1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * 23 * Copyright (c) 2018, Intel Corporation. 24 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC. 25 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP. 26 */ 27 28 #include <sys/vdev_impl.h> 29 #include <sys/vdev_draid.h> 30 #include <sys/dsl_scan.h> 31 #include <sys/spa_impl.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/vdev_rebuild.h> 34 #include <sys/zio.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/arc.h> 37 #include <sys/zap.h> 38 39 /* 40 * This file contains the sequential reconstruction implementation for 41 * resilvering. This form of resilvering is internally referred to as device 42 * rebuild to avoid conflating it with the traditional healing reconstruction 43 * performed by the dsl scan code. 44 * 45 * When replacing a device, or scrubbing the pool, ZFS has historically used 46 * a process called resilvering which is a form of healing reconstruction. 47 * This approach has the advantage that as blocks are read from disk their 48 * checksums can be immediately verified and the data repaired. Unfortunately, 49 * it also results in a random IO pattern to the disk even when extra care 50 * is taken to sequentialize the IO as much as possible. This substantially 51 * increases the time required to resilver the pool and restore redundancy. 52 * 53 * For mirrored devices it's possible to implement an alternate sequential 54 * reconstruction strategy when resilvering. Sequential reconstruction 55 * behaves like a traditional RAID rebuild and reconstructs a device in LBA 56 * order without verifying the checksum. After this phase completes a second 57 * scrub phase is started to verify all of the checksums. This two phase 58 * process will take longer than the healing reconstruction described above. 59 * However, it has that advantage that after the reconstruction first phase 60 * completes redundancy has been restored. At this point the pool can incur 61 * another device failure without risking data loss. 62 * 63 * There are a few noteworthy limitations and other advantages of resilvering 64 * using sequential reconstruction vs healing reconstruction. 65 * 66 * Limitations: 67 * 68 * - Sequential reconstruction is not possible on RAIDZ due to its 69 * variable stripe width. Note dRAID uses a fixed stripe width which 70 * avoids this issue, but comes at the expense of some usable capacity. 71 * 72 * - Block checksums are not verified during sequential reconstruction. 73 * Similar to traditional RAID the parity/mirror data is reconstructed 74 * but cannot be immediately double checked. For this reason when the 75 * last active resilver completes the pool is automatically scrubbed 76 * by default. 77 * 78 * - Deferred resilvers using sequential reconstruction are not currently 79 * supported. When adding another vdev to an active top-level resilver 80 * it must be restarted. 81 * 82 * Advantages: 83 * 84 * - Sequential reconstruction is performed in LBA order which may be faster 85 * than healing reconstruction particularly when using HDDs (or 86 * especially with SMR devices). Only allocated capacity is resilvered. 87 * 88 * - Sequential reconstruction is not constrained by ZFS block boundaries. 89 * This allows it to issue larger IOs to disk which span multiple blocks 90 * allowing all of these logical blocks to be repaired with a single IO. 91 * 92 * - Unlike a healing resilver or scrub which are pool wide operations, 93 * sequential reconstruction is handled by the top-level vdevs. This 94 * allows for it to be started or canceled on a top-level vdev without 95 * impacting any other top-level vdevs in the pool. 96 * 97 * - Data only referenced by a pool checkpoint will be repaired because 98 * that space is reflected in the space maps. This differs for a 99 * healing resilver or scrub which will not repair that data. 100 */ 101 102 103 /* 104 * Size of rebuild reads; defaults to 1MiB per data disk and is capped at 105 * SPA_MAXBLOCKSIZE. 106 */ 107 static uint64_t zfs_rebuild_max_segment = 1024 * 1024; 108 109 /* 110 * Maximum number of parallelly executed bytes per leaf vdev caused by a 111 * sequential resilver. We attempt to strike a balance here between keeping 112 * the vdev queues full of I/Os at all times and not overflowing the queues 113 * to cause long latency, which would cause long txg sync times. 114 * 115 * A large default value can be safely used here because the default target 116 * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep 117 * the queue depth short. 118 * 119 * 32MB was selected as the default value to achieve good performance with 120 * a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential 121 * rebuild was unable to saturate all of the drives using smaller values. 