1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved. 24 */ 25 26 #include <sys/spa.h> 27 #include <sys/spa_impl.h> 28 #include <sys/txg.h> 29 #include <sys/vdev_impl.h> 30 #include <sys/metaslab_impl.h> 31 #include <sys/dsl_synctask.h> 32 #include <sys/zap.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_initialize.h> 35 36 /* 37 * Value that is written to disk during initialization. 38 */ 39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL; 40 41 /* maximum number of I/Os outstanding per leaf vdev */ 42 static const int zfs_initialize_limit = 1; 43 44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */ 45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024; 46 47 static boolean_t 48 vdev_initialize_should_stop(vdev_t *vd) 49 { 50 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) || 51 vd->vdev_detached || vd->vdev_top->vdev_removing); 52 } 53 54 static void 55 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx) 56 { 57 /* 58 * We pass in the guid instead of the vdev_t since the vdev may 59 * have been freed prior to the sync task being processed. This 60 * happens when a vdev is detached as we call spa_config_vdev_exit(), 61 * stop the initializing thread, schedule the sync task, and free 62 * the vdev. Later when the scheduled sync task is invoked, it would 63 * find that the vdev has been freed. 64 */ 65 uint64_t guid = *(uint64_t *)arg; 66 uint64_t txg = dmu_tx_get_txg(tx); 67 kmem_free(arg, sizeof (uint64_t)); 68 69 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 70 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 71 return; 72 73 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK]; 74 vd->vdev_initialize_offset[txg & TXG_MASK] = 0; 75 76 VERIFY(vd->vdev_leaf_zap != 0); 77 78 objset_t *mos = vd->vdev_spa->spa_meta_objset; 79 80 if (last_offset > 0) { 81 vd->vdev_initialize_last_offset = last_offset; 82 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 83 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 84 sizeof (last_offset), 1, &last_offset, tx)); 85 } 86 if (vd->vdev_initialize_action_time > 0) { 87 uint64_t val = (uint64_t)vd->vdev_initialize_action_time; 88 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 89 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val), 90 1, &val, tx)); 91 } 92 93 uint64_t initialize_state = vd->vdev_initialize_state; 94 VERIFY0(zap_update(mos, vd->vdev_leaf_zap, 95 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1, 96 &initialize_state, tx)); 97 } 98 99 static void 100 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx) 101 { 102 uint64_t guid = *(uint64_t *)arg; 103 104 kmem_free(arg, sizeof (uint64_t)); 105 106 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE); 107 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd)) 108 return; 109 110 ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE); 111 ASSERT3U(vd->vdev_leaf_zap, !=, 0); 112 113 vd->vdev_initialize_last_offset = 0; 114 vd->vdev_initialize_action_time = 0; 115 116 objset_t *mos = vd->vdev_spa->spa_meta_objset; 117 int error; 118 119 error = zap_remove(mos, vd->vdev_leaf_zap, 120 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx); 121 VERIFY(error == 0 || error == ENOENT); 122 123 error = zap_remove(mos, vd->vdev_leaf_zap, 124 VDEV_LEAF_ZAP_INITIALIZE_STATE, tx); 125 VERIFY(error == 0 || error == ENOENT); 126 127 error = zap_remove(mos, vd->vdev_leaf_zap, 128 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx); 129 VERIFY(error == 0 || error == ENOENT); 130 } 131 132 static void 133 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state) 134 { 135 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 136 spa_t *spa = vd->vdev_spa; 137 138 if (new_state == vd->vdev_initialize_state) 139 return; 140 141 /* 142 * Copy the vd's guid, this will be freed by the sync task. 143 */ 144 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 145 *guid = vd->vdev_guid; 146 147 /* 148 * If we're suspending, then preserving the original start time. 149 */ 150 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) { 151 vd->vdev_initialize_action_time = gethrestime_sec(); 152 } 153 154 vdev_initializing_state_t old_state = vd->vdev_initialize_state; 155 