xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision c27f7d6b9cf6d4ab01cb3d0972726c14e0aca146)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright 2016 Toomas Soome <tsoome@me.com>
29  * Copyright 2017 Joyent, Inc.
30  * Copyright (c) 2017, Intel Corporation.
31  * Copyright (c) 2019, Datto Inc. All rights reserved.
32  * Copyright (c) 2021, Klara Inc.
33  * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa.h>
39 #include <sys/spa_impl.h>
40 #include <sys/bpobj.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/vdev_rebuild.h>
46 #include <sys/vdev_draid.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/space_map.h>
51 #include <sys/space_reftree.h>
52 #include <sys/zio.h>
53 #include <sys/zap.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/arc.h>
56 #include <sys/zil.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/vdev_raidz.h>
59 #include <sys/abd.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_trim.h>
62 #include <sys/vdev_raidz.h>
63 #include <sys/zvol.h>
64 #include <sys/zfs_ratelimit.h>
65 #include "zfs_prop.h"
66 
67 /*
68  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
69  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
70  * part of the spa_embedded_log_class.  The metaslab with the most free space
71  * in each vdev is selected for this purpose when the pool is opened (or a
72  * vdev is added).  See vdev_metaslab_init().
73  *
74  * Log blocks can be allocated from the following locations.  Each one is tried
75  * in order until the allocation succeeds:
76  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
77  * 2. embedded slog metaslabs (spa_embedded_log_class)
78  * 3. other metaslabs in normal vdevs (spa_normal_class)
79  *
80  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
81  * than this number of metaslabs in the vdev.  This ensures that we don't set
82  * aside an unreasonable amount of space for the ZIL.  If set to less than
83  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
84  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85  */
86 static uint_t zfs_embedded_slog_min_ms = 64;
87 
88 /* default target for number of metaslabs per top-level vdev */
89 static uint_t zfs_vdev_default_ms_count = 200;
90 
91 /* minimum number of metaslabs per top-level vdev */
92 static uint_t zfs_vdev_min_ms_count = 16;
93 
94 /* practical upper limit of total metaslabs per top-level vdev */
95 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
96 
97 /* lower limit for metaslab size (512M) */
98 static uint_t zfs_vdev_default_ms_shift = 29;
99 
100 /* upper limit for metaslab size (16G) */
101 static uint_t zfs_vdev_max_ms_shift = 34;
102 
103 int vdev_validate_skip = B_FALSE;
104 
105 /*
106  * Since the DTL space map of a vdev is not expected to have a lot of
107  * entries, we default its block size to 4K.
108  */
109 int zfs_vdev_dtl_sm_blksz = (1 << 12);
110 
111 /*
112  * Rate limit slow IO (delay) events to this many per second.
113  */
114 static unsigned int zfs_slow_io_events_per_second = 20;
115 
116 /*
117  * Rate limit deadman "hung IO" events to this many per second.
118  */
119 static unsigned int zfs_deadman_events_per_second = 1;
120 
121 /*
122  * Rate limit direct write IO verify failures to this many per scond.
123  */
124 static unsigned int zfs_dio_write_verify_events_per_second = 20;
125 
126 /*
127  * Rate limit checksum events after this many checksum errors per second.
128  */
129 static unsigned int zfs_checksum_events_per_second = 20;
130 
131 /*
132  * Ignore errors during scrub/resilver.  Allows to work around resilver
133  * upon import when there are pool errors.
134  */
135 static int zfs_scan_ignore_errors = 0;
136 
137 /*
138  * vdev-wide space maps that have lots of entries written to them at
139  * the end of each transaction can benefit from a higher I/O bandwidth
140  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141  */
142 int zfs_vdev_standard_sm_blksz = (1 << 17);
143 
144 /*
145  * Tunable parameter for debugging or performance analysis. Setting this
146  * will cause pool corruption on power loss if a volatile out-of-order
147  * write cache is enabled.
148  */
149 int zfs_nocacheflush = 0;
150 
151 /*
152  * Maximum and minimum ashift values that can be automatically set based on
153  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
154  * is higher than the maximum value, it is intentionally limited here to not
155  * excessively impact pool space efficiency.  Higher ashift values may still
156  * be forced by vdev logical ashift or by user via ashift property, but won't
157  * be set automatically as a performance optimization.
158  */
159 uint_t zfs_vdev_max_auto_ashift = 14;
160 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
161 
162 /*
163  * VDEV checksum verification for Direct I/O writes. This is neccessary for
164  * Linux, because anonymous pages can not be placed under write protection
165  * during Direct I/O writes.
166  */
167 #if !defined(__FreeBSD__)
168 uint_t zfs_vdev_direct_write_verify = 1;
169 #else
170 uint_t zfs_vdev_direct_write_verify = 0;
171 #endif
172 
173 void
174 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
175 {
176 	va_list adx;
177 	char buf[256];
178 
179 	va_start(adx, fmt);
180 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
181 	va_end(adx);
182 
183 	if (vd->vdev_path != NULL) {
184 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
185 		    vd->vdev_path, buf);
186 	} else {
187 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
188 		    vd->vdev_ops->vdev_op_type,
189 		    (u_longlong_t)vd->vdev_id,
190 		    (u_longlong_t)vd->vdev_guid, buf);
191 	}
192 }
193 
194 void
195 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
196 {
197 	char state[20];
198 
199 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
200 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
201 		    (u_longlong_t)vd->vdev_id,
202 		    vd->vdev_ops->vdev_op_type);
203 		return;
204 	}
205 
206 	switch (vd->vdev_state) {
207 	case VDEV_STATE_UNKNOWN:
208 		(void) snprintf(state, sizeof (state), "unknown");
209 		break;
210 	case VDEV_STATE_CLOSED:
211 		(void) snprintf(state, sizeof (state), "closed");
212 		break;
213 	case VDEV_STATE_OFFLINE:
214 		(void) snprintf(state, sizeof (state), "offline");
215 		break;
216 	case VDEV_STATE_REMOVED:
217 		(void) snprintf(state, sizeof (state), "removed");
218 		break;
219 	case VDEV_STATE_CANT_OPEN:
220 		(void) snprintf(state, sizeof (state), "can't open");
221 		break;
222 	case VDEV_STATE_FAULTED:
223 		(void) snprintf(state, sizeof (state), "faulted");
224 		break;
225 	case VDEV_STATE_DEGRADED:
226 		(void) snprintf(state, sizeof (state), "degraded");
227 		break;
228 	case VDEV_STATE_HEALTHY:
229 		(void) snprintf(state, sizeof (state), "healthy");
230 		break;
231 	default:
232 		(void) snprintf(state, sizeof (state), "<state %u>",
233 		    (uint_t)vd->vdev_state);
234 	}
235 
236 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
237 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
238 	    vd->vdev_islog ? " (log)" : "",
239 	    (u_longlong_t)vd->vdev_guid,
240 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
241 
242 	for (uint64_t i = 0; i < vd->vdev_children; i++)
243 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
244 }
245 
246 /*
247  * Virtual device management.
248  */
249 
250 static vdev_ops_t *const vdev_ops_table[] = {
251 	&vdev_root_ops,
252 	&vdev_raidz_ops,
253 	&vdev_draid_ops,
254 	&vdev_draid_spare_ops,
255 	&vdev_mirror_ops,
256 	&vdev_replacing_ops,
257 	&vdev_spare_ops,
258 	&vdev_disk_ops,
259 	&vdev_file_ops,
260 	&vdev_missing_ops,
261 	&vdev_hole_ops,
262 	&vdev_indirect_ops,
263 	NULL
264 };
265 
266 /*
267  * Given a vdev type, return the appropriate ops vector.
268  */
269 static vdev_ops_t *
270 vdev_getops(const char *type)
271 {
272 	vdev_ops_t *ops, *const *opspp;
273 
274 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
275 		if (strcmp(ops->vdev_op_type, type) == 0)
276 			break;
277 
278 	return (ops);
279 }
280 
281 /*
282  * Given a vdev and a metaslab class, find which metaslab group we're
283  * interested in. All vdevs may belong to two different metaslab classes.
284  * Dedicated slog devices use only the primary metaslab group, rather than a
285  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
286  */
287 metaslab_group_t *
288 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
289 {
290 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
291 	    vd->vdev_log_mg != NULL)
292 		return (vd->vdev_log_mg);
293 	else
294 		return (vd->vdev_mg);
295 }
296 
297 void
298 vdev_default_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
299     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
300 {
301 	(void) vd, (void) remain_rs;
302 
303 	physical_rs->rs_start = logical_rs->rs_start;
304 	physical_rs->rs_end = logical_rs->rs_end;
305 }
306 
307 /*
308  * Derive the enumerated allocation bias from string input.
309  * String origin is either the per-vdev zap or zpool(8).
310  */
311 static vdev_alloc_bias_t
312 vdev_derive_alloc_bias(const char *bias)
313 {
314 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
315 
316 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
317 		alloc_bias = VDEV_BIAS_LOG;
318 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
319 		alloc_bias = VDEV_BIAS_SPECIAL;
320 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
321 		alloc_bias = VDEV_BIAS_DEDUP;
322 
323 	return (alloc_bias);
324 }
325 
326 uint64_t
327 vdev_default_psize(vdev_t *vd, uint64_t asize, uint64_t txg)
328 {
329 	ASSERT0(asize % (1ULL << vd->vdev_top->vdev_ashift));
330 	uint64_t csize, psize = asize;
331 	for (int c = 0; c < vd->vdev_children; c++) {
332 		csize = vdev_asize_to_psize_txg(vd->vdev_child[c], asize, txg);
333 		psize = MIN(psize, csize);
334 	}
335 
336 	return (psize);
337 }
338 
339 /*
340  * Default asize function: return the MAX of psize with the asize of
341  * all children.  This is what's used by anything other than RAID-Z.
342  */
343 uint64_t
344 vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
345 {
346 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
347 	uint64_t csize;
348 
349 	for (int c = 0; c < vd->vdev_children; c++) {
350 		csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg);
351 		asize = MAX(asize, csize);
352 	}
353 
354 	return (asize);
355 }
356 
357 uint64_t
358 vdev_default_min_asize(vdev_t *vd)
359 {
360 	return (vd->vdev_min_asize);
361 }
362 
363 /*
364  * Get the minimum allocatable size. We define the allocatable size as
365  * the vdev's asize rounded to the nearest metaslab. This allows us to
366  * replace or attach devices which don't have the same physical size but
367  * can still satisfy the same number of allocations.
368  */
369 uint64_t
370 vdev_get_min_asize(vdev_t *vd)
371 {
372 	vdev_t *pvd = vd->vdev_parent;
373 
374 	/*
375 	 * If our parent is NULL (inactive spare or cache) or is the root,
376 	 * just return our own asize.
377 	 */
378 	if (pvd == NULL)
379 		return (vd->vdev_asize);
380 
381 	/*
382 	 * The top-level vdev just returns the allocatable size rounded
383 	 * to the nearest metaslab.
384 	 */
385 	if (vd == vd->vdev_top)
386 		return (P2ALIGN_TYPED(vd->vdev_asize, 1ULL << vd->vdev_ms_shift,
387 		    uint64_t));
388 
389 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
390 }
391 
392 void
393 vdev_set_min_asize(vdev_t *vd)
394 {
395 	vd->vdev_min_asize = vdev_get_min_asize(vd);
396 
397 	for (int c = 0; c < vd->vdev_children; c++)
398 		vdev_set_min_asize(vd->vdev_child[c]);
399 }
400 
401 /*
402  * Get the minimal allocation size for the top-level vdev.
403  */
404 uint64_t
405 vdev_get_min_alloc(vdev_t *vd)
406 {
407 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
408 
409 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
410 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
411 
412 	return (min_alloc);
413 }
414 
415 /*
416  * Get the parity level for a top-level vdev.
417  */
418 uint64_t
419 vdev_get_nparity(vdev_t *vd)
420 {
421 	uint64_t nparity = 0;
422 
423 	if (vd->vdev_ops->vdev_op_nparity != NULL)
424 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
425 
426 	return (nparity);
427 }
428 
429 static int
430 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
431 {
432 	spa_t *spa = vd->vdev_spa;
433 	objset_t *mos = spa->spa_meta_objset;
434 	uint64_t objid;
435 	int err;
436 
437 	if (vd->vdev_root_zap != 0) {
438 		objid = vd->vdev_root_zap;
439 	} else if (vd->vdev_top_zap != 0) {
440 		objid = vd->vdev_top_zap;
441 	} else if (vd->vdev_leaf_zap != 0) {
442 		objid = vd->vdev_leaf_zap;
443 	} else {
444 		return (EINVAL);
445 	}
446 
447 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
448 	    sizeof (uint64_t), 1, value);
449 
450 	if (err == ENOENT)
451 		*value = vdev_prop_default_numeric(prop);
452 
453 	return (err);
454 }
455 
456 /*
457  * Get the number of data disks for a top-level vdev.
458  */
459 uint64_t
460 vdev_get_ndisks(vdev_t *vd)
461 {
462 	uint64_t ndisks = 1;
463 
464 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
465 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
466 
467 	return (ndisks);
468 }
469 
470 vdev_t *
471 vdev_lookup_top(spa_t *spa, uint64_t vdev)
472 {
473 	vdev_t *rvd = spa->spa_root_vdev;
474 
475 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
476 
477 	if (vdev < rvd->vdev_children) {
478 		ASSERT(rvd->vdev_child[vdev] != NULL);
479 		return (rvd->vdev_child[vdev]);
480 	}
481 
482 	return (NULL);
483 }
484 
485 vdev_t *
486 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
487 {
488 	vdev_t *mvd;
489 
490 	if (vd->vdev_guid == guid)
491 		return (vd);
492 
493 	for (int c = 0; c < vd->vdev_children; c++)
494 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
495 		    NULL)
496 			return (mvd);
497 
498 	return (NULL);
499 }
500 
501 static int
502 vdev_count_leaves_impl(vdev_t *vd)
503 {
504 	int n = 0;
505 
506 	if (vd->vdev_ops->vdev_op_leaf)
507 		return (1);
508 
509 	for (int c = 0; c < vd->vdev_children; c++)
510 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
511 
512 	return (n);
513 }
514 
515 int
516 vdev_count_leaves(spa_t *spa)
517 {
518 	int rc;
519 
520 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
521 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
522 	spa_config_exit(spa, SCL_VDEV, FTAG);
523 
524 	return (rc);
525 }
526 
527 void
528 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
529 {
530 	size_t oldsize, newsize;
531 	uint64_t id = cvd->vdev_id;
532 	vdev_t **newchild;
533 
534 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
535 	ASSERT(cvd->vdev_parent == NULL);
536 
537 	cvd->vdev_parent = pvd;
538 
539 	if (pvd == NULL)
540 		return;
541 
542 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
543 
544 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
545 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
546 	newsize = pvd->vdev_children * sizeof (vdev_t *);
547 
548 	newchild = kmem_alloc(newsize, KM_SLEEP);
549 	if (pvd->vdev_child != NULL) {
550 		memcpy(newchild, pvd->vdev_child, oldsize);
551 		kmem_free(pvd->vdev_child, oldsize);
552 	}
553 
554 	pvd->vdev_child = newchild;
555 	pvd->vdev_child[id] = cvd;
556 
557 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
558 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
559 
560 	/*
561 	 * Walk up all ancestors to update guid sum.
562 	 */
563 	for (; pvd != NULL; pvd = pvd->vdev_parent)
564 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
565 
566 	if (cvd->vdev_ops->vdev_op_leaf) {
567 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
568 		cvd->vdev_spa->spa_leaf_list_gen++;
569 	}
570 }
571 
572 void
573 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
574 {
575 	int c;
576 	uint_t id = cvd->vdev_id;
577 
578 	ASSERT(cvd->vdev_parent == pvd);
579 
580 	if (pvd == NULL)
581 		return;
582 
583 	ASSERT(id < pvd->vdev_children);
584 	ASSERT(pvd->vdev_child[id] == cvd);
585 
586 	pvd->vdev_child[id] = NULL;
587 	cvd->vdev_parent = NULL;
588 
589 	for (c = 0; c < pvd->vdev_children; c++)
590 		if (pvd->vdev_child[c])
591 			break;
592 
593 	if (c == pvd->vdev_children) {
594 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
595 		pvd->vdev_child = NULL;
596 		pvd->vdev_children = 0;
597 	}
598 
599 	if (cvd->vdev_ops->vdev_op_leaf) {
600 		spa_t *spa = cvd->vdev_spa;
601 		list_remove(&spa->spa_leaf_list, cvd);
602 		spa->spa_leaf_list_gen++;
603 	}
604 
605 	/*
606 	 * Walk up all ancestors to update guid sum.
607 	 */
608 	for (; pvd != NULL; pvd = pvd->vdev_parent)
609 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
610 }
611 
612 /*
613  * Remove any holes in the child array.
614  */
615 void
616 vdev_compact_children(vdev_t *pvd)
617 {
618 	vdev_t **newchild, *cvd;
619 	int oldc = pvd->vdev_children;
620 	int newc;
621 
622 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
623 
624 	if (oldc == 0)
625 		return;
626 
627 	for (int c = newc = 0; c < oldc; c++)
628 		if (pvd->vdev_child[c])
629 			newc++;
630 
631 	if (newc > 0) {
632 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
633 
634 		for (int c = newc = 0; c < oldc; c++) {
635 			if ((cvd = pvd->vdev_child[c]) != NULL) {
636 				newchild[newc] = cvd;
637 				cvd->vdev_id = newc++;
638 			}
639 		}
640 	} else {
641 		newchild = NULL;
642 	}
643 
644 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
645 	pvd->vdev_child = newchild;
646 	pvd->vdev_children = newc;
647 }
648 
649 /*
650  * Allocate and minimally initialize a vdev_t.
651  */
652 vdev_t *
653 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
654 {
655 	vdev_t *vd;
656 	vdev_indirect_config_t *vic;
657 
658 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
659 	vic = &vd->vdev_indirect_config;
660 
661 	if (spa->spa_root_vdev == NULL) {
662 		ASSERT(ops == &vdev_root_ops);
663 		spa->spa_root_vdev = vd;
664 		spa->spa_load_guid = spa_generate_load_guid();
665 	}
666 
667 	if (guid == 0 && ops != &vdev_hole_ops) {
668 		if (spa->spa_root_vdev == vd) {
669 			/*
670 			 * The root vdev's guid will also be the pool guid,
671 			 * which must be unique among all pools.
672 			 */
673 			guid = spa_generate_guid(NULL);
674 		} else {
675 			/*
676 			 * Any other vdev's guid must be unique within the pool.
677 			 */
678 			guid = spa_generate_guid(spa);
679 		}
680 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
681 	}
682 
683 	vd->vdev_spa = spa;
684 	vd->vdev_id = id;
685 	vd->vdev_guid = guid;
686 	vd->vdev_guid_sum = guid;
687 	vd->vdev_ops = ops;
688 	vd->vdev_state = VDEV_STATE_CLOSED;
689 	vd->vdev_ishole = (ops == &vdev_hole_ops);
690 	vic->vic_prev_indirect_vdev = UINT64_MAX;
691 
692 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
693 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
694 	vd->vdev_obsolete_segments = zfs_range_tree_create(NULL,
695 	    ZFS_RANGE_SEG64, NULL, 0, 0);
696 
697 	/*
698 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
699 	 * and checksum events so that we don't overwhelm ZED with thousands
700 	 * of events when a disk is acting up.
701 	 */
702 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
703 	    1);
704 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_deadman_events_per_second,
705 	    1);
706 	zfs_ratelimit_init(&vd->vdev_dio_verify_rl,
707 	    &zfs_dio_write_verify_events_per_second, 1);
708 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
709 	    &zfs_checksum_events_per_second, 1);
710 
711 	/*
712 	 * Default Thresholds for tuning ZED
713 	 */
714 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
715 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
716 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
717 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
718 	vd->vdev_slow_io_n = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N);
719 	vd->vdev_slow_io_t = vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T);
720 
721 	list_link_init(&vd->vdev_config_dirty_node);
722 	list_link_init(&vd->vdev_state_dirty_node);
723 	list_link_init(&vd->vdev_initialize_node);
724 	list_link_init(&vd->vdev_leaf_node);
725 	list_link_init(&vd->vdev_trim_node);
726 
727 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
728 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
729 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
730 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
731 
732 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
733 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
734 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
735 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
736 
737 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
738 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
739 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
740 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
741 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
742 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
743 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
744 
745 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
746 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
747 
748 	for (int t = 0; t < DTL_TYPES; t++) {
749 		vd->vdev_dtl[t] = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64,
750 		    NULL, 0, 0);
751 	}
752 
753 	txg_list_create(&vd->vdev_ms_list, spa,
754 	    offsetof(struct metaslab, ms_txg_node));
755 	txg_list_create(&vd->vdev_dtl_list, spa,
756 	    offsetof(struct vdev, vdev_dtl_node));
757 	vd->vdev_stat.vs_timestamp = gethrtime();
758 	vdev_queue_init(vd);
759 
760 	return (vd);
761 }
762 
763 /*
764  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
765  * creating a new vdev or loading an existing one - the behavior is slightly
766  * different for each case.
767  */
768 int
769 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
770     int alloctype)
771 {
772 	vdev_ops_t *ops;
773 	const char *type;
774 	uint64_t guid = 0, islog;
775 	vdev_t *vd;
776 	vdev_indirect_config_t *vic;
777 	const char *tmp = NULL;
778 	int rc;
779 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
780 	boolean_t top_level = (parent && !parent->vdev_parent);
781 
782 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
783 
784 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
785 		return (SET_ERROR(EINVAL));
786 
787 	if ((ops = vdev_getops(type)) == NULL)
788 		return (SET_ERROR(EINVAL));
789 
790 	/*
791 	 * If this is a load, get the vdev guid from the nvlist.
792 	 * Otherwise, vdev_alloc_common() will generate one for us.
793 	 */
794 	if (alloctype == VDEV_ALLOC_LOAD) {
795 		uint64_t label_id;
796 
797 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
798 		    label_id != id)
799 			return (SET_ERROR(EINVAL));
800 
801 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
802 			return (SET_ERROR(EINVAL));
803 	} else if (alloctype == VDEV_ALLOC_SPARE) {
804 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
805 			return (SET_ERROR(EINVAL));
806 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
807 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
808 			return (SET_ERROR(EINVAL));
809 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
810 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
811 			return (SET_ERROR(EINVAL));
812 	}
813 
814 	/*
815 	 * The first allocated vdev must be of type 'root'.
816 	 */
817 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
818 		return (SET_ERROR(EINVAL));
819 
820 	/*
821 	 * Determine whether we're a log vdev.
822 	 */
823 	islog = 0;
824 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
825 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
826 		return (SET_ERROR(ENOTSUP));
827 
828 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
829 		return (SET_ERROR(ENOTSUP));
830 
831 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
832 		const char *bias;
833 
834 		/*
835 		 * If creating a top-level vdev, check for allocation
836 		 * classes input.
837 		 */
838 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
839 		    &bias) == 0) {
840 			alloc_bias = vdev_derive_alloc_bias(bias);
841 
842 			/* spa_vdev_add() expects feature to be enabled */
843 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
844 			    !spa_feature_is_enabled(spa,
845 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
846 				return (SET_ERROR(ENOTSUP));
847 			}
848 		}
849 
850 		/* spa_vdev_add() expects feature to be enabled */
851 		if (ops == &vdev_draid_ops &&
852 		    spa->spa_load_state != SPA_LOAD_CREATE &&
853 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
854 			return (SET_ERROR(ENOTSUP));
855 		}
856 	}
857 
858 	/*
859 	 * Initialize the vdev specific data.  This is done before calling
860 	 * vdev_alloc_common() since it may fail and this simplifies the
861 	 * error reporting and cleanup code paths.
862 	 */
863 	void *tsd = NULL;
864 	if (ops->vdev_op_init != NULL) {
865 		rc = ops->vdev_op_init(spa, nv, &tsd);
866 		if (rc != 0) {
867 			return (rc);
868 		}
869 	}
870 
871 	vd = vdev_alloc_common(spa, id, guid, ops);
872 	vd->vdev_tsd = tsd;
873 	vd->vdev_islog = islog;
874 
875 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
876 		vd->vdev_alloc_bias = alloc_bias;
877 
878 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
879 		vd->vdev_path = spa_strdup(tmp);
880 
881 	/*
882 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
883 	 * fault on a vdev and want it to persist across imports (like with
884 	 * zpool offline -f).
885 	 */
886 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
887 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
888 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
889 		vd->vdev_faulted = 1;
890 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
891 	}
892 
893 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
894 		vd->vdev_devid = spa_strdup(tmp);
895 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
896 		vd->vdev_physpath = spa_strdup(tmp);
897 
898 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
899 	    &tmp) == 0)
900 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
901 
902 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
903 		vd->vdev_fru = spa_strdup(tmp);
904 
905 	/*
906 	 * Set the whole_disk property.  If it's not specified, leave the value
907 	 * as -1.
908 	 */
909 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
910 	    &vd->vdev_wholedisk) != 0)
911 		vd->vdev_wholedisk = -1ULL;
912 
913 	vic = &vd->vdev_indirect_config;
914 
915 	ASSERT0(vic->vic_mapping_object);
916 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
917 	    &vic->vic_mapping_object);
918 	ASSERT0(vic->vic_births_object);
919 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
920 	    &vic->vic_births_object);
921 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
922 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
923 	    &vic->vic_prev_indirect_vdev);
924 
925 	/*
926 	 * Look for the 'not present' flag.  This will only be set if the device
927 	 * was not present at the time of import.
928 	 */
929 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
930 	    &vd->vdev_not_present);
931 
932 	/*
933 	 * Get the alignment requirement. Ignore pool ashift for vdev
934 	 * attach case.
935 	 */
936 	if (alloctype != VDEV_ALLOC_ATTACH) {
937 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
938 		    &vd->vdev_ashift);
939 	} else {
940 		vd->vdev_attaching = B_TRUE;
941 	}
942 
943 	/*
944 	 * Retrieve the vdev creation time.
945 	 */
946 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
947 	    &vd->vdev_crtxg);
948 
949 	if (vd->vdev_ops == &vdev_root_ops &&
950 	    (alloctype == VDEV_ALLOC_LOAD ||
951 	    alloctype == VDEV_ALLOC_SPLIT ||
952 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
953 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
954 		    &vd->vdev_root_zap);
955 	}
956 
957 	/*
958 	 * If we're a top-level vdev, try to load the allocation parameters.