122 * With a value of 32MB the sequential resilver write rate was measured at 123 * 800MB/s sustained while rebuilding to a distributed spare. 124 */ 125 static uint64_t zfs_rebuild_vdev_limit = 32 << 20; 126 127 /* 128 * Automatically start a pool scrub when the last active sequential resilver 129 * completes in order to verify the checksums of all blocks which have been 130 * resilvered. This option is enabled by default and is strongly recommended. 131 */ 132 static int zfs_rebuild_scrub_enabled = 1; 133 134 /* 135 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync(). 136 */ 137 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg); 138 static void vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx); 139 140 /* 141 * Clear the per-vdev rebuild bytes value for a vdev tree. 142 */ 143 static void 144 clear_rebuild_bytes(vdev_t *vd) 145 { 146 vdev_stat_t *vs = &vd->vdev_stat; 147 148 for (uint64_t i = 0; i < vd->vdev_children; i++) 149 clear_rebuild_bytes(vd->vdev_child[i]); 150 151 mutex_enter(&vd->vdev_stat_lock); 152 vs->vs_rebuild_processed = 0; 153 mutex_exit(&vd->vdev_stat_lock); 154 } 155 156 /* 157 * Determines whether a vdev_rebuild_thread() should be stopped. 158 */ 159 static boolean_t 160 vdev_rebuild_should_stop(vdev_t *vd) 161 { 162 return (!vdev_writeable(vd) || vd->vdev_removing || 163 vd->vdev_rebuild_exit_wanted || 164 vd->vdev_rebuild_cancel_wanted || 165 vd->vdev_rebuild_reset_wanted); 166 } 167 168 /* 169 * Determine if the rebuild should be canceled. This may happen when all 170 * vdevs with MISSING DTLs are detached. 171 */ 172 static boolean_t 173 vdev_rebuild_should_cancel(vdev_t *vd) 174 { 175 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 176 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 177 178 if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg)) 179 return (B_TRUE); 180 181 return (B_FALSE); 182 } 183 184 /* 185 * The sync task for updating the on-disk state of a rebuild. This is 186 * scheduled by vdev_rebuild_range(). 187 */ 188 static void 189 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx) 190 { 191 int vdev_id = (uintptr_t)arg; 192 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 193 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 194 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 195 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 196 uint64_t txg = dmu_tx_get_txg(tx); 197 198 mutex_enter(&vd->vdev_rebuild_lock); 199 200 if (vr->vr_scan_offset[txg & TXG_MASK] > 0) { 201 vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK]; 202 vr->vr_scan_offset[txg & TXG_MASK] = 0; 203 } 204 205 vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms + 206 NSEC2MSEC(gethrtime() - vr->vr_pass_start_time); 207 208 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 209 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 210 REBUILD_PHYS_ENTRIES, vrp, tx)); 211 212 mutex_exit(&vd->vdev_rebuild_lock); 213 } 214 215 /* 216 * Initialize the on-disk state for a new rebuild, start the rebuild thread. 217 */ 218 static void 219 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx) 220 { 221 int vdev_id = (uintptr_t)arg; 222 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 223 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 224 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 225 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 226 227 ASSERT(vd->vdev_rebuilding); 228 229 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx); 230 231 mutex_enter(&vd->vdev_rebuild_lock); 232 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 233 vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE; 234 vrp->vrp_min_txg = 0; 235 vrp->vrp_max_txg = dmu_tx_get_txg(tx); 236 vrp->vrp_start_time = gethrestime_sec(); 237 vrp->vrp_scan_time_ms = 0; 238 vr->vr_prev_scan_time_ms = 0; 239 240 /* 241 * Rebuilds are currently only used when replacing a device, in which 242 * case there must be DTL_MISSING entries. In the future, we could 243 * allow rebuilds to be used in a way similar to a scrub. This would 244 * be useful because it would allow us to rebuild the space used by 245 * pool checkpoints. 246 */ 247 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg)); 248 249 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 250 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 251 REBUILD_PHYS_ENTRIES, vrp, tx)); 252 253 spa_history_log_internal(spa, "rebuild", tx, 254 "vdev_id=%llu vdev_guid=%llu started", 255 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 256 257 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 258 vd->vdev_rebuild_thread = thread_create(NULL, 0, 259 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 260 261 mutex_exit(&vd->vdev_rebuild_lock); 262 } 263 264 static void 265 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, const char *name) 266 { 267 nvlist_t *aux = fnvlist_alloc(); 268 269 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential"); 270 spa_event_notify(spa, vd, aux, name); 271 nvlist_free(aux); 272 } 273 274 /* 275 * Called to request that a new rebuild be started. The feature will remain 276 * active for the duration of the rebuild, then revert to the enabled state. 