xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev_initialize.c (revision 1d386b48a555f61cb7325543adbbb5c3f3407a66)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35 
36 /*
37  * Value that is written to disk during initialization.
38  */
39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
40 
41 /* maximum number of I/Os outstanding per leaf vdev */
42 static const int zfs_initialize_limit = 1;
43 
44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024;
46 
47 static boolean_t
48 vdev_initialize_should_stop(vdev_t *vd)
49 {
50 	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
51 	    vd->vdev_detached || vd->vdev_top->vdev_removing);
52 }
53 
54 static void
55 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
56 {
57 	/*
58 	 * We pass in the guid instead of the vdev_t since the vdev may
59 	 * have been freed prior to the sync task being processed. This
60 	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
61 	 * stop the initializing thread, schedule the sync task, and free
62 	 * the vdev. Later when the scheduled sync task is invoked, it would
63 	 * find that the vdev has been freed.
64 	 */
65 	uint64_t guid = *(uint64_t *)arg;
66 	uint64_t txg = dmu_tx_get_txg(tx);
67 	kmem_free(arg, sizeof (uint64_t));
68 
69 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
70 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
71 		return;
72 
73 	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
74 	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
75 
76 	VERIFY(vd->vdev_leaf_zap != 0);
77 
78 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
79 
80 	if (last_offset > 0) {
81 		vd->vdev_initialize_last_offset = last_offset;
82 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
83 		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
84 		    sizeof (last_offset), 1, &last_offset, tx));
85 	}
86 	if (vd->vdev_initialize_action_time > 0) {
87 		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
88 		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89 		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
90 		    1, &val, tx));
91 	}
92 
93 	uint64_t initialize_state = vd->vdev_initialize_state;
94 	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
96 	    &initialize_state, tx));
97 }
98 
99 static void
100 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx)
101 {
102 	uint64_t guid = *(uint64_t *)arg;
103 
104 	kmem_free(arg, sizeof (uint64_t));
105 
106 	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
107 	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
108 		return;
109 
110 	ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE);
111 	ASSERT3U(vd->vdev_leaf_zap, !=, 0);
112 
113 	vd->vdev_initialize_last_offset = 0;
114 	vd->vdev_initialize_action_time = 0;
115 
116 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
117 	int error;
118 
119 	error = zap_remove(mos, vd->vdev_leaf_zap,
120 	    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx);
121 	VERIFY(error == 0 || error == ENOENT);
122 
123 	error = zap_remove(mos, vd->vdev_leaf_zap,
124 	    VDEV_LEAF_ZAP_INITIALIZE_STATE, tx);
125 	VERIFY(error == 0 || error == ENOENT);
126 
127 	error = zap_remove(mos, vd->vdev_leaf_zap,
128 	    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx);
129 	VERIFY(error == 0 || error == ENOENT);
130 }
131 
132 static void
133 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
134 {
135 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
136 	spa_t *spa = vd->vdev_spa;
137 
138 	if (new_state == vd->vdev_initialize_state)
139 		return;
140 
141 	/*
142 	 * Copy the vd's guid, this will be freed by the sync task.
143 	 */
144 	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
145 	*guid = vd->vdev_guid;
146 
147 	/*
148 	 * If we're suspending, then preserving the original start time.