959 	 */
960 	if (top_level &&
961 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
962 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
963 		    &vd->vdev_ms_array);
964 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
965 		    &vd->vdev_ms_shift);
966 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
967 		    &vd->vdev_asize);
968 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
969 		    &vd->vdev_noalloc);
970 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
971 		    &vd->vdev_removing);
972 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
973 		    &vd->vdev_top_zap);
974 		vd->vdev_rz_expanding = nvlist_exists(nv,
975 		    ZPOOL_CONFIG_RAIDZ_EXPANDING);
976 	} else {
977 		ASSERT0(vd->vdev_top_zap);
978 	}
979 
980 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
981 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
982 		    alloctype == VDEV_ALLOC_ADD ||
983 		    alloctype == VDEV_ALLOC_SPLIT ||
984 		    alloctype == VDEV_ALLOC_ROOTPOOL);
985 		/* Note: metaslab_group_create() is now deferred */
986 	}
987 
988 	if (vd->vdev_ops->vdev_op_leaf &&
989 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
990 		(void) nvlist_lookup_uint64(nv,
991 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
992 	} else {
993 		ASSERT0(vd->vdev_leaf_zap);
994 	}
995 
996 	/*
997 	 * If we're a leaf vdev, try to load the DTL object and other state.
998 	 */
999 
1000 	if (vd->vdev_ops->vdev_op_leaf &&
1001 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
1002 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
1003 		if (alloctype == VDEV_ALLOC_LOAD) {
1004 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
1005 			    &vd->vdev_dtl_object);
1006 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
1007 			    &vd->vdev_unspare);
1008 		}
1009 
1010 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
1011 			uint64_t spare = 0;
1012 
1013 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
1014 			    &spare) == 0 && spare)
1015 				spa_spare_add(vd);
1016 		}
1017 
1018 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
1019 		    &vd->vdev_offline);
1020 
1021 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
1022 		    &vd->vdev_resilver_txg);
1023 
1024 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
1025 		    &vd->vdev_rebuild_txg);
1026 
1027 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
1028 			vdev_defer_resilver(vd);
1029 
1030 		/*
1031 		 * In general, when importing a pool we want to ignore the
1032 		 * persistent fault state, as the diagnosis made on another
1033 		 * system may not be valid in the current context.  The only
1034 		 * exception is if we forced a vdev to a persistently faulted
1035 		 * state with 'zpool offline -f'.  The persistent fault will
1036 		 * remain across imports until cleared.
1037 		 *
1038 		 * Local vdevs will remain in the faulted state.
1039 		 */
1040 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
1041 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
1042 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
1043 			    &vd->vdev_faulted);
1044 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
1045 			    &vd->vdev_degraded);
1046 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
1047 			    &vd->vdev_removed);
1048 
1049 			if (vd->vdev_faulted || vd->vdev_degraded) {
1050 				const char *aux;
1051 
1052 				vd->vdev_label_aux =
1053 				    VDEV_AUX_ERR_EXCEEDED;
1054 				if (nvlist_lookup_string(nv,
1055 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
1056 				    strcmp(aux, "external") == 0)
1057 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1058 				else
1059 					vd->vdev_faulted = 0ULL;
1060 			}
1061 		}
1062 	}
1063 
1064 	/*
1065 	 * Add ourselves to the parent's list of children.
1066 	 */
1067 	vdev_add_child(parent, vd);
1068 
1069 	*vdp = vd;
1070 
1071 	return (0);
1072 }
1073 
1074 void
1075 vdev_free(vdev_t *vd)
1076 {
1077 	spa_t *spa = vd->vdev_spa;
1078 
1079 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1080 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1081 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1082 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1083 
1084 	/*
1085 	 * Scan queues are normally destroyed at the end of a scan. If the
1086 	 * queue exists here, that implies the vdev is being removed while
1087 	 * the scan is still running.
1088 	 */
1089 	if (vd->vdev_scan_io_queue != NULL) {
1090 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1091 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1092 		vd->vdev_scan_io_queue = NULL;
1093 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1094 	}
1095 
1096 	/*
1097 	 * vdev_free() implies closing the vdev first.  This is simpler than
1098 	 * trying to ensure complicated semantics for all callers.
1099 	 */
1100 	vdev_close(vd);
1101 
1102 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1103 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1104 
1105 	/*
1106 	 * Free all children.
1107 	 */
1108 	for (int c = 0; c < vd->vdev_children; c++)
1109 		vdev_free(vd->vdev_child[c]);
1110 
1111 	ASSERT(vd->vdev_child == NULL);
1112 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1113 
1114 	if (vd->vdev_ops->vdev_op_fini != NULL)
1115 		vd->vdev_ops->vdev_op_fini(vd);
1116 
1117 	/*
1118 	 * Discard allocation state.
1119 	 */
1120 	if (vd->vdev_mg != NULL) {
1121 		vdev_metaslab_fini(vd);
1122 		metaslab_group_destroy(vd->vdev_mg);
1123 		vd->vdev_mg = NULL;
1124 	}
1125 	if (vd->vdev_log_mg != NULL) {
1126 		ASSERT0(vd->vdev_ms_count);
1127 		metaslab_group_destroy(vd->vdev_log_mg);
1128 		vd->vdev_log_mg = NULL;
1129 	}
1130 
1131 	ASSERT0(vd->vdev_stat.vs_space);
1132 	ASSERT0(vd->vdev_stat.vs_dspace);
1133 	ASSERT0(vd->vdev_stat.vs_alloc);
1134 
1135 	/*
1136 	 * Remove this vdev from its parent's child list.
1137 	 */
1138 	vdev_remove_child(vd->vdev_parent, vd);
1139 
1140 	ASSERT(vd->vdev_parent == NULL);
1141 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1142 
1143 	/*
1144 	 * Clean up vdev structure.
1145 	 */
1146 	vdev_queue_fini(vd);
1147 
1148 	if (vd->vdev_path)
1149 		spa_strfree(vd->vdev_path);
1150 	if (vd->vdev_devid)
1151 		spa_strfree(vd->vdev_devid);
1152 	if (vd->vdev_physpath)
1153 		spa_strfree(vd->vdev_physpath);
1154 
1155 	if (vd->vdev_enc_sysfs_path)
1156 		spa_strfree(vd->vdev_enc_sysfs_path);
1157 
1158 	if (vd->vdev_fru)
1159 		spa_strfree(vd->vdev_fru);
1160 
1161 	if (vd->vdev_isspare)
1162 		spa_spare_remove(vd);
1163 	if (vd->vdev_isl2cache)
1164 		spa_l2cache_remove(vd);
1165 
1166 	txg_list_destroy(&vd->vdev_ms_list);
1167 	txg_list_destroy(&vd->vdev_dtl_list);
1168 
1169 	mutex_enter(&vd->vdev_dtl_lock);
1170 	space_map_close(vd->vdev_dtl_sm);
1171 	for (int t = 0; t < DTL_TYPES; t++) {
1172 		zfs_range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1173 		zfs_range_tree_destroy(vd->vdev_dtl[t]);
1174 	}
1175 	mutex_exit(&vd->vdev_dtl_lock);
1176 
1177 	EQUIV(vd->vdev_indirect_births != NULL,
1178 	    vd->vdev_indirect_mapping != NULL);
1179 	if (vd->vdev_indirect_births != NULL) {
1180 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1181 		vdev_indirect_births_close(vd->vdev_indirect_births);
1182 	}
1183 
1184 	if (vd->vdev_obsolete_sm != NULL) {
1185 		ASSERT(vd->vdev_removing ||
1186 		    vd->vdev_ops == &vdev_indirect_ops);
1187 		space_map_close(vd->vdev_obsolete_sm);
1188 		vd->vdev_obsolete_sm = NULL;
1189 	}
1190 	zfs_range_tree_destroy(vd->vdev_obsolete_segments);
1191 	rw_destroy(&vd->vdev_indirect_rwlock);
1192 	mutex_destroy(&vd->vdev_obsolete_lock);
1193 
1194 	mutex_destroy(&vd->vdev_dtl_lock);
1195 	mutex_destroy(&vd->vdev_stat_lock);
1196 	mutex_destroy(&vd->vdev_probe_lock);
1197 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1198 
1199 	mutex_destroy(&vd->vdev_initialize_lock);
1200 	mutex_destroy(&vd->vdev_initialize_io_lock);
1201 	cv_destroy(&vd->vdev_initialize_io_cv);
1202 	cv_destroy(&vd->vdev_initialize_cv);
1203 
1204 	mutex_destroy(&vd->vdev_trim_lock);
1205 	mutex_destroy(&vd->vdev_autotrim_lock);
1206 	mutex_destroy(&vd->vdev_trim_io_lock);
1207 	cv_destroy(&vd->vdev_trim_cv);
1208 	cv_destroy(&vd->vdev_autotrim_cv);
1209 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1210 	cv_destroy(&vd->vdev_trim_io_cv);
1211 
1212 	mutex_destroy(&vd->vdev_rebuild_lock);
1213 	cv_destroy(&vd->vdev_rebuild_cv);
1214 
1215 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1216 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1217 	zfs_ratelimit_fini(&vd->vdev_dio_verify_rl);
1218 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1219 
1220 	if (vd == spa->spa_root_vdev)
1221 		spa->spa_root_vdev = NULL;
1222 
1223 	kmem_free(vd, sizeof (vdev_t));
1224 }
1225 
1226 /*
1227  * Transfer top-level vdev state from svd to tvd.
1228  */
1229 static void
1230 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1231 {
1232 	spa_t *spa = svd->vdev_spa;
1233 	metaslab_t *msp;
1234 	vdev_t *vd;
1235 	int t;
1236 
1237 	ASSERT(tvd == tvd->vdev_top);
1238 
1239 	tvd->vdev_ms_array = svd->vdev_ms_array;
1240 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1241 	tvd->vdev_ms_count = svd->vdev_ms_count;
1242 	tvd->vdev_top_zap = svd->vdev_top_zap;
1243 
1244 	svd->vdev_ms_array = 0;
1245 	svd->vdev_ms_shift = 0;
1246 	svd->vdev_ms_count = 0;
1247 	svd->vdev_top_zap = 0;
1248 
1249 	if (tvd->vdev_mg)
1250 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1251 	if (tvd->vdev_log_mg)
1252 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1253 	tvd->vdev_mg = svd->vdev_mg;
1254 	tvd->vdev_log_mg = svd->vdev_log_mg;
1255 	tvd->vdev_ms = svd->vdev_ms;
1256 
1257 	svd->vdev_mg = NULL;
1258 	svd->vdev_log_mg = NULL;
1259 	svd->vdev_ms = NULL;
1260 
1261 	if (tvd->vdev_mg != NULL)
1262 		tvd->vdev_mg->mg_vd = tvd;
1263 	if (tvd->vdev_log_mg != NULL)
1264 		tvd->vdev_log_mg->mg_vd = tvd;
1265 
1266 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1267 	svd->vdev_checkpoint_sm = NULL;
1268 
1269 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1270 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1271 
1272 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1273 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1274 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1275 
1276 	svd->vdev_stat.vs_alloc = 0;
1277 	svd->vdev_stat.vs_space = 0;
1278 	svd->vdev_stat.vs_dspace = 0;
1279 
1280 	/*
1281 	 * State which may be set on a top-level vdev that's in the
1282 	 * process of being removed.
1283 	 */
1284 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1285 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1286 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1287 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1288 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1289 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1290 	ASSERT0(tvd->vdev_noalloc);
1291 	ASSERT0(tvd->vdev_removing);
1292 	ASSERT0(tvd->vdev_rebuilding);
1293 	tvd->vdev_noalloc = svd->vdev_noalloc;
1294 	tvd->vdev_removing = svd->vdev_removing;
1295 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1296 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1297 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1298 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1299 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1300 	zfs_range_tree_swap(&svd->vdev_obsolete_segments,
1301 	    &tvd->vdev_obsolete_segments);
1302 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1303 	svd->vdev_indirect_config.vic_mapping_object = 0;
1304 	svd->vdev_indirect_config.vic_births_object = 0;
1305 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1306 	svd->vdev_indirect_mapping = NULL;
1307 	svd->vdev_indirect_births = NULL;
1308 	svd->vdev_obsolete_sm = NULL;
1309 	svd->vdev_noalloc = 0;
1310 	svd->vdev_removing = 0;
1311 	svd->vdev_rebuilding = 0;
1312 
1313 	for (t = 0; t < TXG_SIZE; t++) {
1314 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1315 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1316 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1317 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1318 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1319 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1320 	}
1321 
1322 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1323 		vdev_config_clean(svd);
1324 		vdev_config_dirty(tvd);
1325 	}
1326 
1327 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1328 		vdev_state_clean(svd);
1329 		vdev_state_dirty(tvd);
1330 	}
1331 
1332 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1333 	svd->vdev_deflate_ratio = 0;
1334 
1335 	tvd->vdev_islog = svd->vdev_islog;
1336 	svd->vdev_islog = 0;
1337 
1338 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1339 }
1340 
1341 static void
1342 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1343 {
1344 	if (vd == NULL)
1345 		return;
1346 
1347 	vd->vdev_top = tvd;
1348 
1349 	for (int c = 0; c < vd->vdev_children; c++)
1350 		vdev_top_update(tvd, vd->vdev_child[c]);
1351 }
1352 
1353 /*
1354  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1355  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1356  */
1357 vdev_t *
1358 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1359 {
1360 	spa_t *spa = cvd->vdev_spa;
1361 	vdev_t *pvd = cvd->vdev_parent;
1362 	vdev_t *mvd;
1363 
1364 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1365 
1366 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1367 
1368 	mvd->vdev_asize = cvd->vdev_asize;
1369 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1370 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1371 	mvd->vdev_psize = cvd->vdev_psize;
1372 	mvd->vdev_ashift = cvd->vdev_ashift;
1373 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1374 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1375 	mvd->vdev_state = cvd->vdev_state;
1376 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1377 
1378 	vdev_remove_child(pvd, cvd);
1379 	vdev_add_child(pvd, mvd);
1380 	cvd->vdev_id = mvd->vdev_children;
1381 	vdev_add_child(mvd, cvd);
1382 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1383 
1384 	if (mvd == mvd->vdev_top)
1385 		vdev_top_transfer(cvd, mvd);
1386 
1387 	return (mvd);
1388 }
1389 
1390 /*
1391  * Remove a 1-way mirror/replacing vdev from the tree.
1392  */
1393 void
1394 vdev_remove_parent(vdev_t *cvd)
1395 {
1396 	vdev_t *mvd = cvd->vdev_parent;
1397 	vdev_t *pvd = mvd->vdev_parent;
1398 
1399 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1400 
1401 	ASSERT(mvd->vdev_children == 1);
1402 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1403 	    mvd->vdev_ops == &vdev_replacing_ops ||
1404 	    mvd->vdev_ops == &vdev_spare_ops);
1405 	cvd->vdev_ashift = mvd->vdev_ashift;
1406 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1407 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1408 	vdev_remove_child(mvd, cvd);
1409 	vdev_remove_child(pvd, mvd);
1410 
1411 	/*
1412 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1413 	 * Otherwise, we could have detached an offline device, and when we
1414 	 * go to import the pool we'll think we have two top-level vdevs,
1415 	 * instead of a different version of the same top-level vdev.
1416 	 */
1417 	if (mvd->vdev_top == mvd) {
1418 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1419 		cvd->vdev_orig_guid = cvd->vdev_guid;
1420 		cvd->vdev_guid += guid_delta;
1421 		cvd->vdev_guid_sum += guid_delta;
1422 
1423 		/*
1424 		 * If pool not set for autoexpand, we need to also preserve
1425 		 * mvd's asize to prevent automatic expansion of cvd.
1426 		 * Otherwise if we are adjusting the mirror by attaching and
1427 		 * detaching children of non-uniform sizes, the mirror could
1428 		 * autoexpand, unexpectedly requiring larger devices to
1429 		 * re-establish the mirror.
1430 		 */
1431 		if (!cvd->vdev_spa->spa_autoexpand)
1432 			cvd->vdev_asize = mvd->vdev_asize;
1433 	}
1434 	cvd->vdev_id = mvd->vdev_id;
1435 	vdev_add_child(pvd, cvd);
1436 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1437 
1438 	if (cvd == cvd->vdev_top)
1439 		vdev_top_transfer(mvd, cvd);
1440 
1441 	ASSERT(mvd->vdev_children == 0);
1442 	vdev_free(mvd);
1443 }
1444 
1445 /*
1446  * Choose GCD for spa_gcd_alloc.
1447  */
1448 static uint64_t
1449 vdev_gcd(uint64_t a, uint64_t b)
1450 {
1451 	while (b != 0) {
1452 		uint64_t t = b;
1453 		b = a % b;
1454 		a = t;
1455 	}
1456 	return (a);
1457 }
1458 
1459 /*
1460  * Set spa_min_alloc and spa_gcd_alloc.
1461  */
1462 static void
1463 vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc)
1464 {
1465 	if (min_alloc < spa->spa_min_alloc)
1466 		spa->spa_min_alloc = min_alloc;
1467 	if (spa->spa_gcd_alloc == INT_MAX) {
1468 		spa->spa_gcd_alloc = min_alloc;
1469 	} else {
1470 		spa->spa_gcd_alloc = vdev_gcd(min_alloc,
1471 		    spa->spa_gcd_alloc);
1472 	}
1473 }
1474 
1475 void
1476 vdev_metaslab_group_create(vdev_t *vd)
1477 {
1478 	spa_t *spa = vd->vdev_spa;
1479 
1480 	/*
1481 	 * metaslab_group_create was delayed until allocation bias was available
1482 	 */
1483 	if (vd->vdev_mg == NULL) {
1484 		metaslab_class_t *mc;
1485 
1486 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1487 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1488 
1489 		ASSERT3U(vd->vdev_islog, ==,
1490 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1491 
1492 		switch (vd->vdev_alloc_bias) {
1493 		case VDEV_BIAS_LOG:
1494 			mc = spa_log_class(spa);
1495 			break;
1496 		case VDEV_BIAS_SPECIAL:
1497 			mc = spa_special_class(spa);
1498 			break;
1499 		case VDEV_BIAS_DEDUP:
1500 			mc = spa_dedup_class(spa);
1501 			break;
1502 		default:
1503 			mc = spa_normal_class(spa);
1504 		}
1505 
1506 		vd->vdev_mg = metaslab_group_create(mc, vd);
1507 
1508 		if (!vd->vdev_islog) {
1509 			vd->vdev_log_mg = metaslab_group_create(
1510 			    spa_embedded_log_class(spa), vd);
1511 		}
1512 
1513 		/*
1514 		 * The spa ashift min/max only apply for the normal metaslab
1515 		 * class. Class destination is late binding so ashift boundary
1516 		 * setting had to wait until now.
1517 		 */
1518 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1519 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1520 			if (vd->vdev_ashift > spa->spa_max_ashift)
1521 				spa->spa_max_ashift = vd->vdev_ashift;
1522 			if (vd->vdev_ashift < spa->spa_min_ashift)
1523 				spa->spa_min_ashift = vd->vdev_ashift;
1524 
1525 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1526 			vdev_spa_set_alloc(spa, min_alloc);
1527 		}
1528 	}
1529 }
1530 
1531 void
1532 vdev_update_nonallocating_space(vdev_t *vd, boolean_t add)
1533 {
1534 	spa_t *spa = vd->vdev_spa;
1535 
1536 	if (vd->vdev_mg->mg_class != spa_normal_class(spa))
1537 		return;
1538 
1539 	uint64_t raw_space = metaslab_group_get_space(vd->vdev_mg);
1540 	uint64_t dspace = spa_deflate(spa) ?
1541 	    vdev_deflated_space(vd, raw_space) : raw_space;
1542 	if (add) {
1543 		spa->spa_nonallocating_dspace += dspace;
1544 	} else {
1545 		ASSERT3U(spa->spa_nonallocating_dspace, >=, dspace);
1546 		spa->spa_nonallocating_dspace -= dspace;
1547 	}
1548 }
1549 
1550 int
1551 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1552 {
1553 	spa_t *spa = vd->vdev_spa;
1554 	uint64_t oldc = vd->vdev_ms_count;
1555 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1556 	metaslab_t **mspp;
1557 	int error;
1558 	boolean_t expanding = (oldc != 0);
1559 
1560 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1561 
1562 	/*
1563 	 * This vdev is not being allocated from yet or is a hole.
1564 	 */
1565 	if (vd->vdev_ms_shift == 0)
1566 		return (0);
1567 
1568 	ASSERT(!vd->vdev_ishole);
1569 
1570 	ASSERT(oldc <= newc);
1571 
1572 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1573 
1574 	if (expanding) {
1575 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1576 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1577 	}
1578 
1579 	vd->vdev_ms = mspp;
1580 	vd->vdev_ms_count = newc;
1581 
1582 	for (uint64_t m = oldc; m < newc; m++) {
1583 		uint64_t object = 0;
1584 		/*
1585 		 * vdev_ms_array may be 0 if we are creating the "fake"
1586 		 * metaslabs for an indirect vdev for zdb's leak detection.
1587 		 * See zdb_leak_init().
1588 		 */
1589 		if (txg == 0 && vd->vdev_ms_array != 0) {
1590 			error = dmu_read(spa->spa_meta_objset,
1591 			    vd->vdev_ms_array,
1592 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1593 			    DMU_READ_PREFETCH);
1594 			if (error != 0) {
1595 				vdev_dbgmsg(vd, "unable to read the metaslab "
1596 				    "array [error=%d]", error);
1597 				return (error);
1598 			}
1599 		}
1600 
1601 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1602 		    &(vd->vdev_ms[m]));
1603 		if (error != 0) {
1604 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1605 			    error);
1606 			return (error);
1607 		}
1608 	}
1609 
1610 	/*
1611 	 * Find the emptiest metaslab on the vdev and mark it for use for
1612 	 * embedded slog by moving it from the regular to the log metaslab
1613 	 * group.
1614 	 */
1615 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1616 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1617 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1618 		uint64_t slog_msid = 0;
1619 		uint64_t smallest = UINT64_MAX;
1620 
1621 		/*
1622 		 * Note, we only search the new metaslabs, because the old
1623 		 * (pre-existing) ones may be active (e.g. have non-empty
1624 		 * range_tree's), and we don't move them to the new
1625 		 * metaslab_t.
1626 		 */
1627 		for (uint64_t m = oldc; m < newc; m++) {
1628 			uint64_t alloc =
1629 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1630 			if (alloc < smallest) {
1631 				slog_msid = m;
1632 				smallest = alloc;
1633 			}
1634 		}
1635 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1636 		/*
1637 		 * The metaslab was marked as dirty at the end of
1638 		 * metaslab_init(). Remove it from the dirty list so that we
1639 		 * can uninitialize and reinitialize it to the new class.
1640 		 */
1641 		if (txg != 0) {
1642 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1643 			    slog_ms, txg);
1644 		}
1645 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1646 		metaslab_fini(slog_ms);
1647 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1648 		    &vd->vdev_ms[slog_msid]));
1649 	}
1650 
1651 	if (txg == 0)
1652 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1653 
1654 	/*
1655 	 * If the vdev is marked as non-allocating then don't
1656 	 * activate the metaslabs since we want to ensure that
1657 	 * no allocations are performed on this device.
1658 	 */
1659 	if (vd->vdev_noalloc) {
1660 		/* track non-allocating vdev space */
1661 		vdev_update_nonallocating_space(vd, B_TRUE);
1662 	} else if (!expanding) {
1663 		metaslab_group_activate(vd->vdev_mg);
1664 		if (vd->vdev_log_mg != NULL)
1665 			metaslab_group_activate(vd->vdev_log_mg);
1666 	}
1667 
1668 	if (txg == 0)
1669 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1670 
1671 	return (0);
1672 }
1673 
1674 void
1675 vdev_metaslab_fini(vdev_t *vd)
1676 {
1677 	if (vd->vdev_checkpoint_sm != NULL) {
1678 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1679 		    SPA_FEATURE_POOL_CHECKPOINT));
1680 		space_map_close(vd->vdev_checkpoint_sm);
1681 		/*
1682 		 * Even though we close the space map, we need to set its
1683 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1684 		 * may be called multiple times for certain operations
1685 		 * (i.e. when destroying a pool) so we need to ensure that
1686 		 * this clause never executes twice. This logic is similar
1687 		 * to the one used for the vdev_ms clause below.
1688 		 */
1689 		vd->vdev_checkpoint_sm = NULL;
1690 	}
1691 
1692 	if (vd->vdev_ms != NULL) {
1693 		metaslab_group_t *mg = vd->vdev_mg;
1694 
1695 		metaslab_group_passivate(mg);
1696 		if (vd->vdev_log_mg != NULL) {
1697 			ASSERT(!vd->vdev_islog);
1698 			metaslab_group_passivate(vd->vdev_log_mg);
1699 		}
1700 
1701 		uint64_t count = vd->vdev_ms_count;
1702 		for (uint64_t m = 0; m < count; m++) {
1703 			metaslab_t *msp = vd->vdev_ms[m];
1704 			if (msp != NULL)
1705 				metaslab_fini(msp);
1706 		}
1707 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1708 		vd->vdev_ms = NULL;
1709 		vd->vdev_ms_count = 0;
1710 
1711 		for (int i = 0; i < ZFS_RANGE_TREE_HISTOGRAM_SIZE; i++) {
1712 			ASSERT0(mg->mg_histogram[i]);
1713 			if (vd->vdev_log_mg != NULL)
1714 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1715 		}
1716 	}
1717 	ASSERT0(vd->vdev_ms_count);
1718 }
1719 
1720 typedef struct vdev_probe_stats {
1721 	boolean_t	vps_readable;
1722 	boolean_t	vps_writeable;
1723 	boolean_t	vps_zio_done_probe;
1724 	int		vps_flags;
1725 } vdev_probe_stats_t;
1726 
1727 static void
1728 vdev_probe_done(zio_t *zio)
1729 {
1730 	spa_t *spa = zio->io_spa;
1731 	vdev_t *vd = zio->io_vd;
1732 	vdev_probe_stats_t *vps = zio->io_private;
1733 
1734 	ASSERT(vd->vdev_probe_zio != NULL);
1735 
1736 	if (zio->io_type == ZIO_TYPE_READ) {
1737 		if (zio->io_error == 0)
1738 			vps->vps_readable = 1;
1739 		if (zio->io_error == 0 && spa_writeable(spa)) {
1740 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1741 			    zio->io_offset, zio->io_size, zio->io_abd,
1742 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1743 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1744 		} else {
1745 			abd_free(zio->io_abd);
1746 		}
1747 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1748 		if (zio->io_error == 0)
1749 			vps->vps_writeable = 1;
1750 		abd_free(zio->io_abd);
1751 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1752 		zio_t *pio;
1753 		zio_link_t *zl;
1754 
1755 		vd->vdev_cant_read |= !vps->vps_readable;
1756 		vd->vdev_cant_write |= !vps->vps_writeable;
1757 		vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u",
1758 		    vd->vdev_cant_read, vd->vdev_cant_write);
1759 
1760 		if (vdev_readable(vd) &&
1761 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1762 			zio->io_error = 0;
1763 		} else {
1764 			ASSERT(zio->io_error != 0);
1765 			vdev_dbgmsg(vd, "failed probe");
1766 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1767 			    spa, vd, NULL, NULL, 0);
1768 			zio->io_error = SET_ERROR(ENXIO);
1769 
1770 			/*
1771 			 * If this probe was initiated from zio pipeline, then
1772 			 * change the state in a spa_async_request. Probes that
1773 			 * were initiated from a vdev_open can change the state
1774 			 * as part of the open call.
