1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016 by Delphix. All rights reserved. 24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC. 25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP 26 * Copyright 2023 RackTop Systems, Inc. 27 */ 28 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/txg.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/vdev_trim.h> 34 #include <sys/metaslab_impl.h> 35 #include <sys/dsl_synctask.h> 36 #include <sys/zap.h> 37 #include <sys/dmu_tx.h> 38 #include <sys/arc_impl.h> 39 40 /* 41 * TRIM is a feature which is used to notify a SSD that some previously 42 * written space is no longer allocated by the pool. This is useful because 43 * writes to a SSD must be performed to blocks which have first been erased. 44 * Ensuring the SSD always has a supply of erased blocks for new writes 45 * helps prevent the performance from deteriorating. 46 * 47 * There are two supported TRIM methods; manual and automatic. 48 * 49 * Manual TRIM: 50 * 51 * A manual TRIM is initiated by running the 'zpool trim' command. A single 52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for 53 * managing that vdev TRIM process. This involves iterating over all the 54 * metaslabs, calculating the unallocated space ranges, and then issuing the 55 * required TRIM I/Os. 56 * 57 * While a metaslab is being actively trimmed it is not eligible to perform 58 * new allocations. After traversing all of the metaslabs the thread is 59 * terminated. Finally, both the requested options and current progress of 60 * the TRIM are regularly written to the pool. This allows the TRIM to be 61 * suspended and resumed as needed. 62 * 63 * Automatic TRIM: 64 * 65 * An automatic TRIM is enabled by setting the 'autotrim' pool property 66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each 67 * top-level (not leaf) vdev in the pool. These threads perform the same 68 * core TRIM process as a manual TRIM, but with a few key differences. 69 * 70 * 1) Automatic TRIM happens continuously in the background and operates 71 * solely on recently freed blocks (ms_trim not ms_allocatable). 72 * 73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has 74 * the benefit of simplifying the threading model, it makes it easier 75 * to coordinate administrative commands, and it ensures only a single 76 * metaslab is disabled at a time. Unlike manual TRIM, this means each 77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its 78 * children. 79 * 80 * 3) There is no automatic TRIM progress information stored on disk, nor 81 * is it reported by 'zpool status'. 82 * 83 * While the automatic TRIM process is highly effective it is more likely 84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to 85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently 86 * TRIM and are skipped. This means small amounts of freed space may not 87 * be automatically trimmed. 88 * 89 * Furthermore, devices with attached hot spares and devices being actively 90 * replaced are skipped. This is done to avoid adding additional stress to 91 * a potentially unhealthy device and to minimize the required rebuild time. 92 * 93 * For this reason it may be beneficial to occasionally manually TRIM a pool 94 * even when automatic TRIM is enabled. 95 */ 96 97 /* 98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths. 99 */ 100 static unsigned int zfs_trim_extent_bytes_max = 128 * 1024 * 1024; 101 102 /* 103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped. 104 */ 105 static unsigned int zfs_trim_extent_bytes_min = 32 * 1024; 106 107 /* 108 * Skip uninitialized metaslabs during the TRIM process. This option is 109 * useful for pools constructed from large thinly-provisioned devices where 110 * TRIM operations are slow. As a pool ages an increasing fraction of 111 * the pools metaslabs will be initialized progressively degrading the 112 * usefulness of this option. This setting is stored when starting a 113 * manual TRIM and will persist for the duration of the requested TRIM. 114 */ 115 unsigned int zfs_trim_metaslab_skip = 0; 116 117 /* 118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of 119 * concurrent TRIM I/Os issued to the device is controlled by the 120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options. 121 */ 122 static unsigned int zfs_trim_queue_limit = 10; 123 124 /* 125 * The minimum number of transaction groups between automatic trims of a 126 * metaslab. This setting represents a trade-off between issuing more 127 * efficient TRIM operations, by allowing them to be aggregated longer, 128 * and issuing them promptly so the trimmed space is available. Note 129 * that this value is a minimum; metaslabs can be trimmed less frequently 130 * when there are a large number of ranges which need to be trimmed. 131 * 132 * Increasing this value will allow frees to be aggregated for a longer 133 * time. This can result is larger TRIM operations, and increased memory 134 * usage in order to track the ranges to be trimmed. Decreasing this value 135 * has the opposite effect. The default value of 32 was determined though 136 * testing to be a reasonable compromise. 137 */ 138 static unsigned int zfs_trim_txg_batch = 32; 139 140 /* 141 * The trim_args are a control structure which describe how a leaf vdev 142 * should be trimmed. The core elements are the vdev, the metaslab being 143 * trimmed and a range tree containing the extents to TRIM. All provided 144 * ranges must be within the metaslab. 145 */ 146 typedef struct trim_args { 147 /* 148 * These fields are set by the caller of vdev_trim_ranges(). 149 */ 150 vdev_t *trim_vdev; /* Leaf vdev to TRIM */ 151 metaslab_t *trim_msp; /* Disabled metaslab */ 152 range_tree_t *trim_tree; /* TRIM ranges (in metaslab) */ 153 trim_type_t trim_type; /* Manual or auto TRIM */ 154 uint64_t trim_extent_bytes_max; /* Maximum TRIM I/O size */ 155 uint64_t trim_extent_bytes_min; /* Minimum TRIM I/O size */ 156 enum trim_flag trim_flags; /* TRIM flags (secure) */ 157 158 /* 159 * These fields are updated by vdev_trim_ranges(). 160 */ 161 hrtime_t trim_start_time; /* Start time */ 162 uint64_t trim_bytes_done; /* Bytes trimmed */ 163 } trim_args_t; 164 165 /* 166 * Determines whether a vdev_trim_thread() should be stopped. 167 */ 168 static boolean_t 169 vdev_trim_should_stop(vdev_t *vd) 170 { 171 return (vd->vdev_trim_exit_wanted || !vdev_writeable(vd) || 172 vd->vdev_detached || vd->vdev_top->vdev_removing || 173 vd->vdev_top->vdev_rz_expanding); 174 } 175 176 /* 177 * Determines whether a vdev_autotrim_thread() should be stopped. 178 */ 179 static boolean_t 180 vdev_autotrim_should_stop(vdev_t *tvd) 181 { 182 return (tvd->vdev_autotrim_exit_wanted || 183 !vdev_writeable(tvd) || tvd->vdev_removing || 184 tvd->vdev_rz_expanding || 185 spa_get_autotrim(tvd->vdev_spa) == SPA_AUTOTRIM_OFF); 186 } 187 188 /* 189 * Wait for given number of kicks, return true if the wait is aborted due to 190 * vdev_autotrim_exit_wanted. 