vd->vdev_initialize_state = new_state; 156 157 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 158 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 159 160 if (new_state != VDEV_INITIALIZE_NONE) { 161 dsl_sync_task_nowait(spa_get_dsl(spa), 162 vdev_initialize_zap_update_sync, guid, tx); 163 } else { 164 dsl_sync_task_nowait(spa_get_dsl(spa), 165 vdev_initialize_zap_remove_sync, guid, tx); 166 } 167 168 switch (new_state) { 169 case VDEV_INITIALIZE_ACTIVE: 170 spa_history_log_internal(spa, "initialize", tx, 171 "vdev=%s activated", vd->vdev_path); 172 break; 173 case VDEV_INITIALIZE_SUSPENDED: 174 spa_history_log_internal(spa, "initialize", tx, 175 "vdev=%s suspended", vd->vdev_path); 176 break; 177 case VDEV_INITIALIZE_CANCELED: 178 if (old_state == VDEV_INITIALIZE_ACTIVE || 179 old_state == VDEV_INITIALIZE_SUSPENDED) 180 spa_history_log_internal(spa, "initialize", tx, 181 "vdev=%s canceled", vd->vdev_path); 182 break; 183 case VDEV_INITIALIZE_COMPLETE: 184 spa_history_log_internal(spa, "initialize", tx, 185 "vdev=%s complete", vd->vdev_path); 186 break; 187 case VDEV_INITIALIZE_NONE: 188 spa_history_log_internal(spa, "uninitialize", tx, 189 "vdev=%s", vd->vdev_path); 190 break; 191 default: 192 panic("invalid state %llu", (unsigned long long)new_state); 193 } 194 195 dmu_tx_commit(tx); 196 197 if (new_state != VDEV_INITIALIZE_ACTIVE) 198 spa_notify_waiters(spa); 199 } 200 201 static void 202 vdev_initialize_cb(zio_t *zio) 203 { 204 vdev_t *vd = zio->io_vd; 205 mutex_enter(&vd->vdev_initialize_io_lock); 206 if (zio->io_error == ENXIO && !vdev_writeable(vd)) { 207 /* 208 * The I/O failed because the vdev was unavailable; roll the 209 * last offset back. (This works because spa_sync waits on 210 * spa_txg_zio before it runs sync tasks.) 211 */ 212 uint64_t *off = 213 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK]; 214 *off = MIN(*off, zio->io_offset); 215 } else { 216 /* 217 * Since initializing is best-effort, we ignore I/O errors and 218 * rely on vdev_probe to determine if the errors are more 219 * critical. 220 */ 221 if (zio->io_error != 0) 222 vd->vdev_stat.vs_initialize_errors++; 223 224 vd->vdev_initialize_bytes_done += zio->io_orig_size; 225 } 226 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 227 vd->vdev_initialize_inflight--; 228 cv_broadcast(&vd->vdev_initialize_io_cv); 229 mutex_exit(&vd->vdev_initialize_io_lock); 230 231 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 232 } 233 234 /* Takes care of physical writing and limiting # of concurrent ZIOs. */ 235 static int 236 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data) 237 { 238 spa_t *spa = vd->vdev_spa; 239 240 /* Limit inflight initializing I/Os */ 241 mutex_enter(&vd->vdev_initialize_io_lock); 242 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) { 243 cv_wait(&vd->vdev_initialize_io_cv, 244 &vd->vdev_initialize_io_lock); 245 } 246 vd->vdev_initialize_inflight++; 247 mutex_exit(&vd->vdev_initialize_io_lock); 248 249 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 250 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 251 uint64_t txg = dmu_tx_get_txg(tx); 252 253 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER); 254 mutex_enter(&vd->vdev_initialize_lock); 255 256 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) { 257 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 258 *guid = vd->vdev_guid; 259 260 /* This is the first write of this txg. */ 261 dsl_sync_task_nowait(spa_get_dsl(spa), 262 vdev_initialize_zap_update_sync, guid, tx); 263 } 264 265 /* 266 * We know the vdev struct will still be around since all 267 * consumers of vdev_free must stop the initialization first. 