1775 			 * Skip fault injection if this vdev is already removed
1776 			 * or a removal is pending.
1777 			 */
1778 			if (vps->vps_zio_done_probe &&
1779 			    !vd->vdev_remove_wanted && !vd->vdev_removed) {
1780 				vd->vdev_fault_wanted = B_TRUE;
1781 				spa_async_request(spa, SPA_ASYNC_FAULT_VDEV);
1782 			}
1783 		}
1784 
1785 		mutex_enter(&vd->vdev_probe_lock);
1786 		ASSERT(vd->vdev_probe_zio == zio);
1787 		vd->vdev_probe_zio = NULL;
1788 		mutex_exit(&vd->vdev_probe_lock);
1789 
1790 		zl = NULL;
1791 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1792 			if (!vdev_accessible(vd, pio))
1793 				pio->io_error = SET_ERROR(ENXIO);
1794 
1795 		kmem_free(vps, sizeof (*vps));
1796 	}
1797 }
1798 
1799 /*
1800  * Determine whether this device is accessible.
1801  *
1802  * Read and write to several known locations: the pad regions of each
1803  * vdev label but the first, which we leave alone in case it contains
1804  * a VTOC.
1805  */
1806 zio_t *
1807 vdev_probe(vdev_t *vd, zio_t *zio)
1808 {
1809 	spa_t *spa = vd->vdev_spa;
1810 	vdev_probe_stats_t *vps = NULL;
1811 	zio_t *pio;
1812 
1813 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1814 
1815 	/*
1816 	 * Don't probe the probe.
1817 	 */
1818 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1819 		return (NULL);
1820 
1821 	/*
1822 	 * To prevent 'probe storms' when a device fails, we create
1823 	 * just one probe i/o at a time.  All zios that want to probe
1824 	 * this vdev will become parents of the probe io.
1825 	 */
1826 	mutex_enter(&vd->vdev_probe_lock);
1827 
1828 	if ((pio = vd->vdev_probe_zio) == NULL) {
1829 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1830 
1831 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1832 		    ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD;
1833 		vps->vps_zio_done_probe = (zio != NULL);
1834 
1835 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1836 			/*
1837 			 * vdev_cant_read and vdev_cant_write can only
1838 			 * transition from TRUE to FALSE when we have the
1839 			 * SCL_ZIO lock as writer; otherwise they can only
1840 			 * transition from FALSE to TRUE.  This ensures that
1841 			 * any zio looking at these values can assume that
1842 			 * failures persist for the life of the I/O.  That's
1843 			 * important because when a device has intermittent
1844 			 * connectivity problems, we want to ensure that
1845 			 * they're ascribed to the device (ENXIO) and not
1846 			 * the zio (EIO).
1847 			 *
1848 			 * Since we hold SCL_ZIO as writer here, clear both
1849 			 * values so the probe can reevaluate from first
1850 			 * principles.
1851 			 */
1852 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1853 			vd->vdev_cant_read = B_FALSE;
1854 			vd->vdev_cant_write = B_FALSE;
1855 		}
1856 
1857 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1858 		    vdev_probe_done, vps,
1859 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1860 	}
1861 
1862 	if (zio != NULL)
1863 		zio_add_child(zio, pio);
1864 
1865 	mutex_exit(&vd->vdev_probe_lock);
1866 
1867 	if (vps == NULL) {
1868 		ASSERT(zio != NULL);
1869 		return (NULL);
1870 	}
1871 
1872 	for (int l = 1; l < VDEV_LABELS; l++) {
1873 		zio_nowait(zio_read_phys(pio, vd,
1874 		    vdev_label_offset(vd->vdev_psize, l,
1875 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1876 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1877 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1878 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1879 	}
1880 
1881 	if (zio == NULL)
1882 		return (pio);
1883 
1884 	zio_nowait(pio);
1885 	return (NULL);
1886 }
1887 
1888 static void
1889 vdev_load_child(void *arg)
1890 {
1891 	vdev_t *vd = arg;
1892 
1893 	vd->vdev_load_error = vdev_load(vd);
1894 }
1895 
1896 static void
1897 vdev_open_child(void *arg)
1898 {
1899 	vdev_t *vd = arg;
1900 
1901 	vd->vdev_open_thread = curthread;
1902 	vd->vdev_open_error = vdev_open(vd);
1903 	vd->vdev_open_thread = NULL;
1904 }
1905 
1906 static boolean_t
1907 vdev_uses_zvols(vdev_t *vd)
1908 {
1909 #ifdef _KERNEL
1910 	if (zvol_is_zvol(vd->vdev_path))
1911 		return (B_TRUE);
1912 #endif
1913 
1914 	for (int c = 0; c < vd->vdev_children; c++)
1915 		if (vdev_uses_zvols(vd->vdev_child[c]))
1916 			return (B_TRUE);
1917 
1918 	return (B_FALSE);
1919 }
1920 
1921 /*
1922  * Returns B_TRUE if the passed child should be opened.
1923  */
1924 static boolean_t
1925 vdev_default_open_children_func(vdev_t *vd)
1926 {
1927 	(void) vd;
1928 	return (B_TRUE);
1929 }
1930 
1931 /*
1932  * Open the requested child vdevs.  If any of the leaf vdevs are using
1933  * a ZFS volume then do the opens in a single thread.  This avoids a
1934  * deadlock when the current thread is holding the spa_namespace_lock.
1935  */
1936 static void
1937 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1938 {
1939 	int children = vd->vdev_children;
1940 
1941 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1942 	    children, children, TASKQ_PREPOPULATE);
1943 	vd->vdev_nonrot = B_TRUE;
1944 
1945 	for (int c = 0; c < children; c++) {
1946 		vdev_t *cvd = vd->vdev_child[c];
1947 
1948 		if (open_func(cvd) == B_FALSE)
1949 			continue;
1950 
1951 		if (tq == NULL || vdev_uses_zvols(vd)) {
1952 			cvd->vdev_open_error = vdev_open(cvd);
1953 		} else {
1954 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1955 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1956 		}
1957 	}
1958 
1959 	if (tq != NULL)
1960 		taskq_wait(tq);
1961 	for (int c = 0; c < children; c++) {
1962 		vdev_t *cvd = vd->vdev_child[c];
1963 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1964 	}
1965 
1966 	if (tq != NULL)
1967 		taskq_destroy(tq);
1968 }
1969 
1970 /*
1971  * Open all child vdevs.
1972  */
1973 void
1974 vdev_open_children(vdev_t *vd)
1975 {
1976 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1977 }
1978 
1979 /*
1980  * Conditionally open a subset of child vdevs.
1981  */
1982 void
1983 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1984 {
1985 	vdev_open_children_impl(vd, open_func);
1986 }
1987 
1988 /*
1989  * Compute the raidz-deflation ratio.  Note, we hard-code 128k (1 << 17)
1990  * because it is the "typical" blocksize.  Even though SPA_MAXBLOCKSIZE
1991  * changed, this algorithm can not change, otherwise it would inconsistently
1992  * account for existing bp's.  We also hard-code txg 0 for the same reason
1993  * since expanded RAIDZ vdevs can use a different asize for different birth
1994  * txg's.
1995  */
1996 static void
1997 vdev_set_deflate_ratio(vdev_t *vd)
1998 {
1999 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
2000 		vd->vdev_deflate_ratio = (1 << 17) /
2001 		    (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >>
2002 		    SPA_MINBLOCKSHIFT);
2003 	}
2004 }
2005 
2006 /*
2007  * Choose the best of two ashifts, preferring one between logical ashift
2008  * (absolute minimum) and administrator defined maximum, otherwise take
2009  * the biggest of the two.
2010  */
2011 uint64_t
2012 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
2013 {
2014 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
2015 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
2016 			return (a);
2017 		else
2018 			return (MAX(a, b));
2019 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
2020 		return (MAX(a, b));
2021 	return (b);
2022 }
2023 
2024 /*
2025  * Maximize performance by inflating the configured ashift for top level
2026  * vdevs to be as close to the physical ashift as possible while maintaining
2027  * administrator defined limits and ensuring it doesn't go below the
2028  * logical ashift.
2029  */
2030 static void
2031 vdev_ashift_optimize(vdev_t *vd)
2032 {
2033 	ASSERT(vd == vd->vdev_top);
2034 
2035 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
2036 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
2037 		vd->vdev_ashift = MIN(
2038 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
2039 		    MAX(zfs_vdev_min_auto_ashift,
2040 		    vd->vdev_physical_ashift));
2041 	} else {
2042 		/*
2043 		 * If the logical and physical ashifts are the same, then
2044 		 * we ensure that the top-level vdev's ashift is not smaller
2045 		 * than our minimum ashift value. For the unusual case
2046 		 * where logical ashift > physical ashift, we can't cap
2047 		 * the calculated ashift based on max ashift as that
2048 		 * would cause failures.
2049 		 * We still check if we need to increase it to match
2050 		 * the min ashift.
2051 		 */
2052 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
2053 		    vd->vdev_ashift);
2054 	}
2055 }
2056 
2057 /*
2058  * Prepare a virtual device for access.
2059  */
2060 int
2061 vdev_open(vdev_t *vd)
2062 {
2063 	spa_t *spa = vd->vdev_spa;
2064 	int error;
2065 	uint64_t osize = 0;
2066 	uint64_t max_osize = 0;
2067 	uint64_t asize, max_asize, psize;
2068 	uint64_t logical_ashift = 0;
2069 	uint64_t physical_ashift = 0;
2070 
2071 	ASSERT(vd->vdev_open_thread == curthread ||
2072 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2073 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
2074 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
2075 	    vd->vdev_state == VDEV_STATE_OFFLINE);
2076 
2077 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2078 	vd->vdev_cant_read = B_FALSE;
2079 	vd->vdev_cant_write = B_FALSE;
2080 	vd->vdev_fault_wanted = B_FALSE;
2081 	vd->vdev_remove_wanted = B_FALSE;
2082 	vd->vdev_min_asize = vdev_get_min_asize(vd);
2083 
2084 	/*
2085 	 * If this vdev is not removed, check its fault status.  If it's
2086 	 * faulted, bail out of the open.
2087 	 */
2088 	if (!vd->vdev_removed && vd->vdev_faulted) {
2089 		ASSERT(vd->vdev_children == 0);
2090 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2091 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2092 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2093 		    vd->vdev_label_aux);
2094 		return (SET_ERROR(ENXIO));
2095 	} else if (vd->vdev_offline) {
2096 		ASSERT(vd->vdev_children == 0);
2097 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
2098 		return (SET_ERROR(ENXIO));
2099 	}
2100 
2101 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
2102 	    &logical_ashift, &physical_ashift);
2103 
2104 	/* Keep the device in removed state if unplugged */
2105 	if (error == ENOENT && vd->vdev_removed) {
2106 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
2107 		    VDEV_AUX_NONE);
2108 		return (error);
2109 	}
2110 
2111 	/*
2112 	 * Physical volume size should never be larger than its max size, unless
2113 	 * the disk has shrunk while we were reading it or the device is buggy
2114 	 * or damaged: either way it's not safe for use, bail out of the open.
2115 	 */
2116 	if (osize > max_osize) {
2117 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2118 		    VDEV_AUX_OPEN_FAILED);
2119 		return (SET_ERROR(ENXIO));
2120 	}
2121 
2122 	/*
2123 	 * Reset the vdev_reopening flag so that we actually close
2124 	 * the vdev on error.
2125 	 */
2126 	vd->vdev_reopening = B_FALSE;
2127 	if (zio_injection_enabled && error == 0)
2128 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2129 
2130 	if (error) {
2131 		if (vd->vdev_removed &&
2132 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2133 			vd->vdev_removed = B_FALSE;
2134 
2135 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2136 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2137 			    vd->vdev_stat.vs_aux);
2138 		} else {
2139 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2140 			    vd->vdev_stat.vs_aux);
2141 		}
2142 		return (error);
2143 	}
2144 
2145 	vd->vdev_removed = B_FALSE;
2146 
2147 	/*
2148 	 * Recheck the faulted flag now that we have confirmed that
2149 	 * the vdev is accessible.  If we're faulted, bail.
2150 	 */
2151 	if (vd->vdev_faulted) {
2152 		ASSERT(vd->vdev_children == 0);
2153 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2154 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2155 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2156 		    vd->vdev_label_aux);
2157 		return (SET_ERROR(ENXIO));
2158 	}
2159 
2160 	if (vd->vdev_degraded) {
2161 		ASSERT(vd->vdev_children == 0);
2162 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2163 		    VDEV_AUX_ERR_EXCEEDED);
2164 	} else {
2165 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2166 	}
2167 
2168 	/*
2169 	 * For hole or missing vdevs we just return success.
2170 	 */
2171 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2172 		return (0);
2173 
2174 	for (int c = 0; c < vd->vdev_children; c++) {
2175 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2176 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2177 			    VDEV_AUX_NONE);
2178 			break;
2179 		}
2180 	}
2181 
2182 	osize = P2ALIGN_TYPED(osize, sizeof (vdev_label_t), uint64_t);
2183 	max_osize = P2ALIGN_TYPED(max_osize, sizeof (vdev_label_t), uint64_t);
2184 
2185 	if (vd->vdev_children == 0) {
2186 		if (osize < SPA_MINDEVSIZE) {
2187 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2188 			    VDEV_AUX_TOO_SMALL);
2189 			return (SET_ERROR(EOVERFLOW));
2190 		}
2191 		psize = osize;
2192 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2193 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2194 		    VDEV_LABEL_END_SIZE);
2195 	} else {
2196 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2197 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2198 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2199 			    VDEV_AUX_TOO_SMALL);
2200 			return (SET_ERROR(EOVERFLOW));
2201 		}
2202 		psize = 0;
2203 		asize = osize;
2204 		max_asize = max_osize;
2205 	}
2206 
2207 	/*
2208 	 * If the vdev was expanded, record this so that we can re-create the
2209 	 * uberblock rings in labels {2,3}, during the next sync.
2210 	 */
2211 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2212 		vd->vdev_copy_uberblocks = B_TRUE;
2213 
2214 	vd->vdev_psize = psize;
2215 
2216 	/*
2217 	 * Make sure the allocatable size hasn't shrunk too much.
2218 	 */
2219 	if (asize < vd->vdev_min_asize) {
2220 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2221 		    VDEV_AUX_BAD_LABEL);
2222 		return (SET_ERROR(EINVAL));
2223 	}
2224 
2225 	/*
2226 	 * We can always set the logical/physical ashift members since
2227 	 * their values are only used to calculate the vdev_ashift when
2228 	 * the device is first added to the config. These values should
2229 	 * not be used for anything else since they may change whenever
2230 	 * the device is reopened and we don't store them in the label.
2231 	 */
2232 	vd->vdev_physical_ashift =
2233 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2234 	vd->vdev_logical_ashift = MAX(logical_ashift,
2235 	    vd->vdev_logical_ashift);
2236 
2237 	if (vd->vdev_asize == 0) {
2238 		/*
2239 		 * This is the first-ever open, so use the computed values.
2240 		 * For compatibility, a different ashift can be requested.
2241 		 */
2242 		vd->vdev_asize = asize;
2243 		vd->vdev_max_asize = max_asize;
2244 
2245 		/*
2246 		 * If the vdev_ashift was not overridden at creation time
2247 		 * (0) or the override value is impossible for the device,
2248 		 * then set it the logical ashift and optimize the ashift.
2249 		 */
2250 		if (vd->vdev_ashift < vd->vdev_logical_ashift) {
2251 			vd->vdev_ashift = vd->vdev_logical_ashift;
2252 
2253 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2254 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2255 				    VDEV_AUX_ASHIFT_TOO_BIG);
2256 				return (SET_ERROR(EDOM));
2257 			}
2258 
2259 			if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE)
2260 				vdev_ashift_optimize(vd);
2261 			vd->vdev_attaching = B_FALSE;
2262 		}
2263 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2264 		    vd->vdev_ashift > ASHIFT_MAX)) {
2265 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2266 			    VDEV_AUX_BAD_ASHIFT);
2267 			return (SET_ERROR(EDOM));
2268 		}
2269 	} else {
2270 		/*
2271 		 * Make sure the alignment required hasn't increased.
2272 		 */
2273 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2274 		    vd->vdev_ops->vdev_op_leaf) {
2275 			(void) zfs_ereport_post(
2276 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2277 			    spa, vd, NULL, NULL, 0);
2278 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2279 			    VDEV_AUX_BAD_LABEL);
2280 			return (SET_ERROR(EDOM));
2281 		}
2282 		vd->vdev_max_asize = max_asize;
2283 	}
2284 
2285 	/*
2286 	 * If all children are healthy we update asize if either:
2287 	 * The asize has increased, due to a device expansion caused by dynamic
2288 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2289 	 * making the additional space available.
2290 	 *
2291 	 * The asize has decreased, due to a device shrink usually caused by a
2292 	 * vdev replace with a smaller device. This ensures that calculations
2293 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2294 	 * to do this as we've already validated that asize is greater than
2295 	 * vdev_min_asize.
2296 	 */
2297 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2298 	    ((asize > vd->vdev_asize &&
2299 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2300 	    (asize < vd->vdev_asize)))
2301 		vd->vdev_asize = asize;
2302 
2303 	vdev_set_min_asize(vd);
2304 
2305 	/*
2306 	 * Ensure we can issue some IO before declaring the
2307 	 * vdev open for business.
2308 	 */
2309 	if (vd->vdev_ops->vdev_op_leaf &&
2310 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2311 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2312 		    VDEV_AUX_ERR_EXCEEDED);
2313 		return (error);
2314 	}
2315 
2316 	/*
2317 	 * Track the minimum allocation size.
2318 	 */
2319 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2320 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2321 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2322 		vdev_spa_set_alloc(spa, min_alloc);
2323 	}
2324 
2325 	/*
2326 	 * If this is a leaf vdev, assess whether a resilver is needed.
2327 	 * But don't do this if we are doing a reopen for a scrub, since
2328 	 * this would just restart the scrub we are already doing.
2329 	 */
2330 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2331 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2332 
2333 	return (0);
2334 }
2335 
2336 static void
2337 vdev_validate_child(void *arg)
2338 {
2339 	vdev_t *vd = arg;
2340 
2341 	vd->vdev_validate_thread = curthread;
2342 	vd->vdev_validate_error = vdev_validate(vd);
2343 	vd->vdev_validate_thread = NULL;
2344 }
2345 
2346 /*
2347  * Called once the vdevs are all opened, this routine validates the label
2348  * contents. This needs to be done before vdev_load() so that we don't
2349  * inadvertently do repair I/Os to the wrong device.
2350  *
2351  * This function will only return failure if one of the vdevs indicates that it
2352  * has since been destroyed or exported.  This is only possible if
2353  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2354  * will be updated but the function will return 0.
2355  */
2356 int
2357 vdev_validate(vdev_t *vd)
2358 {
2359 	spa_t *spa = vd->vdev_spa;
2360 	taskq_t *tq = NULL;
2361 	nvlist_t *label;
2362 	uint64_t guid = 0, aux_guid = 0, top_guid;
2363 	uint64_t state;
2364 	nvlist_t *nvl;
2365 	uint64_t txg;
2366 	int children = vd->vdev_children;
2367 
2368 	if (vdev_validate_skip)
2369 		return (0);
2370 
2371 	if (children > 0) {
2372 		tq = taskq_create("vdev_validate", children, minclsyspri,
2373 		    children, children, TASKQ_PREPOPULATE);
2374 	}
2375 
2376 	for (uint64_t c = 0; c < children; c++) {
2377 		vdev_t *cvd = vd->vdev_child[c];
2378 
2379 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2380 			vdev_validate_child(cvd);
2381 		} else {
2382 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2383 			    TQ_SLEEP) != TASKQID_INVALID);
2384 		}
2385 	}
2386 	if (tq != NULL) {
2387 		taskq_wait(tq);
2388 		taskq_destroy(tq);
2389 	}
2390 	for (int c = 0; c < children; c++) {
2391 		int error = vd->vdev_child[c]->vdev_validate_error;
2392 
2393 		if (error != 0)
2394 			return (SET_ERROR(EBADF));
2395 	}
2396 
2397 
2398 	/*
2399 	 * If the device has already failed, or was marked offline, don't do
2400 	 * any further validation.  Otherwise, label I/O will fail and we will
2401 	 * overwrite the previous state.
2402 	 */
2403 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2404 		return (0);
2405 
2406 	/*
2407 	 * If we are performing an extreme rewind, we allow for a label that
2408 	 * was modified at a point after the current txg.
2409 	 * If config lock is not held do not check for the txg. spa_sync could
2410 	 * be updating the vdev's label before updating spa_last_synced_txg.
2411 	 */
2412 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2413 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2414 		txg = UINT64_MAX;
2415 	else
2416 		txg = spa_last_synced_txg(spa);
2417 
2418 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2419 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2420 		    VDEV_AUX_BAD_LABEL);
2421 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2422 		    "txg %llu", (u_longlong_t)txg);
2423 		return (0);
2424 	}
2425 
2426 	/*
2427 	 * Determine if this vdev has been split off into another
2428 	 * pool.  If so, then refuse to open it.
2429 	 */
2430 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2431 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2432 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2433 		    VDEV_AUX_SPLIT_POOL);
2434 		nvlist_free(label);
2435 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2436 		return (0);
2437 	}
2438 
2439 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2440 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2441 		    VDEV_AUX_CORRUPT_DATA);
2442 		nvlist_free(label);
2443 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2444 		    ZPOOL_CONFIG_POOL_GUID);
2445 		return (0);
2446 	}
2447 
2448 	/*
2449 	 * If config is not trusted then ignore the spa guid check. This is
2450 	 * necessary because if the machine crashed during a re-guid the new
2451 	 * guid might have been written to all of the vdev labels, but not the
2452 	 * cached config. The check will be performed again once we have the
2453 	 * trusted config from the MOS.
2454 	 */
2455 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2456 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2457 		    VDEV_AUX_CORRUPT_DATA);
2458 		nvlist_free(label);
2459 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2460 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2461 		    (u_longlong_t)spa_guid(spa));
2462 		return (0);
2463 	}
2464 
2465 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2466 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2467 	    &aux_guid) != 0)
2468 		aux_guid = 0;
2469 
2470 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2471 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2472 		    VDEV_AUX_CORRUPT_DATA);
2473 		nvlist_free(label);
2474 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2475 		    ZPOOL_CONFIG_GUID);
2476 		return (0);
2477 	}
2478 
2479 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2480 	    != 0) {
2481 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2482 		    VDEV_AUX_CORRUPT_DATA);
2483 		nvlist_free(label);
2484 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2485 		    ZPOOL_CONFIG_TOP_GUID);
2486 		return (0);
2487 	}
2488 
2489 	/*
2490 	 * If this vdev just became a top-level vdev because its sibling was
2491 	 * detached, it will have adopted the parent's vdev guid -- but the
2492 	 * label may or may not be on disk yet. Fortunately, either version
2493 	 * of the label will have the same top guid, so if we're a top-level
2494 	 * vdev, we can safely compare to that instead.
2495 	 * However, if the config comes from a cachefile that failed to update
2496 	 * after the detach, a top-level vdev will appear as a non top-level
2497 	 * vdev in the config. Also relax the constraints if we perform an
2498 	 * extreme rewind.
2499 	 *
2500 	 * If we split this vdev off instead, then we also check the
2501 	 * original pool's guid. We don't want to consider the vdev
2502 	 * corrupt if it is partway through a split operation.
2503 	 */
2504 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2505 		boolean_t mismatch = B_FALSE;
2506 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2507 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2508 				mismatch = B_TRUE;
2509 		} else {
2510 			if (vd->vdev_guid != top_guid &&
2511 			    vd->vdev_top->vdev_guid != guid)
2512 				mismatch = B_TRUE;
2513 		}
2514 
2515 		if (mismatch) {
2516 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2517 			    VDEV_AUX_CORRUPT_DATA);
2518 			nvlist_free(label);
2519 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2520 			    "doesn't match label guid");
2521 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2522 			    (u_longlong_t)vd->vdev_guid,
2523 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2524 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2525 			    "aux_guid %llu", (u_longlong_t)guid,
2526 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2527 			return (0);
2528 		}
2529 	}
2530 
2531 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2532 	    &state) != 0) {
2533 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2534 		    VDEV_AUX_CORRUPT_DATA);
2535 		nvlist_free(label);
2536 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2537 		    ZPOOL_CONFIG_POOL_STATE);
2538 		return (0);
2539 	}
2540 
2541 	nvlist_free(label);
2542 
2543 	/*
2544 	 * If this is a verbatim import, no need to check the
2545 	 * state of the pool.
2546 	 */
2547 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2548 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2549 	    state != POOL_STATE_ACTIVE) {
2550 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2551 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2552 		return (SET_ERROR(EBADF));
2553 	}
2554 
2555 	/*
2556 	 * If we were able to open and validate a vdev that was
2557 	 * previously marked permanently unavailable, clear that state
2558 	 * now.