191 */ 192 static boolean_t 193 vdev_autotrim_wait_kick(vdev_t *vd, int num_of_kick) 194 { 195 mutex_enter(&vd->vdev_autotrim_lock); 196 for (int i = 0; i < num_of_kick; i++) { 197 if (vd->vdev_autotrim_exit_wanted) 198 break; 199 cv_wait(&vd->vdev_autotrim_kick_cv, &vd->vdev_autotrim_lock); 200 } 201 boolean_t exit_wanted = vd->vdev_autotrim_exit_wanted; 202 mutex_exit(&vd->vdev_autotrim_lock); 203 204 return (exit_wanted); 205 } 206 207 /* 208 * The sync task for updating the on-disk state of a manual TRIM. This 209 * is scheduled by vdev_trim_change_state(). 210 */ 211 static void 212 vdev_trim_zap_update_sync(void *arg, dmu_tx_t *tx) 213 { 214 /* 215 * We pass in the guid instead of the vdev_t since the vdev may 216 * have been freed prior to the sync task being processed. This 217 * happens when a vdev is detached as we call spa_config_vdev_exit(), 218 * stop the trimming thread, schedule the sync task, and free 219 * the vdev. Later when the scheduled sync task is invoked, it would 220 * find that the vdev has been freed. 221 */ 222 uint64_t guid = *(uint64_t *)arg; 223 uint64_t txg = dmu_tx_get_txg(tx); 224 kmem_free(arg, sizeof (uint64_t)); 225 226 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 227 if (vd == NULL || vd->vdev_top->vdev_removing || 228 !vdev_is_concrete(vd) || vd->vdev_top->vdev_rz_expanding) 229 return; 230 231 uint64_t last_offset = vd->vdev_trim_offset[txg & TXG_MASK]; 232 vd->vdev_trim_offset[txg & TXG_MASK] = 0; 233 234 VERIFY3U(vd->vdev_leaf_zap, !=, 0); 235 236 objset_t *mos = vd->vdev_spa->spa_meta_objset; 237 238 if (last_offset > 0 || vd->vdev_trim_last_offset == UINT64_MAX) { 239 240 if (vd->vdev_trim_last_offset == UINT64_MAX) 241 last_offset = 0; 242 243 vd->vdev_trim_last_offset = last_offset; 244 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 245 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 246 sizeof (last_offset), 1, &last_offset, tx)); 247 } 248 249 if (vd->vdev_trim_action_time > 0) { 250 uint64_t val = (uint64_t)vd->vdev_trim_action_time; 251 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 252 VDEV_LEAF_ZAP_TRIM_ACTION_TIME, sizeof (val), 253 1, &val, tx)); 254 } 255 256 if (vd->vdev_trim_rate > 0) { 257 uint64_t rate = (uint64_t)vd->vdev_trim_rate; 258 259 if (rate == UINT64_MAX) 260 rate = 0; 261 262 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 263 VDEV_LEAF_ZAP_TRIM_RATE, sizeof (rate), 1, &rate, tx)); 264 } 265 266 uint64_t partial = vd->vdev_trim_partial; 267 if (partial == UINT64_MAX) 268 partial = 0; 269 270 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 271 sizeof (partial), 1, &partial, tx)); 272 273 uint64_t secure = vd->vdev_trim_secure; 274 if (secure == UINT64_MAX) 275 secure = 0; 276 277 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 278 sizeof (secure), 1, &secure, tx)); 279 280 281 uint64_t trim_state = vd->vdev_trim_state; 282 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 283 sizeof (trim_state), 1, &trim_state, tx)); 284 } 285 286 /* 287 * Update the on-disk state of a manual TRIM. This is called to request 288 * that a TRIM be started/suspended/canceled, or to change one of the 289 * TRIM options (partial, secure, rate). 290 */ 291 static void 292 vdev_trim_change_state(vdev_t *vd, vdev_trim_state_t new_state, 293 uint64_t rate, boolean_t partial, boolean_t secure) 294 { 295 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 296 spa_t *spa = vd->vdev_spa; 297 298 if (new_state == vd->vdev_trim_state) 299 return; 300 301 /* 302 * Copy the vd's guid, this will be freed by the sync task. 303 */ 304 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 305 *guid = vd->vdev_guid; 306 307 /* 308 * If we're suspending, then preserve the original start time. 309 */ 310 if (vd->vdev_trim_state != VDEV_TRIM_SUSPENDED) { 311 vd->vdev_trim_action_time = gethrestime_sec(); 312 } 313 314 /* 315 * If we're activating, then preserve the requested rate and trim 316 * method. Setting the last offset and rate to UINT64_MAX is used 317 * as a sentinel to indicate they should be reset to default values. 318 */ 319 if (new_state == VDEV_TRIM_ACTIVE) { 320 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE || 321 vd->vdev_trim_state == VDEV_TRIM_CANCELED) { 322 vd->vdev_trim_last_offset = UINT64_MAX; 323 vd->vdev_trim_rate = UINT64_MAX; 324 vd->vdev_trim_partial = UINT64_MAX; 325 vd->vdev_trim_secure = UINT64_MAX; 326 } 327 328 if (rate != 0) 329 vd->vdev_trim_rate = rate; 330 331 if (partial != 0) 332 vd->vdev_trim_partial = partial; 333 334 if (secure != 0) 335 vd->vdev_trim_secure = secure; 336 } 337 338 vdev_trim_state_t old_state = vd->vdev_trim_state; 339 boolean_t resumed = (old_state == VDEV_TRIM_SUSPENDED); 340 vd->vdev_trim_state = new_state; 341 342 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 343 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 344 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_trim_zap_update_sync, 345 guid, tx); 346 347 switch (new_state) { 348 case VDEV_TRIM_ACTIVE: 349 spa_event_notify(spa, vd, NULL, 350 resumed ? ESC_ZFS_TRIM_RESUME : ESC_ZFS_TRIM_START); 351 spa_history_log_internal(spa, "trim", tx, 352 "vdev=%s activated", vd->vdev_path); 353 break; 354 case VDEV_TRIM_SUSPENDED: 355 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_SUSPEND); 356 spa_history_log_internal(spa, "trim", tx, 357 "vdev=%s suspended", vd->vdev_path); 358 break; 359 case VDEV_TRIM_CANCELED: 360 if (old_state == VDEV_TRIM_ACTIVE || 361 old_state == VDEV_TRIM_SUSPENDED) { 362 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_CANCEL); 363 spa_history_log_internal(spa, "trim", tx, 364 "vdev=%s canceled", vd->vdev_path); 365 } 366 break; 367 case VDEV_TRIM_COMPLETE: 368 spa_event_notify(spa, vd, NULL, ESC_ZFS_TRIM_FINISH); 369 spa_history_log_internal(spa, "trim", tx, 370 "vdev=%s complete", vd->vdev_path); 371 break; 372 default: 373 panic("invalid state %llu", (unsigned long long)new_state); 374 } 375 376 dmu_tx_commit(tx); 377 378 if (new_state != VDEV_TRIM_ACTIVE) 379 spa_notify_waiters(spa); 380 } 381 382 /* 383 * The zio_done_func_t done callback for each manual TRIM issued. It is 384 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os, 385 * and limiting the number of in flight TRIM I/Os. 386 */ 387 static void 388 vdev_trim_cb(zio_t *zio) 389 { 390 vdev_t *vd = zio->io_vd; 391 392 mutex_enter(&vd->vdev_trim_io_lock); 393 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 394 /* 395 * The I/O failed because the vdev was unavailable; roll the 396 * last offset back. (This works because spa_sync waits on 397 * spa_txg_zio before it runs sync tasks.) 398 */ 399 uint64_t *offset = 400 &vd->vdev_trim_offset[zio->io_txg & TXG_MASK]; 401 *offset = MIN(*offset, zio->io_offset); 402 } else { 403 if (zio->io_error != 0) { 404 vd->vdev_stat.vs_trim_errors++; 405 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 406 0, 0, 0, 0, 1, zio->io_orig_size); 407 } else { 408 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_MANUAL, 409 1, zio->io_orig_size, 0, 0, 0, 0); 410 } 411 412 vd->vdev_trim_bytes_done += zio->io_orig_size; 413 } 414 415 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_MANUAL], >, 0); 416 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL]--; 417 cv_broadcast(&vd->vdev_trim_io_cv); 418 mutex_exit(&vd->vdev_trim_io_lock); 419 420 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 421 } 422 423 /* 424 * The zio_done_func_t done callback for each automatic TRIM issued. It 425 * is responsible for updating the TRIM stats and limiting the number of 426 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are 427 * never reissued on failure. 