1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/vdev_draid.h> 146 #include <sys/uberblock_impl.h> 147 #include <sys/metaslab.h> 148 #include <sys/metaslab_impl.h> 149 #include <sys/zio.h> 150 #include <sys/dsl_scan.h> 151 #include <sys/abd.h> 152 #include <sys/fs/zfs.h> 153 #include <sys/byteorder.h> 154 #include <sys/zfs_bootenv.h> 155 156 /* 157 * Basic routines to read and write from a vdev label. 158 * Used throughout the rest of this file. 159 */ 160 uint64_t 161 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 162 { 163 ASSERT(offset < sizeof (vdev_label_t)); 164 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 165 166 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 167 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 168 } 169 170 /* 171 * Returns back the vdev label associated with the passed in offset. 172 */ 173 int 174 vdev_label_number(uint64_t psize, uint64_t offset) 175 { 176 int l; 177 178 if (offset >= psize - VDEV_LABEL_END_SIZE) { 179 offset -= psize - VDEV_LABEL_END_SIZE; 180 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 181 } 182 l = offset / sizeof (vdev_label_t); 183 return (l < VDEV_LABELS ? l : -1); 184 } 185 186 static void 187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 188 uint64_t size, zio_done_func_t *done, void *private, int flags) 189 { 190 ASSERT( 191 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 192 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 193 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 194 195 zio_nowait(zio_read_phys(zio, vd, 196 vdev_label_offset(vd->vdev_psize, l, offset), 197 size, buf, ZIO_CHECKSUM_LABEL, done, private, 198 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 199 } 200 201 void 202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 203 uint64_t size, zio_done_func_t *done, void *private, int flags) 204 { 205 ASSERT( 206 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 207 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 208 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 209 210 zio_nowait(zio_write_phys(zio, vd, 211 vdev_label_offset(vd->vdev_psize, l, offset), 212 size, buf, ZIO_CHECKSUM_LABEL, done, private, 213 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 214 } 215 216 /* 217 * Generate the nvlist representing this vdev's stats 218 */ 219 void 220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 221 { 222 nvlist_t *nvx; 223 vdev_stat_t *vs; 224 vdev_stat_ex_t *vsx; 225 226 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 227 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 228 229 vdev_get_stats_ex(vd, vs, vsx); 230 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 231 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 232 233 /* 234 * Add extended stats into a special extended stats nvlist. This keeps 235 * all the extended stats nicely grouped together. The extended stats 236 * nvlist is then added to the main nvlist. 237 */ 238 nvx = fnvlist_alloc(); 239 240 /* ZIOs in flight to disk */ 241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 243 244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 246 247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 249 250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 252 253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 255 256 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 257 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 258 259 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE, 260 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]); 261 262 /* ZIOs pending */ 263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 264 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 265 266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 267 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 268 269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 270 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 271 272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 273 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 274 275 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 276 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 277 278 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 279 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 280 281 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE, 282 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]); 283 284 /* Histograms */ 285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 286 vsx->vsx_total_histo[ZIO_TYPE_READ], 287 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 288 289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 290 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 291 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 292 293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 294 vsx->vsx_disk_histo[ZIO_TYPE_READ], 295 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 296 297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 298 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 299 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 300 301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 302 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 304 305 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 306 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 307 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 308 309 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 310 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 311 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 312 313 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 314 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 315 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 316 317 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 318 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 319 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 320 321 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 322 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 323 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 324 325 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO, 326 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD], 327 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD])); 328 329 /* Request sizes */ 330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 331 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 332 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 333 334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 335 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 336 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 337 338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 339 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 340 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 341 342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 343 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 344 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 345 346 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 347 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 348 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 349 350 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 351 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 352 