149 	 */
150 	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
151 		vd->vdev_initialize_action_time = gethrestime_sec();
152 	}
153 
154 	vdev_initializing_state_t old_state = vd->vdev_initialize_state;
155 	vd->vdev_initialize_state = new_state;
156 
157 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
158 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
159 
160 	if (new_state != VDEV_INITIALIZE_NONE) {
161 		dsl_sync_task_nowait(spa_get_dsl(spa),
162 		    vdev_initialize_zap_update_sync, guid, tx);
163 	} else {
164 		dsl_sync_task_nowait(spa_get_dsl(spa),
165 		    vdev_initialize_zap_remove_sync, guid, tx);
166 	}
167 
168 	switch (new_state) {
169 	case VDEV_INITIALIZE_ACTIVE:
170 		spa_history_log_internal(spa, "initialize", tx,
171 		    "vdev=%s activated", vd->vdev_path);
172 		break;
173 	case VDEV_INITIALIZE_SUSPENDED:
174 		spa_history_log_internal(spa, "initialize", tx,
175 		    "vdev=%s suspended", vd->vdev_path);
176 		break;
177 	case VDEV_INITIALIZE_CANCELED:
178 		if (old_state == VDEV_INITIALIZE_ACTIVE ||
179 		    old_state == VDEV_INITIALIZE_SUSPENDED)
180 			spa_history_log_internal(spa, "initialize", tx,
181 			    "vdev=%s canceled", vd->vdev_path);
182 		break;
183 	case VDEV_INITIALIZE_COMPLETE:
184 		spa_history_log_internal(spa, "initialize", tx,
185 		    "vdev=%s complete", vd->vdev_path);
186 		break;
187 	case VDEV_INITIALIZE_NONE:
188 		spa_history_log_internal(spa, "uninitialize", tx,
189 		    "vdev=%s", vd->vdev_path);
190 		break;
191 	default:
192 		panic("invalid state %llu", (unsigned long long)new_state);
193 	}
194 
195 	dmu_tx_commit(tx);
196 
197 	if (new_state != VDEV_INITIALIZE_ACTIVE)
198 		spa_notify_waiters(spa);
199 }
200 
201 static void
202 vdev_initialize_cb(zio_t *zio)
203 {
204 	vdev_t *vd = zio->io_vd;
205 	mutex_enter(&vd->vdev_initialize_io_lock);
206 	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
207 		/*
208 		 * The I/O failed because the vdev was unavailable; roll the
209 		 * last offset back. (This works because spa_sync waits on
210 		 * spa_txg_zio before it runs sync tasks.)
211 		 */
212 		uint64_t *off =
213 		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
214 		*off = MIN(*off, zio->io_offset);
215 	} else {
216 		/*
217 		 * Since initializing is best-effort, we ignore I/O errors and
218 		 * rely on vdev_probe to determine if the errors are more
219 		 * critical.
220 		 */
221 		if (zio->io_error != 0)
222 			vd->vdev_stat.vs_initialize_errors++;
223 
224 		vd->vdev_initialize_bytes_done += zio->io_orig_size;
225 	}
226 	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
227 	vd->vdev_initialize_inflight--;
228 	cv_broadcast(&vd->vdev_initialize_io_cv);
229 	mutex_exit(&vd->vdev_initialize_io_lock);
230 
231 	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
232 }
233 
234 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
235 static int
236 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
237 {
238 	spa_t *spa = vd->vdev_spa;
239 
240 	/* Limit inflight initializing I/Os */
241 	mutex_enter(&vd->vdev_initialize_io_lock);
242 	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
243 		cv_wait(&vd->vdev_initialize_io_cv,
244 		    &vd->vdev_initialize_io_lock);
245 	}
246 	vd->vdev_initialize_inflight++;
247 	mutex_exit(&vd->vdev_initialize_io_lock);
248 
249 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
250 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
251 	uint64_t txg = dmu_tx_get_txg(tx);
252 
253 	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
254 	mutex_enter(&vd->vdev_initialize_lock);
255 
256 	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
257 		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
258 		*guid = vd->vdev_guid;
259 
260 		/* This is the first write of this txg. */
261 		dsl_sync_task_nowait(spa_get_dsl(spa),
262 		    vdev_initialize_zap_update_sync, guid, tx);
263 	}
264 
265 	/*
266 	 * We know the vdev struct will still be around since all
267 	 * consumers of vdev_free must stop the initialization first.
268 	 */
269 	if (vdev_initialize_should_stop(vd)) {
270 		mutex_enter(&vd->vdev_initialize_io_lock);
271 		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
272 		vd->vdev_initialize_inflight--;
273 		mutex_exit(&vd->vdev_initialize_io_lock);
274 		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
275 		mutex_exit(&vd->vdev_initialize_lock);
276 		dmu_tx_commit(tx);
277 		return (SET_ERROR(EINTR));
278 	}
279 	mutex_exit(&vd->vdev_initialize_lock);
280 
281 	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
282 	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
283 	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
284 	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
285 	/* vdev_initialize_cb releases SCL_STATE_ALL */
286 
287 	dmu_tx_commit(tx);
288 
289 	return (0);
290 }
291 
292 /*
293  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295  * allocation will guarantee these for us.