277 */ 278 static void 279 vdev_rebuild_initiate(vdev_t *vd) 280 { 281 spa_t *spa = vd->vdev_spa; 282 283 ASSERT(vd->vdev_top == vd); 284 ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock)); 285 ASSERT(!vd->vdev_rebuilding); 286 287 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 288 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 289 290 vd->vdev_rebuilding = B_TRUE; 291 292 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync, 293 (void *)(uintptr_t)vd->vdev_id, tx); 294 dmu_tx_commit(tx); 295 296 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START); 297 } 298 299 /* 300 * Update the on-disk state to completed when a rebuild finishes. 301 */ 302 static void 303 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx) 304 { 305 int vdev_id = (uintptr_t)arg; 306 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 307 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 308 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 309 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 310 311 mutex_enter(&vd->vdev_rebuild_lock); 312 313 /* 314 * Handle a second device failure if it occurs after all rebuild I/O 315 * has completed but before this sync task has been executed. 316 */ 317 if (vd->vdev_rebuild_reset_wanted) { 318 mutex_exit(&vd->vdev_rebuild_lock); 319 vdev_rebuild_reset_sync(arg, tx); 320 return; 321 } 322 323 vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE; 324 vrp->vrp_end_time = gethrestime_sec(); 325 326 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 327 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 328 REBUILD_PHYS_ENTRIES, vrp, tx)); 329 330 vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE); 331 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx); 332 333 spa_history_log_internal(spa, "rebuild", tx, 334 "vdev_id=%llu vdev_guid=%llu complete", 335 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 336 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH); 337 338 /* Handles detaching of spares */ 339 spa_async_request(spa, SPA_ASYNC_REBUILD_DONE); 340 vd->vdev_rebuilding = B_FALSE; 341 mutex_exit(&vd->vdev_rebuild_lock); 342 343 /* 344 * While we're in syncing context take the opportunity to 345 * setup the scrub when there are no more active rebuilds. 346 */ 347 pool_scan_func_t func = POOL_SCAN_SCRUB; 348 if (dsl_scan_setup_check(&func, tx) == 0 && 349 zfs_rebuild_scrub_enabled) { 350 dsl_scan_setup_sync(&func, tx); 351 } 352 353 cv_broadcast(&vd->vdev_rebuild_cv); 354 355 /* Clear recent error events (i.e. duplicate events tracking) */ 356 zfs_ereport_clear(spa, NULL); 357 } 358 359 /* 360 * Update the on-disk state to canceled when a rebuild finishes. 361 */ 362 static void 363 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx) 364 { 365 int vdev_id = (uintptr_t)arg; 366 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 367 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 368 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 369 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 370 371 mutex_enter(&vd->vdev_rebuild_lock); 372 vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED; 373 vrp->vrp_end_time = gethrestime_sec(); 374 375 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 376 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 377 REBUILD_PHYS_ENTRIES, vrp, tx)); 378 379 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx); 380 381 spa_history_log_internal(spa, "rebuild", tx, 382 "vdev_id=%llu vdev_guid=%llu canceled", 383 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 384 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH); 385 386 vd->vdev_rebuild_cancel_wanted = B_FALSE; 387 vd->vdev_rebuilding = B_FALSE; 388 mutex_exit(&vd->vdev_rebuild_lock); 389 390 spa_notify_waiters(spa); 391 cv_broadcast(&vd->vdev_rebuild_cv); 392 } 393 394 /* 395 * Resets the progress of a running rebuild. This will occur when a new 396 * vdev is added to rebuild. 