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 353 354 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO, 355 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD], 356 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD])); 357 358 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 359 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 360 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 361 362 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 363 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 364 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 365 366 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 367 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 368 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 369 370 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 371 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 372 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 373 374 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 375 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 376 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 377 378 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 379 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 380 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 381 382 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO, 383 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD], 384 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD])); 385 386 /* IO delays */ 387 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 388 389 /* Add extended stats nvlist to main nvlist */ 390 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 391 392 fnvlist_free(nvx); 393 kmem_free(vs, sizeof (*vs)); 394 kmem_free(vsx, sizeof (*vsx)); 395 } 396 397 static void 398 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 399 { 400 spa_t *spa = vd->vdev_spa; 401 402 if (vd != spa->spa_root_vdev) 403 return; 404 405 /* provide either current or previous scan information */ 406 pool_scan_stat_t ps; 407 if (spa_scan_get_stats(spa, &ps) == 0) { 408 fnvlist_add_uint64_array(nvl, 409 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 410 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 411 } 412 413 pool_removal_stat_t prs; 414 if (spa_removal_get_stats(spa, &prs) == 0) { 415 fnvlist_add_uint64_array(nvl, 416 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 417 sizeof (prs) / sizeof (uint64_t)); 418 } 419 420 pool_checkpoint_stat_t pcs; 421 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 422 fnvlist_add_uint64_array(nvl, 423 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 424 sizeof (pcs) / sizeof (uint64_t)); 425 } 426 } 427 428 static void 429 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 430 { 431 if (vd == vd->vdev_top) { 432 vdev_rebuild_stat_t vrs; 433 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 434 fnvlist_add_uint64_array(nvl, 435 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 436 sizeof (vrs) / sizeof (uint64_t)); 437 } 438 } 439 } 440 441 /* 442 * Generate the nvlist representing this vdev's config. 443 */ 444 nvlist_t * 445 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 446 vdev_config_flag_t flags) 447 { 448 nvlist_t *nv = NULL; 449 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 450 451 nv = fnvlist_alloc(); 452 453 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 454 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 455 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 456 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 457 458 if (vd->vdev_path != NULL) 459 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 460 461 if (vd->vdev_devid != NULL) 462 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 463 464 if (vd->vdev_physpath != NULL) 465 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 466 vd->vdev_physpath); 467 468 if (vd->vdev_enc_sysfs_path != NULL) 469 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 470 vd->vdev_enc_sysfs_path); 471 472 if (vd->vdev_fru != NULL) 473 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 474 475 if (vd->vdev_ops->vdev_op_config_generate != NULL) 476 vd->vdev_ops->vdev_op_config_generate(vd, nv); 477 478 if (vd->vdev_wholedisk != -1ULL) { 479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 480 vd->vdev_wholedisk); 481 } 482 483 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 484 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 485 486 if (vd->vdev_isspare) 487 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 488 489 if (flags & VDEV_CONFIG_L2CACHE) 490 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 491 492 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 493 vd == vd->vdev_top) { 494 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 495 vd->vdev_ms_array); 496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 497 vd->vdev_ms_shift); 498 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 499 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 500 vd->vdev_asize); 501 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 502 if (vd->vdev_noalloc) { 503 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 504 vd->vdev_noalloc); 505 } 506 507 /* 508 * Slog devices are removed synchronously so don't 509 * persist the vdev_removing flag to the label. 510 */ 511 if (vd->vdev_removing && !vd->vdev_islog) { 512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 513 vd->vdev_removing); 514 } 515 516 /* zpool command expects alloc class data */ 517 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 518 const char *bias = NULL; 519 520 switch (vd->vdev_alloc_bias) { 521 case VDEV_BIAS_LOG: 522 bias = VDEV_ALLOC_BIAS_LOG; 523 break; 524 case VDEV_BIAS_SPECIAL: 525 bias = VDEV_ALLOC_BIAS_SPECIAL; 526 break; 527 case VDEV_BIAS_DEDUP: 528 bias = VDEV_ALLOC_BIAS_DEDUP; 529 break; 530 default: 531 ASSERT3U(vd->vdev_alloc_bias, ==, 532 VDEV_BIAS_NONE); 533 } 534 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 535 bias); 536 } 537 } 538 539 if (vd->vdev_dtl_sm != NULL) { 540 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 541 space_map_object(vd->vdev_dtl_sm)); 542 } 543 544 if (vic->vic_mapping_object != 0) { 545 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 546 vic->vic_mapping_object); 547 } 548 549 if (vic->vic_births_object != 0) { 550 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 551 vic->vic_births_object); 552 } 553 554 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 555 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 556 vic->vic_prev_indirect_vdev); 557 } 558 559 if (vd->vdev_crtxg) 560 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 561 562 if (vd->vdev_expansion_time) 563 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 564 vd->vdev_expansion_time); 565 566 if (flags & VDEV_CONFIG_MOS) { 567 if (vd->vdev_leaf_zap != 0) { 568 ASSERT(vd->vdev_ops->vdev_op_leaf); 569 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 570 vd->vdev_leaf_zap); 571 } 572 573 if (vd->vdev_top_zap != 0) { 574 ASSERT(vd == vd->vdev_top); 575 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 576 vd->vdev_top_zap); 577 } 578 579 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 && 580 spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { 581 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, 582 vd->vdev_root_zap); 583 } 584 585 if (vd->vdev_resilver_deferred) { 586 ASSERT(vd->vdev_ops->vdev_op_leaf); 587 ASSERT(spa->spa_resilver_deferred); 588 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 589 } 590 } 591 592 if (getstats) { 593 vdev_config_generate_stats(vd, nv); 594 595 root_vdev_actions_getprogress(vd, nv); 596 top_vdev_actions_getprogress(vd, nv); 597 598 /* 599 * Note: this can be called from open context 600 * (spa_get_stats()), so we need the rwlock to prevent 601 * the mapping from being changed by condensing. 