 	 * device prematurely.
1128 	 */
1129 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1130 		vd_l2cache = spa->spa_l2cache.sav_vdevs[i];
1131 		vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list);
1132 	}
1133 
1134 	vdev_trim_stop_wait(spa, &vd_list);
1135 
1136 	if (vd->vdev_spa->spa_sync_on) {
1137 		/* Make sure that our state has been synced to disk */
1138 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1139 	}
1140 
1141 	list_destroy(&vd_list);
1142 }
1143 
1144 /*
1145  * Conditionally restarts a manual TRIM given its on-disk state.
1146  */
1147 void
1148 vdev_trim_restart(vdev_t *vd)
1149 {
1150 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1151 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
1152 
1153 	if (vd->vdev_leaf_zap != 0) {
1154 		mutex_enter(&vd->vdev_trim_lock);
1155 		uint64_t trim_state = VDEV_TRIM_NONE;
1156 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1157 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE,
1158 		    sizeof (trim_state), 1, &trim_state);
1159 		ASSERT(err == 0 || err == ENOENT);
1160 		vd->vdev_trim_state = trim_state;
1161 
1162 		uint64_t timestamp = 0;
1163 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
1164 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME,
1165 		    sizeof (timestamp), 1, &timestamp);
1166 		ASSERT(err == 0 || err == ENOENT);
1167 		vd->vdev_trim_action_time = timestamp;
1168 
1169 		if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED ||
1170 		    vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) {
1171 			/* load progress for reporting, but don't resume */
1172 			VERIFY0(vdev_trim_load(vd));
1173 		} else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE &&
1174 		    vdev_writeable(vd) && !vd->vdev_top->vdev_removing &&
1175 		    !vd->vdev_top->vdev_rz_expanding &&
1176 		    vd->vdev_trim_thread == NULL) {
1177 			VERIFY0(vdev_trim_load(vd));
1178 			vdev_trim(vd, vd->vdev_trim_rate,
1179 			    vd->vdev_trim_partial, vd->vdev_trim_secure);
1180 		}
1181 
1182 		mutex_exit(&vd->vdev_trim_lock);
1183 	}
1184 
1185 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1186 		vdev_trim_restart(vd->vdev_child[i]);
1187 	}
1188 }
1189 
1190 /*
1191  * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1192  * every TRIM range is contained within ms_allocatable.
1193  */
1194 static void
1195 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size)
1196 {
1197 	trim_args_t *ta = arg;
1198 	metaslab_t *msp = ta->trim_msp;
1199 
1200 	VERIFY3B(msp->ms_loaded, ==, B_TRUE);
1201 	VERIFY3U(msp->ms_disabled, >, 0);
1202 	VERIFY(range_tree_contains(msp->ms_allocatable, start, size));
1203 }
1204 
1205 /*
1206  * Each automatic TRIM thread is responsible for managing the trimming of a
1207  * top-level vdev in the pool.  No automatic TRIM state is maintained on-disk.
1208  *
1209  * N.B. This behavior is different from a manual TRIM where a thread
1210  * is created for each leaf vdev, instead of each top-level vdev.
1211  */
1212 static __attribute__((noreturn)) void
1213 vdev_autotrim_thread(void *arg)
1214 {
1215 	vdev_t *vd = arg;
1216 	spa_t *spa = vd->vdev_spa;
1217 	int shift = 0;
1218 
1219 	mutex_enter(&vd->vdev_autotrim_lock);
1220 	ASSERT3P(vd->vdev_top, ==, vd);
1221 	ASSERT3P(vd->vdev_autotrim_thread, !=, NULL);
1222 	mutex_exit(&vd->vdev_autotrim_lock);
1223 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1224 
1225 	while (!vdev_autotrim_should_stop(vd)) {
1226 		int txgs_per_trim = MAX(zfs_trim_txg_batch, 1);
1227 		uint64_t extent_bytes_max = zfs_trim_extent_bytes_max;
1228 		uint64_t extent_bytes_min = zfs_trim_extent_bytes_min;
1229 
1230 		/*
1231 		 * All of the metaslabs are divided in to groups of size
1232 		 * num_metaslabs / zfs_trim_txg_batch.  Each of these groups
1233 		 * is composed of metaslabs which are spread evenly over the
1234 		 * device.