2559 	 */
2560 	if (vd->vdev_not_present)
2561 		vd->vdev_not_present = 0;
2562 
2563 	return (0);
2564 }
2565 
2566 static void
2567 vdev_update_path(const char *prefix, char *svd, char **dvd, uint64_t guid)
2568 {
2569 	if (svd != NULL && *dvd != NULL) {
2570 		if (strcmp(svd, *dvd) != 0) {
2571 			zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2572 			    "from '%s' to '%s'", (u_longlong_t)guid, prefix,
2573 			    *dvd, svd);
2574 			spa_strfree(*dvd);
2575 			*dvd = spa_strdup(svd);
2576 		}
2577 	} else if (svd != NULL) {
2578 		*dvd = spa_strdup(svd);
2579 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2580 		    (u_longlong_t)guid, *dvd);
2581 	}
2582 }
2583 
2584 static void
2585 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2586 {
2587 	char *old, *new;
2588 
2589 	vdev_update_path("vdev_path", svd->vdev_path, &dvd->vdev_path,
2590 	    dvd->vdev_guid);
2591 
2592 	vdev_update_path("vdev_devid", svd->vdev_devid, &dvd->vdev_devid,
2593 	    dvd->vdev_guid);
2594 
2595 	vdev_update_path("vdev_physpath", svd->vdev_physpath,
2596 	    &dvd->vdev_physpath, dvd->vdev_guid);
2597 
2598 	/*
2599 	 * Our enclosure sysfs path may have changed between imports
2600 	 */
2601 	old = dvd->vdev_enc_sysfs_path;
2602 	new = svd->vdev_enc_sysfs_path;
2603 	if ((old != NULL && new == NULL) ||
2604 	    (old == NULL && new != NULL) ||
2605 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2606 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2607 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2608 		    old, new);
2609 
2610 		if (dvd->vdev_enc_sysfs_path)
2611 			spa_strfree(dvd->vdev_enc_sysfs_path);
2612 
2613 		if (svd->vdev_enc_sysfs_path) {
2614 			dvd->vdev_enc_sysfs_path = spa_strdup(
2615 			    svd->vdev_enc_sysfs_path);
2616 		} else {
2617 			dvd->vdev_enc_sysfs_path = NULL;
2618 		}
2619 	}
2620 }
2621 
2622 /*
2623  * Recursively copy vdev paths from one vdev to another. Source and destination
2624  * vdev trees must have same geometry otherwise return error. Intended to copy
2625  * paths from userland config into MOS config.
2626  */
2627 int
2628 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2629 {
2630 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2631 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2632 	    (dvd->vdev_ops == &vdev_indirect_ops))
2633 		return (0);
2634 
2635 	if (svd->vdev_ops != dvd->vdev_ops) {
2636 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2637 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2638 		return (SET_ERROR(EINVAL));
2639 	}
2640 
2641 	if (svd->vdev_guid != dvd->vdev_guid) {
2642 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2643 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2644 		    (u_longlong_t)dvd->vdev_guid);
2645 		return (SET_ERROR(EINVAL));
2646 	}
2647 
2648 	if (svd->vdev_children != dvd->vdev_children) {
2649 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2650 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2651 		    (u_longlong_t)dvd->vdev_children);
2652 		return (SET_ERROR(EINVAL));
2653 	}
2654 
2655 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2656 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2657 		    dvd->vdev_child[i]);
2658 		if (error != 0)
2659 			return (error);
2660 	}
2661 
2662 	if (svd->vdev_ops->vdev_op_leaf)
2663 		vdev_copy_path_impl(svd, dvd);
2664 
2665 	return (0);
2666 }
2667 
2668 static void
2669 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2670 {
2671 	ASSERT(stvd->vdev_top == stvd);
2672 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2673 
2674 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2675 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2676 	}
2677 
2678 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2679 		return;
2680 
2681 	/*
2682 	 * The idea here is that while a vdev can shift positions within
2683 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2684 	 * step outside of it.
2685 	 */
2686 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2687 
2688 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2689 		return;
2690 
2691 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2692 
2693 	vdev_copy_path_impl(vd, dvd);
2694 }
2695 
2696 /*
2697  * Recursively copy vdev paths from one root vdev to another. Source and
2698  * destination vdev trees may differ in geometry. For each destination leaf
2699  * vdev, search a vdev with the same guid and top vdev id in the source.
2700  * Intended to copy paths from userland config into MOS config.
2701  */
2702 void
2703 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2704 {
2705 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2706 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2707 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2708 
2709 	for (uint64_t i = 0; i < children; i++) {
2710 		vdev_copy_path_search(srvd->vdev_child[i],
2711 		    drvd->vdev_child[i]);
2712 	}
2713 }
2714 
2715 /*
2716  * Close a virtual device.
2717  */
2718 void
2719 vdev_close(vdev_t *vd)
2720 {
2721 	vdev_t *pvd = vd->vdev_parent;
2722 	spa_t *spa __maybe_unused = vd->vdev_spa;
2723 
2724 	ASSERT(vd != NULL);
2725 	ASSERT(vd->vdev_open_thread == curthread ||
2726 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2727 
2728 	/*
2729 	 * If our parent is reopening, then we are as well, unless we are
2730 	 * going offline.
2731 	 */
2732 	if (pvd != NULL && pvd->vdev_reopening)
2733 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2734 
2735 	vd->vdev_ops->vdev_op_close(vd);
2736 
2737 	/*
2738 	 * We record the previous state before we close it, so that if we are
2739 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2740 	 * it's still faulted.
2741 	 */
2742 	vd->vdev_prevstate = vd->vdev_state;
2743 
2744 	if (vd->vdev_offline)
2745 		vd->vdev_state = VDEV_STATE_OFFLINE;
2746 	else
2747 		vd->vdev_state = VDEV_STATE_CLOSED;
2748 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2749 }
2750 
2751 void
2752 vdev_hold(vdev_t *vd)
2753 {
2754 	spa_t *spa = vd->vdev_spa;
2755 
2756 	ASSERT(spa_is_root(spa));
2757 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2758 		return;
2759 
2760 	for (int c = 0; c < vd->vdev_children; c++)
2761 		vdev_hold(vd->vdev_child[c]);
2762 
2763 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2764 		vd->vdev_ops->vdev_op_hold(vd);
2765 }
2766 
2767 void
2768 vdev_rele(vdev_t *vd)
2769 {
2770 	ASSERT(spa_is_root(vd->vdev_spa));
2771 	for (int c = 0; c < vd->vdev_children; c++)
2772 		vdev_rele(vd->vdev_child[c]);
2773 
2774 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2775 		vd->vdev_ops->vdev_op_rele(vd);
2776 }
2777 
2778 /*
2779  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2780  * reopen leaf vdevs which had previously been opened as they might deadlock
2781  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2782  * If the leaf has never been opened then open it, as usual.
2783  */
2784 void
2785 vdev_reopen(vdev_t *vd)
2786 {
2787 	spa_t *spa = vd->vdev_spa;
2788 
2789 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2790 
2791 	/* set the reopening flag unless we're taking the vdev offline */
2792 	vd->vdev_reopening = !vd->vdev_offline;
2793 	vdev_close(vd);
2794 	(void) vdev_open(vd);
2795 
2796 	/*
2797 	 * Call vdev_validate() here to make sure we have the same device.
2798 	 * Otherwise, a device with an invalid label could be successfully
2799 	 * opened in response to vdev_reopen().
2800 	 */
2801 	if (vd->vdev_aux) {
2802 		(void) vdev_validate_aux(vd);
2803 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2804 		    vd->vdev_aux == &spa->spa_l2cache) {
2805 			/*
2806 			 * In case the vdev is present we should evict all ARC
2807 			 * buffers and pointers to log blocks and reclaim their
2808 			 * space before restoring its contents to L2ARC.
2809 			 */
2810 			if (l2arc_vdev_present(vd)) {
2811 				l2arc_rebuild_vdev(vd, B_TRUE);
2812 			} else {
2813 				l2arc_add_vdev(spa, vd);
2814 			}
2815 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2816 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2817 		}
2818 	} else {
2819 		(void) vdev_validate(vd);
2820 	}
2821 
2822 	/*
2823 	 * Recheck if resilver is still needed and cancel any
2824 	 * scheduled resilver if resilver is unneeded.
2825 	 */
2826 	if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) &&
2827 	    spa->spa_async_tasks & SPA_ASYNC_RESILVER) {
2828 		mutex_enter(&spa->spa_async_lock);
2829 		spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER;
2830 		mutex_exit(&spa->spa_async_lock);
2831 	}
2832 
2833 	/*
2834 	 * Reassess parent vdev's health.
2835 	 */
2836 	vdev_propagate_state(vd);
2837 }
2838 
2839 int
2840 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2841 {
2842 	int error;
2843 
2844 	/*
2845 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2846 	 * For a create, however, we want to fail the request if
2847 	 * there are any components we can't open.
2848 	 */
2849 	error = vdev_open(vd);
2850 
2851 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2852 		vdev_close(vd);
2853 		return (error ? error : SET_ERROR(ENXIO));
2854 	}
2855 
2856 	/*
2857 	 * Recursively load DTLs and initialize all labels.
2858 	 */
2859 	if ((error = vdev_dtl_load(vd)) != 0 ||
2860 	    (error = vdev_label_init(vd, txg, isreplacing ?
2861 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2862 		vdev_close(vd);
2863 		return (error);
2864 	}
2865 
2866 	return (0);
2867 }
2868 
2869 void
2870 vdev_metaslab_set_size(vdev_t *vd)
2871 {
2872 	uint64_t asize = vd->vdev_asize;
2873 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2874 	uint64_t ms_shift;
2875 
2876 	/*
2877 	 * There are two dimensions to the metaslab sizing calculation:
2878 	 * the size of the metaslab and the count of metaslabs per vdev.
2879 	 *
2880 	 * The default values used below are a good balance between memory
2881 	 * usage (larger metaslab size means more memory needed for loaded
2882 	 * metaslabs; more metaslabs means more memory needed for the
2883 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2884 	 * longer to load), and metaslab sync time (more metaslabs means
2885 	 * more time spent syncing all of them).
2886 	 *
2887 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2888 	 * The range of the dimensions are as follows:
2889 	 *
2890 	 *	2^29 <= ms_size  <= 2^34
2891 	 *	  16 <= ms_count <= 131,072
2892 	 *
2893 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2894 	 * at least 512MB (2^29) to minimize fragmentation effects when
2895 	 * testing with smaller devices.  However, the count constraint
2896 	 * of at least 16 metaslabs will override this minimum size goal.
2897 	 *
2898 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2899 	 * size of 16GB.  However, we will cap the total count to 2^17
2900 	 * metaslabs to keep our memory footprint in check and let the
2901 	 * metaslab size grow from there if that limit is hit.
2902 	 *
2903 	 * The net effect of applying above constrains is summarized below.
2904 	 *
2905 	 *   vdev size       metaslab count
2906 	 *  --------------|-----------------
2907 	 *      < 8GB        ~16
2908 	 *  8GB   - 100GB   one per 512MB
2909 	 *  100GB - 3TB     ~200
2910 	 *  3TB   - 2PB     one per 16GB
2911 	 *      > 2PB       ~131,072
2912 	 *  --------------------------------
2913 	 *
2914 	 *  Finally, note that all of the above calculate the initial
2915 	 *  number of metaslabs. Expanding a top-level vdev will result
2916 	 *  in additional metaslabs being allocated making it possible
2917 	 *  to exceed the zfs_vdev_ms_count_limit.
2918 	 */
2919 
2920 	if (ms_count < zfs_vdev_min_ms_count)
2921 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2922 	else if (ms_count > zfs_vdev_default_ms_count)
2923 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2924 	else
2925 		ms_shift = zfs_vdev_default_ms_shift;
2926 
2927 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2928 		ms_shift = SPA_MAXBLOCKSHIFT;
2929 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2930 		ms_shift = zfs_vdev_max_ms_shift;
2931 		/* cap the total count to constrain memory footprint */
2932 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2933 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2934 	}
2935 
2936 	vd->vdev_ms_shift = ms_shift;
2937 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2938 }
2939 
2940 void
2941 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2942 {
2943 	ASSERT(vd == vd->vdev_top);
2944 	/* indirect vdevs don't have metaslabs or dtls */
2945 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2946 	ASSERT(ISP2(flags));
2947 	ASSERT(spa_writeable(vd->vdev_spa));
2948 
2949 	if (flags & VDD_METASLAB)
2950 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2951 
2952 	if (flags & VDD_DTL)
2953 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2954 
2955 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2956 }
2957 
2958 void
2959 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2960 {
2961 	for (int c = 0; c < vd->vdev_children; c++)
2962 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2963 
2964 	if (vd->vdev_ops->vdev_op_leaf)
2965 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2966 }
2967 
2968 /*
2969  * DTLs.
2970  *
2971  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2972  * the vdev has less than perfect replication.  There are four kinds of DTL:
2973  *
2974  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2975  *
2976  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2977  *
2978  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2979  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2980  *	txgs that was scrubbed.
2981  *
2982  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2983  *	persistent errors or just some device being offline.
2984  *	Unlike the other three, the DTL_OUTAGE map is not generally
2985  *	maintained; it's only computed when needed, typically to
2986  *	determine whether a device can be detached.
2987  *
2988  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2989  * either has the data or it doesn't.
2990  *
2991  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2992  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2993  * if any child is less than fully replicated, then so is its parent.
2994  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2995  * comprising only those txgs which appear in 'maxfaults' or more children;
2996  * those are the txgs we don't have enough replication to read.  For example,
2997  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2998  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2999  * two child DTL_MISSING maps.
3000  *
3001  * It should be clear from the above that to compute the DTLs and outage maps
3002  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
3003  * Therefore, that is all we keep on disk.  When loading the pool, or after
3004  * a configuration change, we generate all other DTLs from first principles.
3005  */
3006 void
3007 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3008 {
3009 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3010 
3011 	ASSERT(t < DTL_TYPES);
3012 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3013 	ASSERT(spa_writeable(vd->vdev_spa));
3014 
3015 	mutex_enter(&vd->vdev_dtl_lock);
3016 	if (!zfs_range_tree_contains(rt, txg, size))
3017 		zfs_range_tree_add(rt, txg, size);
3018 	mutex_exit(&vd->vdev_dtl_lock);
3019 }
3020 
3021 boolean_t
3022 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
3023 {
3024 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3025 	boolean_t dirty = B_FALSE;
3026 
3027 	ASSERT(t < DTL_TYPES);
3028 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3029 
3030 	/*
3031 	 * While we are loading the pool, the DTLs have not been loaded yet.
3032 	 * This isn't a problem but it can result in devices being tried
3033 	 * which are known to not have the data.  In which case, the import
3034 	 * is relying on the checksum to ensure that we get the right data.
3035 	 * Note that while importing we are only reading the MOS, which is
3036 	 * always checksummed.
3037 	 */
3038 	mutex_enter(&vd->vdev_dtl_lock);
3039 	if (!zfs_range_tree_is_empty(rt))
3040 		dirty = zfs_range_tree_contains(rt, txg, size);
3041 	mutex_exit(&vd->vdev_dtl_lock);
3042 
3043 	return (dirty);
3044 }
3045 
3046 boolean_t
3047 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
3048 {
3049 	zfs_range_tree_t *rt = vd->vdev_dtl[t];
3050 	boolean_t empty;
3051 
3052 	mutex_enter(&vd->vdev_dtl_lock);
3053 	empty = zfs_range_tree_is_empty(rt);
3054 	mutex_exit(&vd->vdev_dtl_lock);
3055 
3056 	return (empty);
3057 }
3058 
3059 /*
3060  * Check if the txg falls within the range which must be
3061  * resilvered.  DVAs outside this range can always be skipped.
3062  */
3063 boolean_t
3064 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3065     uint64_t phys_birth)
3066 {
3067 	(void) dva, (void) psize;
3068 
3069 	/* Set by sequential resilver. */
3070 	if (phys_birth == TXG_UNKNOWN)
3071 		return (B_TRUE);
3072 
3073 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
3074 }
3075 
3076 /*
3077  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3078  */
3079 boolean_t
3080 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
3081     uint64_t phys_birth)
3082 {
3083 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
3084 
3085 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
3086 	    vd->vdev_ops->vdev_op_leaf)
3087 		return (B_TRUE);
3088 
3089 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
3090 	    phys_birth));
3091 }
3092 
3093 /*
3094  * Returns the lowest txg in the DTL range.
3095  */
3096 static uint64_t
3097 vdev_dtl_min(vdev_t *vd)
3098 {
3099 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3100 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3101 	ASSERT0(vd->vdev_children);
3102 
3103 	return (zfs_range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
3104 }
3105 
3106 /*
3107  * Returns the highest txg in the DTL.
3108  */
3109 static uint64_t
3110 vdev_dtl_max(vdev_t *vd)
3111 {
3112 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
3113 	ASSERT3U(zfs_range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
3114 	ASSERT0(vd->vdev_children);
3115 
3116 	return (zfs_range_tree_max(vd->vdev_dtl[DTL_MISSING]));
3117 }
3118 
3119 /*
3120  * Determine if a resilvering vdev should remove any DTL entries from
3121  * its range. If the vdev was resilvering for the entire duration of the
3122  * scan then it should excise that range from its DTLs. Otherwise, this
3123  * vdev is considered partially resilvered and should leave its DTL
3124  * entries intact. The comment in vdev_dtl_reassess() describes how we
3125  * excise the DTLs.
3126  */
3127 static boolean_t
3128 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
3129 {
3130 	ASSERT0(vd->vdev_children);
3131 
3132 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
3133 		return (B_FALSE);
3134 
3135 	if (vd->vdev_resilver_deferred)
3136 		return (B_FALSE);
3137 
3138 	if (zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
3139 		return (B_TRUE);
3140 
3141 	if (rebuild_done) {
3142 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3143 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3144 
3145 		/* Rebuild not initiated by attach */
3146 		if (vd->vdev_rebuild_txg == 0)
3147 			return (B_TRUE);
3148 
3149 		/*
3150 		 * When a rebuild completes without error then all missing data
3151 		 * up to the rebuild max txg has been reconstructed and the DTL
3152 		 * is eligible for excision.
3153 		 */
3154 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3155 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3156 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3157 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3158 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3159 			return (B_TRUE);
3160 		}
3161 	} else {
3162 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3163 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3164 
3165 		/* Resilver not initiated by attach */
3166 		if (vd->vdev_resilver_txg == 0)
3167 			return (B_TRUE);
3168 
3169 		/*
3170 		 * When a resilver is initiated the scan will assign the
3171 		 * scn_max_txg value to the highest txg value that exists
3172 		 * in all DTLs. If this device's max DTL is not part of this
3173 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3174 		 * then it is not eligible for excision.
3175 		 */
3176 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3177 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3178 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3179 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3180 			return (B_TRUE);
3181 		}
3182 	}
3183 
3184 	return (B_FALSE);
3185 }
3186 
3187 /*
3188  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3189  * write operations will be issued to the pool.
3190  */
3191 static void
3192 vdev_dtl_reassess_impl(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3193     boolean_t scrub_done, boolean_t rebuild_done, boolean_t faulting)
3194 {
3195 	spa_t *spa = vd->vdev_spa;
3196 	avl_tree_t reftree;
3197 	int minref;
3198 
3199 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3200 
3201 	for (int c = 0; c < vd->vdev_children; c++)
3202 		vdev_dtl_reassess_impl(vd->vdev_child[c], txg,
3203 		    scrub_txg, scrub_done, rebuild_done, faulting);
3204 
3205 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3206 		return;
3207 
3208 	if (vd->vdev_ops->vdev_op_leaf) {
3209 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3210 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3211 		boolean_t check_excise = B_FALSE;
3212 		boolean_t wasempty = B_TRUE;
3213 
3214 		mutex_enter(&vd->vdev_dtl_lock);
3215 
3216 		/*
3217 		 * If requested, pretend the scan or rebuild completed cleanly.
3218 		 */
3219 		if (zfs_scan_ignore_errors) {
3220 			if (scn != NULL)
3221 				scn->scn_phys.scn_errors = 0;
3222 			if (vr != NULL)
3223 				vr->vr_rebuild_phys.vrp_errors = 0;
3224 		}
3225 
3226 		if (scrub_txg != 0 &&
3227 		    !zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3228 			wasempty = B_FALSE;
3229 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3230 			    "dtl:%llu/%llu errors:%llu",
3231 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3232 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3233 			    (u_longlong_t)vdev_dtl_min(vd),
3234 			    (u_longlong_t)vdev_dtl_max(vd),
3235 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3236 		}
3237 
3238 		/*
3239 		 * If we've completed a scrub/resilver or a rebuild cleanly
3240 		 * then determine if this vdev should remove any DTLs. We
3241 		 * only want to excise regions on vdevs that were available
3242 		 * during the entire duration of this scan.
3243 		 */
3244 		if (rebuild_done &&
3245 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3246 			check_excise = B_TRUE;
3247 		} else {
3248 			if (spa->spa_scrub_started ||
3249 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3250 				check_excise = B_TRUE;
3251 			}
3252 		}
3253 
3254 		if (scrub_txg && check_excise &&
3255 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3256 			/*
3257 			 * We completed a scrub, resilver or rebuild up to
3258 			 * scrub_txg.  If we did it without rebooting, then
3259 			 * the scrub dtl will be valid, so excise the old
3260 			 * region and fold in the scrub dtl.  Otherwise,
3261 			 * leave the dtl as-is if there was an error.
3262 			 *
3263 			 * There's little trick here: to excise the beginning
3264 			 * of the DTL_MISSING map, we put it into a reference
3265 			 * tree and then add a segment with refcnt -1 that
3266 			 * covers the range [0, scrub_txg).  This means
3267 			 * that each txg in that range has refcnt -1 or 0.
3268 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3269 			 * entries in the range [0, scrub_txg) will have a
3270 			 * positive refcnt -- either 1 or 2.  We then convert
3271 			 * the reference tree into the new DTL_MISSING map.
3272 			 */
3273 			space_reftree_create(&reftree);
3274 			space_reftree_add_map(&reftree,
3275 			    vd->vdev_dtl[DTL_MISSING], 1);
3276 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3277 			space_reftree_add_map(&reftree,
3278 			    vd->vdev_dtl[DTL_SCRUB], 2);
3279 			space_reftree_generate_map(&reftree,
3280 			    vd->vdev_dtl[DTL_MISSING], 1);
3281 			space_reftree_destroy(&reftree);
3282 
3283 			if (!zfs_range_tree_is_empty(
3284 			    vd->vdev_dtl[DTL_MISSING])) {
3285 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3286 				    (u_longlong_t)vdev_dtl_min(vd),
3287 				    (u_longlong_t)vdev_dtl_max(vd));
3288 			} else if (!wasempty) {
3289 				zfs_dbgmsg("DTL_MISSING is now empty");
3290 			}
3291 		}
3292 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3293 		zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3294 		    zfs_range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3295 		if (scrub_done)
3296 			zfs_range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL,
3297 			    NULL);
3298 		zfs_range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3299 
3300 		/*
3301 		 * For the faulting case, treat members of a replacing vdev
3302 		 * as if they are not available. It's more likely than not that
3303 		 * a vdev in a replacing vdev could encounter read errors so
3304 		 * treat it as not being able to contribute.
3305 		 */
3306 		if (!vdev_readable(vd) ||
3307 		    (faulting && vd->vdev_parent != NULL &&
3308 		    vd->vdev_parent->vdev_ops == &vdev_replacing_ops)) {
3309 			zfs_range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3310 		} else {
3311 			zfs_range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3312 			    zfs_range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3313 		}
3314 
3315 		/*
3316 		 * If the vdev was resilvering or rebuilding and no longer
3317 		 * has any DTLs then reset the appropriate flag and dirty
3318 		 * the top level so that we persist the change.
3319 		 */
3320 		if (txg != 0 &&
3321 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3322 		    zfs_range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3323 			if (vd->vdev_rebuild_txg != 0) {
3324 				vd->vdev_rebuild_txg = 0;
3325 				vdev_config_dirty(vd->vdev_top);
3326 			} else if (vd->vdev_resilver_txg != 0) {
3327 				vd->vdev_resilver_txg = 0;
3328 				vdev_config_dirty(vd->vdev_top);
3329 			}
3330 		}
3331 
3332 		mutex_exit(&vd->vdev_dtl_lock);
3333 
3334 		if (txg != 0)
3335 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3336 	} else {
3337 		mutex_enter(&vd->vdev_dtl_lock);
3338 		for (int t = 0; t < DTL_TYPES; t++) {
3339 			/* account for child's outage in parent's missing map */
3340 			int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3341 			if (t == DTL_SCRUB) {
3342 				/* leaf vdevs only */
3343 				continue;
3344 			}
3345 			if (t == DTL_PARTIAL) {
3346 				/* i.e. non-zero */
3347 				minref = 1;
3348 			} else if (vdev_get_nparity(vd) != 0) {
3349 				/* RAIDZ, DRAID */
3350 				minref = vdev_get_nparity(vd) + 1;
3351 			} else {
3352 				/* any kind of mirror */
3353 				minref = vd->vdev_children;
3354 			}
3355 			space_reftree_create(&reftree);
3356 			for (int c = 0; c < vd->vdev_children; c++) {
3357 				vdev_t *cvd = vd->vdev_child[c];
3358 				mutex_enter(&cvd->vdev_dtl_lock);
3359 				space_reftree_add_map(&reftree,
3360 				    cvd->vdev_dtl[s], 1);
3361 				mutex_exit(&cvd->vdev_dtl_lock);
3362 			}
3363 			space_reftree_generate_map(&reftree,
3364 			    vd->vdev_dtl[t], minref);
3365 			space_reftree_destroy(&reftree);
3366 		}
3367 		mutex_exit(&vd->vdev_dtl_lock);
3368 	}
3369 
3370 	if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) {
3371 		raidz_dtl_reassessed(vd);
3372 	}
3373 }
3374 
3375 void
3376 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3377     boolean_t scrub_done, boolean_t rebuild_done)
3378 {
3379 	return (vdev_dtl_reassess_impl(vd, txg, scrub_txg, scrub_done,
3380 	    rebuild_done, B_FALSE));
3381 }
3382 
3383 /*
3384  * Iterate over all the vdevs except spare, and post kobj events
3385  */
3386 void
3387 vdev_post_kobj_evt(vdev_t *vd)
3388 {
3389 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3390 	    vd->vdev_kobj_flag == B_FALSE) {
3391 		vd->vdev_kobj_flag = B_TRUE;
3392 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3393 	}
3394 
3395 	for (int c = 0; c < vd->vdev_children; c++)
3396 		vdev_post_kobj_evt(vd->vdev_child[c]);
3397 }
3398 
3399 /*
3400  * Iterate over all the vdevs except spare, and clear kobj events
3401  */
3402 void
3403 vdev_clear_kobj_evt(vdev_t *vd)
3404 {
3405 	vd->vdev_kobj_flag = B_FALSE;
3406 
3407 	for (int c = 0; c < vd->vdev_children; c++)
3408 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3409 }
3410 
3411 int
3412 vdev_dtl_load(vdev_t *vd)
3413 {
3414 	spa_t *spa = vd->vdev_spa;
3415 	objset_t *mos = spa->spa_meta_objset;
3416 	zfs_range_tree_t *rt;
3417 	int error = 0;
3418 
3419 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3420 		ASSERT(vdev_is_concrete(vd));
3421 
3422 		/*
3423 		 * If the dtl cannot be sync'd there is no need to open it.