602 */ 603 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 604 if (vd->vdev_indirect_mapping != NULL) { 605 ASSERT(vd->vdev_indirect_births != NULL); 606 vdev_indirect_mapping_t *vim = 607 vd->vdev_indirect_mapping; 608 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 609 vdev_indirect_mapping_size(vim)); 610 } 611 rw_exit(&vd->vdev_indirect_rwlock); 612 if (vd->vdev_mg != NULL && 613 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 614 /* 615 * Compute approximately how much memory would be used 616 * for the indirect mapping if this device were to 617 * be removed. 618 * 619 * Note: If the frag metric is invalid, then not 620 * enough metaslabs have been converted to have 621 * histograms. 622 */ 623 uint64_t seg_count = 0; 624 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 625 626 /* 627 * There are the same number of allocated segments 628 * as free segments, so we will have at least one 629 * entry per free segment. However, small free 630 * segments (smaller than vdev_removal_max_span) 631 * will be combined with adjacent allocated segments 632 * as a single mapping. 633 */ 634 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 635 if (i + 1 < highbit64(vdev_removal_max_span) 636 - 1) { 637 to_alloc += 638 vd->vdev_mg->mg_histogram[i] << 639 (i + 1); 640 } else { 641 seg_count += 642 vd->vdev_mg->mg_histogram[i]; 643 } 644 } 645 646 /* 647 * The maximum length of a mapping is 648 * zfs_remove_max_segment, so we need at least one entry 649 * per zfs_remove_max_segment of allocated data. 650 */ 651 seg_count += to_alloc / spa_remove_max_segment(spa); 652 653 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 654 seg_count * 655 sizeof (vdev_indirect_mapping_entry_phys_t)); 656 } 657 } 658 659 if (!vd->vdev_ops->vdev_op_leaf) { 660 nvlist_t **child; 661 uint64_t c; 662 663 ASSERT(!vd->vdev_ishole); 664 665 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 666 KM_SLEEP); 667 668 for (c = 0; c < vd->vdev_children; c++) { 669 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 670 getstats, flags); 671 } 672 673 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 674 (const nvlist_t * const *)child, vd->vdev_children); 675 676 for (c = 0; c < vd->vdev_children; c++) 677 nvlist_free(child[c]); 678 679 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 680 681 } else { 682 const char *aux = NULL; 683 684 if (vd->vdev_offline && !vd->vdev_tmpoffline) 685 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 686 if (vd->vdev_resilver_txg != 0) 687 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 688 vd->vdev_resilver_txg); 689 if (vd->vdev_rebuild_txg != 0) 690 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 691 vd->vdev_rebuild_txg); 692 if (vd->vdev_faulted) 693 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 694 if (vd->vdev_degraded) 695 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 696 if (vd->vdev_removed) 697 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 698 if (vd->vdev_unspare) 699 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 700 if (vd->vdev_ishole) 701 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 702 703 /* Set the reason why we're FAULTED/DEGRADED. */ 704 switch (vd->vdev_stat.vs_aux) { 705 case VDEV_AUX_ERR_EXCEEDED: 706 aux = "err_exceeded"; 707 break; 708 709 case VDEV_AUX_EXTERNAL: 710 aux = "external"; 711 break; 712 } 713 714 if (aux != NULL && !vd->vdev_tmpoffline) { 715 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 716 } else { 717 /* 718 * We're healthy - clear any previous AUX_STATE values. 719 */ 720 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 721 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 722 } 723 724 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 725 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 726 vd->vdev_orig_guid); 727 } 728 } 729 730 return (nv); 731 } 732 733 /* 734 * Generate a view of the top-level vdevs. If we currently have holes 735 * in the namespace, then generate an array which contains a list of holey 736 * vdevs. Additionally, add the number of top-level children that currently 737 * exist. 738 */ 739 void 740 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 741 { 742 vdev_t *rvd = spa->spa_root_vdev; 743 uint64_t *array; 744 uint_t c, idx; 745 746 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 747 748 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 749 vdev_t *tvd = rvd->vdev_child[c]; 750 751 if (tvd->vdev_ishole) { 752 array[idx++] = c; 753 } 754 } 755 756 if (idx) { 757 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 758 array, idx) == 0); 759 } 760 761 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 762 rvd->vdev_children) == 0); 763 764 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 765 } 766 767 /* 768 * Returns the configuration from the label of the given vdev. For vdevs 769 * which don't have a txg value stored on their label (i.e. spares/cache) 770 * or have not been completely initialized (txg = 0) just return 771 * the configuration from the first valid label we find. Otherwise, 772 * find the most up-to-date label that does not exceed the specified 773 * 'txg' value. 774 */ 775 nvlist_t * 776 vdev_label_read_config(vdev_t *vd, uint64_t txg) 777 { 778 spa_t *spa = vd->vdev_spa; 779 nvlist_t *config = NULL; 780 vdev_phys_t *vp[VDEV_LABELS]; 781 abd_t *vp_abd[VDEV_LABELS]; 782 zio_t *zio[VDEV_LABELS]; 783 uint64_t best_txg = 0; 784 uint64_t label_txg = 0; 785 int error = 0; 786 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 787 ZIO_FLAG_SPECULATIVE; 788 789 ASSERT(vd->vdev_validate_thread == curthread || 790 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 791 792 if (!vdev_readable(vd)) 793 return (NULL); 794 795 /* 796 * The label for a dRAID distributed spare is not stored on disk. 797 * Instead it is generated when needed which allows us to bypass 798 * the pipeline when reading the config from the label. 799 */ 800 if (vd->vdev_ops == &vdev_draid_spare_ops) 801 return (vdev_draid_read_config_spare(vd)); 802 803 for (int l = 0; l < VDEV_LABELS; l++) { 804 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 805 vp[l] = abd_to_buf(vp_abd[l]); 806 } 807 808 retry: 809 for (int l = 0; l < VDEV_LABELS; l++) { 810 zio[l] = zio_root(spa, NULL, NULL, flags); 811 812 vdev_label_read(zio[l], vd, l, vp_abd[l], 813 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 814 NULL, NULL, flags); 815 } 816 for (int l = 0; l < VDEV_LABELS; l++) { 817 nvlist_t *label = NULL; 818 819 if (zio_wait(zio[l]) == 0 && 820 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist), 821 &label, 0) == 0) { 822 /* 823 * Auxiliary vdevs won't have txg values in their 824 * labels and newly added vdevs may not have been 825 * completely initialized so just return the 826 * configuration from the first valid label we 827 * encounter. 