428 */ 429 static void 430 vdev_autotrim_cb(zio_t *zio) 431 { 432 vdev_t *vd = zio->io_vd; 433 434 mutex_enter(&vd->vdev_trim_io_lock); 435 436 if (zio->io_error != 0) { 437 vd->vdev_stat.vs_trim_errors++; 438 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 439 0, 0, 0, 0, 1, zio->io_orig_size); 440 } else { 441 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_AUTO, 442 1, zio->io_orig_size, 0, 0, 0, 0); 443 } 444 445 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_AUTO], >, 0); 446 vd->vdev_trim_inflight[TRIM_TYPE_AUTO]--; 447 cv_broadcast(&vd->vdev_trim_io_cv); 448 mutex_exit(&vd->vdev_trim_io_lock); 449 450 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 451 } 452 453 /* 454 * The zio_done_func_t done callback for each TRIM issued via 455 * vdev_trim_simple(). It is responsible for updating the TRIM stats and 456 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best 457 * effort and are never reissued on failure. 458 */ 459 static void 460 vdev_trim_simple_cb(zio_t *zio) 461 { 462 vdev_t *vd = zio->io_vd; 463 464 mutex_enter(&vd->vdev_trim_io_lock); 465 466 if (zio->io_error != 0) { 467 vd->vdev_stat.vs_trim_errors++; 468 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 469 0, 0, 0, 0, 1, zio->io_orig_size); 470 } else { 471 spa_iostats_trim_add(vd->vdev_spa, TRIM_TYPE_SIMPLE, 472 1, zio->io_orig_size, 0, 0, 0, 0); 473 } 474 475 ASSERT3U(vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE], >, 0); 476 vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE]--; 477 cv_broadcast(&vd->vdev_trim_io_cv); 478 mutex_exit(&vd->vdev_trim_io_lock); 479 480 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 481 } 482 /* 483 * Returns the average trim rate in bytes/sec for the ta->trim_vdev. 484 */ 485 static uint64_t 486 vdev_trim_calculate_rate(trim_args_t *ta) 487 { 488 return (ta->trim_bytes_done * 1000 / 489 (NSEC2MSEC(gethrtime() - ta->trim_start_time) + 1)); 490 } 491 492 /* 493 * Issues a physical TRIM and takes care of rate limiting (bytes/sec) 494 * and number of concurrent TRIM I/Os. 495 */ 496 static int 497 vdev_trim_range(trim_args_t *ta, uint64_t start, uint64_t size) 498 { 499 vdev_t *vd = ta->trim_vdev; 500 spa_t *spa = vd->vdev_spa; 501 void *cb; 502 503 mutex_enter(&vd->vdev_trim_io_lock); 504 505 /* 506 * Limit manual TRIM I/Os to the requested rate. This does not 507 * apply to automatic TRIM since no per vdev rate can be specified. 508 */ 509 if (ta->trim_type == TRIM_TYPE_MANUAL) { 510 while (vd->vdev_trim_rate != 0 && !vdev_trim_should_stop(vd) && 511 vdev_trim_calculate_rate(ta) > vd->vdev_trim_rate) { 512 cv_timedwait_idle(&vd->vdev_trim_io_cv, 513 &vd->vdev_trim_io_lock, ddi_get_lbolt() + 514 MSEC_TO_TICK(10)); 515 } 516 } 517 ta->trim_bytes_done += size; 518 519 /* Limit in flight trimming I/Os */ 520 while (vd->vdev_trim_inflight[0] + vd->vdev_trim_inflight[1] + 521 vd->vdev_trim_inflight[2] >= zfs_trim_queue_limit) { 522 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 523 } 524 vd->vdev_trim_inflight[ta->trim_type]++; 525 mutex_exit(&vd->vdev_trim_io_lock); 526 527 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 528 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 529 uint64_t txg = dmu_tx_get_txg(tx); 530 531 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 532 mutex_enter(&vd->vdev_trim_lock); 533 534 if (ta->trim_type == TRIM_TYPE_MANUAL && 535 vd->vdev_trim_offset[txg & TXG_MASK] == 0) { 536 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 537 *guid = vd->vdev_guid; 538 539 /* This is the first write of this txg. */ 540 dsl_sync_task_nowait(spa_get_dsl(spa), 541 vdev_trim_zap_update_sync, guid, tx); 542 } 543 544 /* 545 * We know the vdev_t will still be around since all consumers of 546 * vdev_free must stop the trimming first. 547 */ 548 if ((ta->trim_type == TRIM_TYPE_MANUAL && 549 vdev_trim_should_stop(vd)) || 550 (ta->trim_type == TRIM_TYPE_AUTO && 551 vdev_autotrim_should_stop(vd->vdev_top))) { 552 mutex_enter(&vd->vdev_trim_io_lock); 553 vd->vdev_trim_inflight[ta->trim_type]--; 554 mutex_exit(&vd->vdev_trim_io_lock); 555 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 556 mutex_exit(&vd->vdev_trim_lock); 557 dmu_tx_commit(tx); 558 return (SET_ERROR(EINTR)); 559 } 560 mutex_exit(&vd->vdev_trim_lock); 561 562 if (ta->trim_type == TRIM_TYPE_MANUAL) 563 vd->vdev_trim_offset[txg & TXG_MASK] = start + size; 564 565 if (ta->trim_type == TRIM_TYPE_MANUAL) { 566 cb = vdev_trim_cb; 567 } else if (ta->trim_type == TRIM_TYPE_AUTO) { 568 cb = vdev_autotrim_cb; 569 } else { 570 cb = vdev_trim_simple_cb; 571 } 572 573 zio_nowait(zio_trim(spa->spa_txg_zio[txg & TXG_MASK], vd, 574 start, size, cb, NULL, ZIO_PRIORITY_TRIM, ZIO_FLAG_CANFAIL, 575 ta->trim_flags)); 576 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */ 577 578 dmu_tx_commit(tx); 579 580 return (0); 581 } 582 583 /* 584 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree. 585 * Additional parameters describing how the TRIM should be performed must 586 * be set in the trim_args structure. See the trim_args definition for 587 * additional information. 588 */ 589 static int 590 vdev_trim_ranges(trim_args_t *ta) 591 { 592 vdev_t *vd = ta->trim_vdev; 593 zfs_btree_t *t = &ta->trim_tree->rt_root; 594 zfs_btree_index_t idx; 595 uint64_t extent_bytes_max = ta->trim_extent_bytes_max; 596 uint64_t extent_bytes_min = ta->trim_extent_bytes_min; 597 spa_t *spa = vd->vdev_spa; 598 int error = 0; 599 600 ta->trim_start_time = gethrtime(); 601 ta->trim_bytes_done = 0; 602 603 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 604 rs = zfs_btree_next(t, &idx, &idx)) { 605 uint64_t size = rs_get_end(rs, ta->trim_tree) - rs_get_start(rs, 606 ta->trim_tree); 607 608 if (extent_bytes_min && size < extent_bytes_min) { 609 spa_iostats_trim_add(spa, ta->trim_type, 610 0, 0, 1, size, 0, 0); 611 continue; 612 } 613 614 /* Split range into legally-sized physical chunks */ 615 uint64_t writes_required = ((size - 1) / extent_bytes_max) + 1; 616 617 for (uint64_t w = 0; w < writes_required; w++) { 618 error = vdev_trim_range(ta, VDEV_LABEL_START_SIZE + 619 rs_get_start(rs, ta->trim_tree) + 620 (w *extent_bytes_max), MIN(size - 621 (w * extent_bytes_max), extent_bytes_max)); 622 if (error != 0) { 623 goto done; 624 } 625 } 626 } 627 628 done: 629 /* 630 * Make sure all TRIMs for this metaslab have completed before 631 * returning. TRIM zios have lower priority over regular or syncing 632 * zios, so all TRIM zios for this metaslab must complete before the 633 * metaslab is re-enabled. Otherwise it's possible write zios to 634 * this metaslab could cut ahead of still queued TRIM zios for this 635 * metaslab causing corruption if the ranges overlap. 