268 */ 269 if (vdev_initialize_should_stop(vd)) { 270 mutex_enter(&vd->vdev_initialize_io_lock); 271 ASSERT3U(vd->vdev_initialize_inflight, >, 0); 272 vd->vdev_initialize_inflight--; 273 mutex_exit(&vd->vdev_initialize_io_lock); 274 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd); 275 mutex_exit(&vd->vdev_initialize_lock); 276 dmu_tx_commit(tx); 277 return (SET_ERROR(EINTR)); 278 } 279 mutex_exit(&vd->vdev_initialize_lock); 280 281 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size; 282 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start, 283 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL, 284 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE)); 285 /* vdev_initialize_cb releases SCL_STATE_ALL */ 286 287 dmu_tx_commit(tx); 288 289 return (0); 290 } 291 292 /* 293 * Callback to fill each ABD chunk with zfs_initialize_value. len must be 294 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD 295 * allocation will guarantee these for us. 296 */ 297 static int 298 vdev_initialize_block_fill(void *buf, size_t len, void *unused) 299 { 300 (void) unused; 301 302 ASSERT0(len % sizeof (uint64_t)); 303 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) { 304 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value; 305 } 306 return (0); 307 } 308 309 static abd_t * 310 vdev_initialize_block_alloc(void) 311 { 312 /* Allocate ABD for filler data */ 313 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE); 314 315 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t)); 316 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size, 317 vdev_initialize_block_fill, NULL); 318 319 return (data); 320 } 321 322 static void 323 vdev_initialize_block_free(abd_t *data) 324 { 325 abd_free(data); 326 } 327 328 static int 329 vdev_initialize_ranges(vdev_t *vd, abd_t *data) 330 { 331 range_tree_t *rt = vd->vdev_initialize_tree; 332 zfs_btree_t *bt = &rt->rt_root; 333 zfs_btree_index_t where; 334 335 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL; 336 rs = zfs_btree_next(bt, &where, &where)) { 337 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt); 338 339 /* Split range into legally-sized physical chunks */ 340 uint64_t writes_required = 341 ((size - 1) / zfs_initialize_chunk_size) + 1; 342 343 for (uint64_t w = 0; w < writes_required; w++) { 344 int error; 345 346 error = vdev_initialize_write(vd, 347 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) + 348 (w * zfs_initialize_chunk_size), 349 MIN(size - (w * zfs_initialize_chunk_size), 350 zfs_initialize_chunk_size), data); 351 if (error != 0) 352 return (error); 353 } 354 } 355 return (0); 356 } 357 358 static void 359 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs) 360 { 361 uint64_t *last_rs_end = (uint64_t *)arg; 362 363 if (physical_rs->rs_end > *last_rs_end) 364 *last_rs_end = physical_rs->rs_end; 365 } 366 367 static void 368 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs) 369 { 370 vdev_t *vd = (vdev_t *)arg; 371 372 uint64_t size = physical_rs->rs_end - physical_rs->rs_start; 373 vd->vdev_initialize_bytes_est += size; 374 375 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) { 376 vd->vdev_initialize_bytes_done += size; 377 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start && 378 vd->vdev_initialize_last_offset < physical_rs->rs_end) { 379 vd->vdev_initialize_bytes_done += 380 vd->vdev_initialize_last_offset - physical_rs->rs_start; 381 } 382 } 383 384 static void 385 vdev_initialize_calculate_progress(vdev_t *vd) 386 { 387 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 388 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 389 ASSERT(vd->vdev_leaf_zap != 0); 390 391 vd->vdev_initialize_bytes_est = 0; 392 vd->vdev_initialize_bytes_done = 0; 393 394 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) { 395 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 396 mutex_enter(&msp->ms_lock); 397 398 uint64_t ms_free = (msp->ms_size - 399 metaslab_allocated_space(msp)) / 400 vdev_get_ndisks(vd->vdev_top); 401 402 /* 403 * Convert the metaslab range to a physical range 404 * on our vdev. We use this to determine if we are 405 * in the middle of this metaslab range. 406 */ 407 range_seg64_t logical_rs, physical_rs, remain_rs; 408 logical_rs.rs_start = msp->ms_start; 409 logical_rs.rs_end = msp->ms_start + msp->ms_size; 410 411 /* Metaslab space after this offset has not been initialized */ 412 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs); 413 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) { 414 vd->vdev_initialize_bytes_est += ms_free; 415 mutex_exit(&msp->ms_lock); 416 continue; 417 } 418 419 /* Metaslab space before this offset has been initialized */ 420 uint64_t last_rs_end = physical_rs.rs_end; 421 if (!vdev_xlate_is_empty(&remain_rs)) { 422 vdev_xlate_walk(vd, &remain_rs, 423 vdev_initialize_xlate_last_rs_end, &last_rs_end); 424 } 425 426 if (vd->vdev_initialize_last_offset > last_rs_end) { 427 vd->vdev_initialize_bytes_done += ms_free; 428 vd->vdev_initialize_bytes_est += ms_free; 429 mutex_exit(&msp->ms_lock); 430 continue; 431 } 432 433 /* 434 * If we get here, we're in the middle of initializing this 435 * metaslab. Load it and walk the free tree for more accurate 436 * progress estimation. 