828 */ 829 error = nvlist_lookup_uint64(label, 830 ZPOOL_CONFIG_POOL_TXG, &label_txg); 831 if ((error || label_txg == 0) && !config) { 832 config = label; 833 for (l++; l < VDEV_LABELS; l++) 834 zio_wait(zio[l]); 835 break; 836 } else if (label_txg <= txg && label_txg > best_txg) { 837 best_txg = label_txg; 838 nvlist_free(config); 839 config = fnvlist_dup(label); 840 } 841 } 842 843 if (label != NULL) { 844 nvlist_free(label); 845 label = NULL; 846 } 847 } 848 849 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 850 flags |= ZIO_FLAG_TRYHARD; 851 goto retry; 852 } 853 854 /* 855 * We found a valid label but it didn't pass txg restrictions. 856 */ 857 if (config == NULL && label_txg != 0) { 858 vdev_dbgmsg(vd, "label discarded as txg is too large " 859 "(%llu > %llu)", (u_longlong_t)label_txg, 860 (u_longlong_t)txg); 861 } 862 863 for (int l = 0; l < VDEV_LABELS; l++) { 864 abd_free(vp_abd[l]); 865 } 866 867 return (config); 868 } 869 870 /* 871 * Determine if a device is in use. The 'spare_guid' parameter will be filled 872 * in with the device guid if this spare is active elsewhere on the system. 873 */ 874 static boolean_t 875 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 876 uint64_t *spare_guid, uint64_t *l2cache_guid) 877 { 878 spa_t *spa = vd->vdev_spa; 879 uint64_t state, pool_guid, device_guid, txg, spare_pool; 880 uint64_t vdtxg = 0; 881 nvlist_t *label; 882 883 if (spare_guid) 884 *spare_guid = 0ULL; 885 if (l2cache_guid) 886 *l2cache_guid = 0ULL; 887 888 /* 889 * Read the label, if any, and perform some basic sanity checks. 890 */ 891 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 892 return (B_FALSE); 893 894 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 895 &vdtxg); 896 897 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 898 &state) != 0 || 899 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 900 &device_guid) != 0) { 901 nvlist_free(label); 902 return (B_FALSE); 903 } 904 905 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 906 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 907 &pool_guid) != 0 || 908 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 909 &txg) != 0)) { 910 nvlist_free(label); 911 return (B_FALSE); 912 } 913 914 nvlist_free(label); 915 916 /* 917 * Check to see if this device indeed belongs to the pool it claims to 918 * be a part of. The only way this is allowed is if the device is a hot 919 * spare (which we check for later on). 920 */ 921 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 922 !spa_guid_exists(pool_guid, device_guid) && 923 !spa_spare_exists(device_guid, NULL, NULL) && 924 !spa_l2cache_exists(device_guid, NULL)) 925 return (B_FALSE); 926 927 /* 928 * If the transaction group is zero, then this an initialized (but 929 * unused) label. This is only an error if the create transaction 930 * on-disk is the same as the one we're using now, in which case the 931 * user has attempted to add the same vdev multiple times in the same 932 * transaction. 933 */ 934 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 935 txg == 0 && vdtxg == crtxg) 936 return (B_TRUE); 937 938 /* 939 * Check to see if this is a spare device. We do an explicit check for 940 * spa_has_spare() here because it may be on our pending list of spares 941 * to add. 942 */ 943 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 944 spa_has_spare(spa, device_guid)) { 945 if (spare_guid) 946 *spare_guid = device_guid; 947 948 switch (reason) { 949 case VDEV_LABEL_CREATE: 950 return (B_TRUE); 951 952 case VDEV_LABEL_REPLACE: 953 return (!spa_has_spare(spa, device_guid) || 954 spare_pool != 0ULL); 955 956 case VDEV_LABEL_SPARE: 957 return (spa_has_spare(spa, device_guid)); 958 default: 959 break; 960 } 961 } 962 963 /* 964 * Check to see if this is an l2cache device. 965 */ 966 if (spa_l2cache_exists(device_guid, NULL) || 967 spa_has_l2cache(spa, device_guid)) { 968 if (l2cache_guid) 969 *l2cache_guid = device_guid; 970 971 switch (reason) { 972 case VDEV_LABEL_CREATE: 973 return (B_TRUE); 974 975 case VDEV_LABEL_REPLACE: 976 return (!spa_has_l2cache(spa, device_guid)); 977 978 case VDEV_LABEL_L2CACHE: 979 return (spa_has_l2cache(spa, device_guid)); 980 default: 981 break; 982 } 983 } 984 985 /* 986 * We can't rely on a pool's state if it's been imported 987 * read-only. Instead we look to see if the pools is marked 988 * read-only in the namespace and set the state to active. 989 */ 990 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 991 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 992 spa_mode(spa) == SPA_MODE_READ) 993 state = POOL_STATE_ACTIVE; 994 995 /* 996 * If the device is marked ACTIVE, then this device is in use by another 997 * pool on the system. 998 */ 999 return (state == POOL_STATE_ACTIVE); 1000 } 1001 1002 /* 1003 * Initialize a vdev label. We check to make sure each leaf device is not in 1004 * use, and writable. We put down an initial label which we will later 1005 * overwrite with a complete label. Note that it's important to do this 1006 * sequentially, not in parallel, so that we catch cases of multiple use of the 1007 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 1008 * itself. 1009 */ 1010 int 1011 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 1012 { 1013 spa_t *spa = vd->vdev_spa; 1014 nvlist_t *label; 1015 vdev_phys_t *vp; 1016 abd_t *vp_abd; 1017 abd_t *bootenv; 1018 uberblock_t *ub; 1019 abd_t *ub_abd; 1020 zio_t *zio; 1021 char *buf; 1022 size_t buflen; 1023 int error; 1024 uint64_t spare_guid = 0, l2cache_guid = 0; 1025 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1026 1027 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1028 1029 for (int c = 0; c < vd->vdev_children; c++) 1030 if ((error = vdev_label_init(vd->vdev_child[c], 1031 crtxg, reason)) != 0) 1032 return (error); 1033 1034 /* Track the creation time for this vdev */ 1035 vd->vdev_crtxg = crtxg; 1036 1037 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 1038 return (0); 1039 1040 /* 1041 * Dead vdevs cannot be initialized. 1042 */ 1043 if (vdev_is_dead(vd)) 1044 return (SET_ERROR(EIO)); 1045 1046 /* 1047 * Determine if the vdev is in use. 1048 */ 1049 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1050 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1051 return (SET_ERROR(EBUSY)); 1052 1053 /* 1054 * If this is a request to add or replace a spare or l2cache device 1055 * that is in use elsewhere on the system, then we must update the 1056 * guid (which was initialized to a random value) to reflect the 1057 * actual GUID (which is shared between multiple pools). 1058 */ 1059 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1060 spare_guid != 0ULL) { 1061 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1062 1063 vd->vdev_guid += guid_delta; 1064 1065 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1066 pvd->vdev_guid_sum += guid_delta; 1067 1068 /* 1069 * If this is a replacement, then we want to fallthrough to the 1070 * rest of the code. If we're adding a spare, then it's already 1071 * labeled appropriately and we can just return. 