1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 * Copyright 2017 Joyent, Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, Datto Inc. All rights reserved. 31 * Copyright (c) 2021, Klara Inc. 32 * Copyright [2021] Hewlett Packard Enterprise Development LP 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa.h> 38 #include <sys/spa_impl.h> 39 #include <sys/bpobj.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_rebuild.h> 45 #include <sys/vdev_draid.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/space_map.h> 50 #include <sys/space_reftree.h> 51 #include <sys/zio.h> 52 #include <sys/zap.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/arc.h> 55 #include <sys/zil.h> 56 #include <sys/dsl_scan.h> 57 #include <sys/vdev_raidz.h> 58 #include <sys/abd.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_trim.h> 61 #include <sys/zvol.h> 62 #include <sys/zfs_ratelimit.h> 63 #include "zfs_prop.h" 64 65 /* 66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are 67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are 68 * part of the spa_embedded_log_class. The metaslab with the most free space 69 * in each vdev is selected for this purpose when the pool is opened (or a 70 * vdev is added). See vdev_metaslab_init(). 71 * 72 * Log blocks can be allocated from the following locations. Each one is tried 73 * in order until the allocation succeeds: 74 * 1. dedicated log vdevs, aka "slog" (spa_log_class) 75 * 2. embedded slog metaslabs (spa_embedded_log_class) 76 * 3. other metaslabs in normal vdevs (spa_normal_class) 77 * 78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer 79 * than this number of metaslabs in the vdev. This ensures that we don't set 80 * aside an unreasonable amount of space for the ZIL. If set to less than 81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced 82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. 83 */ 84 static uint_t zfs_embedded_slog_min_ms = 64; 85 86 /* default target for number of metaslabs per top-level vdev */ 87 static uint_t zfs_vdev_default_ms_count = 200; 88 89 /* minimum number of metaslabs per top-level vdev */ 90 static uint_t zfs_vdev_min_ms_count = 16; 91 92 /* practical upper limit of total metaslabs per top-level vdev */ 93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; 94 95 /* lower limit for metaslab size (512M) */ 96 static uint_t zfs_vdev_default_ms_shift = 29; 97 98 /* upper limit for metaslab size (16G) */ 99 static const uint_t zfs_vdev_max_ms_shift = 34; 100 101 int vdev_validate_skip = B_FALSE; 102 103 /* 104 * Since the DTL space map of a vdev is not expected to have a lot of 105 * entries, we default its block size to 4K. 106 */ 107 int zfs_vdev_dtl_sm_blksz = (1 << 12); 108 109 /* 110 * Rate limit slow IO (delay) events to this many per second. 111 */ 112 static unsigned int zfs_slow_io_events_per_second = 20; 113 114 /* 115 * Rate limit checksum events after this many checksum errors per second. 116 */ 117 static unsigned int zfs_checksum_events_per_second = 20; 118 119 /* 120 * Ignore errors during scrub/resilver. Allows to work around resilver 121 * upon import when there are pool errors. 122 */ 123 static int zfs_scan_ignore_errors = 0; 124 125 /* 126 * vdev-wide space maps that have lots of entries written to them at 127 * the end of each transaction can benefit from a higher I/O bandwidth 128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. 129 */ 130 int zfs_vdev_standard_sm_blksz = (1 << 17); 131 132 /* 133 * Tunable parameter for debugging or performance analysis. Setting this 134 * will cause pool corruption on power loss if a volatile out-of-order 135 * write cache is enabled. 136 */ 137 int zfs_nocacheflush = 0; 138 139 /* 140 * Maximum and minimum ashift values that can be automatically set based on 141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX 142 * is higher than the maximum value, it is intentionally limited here to not 143 * excessively impact pool space efficiency. Higher ashift values may still 144 * be forced by vdev logical ashift or by user via ashift property, but won't 145 * be set automatically as a performance optimization. 146 */ 147 uint_t zfs_vdev_max_auto_ashift = 14; 148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; 149 150 void 151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) 152 { 153 va_list adx; 154 char buf[256]; 155 156 va_start(adx, fmt); 157 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 158 va_end(adx); 159 160 if (vd->vdev_path != NULL) { 161 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, 162 vd->vdev_path, buf); 163 } else { 164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", 165 vd->vdev_ops->vdev_op_type, 166 (u_longlong_t)vd->vdev_id, 167 (u_longlong_t)vd->vdev_guid, buf); 168 } 169 } 170 171 void 172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent) 173 { 174 char state[20]; 175 176 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { 177 zfs_dbgmsg("%*svdev %llu: %s", indent, "", 178 (u_longlong_t)vd->vdev_id, 179 vd->vdev_ops->vdev_op_type); 180 return; 181 } 182 183 switch (vd->vdev_state) { 184 case VDEV_STATE_UNKNOWN: 185 (void) snprintf(state, sizeof (state), "unknown"); 186 break; 187 case VDEV_STATE_CLOSED: 188 (void) snprintf(state, sizeof (state), "closed"); 189 break; 190 case VDEV_STATE_OFFLINE: 191 (void) snprintf(state, sizeof (state), "offline"); 192 break; 193 case VDEV_STATE_REMOVED: 194 (void) snprintf(state, sizeof (state), "removed"); 195 break; 196 case VDEV_STATE_CANT_OPEN: 197 (void) snprintf(state, sizeof (state), "can't open"); 198 break; 199 case VDEV_STATE_FAULTED: 200 (void) snprintf(state, sizeof (state), "faulted"); 201 break; 202 case VDEV_STATE_DEGRADED: 203 (void) snprintf(state, sizeof (state), "degraded"); 204 break; 205 case VDEV_STATE_HEALTHY: 206 (void) snprintf(state, sizeof (state), "healthy"); 207 break; 208 default: 209 (void) snprintf(state, sizeof (state), "<state %u>", 210 (uint_t)vd->vdev_state); 211 } 212 213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, 214 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, 215 vd->vdev_islog ? " (log)" : "", 216 (u_longlong_t)vd->vdev_guid, 217 vd->vdev_path ? vd->vdev_path : "N/A", state); 218 219 for (uint64_t i = 0; i < vd->vdev_children; i++) 220 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); 221 } 222 223 /* 224 * Virtual device management. 