397 */ 398 static void 399 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx) 400 { 401 int vdev_id = (uintptr_t)arg; 402 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 403 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 404 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 405 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 406 407 mutex_enter(&vd->vdev_rebuild_lock); 408 409 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE); 410 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 411 412 vrp->vrp_last_offset = 0; 413 vrp->vrp_min_txg = 0; 414 vrp->vrp_max_txg = dmu_tx_get_txg(tx); 415 vrp->vrp_bytes_scanned = 0; 416 vrp->vrp_bytes_issued = 0; 417 vrp->vrp_bytes_rebuilt = 0; 418 vrp->vrp_bytes_est = 0; 419 vrp->vrp_scan_time_ms = 0; 420 vr->vr_prev_scan_time_ms = 0; 421 422 /* See vdev_rebuild_initiate_sync comment */ 423 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg)); 424 425 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap, 426 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 427 REBUILD_PHYS_ENTRIES, vrp, tx)); 428 429 spa_history_log_internal(spa, "rebuild", tx, 430 "vdev_id=%llu vdev_guid=%llu reset", 431 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid); 432 433 vd->vdev_rebuild_reset_wanted = B_FALSE; 434 ASSERT(vd->vdev_rebuilding); 435 436 vd->vdev_rebuild_thread = thread_create(NULL, 0, 437 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 438 439 mutex_exit(&vd->vdev_rebuild_lock); 440 } 441 442 /* 443 * Clear the last rebuild status. 444 */ 445 void 446 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx) 447 { 448 int vdev_id = (uintptr_t)arg; 449 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 450 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 451 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 452 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 453 objset_t *mos = spa_meta_objset(spa); 454 455 mutex_enter(&vd->vdev_rebuild_lock); 456 457 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) || 458 vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) { 459 mutex_exit(&vd->vdev_rebuild_lock); 460 return; 461 } 462 463 clear_rebuild_bytes(vd); 464 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 465 466 if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap, 467 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) { 468 VERIFY0(zap_update(mos, vd->vdev_top_zap, 469 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 470 REBUILD_PHYS_ENTRIES, vrp, tx)); 471 } 472 473 mutex_exit(&vd->vdev_rebuild_lock); 474 } 475 476 /* 477 * The zio_done_func_t callback for each rebuild I/O issued. It's responsible 478 * for updating the rebuild stats and limiting the number of in flight I/Os. 479 */ 480 static void 481 vdev_rebuild_cb(zio_t *zio) 482 { 483 vdev_rebuild_t *vr = zio->io_private; 484 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 485 vdev_t *vd = vr->vr_top_vdev; 486 487 mutex_enter(&vr->vr_io_lock); 488 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 489 /* 490 * The I/O failed because the top-level vdev was unavailable. 491 * Attempt to roll back to the last completed offset, in order 492 * resume from the correct location if the pool is resumed. 493 * (This works because spa_sync waits on spa_txg_zio before 494 * it runs sync tasks.) 495 */ 496 uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK]; 497 *off = MIN(*off, zio->io_offset); 498 } else if (zio->io_error) { 499 vrp->vrp_errors++; 500 } 501 502 abd_free(zio->io_abd); 503 504 ASSERT3U(vr->vr_bytes_inflight, >, 0); 505 vr->vr_bytes_inflight -= zio->io_size; 506 cv_broadcast(&vr->vr_io_cv); 507 mutex_exit(&vr->vr_io_lock); 508 509 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 510 } 511 512 /* 513 * Initialize a block pointer that can be used to read the given segment 514 * for sequential rebuild. 515 */ 516 static void 517 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start, 518 uint64_t asize) 519 { 520 ASSERT(vd->vdev_ops == &vdev_draid_ops || 521 vd->vdev_ops == &vdev_mirror_ops || 522 vd->vdev_ops == &vdev_replacing_ops || 523 vd->vdev_ops == &vdev_spare_ops); 524 525 uint64_t psize = vd->vdev_ops == &vdev_draid_ops ? 526 vdev_draid_asize_to_psize(vd, asize) : asize; 527 528 BP_ZERO(bp); 529 530 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 531 DVA_SET_OFFSET(&bp->blk_dva[0], start); 532 DVA_SET_GANG(&bp->blk_dva[0], 0); 533 DVA_SET_ASIZE(&bp->blk_dva[0], asize); 534 535 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 536 BP_SET_LSIZE(bp, psize); 537 BP_SET_PSIZE(bp, psize); 538 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 539 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 540 BP_SET_TYPE(bp, DMU_OT_NONE); 541 BP_SET_LEVEL(bp, 0); 542 BP_SET_DEDUP(bp, 0); 543 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 544 } 545 546 /* 547 * Issues a rebuild I/O and takes care of rate limiting the number of queued 548 * rebuild I/Os. The provided start and size must be properly aligned for the 549 * top-level vdev type being rebuilt. 