1072 */ 1073 if (reason == VDEV_LABEL_SPARE) 1074 return (0); 1075 ASSERT(reason == VDEV_LABEL_REPLACE || 1076 reason == VDEV_LABEL_SPLIT); 1077 } 1078 1079 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1080 l2cache_guid != 0ULL) { 1081 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1082 1083 vd->vdev_guid += guid_delta; 1084 1085 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1086 pvd->vdev_guid_sum += guid_delta; 1087 1088 /* 1089 * If this is a replacement, then we want to fallthrough to the 1090 * rest of the code. If we're adding an l2cache, then it's 1091 * already labeled appropriately and we can just return. 1092 */ 1093 if (reason == VDEV_LABEL_L2CACHE) 1094 return (0); 1095 ASSERT(reason == VDEV_LABEL_REPLACE); 1096 } 1097 1098 /* 1099 * Initialize its label. 1100 */ 1101 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1102 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1103 vp = abd_to_buf(vp_abd); 1104 1105 /* 1106 * Generate a label describing the pool and our top-level vdev. 1107 * We mark it as being from txg 0 to indicate that it's not 1108 * really part of an active pool just yet. The labels will 1109 * be written again with a meaningful txg by spa_sync(). 1110 */ 1111 if (reason == VDEV_LABEL_SPARE || 1112 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1113 /* 1114 * For inactive hot spares, we generate a special label that 1115 * identifies as a mutually shared hot spare. We write the 1116 * label if we are adding a hot spare, or if we are removing an 1117 * active hot spare (in which case we want to revert the 1118 * labels). 1119 */ 1120 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1121 1122 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1123 spa_version(spa)) == 0); 1124 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1125 POOL_STATE_SPARE) == 0); 1126 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1127 vd->vdev_guid) == 0); 1128 } else if (reason == VDEV_LABEL_L2CACHE || 1129 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1130 /* 1131 * For level 2 ARC devices, add a special label. 1132 */ 1133 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1134 1135 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1136 spa_version(spa)) == 0); 1137 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1138 POOL_STATE_L2CACHE) == 0); 1139 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1140 vd->vdev_guid) == 0); 1141 } else { 1142 uint64_t txg = 0ULL; 1143 1144 if (reason == VDEV_LABEL_SPLIT) 1145 txg = spa->spa_uberblock.ub_txg; 1146 label = spa_config_generate(spa, vd, txg, B_FALSE); 1147 1148 /* 1149 * Add our creation time. This allows us to detect multiple 1150 * vdev uses as described above, and automatically expires if we 1151 * fail. 1152 */ 1153 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1154 crtxg) == 0); 1155 } 1156 1157 buf = vp->vp_nvlist; 1158 buflen = sizeof (vp->vp_nvlist); 1159 1160 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1161 if (error != 0) { 1162 nvlist_free(label); 1163 abd_free(vp_abd); 1164 /* EFAULT means nvlist_pack ran out of room */ 1165 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1166 } 1167 1168 /* 1169 * Initialize uberblock template. 1170 */ 1171 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1172 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1173 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1174 ub = abd_to_buf(ub_abd); 1175 ub->ub_txg = 0; 1176 1177 /* Initialize the 2nd padding area. */ 1178 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1179 abd_zero(bootenv, VDEV_PAD_SIZE); 1180 1181 /* 1182 * Write everything in parallel. 1183 */ 1184 retry: 1185 zio = zio_root(spa, NULL, NULL, flags); 1186 1187 for (int l = 0; l < VDEV_LABELS; l++) { 1188 1189 vdev_label_write(zio, vd, l, vp_abd, 1190 offsetof(vdev_label_t, vl_vdev_phys), 1191 sizeof (vdev_phys_t), NULL, NULL, flags); 1192 1193 /* 1194 * Skip the 1st padding area. 1195 * Zero out the 2nd padding area where it might have 1196 * left over data from previous filesystem format. 1197 */ 1198 vdev_label_write(zio, vd, l, bootenv, 1199 offsetof(vdev_label_t, vl_be), 1200 VDEV_PAD_SIZE, NULL, NULL, flags); 1201 1202 vdev_label_write(zio, vd, l, ub_abd, 1203 offsetof(vdev_label_t, vl_uberblock), 1204 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1205 } 1206 1207 error = zio_wait(zio); 1208 1209 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1210 flags |= ZIO_FLAG_TRYHARD; 1211 goto retry; 1212 } 1213 1214 nvlist_free(label); 1215 abd_free(bootenv); 1216 abd_free(ub_abd); 1217 abd_free(vp_abd); 1218 1219 /* 1220 * If this vdev hasn't been previously identified as a spare, then we 1221 * mark it as such only if a) we are labeling it as a spare, or b) it 1222 * exists as a spare elsewhere in the system. Do the same for 1223 * level 2 ARC devices. 1224 */ 1225 if (error == 0 && !vd->vdev_isspare && 1226 (reason == VDEV_LABEL_SPARE || 1227 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1228 spa_spare_add(vd); 1229 1230 if (error == 0 && !vd->vdev_isl2cache && 1231 (reason == VDEV_LABEL_L2CACHE || 1232 spa_l2cache_exists(vd->vdev_guid, NULL))) 1233 spa_l2cache_add(vd); 1234 1235 return (error); 1236 } 1237 1238 /* 1239 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1240 * callback to finish, store our abd in the callback pointer. Otherwise, we 1241 * just free our abd and return. 1242 */ 1243 static void 1244 vdev_label_read_bootenv_done(zio_t *zio) 1245 { 1246 zio_t *rio = zio->io_private; 1247 abd_t **cbp = rio->io_private; 1248 1249 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1250 1251 if (zio->io_error == 0) { 1252 mutex_enter(&rio->io_lock); 1253 if (*cbp == NULL) { 1254 /* Will free this buffer in vdev_label_read_bootenv. */ 1255 *cbp = zio->io_abd; 1256 } else { 1257 abd_free(zio->io_abd); 1258 } 1259 mutex_exit(&rio->io_lock); 1260 } else { 1261 abd_free(zio->io_abd); 1262 } 1263 } 1264 1265 static void 1266 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1267 { 1268 for (int c = 0; c < vd->vdev_children; c++) 1269 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1270 1271 /* 1272 * We just use the first label that has a correct checksum; the 1273 * bootloader should have rewritten them all to be the same on boot, 1274 * and any changes we made since boot have been the same across all 1275 * labels. 1276 */ 1277 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1278 for (int l = 0; l < VDEV_LABELS; l++) { 1279 vdev_label_read(zio, vd, l, 1280 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1281 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1282 vdev_label_read_bootenv_done, zio, flags); 1283 } 1284 } 1285 } 1286 1287 int 1288 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv) 1289 { 1290 nvlist_t *config; 1291 spa_t *spa = rvd->vdev_spa; 1292 abd_t *abd = NULL; 1293 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1294 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1295 1296 ASSERT(bootenv); 1297 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1298 1299 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1300 vdev_label_read_bootenv_impl(zio, rvd, flags); 1301 int err = zio_wait(zio); 1302 1303 if (abd != NULL) { 1304 char *buf; 1305 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1306 1307 vbe->vbe_version = ntohll(vbe->vbe_version); 1308 switch (vbe->vbe_version) { 1309 case VB_RAW: 1310 /* 1311 * if we have textual data in vbe_bootenv, create nvlist 1312 * with key "envmap". 