296  */
297 static int
298 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
299 {
300 	(void) unused;
301 
302 	ASSERT0(len % sizeof (uint64_t));
303 	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
304 		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
305 	}
306 	return (0);
307 }
308 
309 static abd_t *
310 vdev_initialize_block_alloc(void)
311 {
312 	/* Allocate ABD for filler data */
313 	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
314 
315 	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
316 	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
317 	    vdev_initialize_block_fill, NULL);
318 
319 	return (data);
320 }
321 
322 static void
323 vdev_initialize_block_free(abd_t *data)
324 {
325 	abd_free(data);
326 }
327 
328 static int
329 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
330 {
331 	range_tree_t *rt = vd->vdev_initialize_tree;
332 	zfs_btree_t *bt = &rt->rt_root;
333 	zfs_btree_index_t where;
334 
335 	for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
336 	    rs = zfs_btree_next(bt, &where, &where)) {
337 		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
338 
339 		/* Split range into legally-sized physical chunks */
340 		uint64_t writes_required =
341 		    ((size - 1) / zfs_initialize_chunk_size) + 1;
342 
343 		for (uint64_t w = 0; w < writes_required; w++) {
344 			int error;
345 
346 			error = vdev_initialize_write(vd,
347 			    VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
348 			    (w * zfs_initialize_chunk_size),
349 			    MIN(size - (w * zfs_initialize_chunk_size),
350 			    zfs_initialize_chunk_size), data);
351 			if (error != 0)
352 				return (error);
353 		}
354 	}
355 	return (0);
356 }
357 
358 static void
359 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
360 {
361 	uint64_t *last_rs_end = (uint64_t *)arg;
362 
363 	if (physical_rs->rs_end > *last_rs_end)
364 		*last_rs_end = physical_rs->rs_end;
365 }
366 
367 static void
368 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
369 {
370 	vdev_t *vd = (vdev_t *)arg;
371 
372 	uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
373 	vd->vdev_initialize_bytes_est += size;
374 
375 	if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
376 		vd->vdev_initialize_bytes_done += size;
377 	} else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
378 	    vd->vdev_initialize_last_offset < physical_rs->rs_end) {
379 		vd->vdev_initialize_bytes_done +=
380 		    vd->vdev_initialize_last_offset - physical_rs->rs_start;
381 	}
382 }
383 
384 static void
385 vdev_initialize_calculate_progress(vdev_t *vd)
386 {
387 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
388 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
389 	ASSERT(vd->vdev_leaf_zap != 0);
390 
391 	vd->vdev_initialize_bytes_est = 0;
392 	vd->vdev_initialize_bytes_done = 0;
393 
394 	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
395 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
396 		mutex_enter(&msp->ms_lock);
397 
398 		uint64_t ms_free = (msp->ms_size -
399 		    metaslab_allocated_space(msp)) /
400 		    vdev_get_ndisks(vd->vdev_top);
401 
402 		/*
403 		 * Convert the metaslab range to a physical range
404 		 * on our vdev. We use this to determine if we are
405 		 * in the middle of this metaslab range.
406 		 */
407 		range_seg64_t logical_rs, physical_rs, remain_rs;
408 		logical_rs.rs_start = msp->ms_start;
409 		logical_rs.rs_end = msp->ms_start + msp->ms_size;
410 
411 		/* Metaslab space after this offset has not been initialized */
412 		vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
413 		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
414 			vd->vdev_initialize_bytes_est += ms_free;
415 			mutex_exit(&msp->ms_lock);
416 			continue;
417 		}
418 
419 		/* Metaslab space before this offset has been initialized */
420 		uint64_t last_rs_end = physical_rs.rs_end;
421 		if (!vdev_xlate_is_empty(&remain_rs)) {
422 			vdev_xlate_walk(vd, &remain_rs,
423 			    vdev_initialize_xlate_last_rs_end, &last_rs_end);
424 		}
425 
426 		if (vd->vdev_initialize_last_offset > last_rs_end) {
427 			vd->vdev_initialize_bytes_done += ms_free;
428 			vd->vdev_initialize_bytes_est += ms_free;
429 			mutex_exit(&msp->ms_lock);
430 			continue;
431 		}
432 
433 		/*
434 		 * If we get here, we're in the middle of initializing this
435 		 * metaslab. Load it and walk the free tree for more accurate
436 		 * progress estimation.