1235 		 *
1236 		 * For example, when zfs_trim_txg_batch = 32 (default) then
1237 		 * group 0 will contain metaslabs 0, 32, 64, ...;
1238 		 * group 1 will contain metaslabs 1, 33, 65, ...;
1239 		 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1240 		 *
1241 		 * On each pass through the while() loop one of these groups
1242 		 * is selected.  This is accomplished by using a shift value
1243 		 * to select the starting metaslab, then striding over the
1244 		 * metaslabs using the zfs_trim_txg_batch size.  This is
1245 		 * done to accomplish two things.
1246 		 *
1247 		 * 1) By dividing the metaslabs in to groups, and making sure
1248 		 *    that each group takes a minimum of one txg to process.
1249 		 *    Then zfs_trim_txg_batch controls the minimum number of
1250 		 *    txgs which must occur before a metaslab is revisited.
1251 		 *
1252 		 * 2) Selecting non-consecutive metaslabs distributes the
1253 		 *    TRIM commands for a group evenly over the entire device.
1254 		 *    This can be advantageous for certain types of devices.
1255 		 */
1256 		for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count;
1257 		    i += txgs_per_trim) {
1258 			metaslab_t *msp = vd->vdev_ms[i];
1259 			range_tree_t *trim_tree;
1260 			boolean_t issued_trim = B_FALSE;
1261 			boolean_t wait_aborted = B_FALSE;
1262 
1263 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1264 			metaslab_disable(msp);
1265 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1266 
1267 			mutex_enter(&msp->ms_lock);
1268 
1269 			/*
1270 			 * Skip the metaslab when it has never been allocated
1271 			 * or when there are no recent frees to trim.
1272 			 */
1273 			if (msp->ms_sm == NULL ||
1274 			    range_tree_is_empty(msp->ms_trim)) {
1275 				mutex_exit(&msp->ms_lock);
1276 				metaslab_enable(msp, B_FALSE, B_FALSE);
1277 				continue;
1278 			}
1279 
1280 			/*
1281 			 * Skip the metaslab when it has already been disabled.
1282 			 * This may happen when a manual TRIM or initialize
1283 			 * operation is running concurrently.  In the case
1284 			 * of a manual TRIM, the ms_trim tree will have been
1285 			 * vacated.  Only ranges added after the manual TRIM
1286 			 * disabled the metaslab will be included in the tree.
1287 			 * These will be processed when the automatic TRIM
1288 			 * next revisits this metaslab.
1289 			 */
1290 			if (msp->ms_disabled > 1) {
1291 				mutex_exit(&msp->ms_lock);
1292 				metaslab_enable(msp, B_FALSE, B_FALSE);
1293 				continue;
1294 			}
1295 
1296 			/*
1297 			 * Allocate an empty range tree which is swapped in
1298 			 * for the existing ms_trim tree while it is processed.
1299 			 */
1300 			trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
1301 			    0, 0);
1302 			range_tree_swap(&msp->ms_trim, &trim_tree);
1303 			ASSERT(range_tree_is_empty(msp->ms_trim));
1304 
1305 			/*
1306 			 * There are two cases when constructing the per-vdev
1307 			 * trim trees for a metaslab.  If the top-level vdev
1308 			 * has no children then it is also a leaf and should
1309 			 * be trimmed.  Otherwise our children are the leaves
1310 			 * and a trim tree should be constructed for each.
1311 			 */
1312 			trim_args_t *tap;
1313 			uint64_t children = vd->vdev_children;
1314 			if (children == 0) {
1315 				children = 1;
1316 				tap = kmem_zalloc(sizeof (trim_args_t) *
1317 				    children, KM_SLEEP);
1318 				tap[0].trim_vdev = vd;
1319 			} else {
1320 				tap = kmem_zalloc(sizeof (trim_args_t) *
1321 				    children, KM_SLEEP);
1322 
1323 				for (uint64_t c = 0; c < children; c++) {
1324 					tap[c].trim_vdev = vd->vdev_child[c];
1325 				}
1326 			}
1327 
1328 			for (uint64_t c = 0; c < children; c++) {
1329 				trim_args_t *ta = &tap[c];
1330 				vdev_t *cvd = ta->trim_vdev;
1331 
1332 				ta->trim_msp = msp;
1333 				ta->trim_extent_bytes_max = extent_bytes_max;
1334 				ta->trim_extent_bytes_min = extent_bytes_min;
1335 				ta->trim_type = TRIM_TYPE_AUTO;
1336 				ta->trim_flags = 0;
1337 
1338 				if (cvd->vdev_detached ||
1339 				    !vdev_writeable(cvd) ||
1340 				    !cvd->vdev_has_trim ||
1341 				    cvd->vdev_trim_thread != NULL) {
1342 					continue;
1343 				}
1344 
1345 				/*
1346 				 * When a device has an attached hot spare, or
1347 				 * is being replaced it will not be trimmed.