3424 		 */
3425 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3426 			return (0);
3427 
3428 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3429 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3430 		if (error)
3431 			return (error);
3432 		ASSERT(vd->vdev_dtl_sm != NULL);
3433 
3434 		rt = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3435 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3436 		if (error == 0) {
3437 			mutex_enter(&vd->vdev_dtl_lock);
3438 			zfs_range_tree_walk(rt, zfs_range_tree_add,
3439 			    vd->vdev_dtl[DTL_MISSING]);
3440 			mutex_exit(&vd->vdev_dtl_lock);
3441 		}
3442 
3443 		zfs_range_tree_vacate(rt, NULL, NULL);
3444 		zfs_range_tree_destroy(rt);
3445 
3446 		return (error);
3447 	}
3448 
3449 	for (int c = 0; c < vd->vdev_children; c++) {
3450 		error = vdev_dtl_load(vd->vdev_child[c]);
3451 		if (error != 0)
3452 			break;
3453 	}
3454 
3455 	return (error);
3456 }
3457 
3458 static void
3459 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3460 {
3461 	spa_t *spa = vd->vdev_spa;
3462 	objset_t *mos = spa->spa_meta_objset;
3463 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3464 	const char *string;
3465 
3466 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3467 
3468 	string =
3469 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3470 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3471 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3472 
3473 	ASSERT(string != NULL);
3474 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3475 	    1, strlen(string) + 1, string, tx));
3476 
3477 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3478 		spa_activate_allocation_classes(spa, tx);
3479 	}
3480 }
3481 
3482 void
3483 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3484 {
3485 	spa_t *spa = vd->vdev_spa;
3486 
3487 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3488 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3489 	    zapobj, tx));
3490 }
3491 
3492 uint64_t
3493 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3494 {
3495 	spa_t *spa = vd->vdev_spa;
3496 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3497 	    DMU_OT_NONE, 0, tx);
3498 
3499 	ASSERT(zap != 0);
3500 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3501 	    zap, tx));
3502 
3503 	return (zap);
3504 }
3505 
3506 void
3507 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3508 {
3509 	if (vd->vdev_ops != &vdev_hole_ops &&
3510 	    vd->vdev_ops != &vdev_missing_ops &&
3511 	    vd->vdev_ops != &vdev_root_ops &&
3512 	    !vd->vdev_top->vdev_removing) {
3513 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3514 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3515 		}
3516 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3517 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3518 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3519 				vdev_zap_allocation_data(vd, tx);
3520 		}
3521 	}
3522 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 &&
3523 	    spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
3524 		if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2))
3525 			spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx);
3526 		vd->vdev_root_zap = vdev_create_link_zap(vd, tx);
3527 	}
3528 
3529 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3530 		vdev_construct_zaps(vd->vdev_child[i], tx);
3531 	}
3532 }
3533 
3534 static void
3535 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3536 {
3537 	spa_t *spa = vd->vdev_spa;
3538 	zfs_range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3539 	objset_t *mos = spa->spa_meta_objset;
3540 	zfs_range_tree_t *rtsync;
3541 	dmu_tx_t *tx;
3542 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3543 
3544 	ASSERT(vdev_is_concrete(vd));
3545 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3546 
3547 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3548 
3549 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3550 		mutex_enter(&vd->vdev_dtl_lock);
3551 		space_map_free(vd->vdev_dtl_sm, tx);
3552 		space_map_close(vd->vdev_dtl_sm);
3553 		vd->vdev_dtl_sm = NULL;
3554 		mutex_exit(&vd->vdev_dtl_lock);
3555 
3556 		/*
3557 		 * We only destroy the leaf ZAP for detached leaves or for
3558 		 * removed log devices. Removed data devices handle leaf ZAP
3559 		 * cleanup later, once cancellation is no longer possible.
3560 		 */
3561 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3562 		    vd->vdev_top->vdev_islog)) {
3563 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3564 			vd->vdev_leaf_zap = 0;
3565 		}
3566 
3567 		dmu_tx_commit(tx);
3568 		return;
3569 	}
3570 
3571 	if (vd->vdev_dtl_sm == NULL) {
3572 		uint64_t new_object;
3573 
3574 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3575 		VERIFY3U(new_object, !=, 0);
3576 
3577 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3578 		    0, -1ULL, 0));
3579 		ASSERT(vd->vdev_dtl_sm != NULL);
3580 	}
3581 
3582 	rtsync = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, NULL, 0, 0);
3583 
3584 	mutex_enter(&vd->vdev_dtl_lock);
3585 	zfs_range_tree_walk(rt, zfs_range_tree_add, rtsync);
3586 	mutex_exit(&vd->vdev_dtl_lock);
3587 
3588 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3589 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3590 	zfs_range_tree_vacate(rtsync, NULL, NULL);
3591 
3592 	zfs_range_tree_destroy(rtsync);
3593 
3594 	/*
3595 	 * If the object for the space map has changed then dirty
3596 	 * the top level so that we update the config.
3597 	 */
3598 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3599 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3600 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3601 		    (u_longlong_t)object,
3602 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3603 		vdev_config_dirty(vd->vdev_top);
3604 	}
3605 
3606 	dmu_tx_commit(tx);
3607 }
3608 
3609 /*
3610  * Determine whether the specified vdev can be
3611  * - offlined
3612  * - detached
3613  * - removed
3614  * - faulted
3615  * without losing data.
3616  */
3617 boolean_t
3618 vdev_dtl_required(vdev_t *vd)
3619 {
3620 	spa_t *spa = vd->vdev_spa;
3621 	vdev_t *tvd = vd->vdev_top;
3622 	uint8_t cant_read = vd->vdev_cant_read;
3623 	boolean_t required;
3624 	boolean_t faulting = vd->vdev_state == VDEV_STATE_FAULTED;
3625 
3626 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3627 
3628 	if (vd == spa->spa_root_vdev || vd == tvd)
3629 		return (B_TRUE);
3630 
3631 	/*
3632 	 * Temporarily mark the device as unreadable, and then determine
3633 	 * whether this results in any DTL outages in the top-level vdev.
3634 	 * If not, we can safely offline/detach/remove the device.
3635 	 */
3636 	vd->vdev_cant_read = B_TRUE;
3637 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3638 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3639 	vd->vdev_cant_read = cant_read;
3640 	vdev_dtl_reassess_impl(tvd, 0, 0, B_FALSE, B_FALSE, faulting);
3641 
3642 	if (!required && zio_injection_enabled) {
3643 		required = !!zio_handle_device_injection(vd, NULL,
3644 		    SET_ERROR(ECHILD));
3645 	}
3646 
3647 	return (required);
3648 }
3649 
3650 /*
3651  * Determine if resilver is needed, and if so the txg range.
3652  */
3653 boolean_t
3654 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3655 {
3656 	boolean_t needed = B_FALSE;
3657 	uint64_t thismin = UINT64_MAX;
3658 	uint64_t thismax = 0;
3659 
3660 	if (vd->vdev_children == 0) {
3661 		mutex_enter(&vd->vdev_dtl_lock);
3662 		if (!zfs_range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3663 		    vdev_writeable(vd)) {
3664 
3665 			thismin = vdev_dtl_min(vd);
3666 			thismax = vdev_dtl_max(vd);
3667 			needed = B_TRUE;
3668 		}
3669 		mutex_exit(&vd->vdev_dtl_lock);
3670 	} else {
3671 		for (int c = 0; c < vd->vdev_children; c++) {
3672 			vdev_t *cvd = vd->vdev_child[c];
3673 			uint64_t cmin, cmax;
3674 
3675 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3676 				thismin = MIN(thismin, cmin);
3677 				thismax = MAX(thismax, cmax);
3678 				needed = B_TRUE;
3679 			}
3680 		}
3681 	}
3682 
3683 	if (needed && minp) {
3684 		*minp = thismin;
3685 		*maxp = thismax;
3686 	}
3687 	return (needed);
3688 }
3689 
3690 /*
3691  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3692  * will contain either the checkpoint spacemap object or zero if none exists.
3693  * All other errors are returned to the caller.
3694  */
3695 int
3696 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3697 {
3698 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3699 
3700 	if (vd->vdev_top_zap == 0) {
3701 		*sm_obj = 0;
3702 		return (0);
3703 	}
3704 
3705 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3706 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3707 	if (error == ENOENT) {
3708 		*sm_obj = 0;
3709 		error = 0;
3710 	}
3711 
3712 	return (error);
3713 }
3714 
3715 int
3716 vdev_load(vdev_t *vd)
3717 {
3718 	int children = vd->vdev_children;
3719 	int error = 0;
3720 	taskq_t *tq = NULL;
3721 
3722 	/*
3723 	 * It's only worthwhile to use the taskq for the root vdev, because the
3724 	 * slow part is metaslab_init, and that only happens for top-level
3725 	 * vdevs.
3726 	 */
3727 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3728 		tq = taskq_create("vdev_load", children, minclsyspri,
3729 		    children, children, TASKQ_PREPOPULATE);
3730 	}
3731 
3732 	/*
3733 	 * Recursively load all children.
3734 	 */
3735 	for (int c = 0; c < vd->vdev_children; c++) {
3736 		vdev_t *cvd = vd->vdev_child[c];
3737 
3738 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3739 			cvd->vdev_load_error = vdev_load(cvd);
3740 		} else {
3741 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3742 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3743 		}
3744 	}
3745 
3746 	if (tq != NULL) {
3747 		taskq_wait(tq);
3748 		taskq_destroy(tq);
3749 	}
3750 
3751 	for (int c = 0; c < vd->vdev_children; c++) {
3752 		int error = vd->vdev_child[c]->vdev_load_error;
3753 
3754 		if (error != 0)
3755 			return (error);
3756 	}
3757 
3758 	vdev_set_deflate_ratio(vd);
3759 
3760 	if (vd->vdev_ops == &vdev_raidz_ops) {
3761 		error = vdev_raidz_load(vd);
3762 		if (error != 0)
3763 			return (error);
3764 	}
3765 
3766 	/*
3767 	 * On spa_load path, grab the allocation bias from our zap
3768 	 */
3769 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3770 		spa_t *spa = vd->vdev_spa;
3771 		char bias_str[64];
3772 
3773 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3774 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3775 		    bias_str);
3776 		if (error == 0) {
3777 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3778 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3779 		} else if (error != ENOENT) {
3780 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3781 			    VDEV_AUX_CORRUPT_DATA);
3782 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3783 			    "failed [error=%d]",
3784 			    (u_longlong_t)vd->vdev_top_zap, error);
3785 			return (error);
3786 		}
3787 	}
3788 
3789 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3790 		spa_t *spa = vd->vdev_spa;
3791 		uint64_t failfast;
3792 
3793 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3794 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3795 		    1, &failfast);
3796 		if (error == 0) {
3797 			vd->vdev_failfast = failfast & 1;
3798 		} else if (error == ENOENT) {
3799 			vd->vdev_failfast = vdev_prop_default_numeric(
3800 			    VDEV_PROP_FAILFAST);
3801 		} else {
3802 			vdev_dbgmsg(vd,
3803 			    "vdev_load: zap_lookup(top_zap=%llu) "
3804 			    "failed [error=%d]",
3805 			    (u_longlong_t)vd->vdev_top_zap, error);
3806 		}
3807 	}
3808 
3809 	/*
3810 	 * Load any rebuild state from the top-level vdev zap.
3811 	 */
3812 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3813 		error = vdev_rebuild_load(vd);
3814 		if (error && error != ENOTSUP) {
3815 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3816 			    VDEV_AUX_CORRUPT_DATA);
3817 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3818 			    "failed [error=%d]", error);
3819 			return (error);
3820 		}
3821 	}
3822 
3823 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3824 		uint64_t zapobj;
3825 
3826 		if (vd->vdev_top_zap != 0)
3827 			zapobj = vd->vdev_top_zap;
3828 		else
3829 			zapobj = vd->vdev_leaf_zap;
3830 
3831 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3832 		    &vd->vdev_checksum_n);
3833 		if (error && error != ENOENT)
3834 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3835 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3836 
3837 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3838 		    &vd->vdev_checksum_t);
3839 		if (error && error != ENOENT)
3840 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3841 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3842 
3843 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3844 		    &vd->vdev_io_n);
3845 		if (error && error != ENOENT)
3846 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3847 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3848 
3849 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3850 		    &vd->vdev_io_t);
3851 		if (error && error != ENOENT)
3852 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3853 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3854 
3855 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_N,
3856 		    &vd->vdev_slow_io_n);
3857 		if (error && error != ENOENT)
3858 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3859 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3860 
3861 		error = vdev_prop_get_int(vd, VDEV_PROP_SLOW_IO_T,
3862 		    &vd->vdev_slow_io_t);
3863 		if (error && error != ENOENT)
3864 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3865 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3866 	}
3867 
3868 	/*
3869 	 * If this is a top-level vdev, initialize its metaslabs.
3870 	 */
3871 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3872 		vdev_metaslab_group_create(vd);
3873 
3874 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3875 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3876 			    VDEV_AUX_CORRUPT_DATA);
3877 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3878 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3879 			    (u_longlong_t)vd->vdev_asize);
3880 			return (SET_ERROR(ENXIO));
3881 		}
3882 
3883 		error = vdev_metaslab_init(vd, 0);
3884 		if (error != 0) {
3885 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3886 			    "[error=%d]", error);
3887 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3888 			    VDEV_AUX_CORRUPT_DATA);
3889 			return (error);
3890 		}
3891 
3892 		uint64_t checkpoint_sm_obj;
3893 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3894 		if (error == 0 && checkpoint_sm_obj != 0) {
3895 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3896 			ASSERT(vd->vdev_asize != 0);
3897 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3898 
3899 			error = space_map_open(&vd->vdev_checkpoint_sm,
3900 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3901 			    vd->vdev_ashift);
3902 			if (error != 0) {
3903 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3904 				    "failed for checkpoint spacemap (obj %llu) "
3905 				    "[error=%d]",
3906 				    (u_longlong_t)checkpoint_sm_obj, error);
3907 				return (error);
3908 			}
3909 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3910 
3911 			/*
3912 			 * Since the checkpoint_sm contains free entries
3913 			 * exclusively we can use space_map_allocated() to
3914 			 * indicate the cumulative checkpointed space that
3915 			 * has been freed.
3916 			 */
3917 			vd->vdev_stat.vs_checkpoint_space =
3918 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3919 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3920 			    vd->vdev_stat.vs_checkpoint_space;
3921 		} else if (error != 0) {
3922 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3923 			    "checkpoint space map object from vdev ZAP "
3924 			    "[error=%d]", error);
3925 			return (error);
3926 		}
3927 	}
3928 
3929 	/*
3930 	 * If this is a leaf vdev, load its DTL.
3931 	 */
3932 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3933 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3934 		    VDEV_AUX_CORRUPT_DATA);
3935 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3936 		    "[error=%d]", error);
3937 		return (error);
3938 	}
3939 
3940 	uint64_t obsolete_sm_object;
3941 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3942 	if (error == 0 && obsolete_sm_object != 0) {
3943 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3944 		ASSERT(vd->vdev_asize != 0);
3945 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3946 
3947 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3948 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3949 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3950 			    VDEV_AUX_CORRUPT_DATA);
3951 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3952 			    "obsolete spacemap (obj %llu) [error=%d]",
3953 			    (u_longlong_t)obsolete_sm_object, error);
3954 			return (error);
3955 		}
3956 	} else if (error != 0) {
3957 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3958 		    "space map object from vdev ZAP [error=%d]", error);
3959 		return (error);
3960 	}
3961 
3962 	return (0);
3963 }
3964 
3965 /*
3966  * The special vdev case is used for hot spares and l2cache devices.  Its
3967  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3968  * we make sure that we can open the underlying device, then try to read the
3969  * label, and make sure that the label is sane and that it hasn't been
3970  * repurposed to another pool.
3971  */
3972 int
3973 vdev_validate_aux(vdev_t *vd)
3974 {
3975 	nvlist_t *label;
3976 	uint64_t guid, version;
3977 	uint64_t state;
3978 
3979 	if (!vdev_readable(vd))
3980 		return (0);
3981 
3982 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3983 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3984 		    VDEV_AUX_CORRUPT_DATA);
3985 		return (-1);
3986 	}
3987 
3988 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3989 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3990 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3991 	    guid != vd->vdev_guid ||
3992 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3993 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3994 		    VDEV_AUX_CORRUPT_DATA);
3995 		nvlist_free(label);
3996 		return (-1);
3997 	}
3998 
3999 	/*
4000 	 * We don't actually check the pool state here.  If it's in fact in
4001 	 * use by another pool, we update this fact on the fly when requested.
4002 	 */
4003 	nvlist_free(label);
4004 	return (0);
4005 }
4006 
4007 static void
4008 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
4009 {
4010 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
4011 
4012 	if (vd->vdev_top_zap == 0)
4013 		return;
4014 
4015 	uint64_t object = 0;
4016 	int err = zap_lookup(mos, vd->vdev_top_zap,
4017 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
4018 	if (err == ENOENT)
4019 		return;
4020 	VERIFY0(err);
4021 
4022 	VERIFY0(dmu_object_free(mos, object, tx));
4023 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
4024 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
4025 }
4026 
4027 /*
4028  * Free the objects used to store this vdev's spacemaps, and the array
4029  * that points to them.
4030  */
4031 void
4032 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
4033 {
4034 	if (vd->vdev_ms_array == 0)
4035 		return;
4036 
4037 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
4038 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
4039 	size_t array_bytes = array_count * sizeof (uint64_t);
4040 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
4041 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
4042 	    array_bytes, smobj_array, 0));
4043 
4044 	for (uint64_t i = 0; i < array_count; i++) {
4045 		uint64_t smobj = smobj_array[i];
4046 		if (smobj == 0)
4047 			continue;
4048 
4049 		space_map_free_obj(mos, smobj, tx);
4050 	}
4051 
4052 	kmem_free(smobj_array, array_bytes);
4053 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
4054 	vdev_destroy_ms_flush_data(vd, tx);
4055 	vd->vdev_ms_array = 0;
4056 }
4057 
4058 static void
4059 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
4060 {
4061 	spa_t *spa = vd->vdev_spa;
4062 
4063 	ASSERT(vd->vdev_islog);
4064 	ASSERT(vd == vd->vdev_top);
4065 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
4066 
4067 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4068 
4069 	vdev_destroy_spacemaps(vd, tx);
4070 	if (vd->vdev_top_zap != 0) {
4071 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
4072 		vd->vdev_top_zap = 0;
4073 	}
4074 
4075 	dmu_tx_commit(tx);
4076 }
4077 
4078 void
4079 vdev_sync_done(vdev_t *vd, uint64_t txg)
4080 {
4081 	metaslab_t *msp;
4082 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
4083 
4084 	ASSERT(vdev_is_concrete(vd));
4085 
4086 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
4087 	    != NULL)
4088 		metaslab_sync_done(msp, txg);
4089 
4090 	if (reassess) {
4091 		metaslab_sync_reassess(vd->vdev_mg);
4092 		if (vd->vdev_log_mg != NULL)
4093 			metaslab_sync_reassess(vd->vdev_log_mg);
4094 	}
4095 }
4096 
4097 void
4098 vdev_sync(vdev_t *vd, uint64_t txg)
4099 {
4100 	spa_t *spa = vd->vdev_spa;
4101 	vdev_t *lvd;
4102 	metaslab_t *msp;
4103 
4104 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
4105 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4106 	if (zfs_range_tree_space(vd->vdev_obsolete_segments) > 0) {
4107 		ASSERT(vd->vdev_removing ||
4108 		    vd->vdev_ops == &vdev_indirect_ops);
4109 
4110 		vdev_indirect_sync_obsolete(vd, tx);
4111 
4112 		/*
4113 		 * If the vdev is indirect, it can't have dirty
4114 		 * metaslabs or DTLs.
4115 		 */
4116 		if (vd->vdev_ops == &vdev_indirect_ops) {
4117 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
4118 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
4119 			dmu_tx_commit(tx);
4120 			return;
4121 		}
4122 	}
4123 
4124 	ASSERT(vdev_is_concrete(vd));
4125 
4126 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
4127 	    !vd->vdev_removing) {
4128 		ASSERT(vd == vd->vdev_top);
4129 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4130 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
4131 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
4132 		ASSERT(vd->vdev_ms_array != 0);
4133 		vdev_config_dirty(vd);
4134 	}
4135 
4136 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
4137 		metaslab_sync(msp, txg);
4138 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
4139 	}
4140 
4141 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
4142 		vdev_dtl_sync(lvd, txg);
4143 
4144 	/*
4145 	 * If this is an empty log device being removed, destroy the
4146 	 * metadata associated with it.
4147 	 */
4148 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
4149 		vdev_remove_empty_log(vd, txg);
4150 
4151 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
4152 	dmu_tx_commit(tx);
4153 }
4154 uint64_t
4155 vdev_asize_to_psize_txg(vdev_t *vd, uint64_t asize, uint64_t txg)
4156 {
4157 	return (vd->vdev_ops->vdev_op_asize_to_psize(vd, asize, txg));
4158 }
4159 
4160 /*
4161  * Return the amount of space that should be (or was) allocated for the given
4162  * psize (compressed block size) in the given TXG. Note that for expanded
4163  * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4164  * vdev_raidz_psize_to_asize().
4165  */
4166 uint64_t
4167 vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg)
4168 {
4169 	return (vd->vdev_ops->vdev_op_psize_to_asize(vd, psize, txg));
4170 }
4171 
4172 uint64_t
4173 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
4174 {
4175 	return (vdev_psize_to_asize_txg(vd, psize, 0));
4176 }
4177 
4178 /*
4179  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
4180  * not be opened, and no I/O is attempted.
4181  */
4182 int
4183 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4184 {
4185 	vdev_t *vd, *tvd;
4186 
4187 	spa_vdev_state_enter(spa, SCL_NONE);
4188 
4189 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4190 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4191 
4192 	if (!vd->vdev_ops->vdev_op_leaf)
4193 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4194 
4195 	tvd = vd->vdev_top;
4196 
4197 	/*
4198 	 * If user did a 'zpool offline -f' then make the fault persist across
4199 	 * reboots.
4200 	 */
4201 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
4202 		/*
4203 		 * There are two kinds of forced faults: temporary and
4204 		 * persistent.  Temporary faults go away at pool import, while
4205 		 * persistent faults stay set.  Both types of faults can be
4206 		 * cleared with a zpool clear.
4207 		 *
4208 		 * We tell if a vdev is persistently faulted by looking at the
4209 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
4210 		 * import then it's a persistent fault.  Otherwise, it's
4211 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
4212 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
4213 		 * tells vdev_config_generate() (which gets run later) to set
4214 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4215 		 */
4216 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
4217 		vd->vdev_tmpoffline = B_FALSE;
4218 		aux = VDEV_AUX_EXTERNAL;
4219 	} else {
4220 		vd->vdev_tmpoffline = B_TRUE;
4221 	}
4222 
4223 	/*
4224 	 * We don't directly use the aux state here, but if we do a
4225 	 * vdev_reopen(), we need this value to be present to remember why we
4226 	 * were faulted.
4227 	 */
4228 	vd->vdev_label_aux = aux;
4229 
4230 	/*
4231 	 * Faulted state takes precedence over degraded.
4232 	 */
4233 	vd->vdev_delayed_close = B_FALSE;
4234 	vd->vdev_faulted = 1ULL;
4235 	vd->vdev_degraded = 0ULL;
4236 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4237 
4238 	/*
4239 	 * If this device has the only valid copy of the data, then
4240 	 * back off and simply mark the vdev as degraded instead.
4241 	 */
4242 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4243 		vd->vdev_degraded = 1ULL;
4244 		vd->vdev_faulted = 0ULL;
4245 
4246 		/*
4247 		 * If we reopen the device and it's not dead, only then do we
4248 		 * mark it degraded.
4249 		 */
4250 		vdev_reopen(tvd);
4251 
4252 		if (vdev_readable(vd))
4253 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4254 	}
4255 
4256 	return (spa_vdev_state_exit(spa, vd, 0));
4257 }
4258 
4259 /*
4260  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4261  * user that something is wrong.  The vdev continues to operate as normal as far
4262  * as I/O is concerned.
4263  */
4264 int
4265 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4266 {
4267 	vdev_t *vd;
4268 
4269 	spa_vdev_state_enter(spa, SCL_NONE);
4270 
4271 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4272 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4273 
4274 	if (!vd->vdev_ops->vdev_op_leaf)
4275 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4276 
4277 	/*
4278 	 * If the vdev is already faulted, then don't do anything.
4279 	 */
4280 	if (vd->vdev_faulted || vd->vdev_degraded)
4281 		return (spa_vdev_state_exit(spa, NULL, 0));
4282 
4283 	vd->vdev_degraded = 1ULL;
4284 	if (!vdev_is_dead(vd))
4285 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4286 		    aux);
4287 
4288 	return (spa_vdev_state_exit(spa, vd, 0));
4289 }
4290 
4291 int
4292 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4293 {
4294 	vdev_t *vd;
4295 
4296 	spa_vdev_state_enter(spa, SCL_NONE);
4297 
4298 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4299 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4300 
4301 	/*
4302 	 * If the vdev is already removed, or expanding which can trigger
4303 	 * repartition add/remove events, then don't do anything.