437 */ 438 VERIFY0(metaslab_load(msp)); 439 440 zfs_btree_index_t where; 441 range_tree_t *rt = msp->ms_allocatable; 442 for (range_seg_t *rs = 443 zfs_btree_first(&rt->rt_root, &where); rs; 444 rs = zfs_btree_next(&rt->rt_root, &where, 445 &where)) { 446 logical_rs.rs_start = rs_get_start(rs, rt); 447 logical_rs.rs_end = rs_get_end(rs, rt); 448 449 vdev_xlate_walk(vd, &logical_rs, 450 vdev_initialize_xlate_progress, vd); 451 } 452 mutex_exit(&msp->ms_lock); 453 } 454 } 455 456 static int 457 vdev_initialize_load(vdev_t *vd) 458 { 459 int err = 0; 460 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) || 461 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER)); 462 ASSERT(vd->vdev_leaf_zap != 0); 463 464 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE || 465 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) { 466 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 467 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, 468 sizeof (vd->vdev_initialize_last_offset), 1, 469 &vd->vdev_initialize_last_offset); 470 if (err == ENOENT) { 471 vd->vdev_initialize_last_offset = 0; 472 err = 0; 473 } 474 } 475 476 vdev_initialize_calculate_progress(vd); 477 return (err); 478 } 479 480 static void 481 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs) 482 { 483 vdev_t *vd = arg; 484 485 /* Only add segments that we have not visited yet */ 486 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset) 487 return; 488 489 /* Pick up where we left off mid-range. */ 490 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) { 491 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to " 492 "(%llu, %llu)", vd->vdev_path, 493 (u_longlong_t)physical_rs->rs_start, 494 (u_longlong_t)physical_rs->rs_end, 495 (u_longlong_t)vd->vdev_initialize_last_offset, 496 (u_longlong_t)physical_rs->rs_end); 497 ASSERT3U(physical_rs->rs_end, >, 498 vd->vdev_initialize_last_offset); 499 physical_rs->rs_start = vd->vdev_initialize_last_offset; 500 } 501 502 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start); 503 504 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start, 505 physical_rs->rs_end - physical_rs->rs_start); 506 } 507 508 /* 509 * Convert the logical range into a physical range and add it to our 510 * avl tree. 511 */ 512 static void 513 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size) 514 { 515 vdev_t *vd = arg; 516 range_seg64_t logical_rs; 517 logical_rs.rs_start = start; 518 logical_rs.rs_end = start + size; 519 520 ASSERT(vd->vdev_ops->vdev_op_leaf); 521 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg); 522 } 523 524 static __attribute__((noreturn)) void 525 vdev_initialize_thread(void *arg) 526 { 527 vdev_t *vd = arg; 528 spa_t *spa = vd->vdev_spa; 529 int error = 0; 530 uint64_t ms_count = 0; 531 532 ASSERT(vdev_is_concrete(vd)); 533 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 534 535 vd->vdev_initialize_last_offset = 0; 536 VERIFY0(vdev_initialize_load(vd)); 537 538 abd_t *deadbeef = vdev_initialize_block_alloc(); 539 540 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 541 0, 0); 542 543 for (uint64_t i = 0; !vd->vdev_detached && 544 i < vd->vdev_top->vdev_ms_count; i++) { 545 metaslab_t *msp = vd->vdev_top->vdev_ms[i]; 546 boolean_t unload_when_done = B_FALSE; 547 548 /* 549 * If we've expanded the top-level vdev or it's our 550 * first pass, calculate our progress. 