1348 				 * This is done to avoid adding additional
1349 				 * stress to a potentially unhealthy device,
1350 				 * and to minimize the required rebuild time.
1351 				 */
1352 				if (!cvd->vdev_ops->vdev_op_leaf)
1353 					continue;
1354 
1355 				ta->trim_tree = range_tree_create(NULL,
1356 				    RANGE_SEG64, NULL, 0, 0);
1357 				range_tree_walk(trim_tree,
1358 				    vdev_trim_range_add, ta);
1359 			}
1360 
1361 			mutex_exit(&msp->ms_lock);
1362 			spa_config_exit(spa, SCL_CONFIG, FTAG);
1363 
1364 			/*
1365 			 * Issue the TRIM I/Os for all ranges covered by the
1366 			 * TRIM trees.  These ranges are safe to TRIM because
1367 			 * no new allocations will be performed until the call
1368 			 * to metaslab_enabled() below.
1369 			 */
1370 			for (uint64_t c = 0; c < children; c++) {
1371 				trim_args_t *ta = &tap[c];
1372 
1373 				/*
1374 				 * Always yield to a manual TRIM if one has
1375 				 * been started for the child vdev.
1376 				 */
1377 				if (ta->trim_tree == NULL ||
1378 				    ta->trim_vdev->vdev_trim_thread != NULL) {
1379 					continue;
1380 				}
1381 
1382 				/*
1383 				 * After this point metaslab_enable() must be
1384 				 * called with the sync flag set.  This is done
1385 				 * here because vdev_trim_ranges() is allowed
1386 				 * to be interrupted (EINTR) before issuing all
1387 				 * of the required TRIM I/Os.
1388 				 */
1389 				issued_trim = B_TRUE;
1390 
1391 				int error = vdev_trim_ranges(ta);
1392 				if (error)
1393 					break;
1394 			}
1395 
1396 			/*
1397 			 * Verify every range which was trimmed is still
1398 			 * contained within the ms_allocatable tree.
1399 			 */
1400 			if (zfs_flags & ZFS_DEBUG_TRIM) {
1401 				mutex_enter(&msp->ms_lock);
1402 				VERIFY0(metaslab_load(msp));
1403 				VERIFY3P(tap[0].trim_msp, ==, msp);
1404 				range_tree_walk(trim_tree,
1405 				    vdev_trim_range_verify, &tap[0]);
1406 				mutex_exit(&msp->ms_lock);
1407 			}
1408 
1409 			range_tree_vacate(trim_tree, NULL, NULL);
1410 			range_tree_destroy(trim_tree);
1411 
1412 			/*
1413 			 * Wait for couples of kicks, to ensure the trim io is
1414 			 * synced. If the wait is aborted due to
1415 			 * vdev_autotrim_exit_wanted, we need to signal
1416 			 * metaslab_enable() to wait for sync.