225 */ 226 227 static vdev_ops_t *const vdev_ops_table[] = { 228 &vdev_root_ops, 229 &vdev_raidz_ops, 230 &vdev_draid_ops, 231 &vdev_draid_spare_ops, 232 &vdev_mirror_ops, 233 &vdev_replacing_ops, 234 &vdev_spare_ops, 235 &vdev_disk_ops, 236 &vdev_file_ops, 237 &vdev_missing_ops, 238 &vdev_hole_ops, 239 &vdev_indirect_ops, 240 NULL 241 }; 242 243 /* 244 * Given a vdev type, return the appropriate ops vector. 245 */ 246 static vdev_ops_t * 247 vdev_getops(const char *type) 248 { 249 vdev_ops_t *ops, *const *opspp; 250 251 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 252 if (strcmp(ops->vdev_op_type, type) == 0) 253 break; 254 255 return (ops); 256 } 257 258 /* 259 * Given a vdev and a metaslab class, find which metaslab group we're 260 * interested in. All vdevs may belong to two different metaslab classes. 261 * Dedicated slog devices use only the primary metaslab group, rather than a 262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. 263 */ 264 metaslab_group_t * 265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) 266 { 267 if (mc == spa_embedded_log_class(vd->vdev_spa) && 268 vd->vdev_log_mg != NULL) 269 return (vd->vdev_log_mg); 270 else 271 return (vd->vdev_mg); 272 } 273 274 void 275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 276 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 277 { 278 (void) vd, (void) remain_rs; 279 280 physical_rs->rs_start = logical_rs->rs_start; 281 physical_rs->rs_end = logical_rs->rs_end; 282 } 283 284 /* 285 * Derive the enumerated allocation bias from string input. 286 * String origin is either the per-vdev zap or zpool(8). 287 */ 288 static vdev_alloc_bias_t 289 vdev_derive_alloc_bias(const char *bias) 290 { 291 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 292 293 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) 294 alloc_bias = VDEV_BIAS_LOG; 295 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) 296 alloc_bias = VDEV_BIAS_SPECIAL; 297 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) 298 alloc_bias = VDEV_BIAS_DEDUP; 299 300 return (alloc_bias); 301 } 302 303 /* 304 * Default asize function: return the MAX of psize with the asize of 305 * all children. This is what's used by anything other than RAID-Z. 306 */ 307 uint64_t 308 vdev_default_asize(vdev_t *vd, uint64_t psize) 309 { 310 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 311 uint64_t csize; 312 313 for (int c = 0; c < vd->vdev_children; c++) { 314 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 315 asize = MAX(asize, csize); 316 } 317 318 return (asize); 319 } 320 321 uint64_t 322 vdev_default_min_asize(vdev_t *vd) 323 { 324 return (vd->vdev_min_asize); 325 } 326 327 /* 328 * Get the minimum allocatable size. We define the allocatable size as 329 * the vdev's asize rounded to the nearest metaslab. This allows us to 330 * replace or attach devices which don't have the same physical size but 331 * can still satisfy the same number of allocations. 332 */ 333 uint64_t 334 vdev_get_min_asize(vdev_t *vd) 335 { 336 vdev_t *pvd = vd->vdev_parent; 337 338 /* 339 * If our parent is NULL (inactive spare or cache) or is the root, 340 * just return our own asize. 341 */ 342 if (pvd == NULL) 343 return (vd->vdev_asize); 344 345 /* 346 * The top-level vdev just returns the allocatable size rounded 347 * to the nearest metaslab. 348 */ 349 if (vd == vd->vdev_top) 350 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 351 352 return (pvd->vdev_ops->vdev_op_min_asize(pvd)); 353 } 354 355 void 356 vdev_set_min_asize(vdev_t *vd) 357 { 358 vd->vdev_min_asize = vdev_get_min_asize(vd); 359 360 for (int c = 0; c < vd->vdev_children; c++) 361 vdev_set_min_asize(vd->vdev_child[c]); 362 } 363 364 /* 365 * Get the minimal allocation size for the top-level vdev. 366 */ 367 uint64_t 368 vdev_get_min_alloc(vdev_t *vd) 369 { 370 uint64_t min_alloc = 1ULL << vd->vdev_ashift; 371 372 if (vd->vdev_ops->vdev_op_min_alloc != NULL) 373 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); 374 375 return (min_alloc); 376 } 377 378 /* 379 * Get the parity level for a top-level vdev. 380 */ 381 uint64_t 382 vdev_get_nparity(vdev_t *vd) 383 { 384 uint64_t nparity = 0; 385 386 if (vd->vdev_ops->vdev_op_nparity != NULL) 387 nparity = vd->vdev_ops->vdev_op_nparity(vd); 388 389 return (nparity); 390 } 391 392 static int 393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) 394 { 395 spa_t *spa = vd->vdev_spa; 396 objset_t *mos = spa->spa_meta_objset; 397 uint64_t objid; 398 int err; 399 400 if (vd->vdev_top_zap != 0) { 401 objid = vd->vdev_top_zap; 402 } else if (vd->vdev_leaf_zap != 0) { 403 objid = vd->vdev_leaf_zap; 404 } else { 405 return (EINVAL); 406 } 407 408 err = zap_lookup(mos, objid, vdev_prop_to_name(prop), 409 sizeof (uint64_t), 1, value); 410 411 if (err == ENOENT) 412 *value = vdev_prop_default_numeric(prop); 413 414 return (err); 415 } 416 417 /* 418 * Get the number of