551 */ 552 if (vd->vdev_top->vdev_ms_count != ms_count) { 553 vdev_initialize_calculate_progress(vd); 554 ms_count = vd->vdev_top->vdev_ms_count; 555 } 556 557 spa_config_exit(spa, SCL_CONFIG, FTAG); 558 metaslab_disable(msp); 559 mutex_enter(&msp->ms_lock); 560 if (!msp->ms_loaded && !msp->ms_loading) 561 unload_when_done = B_TRUE; 562 VERIFY0(metaslab_load(msp)); 563 564 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add, 565 vd); 566 mutex_exit(&msp->ms_lock); 567 568 error = vdev_initialize_ranges(vd, deadbeef); 569 metaslab_enable(msp, B_TRUE, unload_when_done); 570 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 571 572 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL); 573 if (error != 0) 574 break; 575 } 576 577 spa_config_exit(spa, SCL_CONFIG, FTAG); 578 mutex_enter(&vd->vdev_initialize_io_lock); 579 while (vd->vdev_initialize_inflight > 0) { 580 cv_wait(&vd->vdev_initialize_io_cv, 581 &vd->vdev_initialize_io_lock); 582 } 583 mutex_exit(&vd->vdev_initialize_io_lock); 584 585 range_tree_destroy(vd->vdev_initialize_tree); 586 vdev_initialize_block_free(deadbeef); 587 vd->vdev_initialize_tree = NULL; 588 589 mutex_enter(&vd->vdev_initialize_lock); 590 if (!vd->vdev_initialize_exit_wanted) { 591 if (vdev_writeable(vd)) { 592 vdev_initialize_change_state(vd, 593 VDEV_INITIALIZE_COMPLETE); 594 } else if (vd->vdev_faulted) { 595 vdev_initialize_change_state(vd, 596 VDEV_INITIALIZE_CANCELED); 597 } 598 } 599 ASSERT(vd->vdev_initialize_thread != NULL || 600 vd->vdev_initialize_inflight == 0); 601 602 /* 603 * Drop the vdev_initialize_lock while we sync out the 604 * txg since it's possible that a device might be trying to 605 * come online and must check to see if it needs to restart an 606 * initialization. That thread will be holding the spa_config_lock 607 * which would prevent the txg_wait_synced from completing. 608 */ 609 mutex_exit(&vd->vdev_initialize_lock); 610 txg_wait_synced(spa_get_dsl(spa), 0); 611 mutex_enter(&vd->vdev_initialize_lock); 612 613 vd->vdev_initialize_thread = NULL; 614 cv_broadcast(&vd->vdev_initialize_cv); 615 mutex_exit(&vd->vdev_initialize_lock); 616 617 thread_exit(); 618 } 619 620 /* 621 * Initiates a device. Caller must hold vdev_initialize_lock. 622 * Device must be a leaf and not already be initializing. 623 */ 624 void 625 vdev_initialize(vdev_t *vd) 626 { 627 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 628 ASSERT(vd->vdev_ops->vdev_op_leaf); 629 ASSERT(vdev_is_concrete(vd)); 630 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 631 ASSERT(!vd->vdev_detached); 632 ASSERT(!vd->vdev_initialize_exit_wanted); 633 ASSERT(!vd->vdev_top->vdev_removing); 634 635 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE); 636 vd->vdev_initialize_thread = thread_create(NULL, 0, 637 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri); 638 } 639 640 /* 641 * Uninitializes a device. Caller must hold vdev_initialize_lock. 642 * Device must be a leaf and not already be initializing. 643 */ 644 void 645 vdev_uninitialize(vdev_t *vd) 646 { 647 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 648 ASSERT(vd->vdev_ops->vdev_op_leaf); 649 ASSERT(vdev_is_concrete(vd)); 650 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 651 ASSERT(!vd->vdev_detached); 652 ASSERT(!vd->vdev_initialize_exit_wanted); 653 ASSERT(!vd->vdev_top->vdev_removing); 654 655 vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE); 656 } 657 658 /* 659 * Wait for the initialize thread to be terminated (cancelled or stopped). 660 */ 661 static void 662 vdev_initialize_stop_wait_impl(vdev_t *vd) 663 { 664 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 665 666 while (vd->vdev_initialize_thread != NULL) 667 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock); 668 669 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 670 vd->vdev_initialize_exit_wanted = B_FALSE; 671 } 672 673 /* 674 * Wait for vdev initialize threads which were either to cleanly exit. 675 */ 676 void 677 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list) 678 { 679 (void) spa; 680 vdev_t *vd; 681 682 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 683 684 while ((vd = list_remove_head(vd_list)) != NULL) { 685 mutex_enter(&vd->vdev_initialize_lock); 686 vdev_initialize_stop_wait_impl(vd); 687 mutex_exit(&vd->vdev_initialize_lock); 688 } 689 } 690 691 /* 692 * Stop initializing a device, with the resultant initializing state being 693 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when 694 * a list_t is provided the stopping vdev is inserted in to the list. Callers 695 * are then required to call vdev_initialize_stop_wait() to block for all the 696 * initialization threads to exit. The caller must hold vdev_initialize_lock 697 * and must not be writing to the spa config, as the initializing thread may 698 * try to enter the config as a reader before exiting. 