636 */ 637 mutex_enter(&vd->vdev_trim_io_lock); 638 while (vd->vdev_trim_inflight[0] > 0) { 639 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 640 } 641 mutex_exit(&vd->vdev_trim_io_lock); 642 643 return (error); 644 } 645 646 static void 647 vdev_trim_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 648 { 649 uint64_t *last_rs_end = (uint64_t *)arg; 650 651 if (physical_rs->rs_end > *last_rs_end) 652 *last_rs_end = physical_rs->rs_end; 653 } 654 655 static void 656 vdev_trim_xlate_progress(void *arg, range_seg64_t *physical_rs) 657 { 658 vdev_t *vd = (vdev_t *)arg; 659 660 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 661 vd->vdev_trim_bytes_est += size; 662 663 if (vd->vdev_trim_last_offset >= physical_rs->rs_end) { 664 vd->vdev_trim_bytes_done += size; 665 } else if (vd->vdev_trim_last_offset > physical_rs->rs_start && 666 vd->vdev_trim_last_offset <= physical_rs->rs_end) { 667 vd->vdev_trim_bytes_done += 668 vd->vdev_trim_last_offset - physical_rs->rs_start; 669 } 670 } 671 672 /* 673 * Calculates the completion percentage of a manual TRIM. 674 */ 675 static void 676 vdev_trim_calculate_progress(vdev_t *vd) 677 { 678 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 679 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 680 ASSERT(vd->vdev_leaf_zap != 0); 681 682 vd->vdev_trim_bytes_est = 0; 683 vd->vdev_trim_bytes_done = 0; 684 685 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 686 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 687 mutex_enter(&msp->ms_lock); 688 689 uint64_t ms_free = (msp->ms_size - 690 metaslab_allocated_space(msp)) / 691 vdev_get_ndisks(vd->vdev_top); 692 693 /* 694 * Convert the metaslab range to a physical range 695 * on our vdev. We use this to determine if we are 696 * in the middle of this metaslab range. 697 */ 698 range_seg64_t logical_rs, physical_rs, remain_rs; 699 logical_rs.rs_start = msp->ms_start; 700 logical_rs.rs_end = msp->ms_start + msp->ms_size; 701 702 /* Metaslab space after this offset has not been trimmed. */ 703 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 704 if (vd->vdev_trim_last_offset <= physical_rs.rs_start) { 705 vd->vdev_trim_bytes_est += ms_free; 706 mutex_exit(&msp->ms_lock); 707 continue; 708 } 709 710 /* Metaslab space before this offset has been trimmed */ 711 uint64_t last_rs_end = physical_rs.rs_end; 712 if (!vdev_xlate_is_empty(&remain_rs)) { 713 vdev_xlate_walk(vd, &remain_rs, 714 vdev_trim_xlate_last_rs_end, &last_rs_end); 715 } 716 717 if (vd->vdev_trim_last_offset > last_rs_end) { 718 vd->vdev_trim_bytes_done += ms_free; 719 vd->vdev_trim_bytes_est += ms_free; 720 mutex_exit(&msp->ms_lock); 721 continue; 722 } 723 724 /* 725 * If we get here, we're in the middle of trimming this 726 * metaslab. Load it and walk the free tree for more 727 * accurate progress estimation. 728 */ 729 VERIFY0(metaslab_load(msp)); 730 731 range_tree_t *rt = msp->ms_allocatable; 732 zfs_btree_t *bt = &rt->rt_root; 733 zfs_btree_index_t idx; 734 for (range_seg_t *rs = zfs_btree_first(bt, &idx); 735 rs != NULL; rs = zfs_btree_next(bt, &idx, &idx)) { 736 logical_rs.rs_start = rs_get_start(rs, rt); 737 logical_rs.rs_end = rs_get_end(rs, rt); 738 739 vdev_xlate_walk(vd, &logical_rs, 740 vdev_trim_xlate_progress, vd); 741 } 742 mutex_exit(&msp->ms_lock); 743 } 744 } 745 746 /* 747 * Load from disk the vdev's manual TRIM information. This includes the 748 * state, progress, and options provided when initiating the manual TRIM. 749 */ 750 static int 751 vdev_trim_load(vdev_t *vd) 752 { 753 int err = 0; 754 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 755 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 756 ASSERT(vd->vdev_leaf_zap != 0); 757 758 if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE || 759 vd->vdev_trim_state == VDEV_TRIM_SUSPENDED) { 760 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 761 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET, 762 sizeof (vd->vdev_trim_last_offset), 1, 763 &vd->vdev_trim_last_offset); 764 if (err == ENOENT) { 765 vd->vdev_trim_last_offset = 0; 766 err = 0; 767 } 768 769 if (err == 0) { 770 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 771 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_RATE, 772 sizeof (vd->vdev_trim_rate), 1, 773 &vd->vdev_trim_rate); 774 if (err == ENOENT) { 775 vd->vdev_trim_rate = 0; 776 err = 0; 777 } 778 } 779 780 if (err == 0) { 781 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 782 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_PARTIAL, 783 sizeof (vd->vdev_trim_partial), 1, 784 &vd->vdev_trim_partial); 785 if (err == ENOENT) { 786 vd->vdev_trim_partial = 0; 787 err = 0; 788 } 789 } 790 791 if (err == 0) { 792 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 793 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_SECURE, 794 sizeof (vd->vdev_trim_secure), 1, 795 &vd->vdev_trim_secure); 796 if (err == ENOENT) { 797 vd->vdev_trim_secure = 0; 798 err = 0; 799 } 800 } 801 } 802 803 vdev_trim_calculate_progress(vd); 804 805 return (err); 806 } 807 808 static void 809 vdev_trim_xlate_range_add(void *arg, range_seg64_t *physical_rs) 810 { 811 trim_args_t *ta = arg; 812 vdev_t *vd = ta->trim_vdev; 813 814 /* 815 * Only a manual trim will be traversing the vdev sequentially. 816 * For an auto trim all valid ranges should be added. 817 */ 818 if (ta->trim_type == TRIM_TYPE_MANUAL) { 819 820 /* Only add segments that we have not visited yet */ 821 if (physical_rs->rs_end <= vd->vdev_trim_last_offset) 822 return; 823 824 /* Pick up where we left off mid-range. */ 825 if (vd->vdev_trim_last_offset > physical_rs->rs_start) { 826 ASSERT3U(physical_rs->rs_end, >, 827 vd->vdev_trim_last_offset); 828 physical_rs->rs_start = vd->vdev_trim_last_offset; 829 } 830 } 831 832 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 833 834 range_tree_add(ta->trim_tree, physical_rs->rs_start, 835 physical_rs->rs_end - physical_rs->rs_start); 836 } 837 838 /* 839 * Convert the logical range into physical ranges and add them to the 840 * range tree passed in the trim_args_t. 841 */ 842 static void 843 vdev_trim_range_add(void *arg, uint64_t start, uint64_t size) 844 { 845 trim_args_t *ta = arg; 846 vdev_t *vd = ta->trim_vdev; 847 range_seg64_t logical_rs; 848 logical_rs.rs_start = start; 849 logical_rs.rs_end = start + size; 850 851 /* 852 * Every range to be trimmed must be part of ms_allocatable. 853 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this 854 * is always the case. 855 */ 856 if (zfs_flags & ZFS_DEBUG_TRIM) { 857 metaslab_t *msp = ta->trim_msp; 858 VERIFY0(metaslab_load(msp)); 859 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 860 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 861 } 862 863 ASSERT(vd->vdev_ops->vdev_op_leaf); 864 vdev_xlate_walk(vd, &logical_rs, vdev_trim_xlate_range_add, arg); 865 } 866 867 /* 868 * Each manual TRIM thread is responsible for trimming the unallocated 869 * space for each leaf vdev. This is accomplished by sequentially iterating 870 * over its top-level metaslabs and issuing TRIM I/O for the space described 871 * by its ms_allocatable. While a metaslab is undergoing trimming it is 872 * not eligible for new allocations. 873 */ 874 static __attribute__((noreturn)) void 875 vdev_trim_thread(void *arg) 876 { 877 vdev_t *vd = arg; 878 spa_t *spa = vd->vdev_spa; 879 trim_args_t ta; 880 int error = 0; 881 882 /* 883 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by 884 * vdev_trim(). Wait for the updated values to be reflected 885 * in the zap in order to start with the requested settings. 