data disks for a top-level vdev. 419 */ 420 uint64_t 421 vdev_get_ndisks(vdev_t *vd) 422 { 423 uint64_t ndisks = 1; 424 425 if (vd->vdev_ops->vdev_op_ndisks != NULL) 426 ndisks = vd->vdev_ops->vdev_op_ndisks(vd); 427 428 return (ndisks); 429 } 430 431 vdev_t * 432 vdev_lookup_top(spa_t *spa, uint64_t vdev) 433 { 434 vdev_t *rvd = spa->spa_root_vdev; 435 436 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 437 438 if (vdev < rvd->vdev_children) { 439 ASSERT(rvd->vdev_child[vdev] != NULL); 440 return (rvd->vdev_child[vdev]); 441 } 442 443 return (NULL); 444 } 445 446 vdev_t * 447 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 448 { 449 vdev_t *mvd; 450 451 if (vd->vdev_guid == guid) 452 return (vd); 453 454 for (int c = 0; c < vd->vdev_children; c++) 455 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 456 NULL) 457 return (mvd); 458 459 return (NULL); 460 } 461 462 static int 463 vdev_count_leaves_impl(vdev_t *vd) 464 { 465 int n = 0; 466 467 if (vd->vdev_ops->vdev_op_leaf) 468 return (1); 469 470 for (int c = 0; c < vd->vdev_children; c++) 471 n += vdev_count_leaves_impl(vd->vdev_child[c]); 472 473 return (n); 474 } 475 476 int 477 vdev_count_leaves(spa_t *spa) 478 { 479 int rc; 480 481 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 482 rc = vdev_count_leaves_impl(spa->spa_root_vdev); 483 spa_config_exit(spa, SCL_VDEV, FTAG); 484 485 return (rc); 486 } 487 488 void 489 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 490 { 491 size_t oldsize, newsize; 492 uint64_t id = cvd->vdev_id; 493 vdev_t **newchild; 494 495 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 496 ASSERT(cvd->vdev_parent == NULL); 497 498 cvd->vdev_parent = pvd; 499 500 if (pvd == NULL) 501 return; 502 503 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 504 505 oldsize = pvd->vdev_children * sizeof (vdev_t *); 506 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 507 newsize = pvd->vdev_children * sizeof (vdev_t *); 508 509 newchild = kmem_alloc(newsize, KM_SLEEP); 510 if (pvd->vdev_child != NULL) { 511 memcpy(newchild, pvd->vdev_child, oldsize); 512 kmem_free(pvd->vdev_child, oldsize); 513 } 514 515 pvd->vdev_child = newchild; 516 pvd->vdev_child[id] = cvd; 517 518 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 519 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 520 521 /* 522 * Walk up all ancestors to update guid sum. 523 */ 524 for (; pvd != NULL; pvd = pvd->vdev_parent) 525 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 526 527 if (cvd->vdev_ops->vdev_op_leaf) { 528 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); 529 cvd->vdev_spa->spa_leaf_list_gen++; 530 } 531 } 532 533 void 534 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 535 { 536 int c; 537 uint_t id = cvd->vdev_id; 538 539 ASSERT(cvd->vdev_parent == pvd); 540 541 if (pvd == NULL) 542 return; 543 544 ASSERT(id < pvd->vdev_children); 545 ASSERT(pvd->vdev_child[id] == cvd); 546 547 pvd->vdev_child[id] = NULL; 548 cvd->vdev_parent = NULL; 549 550 for (c = 0; c < pvd->vdev_children; c++) 551 if (pvd->vdev_child[c]) 552 break; 553 554 if (c == pvd->vdev_children) { 555 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 556 pvd->vdev_child = NULL; 557 pvd->vdev_children = 0; 558 } 559 560 if (cvd->vdev_ops->vdev_op_leaf) { 561 spa_t *spa = cvd->vdev_spa; 562 list_remove(&spa->spa_leaf_list, cvd); 563 spa->spa_leaf_list_gen++; 564 } 565 566 /* 567 * Walk up all ancestors to update guid sum. 568 */ 569 for (; pvd != NULL; pvd = pvd->vdev_parent) 570 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 571 } 572 573 /* 574 * Remove any holes in the child array. 575 */ 576 void 577 vdev_compact_children(vdev_t *pvd) 578 { 579 vdev_t **newchild, *cvd; 580 int oldc = pvd->vdev_children; 581 int newc; 582 583 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 584 585 if (oldc == 0) 586 return; 587 588 for (int c = newc = 0; c < oldc; c++) 589 if (pvd->vdev_child[c]) 590 newc++; 591 592 if (newc > 0) { 593 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); 594 595 for (int c = newc = 0; c < oldc; c++) { 596 if ((cvd = pvd->vdev_child[c]) != NULL) { 597 newchild[newc] = cvd; 598 cvd->vdev_id = newc++; 599 } 600 } 601 } else { 602 newchild = NULL; 603 } 604 605 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 606 pvd->vdev_child = newchild; 607 pvd->vdev_children = newc; 608 } 609 610 /* 611 * Allocate and minimally initialize a vdev_t. 612 */ 613 vdev_t * 614 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 615 { 616 vdev_t *vd; 617 vdev_indirect_config_t *vic; 618 619 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 620 vic = &vd->vdev_indirect_config; 621 622 if (spa->spa_root_vdev == NULL) { 623 ASSERT(ops == &vdev_root_ops); 624 spa->spa_root_vdev = vd; 625 spa->spa_load_guid = spa_generate_guid(NULL); 626 } 627 628 if (guid == 0 && ops != &vdev_hole_ops) { 629 if (spa->spa_root_vdev == vd) { 630 /* 631 * The root vdev's guid will also be the pool guid, 632 * which must be unique among all pools. 