1417 			 */
1418 			if (issued_trim) {
1419 				wait_aborted = vdev_autotrim_wait_kick(vd,
1420 				    TXG_CONCURRENT_STATES + TXG_DEFER_SIZE);
1421 			}
1422 
1423 			metaslab_enable(msp, wait_aborted, B_FALSE);
1424 			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1425 
1426 			for (uint64_t c = 0; c < children; c++) {
1427 				trim_args_t *ta = &tap[c];
1428 
1429 				if (ta->trim_tree == NULL)
1430 					continue;
1431 
1432 				range_tree_vacate(ta->trim_tree, NULL, NULL);
1433 				range_tree_destroy(ta->trim_tree);
1434 			}
1435 
1436 			kmem_free(tap, sizeof (trim_args_t) * children);
1437 
1438 			if (vdev_autotrim_should_stop(vd))
1439 				break;
1440 		}
1441 
1442 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1443 
1444 		vdev_autotrim_wait_kick(vd, 1);
1445 
1446 		shift++;
1447 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1448 	}
1449 
1450 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1451 		vdev_t *cvd = vd->vdev_child[c];
1452 		mutex_enter(&cvd->vdev_trim_io_lock);
1453 
1454 		while (cvd->vdev_trim_inflight[1] > 0) {
1455 			cv_wait(&cvd->vdev_trim_io_cv,
1456 			    &cvd->vdev_trim_io_lock);
1457 		}
1458 		mutex_exit(&cvd->vdev_trim_io_lock);
1459 	}
1460 
1461 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1462 
1463 	/*
1464 	 * When exiting because the autotrim property was set to off, then
1465 	 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1466 	 */
1467 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) {
1468 		for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
1469 			metaslab_t *msp = vd->vdev_ms[i];
1470 
1471 			mutex_enter(&msp->ms_lock);
1472 			range_tree_vacate(msp->ms_trim, NULL, NULL);
1473 			mutex_exit(&msp->ms_lock);
1474 		}
1475 	}
1476 
1477 	mutex_enter(&vd->vdev_autotrim_lock);
1478 	ASSERT(vd->vdev_autotrim_thread != NULL);
1479 	vd->vdev_autotrim_thread = NULL;
1480 	cv_broadcast(&vd->vdev_autotrim_cv);
1481 	mutex_exit(&vd->vdev_autotrim_lock);
1482 
1483 	thread_exit();
1484 }
1485 
1486 /*
1487  * Starts an autotrim thread, if needed, for each top-level vdev which can be
1488  * trimmed.  A top-level vdev which has been evacuated will never be trimmed.
1489  */
1490 void
1491 vdev_autotrim(spa_t *spa)
1492 {
1493 	vdev_t *root_vd = spa->spa_root_vdev;
1494 
1495 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1496 		vdev_t *tvd = root_vd->vdev_child[i];
1497 
1498 		mutex_enter(&tvd->vdev_autotrim_lock);
1499 		if (vdev_writeable(tvd) && !tvd->vdev_removing &&
1500 		    tvd->vdev_autotrim_thread == NULL &&
1501 		    !tvd->vdev_rz_expanding) {
1502 			ASSERT3P(tvd->vdev_top, ==, tvd);
1503 
1504 			tvd->vdev_autotrim_thread = thread_create(NULL, 0,
1505 			    vdev_autotrim_thread, tvd, 0, &p0, TS_RUN,
1506 			    maxclsyspri);
1507 			ASSERT(tvd->vdev_autotrim_thread != NULL);
1508 		}
1509 		mutex_exit(&tvd->vdev_autotrim_lock);
1510 	}
1511 }
1512 
1513 /*
1514  * Wait for the vdev_autotrim_thread associated with the passed top-level
1515  * vdev to be terminated (canceled or stopped).
1516  */
1517 void
1518 vdev_autotrim_stop_wait(vdev_t *tvd)
1519 {
1520 	mutex_enter(&tvd->vdev_autotrim_lock);
1521 	if (tvd->vdev_autotrim_thread != NULL) {
1522 		tvd->vdev_autotrim_exit_wanted = B_TRUE;
1523 		cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1524 		cv_wait(&tvd->vdev_autotrim_cv,
1525 		    &tvd->vdev_autotrim_lock);
1526 
1527 		ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL);
1528 		tvd->vdev_autotrim_exit_wanted = B_FALSE;
1529 	}
1530 	mutex_exit(&tvd->vdev_autotrim_lock);
1531 }
1532 
1533 void
1534 vdev_autotrim_kick(spa_t *spa)
1535 {
1536 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1537 
1538 	vdev_t *root_vd = spa->spa_root_vdev;
1539 	vdev_t *tvd;
1540 
1541 	for (uint64_t i = 0; i < root_vd->vdev_children; i++) {
1542 		tvd = root_vd->vdev_child[i];
1543 
1544 		mutex_enter(&tvd->vdev_autotrim_lock);
1545 		if (tvd->vdev_autotrim_thread != NULL)
1546 			cv_broadcast(&tvd->vdev_autotrim_kick_cv);
1547 		mutex_exit(&tvd->vdev_autotrim_lock);
1548 	}
1549 }
1550 
1551 /*
1552  * Wait for all of the vdev_autotrim_thread associated with the pool to
1553  * be terminated (canceled or stopped).