886 */ 887 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 888 889 ASSERT(vdev_is_concrete(vd)); 890 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 891 892 vd->vdev_trim_last_offset = 0; 893 vd->vdev_trim_rate = 0; 894 vd->vdev_trim_partial = 0; 895 vd->vdev_trim_secure = 0; 896 897 VERIFY0(vdev_trim_load(vd)); 898 899 ta.trim_vdev = vd; 900 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 901 ta.trim_extent_bytes_min = zfs_trim_extent_bytes_min; 902 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 903 ta.trim_type = TRIM_TYPE_MANUAL; 904 ta.trim_flags = 0; 905 906 /* 907 * When a secure TRIM has been requested infer that the intent 908 * is that everything must be trimmed. Override the default 909 * minimum TRIM size to prevent ranges from being skipped. 910 */ 911 if (vd->vdev_trim_secure) { 912 ta.trim_flags |= ZIO_TRIM_SECURE; 913 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 914 } 915 916 uint64_t ms_count = 0; 917 for (uint64_t i = 0; !vd->vdev_detached && 918 i < vd->vdev_top->vdev_ms_count; i++) { 919 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 920 921 /* 922 * If we've expanded the top-level vdev or it's our 923 * first pass, calculate our progress. 924 */ 925 if (vd->vdev_top->vdev_ms_count != ms_count) { 926 vdev_trim_calculate_progress(vd); 927 ms_count = vd->vdev_top->vdev_ms_count; 928 } 929 930 spa_config_exit(spa, SCL_CONFIG, FTAG); 931 metaslab_disable(msp); 932 mutex_enter(&msp->ms_lock); 933 VERIFY0(metaslab_load(msp)); 934 935 /* 936 * If a partial TRIM was requested skip metaslabs which have 937 * never been initialized and thus have never been written. 938 */ 939 if (msp->ms_sm == NULL && vd->vdev_trim_partial) { 940 mutex_exit(&msp->ms_lock); 941 metaslab_enable(msp, B_FALSE, B_FALSE); 942 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 943 vdev_trim_calculate_progress(vd); 944 continue; 945 } 946 947 ta.trim_msp = msp; 948 range_tree_walk(msp->ms_allocatable, vdev_trim_range_add, &ta); 949 range_tree_vacate(msp->ms_trim, NULL, NULL); 950 mutex_exit(&msp->ms_lock); 951 952 error = vdev_trim_ranges(&ta); 953 metaslab_enable(msp, B_TRUE, B_FALSE); 954 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 955 956 range_tree_vacate(ta.trim_tree, NULL, NULL); 957 if (error != 0) 958 break; 959 } 960 961 spa_config_exit(spa, SCL_CONFIG, FTAG); 962 963 range_tree_destroy(ta.trim_tree); 964 965 mutex_enter(&vd->vdev_trim_lock); 966 if (!vd->vdev_trim_exit_wanted) { 967 if (vdev_writeable(vd)) { 968 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 969 vd->vdev_trim_rate, vd->vdev_trim_partial, 970 vd->vdev_trim_secure); 971 } else if (vd->vdev_faulted) { 972 vdev_trim_change_state(vd, VDEV_TRIM_CANCELED, 973 vd->vdev_trim_rate, vd->vdev_trim_partial, 974 vd->vdev_trim_secure); 975 } 976 } 977 ASSERT(vd->vdev_trim_thread != NULL || vd->vdev_trim_inflight[0] == 0); 978 979 /* 980 * Drop the vdev_trim_lock while we sync out the txg since it's 981 * possible that a device might be trying to come online and must 982 * check to see if it needs to restart a trim. That thread will be 983 * holding the spa_config_lock which would prevent the txg_wait_synced 984 * from completing. 985 */ 986 mutex_exit(&vd->vdev_trim_lock); 987 txg_wait_synced(spa_get_dsl(spa), 0); 988 mutex_enter(&vd->vdev_trim_lock); 989 990 vd->vdev_trim_thread = NULL; 991 cv_broadcast(&vd->vdev_trim_cv); 992 mutex_exit(&vd->vdev_trim_lock); 993 994 thread_exit(); 995 } 996 997 /* 998 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock, 999 * the vdev_t must be a leaf and cannot already be manually trimming. 1000 */ 1001 void 1002 vdev_trim(vdev_t *vd, uint64_t rate, boolean_t partial, boolean_t secure) 1003 { 1004 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1005 ASSERT(vd->vdev_ops->vdev_op_leaf); 1006 ASSERT(vdev_is_concrete(vd)); 1007 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1008 ASSERT(!vd->vdev_detached); 1009 ASSERT(!vd->vdev_trim_exit_wanted); 1010 ASSERT(!vd->vdev_top->vdev_removing); 1011 ASSERT(!vd->vdev_rz_expanding); 1012 1013 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, rate, partial, secure); 1014 vd->vdev_trim_thread = thread_create(NULL, 0, 1015 vdev_trim_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1016 } 1017 1018 /* 1019 * Wait for the trimming thread to be terminated (canceled or stopped). 1020 */ 1021 static void 1022 vdev_trim_stop_wait_impl(vdev_t *vd) 1023 { 1024 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1025 1026 while (vd->vdev_trim_thread != NULL) 1027 cv_wait(&vd->vdev_trim_cv, &vd->vdev_trim_lock); 1028 1029 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1030 vd->vdev_trim_exit_wanted = B_FALSE; 1031 } 1032 1033 /* 1034 * Wait for vdev trim threads which were listed to cleanly exit. 1035 */ 1036 void 1037 vdev_trim_stop_wait(spa_t *spa, list_t *vd_list) 1038 { 1039 (void) spa; 1040 vdev_t *vd; 1041 1042 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1043 1044 while ((vd = list_remove_head(vd_list)) != NULL) { 1045 mutex_enter(&vd->vdev_trim_lock); 1046 vdev_trim_stop_wait_impl(vd); 1047 mutex_exit(&vd->vdev_trim_lock); 1048 } 1049 } 1050 1051 /* 1052 * Stop trimming a device, with the resultant trimming state being tgt_state. 1053 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is 1054 * provided the stopping vdev is inserted in to the list. Callers are then 1055 * required to call vdev_trim_stop_wait() to block for all the trim threads 1056 * to exit. The caller must hold vdev_trim_lock and must not be writing to 1057 * the spa config, as the trimming thread may try to enter the config as a 1058 * reader before exiting. 1059 */ 1060 void 1061 vdev_trim_stop(vdev_t *vd, vdev_trim_state_t tgt_state, list_t *vd_list) 1062 { 1063 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 1064 ASSERT(MUTEX_HELD(&vd->vdev_trim_lock)); 1065 ASSERT(vd->vdev_ops->vdev_op_leaf); 1066 ASSERT(vdev_is_concrete(vd)); 1067 1068 /* 1069 * Allow cancel requests to proceed even if the trim thread has 1070 * stopped. 1071 */ 1072 if (vd->vdev_trim_thread == NULL && tgt_state != VDEV_TRIM_CANCELED) 1073 return; 1074 1075 vdev_trim_change_state(vd, tgt_state, 0, 0, 0); 1076 vd->vdev_trim_exit_wanted = B_TRUE; 1077 1078 if (vd_list == NULL) { 1079 vdev_trim_stop_wait_impl(vd); 1080 } else { 1081 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1082 list_insert_tail(vd_list, vd); 1083 } 1084 } 1085 1086 /* 1087 * Requests that all listed vdevs stop trimming. 1088 */ 1089 static void 1090 vdev_trim_stop_all_impl(vdev_t *vd, vdev_trim_state_t tgt_state, 1091 list_t *vd_list) 1092 { 1093 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 1094 mutex_enter(&vd->vdev_trim_lock); 1095 vdev_trim_stop(vd, tgt_state, vd_list); 1096 mutex_exit(&vd->vdev_trim_lock); 1097 return; 1098 } 1099 1100 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1101 vdev_trim_stop_all_impl(vd->vdev_child[i], tgt_state, 1102 vd_list); 1103 } 1104 } 1105 1106 /* 1107 * Convenience function to stop trimming of a vdev tree and set all trim 1108 * thread pointers to NULL. 1109 */ 1110 void 1111 vdev_trim_stop_all(vdev_t *vd, vdev_trim_state_t tgt_state) 1112 { 1113 spa_t *spa = vd->vdev_spa; 1114 list_t vd_list; 1115 vdev_t *vd_l2cache; 1116 1117 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1118 1119 list_create(&vd_list, sizeof (vdev_t), 1120 offsetof(vdev_t, vdev_trim_node)); 1121 1122 vdev_trim_stop_all_impl(vd, tgt_state, &vd_list); 1123 1124 /* 1125 * Iterate over cache devices and request stop trimming the 1126 * whole device in case we export the pool or remove the cache 1127 * device prematurely. 