437 		 */
438 		VERIFY0(metaslab_load(msp));
439 
440 		zfs_btree_index_t where;
441 		range_tree_t *rt = msp->ms_allocatable;
442 		for (range_seg_t *rs =
443 		    zfs_btree_first(&rt->rt_root, &where); rs;
444 		    rs = zfs_btree_next(&rt->rt_root, &where,
445 		    &where)) {
446 			logical_rs.rs_start = rs_get_start(rs, rt);
447 			logical_rs.rs_end = rs_get_end(rs, rt);
448 
449 			vdev_xlate_walk(vd, &logical_rs,
450 			    vdev_initialize_xlate_progress, vd);
451 		}
452 		mutex_exit(&msp->ms_lock);
453 	}
454 }
455 
456 static int
457 vdev_initialize_load(vdev_t *vd)
458 {
459 	int err = 0;
460 	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
461 	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
462 	ASSERT(vd->vdev_leaf_zap != 0);
463 
464 	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
465 	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
466 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
467 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
468 		    sizeof (vd->vdev_initialize_last_offset), 1,
469 		    &vd->vdev_initialize_last_offset);
470 		if (err == ENOENT) {
471 			vd->vdev_initialize_last_offset = 0;
472 			err = 0;
473 		}
474 	}
475 
476 	vdev_initialize_calculate_progress(vd);
477 	return (err);
478 }
479 
480 static void
481 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
482 {
483 	vdev_t *vd = arg;
484 
485 	/* Only add segments that we have not visited yet */
486 	if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
487 		return;
488 
489 	/* Pick up where we left off mid-range. */
490 	if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
491 		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
492 		    "(%llu, %llu)", vd->vdev_path,
493 		    (u_longlong_t)physical_rs->rs_start,
494 		    (u_longlong_t)physical_rs->rs_end,
495 		    (u_longlong_t)vd->vdev_initialize_last_offset,
496 		    (u_longlong_t)physical_rs->rs_end);
497 		ASSERT3U(physical_rs->rs_end, >,
498 		    vd->vdev_initialize_last_offset);
499 		physical_rs->rs_start = vd->vdev_initialize_last_offset;
500 	}
501 
502 	ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
503 
504 	range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
505 	    physical_rs->rs_end - physical_rs->rs_start);
506 }
507 
508 /*
509  * Convert the logical range into a physical range and add it to our
510  * avl tree.
511  */
512 static void
513 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
514 {
515 	vdev_t *vd = arg;
516 	range_seg64_t logical_rs;
517 	logical_rs.rs_start = start;
518 	logical_rs.rs_end = start + size;
519 
520 	ASSERT(vd->vdev_ops->vdev_op_leaf);
521 	vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
522 }
523 
524 static __attribute__((noreturn)) void
525 vdev_initialize_thread(void *arg)
526 {
527 	vdev_t *vd = arg;
528 	spa_t *spa = vd->vdev_spa;
529 	int error = 0;
530 	uint64_t ms_count = 0;
531 
532 	ASSERT(vdev_is_concrete(vd));
533 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
534 
535 	vd->vdev_initialize_last_offset = 0;
536 	VERIFY0(vdev_initialize_load(vd));
537 
538 	abd_t *deadbeef = vdev_initialize_block_alloc();
539 
540 	vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
541 	    0, 0);
542 
543 	for (uint64_t i = 0; !vd->vdev_detached &&
544 	    i < vd->vdev_top->vdev_ms_count; i++) {
545 		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
546 		boolean_t unload_when_done = B_FALSE;
547 
548 		/*
549 		 * If we've expanded the top-level vdev or it's our
550 		 * first pass, calculate our progress.