1554  */
1555 void
1556 vdev_autotrim_stop_all(spa_t *spa)
1557 {
1558 	vdev_t *root_vd = spa->spa_root_vdev;
1559 
1560 	for (uint64_t i = 0; i < root_vd->vdev_children; i++)
1561 		vdev_autotrim_stop_wait(root_vd->vdev_child[i]);
1562 }
1563 
1564 /*
1565  * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1566  */
1567 void
1568 vdev_autotrim_restart(spa_t *spa)
1569 {
1570 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1571 
1572 	if (spa->spa_autotrim)
1573 		vdev_autotrim(spa);
1574 }
1575 
1576 static __attribute__((noreturn)) void
1577 vdev_trim_l2arc_thread(void *arg)
1578 {
1579 	vdev_t		*vd = arg;
1580 	spa_t		*spa = vd->vdev_spa;
1581 	l2arc_dev_t	*dev = l2arc_vdev_get(vd);
1582 	trim_args_t	ta = {0};
1583 	range_seg64_t 	physical_rs;
1584 
1585 	ASSERT(vdev_is_concrete(vd));
1586 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1587 
1588 	vd->vdev_trim_last_offset = 0;
1589 	vd->vdev_trim_rate = 0;
1590 	vd->vdev_trim_partial = 0;
1591 	vd->vdev_trim_secure = 0;
1592 
1593 	ta.trim_vdev = vd;
1594 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1595 	ta.trim_type = TRIM_TYPE_MANUAL;
1596 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1597 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1598 	ta.trim_flags = 0;
1599 
1600 	physical_rs.rs_start = vd->vdev_trim_bytes_done = 0;
1601 	physical_rs.rs_end = vd->vdev_trim_bytes_est =
1602 	    vdev_get_min_asize(vd);
1603 
1604 	range_tree_add(ta.trim_tree, physical_rs.rs_start,
1605 	    physical_rs.rs_end - physical_rs.rs_start);
1606 
1607 	mutex_enter(&vd->vdev_trim_lock);
1608 	vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1609 	mutex_exit(&vd->vdev_trim_lock);
1610 
1611 	(void) vdev_trim_ranges(&ta);
1612 
1613 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1614 	mutex_enter(&vd->vdev_trim_io_lock);
1615 	while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) {
1616 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1617 	}
1618 	mutex_exit(&vd->vdev_trim_io_lock);
1619 
1620 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1621 	range_tree_destroy(ta.trim_tree);
1622 
1623 	mutex_enter(&vd->vdev_trim_lock);
1624 	if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) {
1625 		vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE,
1626 		    vd->vdev_trim_rate, vd->vdev_trim_partial,
1627 		    vd->vdev_trim_secure);
1628 	}
1629 	ASSERT(vd->vdev_trim_thread != NULL ||
1630 	    vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0);
1631 
1632 	/*
1633 	 * Drop the vdev_trim_lock while we sync out the txg since it's
1634 	 * possible that a device might be trying to come online and
1635 	 * must check to see if it needs to restart a trim. That thread
1636 	 * will be holding the spa_config_lock which would prevent the
1637 	 * txg_wait_synced from completing. Same strategy as in
1638 	 * vdev_trim_thread().
1639 	 */
1640 	mutex_exit(&vd->vdev_trim_lock);
1641 	txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
1642 	mutex_enter(&vd->vdev_trim_lock);
1643 
1644 	/*
1645 	 * Update the header of the cache device here, before
1646 	 * broadcasting vdev_trim_cv which may lead to the removal
1647 	 * of the device. The same applies for setting l2ad_trim_all to
1648 	 * false.
1649 	 */
1650 	spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd,
1651 	    RW_READER);
1652 	memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize);
1653 	l2arc_dev_hdr_update(dev);
1654 	spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd);
1655 
1656 	vd->vdev_trim_thread = NULL;
1657 	if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE)
1658 		dev->l2ad_trim_all = B_FALSE;
1659 
1660 	cv_broadcast(&vd->vdev_trim_cv);
1661 	mutex_exit(&vd->vdev_trim_lock);
1662 
1663 	thread_exit();
1664 }
1665 
1666 /*
1667  * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1668  * to vd->vdev_trim_thread variable. This facilitates the management of
1669  * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1670  * to a pool or pool creation or when the header of the device is invalid.