1128 */ 1129 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1130 vd_l2cache = spa->spa_l2cache.sav_vdevs[i]; 1131 vdev_trim_stop_all_impl(vd_l2cache, tgt_state, &vd_list); 1132 } 1133 1134 vdev_trim_stop_wait(spa, &vd_list); 1135 1136 if (vd->vdev_spa->spa_sync_on) { 1137 /* Make sure that our state has been synced to disk */ 1138 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1139 } 1140 1141 list_destroy(&vd_list); 1142 } 1143 1144 /* 1145 * Conditionally restarts a manual TRIM given its on-disk state. 1146 */ 1147 void 1148 vdev_trim_restart(vdev_t *vd) 1149 { 1150 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1151 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 1152 1153 if (vd->vdev_leaf_zap != 0) { 1154 mutex_enter(&vd->vdev_trim_lock); 1155 uint64_t trim_state = VDEV_TRIM_NONE; 1156 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1157 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_STATE, 1158 sizeof (trim_state), 1, &trim_state); 1159 ASSERT(err == 0 || err == ENOENT); 1160 vd->vdev_trim_state = trim_state; 1161 1162 uint64_t timestamp = 0; 1163 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 1164 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_TRIM_ACTION_TIME, 1165 sizeof (timestamp), 1, ×tamp); 1166 ASSERT(err == 0 || err == ENOENT); 1167 vd->vdev_trim_action_time = timestamp; 1168 1169 if ((vd->vdev_trim_state == VDEV_TRIM_SUSPENDED || 1170 vd->vdev_offline) && !vd->vdev_top->vdev_rz_expanding) { 1171 /* load progress for reporting, but don't resume */ 1172 VERIFY0(vdev_trim_load(vd)); 1173 } else if (vd->vdev_trim_state == VDEV_TRIM_ACTIVE && 1174 vdev_writeable(vd) && !vd->vdev_top->vdev_removing && 1175 !vd->vdev_top->vdev_rz_expanding && 1176 vd->vdev_trim_thread == NULL) { 1177 VERIFY0(vdev_trim_load(vd)); 1178 vdev_trim(vd, vd->vdev_trim_rate, 1179 vd->vdev_trim_partial, vd->vdev_trim_secure); 1180 } 1181 1182 mutex_exit(&vd->vdev_trim_lock); 1183 } 1184 1185 for (uint64_t i = 0; i < vd->vdev_children; i++) { 1186 vdev_trim_restart(vd->vdev_child[i]); 1187 } 1188 } 1189 1190 /* 1191 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that 1192 * every TRIM range is contained within ms_allocatable. 1193 */ 1194 static void 1195 vdev_trim_range_verify(void *arg, uint64_t start, uint64_t size) 1196 { 1197 trim_args_t *ta = arg; 1198 metaslab_t *msp = ta->trim_msp; 1199 1200 VERIFY3B(msp->ms_loaded, ==, B_TRUE); 1201 VERIFY3U(msp->ms_disabled, >, 0); 1202 VERIFY(range_tree_contains(msp->ms_allocatable, start, size)); 1203 } 1204 1205 /* 1206 * Each automatic TRIM thread is responsible for managing the trimming of a 1207 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk. 1208 * 1209 * N.B. This behavior is different from a manual TRIM where a thread 1210 * is created for each leaf vdev, instead of each top-level vdev. 1211 */ 1212 static __attribute__((noreturn)) void 1213 vdev_autotrim_thread(void *arg) 1214 { 1215 vdev_t *vd = arg; 1216 spa_t *spa = vd->vdev_spa; 1217 int shift = 0; 1218 1219 mutex_enter(&vd->vdev_autotrim_lock); 1220 ASSERT3P(vd->vdev_top, ==, vd); 1221 ASSERT3P(vd->vdev_autotrim_thread, !=, NULL); 1222 mutex_exit(&vd->vdev_autotrim_lock); 1223 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1224 1225 while (!vdev_autotrim_should_stop(vd)) { 1226 int txgs_per_trim = MAX(zfs_trim_txg_batch, 1); 1227 uint64_t extent_bytes_max = zfs_trim_extent_bytes_max; 1228 uint64_t extent_bytes_min = zfs_trim_extent_bytes_min; 1229 1230 /* 1231 * All of the metaslabs are divided in to groups of size 1232 * num_metaslabs / zfs_trim_txg_batch. Each of these groups 1233 * is composed of metaslabs which are spread evenly over the 1234 * device. 1235 * 1236 * For example, when zfs_trim_txg_batch = 32 (default) then 1237 * group 0 will contain metaslabs 0, 32, 64, ...; 1238 * group 1 will contain metaslabs 1, 33, 65, ...; 1239 * group 2 will contain metaslabs 2, 34, 66, ...; and so on. 1240 * 1241 * On each pass through the while() loop one of these groups 1242 * is selected. This is accomplished by using a shift value 1243 * to select the starting metaslab, then striding over the 1244 * metaslabs using the zfs_trim_txg_batch size. This is 1245 * done to accomplish two things. 1246 * 1247 * 1) By dividing the metaslabs in to groups, and making sure 1248 * that each group takes a minimum of one txg to process. 1249 * Then zfs_trim_txg_batch controls the minimum number of 1250 * txgs which must occur before a metaslab is revisited. 1251 * 1252 * 2) Selecting non-consecutive metaslabs distributes the 1253 * TRIM commands for a group evenly over the entire device. 1254 * This can be advantageous for certain types of devices. 1255 */ 1256 for (uint64_t i = shift % txgs_per_trim; i < vd->vdev_ms_count; 1257 i += txgs_per_trim) { 1258 metaslab_t *msp = vd->vdev_ms[i]; 1259 range_tree_t *trim_tree; 1260 boolean_t issued_trim = B_FALSE; 1261 boolean_t wait_aborted = B_FALSE; 1262 1263 spa_config_exit(spa, SCL_CONFIG, FTAG); 1264 metaslab_disable(msp); 1265 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1266 1267 mutex_enter(&msp->ms_lock); 1268 1269 /* 1270 * Skip the metaslab when it has never been allocated 1271 * or when there are no recent frees to trim. 1272 */ 1273 if (msp->ms_sm == NULL || 1274 range_tree_is_empty(msp->ms_trim)) { 1275 mutex_exit(&msp->ms_lock); 1276 metaslab_enable(msp, B_FALSE, B_FALSE); 1277 continue; 1278 } 1279 1280 /* 1281 * Skip the metaslab when it has already been disabled. 1282 * This may happen when a manual TRIM or initialize 1283 * operation is running concurrently. In the case 1284 * of a manual TRIM, the ms_trim tree will have been 1285 * vacated. Only ranges added after the manual TRIM 1286 * disabled the metaslab will be included in the tree. 1287 * These will be processed when the automatic TRIM 1288 * next revisits this metaslab. 1289 */ 1290 if (msp->ms_disabled > 1) { 1291 mutex_exit(&msp->ms_lock); 1292 metaslab_enable(msp, B_FALSE, B_FALSE); 1293 continue; 1294 } 1295 1296 /* 1297 * Allocate an empty range tree which is swapped in 1298 * for the existing ms_trim tree while it is processed. 1299 */ 1300 trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 1301 0, 0); 1302 range_tree_swap(&msp->ms_trim, &trim_tree); 1303 ASSERT(range_tree_is_empty(msp->ms_trim)); 1304 1305 /* 1306 * There are two cases when constructing the per-vdev 1307 * trim trees for a metaslab. If the top-level vdev 1308 * has no children then it is also a leaf and should 1309 * be trimmed. Otherwise our children are the leaves 1310 * and a trim tree should be constructed for each. 1311 */ 1312 trim_args_t *tap; 1313 uint64_t children = vd->vdev_children; 1314 if (children == 0) { 1315 children = 1; 1316 tap = kmem_zalloc(sizeof (trim_args_t) * 1317 children, KM_SLEEP); 1318 tap[0].trim_vdev = vd; 1319 } else { 1320 tap = kmem_zalloc(sizeof (trim_args_t) * 1321 children, KM_SLEEP); 1322 1323 for (uint64_t c = 0; c < children; c++) { 1324 tap[c].trim_vdev = vd->vdev_child[c]; 1325 } 1326 } 1327 1328 for (uint64_t c = 0; c < children; c++) { 1329 trim_args_t *ta = &tap[c]; 1330 vdev_t *cvd = ta->trim_vdev; 1331 1332 ta->trim_msp = msp; 1333 ta->trim_extent_bytes_max = extent_bytes_max; 1334 ta->trim_extent_bytes_min = extent_bytes_min; 1335 ta->trim_type = TRIM_TYPE_AUTO; 1336 ta->trim_flags = 0; 1337 1338 if (cvd->vdev_detached || 1339 !vdev_writeable(cvd) || 1340 !cvd->vdev_has_trim || 1341 cvd->vdev_trim_thread != NULL) { 1342 continue; 1343 } 1344 1345 /* 1346 * When a device has an attached hot spare, or 1347 * is being replaced it will not be trimmed. 