4304 	 */
4305 	if (vd->vdev_removed || vd->vdev_expanding)
4306 		return (spa_vdev_state_exit(spa, NULL, 0));
4307 
4308 	/*
4309 	 * Confirm the vdev has been removed, otherwise don't do anything.
4310 	 */
4311 	if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL)))
4312 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST)));
4313 
4314 	vd->vdev_remove_wanted = B_TRUE;
4315 	spa_async_request(spa, SPA_ASYNC_REMOVE_BY_USER);
4316 
4317 	return (spa_vdev_state_exit(spa, vd, 0));
4318 }
4319 
4320 
4321 /*
4322  * Online the given vdev.
4323  *
4324  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4325  * spare device should be detached when the device finishes resilvering.
4326  * Second, the online should be treated like a 'test' online case, so no FMA
4327  * events are generated if the device fails to open.
4328  */
4329 int
4330 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4331 {
4332 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4333 	boolean_t wasoffline;
4334 	vdev_state_t oldstate;
4335 
4336 	spa_vdev_state_enter(spa, SCL_NONE);
4337 
4338 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4339 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4340 
4341 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4342 	oldstate = vd->vdev_state;
4343 
4344 	tvd = vd->vdev_top;
4345 	vd->vdev_offline = B_FALSE;
4346 	vd->vdev_tmpoffline = B_FALSE;
4347 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4348 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4349 
4350 	/* XXX - L2ARC 1.0 does not support expansion */
4351 	if (!vd->vdev_aux) {
4352 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4353 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4354 			    spa->spa_autoexpand);
4355 		vd->vdev_expansion_time = gethrestime_sec();
4356 	}
4357 
4358 	vdev_reopen(tvd);
4359 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4360 
4361 	if (!vd->vdev_aux) {
4362 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4363 			pvd->vdev_expanding = B_FALSE;
4364 	}
4365 
4366 	if (newstate)
4367 		*newstate = vd->vdev_state;
4368 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4369 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4370 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4371 	    vd->vdev_parent->vdev_child[0] == vd)
4372 		vd->vdev_unspare = B_TRUE;
4373 
4374 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4375 
4376 		/* XXX - L2ARC 1.0 does not support expansion */
4377 		if (vd->vdev_aux)
4378 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4379 		spa->spa_ccw_fail_time = 0;
4380 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4381 	}
4382 
4383 	/* Restart initializing if necessary */
4384 	mutex_enter(&vd->vdev_initialize_lock);
4385 	if (vdev_writeable(vd) &&
4386 	    vd->vdev_initialize_thread == NULL &&
4387 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4388 		(void) vdev_initialize(vd);
4389 	}
4390 	mutex_exit(&vd->vdev_initialize_lock);
4391 
4392 	/*
4393 	 * Restart trimming if necessary. We do not restart trimming for cache
4394 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4395 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4396 	 * space for upcoming writes.
4397 	 */
4398 	mutex_enter(&vd->vdev_trim_lock);
4399 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4400 	    vd->vdev_trim_thread == NULL &&
4401 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4402 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4403 		    vd->vdev_trim_secure);
4404 	}
4405 	mutex_exit(&vd->vdev_trim_lock);
4406 
4407 	if (wasoffline ||
4408 	    (oldstate < VDEV_STATE_DEGRADED &&
4409 	    vd->vdev_state >= VDEV_STATE_DEGRADED)) {
4410 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4411 
4412 		/*
4413 		 * Asynchronously detach spare vdev if resilver or
4414 		 * rebuild is not required
4415 		 */
4416 		if (vd->vdev_unspare &&
4417 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4418 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) &&
4419 		    !vdev_rebuild_active(tvd))
4420 			spa_async_request(spa, SPA_ASYNC_DETACH_SPARE);
4421 	}
4422 	return (spa_vdev_state_exit(spa, vd, 0));
4423 }
4424 
4425 static int
4426 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4427 {
4428 	vdev_t *vd, *tvd;
4429 	int error = 0;
4430 	uint64_t generation;
4431 	metaslab_group_t *mg;
4432 
4433 top:
4434 	spa_vdev_state_enter(spa, SCL_ALLOC);
4435 
4436 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4437 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4438 
4439 	if (!vd->vdev_ops->vdev_op_leaf)
4440 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4441 
4442 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4443 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4444 
4445 	tvd = vd->vdev_top;
4446 	mg = tvd->vdev_mg;
4447 	generation = spa->spa_config_generation + 1;
4448 
4449 	/*
4450 	 * If the device isn't already offline, try to offline it.
4451 	 */
4452 	if (!vd->vdev_offline) {
4453 		/*
4454 		 * If this device has the only valid copy of some data,
4455 		 * don't allow it to be offlined. Log devices are always
4456 		 * expendable.
4457 		 */
4458 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4459 		    vdev_dtl_required(vd))
4460 			return (spa_vdev_state_exit(spa, NULL,
4461 			    SET_ERROR(EBUSY)));
4462 
4463 		/*
4464 		 * If the top-level is a slog and it has had allocations
4465 		 * then proceed.  We check that the vdev's metaslab group
4466 		 * is not NULL since it's possible that we may have just
4467 		 * added this vdev but not yet initialized its metaslabs.
4468 		 */
4469 		if (tvd->vdev_islog && mg != NULL) {
4470 			/*
4471 			 * Prevent any future allocations.
4472 			 */
4473 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4474 			metaslab_group_passivate(mg);
4475 			(void) spa_vdev_state_exit(spa, vd, 0);
4476 
4477 			error = spa_reset_logs(spa);
4478 
4479 			/*
4480 			 * If the log device was successfully reset but has
4481 			 * checkpointed data, do not offline it.
4482 			 */
4483 			if (error == 0 &&
4484 			    tvd->vdev_checkpoint_sm != NULL) {
4485 				ASSERT3U(space_map_allocated(
4486 				    tvd->vdev_checkpoint_sm), !=, 0);
4487 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4488 			}
4489 
4490 			spa_vdev_state_enter(spa, SCL_ALLOC);
4491 
4492 			/*
4493 			 * Check to see if the config has changed.
4494 			 */
4495 			if (error || generation != spa->spa_config_generation) {
4496 				metaslab_group_activate(mg);
4497 				if (error)
4498 					return (spa_vdev_state_exit(spa,
4499 					    vd, error));
4500 				(void) spa_vdev_state_exit(spa, vd, 0);
4501 				goto top;
4502 			}
4503 			ASSERT0(tvd->vdev_stat.vs_alloc);
4504 		}
4505 
4506 		/*
4507 		 * Offline this device and reopen its top-level vdev.
4508 		 * If the top-level vdev is a log device then just offline
4509 		 * it. Otherwise, if this action results in the top-level
4510 		 * vdev becoming unusable, undo it and fail the request.
4511 		 */
4512 		vd->vdev_offline = B_TRUE;
4513 		vdev_reopen(tvd);
4514 
4515 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4516 		    vdev_is_dead(tvd)) {
4517 			vd->vdev_offline = B_FALSE;
4518 			vdev_reopen(tvd);
4519 			return (spa_vdev_state_exit(spa, NULL,
4520 			    SET_ERROR(EBUSY)));
4521 		}
4522 
4523 		/*
4524 		 * Add the device back into the metaslab rotor so that
4525 		 * once we online the device it's open for business.
4526 		 */
4527 		if (tvd->vdev_islog && mg != NULL)
4528 			metaslab_group_activate(mg);
4529 	}
4530 
4531 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4532 
4533 	return (spa_vdev_state_exit(spa, vd, 0));
4534 }
4535 
4536 int
4537 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4538 {
4539 	int error;
4540 
4541 	mutex_enter(&spa->spa_vdev_top_lock);
4542 	error = vdev_offline_locked(spa, guid, flags);
4543 	mutex_exit(&spa->spa_vdev_top_lock);
4544 
4545 	return (error);
4546 }
4547 
4548 /*
4549  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4550  * vdev_offline(), we assume the spa config is locked.  We also clear all
4551  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4552  */
4553 void
4554 vdev_clear(spa_t *spa, vdev_t *vd)
4555 {
4556 	vdev_t *rvd = spa->spa_root_vdev;
4557 
4558 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4559 
4560 	if (vd == NULL)
4561 		vd = rvd;
4562 
4563 	vd->vdev_stat.vs_read_errors = 0;
4564 	vd->vdev_stat.vs_write_errors = 0;
4565 	vd->vdev_stat.vs_checksum_errors = 0;
4566 	vd->vdev_stat.vs_dio_verify_errors = 0;
4567 	vd->vdev_stat.vs_slow_ios = 0;
4568 
4569 	for (int c = 0; c < vd->vdev_children; c++)
4570 		vdev_clear(spa, vd->vdev_child[c]);
4571 
4572 	/*
4573 	 * It makes no sense to "clear" an indirect  or removed vdev.
4574 	 */
4575 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4576 		return;
4577 
4578 	/*
4579 	 * If we're in the FAULTED state or have experienced failed I/O, then
4580 	 * clear the persistent state and attempt to reopen the device.  We
4581 	 * also mark the vdev config dirty, so that the new faulted state is
4582 	 * written out to disk.
4583 	 */
4584 	if (vd->vdev_faulted || vd->vdev_degraded ||
4585 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4586 		/*
4587 		 * When reopening in response to a clear event, it may be due to
4588 		 * a fmadm repair request.  In this case, if the device is
4589 		 * still broken, we want to still post the ereport again.
4590 		 */
4591 		vd->vdev_forcefault = B_TRUE;
4592 
4593 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4594 		vd->vdev_cant_read = B_FALSE;
4595 		vd->vdev_cant_write = B_FALSE;
4596 		vd->vdev_stat.vs_aux = 0;
4597 
4598 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4599 
4600 		vd->vdev_forcefault = B_FALSE;
4601 
4602 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4603 			vdev_state_dirty(vd->vdev_top);
4604 
4605 		/* If a resilver isn't required, check if vdevs can be culled */
4606 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4607 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4608 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4609 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4610 
4611 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4612 	}
4613 
4614 	/*
4615 	 * When clearing a FMA-diagnosed fault, we always want to
4616 	 * unspare the device, as we assume that the original spare was
4617 	 * done in response to the FMA fault.
4618 	 */
4619 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4620 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4621 	    vd->vdev_parent->vdev_child[0] == vd)
4622 		vd->vdev_unspare = B_TRUE;
4623 
4624 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4625 	zfs_ereport_clear(spa, vd);
4626 }
4627 
4628 boolean_t
4629 vdev_is_dead(vdev_t *vd)
4630 {
4631 	/*
4632 	 * Holes and missing devices are always considered "dead".
4633 	 * This simplifies the code since we don't have to check for
4634 	 * these types of devices in the various code paths.
4635 	 * Instead we rely on the fact that we skip over dead devices
4636 	 * before issuing I/O to them.
4637 	 */
4638 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4639 	    vd->vdev_ops == &vdev_hole_ops ||
4640 	    vd->vdev_ops == &vdev_missing_ops);
4641 }
4642 
4643 boolean_t
4644 vdev_readable(vdev_t *vd)
4645 {
4646 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4647 }
4648 
4649 boolean_t
4650 vdev_writeable(vdev_t *vd)
4651 {
4652 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4653 	    vdev_is_concrete(vd));
4654 }
4655 
4656 boolean_t
4657 vdev_allocatable(vdev_t *vd)
4658 {
4659 	uint64_t state = vd->vdev_state;
4660 
4661 	/*
4662 	 * We currently allow allocations from vdevs which may be in the
4663 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4664 	 * fails to reopen then we'll catch it later when we're holding
4665 	 * the proper locks.  Note that we have to get the vdev state
4666 	 * in a local variable because although it changes atomically,
4667 	 * we're asking two separate questions about it.
4668 	 */
4669 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4670 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4671 	    vd->vdev_mg->mg_initialized);
4672 }
4673 
4674 boolean_t
4675 vdev_accessible(vdev_t *vd, zio_t *zio)
4676 {
4677 	ASSERT(zio->io_vd == vd);
4678 
4679 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4680 		return (B_FALSE);
4681 
4682 	if (zio->io_type == ZIO_TYPE_READ)
4683 		return (!vd->vdev_cant_read);
4684 
4685 	if (zio->io_type == ZIO_TYPE_WRITE)
4686 		return (!vd->vdev_cant_write);
4687 
4688 	return (B_TRUE);
4689 }
4690 
4691 static void
4692 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4693 {
4694 	/*
4695 	 * Exclude the dRAID spare when aggregating to avoid double counting
4696 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4697 	 */
4698 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4699 		return;
4700 
4701 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4702 		vs->vs_ops[t] += cvs->vs_ops[t];
4703 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4704 	}
4705 
4706 	cvs->vs_scan_removing = cvd->vdev_removing;
4707 }
4708 
4709 /*
4710  * Get extended stats
4711  */
4712 static void
4713 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4714 {
4715 	(void) cvd;
4716 
4717 	int t, b;
4718 	for (t = 0; t < ZIO_TYPES; t++) {
4719 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4720 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4721 
4722 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4723 			vsx->vsx_total_histo[t][b] +=
4724 			    cvsx->vsx_total_histo[t][b];
4725 		}
4726 	}
4727 
4728 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4729 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4730 			vsx->vsx_queue_histo[t][b] +=
4731 			    cvsx->vsx_queue_histo[t][b];
4732 		}
4733 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4734 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4735 
4736 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4737 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4738 
4739 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4740 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4741 	}
4742 
4743 }
4744 
4745 boolean_t
4746 vdev_is_spacemap_addressable(vdev_t *vd)
4747 {
4748 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4749 		return (B_TRUE);
4750 
4751 	/*
4752 	 * If double-word space map entries are not enabled we assume
4753 	 * 47 bits of the space map entry are dedicated to the entry's
4754 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4755 	 * to calculate the maximum address that can be described by a
4756 	 * space map entry for the given device.
4757 	 */
4758 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4759 
4760 	if (shift >= 63) /* detect potential overflow */
4761 		return (B_TRUE);
4762 
4763 	return (vd->vdev_asize < (1ULL << shift));
4764 }
4765 
4766 /*
4767  * Get statistics for the given vdev.
4768  */
4769 static void
4770 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4771 {
4772 	int t;
4773 	/*
4774 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4775 	 * over all top-level vdevs (i.e. the direct children of the root).
4776 	 */
4777 	if (!vd->vdev_ops->vdev_op_leaf) {
4778 		if (vs) {
4779 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4780 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4781 		}
4782 		if (vsx)
4783 			memset(vsx, 0, sizeof (*vsx));
4784 
4785 		for (int c = 0; c < vd->vdev_children; c++) {
4786 			vdev_t *cvd = vd->vdev_child[c];
4787 			vdev_stat_t *cvs = &cvd->vdev_stat;
4788 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4789 
4790 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4791 			if (vs)
4792 				vdev_get_child_stat(cvd, vs, cvs);
4793 			if (vsx)
4794 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4795 		}
4796 	} else {
4797 		/*
4798 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4799 		 * other leaf stats are updated in vdev_stat_update().
4800 		 */
4801 		if (!vsx)
4802 			return;
4803 
4804 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4805 
4806 		for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4807 			vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t];
4808 			vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t);
4809 		}
4810 	}
4811 }
4812 
4813 void
4814 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4815 {
4816 	vdev_t *tvd = vd->vdev_top;
4817 	mutex_enter(&vd->vdev_stat_lock);
4818 	if (vs) {
4819 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4820 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4821 		vs->vs_state = vd->vdev_state;
4822 		vs->vs_rsize = vdev_get_min_asize(vd);
4823 
4824 		if (vd->vdev_ops->vdev_op_leaf) {
4825 			vs->vs_pspace = vd->vdev_psize;
4826 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4827 			    VDEV_LABEL_END_SIZE;
4828 			/*
4829 			 * Report initializing progress. Since we don't
4830 			 * have the initializing locks held, this is only
4831 			 * an estimate (although a fairly accurate one).
4832 			 */
4833 			vs->vs_initialize_bytes_done =
4834 			    vd->vdev_initialize_bytes_done;
4835 			vs->vs_initialize_bytes_est =
4836 			    vd->vdev_initialize_bytes_est;
4837 			vs->vs_initialize_state = vd->vdev_initialize_state;
4838 			vs->vs_initialize_action_time =
4839 			    vd->vdev_initialize_action_time;
4840 
4841 			/*
4842 			 * Report manual TRIM progress. Since we don't have
4843 			 * the manual TRIM locks held, this is only an
4844 			 * estimate (although fairly accurate one).
4845 			 */
4846 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4847 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4848 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4849 			vs->vs_trim_state = vd->vdev_trim_state;
4850 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4851 
4852 			/* Set when there is a deferred resilver. */
4853 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4854 		}
4855 
4856 		/*
4857 		 * Report expandable space on top-level, non-auxiliary devices
4858 		 * only. The expandable space is reported in terms of metaslab
4859 		 * sized units since that determines how much space the pool
4860 		 * can expand.
4861 		 */
4862 		if (vd->vdev_aux == NULL && tvd != NULL) {
4863 			vs->vs_esize = P2ALIGN_TYPED(
4864 			    vd->vdev_max_asize - vd->vdev_asize,
4865 			    1ULL << tvd->vdev_ms_shift, uint64_t);
4866 		}
4867 
4868 		vs->vs_configured_ashift = vd->vdev_top != NULL
4869 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4870 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4871 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4872 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4873 		else
4874 			vs->vs_physical_ashift = 0;
4875 
4876 		/*
4877 		 * Report fragmentation and rebuild progress for top-level,
4878 		 * non-auxiliary, concrete devices.
4879 		 */
4880 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4881 		    vdev_is_concrete(vd)) {
4882 			/*
4883 			 * The vdev fragmentation rating doesn't take into
4884 			 * account the embedded slog metaslab (vdev_log_mg).
4885 			 * Since it's only one metaslab, it would have a tiny
4886 			 * impact on the overall fragmentation.
4887 			 */
4888 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4889 			    vd->vdev_mg->mg_fragmentation : 0;
4890 		}
4891 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4892 		    tvd ? tvd->vdev_noalloc : 0);
4893 	}
4894 
4895 	vdev_get_stats_ex_impl(vd, vs, vsx);
4896 	mutex_exit(&vd->vdev_stat_lock);
4897 }
4898 
4899 void
4900 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4901 {
4902 	return (vdev_get_stats_ex(vd, vs, NULL));
4903 }
4904 
4905 void
4906 vdev_clear_stats(vdev_t *vd)
4907 {
4908 	mutex_enter(&vd->vdev_stat_lock);
4909 	vd->vdev_stat.vs_space = 0;
4910 	vd->vdev_stat.vs_dspace = 0;
4911 	vd->vdev_stat.vs_alloc = 0;
4912 	mutex_exit(&vd->vdev_stat_lock);
4913 }
4914 
4915 void
4916 vdev_scan_stat_init(vdev_t *vd)
4917 {
4918 	vdev_stat_t *vs = &vd->vdev_stat;
4919 
4920 	for (int c = 0; c < vd->vdev_children; c++)
4921 		vdev_scan_stat_init(vd->vdev_child[c]);
4922 
4923 	mutex_enter(&vd->vdev_stat_lock);
4924 	vs->vs_scan_processed = 0;
4925 	mutex_exit(&vd->vdev_stat_lock);
4926 }
4927 
4928 void
4929 vdev_stat_update(zio_t *zio, uint64_t psize)
4930 {
4931 	spa_t *spa = zio->io_spa;
4932 	vdev_t *rvd = spa->spa_root_vdev;
4933 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4934 	vdev_t *pvd;
4935 	uint64_t txg = zio->io_txg;
4936 /* Suppress ASAN false positive */
4937 #ifdef __SANITIZE_ADDRESS__
4938 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4939 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4940 #else
4941 	vdev_stat_t *vs = &vd->vdev_stat;
4942 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4943 #endif
4944 	zio_type_t type = zio->io_type;
4945 	int flags = zio->io_flags;
4946 
4947 	/*
4948 	 * If this i/o is a gang leader, it didn't do any actual work.
4949 	 */
4950 	if (zio->io_gang_tree)
4951 		return;
4952 
4953 	if (zio->io_error == 0) {
4954 		/*
4955 		 * If this is a root i/o, don't count it -- we've already
4956 		 * counted the top-level vdevs, and vdev_get_stats() will
4957 		 * aggregate them when asked.  This reduces contention on
4958 		 * the root vdev_stat_lock and implicitly handles blocks
4959 		 * that compress away to holes, for which there is no i/o.
4960 		 * (Holes never create vdev children, so all the counters
4961 		 * remain zero, which is what we want.)
4962 		 *
4963 		 * Note: this only applies to successful i/o (io_error == 0)
4964 		 * because unlike i/o counts, errors are not additive.
4965 		 * When reading a ditto block, for example, failure of
4966 		 * one top-level vdev does not imply a root-level error.
4967 		 */
4968 		if (vd == rvd)
4969 			return;
4970 
4971 		ASSERT(vd == zio->io_vd);
4972 
4973 		if (flags & ZIO_FLAG_IO_BYPASS)
4974 			return;
4975 
4976 		mutex_enter(&vd->vdev_stat_lock);
4977 
4978 		if (flags & ZIO_FLAG_IO_REPAIR) {
4979 			/*
4980 			 * Repair is the result of a resilver issued by the
4981 			 * scan thread (spa_sync).
4982 			 */
4983 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4984 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4985 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4986 				uint64_t *processed = &scn_phys->scn_processed;
4987 
4988 				if (vd->vdev_ops->vdev_op_leaf)
4989 					atomic_add_64(processed, psize);
4990 				vs->vs_scan_processed += psize;
4991 			}
4992 
4993 			/*
4994 			 * Repair is the result of a rebuild issued by the
4995 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4996 			 * double counting repaired bytes the virtual dRAID
4997 			 * spare vdev is excluded from the processed bytes.
4998 			 */
4999 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
5000 				vdev_t *tvd = vd->vdev_top;
5001 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
5002 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
5003 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
5004 
5005 				if (vd->vdev_ops->vdev_op_leaf &&
5006 				    vd->vdev_ops != &vdev_draid_spare_ops) {
5007 					atomic_add_64(rebuilt, psize);
5008 				}
5009 				vs->vs_rebuild_processed += psize;
5010 			}
5011 
5012 			if (flags & ZIO_FLAG_SELF_HEAL)
5013 				vs->vs_self_healed += psize;
5014 		}
5015 
5016 		/*
5017 		 * The bytes/ops/histograms are recorded at the leaf level and
5018 		 * aggregated into the higher level vdevs in vdev_get_stats().
5019 		 */
5020 		if (vd->vdev_ops->vdev_op_leaf &&
5021 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
5022 			zio_type_t vs_type = type;
5023 			zio_priority_t priority = zio->io_priority;
5024 
5025 			/*
5026 			 * TRIM ops and bytes are reported to user space as
5027 			 * ZIO_TYPE_FLUSH.  This is done to preserve the
5028 			 * vdev_stat_t structure layout for user space.
5029 			 */
5030 			if (type == ZIO_TYPE_TRIM)
5031 				vs_type = ZIO_TYPE_FLUSH;
5032 
5033 			/*
5034 			 * Solely for the purposes of 'zpool iostat -lqrw'
5035 			 * reporting use the priority to categorize the IO.
5036 			 * Only the following are reported to user space:
5037 			 *
5038 			 *   ZIO_PRIORITY_SYNC_READ,
5039 			 *   ZIO_PRIORITY_SYNC_WRITE,
5040 			 *   ZIO_PRIORITY_ASYNC_READ,
5041 			 *   ZIO_PRIORITY_ASYNC_WRITE,
5042 			 *   ZIO_PRIORITY_SCRUB,
5043 			 *   ZIO_PRIORITY_TRIM,
5044 			 *   ZIO_PRIORITY_REBUILD.
5045 			 */
5046 			if (priority == ZIO_PRIORITY_INITIALIZING) {
5047 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
5048 				priority = ZIO_PRIORITY_ASYNC_WRITE;
5049 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
5050 				priority = ((type == ZIO_TYPE_WRITE) ?
5051 				    ZIO_PRIORITY_ASYNC_WRITE :
5052 				    ZIO_PRIORITY_ASYNC_READ);
5053 			}
5054 
5055 			vs->vs_ops[vs_type]++;
5056 			vs->vs_bytes[vs_type] += psize;
5057 
5058 			if (flags & ZIO_FLAG_DELEGATED) {
5059 				vsx->vsx_agg_histo[priority]
5060 				    [RQ_HISTO(zio->io_size)]++;
5061 			} else {
5062 				vsx->vsx_ind_histo[priority]
5063 				    [RQ_HISTO(zio->io_size)]++;
5064 			}
5065 
5066 			if (zio->io_delta && zio->io_delay) {
5067 				vsx->vsx_queue_histo[priority]
5068 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
5069 				vsx->vsx_disk_histo[type]
5070 				    [L_HISTO(zio->io_delay)]++;
5071 				vsx->vsx_total_histo[type]
5072 				    [L_HISTO(zio->io_delta)]++;
5073 			}
5074 		}
5075 
5076 		mutex_exit(&vd->vdev_stat_lock);
5077 		return;
5078 	}
5079 
5080 	if (flags & ZIO_FLAG_SPECULATIVE)
5081 		return;
5082 
5083 	/*
5084 	 * If this is an I/O error that is going to be retried, then ignore the
5085 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
5086 	 * hard errors, when in reality they can happen for any number of
5087 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
5088 	 */
5089 	if (zio->io_error == EIO &&
5090 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
5091 		return;
5092 
5093 	/*
5094 	 * Intent logs writes won't propagate their error to the root
5095 	 * I/O so don't mark these types of failures as pool-level
5096 	 * errors.
5097 	 */
5098 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
5099 		return;
5100 
5101 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
5102 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
5103 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
5104 	    spa->spa_claiming)) {
5105 		/*
5106 		 * This is either a normal write (not a repair), or it's
5107 		 * a repair induced by the scrub thread, or it's a repair
5108 		 * made by zil_claim() during spa_load() in the first txg.