1313 */ 1314 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW); 1315 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1316 fnvlist_add_string(bootenv, GRUB_ENVMAP, 1317 vbe->vbe_bootenv); 1318 break; 1319 1320 case VB_NVLIST: 1321 err = nvlist_unpack(vbe->vbe_bootenv, 1322 sizeof (vbe->vbe_bootenv), &config, 0); 1323 if (err == 0) { 1324 fnvlist_merge(bootenv, config); 1325 nvlist_free(config); 1326 break; 1327 } 1328 zfs_fallthrough; 1329 default: 1330 /* Check for FreeBSD zfs bootonce command string */ 1331 buf = abd_to_buf(abd); 1332 if (*buf == '\0') { 1333 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, 1334 VB_NVLIST); 1335 break; 1336 } 1337 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf); 1338 } 1339 1340 /* 1341 * abd was allocated in vdev_label_read_bootenv_impl() 1342 */ 1343 abd_free(abd); 1344 /* 1345 * If we managed to read any successfully, 1346 * return success. 1347 */ 1348 return (0); 1349 } 1350 return (err); 1351 } 1352 1353 int 1354 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env) 1355 { 1356 zio_t *zio; 1357 spa_t *spa = vd->vdev_spa; 1358 vdev_boot_envblock_t *bootenv; 1359 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1360 int error; 1361 size_t nvsize; 1362 char *nvbuf; 1363 const char *tmp; 1364 1365 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR); 1366 if (error != 0) 1367 return (SET_ERROR(error)); 1368 1369 if (nvsize >= sizeof (bootenv->vbe_bootenv)) { 1370 return (SET_ERROR(E2BIG)); 1371 } 1372 1373 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1374 1375 error = ENXIO; 1376 for (int c = 0; c < vd->vdev_children; c++) { 1377 int child_err; 1378 1379 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env); 1380 /* 1381 * As long as any of the disks managed to write all of their 1382 * labels successfully, return success. 1383 */ 1384 if (child_err == 0) 1385 error = child_err; 1386 } 1387 1388 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1389 !vdev_writeable(vd)) { 1390 return (error); 1391 } 1392 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1393 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1394 abd_zero(abd, VDEV_PAD_SIZE); 1395 1396 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1397 nvbuf = bootenv->vbe_bootenv; 1398 nvsize = sizeof (bootenv->vbe_bootenv); 1399 1400 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION); 1401 switch (bootenv->vbe_version) { 1402 case VB_RAW: 1403 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) { 1404 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize); 1405 } 1406 error = 0; 1407 break; 1408 1409 case VB_NVLIST: 1410 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR, 1411 KM_SLEEP); 1412 break; 1413 1414 default: 1415 error = EINVAL; 1416 break; 1417 } 1418 1419 if (error == 0) { 1420 bootenv->vbe_version = htonll(bootenv->vbe_version); 1421 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1422 } else { 1423 abd_free(abd); 1424 return (SET_ERROR(error)); 1425 } 1426 1427 retry: 1428 zio = zio_root(spa, NULL, NULL, flags); 1429 for (int l = 0; l < VDEV_LABELS; l++) { 1430 vdev_label_write(zio, vd, l, abd, 1431 offsetof(vdev_label_t, vl_be), 1432 VDEV_PAD_SIZE, NULL, NULL, flags); 1433 } 1434 1435 error = zio_wait(zio); 1436 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1437 flags |= ZIO_FLAG_TRYHARD; 1438 goto retry; 1439 } 1440 1441 abd_free(abd); 1442 return (error); 1443 } 1444 1445 /* 1446 * ========================================================================== 1447 * uberblock load/sync 1448 * ========================================================================== 1449 */ 1450 1451 /* 1452 * Consider the following situation: txg is safely synced to disk. We've 1453 * written the first uberblock for txg + 1, and then we lose power. When we 1454 * come back up, we fail to see the uberblock for txg + 1 because, say, 1455 * it was on a mirrored device and the replica to which we wrote txg + 1 1456 * is now offline. If we then make some changes and sync txg + 1, and then 1457 * the missing replica comes back, then for a few seconds we'll have two 1458 * conflicting uberblocks on disk with the same txg. The solution is simple: 1459 * among uberblocks with equal txg, choose the one with the latest timestamp. 1460 */ 1461 static int 1462 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1463 { 1464 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1465 1466 if (likely(cmp)) 1467 return (cmp); 1468 1469 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1470 if (likely(cmp)) 1471 return (cmp); 1472 1473 /* 1474 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1475 * ZFS, e.g. OpenZFS >= 0.7. 1476 * 1477 * If one ub has MMP and the other does not, they were written by 1478 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1479 * a 0 value. 1480 * 1481 * Since timestamp and txg are the same if we get this far, either is 1482 * acceptable for importing the pool. 1483 */ 1484 unsigned int seq1 = 0; 1485 unsigned int seq2 = 0; 1486 1487 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1488 seq1 = MMP_SEQ(ub1); 1489 1490 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1491 seq2 = MMP_SEQ(ub2); 1492 1493 return (TREE_CMP(seq1, seq2)); 1494 } 1495 1496 struct ubl_cbdata { 1497 uberblock_t *ubl_ubbest; /* Best uberblock */ 1498 vdev_t *ubl_vd; /* vdev associated with the above */ 1499 }; 1500 1501 static void 1502 vdev_uberblock_load_done(zio_t *zio) 1503 { 1504 vdev_t *vd = zio->io_vd; 1505 spa_t *spa = zio->io_spa; 1506 zio_t *rio = zio->io_private; 1507 uberblock_t *ub = abd_to_buf(zio->io_abd); 1508 struct ubl_cbdata *cbp = rio->io_private; 1509 1510 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1511 1512 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1513 mutex_enter(&rio->io_lock); 1514 if (ub->ub_txg <= spa->spa_load_max_txg && 1515 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1516 /* 1517 * Keep track of the vdev in which this uberblock 1518 * was found. We will use this information later 1519 * to obtain the config nvlist associated with 1520 * this uberblock. 1521 */ 1522 *cbp->ubl_ubbest = *ub; 1523 cbp->ubl_vd = vd; 1524 } 1525 mutex_exit(&rio->io_lock); 1526 } 1527 1528 abd_free(zio->io_abd); 1529 } 1530 1531 static void 1532 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1533 struct ubl_cbdata *cbp) 1534 { 1535 for (int c = 0; c < vd->vdev_children; c++) 1536 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1537 1538 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) && 1539 vd->vdev_ops != &vdev_draid_spare_ops) { 1540 for (int l = 0; l < VDEV_LABELS; l++) { 1541 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1542 vdev_label_read(zio, vd, l, 1543 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1544 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1545 VDEV_UBERBLOCK_SIZE(vd), 1546 vdev_uberblock_load_done, zio, flags); 1547 } 1548 } 1549 } 1550 } 1551 1552 /* 1553 * Reads the 'best' uberblock from disk along with its associated 1554 * configuration. First, we read the uberblock array of each label of each 1555 * vdev, keeping track of the uberblock with the highest txg in each array. 1556 * Then, we read the configuration from the same vdev as the best uberblock. 