1348 * This is done to avoid adding additional 1349 * stress to a potentially unhealthy device, 1350 * and to minimize the required rebuild time. 1351 */ 1352 if (!cvd->vdev_ops->vdev_op_leaf) 1353 continue; 1354 1355 ta->trim_tree = range_tree_create(NULL, 1356 RANGE_SEG64, NULL, 0, 0); 1357 range_tree_walk(trim_tree, 1358 vdev_trim_range_add, ta); 1359 } 1360 1361 mutex_exit(&msp->ms_lock); 1362 spa_config_exit(spa, SCL_CONFIG, FTAG); 1363 1364 /* 1365 * Issue the TRIM I/Os for all ranges covered by the 1366 * TRIM trees. These ranges are safe to TRIM because 1367 * no new allocations will be performed until the call 1368 * to metaslab_enabled() below. 1369 */ 1370 for (uint64_t c = 0; c < children; c++) { 1371 trim_args_t *ta = &tap[c]; 1372 1373 /* 1374 * Always yield to a manual TRIM if one has 1375 * been started for the child vdev. 1376 */ 1377 if (ta->trim_tree == NULL || 1378 ta->trim_vdev->vdev_trim_thread != NULL) { 1379 continue; 1380 } 1381 1382 /* 1383 * After this point metaslab_enable() must be 1384 * called with the sync flag set. This is done 1385 * here because vdev_trim_ranges() is allowed 1386 * to be interrupted (EINTR) before issuing all 1387 * of the required TRIM I/Os. 1388 */ 1389 issued_trim = B_TRUE; 1390 1391 int error = vdev_trim_ranges(ta); 1392 if (error) 1393 break; 1394 } 1395 1396 /* 1397 * Verify every range which was trimmed is still 1398 * contained within the ms_allocatable tree. 1399 */ 1400 if (zfs_flags & ZFS_DEBUG_TRIM) { 1401 mutex_enter(&msp->ms_lock); 1402 VERIFY0(metaslab_load(msp)); 1403 VERIFY3P(tap[0].trim_msp, ==, msp); 1404 range_tree_walk(trim_tree, 1405 vdev_trim_range_verify, &tap[0]); 1406 mutex_exit(&msp->ms_lock); 1407 } 1408 1409 range_tree_vacate(trim_tree, NULL, NULL); 1410 range_tree_destroy(trim_tree); 1411 1412 /* 1413 * Wait for couples of kicks, to ensure the trim io is 1414 * synced. If the wait is aborted due to 1415 * vdev_autotrim_exit_wanted, we need to signal 1416 * metaslab_enable() to wait for sync. 1417 */ 1418 if (issued_trim) { 1419 wait_aborted = vdev_autotrim_wait_kick(vd, 1420 TXG_CONCURRENT_STATES + TXG_DEFER_SIZE); 1421 } 1422 1423 metaslab_enable(msp, wait_aborted, B_FALSE); 1424 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1425 1426 for (uint64_t c = 0; c < children; c++) { 1427 trim_args_t *ta = &tap[c]; 1428 1429 if (ta->trim_tree == NULL) 1430 continue; 1431 1432 range_tree_vacate(ta->trim_tree, NULL, NULL); 1433 range_tree_destroy(ta->trim_tree); 1434 } 1435 1436 kmem_free(tap, sizeof (trim_args_t) * children); 1437 1438 if (vdev_autotrim_should_stop(vd)) 1439 break; 1440 } 1441 1442 spa_config_exit(spa, SCL_CONFIG, FTAG); 1443 1444 vdev_autotrim_wait_kick(vd, 1); 1445 1446 shift++; 1447 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1448 } 1449 1450 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1451 vdev_t *cvd = vd->vdev_child[c]; 1452 mutex_enter(&cvd->vdev_trim_io_lock); 1453 1454 while (cvd->vdev_trim_inflight[1] > 0) { 1455 cv_wait(&cvd->vdev_trim_io_cv, 1456 &cvd->vdev_trim_io_lock); 1457 } 1458 mutex_exit(&cvd->vdev_trim_io_lock); 1459 } 1460 1461 spa_config_exit(spa, SCL_CONFIG, FTAG); 1462 1463 /* 1464 * When exiting because the autotrim property was set to off, then 1465 * abandon any unprocessed ms_trim ranges to reclaim the memory. 1466 */ 1467 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_OFF) { 1468 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 1469 metaslab_t *msp = vd->vdev_ms[i]; 1470 1471 mutex_enter(&msp->ms_lock); 1472 range_tree_vacate(msp->ms_trim, NULL, NULL); 1473 mutex_exit(&msp->ms_lock); 1474 } 1475 } 1476 1477 mutex_enter(&vd->vdev_autotrim_lock); 1478 ASSERT(vd->vdev_autotrim_thread != NULL); 1479 vd->vdev_autotrim_thread = NULL; 1480 cv_broadcast(&vd->vdev_autotrim_cv); 1481 mutex_exit(&vd->vdev_autotrim_lock); 1482 1483 thread_exit(); 1484 } 1485 1486 /* 1487 * Starts an autotrim thread, if needed, for each top-level vdev which can be 1488 * trimmed. A top-level vdev which has been evacuated will never be trimmed. 1489 */ 1490 void 1491 vdev_autotrim(spa_t *spa) 1492 { 1493 vdev_t *root_vd = spa->spa_root_vdev; 1494 1495 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1496 vdev_t *tvd = root_vd->vdev_child[i]; 1497 1498 mutex_enter(&tvd->vdev_autotrim_lock); 1499 if (vdev_writeable(tvd) && !tvd->vdev_removing && 1500 tvd->vdev_autotrim_thread == NULL && 1501 !tvd->vdev_rz_expanding) { 1502 ASSERT3P(tvd->vdev_top, ==, tvd); 1503 1504 tvd->vdev_autotrim_thread = thread_create(NULL, 0, 1505 vdev_autotrim_thread, tvd, 0, &p0, TS_RUN, 1506 maxclsyspri); 1507 ASSERT(tvd->vdev_autotrim_thread != NULL); 1508 } 1509 mutex_exit(&tvd->vdev_autotrim_lock); 1510 } 1511 } 1512 1513 /* 1514 * Wait for the vdev_autotrim_thread associated with the passed top-level 1515 * vdev to be terminated (canceled or stopped). 1516 */ 1517 void 1518 vdev_autotrim_stop_wait(vdev_t *tvd) 1519 { 1520 mutex_enter(&tvd->vdev_autotrim_lock); 1521 if (tvd->vdev_autotrim_thread != NULL) { 1522 tvd->vdev_autotrim_exit_wanted = B_TRUE; 1523 cv_broadcast(&tvd->vdev_autotrim_kick_cv); 1524 cv_wait(&tvd->vdev_autotrim_cv, 1525 &tvd->vdev_autotrim_lock); 1526 1527 ASSERT3P(tvd->vdev_autotrim_thread, ==, NULL); 1528 tvd->vdev_autotrim_exit_wanted = B_FALSE; 1529 } 1530 mutex_exit(&tvd->vdev_autotrim_lock); 1531 } 1532 1533 void 1534 vdev_autotrim_kick(spa_t *spa) 1535 { 1536 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 1537 1538 vdev_t *root_vd = spa->spa_root_vdev; 1539 vdev_t *tvd; 1540 1541 for (uint64_t i = 0; i < root_vd->vdev_children; i++) { 1542 tvd = root_vd->vdev_child[i]; 1543 1544 mutex_enter(&tvd->vdev_autotrim_lock); 1545 if (tvd->vdev_autotrim_thread != NULL) 1546 cv_broadcast(&tvd->vdev_autotrim_kick_cv); 1547 mutex_exit(&tvd->vdev_autotrim_lock); 1548 } 1549 } 1550 1551 /* 1552 * Wait for all of the vdev_autotrim_thread associated with the pool to 1553 * be terminated (canceled or stopped). 