633 */ 634 guid = spa_generate_guid(NULL); 635 } else { 636 /* 637 * Any other vdev's guid must be unique within the pool. 638 */ 639 guid = spa_generate_guid(spa); 640 } 641 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 642 } 643 644 vd->vdev_spa = spa; 645 vd->vdev_id = id; 646 vd->vdev_guid = guid; 647 vd->vdev_guid_sum = guid; 648 vd->vdev_ops = ops; 649 vd->vdev_state = VDEV_STATE_CLOSED; 650 vd->vdev_ishole = (ops == &vdev_hole_ops); 651 vic->vic_prev_indirect_vdev = UINT64_MAX; 652 653 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); 654 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); 655 vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, 656 0, 0); 657 658 /* 659 * Initialize rate limit structs for events. We rate limit ZIO delay 660 * and checksum events so that we don't overwhelm ZED with thousands 661 * of events when a disk is acting up. 662 */ 663 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, 664 1); 665 zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, 666 1); 667 zfs_ratelimit_init(&vd->vdev_checksum_rl, 668 &zfs_checksum_events_per_second, 1); 669 670 /* 671 * Default Thresholds for tuning ZED 672 */ 673 vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); 674 vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); 675 vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); 676 vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); 677 678 list_link_init(&vd->vdev_config_dirty_node); 679 list_link_init(&vd->vdev_state_dirty_node); 680 list_link_init(&vd->vdev_initialize_node); 681 list_link_init(&vd->vdev_leaf_node); 682 list_link_init(&vd->vdev_trim_node); 683 684 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); 685 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 686 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 687 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); 688 689 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); 690 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); 691 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); 692 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); 693 694 mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); 695 mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); 696 mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); 697 cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); 698 cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); 699 cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); 700 cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); 701 702 mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); 703 cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); 704 705 for (int t = 0; t < DTL_TYPES; t++) { 706 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 707 0); 708 } 709 710 txg_list_create(&vd->vdev_ms_list, spa, 711 offsetof(struct metaslab, ms_txg_node)); 712 txg_list_create(&vd->vdev_dtl_list, spa, 713 offsetof(struct vdev, vdev_dtl_node)); 714 vd->vdev_stat.vs_timestamp = gethrtime(); 715 vdev_queue_init(vd); 716 vdev_cache_init(vd); 717 718 return (vd); 719 } 720 721 /* 722 * Allocate a new vdev. The 'alloctype' is used to control whether we are 723 * creating a new vdev or loading an existing one - the behavior is slightly 724 * different for each case. 725 */ 726 int 727 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 728 int alloctype) 729 { 730 vdev_ops_t *ops; 731 const char *type; 732 uint64_t guid = 0, islog; 733 vdev_t *vd; 734 vdev_indirect_config_t *vic; 735 const char *tmp = NULL; 736 int rc; 737 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; 738 boolean_t top_level = (parent && !parent->vdev_parent); 739 740 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 741 742 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 743 return (SET_ERROR(EINVAL)); 744 745 if ((ops = vdev_getops(type)) == NULL) 746 return (SET_ERROR(EINVAL)); 747 748 /* 749 * If this is a load, get the vdev guid from the nvlist. 750 * Otherwise, vdev_alloc_common() will generate one for us. 751 */ 752 if (alloctype == VDEV_ALLOC_LOAD) { 753 uint64_t label_id; 754 755 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 756 label_id != id) 757 return (SET_ERROR(EINVAL)); 758 759 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 760 return (SET_ERROR(EINVAL)); 761 } else if (alloctype == VDEV_ALLOC_SPARE) { 762 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 763 return (SET_ERROR(EINVAL)); 764 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 765 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 766 return (SET_ERROR(EINVAL)); 767 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 768 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 769 return (SET_ERROR(EINVAL)); 770 } 771 772 /* 773 * The first allocated vdev must be of type 'root'. 774 */ 775 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 776 return (SET_ERROR(EINVAL)); 777 778 /* 779 * Determine whether we're a log vdev. 780 */ 781 islog = 0; 782 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 783 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 784 return (SET_ERROR(ENOTSUP)); 785 786 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 787 return (SET_ERROR(ENOTSUP)); 788 789 if (top_level && alloctype == VDEV_ALLOC_ADD) { 790 const char *bias; 791 792 /* 793 * If creating a top-level vdev, check for allocation 794 * classes input. 795 */ 796 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 797 &bias) == 0) { 798 alloc_bias = vdev_derive_alloc_bias(bias); 799 800 /* spa_vdev_add() expects feature to be enabled */ 801 if (spa->spa_load_state != SPA_LOAD_CREATE && 802 !spa_feature_is_enabled(spa, 803 SPA_FEATURE_ALLOCATION_CLASSES)) { 804 return (SET_ERROR(ENOTSUP)); 805 } 806 } 807 808 /* spa_vdev_add() expects feature to be enabled */ 809 if (ops == &vdev_draid_ops && 810 spa->spa_load_state != SPA_LOAD_CREATE && 811 !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { 812 return (SET_ERROR(ENOTSUP)); 813 } 814 } 815 816 /* 817 * Initialize the vdev specific data. This is done before calling 818 * vdev_alloc_common() since it may fail and this simplifies the 819 * error reporting and cleanup code paths. 