1557 */ 1558 void 1559 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1560 { 1561 zio_t *zio; 1562 spa_t *spa = rvd->vdev_spa; 1563 struct ubl_cbdata cb; 1564 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1565 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1566 1567 ASSERT(ub); 1568 ASSERT(config); 1569 1570 memset(ub, 0, sizeof (uberblock_t)); 1571 *config = NULL; 1572 1573 cb.ubl_ubbest = ub; 1574 cb.ubl_vd = NULL; 1575 1576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1577 zio = zio_root(spa, NULL, &cb, flags); 1578 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1579 (void) zio_wait(zio); 1580 1581 /* 1582 * It's possible that the best uberblock was discovered on a label 1583 * that has a configuration which was written in a future txg. 1584 * Search all labels on this vdev to find the configuration that 1585 * matches the txg for our uberblock. 1586 */ 1587 if (cb.ubl_vd != NULL) { 1588 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1589 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1590 1591 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1592 if (*config == NULL && spa->spa_extreme_rewind) { 1593 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1594 "Trying again without txg restrictions."); 1595 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1596 } 1597 if (*config == NULL) { 1598 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1599 } 1600 } 1601 spa_config_exit(spa, SCL_ALL, FTAG); 1602 } 1603 1604 /* 1605 * For use when a leaf vdev is expanded. 1606 * The location of labels 2 and 3 changed, and at the new location the 1607 * uberblock rings are either empty or contain garbage. The sync will write 1608 * new configs there because the vdev is dirty, but expansion also needs the 1609 * uberblock rings copied. Read them from label 0 which did not move. 1610 * 1611 * Since the point is to populate labels {2,3} with valid uberblocks, 1612 * we zero uberblocks we fail to read or which are not valid. 1613 */ 1614 1615 static void 1616 vdev_copy_uberblocks(vdev_t *vd) 1617 { 1618 abd_t *ub_abd; 1619 zio_t *write_zio; 1620 int locks = (SCL_L2ARC | SCL_ZIO); 1621 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1622 ZIO_FLAG_SPECULATIVE; 1623 1624 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1625 SCL_STATE); 1626 ASSERT(vd->vdev_ops->vdev_op_leaf); 1627 1628 /* 1629 * No uberblocks are stored on distributed spares, they may be 1630 * safely skipped when expanding a leaf vdev. 1631 */ 1632 if (vd->vdev_ops == &vdev_draid_spare_ops) 1633 return; 1634 1635 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1636 1637 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1638 1639 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1640 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1641 const int src_label = 0; 1642 zio_t *zio; 1643 1644 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1645 vdev_label_read(zio, vd, src_label, ub_abd, 1646 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1647 NULL, NULL, flags); 1648 1649 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1650 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1651 1652 for (int l = 2; l < VDEV_LABELS; l++) 1653 vdev_label_write(write_zio, vd, l, ub_abd, 1654 VDEV_UBERBLOCK_OFFSET(vd, n), 1655 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1656 flags | ZIO_FLAG_DONT_PROPAGATE); 1657 } 1658 (void) zio_wait(write_zio); 1659 1660 spa_config_exit(vd->vdev_spa, locks, FTAG); 1661 1662 abd_free(ub_abd); 1663 } 1664 1665 /* 1666 * On success, increment root zio's count of good writes. 1667 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1668 */ 1669 static void 1670 vdev_uberblock_sync_done(zio_t *zio) 1671 { 1672 uint64_t *good_writes = zio->io_private; 1673 1674 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1675 atomic_inc_64(good_writes); 1676 } 1677 1678 /* 1679 * Write the uberblock to all labels of all leaves of the specified vdev. 1680 */ 1681 static void 1682 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1683 uberblock_t *ub, vdev_t *vd, int flags) 1684 { 1685 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1686 vdev_uberblock_sync(zio, good_writes, 1687 ub, vd->vdev_child[c], flags); 1688 } 1689 1690 if (!vd->vdev_ops->vdev_op_leaf) 1691 return; 1692 1693 if (!vdev_writeable(vd)) 1694 return; 1695 1696 /* 1697 * There's no need to write uberblocks to a distributed spare, they 1698 * are already stored on all the leaves of the parent dRAID. For 1699 * this same reason vdev_uberblock_load_impl() skips distributed 1700 * spares when reading uberblocks. 1701 */ 1702 if (vd->vdev_ops == &vdev_draid_spare_ops) 1703 return; 1704 1705 /* If the vdev was expanded, need to copy uberblock rings. */ 1706 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1707 vd->vdev_copy_uberblocks == B_TRUE) { 1708 vdev_copy_uberblocks(vd); 1709 vd->vdev_copy_uberblocks = B_FALSE; 1710 } 1711 1712 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1713 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1714 1715 /* Copy the uberblock_t into the ABD */ 1716 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1717 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1718 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1719 1720 for (int l = 0; l < VDEV_LABELS; l++) 1721 vdev_label_write(zio, vd, l, ub_abd, 1722 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1723 vdev_uberblock_sync_done, good_writes, 1724 flags | ZIO_FLAG_DONT_PROPAGATE); 1725 1726 abd_free(ub_abd); 1727 } 1728 1729 /* Sync the uberblocks to all vdevs in svd[] */ 1730 static int 1731 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1732 { 1733 spa_t *spa = svd[0]->vdev_spa; 1734 zio_t *zio; 1735 uint64_t good_writes = 0; 1736 1737 zio = zio_root(spa, NULL, NULL, flags); 1738 1739 for (int v = 0; v < svdcount; v++) 1740 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1741 1742 (void) zio_wait(zio); 1743 1744 /* 1745 * Flush the uberblocks to disk. This ensures that the odd labels 1746 * are no longer needed (because the new uberblocks and the even 1747 * labels are safely on disk), so it is safe to overwrite them. 1748 */ 1749 zio = zio_root(spa, NULL, NULL, flags); 1750 1751 for (int v = 0; v < svdcount; v++) { 1752 if (vdev_writeable(svd[v])) { 1753 zio_flush(zio, svd[v]); 1754 } 1755 } 1756 1757 (void) zio_wait(zio); 1758 1759 return (good_writes >= 1 ? 0 : EIO); 1760 } 1761 1762 /* 1763 * On success, increment the count of good writes for our top-level vdev. 1764 */ 1765 static void 1766 vdev_label_sync_done(zio_t *zio) 1767 { 1768 uint64_t *good_writes = zio->io_private; 1769 1770 if (zio->io_error == 0) 1771 atomic_inc_64(good_writes); 1772 } 1773 1774 /* 1775 * If there weren't enough good writes, indicate failure to the parent. 1776 */ 1777 static void 1778 vdev_label_sync_top_done(zio_t *zio) 1779 { 1780 uint64_t *good_writes = zio->io_private; 1781 1782 if (*good_writes == 0) 1783 zio->io_error = SET_ERROR(EIO); 1784 1785 kmem_free(good_writes, sizeof (uint64_t)); 1786 } 1787 1788 /* 1789 * We ignore errors for log and cache devices, simply free the private data. 1790 */ 1791 static void 1792 vdev_label_sync_ignore_done(zio_t *zio) 1793 { 1794 kmem_free(zio->io_private, sizeof (uint64_t)); 1795 } 1796 1797 /* 1798 * Write all even or odd labels to all leaves of the specified vdev. 1799 */ 1800 static void 1801 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1802 vdev_t *vd, int l, uint64_t txg, int flags) 1803 { 1804 nvlist_t *label; 1805 vdev_phys_t *vp; 1806 abd_t *vp_abd; 1807 char *buf; 1808 size_t buflen; 1809 1810 for (int c = 0; c < vd->vdev_children; c++) { 1811 vdev_label_sync(zio, good_writes, 1812 vd->vdev_child[c], l, txg, flags); 1813 } 1814 1815 if (!vd->vdev_ops->vdev_op_leaf) 1816 return; 1817 1818 if (!vdev_writeable(vd)) 1819 return; 1820 1821 /* 1822 * The top-level config never needs to be written to a distributed 1823 * spare. When read vdev_dspare_label_read_config() will generate 1824 * the config for the vdev_label_read_config(). 