1671  */
1672 void
1673 vdev_trim_l2arc(spa_t *spa)
1674 {
1675 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1676 
1677 	/*
1678 	 * Locate the spa's l2arc devices and kick off TRIM threads.
1679 	 */
1680 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1681 		vdev_t *vd = spa->spa_l2cache.sav_vdevs[i];
1682 		l2arc_dev_t *dev = l2arc_vdev_get(vd);
1683 
1684 		if (dev == NULL || !dev->l2ad_trim_all) {
1685 			/*
1686 			 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1687 			 * cache device was not marked for whole device TRIM
1688 			 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1689 			 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1690 			 * l2ad_log_entries > 0).
1691 			 */
1692 			continue;
1693 		}
1694 
1695 		mutex_enter(&vd->vdev_trim_lock);
1696 		ASSERT(vd->vdev_ops->vdev_op_leaf);
1697 		ASSERT(vdev_is_concrete(vd));
1698 		ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1699 		ASSERT(!vd->vdev_detached);
1700 		ASSERT(!vd->vdev_trim_exit_wanted);
1701 		ASSERT(!vd->vdev_top->vdev_removing);
1702 		vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0);
1703 		vd->vdev_trim_thread = thread_create(NULL, 0,
1704 		    vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
1705 		mutex_exit(&vd->vdev_trim_lock);
1706 	}
1707 }
1708 
1709 /*
1710  * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1711  * on leaf vdevs.
1712  */
1713 int
1714 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size)
1715 {
1716 	trim_args_t ta = {0};
1717 	range_seg64_t physical_rs;
1718 	int error;
1719 	physical_rs.rs_start = start;
1720 	physical_rs.rs_end = start + size;
1721 
1722 	ASSERT(vdev_is_concrete(vd));
1723 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1724 	ASSERT(!vd->vdev_detached);
1725 	ASSERT(!vd->vdev_top->vdev_removing);
1726 	ASSERT(!vd->vdev_top->vdev_rz_expanding);
1727 
1728 	ta.trim_vdev = vd;
1729 	ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1730 	ta.trim_type = TRIM_TYPE_SIMPLE;
1731 	ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max;
1732 	ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE;
1733 	ta.trim_flags = 0;
1734 
1735 	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
1736 
1737 	if (physical_rs.rs_end > physical_rs.rs_start) {
1738 		range_tree_add(ta.trim_tree, physical_rs.rs_start,
1739 		    physical_rs.rs_end - physical_rs.rs_start);
1740 	} else {
1741 		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
1742 	}
1743 
1744 	error = vdev_trim_ranges(&ta);
1745 
1746 	mutex_enter(&vd->vdev_trim_io_lock);
1747 	while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) {
1748 		cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock);
1749 	}
1750 	mutex_exit(&vd->vdev_trim_io_lock);
1751 
1752 	range_tree_vacate(ta.trim_tree, NULL, NULL);
1753 	range_tree_destroy(ta.trim_tree);
1754 
1755 	return (error);
1756 }
1757 
1758 EXPORT_SYMBOL(vdev_trim);
1759 EXPORT_SYMBOL(vdev_trim_stop);
1760 EXPORT_SYMBOL(vdev_trim_stop_all);
1761 EXPORT_SYMBOL(vdev_trim_stop_wait);
1762 EXPORT_SYMBOL(vdev_trim_restart);
1763 EXPORT_SYMBOL(vdev_autotrim);
1764 EXPORT_SYMBOL(vdev_autotrim_stop_all);
1765 EXPORT_SYMBOL(vdev_autotrim_stop_wait);
1766 EXPORT_SYMBOL(vdev_autotrim_restart);
1767 EXPORT_SYMBOL(vdev_trim_l2arc);
1768 EXPORT_SYMBOL(vdev_trim_simple);
1769 
1770 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW,
1771 	"Max size of TRIM commands, larger will be split");
1772 
1773 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW,
1774 	"Min size of TRIM commands, smaller will be skipped");
1775 
1776 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW,
1777 	"Skip metaslabs which have never been initialized");
1778 
1779 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW,
1780 	"Min number of txgs to aggregate frees before issuing TRIM");
1781 
1782 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW,
1783 	"Max queued TRIMs outstanding per leaf vdev");
1784