550 */ 551 static int 552 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size) 553 { 554 uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id; 555 vdev_t *vd = vr->vr_top_vdev; 556 spa_t *spa = vd->vdev_spa; 557 blkptr_t blk; 558 559 ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift); 560 ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift); 561 562 vr->vr_pass_bytes_scanned += size; 563 vr->vr_rebuild_phys.vrp_bytes_scanned += size; 564 565 /* 566 * Rebuild the data in this range by constructing a special block 567 * pointer. It has no relation to any existing blocks in the pool. 568 * However, by disabling checksum verification and issuing a scrub IO 569 * we can reconstruct and repair any children with missing data. 570 */ 571 vdev_rebuild_blkptr_init(&blk, vd, start, size); 572 uint64_t psize = BP_GET_PSIZE(&blk); 573 574 if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN)) 575 return (0); 576 577 mutex_enter(&vr->vr_io_lock); 578 579 /* Limit in flight rebuild I/Os */ 580 while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max) 581 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock); 582 583 vr->vr_bytes_inflight += psize; 584 mutex_exit(&vr->vr_io_lock); 585 586 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 587 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 588 uint64_t txg = dmu_tx_get_txg(tx); 589 590 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 591 mutex_enter(&vd->vdev_rebuild_lock); 592 593 /* This is the first I/O for this txg. */ 594 if (vr->vr_scan_offset[txg & TXG_MASK] == 0) { 595 vr->vr_scan_offset[txg & TXG_MASK] = start; 596 dsl_sync_task_nowait(spa_get_dsl(spa), 597 vdev_rebuild_update_sync, 598 (void *)(uintptr_t)vd->vdev_id, tx); 599 } 600 601 /* When exiting write out our progress. */ 602 if (vdev_rebuild_should_stop(vd)) { 603 mutex_enter(&vr->vr_io_lock); 604 vr->vr_bytes_inflight -= psize; 605 mutex_exit(&vr->vr_io_lock); 606 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 607 mutex_exit(&vd->vdev_rebuild_lock); 608 dmu_tx_commit(tx); 609 return (SET_ERROR(EINTR)); 610 } 611 mutex_exit(&vd->vdev_rebuild_lock); 612 dmu_tx_commit(tx); 613 614 vr->vr_scan_offset[txg & TXG_MASK] = start + size; 615 vr->vr_pass_bytes_issued += size; 616 vr->vr_rebuild_phys.vrp_bytes_issued += size; 617 618 zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk, 619 abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr, 620 ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL | 621 ZIO_FLAG_RESILVER, NULL)); 622 623 return (0); 624 } 625 626 /* 627 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree. 628 */ 629 static int 630 vdev_rebuild_ranges(vdev_rebuild_t *vr) 631 { 632 vdev_t *vd = vr->vr_top_vdev; 633 zfs_btree_t *t = &vr->vr_scan_tree->rt_root; 634 zfs_btree_index_t idx; 635 int error; 636 637 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL; 638 rs = zfs_btree_next(t, &idx, &idx)) { 639 uint64_t start = rs_get_start(rs, vr->vr_scan_tree); 640 uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start; 641 642 /* 643 * zfs_scan_suspend_progress can be set to disable rebuild 644 * progress for testing. See comment in dsl_scan_sync(). 645 */ 646 while (zfs_scan_suspend_progress && 647 !vdev_rebuild_should_stop(vd)) { 648 delay(hz); 649 } 650 651 while (size > 0) { 652 uint64_t chunk_size; 653 654 /* 655 * Split range into legally-sized logical chunks 656 * given the constraints of the top-level vdev 657 * being rebuilt (dRAID or mirror). 658 */ 659 ASSERT3P(vd->vdev_ops, !=, NULL); 660 chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd, 661 start, size, zfs_rebuild_max_segment); 662 663 error = vdev_rebuild_range(vr, start, chunk_size); 664 if (error != 0) 665 return (error); 666 667 size -= chunk_size; 668 start += chunk_size; 669 } 670 } 671 672 return (0); 673 } 674 675 /* 676 * Calculates the estimated capacity which remains to be scanned. Since 677 * we traverse the pool in metaslab order only allocated capacity beyond 678 * the vrp_last_offset need be considered. All lower offsets must have 679 * already been rebuilt and are thus already included in vrp_bytes_scanned. 680 */ 681 static void 682 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id) 683 { 684 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 685 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 686 uint64_t bytes_est = vrp->vrp_bytes_scanned; 687 688 if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start) 689 return; 690 691 for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) { 692 metaslab_t *msp = vd->vdev_ms[i]; 693 694 mutex_enter(&msp->ms_lock); 695 bytes_est += metaslab_allocated_space(msp); 696 mutex_exit(&msp->ms_lock); 697 } 698 699 vrp->vrp_bytes_est = bytes_est; 700 } 701 702 /* 703 * Load from disk the top-level vdev's rebuild information. 