5109 		 * In the normal case, we commit the DTL change in the same
5110 		 * txg as the block was born.  In the scrub-induced repair
5111 		 * case, we know that scrubs run in first-pass syncing context,
5112 		 * so we commit the DTL change in spa_syncing_txg(spa).
5113 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
5114 		 *
5115 		 * We currently do not make DTL entries for failed spontaneous
5116 		 * self-healing writes triggered by normal (non-scrubbing)
5117 		 * reads, because we have no transactional context in which to
5118 		 * do so -- and it's not clear that it'd be desirable anyway.
5119 		 */
5120 		if (vd->vdev_ops->vdev_op_leaf) {
5121 			uint64_t commit_txg = txg;
5122 			if (flags & ZIO_FLAG_SCAN_THREAD) {
5123 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5124 				ASSERT(spa_sync_pass(spa) == 1);
5125 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
5126 				commit_txg = spa_syncing_txg(spa);
5127 			} else if (spa->spa_claiming) {
5128 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
5129 				commit_txg = spa_first_txg(spa);
5130 			}
5131 			ASSERT(commit_txg >= spa_syncing_txg(spa));
5132 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
5133 				return;
5134 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
5135 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
5136 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
5137 		}
5138 		if (vd != rvd)
5139 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
5140 	}
5141 }
5142 
5143 int64_t
5144 vdev_deflated_space(vdev_t *vd, int64_t space)
5145 {
5146 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
5147 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
5148 
5149 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
5150 }
5151 
5152 /*
5153  * Update the in-core space usage stats for this vdev, its metaslab class,
5154  * and the root vdev.
5155  */
5156 void
5157 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
5158     int64_t space_delta)
5159 {
5160 	(void) defer_delta;
5161 	int64_t dspace_delta;
5162 	spa_t *spa = vd->vdev_spa;
5163 	vdev_t *rvd = spa->spa_root_vdev;
5164 
5165 	ASSERT(vd == vd->vdev_top);
5166 
5167 	/*
5168 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5169 	 * factor.  We must calculate this here and not at the root vdev
5170 	 * because the root vdev's psize-to-asize is simply the max of its
5171 	 * children's, thus not accurate enough for us.
5172 	 */
5173 	dspace_delta = vdev_deflated_space(vd, space_delta);
5174 
5175 	mutex_enter(&vd->vdev_stat_lock);
5176 	/* ensure we won't underflow */
5177 	if (alloc_delta < 0) {
5178 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
5179 	}
5180 
5181 	vd->vdev_stat.vs_alloc += alloc_delta;
5182 	vd->vdev_stat.vs_space += space_delta;
5183 	vd->vdev_stat.vs_dspace += dspace_delta;
5184 	mutex_exit(&vd->vdev_stat_lock);
5185 
5186 	/* every class but log contributes to root space stats */
5187 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
5188 		ASSERT(!vd->vdev_isl2cache);
5189 		mutex_enter(&rvd->vdev_stat_lock);
5190 		rvd->vdev_stat.vs_alloc += alloc_delta;
5191 		rvd->vdev_stat.vs_space += space_delta;
5192 		rvd->vdev_stat.vs_dspace += dspace_delta;
5193 		mutex_exit(&rvd->vdev_stat_lock);
5194 	}
5195 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
5196 }
5197 
5198 /*
5199  * Mark a top-level vdev's config as dirty, placing it on the dirty list
5200  * so that it will be written out next time the vdev configuration is synced.
5201  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5202  */
5203 void
5204 vdev_config_dirty(vdev_t *vd)
5205 {
5206 	spa_t *spa = vd->vdev_spa;
5207 	vdev_t *rvd = spa->spa_root_vdev;
5208 	int c;
5209 
5210 	ASSERT(spa_writeable(spa));
5211 
5212 	/*
5213 	 * If this is an aux vdev (as with l2cache and spare devices), then we
5214 	 * update the vdev config manually and set the sync flag.
5215 	 */
5216 	if (vd->vdev_aux != NULL) {
5217 		spa_aux_vdev_t *sav = vd->vdev_aux;
5218 		nvlist_t **aux;
5219 		uint_t naux;
5220 
5221 		for (c = 0; c < sav->sav_count; c++) {
5222 			if (sav->sav_vdevs[c] == vd)
5223 				break;
5224 		}
5225 
5226 		if (c == sav->sav_count) {
5227 			/*
5228 			 * We're being removed.  There's nothing more to do.
5229 			 */
5230 			ASSERT(sav->sav_sync == B_TRUE);
5231 			return;
5232 		}
5233 
5234 		sav->sav_sync = B_TRUE;
5235 
5236 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5237 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5238 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5239 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5240 		}
5241 
5242 		ASSERT(c < naux);
5243 
5244 		/*
5245 		 * Setting the nvlist in the middle if the array is a little
5246 		 * sketchy, but it will work.
5247 		 */
5248 		nvlist_free(aux[c]);
5249 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5250 
5251 		return;
5252 	}
5253 
5254 	/*
5255 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5256 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5257 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5258 	 * so this is sufficient to ensure mutual exclusion.
5259 	 */
5260 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5261 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5262 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5263 
5264 	if (vd == rvd) {
5265 		for (c = 0; c < rvd->vdev_children; c++)
5266 			vdev_config_dirty(rvd->vdev_child[c]);
5267 	} else {
5268 		ASSERT(vd == vd->vdev_top);
5269 
5270 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5271 		    vdev_is_concrete(vd)) {
5272 			list_insert_head(&spa->spa_config_dirty_list, vd);
5273 		}
5274 	}
5275 }
5276 
5277 void
5278 vdev_config_clean(vdev_t *vd)
5279 {
5280 	spa_t *spa = vd->vdev_spa;
5281 
5282 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5283 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5284 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5285 
5286 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5287 	list_remove(&spa->spa_config_dirty_list, vd);
5288 }
5289 
5290 /*
5291  * Mark a top-level vdev's state as dirty, so that the next pass of
5292  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5293  * the state changes from larger config changes because they require
5294  * much less locking, and are often needed for administrative actions.
5295  */
5296 void
5297 vdev_state_dirty(vdev_t *vd)
5298 {
5299 	spa_t *spa = vd->vdev_spa;
5300 
5301 	ASSERT(spa_writeable(spa));
5302 	ASSERT(vd == vd->vdev_top);
5303 
5304 	/*
5305 	 * The state list is protected by the SCL_STATE lock.  The caller
5306 	 * must either hold SCL_STATE as writer, or must be the sync thread
5307 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5308 	 * so this is sufficient to ensure mutual exclusion.
5309 	 */
5310 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5311 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5312 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5313 
5314 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5315 	    vdev_is_concrete(vd))
5316 		list_insert_head(&spa->spa_state_dirty_list, vd);
5317 }
5318 
5319 void
5320 vdev_state_clean(vdev_t *vd)
5321 {
5322 	spa_t *spa = vd->vdev_spa;
5323 
5324 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5325 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5326 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5327 
5328 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5329 	list_remove(&spa->spa_state_dirty_list, vd);
5330 }
5331 
5332 /*
5333  * Propagate vdev state up from children to parent.
5334  */
5335 void
5336 vdev_propagate_state(vdev_t *vd)
5337 {
5338 	spa_t *spa = vd->vdev_spa;
5339 	vdev_t *rvd = spa->spa_root_vdev;
5340 	int degraded = 0, faulted = 0;
5341 	int corrupted = 0;
5342 	vdev_t *child;
5343 
5344 	if (vd->vdev_children > 0) {
5345 		for (int c = 0; c < vd->vdev_children; c++) {
5346 			child = vd->vdev_child[c];
5347 
5348 			/*
5349 			 * Don't factor holes or indirect vdevs into the
5350 			 * decision.
5351 			 */
5352 			if (!vdev_is_concrete(child))
5353 				continue;
5354 
5355 			if (!vdev_readable(child) ||
5356 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5357 				/*
5358 				 * Root special: if there is a top-level log
5359 				 * device, treat the root vdev as if it were
5360 				 * degraded.
5361 				 */
5362 				if (child->vdev_islog && vd == rvd)
5363 					degraded++;
5364 				else
5365 					faulted++;
5366 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5367 				degraded++;
5368 			}
5369 
5370 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5371 				corrupted++;
5372 		}
5373 
5374 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5375 
5376 		/*
5377 		 * Root special: if there is a top-level vdev that cannot be
5378 		 * opened due to corrupted metadata, then propagate the root
5379 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5380 		 * replicas'.
5381 		 */
5382 		if (corrupted && vd == rvd &&
5383 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5384 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5385 			    VDEV_AUX_CORRUPT_DATA);
5386 	}
5387 
5388 	if (vd->vdev_parent)
5389 		vdev_propagate_state(vd->vdev_parent);
5390 }
5391 
5392 /*
5393  * Set a vdev's state.  If this is during an open, we don't update the parent
5394  * state, because we're in the process of opening children depth-first.
5395  * Otherwise, we propagate the change to the parent.
5396  *
5397  * If this routine places a device in a faulted state, an appropriate ereport is
5398  * generated.
5399  */
5400 void
5401 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5402 {
5403 	uint64_t save_state;
5404 	spa_t *spa = vd->vdev_spa;
5405 
5406 	if (state == vd->vdev_state) {
5407 		/*
5408 		 * Since vdev_offline() code path is already in an offline
5409 		 * state we can miss a statechange event to OFFLINE. Check
5410 		 * the previous state to catch this condition.
5411 		 */
5412 		if (vd->vdev_ops->vdev_op_leaf &&
5413 		    (state == VDEV_STATE_OFFLINE) &&
5414 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5415 			/* post an offline state change */
5416 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5417 		}
5418 		vd->vdev_stat.vs_aux = aux;
5419 		return;
5420 	}
5421 
5422 	save_state = vd->vdev_state;
5423 
5424 	vd->vdev_state = state;
5425 	vd->vdev_stat.vs_aux = aux;
5426 
5427 	/*
5428 	 * If we are setting the vdev state to anything but an open state, then
5429 	 * always close the underlying device unless the device has requested
5430 	 * a delayed close (i.e. we're about to remove or fault the device).
5431 	 * Otherwise, we keep accessible but invalid devices open forever.
5432 	 * We don't call vdev_close() itself, because that implies some extra
5433 	 * checks (offline, etc) that we don't want here.  This is limited to
5434 	 * leaf devices, because otherwise closing the device will affect other
5435 	 * children.
5436 	 */
5437 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5438 	    vd->vdev_ops->vdev_op_leaf)
5439 		vd->vdev_ops->vdev_op_close(vd);
5440 
5441 	if (vd->vdev_removed &&
5442 	    state == VDEV_STATE_CANT_OPEN &&
5443 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5444 		/*
5445 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5446 		 * device was previously marked removed and someone attempted to
5447 		 * reopen it.  If this failed due to a nonexistent device, then
5448 		 * keep the device in the REMOVED state.  We also let this be if
5449 		 * it is one of our special test online cases, which is only
5450 		 * attempting to online the device and shouldn't generate an FMA
5451 		 * fault.
5452 		 */
5453 		vd->vdev_state = VDEV_STATE_REMOVED;
5454 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5455 	} else if (state == VDEV_STATE_REMOVED) {
5456 		vd->vdev_removed = B_TRUE;
5457 	} else if (state == VDEV_STATE_CANT_OPEN) {
5458 		/*
5459 		 * If we fail to open a vdev during an import or recovery, we
5460 		 * mark it as "not available", which signifies that it was
5461 		 * never there to begin with.  Failure to open such a device
5462 		 * is not considered an error.
5463 		 */
5464 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5465 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5466 		    vd->vdev_ops->vdev_op_leaf)
5467 			vd->vdev_not_present = 1;
5468 
5469 		/*
5470 		 * Post the appropriate ereport.  If the 'prevstate' field is
5471 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5472 		 * that this is part of a vdev_reopen().  In this case, we don't
5473 		 * want to post the ereport if the device was already in the
5474 		 * CANT_OPEN state beforehand.
5475 		 *
5476 		 * If the 'checkremove' flag is set, then this is an attempt to
5477 		 * online the device in response to an insertion event.  If we
5478 		 * hit this case, then we have detected an insertion event for a
5479 		 * faulted or offline device that wasn't in the removed state.
5480 		 * In this scenario, we don't post an ereport because we are
5481 		 * about to replace the device, or attempt an online with
5482 		 * vdev_forcefault, which will generate the fault for us.
5483 		 */
5484 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5485 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5486 		    vd != spa->spa_root_vdev) {
5487 			const char *class;
5488 
5489 			switch (aux) {
5490 			case VDEV_AUX_OPEN_FAILED:
5491 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5492 				break;
5493 			case VDEV_AUX_CORRUPT_DATA:
5494 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5495 				break;
5496 			case VDEV_AUX_NO_REPLICAS:
5497 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5498 				break;
5499 			case VDEV_AUX_BAD_GUID_SUM:
5500 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5501 				break;
5502 			case VDEV_AUX_TOO_SMALL:
5503 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5504 				break;
5505 			case VDEV_AUX_BAD_LABEL:
5506 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5507 				break;
5508 			case VDEV_AUX_BAD_ASHIFT:
5509 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5510 				break;
5511 			default:
5512 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5513 			}
5514 
5515 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5516 			    save_state);
5517 		}
5518 
5519 		/* Erase any notion of persistent removed state */
5520 		vd->vdev_removed = B_FALSE;
5521 	} else {
5522 		vd->vdev_removed = B_FALSE;
5523 	}
5524 
5525 	/*
5526 	 * Notify ZED of any significant state-change on a leaf vdev.
5527 	 *
5528 	 */
5529 	if (vd->vdev_ops->vdev_op_leaf) {
5530 		/* preserve original state from a vdev_reopen() */
5531 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5532 		    (vd->vdev_prevstate != vd->vdev_state) &&
5533 		    (save_state <= VDEV_STATE_CLOSED))
5534 			save_state = vd->vdev_prevstate;
5535 
5536 		/* filter out state change due to initial vdev_open */
5537 		if (save_state > VDEV_STATE_CLOSED)
5538 			zfs_post_state_change(spa, vd, save_state);
5539 	}
5540 
5541 	if (!isopen && vd->vdev_parent)
5542 		vdev_propagate_state(vd->vdev_parent);
5543 }
5544 
5545 boolean_t
5546 vdev_children_are_offline(vdev_t *vd)
5547 {
5548 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5549 
5550 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5551 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5552 			return (B_FALSE);
5553 	}
5554 
5555 	return (B_TRUE);
5556 }
5557 
5558 /*
5559  * Check the vdev configuration to ensure that it's capable of supporting
5560  * a root pool. We do not support partial configuration.
5561  */
5562 boolean_t
5563 vdev_is_bootable(vdev_t *vd)
5564 {
5565 	if (!vd->vdev_ops->vdev_op_leaf) {
5566 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5567 
5568 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5569 			return (B_FALSE);
5570 	}
5571 
5572 	for (int c = 0; c < vd->vdev_children; c++) {
5573 		if (!vdev_is_bootable(vd->vdev_child[c]))
5574 			return (B_FALSE);
5575 	}
5576 	return (B_TRUE);
5577 }
5578 
5579 boolean_t
5580 vdev_is_concrete(vdev_t *vd)
5581 {
5582 	vdev_ops_t *ops = vd->vdev_ops;
5583 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5584 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5585 		return (B_FALSE);
5586 	} else {
5587 		return (B_TRUE);
5588 	}
5589 }
5590 
5591 /*
5592  * Determine if a log device has valid content.  If the vdev was
5593  * removed or faulted in the MOS config then we know that
5594  * the content on the log device has already been written to the pool.
5595  */
5596 boolean_t
5597 vdev_log_state_valid(vdev_t *vd)
5598 {
5599 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5600 	    !vd->vdev_removed)
5601 		return (B_TRUE);
5602 
5603 	for (int c = 0; c < vd->vdev_children; c++)
5604 		if (vdev_log_state_valid(vd->vdev_child[c]))
5605 			return (B_TRUE);
5606 
5607 	return (B_FALSE);
5608 }
5609 
5610 /*
5611  * Expand a vdev if possible.
5612  */
5613 void
5614 vdev_expand(vdev_t *vd, uint64_t txg)
5615 {
5616 	ASSERT(vd->vdev_top == vd);
5617 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5618 	ASSERT(vdev_is_concrete(vd));
5619 
5620 	vdev_set_deflate_ratio(vd);
5621 
5622 	if ((vd->vdev_spa->spa_raidz_expand == NULL ||
5623 	    vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) &&
5624 	    (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5625 	    vdev_is_concrete(vd)) {
5626 		vdev_metaslab_group_create(vd);
5627 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5628 		vdev_config_dirty(vd);
5629 	}
5630 }
5631 
5632 /*
5633  * Split a vdev.
5634  */
5635 void
5636 vdev_split(vdev_t *vd)
5637 {
5638 	vdev_t *cvd, *pvd = vd->vdev_parent;
5639 
5640 	VERIFY3U(pvd->vdev_children, >, 1);
5641 
5642 	vdev_remove_child(pvd, vd);
5643 	vdev_compact_children(pvd);
5644 
5645 	ASSERT3P(pvd->vdev_child, !=, NULL);
5646 
5647 	cvd = pvd->vdev_child[0];
5648 	if (pvd->vdev_children == 1) {
5649 		vdev_remove_parent(cvd);
5650 		cvd->vdev_splitting = B_TRUE;
5651 	}
5652 	vdev_propagate_state(cvd);
5653 }
5654 
5655 void
5656 vdev_deadman(vdev_t *vd, const char *tag)
5657 {
5658 	for (int c = 0; c < vd->vdev_children; c++) {
5659 		vdev_t *cvd = vd->vdev_child[c];
5660 
5661 		vdev_deadman(cvd, tag);
5662 	}
5663 
5664 	if (vd->vdev_ops->vdev_op_leaf) {
5665 		vdev_queue_t *vq = &vd->vdev_queue;
5666 
5667 		mutex_enter(&vq->vq_lock);
5668 		if (vq->vq_active > 0) {
5669 			spa_t *spa = vd->vdev_spa;
5670 			zio_t *fio;
5671 			uint64_t delta;
5672 
5673 			zfs_dbgmsg("slow vdev: %s has %u active IOs",
5674 			    vd->vdev_path, vq->vq_active);
5675 
5676 			/*
5677 			 * Look at the head of all the pending queues,
5678 			 * if any I/O has been outstanding for longer than
5679 			 * the spa_deadman_synctime invoke the deadman logic.
5680 			 */
5681 			fio = list_head(&vq->vq_active_list);
5682 			delta = gethrtime() - fio->io_timestamp;
5683 			if (delta > spa_deadman_synctime(spa))
5684 				zio_deadman(fio, tag);
5685 		}
5686 		mutex_exit(&vq->vq_lock);
5687 	}
5688 }
5689 
5690 void
5691 vdev_defer_resilver(vdev_t *vd)
5692 {
5693 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5694 
5695 	vd->vdev_resilver_deferred = B_TRUE;
5696 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5697 }
5698 
5699 /*
5700  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5701  * B_TRUE if we have devices that need to be resilvered and are available to
5702  * accept resilver I/Os.
5703  */
5704 boolean_t
5705 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5706 {
5707 	boolean_t resilver_needed = B_FALSE;
5708 	spa_t *spa = vd->vdev_spa;
5709 
5710 	for (int c = 0; c < vd->vdev_children; c++) {
5711 		vdev_t *cvd = vd->vdev_child[c];
5712 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5713 	}
5714 
5715 	if (vd == spa->spa_root_vdev &&
5716 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5717 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5718 		vdev_config_dirty(vd);
5719 		spa->spa_resilver_deferred = B_FALSE;
5720 		return (resilver_needed);
5721 	}
5722 
5723 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5724 	    !vd->vdev_ops->vdev_op_leaf)
5725 		return (resilver_needed);
5726 
5727 	vd->vdev_resilver_deferred = B_FALSE;
5728 
5729 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5730 	    vdev_resilver_needed(vd, NULL, NULL));
5731 }
5732 
5733 boolean_t
5734 vdev_xlate_is_empty(zfs_range_seg64_t *rs)
5735 {
5736 	return (rs->rs_start == rs->rs_end);
5737 }
5738 
5739 /*
5740  * Translate a logical range to the first contiguous physical range for the
5741  * specified vdev_t.  This function is initially called with a leaf vdev and
5742  * will walk each parent vdev until it reaches a top-level vdev. Once the
5743  * top-level is reached the physical range is initialized and the recursive
5744  * function begins to unwind. As it unwinds it calls the parent's vdev
5745  * specific translation function to do the real conversion.
5746  */
5747 void
5748 vdev_xlate(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5749     zfs_range_seg64_t *physical_rs, zfs_range_seg64_t *remain_rs)
5750 {
5751 	/*
5752 	 * Walk up the vdev tree
5753 	 */
5754 	if (vd != vd->vdev_top) {
5755 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5756 		    remain_rs);
5757 	} else {
5758 		/*
5759 		 * We've reached the top-level vdev, initialize the physical
5760 		 * range to the logical range and set an empty remaining
5761 		 * range then start to unwind.
5762 		 */
5763 		physical_rs->rs_start = logical_rs->rs_start;
5764 		physical_rs->rs_end = logical_rs->rs_end;
5765 
5766 		remain_rs->rs_start = logical_rs->rs_start;
5767 		remain_rs->rs_end = logical_rs->rs_start;
5768 
5769 		return;
5770 	}
5771 
5772 	vdev_t *pvd = vd->vdev_parent;
5773 	ASSERT3P(pvd, !=, NULL);
5774 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5775 
5776 	/*
5777 	 * As this recursive function unwinds, translate the logical
5778 	 * range into its physical and any remaining components by calling
5779 	 * the vdev specific translate function.
5780 	 */
5781 	zfs_range_seg64_t intermediate = { 0 };
5782 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5783 
5784 	physical_rs->rs_start = intermediate.rs_start;
5785 	physical_rs->rs_end = intermediate.rs_end;
5786 }
5787 
5788 void
5789 vdev_xlate_walk(vdev_t *vd, const zfs_range_seg64_t *logical_rs,
5790     vdev_xlate_func_t *func, void *arg)
5791 {
5792 	zfs_range_seg64_t iter_rs = *logical_rs;
5793 	zfs_range_seg64_t physical_rs;
5794 	zfs_range_seg64_t remain_rs;
5795 
5796 	while (!vdev_xlate_is_empty(&iter_rs)) {
5797 
5798 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5799 
5800 		/*
5801 		 * With raidz and dRAID, it's possible that the logical range
5802 		 * does not live on this leaf vdev. Only when there is a non-
5803 		 * zero physical size call the provided function.
5804 		 */
5805 		if (!vdev_xlate_is_empty(&physical_rs))
5806 			func(arg, &physical_rs);
5807 
5808 		iter_rs = remain_rs;
5809 	}
5810 }
5811 
5812 static char *
5813 vdev_name(vdev_t *vd, char *buf, int buflen)
5814 {
5815 	if (vd->vdev_path == NULL) {
5816 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5817 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5818 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5819 			snprintf(buf, buflen, "%s-%llu",
5820 			    vd->vdev_ops->vdev_op_type,
5821 			    (u_longlong_t)vd->vdev_id);
5822 		}
5823 	} else {
5824 		strlcpy(buf, vd->vdev_path, buflen);
5825 	}
5826 	return (buf);
5827 }
5828 
5829 /*
5830  * Look at the vdev tree and determine whether any devices are currently being
5831  * replaced.
5832  */
5833 boolean_t
5834 vdev_replace_in_progress(vdev_t *vdev)
5835 {
5836 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5837 
5838 	if (vdev->vdev_ops == &vdev_replacing_ops)
5839 		return (B_TRUE);
5840 
5841 	/*
5842 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5843 	 * it has exactly two children, and the second, the hot spare, has
5844 	 * finished being resilvered.
5845 	 */
5846 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5847 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5848 		return (B_TRUE);
5849 
5850 	for (int i = 0; i < vdev->vdev_children; i++) {
5851 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5852 			return (B_TRUE);
5853 	}
5854 
5855 	return (B_FALSE);
5856 }
5857 
5858 /*
5859  * Add a (source=src, propname=propval) list to an nvlist.
5860  */
5861 static void
5862 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5863     uint64_t intval, zprop_source_t src)
5864 {
5865 	nvlist_t *propval;
5866 
5867 	propval = fnvlist_alloc();
5868 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5869 
5870 	if (strval != NULL)
5871 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5872 	else
5873 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5874 
5875 	fnvlist_add_nvlist(nvl, propname, propval);
5876 	nvlist_free(propval);
5877 }
5878 
5879 static void
5880 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5881 {
5882 	vdev_t *vd;
5883 	nvlist_t *nvp = arg;
5884 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5885 	objset_t *mos = spa->spa_meta_objset;
5886 	nvpair_t *elem = NULL;
5887 	uint64_t vdev_guid;
5888 	uint64_t objid;
5889 	nvlist_t *nvprops;
5890 
5891 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5892 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5893 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5894 
5895 	/* this vdev could get removed while waiting for this sync task */
5896 	if (vd == NULL)
5897 		return;
5898 
5899 	/*
5900 	 * Set vdev property values in the vdev props mos object.