820 */ 821 void *tsd = NULL; 822 if (ops->vdev_op_init != NULL) { 823 rc = ops->vdev_op_init(spa, nv, &tsd); 824 if (rc != 0) { 825 return (rc); 826 } 827 } 828 829 vd = vdev_alloc_common(spa, id, guid, ops); 830 vd->vdev_tsd = tsd; 831 vd->vdev_islog = islog; 832 833 if (top_level && alloc_bias != VDEV_BIAS_NONE) 834 vd->vdev_alloc_bias = alloc_bias; 835 836 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) 837 vd->vdev_path = spa_strdup(tmp); 838 839 /* 840 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a 841 * fault on a vdev and want it to persist across imports (like with 842 * zpool offline -f). 843 */ 844 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); 845 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { 846 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 847 vd->vdev_faulted = 1; 848 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 849 } 850 851 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) 852 vd->vdev_devid = spa_strdup(tmp); 853 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) 854 vd->vdev_physpath = spa_strdup(tmp); 855 856 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 857 &tmp) == 0) 858 vd->vdev_enc_sysfs_path = spa_strdup(tmp); 859 860 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) 861 vd->vdev_fru = spa_strdup(tmp); 862 863 /* 864 * Set the whole_disk property. If it's not specified, leave the value 865 * as -1. 866 */ 867 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 868 &vd->vdev_wholedisk) != 0) 869 vd->vdev_wholedisk = -1ULL; 870 871 vic = &vd->vdev_indirect_config; 872 873 ASSERT0(vic->vic_mapping_object); 874 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 875 &vic->vic_mapping_object); 876 ASSERT0(vic->vic_births_object); 877 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 878 &vic->vic_births_object); 879 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); 880 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 881 &vic->vic_prev_indirect_vdev); 882 883 /* 884 * Look for the 'not present' flag. This will only be set if the device 885 * was not present at the time of import. 886 */ 887 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 888 &vd->vdev_not_present); 889 890 /* 891 * Get the alignment requirement. 892 */ 893 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 894 895 /* 896 * Retrieve the vdev creation time. 897 */ 898 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 899 &vd->vdev_crtxg); 900 901 /* 902 * If we're a top-level vdev, try to load the allocation parameters. 903 */ 904 if (top_level && 905 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 906 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 907 &vd->vdev_ms_array); 908 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 909 &vd->vdev_ms_shift); 910 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 911 &vd->vdev_asize); 912 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, 913 &vd->vdev_noalloc); 914 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 915 &vd->vdev_removing); 916 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 917 &vd->vdev_top_zap); 918 } else { 919 ASSERT0(vd->vdev_top_zap); 920 } 921 922 if (top_level && alloctype != VDEV_ALLOC_ATTACH) { 923 ASSERT(alloctype == VDEV_ALLOC_LOAD || 924 alloctype == VDEV_ALLOC_ADD || 925 alloctype == VDEV_ALLOC_SPLIT || 926 alloctype == VDEV_ALLOC_ROOTPOOL); 927 /* Note: metaslab_group_create() is now deferred */ 928 } 929 930 if (vd->vdev_ops->vdev_op_leaf && 931 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 932 (void) nvlist_lookup_uint64(nv, 933 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); 934 } else { 935 ASSERT0(vd->vdev_leaf_zap); 936 } 937 938 /* 939 * If we're a leaf vdev, try to load the DTL object and other state. 940 */ 941 942 if (vd->vdev_ops->vdev_op_leaf && 943 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 944 alloctype == VDEV_ALLOC_ROOTPOOL)) { 945 if (alloctype == VDEV_ALLOC_LOAD) { 946 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 947 &vd->vdev_dtl_object); 948 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 949 &vd->vdev_unspare); 950 } 951 952 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 953 uint64_t spare = 0; 954 955 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 956 &spare) == 0 && spare) 957 spa_spare_add(vd); 958 } 959 960 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 961 &vd->vdev_offline); 962 963 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 964 &vd->vdev_resilver_txg); 965 966 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 967 &vd->vdev_rebuild_txg); 968 969 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) 970 vdev_defer_resilver(vd); 971 972 /* 973 * In general, when importing a pool we want to ignore the 974 * persistent fault state, as the diagnosis made on another 975 * system may not be valid in the current context. The only 976 * exception is if we forced a vdev to a persistently faulted 977 * state with 'zpool offline -f'. The persistent fault will 978 * remain across imports until cleared. 979 * 980 * Local vdevs will remain in the faulted state. 981 */ 982 if (spa_load_state(spa) == SPA_LOAD_OPEN || 983 spa_load_state(spa) == SPA_LOAD_IMPORT) { 984 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 985 &vd->vdev_faulted); 986 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 987 &vd->vdev_degraded); 988 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 989 &vd->vdev_removed); 990 991 if (vd->vdev_faulted || vd->vdev_degraded) { 992 const char *aux; 993 994 vd->vdev_label_aux = 995 VDEV_AUX_ERR_EXCEEDED; 996 if (nvlist_lookup_string(nv, 997 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 998 strcmp(aux, "external") == 0) 999 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 1000 else 1001 vd->vdev_faulted = 0ULL; 1002 } 1003 } 1004 } 1005 1006 /* 1007 * Add ourselves to the parent's list of children. 