704 */ 705 int 706 vdev_rebuild_load(vdev_t *vd) 707 { 708 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 709 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 710 spa_t *spa = vd->vdev_spa; 711 int err = 0; 712 713 mutex_enter(&vd->vdev_rebuild_lock); 714 vd->vdev_rebuilding = B_FALSE; 715 716 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) { 717 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 718 mutex_exit(&vd->vdev_rebuild_lock); 719 return (SET_ERROR(ENOTSUP)); 720 } 721 722 ASSERT(vd->vdev_top == vd); 723 724 err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 725 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t), 726 REBUILD_PHYS_ENTRIES, vrp); 727 728 /* 729 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should 730 * not prevent a pool from being imported. Clear the rebuild 731 * status allowing a new resilver/rebuild to be started. 732 */ 733 if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) { 734 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES); 735 } else if (err) { 736 mutex_exit(&vd->vdev_rebuild_lock); 737 return (err); 738 } 739 740 vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms; 741 vr->vr_top_vdev = vd; 742 743 mutex_exit(&vd->vdev_rebuild_lock); 744 745 return (0); 746 } 747 748 /* 749 * Each scan thread is responsible for rebuilding a top-level vdev. The 750 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS. 751 */ 752 static __attribute__((noreturn)) void 753 vdev_rebuild_thread(void *arg) 754 { 755 vdev_t *vd = arg; 756 spa_t *spa = vd->vdev_spa; 757 int error = 0; 758 759 /* 760 * If there's a scrub in process request that it be stopped. This 761 * is not required for a correct rebuild, but we do want rebuilds to 762 * emulate the resilver behavior as much as possible. 763 */ 764 dsl_pool_t *dsl = spa_get_dsl(spa); 765 if (dsl_scan_scrubbing(dsl)) 766 dsl_scan_cancel(dsl); 767 768 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 769 mutex_enter(&vd->vdev_rebuild_lock); 770 771 ASSERT3P(vd->vdev_top, ==, vd); 772 ASSERT3P(vd->vdev_rebuild_thread, !=, NULL); 773 ASSERT(vd->vdev_rebuilding); 774 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD)); 775 ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE); 776 777 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 778 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 779 vr->vr_top_vdev = vd; 780 vr->vr_scan_msp = NULL; 781 vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 782 mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL); 783 cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL); 784 785 vr->vr_pass_start_time = gethrtime(); 786 vr->vr_pass_bytes_scanned = 0; 787 vr->vr_pass_bytes_issued = 0; 788 789 vr->vr_bytes_inflight_max = MAX(1ULL << 20, 790 zfs_rebuild_vdev_limit * vd->vdev_children); 791 792 uint64_t update_est_time = gethrtime(); 793 vdev_rebuild_update_bytes_est(vd, 0); 794 795 clear_rebuild_bytes(vr->vr_top_vdev); 796 797 mutex_exit(&vd->vdev_rebuild_lock); 798 799 /* 800 * Systematically walk the metaslabs and issue rebuild I/Os for 801 * all ranges in the allocated space map. 802 */ 803 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) { 804 metaslab_t *msp = vd->vdev_ms[i]; 805 vr->vr_scan_msp = msp; 806 807 /* 808 * Removal of vdevs from the vdev tree may eliminate the need 809 * for the rebuild, in which case it should be canceled. The 810 * vdev_rebuild_cancel_wanted flag is set until the sync task 811 * completes. This may be after the rebuild thread exits. 812 */ 813 if (vdev_rebuild_should_cancel(vd)) { 814 vd->vdev_rebuild_cancel_wanted = B_TRUE; 815 error = EINTR; 816 break; 817 } 818 819 ASSERT0(range_tree_space(vr->vr_scan_tree)); 820 821 /* Disable any new allocations to this metaslab */ 822 spa_config_exit(spa, SCL_CONFIG, FTAG); 823 metaslab_disable(msp); 824 825 mutex_enter(&msp->ms_sync_lock); 826 mutex_enter(&msp->ms_lock); 827 828 /* 829 * If there are outstanding allocations wait for them to be 830 * synced. This is needed to ensure all allocated ranges are 831 * on disk and therefore will be rebuilt. 832 */ 833 for (int j = 0; j < TXG_SIZE; j++) { 834 if (range_tree_space(msp->ms_allocating[j])) { 835 mutex_exit(&msp->ms_lock); 836 mutex_exit(&msp->ms_sync_lock); 837 txg_wait_synced(dsl, 0); 838 mutex_enter(&msp->ms_sync_lock); 839 mutex_enter(&msp->ms_lock); 840 break; 841 } 842 } 843 844 /* 845 * When a metaslab has been allocated from read its allocated 846 * ranges from the space map object into the vr_scan_tree. 847 * Then add inflight / unflushed ranges and remove inflight / 848 * unflushed frees. This is the minimum range to be rebuilt. 