5901 	 */
5902 	if (vd->vdev_root_zap != 0) {
5903 		objid = vd->vdev_root_zap;
5904 	} else if (vd->vdev_top_zap != 0) {
5905 		objid = vd->vdev_top_zap;
5906 	} else if (vd->vdev_leaf_zap != 0) {
5907 		objid = vd->vdev_leaf_zap;
5908 	} else {
5909 		panic("unexpected vdev type");
5910 	}
5911 
5912 	mutex_enter(&spa->spa_props_lock);
5913 
5914 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5915 		uint64_t intval;
5916 		const char *strval;
5917 		vdev_prop_t prop;
5918 		const char *propname = nvpair_name(elem);
5919 		zprop_type_t proptype;
5920 
5921 		switch (prop = vdev_name_to_prop(propname)) {
5922 		case VDEV_PROP_USERPROP:
5923 			if (vdev_prop_user(propname)) {
5924 				strval = fnvpair_value_string(elem);
5925 				if (strlen(strval) == 0) {
5926 					/* remove the property if value == "" */
5927 					(void) zap_remove(mos, objid, propname,
5928 					    tx);
5929 				} else {
5930 					VERIFY0(zap_update(mos, objid, propname,
5931 					    1, strlen(strval) + 1, strval, tx));
5932 				}
5933 				spa_history_log_internal(spa, "vdev set", tx,
5934 				    "vdev_guid=%llu: %s=%s",
5935 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5936 				    strval);
5937 			}
5938 			break;
5939 		default:
5940 			/* normalize the property name */
5941 			propname = vdev_prop_to_name(prop);
5942 			proptype = vdev_prop_get_type(prop);
5943 
5944 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5945 				ASSERT(proptype == PROP_TYPE_STRING);
5946 				strval = fnvpair_value_string(elem);
5947 				VERIFY0(zap_update(mos, objid, propname,
5948 				    1, strlen(strval) + 1, strval, tx));
5949 				spa_history_log_internal(spa, "vdev set", tx,
5950 				    "vdev_guid=%llu: %s=%s",
5951 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5952 				    strval);
5953 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5954 				intval = fnvpair_value_uint64(elem);
5955 
5956 				if (proptype == PROP_TYPE_INDEX) {
5957 					const char *unused;
5958 					VERIFY0(vdev_prop_index_to_string(
5959 					    prop, intval, &unused));
5960 				}
5961 				VERIFY0(zap_update(mos, objid, propname,
5962 				    sizeof (uint64_t), 1, &intval, tx));
5963 				spa_history_log_internal(spa, "vdev set", tx,
5964 				    "vdev_guid=%llu: %s=%lld",
5965 				    (u_longlong_t)vdev_guid,
5966 				    nvpair_name(elem), (longlong_t)intval);
5967 			} else {
5968 				panic("invalid vdev property type %u",
5969 				    nvpair_type(elem));
5970 			}
5971 		}
5972 
5973 	}
5974 
5975 	mutex_exit(&spa->spa_props_lock);
5976 }
5977 
5978 int
5979 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5980 {
5981 	spa_t *spa = vd->vdev_spa;
5982 	nvpair_t *elem = NULL;
5983 	uint64_t vdev_guid;
5984 	nvlist_t *nvprops;
5985 	int error = 0;
5986 
5987 	ASSERT(vd != NULL);
5988 
5989 	/* Check that vdev has a zap we can use */
5990 	if (vd->vdev_root_zap == 0 &&
5991 	    vd->vdev_top_zap == 0 &&
5992 	    vd->vdev_leaf_zap == 0)
5993 		return (SET_ERROR(EINVAL));
5994 
5995 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5996 	    &vdev_guid) != 0)
5997 		return (SET_ERROR(EINVAL));
5998 
5999 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
6000 	    &nvprops) != 0)
6001 		return (SET_ERROR(EINVAL));
6002 
6003 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
6004 		return (SET_ERROR(EINVAL));
6005 
6006 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6007 		const char *propname = nvpair_name(elem);
6008 		vdev_prop_t prop = vdev_name_to_prop(propname);
6009 		uint64_t intval = 0;
6010 		const char *strval = NULL;
6011 
6012 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
6013 			error = EINVAL;
6014 			goto end;
6015 		}
6016 
6017 		if (prop != VDEV_PROP_USERPROP && vdev_prop_readonly(prop)) {
6018 			error = EROFS;
6019 			goto end;
6020 		}
6021 
6022 		/* Special Processing */
6023 		switch (prop) {
6024 		case VDEV_PROP_PATH:
6025 			if (vd->vdev_path == NULL) {
6026 				error = EROFS;
6027 				break;
6028 			}
6029 			if (nvpair_value_string(elem, &strval) != 0) {
6030 				error = EINVAL;
6031 				break;
6032 			}
6033 			/* New path must start with /dev/ */
6034 			if (strncmp(strval, "/dev/", 5)) {
6035 				error = EINVAL;
6036 				break;
6037 			}
6038 			error = spa_vdev_setpath(spa, vdev_guid, strval);
6039 			break;
6040 		case VDEV_PROP_ALLOCATING:
6041 			if (nvpair_value_uint64(elem, &intval) != 0) {
6042 				error = EINVAL;
6043 				break;
6044 			}
6045 			if (intval != vd->vdev_noalloc)
6046 				break;
6047 			if (intval == 0)
6048 				error = spa_vdev_noalloc(spa, vdev_guid);
6049 			else
6050 				error = spa_vdev_alloc(spa, vdev_guid);
6051 			break;
6052 		case VDEV_PROP_FAILFAST:
6053 			if (nvpair_value_uint64(elem, &intval) != 0) {
6054 				error = EINVAL;
6055 				break;
6056 			}
6057 			vd->vdev_failfast = intval & 1;
6058 			break;
6059 		case VDEV_PROP_CHECKSUM_N:
6060 			if (nvpair_value_uint64(elem, &intval) != 0) {
6061 				error = EINVAL;
6062 				break;
6063 			}
6064 			vd->vdev_checksum_n = intval;
6065 			break;
6066 		case VDEV_PROP_CHECKSUM_T:
6067 			if (nvpair_value_uint64(elem, &intval) != 0) {
6068 				error = EINVAL;
6069 				break;
6070 			}
6071 			vd->vdev_checksum_t = intval;
6072 			break;
6073 		case VDEV_PROP_IO_N:
6074 			if (nvpair_value_uint64(elem, &intval) != 0) {
6075 				error = EINVAL;
6076 				break;
6077 			}
6078 			vd->vdev_io_n = intval;
6079 			break;
6080 		case VDEV_PROP_IO_T:
6081 			if (nvpair_value_uint64(elem, &intval) != 0) {
6082 				error = EINVAL;
6083 				break;
6084 			}
6085 			vd->vdev_io_t = intval;
6086 			break;
6087 		case VDEV_PROP_SLOW_IO_N:
6088 			if (nvpair_value_uint64(elem, &intval) != 0) {
6089 				error = EINVAL;
6090 				break;
6091 			}
6092 			vd->vdev_slow_io_n = intval;
6093 			break;
6094 		case VDEV_PROP_SLOW_IO_T:
6095 			if (nvpair_value_uint64(elem, &intval) != 0) {
6096 				error = EINVAL;
6097 				break;
6098 			}
6099 			vd->vdev_slow_io_t = intval;
6100 			break;
6101 		default:
6102 			/* Most processing is done in vdev_props_set_sync */
6103 			break;
6104 		}
6105 end:
6106 		if (error != 0) {
6107 			intval = error;
6108 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
6109 			return (error);
6110 		}
6111 	}
6112 
6113 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
6114 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
6115 }
6116 
6117 int
6118 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
6119 {
6120 	spa_t *spa = vd->vdev_spa;
6121 	objset_t *mos = spa->spa_meta_objset;
6122 	int err = 0;
6123 	uint64_t objid;
6124 	uint64_t vdev_guid;
6125 	nvpair_t *elem = NULL;
6126 	nvlist_t *nvprops = NULL;
6127 	uint64_t intval = 0;
6128 	char *strval = NULL;
6129 	const char *propname = NULL;
6130 	vdev_prop_t prop;
6131 
6132 	ASSERT(vd != NULL);
6133 	ASSERT(mos != NULL);
6134 
6135 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
6136 	    &vdev_guid) != 0)
6137 		return (SET_ERROR(EINVAL));
6138 
6139 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
6140 
6141 	if (vd->vdev_root_zap != 0) {
6142 		objid = vd->vdev_root_zap;
6143 	} else if (vd->vdev_top_zap != 0) {
6144 		objid = vd->vdev_top_zap;
6145 	} else if (vd->vdev_leaf_zap != 0) {
6146 		objid = vd->vdev_leaf_zap;
6147 	} else {
6148 		return (SET_ERROR(EINVAL));
6149 	}
6150 	ASSERT(objid != 0);
6151 
6152 	mutex_enter(&spa->spa_props_lock);
6153 
6154 	if (nvprops != NULL) {
6155 		char namebuf[64] = { 0 };
6156 
6157 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
6158 			intval = 0;
6159 			strval = NULL;
6160 			propname = nvpair_name(elem);
6161 			prop = vdev_name_to_prop(propname);
6162 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6163 			uint64_t integer_size, num_integers;
6164 
6165 			switch (prop) {
6166 			/* Special Read-only Properties */
6167 			case VDEV_PROP_NAME:
6168 				strval = vdev_name(vd, namebuf,
6169 				    sizeof (namebuf));
6170 				if (strval == NULL)
6171 					continue;
6172 				vdev_prop_add_list(outnvl, propname, strval, 0,
6173 				    ZPROP_SRC_NONE);
6174 				continue;
6175 			case VDEV_PROP_CAPACITY:
6176 				/* percent used */
6177 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
6178 				    (vd->vdev_stat.vs_alloc * 100 /
6179 				    vd->vdev_stat.vs_dspace);
6180 				vdev_prop_add_list(outnvl, propname, NULL,
6181 				    intval, ZPROP_SRC_NONE);
6182 				continue;
6183 			case VDEV_PROP_STATE:
6184 				vdev_prop_add_list(outnvl, propname, NULL,
6185 				    vd->vdev_state, ZPROP_SRC_NONE);
6186 				continue;
6187 			case VDEV_PROP_GUID:
6188 				vdev_prop_add_list(outnvl, propname, NULL,
6189 				    vd->vdev_guid, ZPROP_SRC_NONE);
6190 				continue;
6191 			case VDEV_PROP_ASIZE:
6192 				vdev_prop_add_list(outnvl, propname, NULL,
6193 				    vd->vdev_asize, ZPROP_SRC_NONE);
6194 				continue;
6195 			case VDEV_PROP_PSIZE:
6196 				vdev_prop_add_list(outnvl, propname, NULL,
6197 				    vd->vdev_psize, ZPROP_SRC_NONE);
6198 				continue;
6199 			case VDEV_PROP_ASHIFT:
6200 				vdev_prop_add_list(outnvl, propname, NULL,
6201 				    vd->vdev_ashift, ZPROP_SRC_NONE);
6202 				continue;
6203 			case VDEV_PROP_SIZE:
6204 				vdev_prop_add_list(outnvl, propname, NULL,
6205 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
6206 				continue;
6207 			case VDEV_PROP_FREE:
6208 				vdev_prop_add_list(outnvl, propname, NULL,
6209 				    vd->vdev_stat.vs_dspace -
6210 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6211 				continue;
6212 			case VDEV_PROP_ALLOCATED:
6213 				vdev_prop_add_list(outnvl, propname, NULL,
6214 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
6215 				continue;
6216 			case VDEV_PROP_EXPANDSZ:
6217 				vdev_prop_add_list(outnvl, propname, NULL,
6218 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
6219 				continue;
6220 			case VDEV_PROP_FRAGMENTATION:
6221 				vdev_prop_add_list(outnvl, propname, NULL,
6222 				    vd->vdev_stat.vs_fragmentation,
6223 				    ZPROP_SRC_NONE);
6224 				continue;
6225 			case VDEV_PROP_PARITY:
6226 				vdev_prop_add_list(outnvl, propname, NULL,
6227 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
6228 				continue;
6229 			case VDEV_PROP_PATH:
6230 				if (vd->vdev_path == NULL)
6231 					continue;
6232 				vdev_prop_add_list(outnvl, propname,
6233 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
6234 				continue;
6235 			case VDEV_PROP_DEVID:
6236 				if (vd->vdev_devid == NULL)
6237 					continue;
6238 				vdev_prop_add_list(outnvl, propname,
6239 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
6240 				continue;
6241 			case VDEV_PROP_PHYS_PATH:
6242 				if (vd->vdev_physpath == NULL)
6243 					continue;
6244 				vdev_prop_add_list(outnvl, propname,
6245 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
6246 				continue;
6247 			case VDEV_PROP_ENC_PATH:
6248 				if (vd->vdev_enc_sysfs_path == NULL)
6249 					continue;
6250 				vdev_prop_add_list(outnvl, propname,
6251 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
6252 				continue;
6253 			case VDEV_PROP_FRU:
6254 				if (vd->vdev_fru == NULL)
6255 					continue;
6256 				vdev_prop_add_list(outnvl, propname,
6257 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
6258 				continue;
6259 			case VDEV_PROP_PARENT:
6260 				if (vd->vdev_parent != NULL) {
6261 					strval = vdev_name(vd->vdev_parent,
6262 					    namebuf, sizeof (namebuf));
6263 					vdev_prop_add_list(outnvl, propname,
6264 					    strval, 0, ZPROP_SRC_NONE);
6265 				}
6266 				continue;
6267 			case VDEV_PROP_CHILDREN:
6268 				if (vd->vdev_children > 0)
6269 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6270 					    KM_SLEEP);
6271 				for (uint64_t i = 0; i < vd->vdev_children;
6272 				    i++) {
6273 					const char *vname;
6274 
6275 					vname = vdev_name(vd->vdev_child[i],
6276 					    namebuf, sizeof (namebuf));
6277 					if (vname == NULL)
6278 						vname = "(unknown)";
6279 					if (strlen(strval) > 0)
6280 						strlcat(strval, ",",
6281 						    ZAP_MAXVALUELEN);
6282 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6283 				}
6284 				if (strval != NULL) {
6285 					vdev_prop_add_list(outnvl, propname,
6286 					    strval, 0, ZPROP_SRC_NONE);
6287 					kmem_free(strval, ZAP_MAXVALUELEN);
6288 				}
6289 				continue;
6290 			case VDEV_PROP_NUMCHILDREN:
6291 				vdev_prop_add_list(outnvl, propname, NULL,
6292 				    vd->vdev_children, ZPROP_SRC_NONE);
6293 				continue;
6294 			case VDEV_PROP_READ_ERRORS:
6295 				vdev_prop_add_list(outnvl, propname, NULL,
6296 				    vd->vdev_stat.vs_read_errors,
6297 				    ZPROP_SRC_NONE);
6298 				continue;
6299 			case VDEV_PROP_WRITE_ERRORS:
6300 				vdev_prop_add_list(outnvl, propname, NULL,
6301 				    vd->vdev_stat.vs_write_errors,
6302 				    ZPROP_SRC_NONE);
6303 				continue;
6304 			case VDEV_PROP_CHECKSUM_ERRORS:
6305 				vdev_prop_add_list(outnvl, propname, NULL,
6306 				    vd->vdev_stat.vs_checksum_errors,
6307 				    ZPROP_SRC_NONE);
6308 				continue;
6309 			case VDEV_PROP_INITIALIZE_ERRORS:
6310 				vdev_prop_add_list(outnvl, propname, NULL,
6311 				    vd->vdev_stat.vs_initialize_errors,
6312 				    ZPROP_SRC_NONE);
6313 				continue;
6314 			case VDEV_PROP_TRIM_ERRORS:
6315 				vdev_prop_add_list(outnvl, propname, NULL,
6316 				    vd->vdev_stat.vs_trim_errors,
6317 				    ZPROP_SRC_NONE);
6318 				continue;
6319 			case VDEV_PROP_SLOW_IOS:
6320 				vdev_prop_add_list(outnvl, propname, NULL,
6321 				    vd->vdev_stat.vs_slow_ios,
6322 				    ZPROP_SRC_NONE);
6323 				continue;
6324 			case VDEV_PROP_OPS_NULL:
6325 				vdev_prop_add_list(outnvl, propname, NULL,
6326 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6327 				    ZPROP_SRC_NONE);
6328 				continue;
6329 			case VDEV_PROP_OPS_READ:
6330 				vdev_prop_add_list(outnvl, propname, NULL,
6331 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6332 				    ZPROP_SRC_NONE);
6333 				continue;
6334 			case VDEV_PROP_OPS_WRITE:
6335 				vdev_prop_add_list(outnvl, propname, NULL,
6336 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6337 				    ZPROP_SRC_NONE);
6338 				continue;
6339 			case VDEV_PROP_OPS_FREE:
6340 				vdev_prop_add_list(outnvl, propname, NULL,
6341 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6342 				    ZPROP_SRC_NONE);
6343 				continue;
6344 			case VDEV_PROP_OPS_CLAIM:
6345 				vdev_prop_add_list(outnvl, propname, NULL,
6346 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6347 				    ZPROP_SRC_NONE);
6348 				continue;
6349 			case VDEV_PROP_OPS_TRIM:
6350 				/*
6351 				 * TRIM ops and bytes are reported to user
6352 				 * space as ZIO_TYPE_FLUSH.  This is done to
6353 				 * preserve the vdev_stat_t structure layout
6354 				 * for user space.
6355 				 */
6356 				vdev_prop_add_list(outnvl, propname, NULL,
6357 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FLUSH],
6358 				    ZPROP_SRC_NONE);
6359 				continue;
6360 			case VDEV_PROP_BYTES_NULL:
6361 				vdev_prop_add_list(outnvl, propname, NULL,
6362 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6363 				    ZPROP_SRC_NONE);
6364 				continue;
6365 			case VDEV_PROP_BYTES_READ:
6366 				vdev_prop_add_list(outnvl, propname, NULL,
6367 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6368 				    ZPROP_SRC_NONE);
6369 				continue;
6370 			case VDEV_PROP_BYTES_WRITE:
6371 				vdev_prop_add_list(outnvl, propname, NULL,
6372 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6373 				    ZPROP_SRC_NONE);
6374 				continue;
6375 			case VDEV_PROP_BYTES_FREE:
6376 				vdev_prop_add_list(outnvl, propname, NULL,
6377 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6378 				    ZPROP_SRC_NONE);
6379 				continue;
6380 			case VDEV_PROP_BYTES_CLAIM:
6381 				vdev_prop_add_list(outnvl, propname, NULL,
6382 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6383 				    ZPROP_SRC_NONE);
6384 				continue;
6385 			case VDEV_PROP_BYTES_TRIM:
6386 				/*
6387 				 * TRIM ops and bytes are reported to user
6388 				 * space as ZIO_TYPE_FLUSH.  This is done to
6389 				 * preserve the vdev_stat_t structure layout
6390 				 * for user space.
6391 				 */
6392 				vdev_prop_add_list(outnvl, propname, NULL,
6393 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FLUSH],
6394 				    ZPROP_SRC_NONE);
6395 				continue;
6396 			case VDEV_PROP_REMOVING:
6397 				vdev_prop_add_list(outnvl, propname, NULL,
6398 				    vd->vdev_removing, ZPROP_SRC_NONE);
6399 				continue;
6400 			case VDEV_PROP_RAIDZ_EXPANDING:
6401 				/* Only expose this for raidz */
6402 				if (vd->vdev_ops == &vdev_raidz_ops) {
6403 					vdev_prop_add_list(outnvl, propname,
6404 					    NULL, vd->vdev_rz_expanding,
6405 					    ZPROP_SRC_NONE);
6406 				}
6407 				continue;
6408 			case VDEV_PROP_TRIM_SUPPORT:
6409 				/* only valid for leaf vdevs */
6410 				if (vd->vdev_ops->vdev_op_leaf) {
6411 					vdev_prop_add_list(outnvl, propname,
6412 					    NULL, vd->vdev_has_trim,
6413 					    ZPROP_SRC_NONE);
6414 				}
6415 				continue;
6416 			/* Numeric Properites */
6417 			case VDEV_PROP_ALLOCATING:
6418 				/* Leaf vdevs cannot have this property */
6419 				if (vd->vdev_mg == NULL &&
6420 				    vd->vdev_top != NULL) {
6421 					src = ZPROP_SRC_NONE;
6422 					intval = ZPROP_BOOLEAN_NA;
6423 				} else {
6424 					err = vdev_prop_get_int(vd, prop,
6425 					    &intval);
6426 					if (err && err != ENOENT)
6427 						break;
6428 
6429 					if (intval ==
6430 					    vdev_prop_default_numeric(prop))
6431 						src = ZPROP_SRC_DEFAULT;
6432 					else
6433 						src = ZPROP_SRC_LOCAL;
6434 				}
6435 
6436 				vdev_prop_add_list(outnvl, propname, NULL,
6437 				    intval, src);
6438 				break;
6439 			case VDEV_PROP_FAILFAST:
6440 				src = ZPROP_SRC_LOCAL;
6441 				strval = NULL;
6442 
6443 				err = zap_lookup(mos, objid, nvpair_name(elem),
6444 				    sizeof (uint64_t), 1, &intval);
6445 				if (err == ENOENT) {
6446 					intval = vdev_prop_default_numeric(
6447 					    prop);
6448 					err = 0;
6449 				} else if (err) {
6450 					break;
6451 				}
6452 				if (intval == vdev_prop_default_numeric(prop))
6453 					src = ZPROP_SRC_DEFAULT;
6454 
6455 				vdev_prop_add_list(outnvl, propname, strval,
6456 				    intval, src);
6457 				break;
6458 			case VDEV_PROP_CHECKSUM_N:
6459 			case VDEV_PROP_CHECKSUM_T:
6460 			case VDEV_PROP_IO_N:
6461 			case VDEV_PROP_IO_T:
6462 			case VDEV_PROP_SLOW_IO_N:
6463 			case VDEV_PROP_SLOW_IO_T:
6464 				err = vdev_prop_get_int(vd, prop, &intval);
6465 				if (err && err != ENOENT)
6466 					break;
6467 
6468 				if (intval == vdev_prop_default_numeric(prop))
6469 					src = ZPROP_SRC_DEFAULT;
6470 				else
6471 					src = ZPROP_SRC_LOCAL;
6472 
6473 				vdev_prop_add_list(outnvl, propname, NULL,
6474 				    intval, src);
6475 				break;
6476 			/* Text Properties */
6477 			case VDEV_PROP_COMMENT:
6478 				/* Exists in the ZAP below */
6479 				/* FALLTHRU */
6480 			case VDEV_PROP_USERPROP:
6481 				/* User Properites */
6482 				src = ZPROP_SRC_LOCAL;
6483 
6484 				err = zap_length(mos, objid, nvpair_name(elem),
6485 				    &integer_size, &num_integers);
6486 				if (err)
6487 					break;
6488 
6489 				switch (integer_size) {
6490 				case 8:
6491 					/* User properties cannot be integers */
6492 					err = EINVAL;
6493 					break;
6494 				case 1:
6495 					/* string property */
6496 					strval = kmem_alloc(num_integers,
6497 					    KM_SLEEP);
6498 					err = zap_lookup(mos, objid,
6499 					    nvpair_name(elem), 1,
6500 					    num_integers, strval);
6501 					if (err) {
6502 						kmem_free(strval,
6503 						    num_integers);
6504 						break;
6505 					}
6506 					vdev_prop_add_list(outnvl, propname,
6507 					    strval, 0, src);
6508 					kmem_free(strval, num_integers);
6509 					break;
6510 				}
6511 				break;
6512 			default:
6513 				err = ENOENT;
6514 				break;
6515 			}
6516 			if (err)
6517 				break;
6518 		}
6519 	} else {
6520 		/*
6521 		 * Get all properties from the MOS vdev property object.
6522 		 */
6523 		zap_cursor_t zc;
6524 		zap_attribute_t *za = zap_attribute_alloc();
6525 		for (zap_cursor_init(&zc, mos, objid);
6526 		    (err = zap_cursor_retrieve(&zc, za)) == 0;
6527 		    zap_cursor_advance(&zc)) {
6528 			intval = 0;
6529 			strval = NULL;
6530 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6531 			propname = za->za_name;
6532 
6533 			switch (za->za_integer_length) {
6534 			case 8:
6535 				/* We do not allow integer user properties */
6536 				/* This is likely an internal value */
6537 				break;
6538 			case 1:
6539 				/* string property */
6540 				strval = kmem_alloc(za->za_num_integers,
6541 				    KM_SLEEP);
6542 				err = zap_lookup(mos, objid, za->za_name, 1,
6543 				    za->za_num_integers, strval);
6544 				if (err) {
6545 					kmem_free(strval, za->za_num_integers);
6546 					break;
6547 				}
6548 				vdev_prop_add_list(outnvl, propname, strval, 0,
6549 				    src);
6550 				kmem_free(strval, za->za_num_integers);
6551 				break;
6552 
6553 			default:
6554 				break;
6555 			}
6556 		}
6557 		zap_cursor_fini(&zc);
6558 		zap_attribute_free(za);
6559 	}
6560 
6561 	mutex_exit(&spa->spa_props_lock);
6562 	if (err && err != ENOENT) {
6563 		return (err);
6564 	}
6565 
6566 	return (0);
6567 }
6568 
6569 EXPORT_SYMBOL(vdev_fault);
6570 EXPORT_SYMBOL(vdev_degrade);
6571 EXPORT_SYMBOL(vdev_online);
6572 EXPORT_SYMBOL(vdev_offline);
6573 EXPORT_SYMBOL(vdev_clear);
6574 
6575 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6576 	"Target number of metaslabs per top-level vdev");
6577 
6578 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6579 	"Default lower limit for metaslab size");
6580 
6581 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW,
6582 	"Default upper limit for metaslab size");
6583 
6584 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6585 	"Minimum number of metaslabs per top-level vdev");
6586 
6587 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6588 	"Practical upper limit of total metaslabs per top-level vdev");
6589 
6590 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6591 	"Rate limit slow IO (delay) events to this many per second");
6592 
6593 ZFS_MODULE_PARAM(zfs, zfs_, deadman_events_per_second, UINT, ZMOD_RW,
6594 	"Rate limit hung IO (deadman) events to this many per second");
6595 
6596 ZFS_MODULE_PARAM(zfs, zfs_, dio_write_verify_events_per_second, UINT, ZMOD_RW,
6597 	"Rate Direct I/O write verify events to this many per second");
6598 
6599 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, direct_write_verify, UINT, ZMOD_RW,
6600 	"Direct I/O writes will perform for checksum verification before "
6601 	"commiting write");
6602 
6603 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6604 	"Rate limit checksum events to this many checksum errors per second "
6605 	"(do not set below ZED threshold).");
6606 
6607 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6608 	"Ignore errors during resilver/scrub");
6609 
6610 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6611 	"Bypass vdev_validate()");
6612 
6613 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6614 	"Disable cache flushes");
6615 
6616 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6617 	"Minimum number of metaslabs required to dedicate one for log blocks");
6618 
6619 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6620 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6621 	"Minimum ashift used when creating new top-level vdevs");
6622 
6623 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6624 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6625 	"Maximum ashift used when optimizing for logical -> physical sector "
6626 	"size on new top-level vdevs");
6627 
6628 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, raidz_impl,
6629 		param_set_raidz_impl, param_get_raidz_impl, ZMOD_RW,
6630 		"RAIDZ implementation");
6631