1554 */ 1555 void 1556 vdev_autotrim_stop_all(spa_t *spa) 1557 { 1558 vdev_t *root_vd = spa->spa_root_vdev; 1559 1560 for (uint64_t i = 0; i < root_vd->vdev_children; i++) 1561 vdev_autotrim_stop_wait(root_vd->vdev_child[i]); 1562 } 1563 1564 /* 1565 * Conditionally restart all of the vdev_autotrim_thread's for the pool. 1566 */ 1567 void 1568 vdev_autotrim_restart(spa_t *spa) 1569 { 1570 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1571 1572 if (spa->spa_autotrim) 1573 vdev_autotrim(spa); 1574 } 1575 1576 static __attribute__((noreturn)) void 1577 vdev_trim_l2arc_thread(void *arg) 1578 { 1579 vdev_t *vd = arg; 1580 spa_t *spa = vd->vdev_spa; 1581 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1582 trim_args_t ta = {0}; 1583 range_seg64_t physical_rs; 1584 1585 ASSERT(vdev_is_concrete(vd)); 1586 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 1587 1588 vd->vdev_trim_last_offset = 0; 1589 vd->vdev_trim_rate = 0; 1590 vd->vdev_trim_partial = 0; 1591 vd->vdev_trim_secure = 0; 1592 1593 ta.trim_vdev = vd; 1594 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1595 ta.trim_type = TRIM_TYPE_MANUAL; 1596 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1597 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1598 ta.trim_flags = 0; 1599 1600 physical_rs.rs_start = vd->vdev_trim_bytes_done = 0; 1601 physical_rs.rs_end = vd->vdev_trim_bytes_est = 1602 vdev_get_min_asize(vd); 1603 1604 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1605 physical_rs.rs_end - physical_rs.rs_start); 1606 1607 mutex_enter(&vd->vdev_trim_lock); 1608 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1609 mutex_exit(&vd->vdev_trim_lock); 1610 1611 (void) vdev_trim_ranges(&ta); 1612 1613 spa_config_exit(spa, SCL_CONFIG, FTAG); 1614 mutex_enter(&vd->vdev_trim_io_lock); 1615 while (vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] > 0) { 1616 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1617 } 1618 mutex_exit(&vd->vdev_trim_io_lock); 1619 1620 range_tree_vacate(ta.trim_tree, NULL, NULL); 1621 range_tree_destroy(ta.trim_tree); 1622 1623 mutex_enter(&vd->vdev_trim_lock); 1624 if (!vd->vdev_trim_exit_wanted && vdev_writeable(vd)) { 1625 vdev_trim_change_state(vd, VDEV_TRIM_COMPLETE, 1626 vd->vdev_trim_rate, vd->vdev_trim_partial, 1627 vd->vdev_trim_secure); 1628 } 1629 ASSERT(vd->vdev_trim_thread != NULL || 1630 vd->vdev_trim_inflight[TRIM_TYPE_MANUAL] == 0); 1631 1632 /* 1633 * Drop the vdev_trim_lock while we sync out the txg since it's 1634 * possible that a device might be trying to come online and 1635 * must check to see if it needs to restart a trim. That thread 1636 * will be holding the spa_config_lock which would prevent the 1637 * txg_wait_synced from completing. Same strategy as in 1638 * vdev_trim_thread(). 1639 */ 1640 mutex_exit(&vd->vdev_trim_lock); 1641 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 1642 mutex_enter(&vd->vdev_trim_lock); 1643 1644 /* 1645 * Update the header of the cache device here, before 1646 * broadcasting vdev_trim_cv which may lead to the removal 1647 * of the device. The same applies for setting l2ad_trim_all to 1648 * false. 1649 */ 1650 spa_config_enter(vd->vdev_spa, SCL_L2ARC, vd, 1651 RW_READER); 1652 memset(dev->l2ad_dev_hdr, 0, dev->l2ad_dev_hdr_asize); 1653 l2arc_dev_hdr_update(dev); 1654 spa_config_exit(vd->vdev_spa, SCL_L2ARC, vd); 1655 1656 vd->vdev_trim_thread = NULL; 1657 if (vd->vdev_trim_state == VDEV_TRIM_COMPLETE) 1658 dev->l2ad_trim_all = B_FALSE; 1659 1660 cv_broadcast(&vd->vdev_trim_cv); 1661 mutex_exit(&vd->vdev_trim_lock); 1662 1663 thread_exit(); 1664 } 1665 1666 /* 1667 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them 1668 * to vd->vdev_trim_thread variable. This facilitates the management of 1669 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition 1670 * to a pool or pool creation or when the header of the device is invalid. 1671 */ 1672 void 1673 vdev_trim_l2arc(spa_t *spa) 1674 { 1675 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1676 1677 /* 1678 * Locate the spa's l2arc devices and kick off TRIM threads. 1679 */ 1680 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1681 vdev_t *vd = spa->spa_l2cache.sav_vdevs[i]; 1682 l2arc_dev_t *dev = l2arc_vdev_get(vd); 1683 1684 if (dev == NULL || !dev->l2ad_trim_all) { 1685 /* 1686 * Don't attempt TRIM if the vdev is UNAVAIL or if the 1687 * cache device was not marked for whole device TRIM 1688 * (ie l2arc_trim_ahead = 0, or the L2ARC device header 1689 * is valid with trim_state = VDEV_TRIM_COMPLETE and 1690 * l2ad_log_entries > 0). 1691 */ 1692 continue; 1693 } 1694 1695 mutex_enter(&vd->vdev_trim_lock); 1696 ASSERT(vd->vdev_ops->vdev_op_leaf); 1697 ASSERT(vdev_is_concrete(vd)); 1698 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1699 ASSERT(!vd->vdev_detached); 1700 ASSERT(!vd->vdev_trim_exit_wanted); 1701 ASSERT(!vd->vdev_top->vdev_removing); 1702 vdev_trim_change_state(vd, VDEV_TRIM_ACTIVE, 0, 0, 0); 1703 vd->vdev_trim_thread = thread_create(NULL, 0, 1704 vdev_trim_l2arc_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 1705 mutex_exit(&vd->vdev_trim_lock); 1706 } 1707 } 1708 1709 /* 1710 * A wrapper which calls vdev_trim_ranges(). It is intended to be called 1711 * on leaf vdevs. 1712 */ 1713 int 1714 vdev_trim_simple(vdev_t *vd, uint64_t start, uint64_t size) 1715 { 1716 trim_args_t ta = {0}; 1717 range_seg64_t physical_rs; 1718 int error; 1719 physical_rs.rs_start = start; 1720 physical_rs.rs_end = start + size; 1721 1722 ASSERT(vdev_is_concrete(vd)); 1723 ASSERT(vd->vdev_ops->vdev_op_leaf); 1724 ASSERT(!vd->vdev_detached); 1725 ASSERT(!vd->vdev_top->vdev_removing); 1726 ASSERT(!vd->vdev_top->vdev_rz_expanding); 1727 1728 ta.trim_vdev = vd; 1729 ta.trim_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 1730 ta.trim_type = TRIM_TYPE_SIMPLE; 1731 ta.trim_extent_bytes_max = zfs_trim_extent_bytes_max; 1732 ta.trim_extent_bytes_min = SPA_MINBLOCKSIZE; 1733 ta.trim_flags = 0; 1734 1735 ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start); 1736 1737 if (physical_rs.rs_end > physical_rs.rs_start) { 1738 range_tree_add(ta.trim_tree, physical_rs.rs_start, 1739 physical_rs.rs_end - physical_rs.rs_start); 1740 } else { 1741 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start); 1742 } 1743 1744 error = vdev_trim_ranges(&ta); 1745 1746 mutex_enter(&vd->vdev_trim_io_lock); 1747 while (vd->vdev_trim_inflight[TRIM_TYPE_SIMPLE] > 0) { 1748 cv_wait(&vd->vdev_trim_io_cv, &vd->vdev_trim_io_lock); 1749 } 1750 mutex_exit(&vd->vdev_trim_io_lock); 1751 1752 range_tree_vacate(ta.trim_tree, NULL, NULL); 1753 range_tree_destroy(ta.trim_tree); 1754 1755 return (error); 1756 } 1757 1758 EXPORT_SYMBOL(vdev_trim); 1759 EXPORT_SYMBOL(vdev_trim_stop); 1760 EXPORT_SYMBOL(vdev_trim_stop_all); 1761 EXPORT_SYMBOL(vdev_trim_stop_wait); 1762 EXPORT_SYMBOL(vdev_trim_restart); 1763 EXPORT_SYMBOL(vdev_autotrim); 1764 EXPORT_SYMBOL(vdev_autotrim_stop_all); 1765 EXPORT_SYMBOL(vdev_autotrim_stop_wait); 1766 EXPORT_SYMBOL(vdev_autotrim_restart); 1767 EXPORT_SYMBOL(vdev_trim_l2arc); 1768 EXPORT_SYMBOL(vdev_trim_simple); 1769 1770 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_max, UINT, ZMOD_RW, 1771 "Max size of TRIM commands, larger will be split"); 1772 1773 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, extent_bytes_min, UINT, ZMOD_RW, 1774 "Min size of TRIM commands, smaller will be skipped"); 1775 1776 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, metaslab_skip, UINT, ZMOD_RW, 1777 "Skip metaslabs which have never been initialized"); 1778 1779 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, txg_batch, UINT, ZMOD_RW, 1780 "Min number of txgs to aggregate frees before issuing TRIM"); 1781 1782 ZFS_MODULE_PARAM(zfs_trim, zfs_trim_, queue_limit, UINT, ZMOD_RW, 1783 "Max queued TRIMs outstanding per leaf vdev"); 1784