1008 */ 1009 vdev_add_child(parent, vd); 1010 1011 *vdp = vd; 1012 1013 return (0); 1014 } 1015 1016 void 1017 vdev_free(vdev_t *vd) 1018 { 1019 spa_t *spa = vd->vdev_spa; 1020 1021 ASSERT3P(vd->vdev_initialize_thread, ==, NULL); 1022 ASSERT3P(vd->vdev_trim_thread, ==, NULL); 1023 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); 1024 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); 1025 1026 /* 1027 * Scan queues are normally destroyed at the end of a scan. If the 1028 * queue exists here, that implies the vdev is being removed while 1029 * the scan is still running. 1030 */ 1031 if (vd->vdev_scan_io_queue != NULL) { 1032 mutex_enter(&vd->vdev_scan_io_queue_lock); 1033 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); 1034 vd->vdev_scan_io_queue = NULL; 1035 mutex_exit(&vd->vdev_scan_io_queue_lock); 1036 } 1037 1038 /* 1039 * vdev_free() implies closing the vdev first. This is simpler than 1040 * trying to ensure complicated semantics for all callers. 1041 */ 1042 vdev_close(vd); 1043 1044 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 1045 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 1046 1047 /* 1048 * Free all children. 1049 */ 1050 for (int c = 0; c < vd->vdev_children; c++) 1051 vdev_free(vd->vdev_child[c]); 1052 1053 ASSERT(vd->vdev_child == NULL); 1054 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 1055 1056 if (vd->vdev_ops->vdev_op_fini != NULL) 1057 vd->vdev_ops->vdev_op_fini(vd); 1058 1059 /* 1060 * Discard allocation state. 1061 */ 1062 if (vd->vdev_mg != NULL) { 1063 vdev_metaslab_fini(vd); 1064 metaslab_group_destroy(vd->vdev_mg); 1065 vd->vdev_mg = NULL; 1066 } 1067 if (vd->vdev_log_mg != NULL) { 1068 ASSERT0(vd->vdev_ms_count); 1069 metaslab_group_destroy(vd->vdev_log_mg); 1070 vd->vdev_log_mg = NULL; 1071 } 1072 1073 ASSERT0(vd->vdev_stat.vs_space); 1074 ASSERT0(vd->vdev_stat.vs_dspace); 1075 ASSERT0(vd->vdev_stat.vs_alloc); 1076 1077 /* 1078 * Remove this vdev from its parent's child list. 1079 */ 1080 vdev_remove_child(vd->vdev_parent, vd); 1081 1082 ASSERT(vd->vdev_parent == NULL); 1083 ASSERT(!list_link_active(&vd->vdev_leaf_node)); 1084 1085 /* 1086 * Clean up vdev structure. 1087 */ 1088 vdev_queue_fini(vd); 1089 vdev_cache_fini(vd); 1090 1091 if (vd->vdev_path) 1092 spa_strfree(vd->vdev_path); 1093 if (vd->vdev_devid) 1094 spa_strfree(vd->vdev_devid); 1095 if (vd->vdev_physpath) 1096 spa_strfree(vd->vdev_physpath); 1097 1098 if (vd->vdev_enc_sysfs_path) 1099 spa_strfree(vd->vdev_enc_sysfs_path); 1100 1101 if (vd->vdev_fru) 1102 spa_strfree(vd->vdev_fru); 1103 1104 if (vd->vdev_isspare) 1105 spa_spare_remove(vd); 1106 if (vd->vdev_isl2cache) 1107 spa_l2cache_remove(vd); 1108 1109 txg_list_destroy(&vd->vdev_ms_list); 1110 txg_list_destroy(&vd->vdev_dtl_list); 1111 1112 mutex_enter(&vd->vdev_dtl_lock); 1113 space_map_close(vd->vdev_dtl_sm); 1114 for (int t = 0; t < DTL_TYPES; t++) { 1115 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 1116 range_tree_destroy(vd->vdev_dtl[t]); 1117 } 1118 mutex_exit(&vd->vdev_dtl_lock); 1119 1120 EQUIV(vd->vdev_indirect_births != NULL, 1121 vd->vdev_indirect_mapping != NULL); 1122 if (vd->vdev_indirect_births != NULL) { 1123 vdev_indirect_mapping_close(vd->vdev_indirect_mapping); 1124 vdev_indirect_births_close(vd->vdev_indirect_births); 1125 } 1126 1127 if (vd->vdev_obsolete_sm != NULL) { 1128 ASSERT(vd->vdev_removing || 1129 vd->vdev_ops == &vdev_indirect_ops); 1130 space_map_close(vd->vdev_obsolete_sm); 1131 vd->vdev_obsolete_sm = NULL; 1132 } 1133 range_tree_destroy(vd->vdev_obsolete_segments); 1134 rw_destroy(&vd->vdev_indirect_rwlock); 1135 mutex_destroy(&vd->vdev_obsolete_lock); 1136 1137 mutex_destroy(&vd->vdev_dtl_lock); 1138 mutex_destroy(&vd->vdev_stat_lock); 1139 mutex_destroy(&vd->vdev_probe_lock); 1140 mutex_destroy(&vd->vdev_scan_io_queue_lock); 1141 1142 mutex_destroy(&vd->vdev_initialize_lock); 1143 mutex_destroy(&vd->vdev_initialize_io_lock); 1144 cv_destroy(&vd->vdev_initialize_io_cv); 1145 cv_destroy(&vd->vdev_initialize_cv); 1146 1147 mutex_destroy(&vd->vdev_trim_lock); 1148 mutex_destroy(&vd->vdev_autotrim_lock); 1149 mutex_destroy(&vd->vdev_trim_io_lock); 1150 cv_destroy(&vd->vdev_trim_cv); 1151 cv_destroy(&vd->vdev_autotrim_cv); 1152 cv_destroy(&vd->vdev_autotrim_kick_cv); 1153 cv_destroy(&vd->vdev_trim_io_cv); 1154 1155 mutex_destroy(&vd->vdev_rebuild_lock); 1156 cv_destroy(&vd->vdev_rebuild_cv); 1157 1158 zfs_ratelimit_fini(&vd->vdev_delay_rl); 1159 zfs_ratelimit_fini(&vd->vdev_deadman_rl); 1160 zfs_ratelimit_fini(&vd->vdev_checksum_rl); 1161 1162 if (vd == spa->spa_root_vdev) 1163 spa->spa_root_vdev = NULL; 1164 1165 kmem_free(vd, sizeof (vdev_t)); 1166 } 1167 1168 /* 1169 * Transfer top-level vdev state from svd to tvd. 1170 */ 1171 static void 1172 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 1173 { 1174 spa_t *spa = svd->vdev_spa; 1175 metaslab_t *msp; 1176 vdev_t *vd; 1177 int t; 1178 1179 ASSERT(tvd == tvd->vdev_top); 1180 1181 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite; 1182 tvd->vdev_ms_array = svd->vdev_ms_array; 1183 tvd->vdev_ms_shift = svd->vdev_ms_shift; 1184 tvd->vdev_ms_count = svd->vdev_ms_count; 1185 tvd->vdev_top_zap = svd->vdev_top_zap; 1186 1187 svd->vdev_ms_array = 0; 1188 svd->vdev_ms_shift = 0; 1189 svd->vdev_ms_count = 0; 1190 svd->vdev_top_zap = 0; 1191 1192 if (tvd->vdev_mg) 1193 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 