699 */ 700 void 701 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state, 702 list_t *vd_list) 703 { 704 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER)); 705 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock)); 706 ASSERT(vd->vdev_ops->vdev_op_leaf); 707 ASSERT(vdev_is_concrete(vd)); 708 709 /* 710 * Allow cancel requests to proceed even if the initialize thread 711 * has stopped. 712 */ 713 if (vd->vdev_initialize_thread == NULL && 714 tgt_state != VDEV_INITIALIZE_CANCELED) { 715 return; 716 } 717 718 vdev_initialize_change_state(vd, tgt_state); 719 vd->vdev_initialize_exit_wanted = B_TRUE; 720 721 if (vd_list == NULL) { 722 vdev_initialize_stop_wait_impl(vd); 723 } else { 724 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 725 list_insert_tail(vd_list, vd); 726 } 727 } 728 729 static void 730 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state, 731 list_t *vd_list) 732 { 733 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) { 734 mutex_enter(&vd->vdev_initialize_lock); 735 vdev_initialize_stop(vd, tgt_state, vd_list); 736 mutex_exit(&vd->vdev_initialize_lock); 737 return; 738 } 739 740 for (uint64_t i = 0; i < vd->vdev_children; i++) { 741 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state, 742 vd_list); 743 } 744 } 745 746 /* 747 * Convenience function to stop initializing of a vdev tree and set all 748 * initialize thread pointers to NULL. 749 */ 750 void 751 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state) 752 { 753 spa_t *spa = vd->vdev_spa; 754 list_t vd_list; 755 756 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 757 758 list_create(&vd_list, sizeof (vdev_t), 759 offsetof(vdev_t, vdev_initialize_node)); 760 761 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list); 762 vdev_initialize_stop_wait(spa, &vd_list); 763 764 if (vd->vdev_spa->spa_sync_on) { 765 /* Make sure that our state has been synced to disk */ 766 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0); 767 } 768 769 list_destroy(&vd_list); 770 } 771 772 void 773 vdev_initialize_restart(vdev_t *vd) 774 { 775 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 776 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 777 778 if (vd->vdev_leaf_zap != 0) { 779 mutex_enter(&vd->vdev_initialize_lock); 780 uint64_t initialize_state = VDEV_INITIALIZE_NONE; 781 int err = zap_lookup(vd->vdev_spa->spa_meta_objset, 782 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE, 783 sizeof (initialize_state), 1, &initialize_state); 784 ASSERT(err == 0 || err == ENOENT); 785 vd->vdev_initialize_state = initialize_state; 786 787 uint64_t timestamp = 0; 788 err = zap_lookup(vd->vdev_spa->spa_meta_objset, 789 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, 790 sizeof (timestamp), 1, ×tamp); 791 ASSERT(err == 0 || err == ENOENT); 792 vd->vdev_initialize_action_time = timestamp; 793 794 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED || 795 vd->vdev_offline) { 796 /* load progress for reporting, but don't resume */ 797 VERIFY0(vdev_initialize_load(vd)); 798 } else if (vd->vdev_initialize_state == 799 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) && 800 !vd->vdev_top->vdev_removing && 801 vd->vdev_initialize_thread == NULL) { 802 vdev_initialize(vd); 803 } 804 805 mutex_exit(&vd->vdev_initialize_lock); 806 } 807 808 for (uint64_t i = 0; i < vd->vdev_children; i++) { 809 vdev_initialize_restart(vd->vdev_child[i]); 810 } 811 } 812 813 EXPORT_SYMBOL(vdev_initialize); 814 EXPORT_SYMBOL(vdev_uninitialize); 815 EXPORT_SYMBOL(vdev_initialize_stop); 816 EXPORT_SYMBOL(vdev_initialize_stop_all); 817 EXPORT_SYMBOL(vdev_initialize_stop_wait); 818 EXPORT_SYMBOL(vdev_initialize_restart); 819 820 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW, 821 "Value written during zpool initialize"); 822 823 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW, 824 "Size in bytes of writes by zpool initialize"); 825