551 		 */
552 		if (vd->vdev_top->vdev_ms_count != ms_count) {
553 			vdev_initialize_calculate_progress(vd);
554 			ms_count = vd->vdev_top->vdev_ms_count;
555 		}
556 
557 		spa_config_exit(spa, SCL_CONFIG, FTAG);
558 		metaslab_disable(msp);
559 		mutex_enter(&msp->ms_lock);
560 		if (!msp->ms_loaded && !msp->ms_loading)
561 			unload_when_done = B_TRUE;
562 		VERIFY0(metaslab_load(msp));
563 
564 		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
565 		    vd);
566 		mutex_exit(&msp->ms_lock);
567 
568 		error = vdev_initialize_ranges(vd, deadbeef);
569 		metaslab_enable(msp, B_TRUE, unload_when_done);
570 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
571 
572 		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
573 		if (error != 0)
574 			break;
575 	}
576 
577 	spa_config_exit(spa, SCL_CONFIG, FTAG);
578 	mutex_enter(&vd->vdev_initialize_io_lock);
579 	while (vd->vdev_initialize_inflight > 0) {
580 		cv_wait(&vd->vdev_initialize_io_cv,
581 		    &vd->vdev_initialize_io_lock);
582 	}
583 	mutex_exit(&vd->vdev_initialize_io_lock);
584 
585 	range_tree_destroy(vd->vdev_initialize_tree);
586 	vdev_initialize_block_free(deadbeef);
587 	vd->vdev_initialize_tree = NULL;
588 
589 	mutex_enter(&vd->vdev_initialize_lock);
590 	if (!vd->vdev_initialize_exit_wanted) {
591 		if (vdev_writeable(vd)) {
592 			vdev_initialize_change_state(vd,
593 			    VDEV_INITIALIZE_COMPLETE);
594 		} else if (vd->vdev_faulted) {
595 			vdev_initialize_change_state(vd,
596 			    VDEV_INITIALIZE_CANCELED);
597 		}
598 	}
599 	ASSERT(vd->vdev_initialize_thread != NULL ||
600 	    vd->vdev_initialize_inflight == 0);
601 
602 	/*
603 	 * Drop the vdev_initialize_lock while we sync out the
604 	 * txg since it's possible that a device might be trying to
605 	 * come online and must check to see if it needs to restart an
606 	 * initialization. That thread will be holding the spa_config_lock
607 	 * which would prevent the txg_wait_synced from completing.
608 	 */
609 	mutex_exit(&vd->vdev_initialize_lock);
610 	txg_wait_synced(spa_get_dsl(spa), 0);
611 	mutex_enter(&vd->vdev_initialize_lock);
612 
613 	vd->vdev_initialize_thread = NULL;
614 	cv_broadcast(&vd->vdev_initialize_cv);
615 	mutex_exit(&vd->vdev_initialize_lock);
616 
617 	thread_exit();
618 }
619 
620 /*
621  * Initiates a device. Caller must hold vdev_initialize_lock.
622  * Device must be a leaf and not already be initializing.
623  */
624 void
625 vdev_initialize(vdev_t *vd)
626 {
627 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
628 	ASSERT(vd->vdev_ops->vdev_op_leaf);
629 	ASSERT(vdev_is_concrete(vd));
630 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
631 	ASSERT(!vd->vdev_detached);
632 	ASSERT(!vd->vdev_initialize_exit_wanted);
633 	ASSERT(!vd->vdev_top->vdev_removing);
634 
635 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
636 	vd->vdev_initialize_thread = thread_create(NULL, 0,
637 	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
638 }
639 
640 /*
641  * Uninitializes a device. Caller must hold vdev_initialize_lock.
642  * Device must be a leaf and not already be initializing.
643  */
644 void
645 vdev_uninitialize(vdev_t *vd)
646 {
647 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
648 	ASSERT(vd->vdev_ops->vdev_op_leaf);
649 	ASSERT(vdev_is_concrete(vd));
650 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
651 	ASSERT(!vd->vdev_detached);
652 	ASSERT(!vd->vdev_initialize_exit_wanted);
653 	ASSERT(!vd->vdev_top->vdev_removing);
654 
655 	vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE);
656 }
657 
658 /*
659  * Wait for the initialize thread to be terminated (cancelled or stopped).
660  */
661 static void
662 vdev_initialize_stop_wait_impl(vdev_t *vd)
663 {
664 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
665 
666 	while (vd->vdev_initialize_thread != NULL)
667 		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
668 
669 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
670 	vd->vdev_initialize_exit_wanted = B_FALSE;
671 }
672 
673 /*
674  * Wait for vdev initialize threads which were either to cleanly exit.