849 */ 850 if (msp->ms_sm != NULL) { 851 VERIFY0(space_map_load(msp->ms_sm, 852 vr->vr_scan_tree, SM_ALLOC)); 853 854 for (int i = 0; i < TXG_SIZE; i++) { 855 ASSERT0(range_tree_space( 856 msp->ms_allocating[i])); 857 } 858 859 range_tree_walk(msp->ms_unflushed_allocs, 860 range_tree_add, vr->vr_scan_tree); 861 range_tree_walk(msp->ms_unflushed_frees, 862 range_tree_remove, vr->vr_scan_tree); 863 864 /* 865 * Remove ranges which have already been rebuilt based 866 * on the last offset. This can happen when restarting 867 * a scan after exporting and re-importing the pool. 868 */ 869 range_tree_clear(vr->vr_scan_tree, 0, 870 vrp->vrp_last_offset); 871 } 872 873 mutex_exit(&msp->ms_lock); 874 mutex_exit(&msp->ms_sync_lock); 875 876 /* 877 * To provide an accurate estimate re-calculate the estimated 878 * size every 5 minutes to account for recent allocations and 879 * frees made to space maps which have not yet been rebuilt. 880 */ 881 if (gethrtime() > update_est_time + SEC2NSEC(300)) { 882 update_est_time = gethrtime(); 883 vdev_rebuild_update_bytes_est(vd, i); 884 } 885 886 /* 887 * Walk the allocated space map and issue the rebuild I/O. 888 */ 889 error = vdev_rebuild_ranges(vr); 890 range_tree_vacate(vr->vr_scan_tree, NULL, NULL); 891 892 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 893 metaslab_enable(msp, B_FALSE, B_FALSE); 894 895 if (error != 0) 896 break; 897 } 898 899 range_tree_destroy(vr->vr_scan_tree); 900 spa_config_exit(spa, SCL_CONFIG, FTAG); 901 902 /* Wait for any remaining rebuild I/O to complete */ 903 mutex_enter(&vr->vr_io_lock); 904 while (vr->vr_bytes_inflight > 0) 905 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock); 906 907 mutex_exit(&vr->vr_io_lock); 908 909 mutex_destroy(&vr->vr_io_lock); 910 cv_destroy(&vr->vr_io_cv); 911 912 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 913 914 dsl_pool_t *dp = spa_get_dsl(spa); 915 dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir); 916 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 917 918 mutex_enter(&vd->vdev_rebuild_lock); 919 if (error == 0) { 920 /* 921 * After a successful rebuild clear the DTLs of all ranges 922 * which were missing when the rebuild was started. These 923 * ranges must have been rebuilt as a consequence of rebuilding 924 * all allocated space. Note that unlike a scrub or resilver 925 * the rebuild operation will reconstruct data only referenced 926 * by a pool checkpoint. See the dsl_scan_done() comments. 927 */ 928 dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync, 929 (void *)(uintptr_t)vd->vdev_id, tx); 930 } else if (vd->vdev_rebuild_cancel_wanted) { 931 /* 932 * The rebuild operation was canceled. This will occur when 933 * a device participating in the rebuild is detached. 934 */ 935 dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync, 936 (void *)(uintptr_t)vd->vdev_id, tx); 937 } else if (vd->vdev_rebuild_reset_wanted) { 938 /* 939 * Reset the running rebuild without canceling and restarting 940 * it. This will occur when a new device is attached and must 941 * participate in the rebuild. 942 */ 943 dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync, 944 (void *)(uintptr_t)vd->vdev_id, tx); 945 } else { 946 /* 947 * The rebuild operation should be suspended. This may occur 948 * when detaching a child vdev or when exporting the pool. The 949 * rebuild is left in the active state so it will be resumed. 950 */ 951 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE); 952 vd->vdev_rebuilding = B_FALSE; 953 } 954 955 dmu_tx_commit(tx); 956 957 vd->vdev_rebuild_thread = NULL; 958 mutex_exit(&vd->vdev_rebuild_lock); 959 spa_config_exit(spa, SCL_CONFIG, FTAG); 960 961 cv_broadcast(&vd->vdev_rebuild_cv); 962 963 thread_exit(); 964 } 965 966 /* 967 * Returns B_TRUE if any top-level vdev are rebuilding. 968 */ 969 boolean_t 970 vdev_rebuild_active(vdev_t *vd) 971 { 972 spa_t *spa = vd->vdev_spa; 973 boolean_t ret = B_FALSE; 974 975 if (vd == spa->spa_root_vdev) { 976 for (uint64_t i = 0; i < vd->vdev_children; i++) { 977 ret = vdev_rebuild_active(vd->vdev_child[i]); 978 if (ret) 979 return (ret); 980 } 981 } else if (vd->vdev_top_zap != 0) { 982 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 983 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 984 985 mutex_enter(&vd->vdev_rebuild_lock); 986 ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE); 987 mutex_exit(&vd->vdev_rebuild_lock); 988 } 989 990 return (ret); 991 } 992 993 /* 994 * Start a rebuild operation. The rebuild may be restarted when the 995 * top-level vdev is currently actively rebuilding. 996 */ 997 void 998 vdev_rebuild(vdev_t *vd) 999 { 1000 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 1001 vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys; 1002 1003 ASSERT(vd->vdev_top == vd); 1004 ASSERT(vdev_is_concrete(vd)); 1005 ASSERT(!vd->vdev_removing); 1006 ASSERT(spa_feature_is_enabled(vd->vdev_spa, 1007 SPA_FEATURE_DEVICE_REBUILD)); 1008 1009 mutex_enter(&vd->vdev_rebuild_lock); 1010 if (vd->vdev_rebuilding) { 1011 ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE); 1012 1013 /* 1014 * Signal a running rebuild operation that it should restart 1015 * from the beginning because a new device was attached. The 1016 * vdev_rebuild_reset_wanted flag is set until the sync task 1017 * completes. This may be after the rebuild thread exits. 