1825 */ 1826 if (vd->vdev_ops == &vdev_draid_spare_ops) 1827 return; 1828 1829 /* 1830 * Generate a label describing the top-level config to which we belong. 1831 */ 1832 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1833 1834 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1835 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1836 vp = abd_to_buf(vp_abd); 1837 1838 buf = vp->vp_nvlist; 1839 buflen = sizeof (vp->vp_nvlist); 1840 1841 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1842 for (; l < VDEV_LABELS; l += 2) { 1843 vdev_label_write(zio, vd, l, vp_abd, 1844 offsetof(vdev_label_t, vl_vdev_phys), 1845 sizeof (vdev_phys_t), 1846 vdev_label_sync_done, good_writes, 1847 flags | ZIO_FLAG_DONT_PROPAGATE); 1848 } 1849 } 1850 1851 abd_free(vp_abd); 1852 nvlist_free(label); 1853 } 1854 1855 static int 1856 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1857 { 1858 list_t *dl = &spa->spa_config_dirty_list; 1859 vdev_t *vd; 1860 zio_t *zio; 1861 int error; 1862 1863 /* 1864 * Write the new labels to disk. 1865 */ 1866 zio = zio_root(spa, NULL, NULL, flags); 1867 1868 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1869 uint64_t *good_writes; 1870 1871 ASSERT(!vd->vdev_ishole); 1872 1873 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1874 zio_t *vio = zio_null(zio, spa, NULL, 1875 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1876 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1877 good_writes, flags); 1878 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1879 zio_nowait(vio); 1880 } 1881 1882 error = zio_wait(zio); 1883 1884 /* 1885 * Flush the new labels to disk. 1886 */ 1887 zio = zio_root(spa, NULL, NULL, flags); 1888 1889 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1890 zio_flush(zio, vd); 1891 1892 (void) zio_wait(zio); 1893 1894 return (error); 1895 } 1896 1897 /* 1898 * Sync the uberblock and any changes to the vdev configuration. 1899 * 1900 * The order of operations is carefully crafted to ensure that 1901 * if the system panics or loses power at any time, the state on disk 1902 * is still transactionally consistent. The in-line comments below 1903 * describe the failure semantics at each stage. 1904 * 1905 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1906 * at any time, you can just call it again, and it will resume its work. 1907 */ 1908 int 1909 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1910 { 1911 spa_t *spa = svd[0]->vdev_spa; 1912 uberblock_t *ub = &spa->spa_uberblock; 1913 int error = 0; 1914 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1915 1916 ASSERT(svdcount != 0); 1917 retry: 1918 /* 1919 * Normally, we don't want to try too hard to write every label and 1920 * uberblock. If there is a flaky disk, we don't want the rest of the 1921 * sync process to block while we retry. But if we can't write a 1922 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1923 * bailing out and declaring the pool faulted. 1924 */ 1925 if (error != 0) { 1926 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1927 return (error); 1928 flags |= ZIO_FLAG_TRYHARD; 1929 } 1930 1931 ASSERT(ub->ub_txg <= txg); 1932 1933 /* 1934 * If this isn't a resync due to I/O errors, 1935 * and nothing changed in this transaction group, 1936 * and the vdev configuration hasn't changed, 1937 * then there's nothing to do. 1938 */ 1939 if (ub->ub_txg < txg) { 1940 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1941 txg, spa->spa_mmp.mmp_delay); 1942 1943 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1944 return (0); 1945 } 1946 1947 if (txg > spa_freeze_txg(spa)) 1948 return (0); 1949 1950 ASSERT(txg <= spa->spa_final_txg); 1951 1952 /* 1953 * Flush the write cache of every disk that's been written to 1954 * in this transaction group. This ensures that all blocks 1955 * written in this txg will be committed to stable storage 1956 * before any uberblock that references them. 1957 */ 1958 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1959 1960 for (vdev_t *vd = 1961 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1962 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1963 zio_flush(zio, vd); 1964 1965 (void) zio_wait(zio); 1966 1967 /* 1968 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1969 * system dies in the middle of this process, that's OK: all of the 1970 * even labels that made it to disk will be newer than any uberblock, 1971 * and will therefore be considered invalid. The odd labels (L1, L3), 1972 * which have not yet been touched, will still be valid. We flush 1973 * the new labels to disk to ensure that all even-label updates 1974 * are committed to stable storage before the uberblock update. 1975 */ 1976 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1977 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1978 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1979 "for pool '%s' when syncing out the even labels " 1980 "of dirty vdevs", error, spa_name(spa)); 1981 } 1982 goto retry; 1983 } 1984 1985 /* 1986 * Sync the uberblocks to all vdevs in svd[]. 1987 * If the system dies in the middle of this step, there are two cases 1988 * to consider, and the on-disk state is consistent either way: 1989 * 1990 * (1) If none of the new uberblocks made it to disk, then the 1991 * previous uberblock will be the newest, and the odd labels 1992 * (which had not yet been touched) will be valid with respect 1993 * to that uberblock. 1994 * 1995 * (2) If one or more new uberblocks made it to disk, then they 1996 * will be the newest, and the even labels (which had all 1997 * been successfully committed) will be valid with respect 1998 * to the new uberblocks. 1999 */ 2000 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 2001 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2002 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 2003 "%d for pool '%s'", error, spa_name(spa)); 2004 } 2005 goto retry; 2006 } 2007 2008 if (spa_multihost(spa)) 2009 mmp_update_uberblock(spa, ub); 2010 2011 /* 2012 * Sync out odd labels for every dirty vdev. If the system dies 2013 * in the middle of this process, the even labels and the new 2014 * uberblocks will suffice to open the pool. The next time 2015 * the pool is opened, the first thing we'll do -- before any 2016 * user data is modified -- is mark every vdev dirty so that 2017 * all labels will be brought up to date. We flush the new labels 2018 * to disk to ensure that all odd-label updates are committed to 2019 * stable storage before the next transaction group begins. 2020 */ 2021 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 2022 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 2023 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 2024 "for pool '%s' when syncing out the odd labels of " 2025 "dirty vdevs", error, spa_name(spa)); 2026 } 2027 goto retry; 2028 } 2029 2030 return (0); 2031 } 2032