1194 if (tvd->vdev_log_mg) 1195 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); 1196 tvd->vdev_mg = svd->vdev_mg; 1197 tvd->vdev_log_mg = svd->vdev_log_mg; 1198 tvd->vdev_ms = svd->vdev_ms; 1199 1200 svd->vdev_mg = NULL; 1201 svd->vdev_log_mg = NULL; 1202 svd->vdev_ms = NULL; 1203 1204 if (tvd->vdev_mg != NULL) 1205 tvd->vdev_mg->mg_vd = tvd; 1206 if (tvd->vdev_log_mg != NULL) 1207 tvd->vdev_log_mg->mg_vd = tvd; 1208 1209 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; 1210 svd->vdev_checkpoint_sm = NULL; 1211 1212 tvd->vdev_alloc_bias = svd->vdev_alloc_bias; 1213 svd->vdev_alloc_bias = VDEV_BIAS_NONE; 1214 1215 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 1216 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 1217 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 1218 1219 svd->vdev_stat.vs_alloc = 0; 1220 svd->vdev_stat.vs_space = 0; 1221 svd->vdev_stat.vs_dspace = 0; 1222 1223 /* 1224 * State which may be set on a top-level vdev that's in the 1225 * process of being removed. 1226 */ 1227 ASSERT0(tvd->vdev_indirect_config.vic_births_object); 1228 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); 1229 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); 1230 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); 1231 ASSERT3P(tvd->vdev_indirect_births, ==, NULL); 1232 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); 1233 ASSERT0(tvd->vdev_noalloc); 1234 ASSERT0(tvd->vdev_removing); 1235 ASSERT0(tvd->vdev_rebuilding); 1236 tvd->vdev_noalloc = svd->vdev_noalloc; 1237 tvd->vdev_removing = svd->vdev_removing; 1238 tvd->vdev_rebuilding = svd->vdev_rebuilding; 1239 tvd->vdev_rebuild_config = svd->vdev_rebuild_config; 1240 tvd->vdev_indirect_config = svd->vdev_indirect_config; 1241 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; 1242 tvd->vdev_indirect_births = svd->vdev_indirect_births; 1243 range_tree_swap(&svd->vdev_obsolete_segments, 1244 &tvd->vdev_obsolete_segments); 1245 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; 1246 svd->vdev_indirect_config.vic_mapping_object = 0; 1247 svd->vdev_indirect_config.vic_births_object = 0; 1248 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; 1249 svd->vdev_indirect_mapping = NULL; 1250 svd->vdev_indirect_births = NULL; 1251 svd->vdev_obsolete_sm = NULL; 1252 svd->vdev_noalloc = 0; 1253 svd->vdev_removing = 0; 1254 svd->vdev_rebuilding = 0; 1255 1256 for (t = 0; t < TXG_SIZE; t++) { 1257 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 1258 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 1259 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 1260 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 1261 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 1262 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 1263 } 1264 1265 if (list_link_active(&svd->vdev_config_dirty_node)) { 1266 vdev_config_clean(svd); 1267 vdev_config_dirty(tvd); 1268 } 1269 1270 if (list_link_active(&svd->vdev_state_dirty_node)) { 1271 vdev_state_clean(svd); 1272 vdev_state_dirty(tvd); 1273 } 1274 1275 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 1276 svd->vdev_deflate_ratio = 0; 1277 1278 tvd->vdev_islog = svd->vdev_islog; 1279 svd->vdev_islog = 0; 1280 1281 dsl_scan_io_queue_vdev_xfer(svd, tvd); 1282 } 1283 1284 static void 1285 vdev_top_update(vdev_t *tvd, vdev_t *vd) 1286 { 1287 if (vd == NULL) 1288 return; 1289 1290 vd->vdev_top = tvd; 1291 1292 for (int c = 0; c < vd->vdev_children; c++) 1293 vdev_top_update(tvd, vd->vdev_child[c]); 1294 } 1295 1296 /* 1297 * Add a mirror/replacing vdev above an existing vdev. There is no need to 1298 * call .vdev_op_init() since mirror/replacing vdevs do not have private state. 1299 */ 1300 vdev_t * 1301 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 1302 { 1303 spa_t *spa = cvd->vdev_spa; 1304 vdev_t *pvd = cvd->vdev_parent; 1305 vdev_t *mvd; 1306 1307 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1308 1309 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 1310 1311 mvd->vdev_asize = cvd->vdev_asize; 1312 mvd->vdev_min_asize = cvd->vdev_min_asize; 1313 mvd->vdev_max_asize = cvd->vdev_max_asize; 1314 mvd->vdev_psize = cvd->vdev_psize; 1315 mvd->vdev_ashift = cvd->vdev_ashift; 1316 mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; 1317 mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; 1318 mvd->vdev_state = cvd->vdev_state; 1319 mvd->vdev_crtxg = cvd->vdev_crtxg; 1320 1321 vdev_remove_child(pvd, cvd); 1322 vdev_add_child(pvd, mvd); 1323 cvd->vdev_id = mvd->vdev_children; 1324 vdev_add_child(mvd, cvd); 1325 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1326 1327 if (mvd == mvd->vdev_top) 1328 vdev_top_transfer(cvd, mvd); 1329 1330 return (mvd); 1331 } 1332 1333 /* 1334 * Remove a 1-way mirror/replacing vdev from the tree. 1335 */ 1336 void 1337 vdev_remove_parent(vdev_t *cvd) 1338 { 1339 vdev_t *mvd = cvd->vdev_parent; 1340 vdev_t *pvd = mvd->vdev_parent; 1341 1342 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1343 1344 ASSERT(mvd->vdev_children == 1); 1345 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 1346 mvd->vdev_ops == &vdev_replacing_ops || 1347 mvd->vdev_ops == &vdev_spare_ops); 1348 cvd->vdev_ashift = mvd->vdev_ashift; 1349 cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; 1350 cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; 1351 vdev_remove_child(mvd, cvd); 1352 vdev_remove_child(pvd, mvd); 1353 1354 /* 1355 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 1356 * Otherwise, we could have detached an offline device, and when we 1357 * go to import the pool we'll think we have two top-level vdevs, 1358 * instead of a different version of the same top-level vdev. 1359 */ 1360 if (mvd->vdev_top == mvd) { 1361 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 1362 cvd->vdev_orig_guid = cvd->vdev_guid; 1363 cvd->vdev_guid += guid_delta; 1364 cvd->vdev_guid_sum += guid_delta; 1365 1366 /* 1367 * If pool not set for autoexpand, we need to also preserve 1368 * mvd's asize to prevent automatic expansion of cvd. 1369 * Otherwise if we are adjusting the mirror by attaching and 1370 * detaching children of non-uniform sizes, the mirror could 1371 * autoexpand, unexpectedly requiring larger devices to 1372 * re-establish the mirror. 