1018 */ 1019 if (!vd->vdev_rebuild_reset_wanted) 1020 vd->vdev_rebuild_reset_wanted = B_TRUE; 1021 } else { 1022 vdev_rebuild_initiate(vd); 1023 } 1024 mutex_exit(&vd->vdev_rebuild_lock); 1025 } 1026 1027 static void 1028 vdev_rebuild_restart_impl(vdev_t *vd) 1029 { 1030 spa_t *spa = vd->vdev_spa; 1031 1032 if (vd == spa->spa_root_vdev) { 1033 for (uint64_t i = 0; i < vd->vdev_children; i++) 1034 vdev_rebuild_restart_impl(vd->vdev_child[i]); 1035 1036 } else if (vd->vdev_top_zap != 0) { 1037 vdev_rebuild_t *vr = &vd->vdev_rebuild_config; 1038 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 1039 1040 mutex_enter(&vd->vdev_rebuild_lock); 1041 if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE && 1042 vdev_writeable(vd) && !vd->vdev_rebuilding) { 1043 ASSERT(spa_feature_is_active(spa, 1044 SPA_FEATURE_DEVICE_REBUILD)); 1045 vd->vdev_rebuilding = B_TRUE; 1046 vd->vdev_rebuild_thread = thread_create(NULL, 0, 1047 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, 1048 maxclsyspri); 1049 } 1050 mutex_exit(&vd->vdev_rebuild_lock); 1051 } 1052 } 1053 1054 /* 1055 * Conditionally restart all of the vdev_rebuild_thread's for a pool. The 1056 * feature flag must be active and the rebuild in the active state. This 1057 * cannot be used to start a new rebuild. 1058 */ 1059 void 1060 vdev_rebuild_restart(spa_t *spa) 1061 { 1062 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1063 1064 vdev_rebuild_restart_impl(spa->spa_root_vdev); 1065 } 1066 1067 /* 1068 * Stop and wait for all of the vdev_rebuild_thread's associated with the 1069 * vdev tree provide to be terminated (canceled or stopped). 1070 */ 1071 void 1072 vdev_rebuild_stop_wait(vdev_t *vd) 1073 { 1074 spa_t *spa = vd->vdev_spa; 1075 1076 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1077 1078 if (vd == spa->spa_root_vdev) { 1079 for (uint64_t i = 0; i < vd->vdev_children; i++) 1080 vdev_rebuild_stop_wait(vd->vdev_child[i]); 1081 1082 } else if (vd->vdev_top_zap != 0) { 1083 ASSERT(vd == vd->vdev_top); 1084 1085 mutex_enter(&vd->vdev_rebuild_lock); 1086 if (vd->vdev_rebuild_thread != NULL) { 1087 vd->vdev_rebuild_exit_wanted = B_TRUE; 1088 while (vd->vdev_rebuilding) { 1089 cv_wait(&vd->vdev_rebuild_cv, 1090 &vd->vdev_rebuild_lock); 1091 } 1092 vd->vdev_rebuild_exit_wanted = B_FALSE; 1093 } 1094 mutex_exit(&vd->vdev_rebuild_lock); 1095 } 1096 } 1097 1098 /* 1099 * Stop all rebuild operations but leave them in the active state so they 1100 * will be resumed when importing the pool. 1101 */ 1102 void 1103 vdev_rebuild_stop_all(spa_t *spa) 1104 { 1105 vdev_rebuild_stop_wait(spa->spa_root_vdev); 1106 } 1107 1108 /* 1109 * Rebuild statistics reported per top-level vdev. 1110 */ 1111 int 1112 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs) 1113 { 1114 spa_t *spa = tvd->vdev_spa; 1115 1116 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 1117 return (SET_ERROR(ENOTSUP)); 1118 1119 if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0) 1120 return (SET_ERROR(EINVAL)); 1121 1122 int error = zap_contains(spa_meta_objset(spa), 1123 tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS); 1124 1125 if (error == ENOENT) { 1126 memset(vrs, 0, sizeof (vdev_rebuild_stat_t)); 1127 vrs->vrs_state = VDEV_REBUILD_NONE; 1128 error = 0; 1129 } else if (error == 0) { 1130 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 1131 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 1132 1133 mutex_enter(&tvd->vdev_rebuild_lock); 1134 vrs->vrs_state = vrp->vrp_rebuild_state; 1135 vrs->vrs_start_time = vrp->vrp_start_time; 1136 vrs->vrs_end_time = vrp->vrp_end_time; 1137 vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms; 1138 vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned; 1139 vrs->vrs_bytes_issued = vrp->vrp_bytes_issued; 1140 vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt; 1141 vrs->vrs_bytes_est = vrp->vrp_bytes_est; 1142 vrs->vrs_errors = vrp->vrp_errors; 1143 vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() - 1144 vr->vr_pass_start_time); 1145 vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned; 1146 vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued; 1147 mutex_exit(&tvd->vdev_rebuild_lock); 1148 } 1149 1150 return (error); 1151 } 1152 1153 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, U64, ZMOD_RW, 1154 "Max segment size in bytes of rebuild reads"); 1155 1156 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, U64, ZMOD_RW, 1157 "Max bytes in flight per leaf vdev for sequential resilvers"); 1158 1159 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW, 1160 "Automatically scrub after sequential resilver completes"); 1161