675  */
676 void
677 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
678 {
679 	(void) spa;
680 	vdev_t *vd;
681 
682 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
683 
684 	while ((vd = list_remove_head(vd_list)) != NULL) {
685 		mutex_enter(&vd->vdev_initialize_lock);
686 		vdev_initialize_stop_wait_impl(vd);
687 		mutex_exit(&vd->vdev_initialize_lock);
688 	}
689 }
690 
691 /*
692  * Stop initializing a device, with the resultant initializing state being
693  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
694  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
695  * are then required to call vdev_initialize_stop_wait() to block for all the
696  * initialization threads to exit.  The caller must hold vdev_initialize_lock
697  * and must not be writing to the spa config, as the initializing thread may
698  * try to enter the config as a reader before exiting.
699  */
700 void
701 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
702     list_t *vd_list)
703 {
704 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
705 	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
706 	ASSERT(vd->vdev_ops->vdev_op_leaf);
707 	ASSERT(vdev_is_concrete(vd));
708 
709 	/*
710 	 * Allow cancel requests to proceed even if the initialize thread
711 	 * has stopped.
712 	 */
713 	if (vd->vdev_initialize_thread == NULL &&
714 	    tgt_state != VDEV_INITIALIZE_CANCELED) {
715 		return;
716 	}
717 
718 	vdev_initialize_change_state(vd, tgt_state);
719 	vd->vdev_initialize_exit_wanted = B_TRUE;
720 
721 	if (vd_list == NULL) {
722 		vdev_initialize_stop_wait_impl(vd);
723 	} else {
724 		ASSERT(MUTEX_HELD(&spa_namespace_lock));
725 		list_insert_tail(vd_list, vd);
726 	}
727 }
728 
729 static void
730 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
731     list_t *vd_list)
732 {
733 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
734 		mutex_enter(&vd->vdev_initialize_lock);
735 		vdev_initialize_stop(vd, tgt_state, vd_list);
736 		mutex_exit(&vd->vdev_initialize_lock);
737 		return;
738 	}
739 
740 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
741 		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
742 		    vd_list);
743 	}
744 }
745 
746 /*
747  * Convenience function to stop initializing of a vdev tree and set all
748  * initialize thread pointers to NULL.
749  */
750 void
751 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
752 {
753 	spa_t *spa = vd->vdev_spa;
754 	list_t vd_list;
755 
756 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
757 
758 	list_create(&vd_list, sizeof (vdev_t),
759 	    offsetof(vdev_t, vdev_initialize_node));
760 
761 	vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
762 	vdev_initialize_stop_wait(spa, &vd_list);
763 
764 	if (vd->vdev_spa->spa_sync_on) {
765 		/* Make sure that our state has been synced to disk */
766 		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
767 	}
768 
769 	list_destroy(&vd_list);
770 }
771 
772 void
773 vdev_initialize_restart(vdev_t *vd)
774 {
775 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
776 	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
777 
778 	if (vd->vdev_leaf_zap != 0) {
779 		mutex_enter(&vd->vdev_initialize_lock);
780 		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
781 		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
782 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
783 		    sizeof (initialize_state), 1, &initialize_state);
784 		ASSERT(err == 0 || err == ENOENT);
785 		vd->vdev_initialize_state = initialize_state;
786 
787 		uint64_t timestamp = 0;
788 		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
789 		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
790 		    sizeof (timestamp), 1, &timestamp);
791 		ASSERT(err == 0 || err == ENOENT);
792 		vd->vdev_initialize_action_time = timestamp;
793 
794 		if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
795 		    vd->vdev_offline) {
796 			/* load progress for reporting, but don't resume */
797 			VERIFY0(vdev_initialize_load(vd));
798 		} else if (vd->vdev_initialize_state ==
799 		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
800 		    !vd->vdev_top->vdev_removing &&
801 		    vd->vdev_initialize_thread == NULL) {
802 			vdev_initialize(vd);
803 		}
804 
805 		mutex_exit(&vd->vdev_initialize_lock);
806 	}
807 
808 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
809 		vdev_initialize_restart(vd->vdev_child[i]);
810 	}
811 }
812 
813 EXPORT_SYMBOL(vdev_initialize);
814 EXPORT_SYMBOL(vdev_uninitialize);
815 EXPORT_SYMBOL(vdev_initialize_stop);
816 EXPORT_SYMBOL(vdev_initialize_stop_all);
817 EXPORT_SYMBOL(vdev_initialize_stop_wait);
818 EXPORT_SYMBOL(vdev_initialize_restart);
819 
820 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW,
821 	"Value written during zpool initialize");
822 
823 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW,
824 	"Size in bytes of writes by zpool initialize");
825