1373 */ 1374 if (!cvd->vdev_spa->spa_autoexpand) 1375 cvd->vdev_asize = mvd->vdev_asize; 1376 } 1377 cvd->vdev_id = mvd->vdev_id; 1378 vdev_add_child(pvd, cvd); 1379 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 1380 1381 if (cvd == cvd->vdev_top) 1382 vdev_top_transfer(mvd, cvd); 1383 1384 ASSERT(mvd->vdev_children == 0); 1385 vdev_free(mvd); 1386 } 1387 1388 void 1389 vdev_metaslab_group_create(vdev_t *vd) 1390 { 1391 spa_t *spa = vd->vdev_spa; 1392 1393 /* 1394 * metaslab_group_create was delayed until allocation bias was available 1395 */ 1396 if (vd->vdev_mg == NULL) { 1397 metaslab_class_t *mc; 1398 1399 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) 1400 vd->vdev_alloc_bias = VDEV_BIAS_LOG; 1401 1402 ASSERT3U(vd->vdev_islog, ==, 1403 (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); 1404 1405 switch (vd->vdev_alloc_bias) { 1406 case VDEV_BIAS_LOG: 1407 mc = spa_log_class(spa); 1408 break; 1409 case VDEV_BIAS_SPECIAL: 1410 mc = spa_special_class(spa); 1411 break; 1412 case VDEV_BIAS_DEDUP: 1413 mc = spa_dedup_class(spa); 1414 break; 1415 default: 1416 mc = spa_normal_class(spa); 1417 } 1418 1419 vd->vdev_mg = metaslab_group_create(mc, vd, 1420 spa->spa_alloc_count); 1421 1422 if (!vd->vdev_islog) { 1423 vd->vdev_log_mg = metaslab_group_create( 1424 spa_embedded_log_class(spa), vd, 1); 1425 } 1426 1427 /* 1428 * The spa ashift min/max only apply for the normal metaslab 1429 * class. Class destination is late binding so ashift boundary 1430 * setting had to wait until now. 1431 */ 1432 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1433 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { 1434 if (vd->vdev_ashift > spa->spa_max_ashift) 1435 spa->spa_max_ashift = vd->vdev_ashift; 1436 if (vd->vdev_ashift < spa->spa_min_ashift) 1437 spa->spa_min_ashift = vd->vdev_ashift; 1438 1439 uint64_t min_alloc = vdev_get_min_alloc(vd); 1440 if (min_alloc < spa->spa_min_alloc) 1441 spa->spa_min_alloc = min_alloc; 1442 } 1443 } 1444 } 1445 1446 int 1447 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 1448 { 1449 spa_t *spa = vd->vdev_spa; 1450 uint64_t oldc = vd->vdev_ms_count; 1451 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 1452 metaslab_t **mspp; 1453 int error; 1454 boolean_t expanding = (oldc != 0); 1455 1456 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1457 1458 /* 1459 * This vdev is not being allocated from yet or is a hole. 1460 */ 1461 if (vd->vdev_ms_shift == 0) 1462 return (0); 1463 1464 ASSERT(!vd->vdev_ishole); 1465 1466 ASSERT(oldc <= newc); 1467 1468 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 1469 1470 if (expanding) { 1471 memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); 1472 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 1473 } 1474 1475 vd->vdev_ms = mspp; 1476 vd->vdev_ms_count = newc; 1477 1478 for (uint64_t m = oldc; m < newc; m++) { 1479 uint64_t object = 0; 1480 /* 1481 * vdev_ms_array may be 0 if we are creating the "fake" 1482 * metaslabs for an indirect vdev for zdb's leak detection. 1483 * See zdb_leak_init(). 1484 */ 1485 if (txg == 0 && vd->vdev_ms_array != 0) { 1486 error = dmu_read(spa->spa_meta_objset, 1487 vd->vdev_ms_array, 1488 m * sizeof (uint64_t), sizeof (uint64_t), &object, 1489 DMU_READ_PREFETCH); 1490 if (error != 0) { 1491 vdev_dbgmsg(vd, "unable to read the metaslab " 1492 "array [error=%d]", error); 1493 return (error); 1494 } 1495 } 1496 1497 error = metaslab_init(vd->vdev_mg, m, object, txg, 1498 &(vd->vdev_ms[m])); 1499 if (error != 0) { 1500 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", 1501 error); 1502 return (error); 1503 } 1504 } 1505 1506 /* 1507 * Find the emptiest metaslab on the vdev and mark it for use for 1508 * embedded slog by moving it from the regular to the log metaslab 1509 * group. 1510 */ 1511 if (vd->vdev_mg->mg_class == spa_normal_class(spa) && 1512 vd->vdev_ms_count > zfs_embedded_slog_min_ms && 1513 avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { 1514 uint64_t slog_msid = 0; 1515 uint64_t smallest = UINT64_MAX; 1516 1517 /* 1518 * Note, we only search the new metaslabs, because the old 1519 * (pre-existing) ones may be active (e.g. have non-empty 1520 * range_tree's), and we don't move them to the new 1521 * metaslab_t. 1522 */ 1523 for (uint64_t m = oldc; m < newc; m++) { 1524 uint64_t alloc = 1525 space_map_allocated(vd->vdev_ms[m]->ms_sm); 1526 if (alloc < smallest) { 1527 slog_msid = m; 1528 smallest = alloc; 1529 } 1530 } 1531 metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; 1532 /* 1533 * The metaslab was marked as dirty at the end of 1534 * metaslab_init(). Remove it from the dirty list so that we 1535 * can uninitialize and reinitialize it to the new class. 1536 */ 1537 if (txg != 0) { 1538 (void) txg_list_remove_this(&vd->vdev_ms_list, 1539 slog_ms, txg); 1540 } 1541 uint64_t sm_obj = space_map_object(slog_ms->ms_sm); 1542 metaslab_fini(slog_ms); 1543 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, 1544 &vd->vdev_ms[slog_msid])); 1545 } 1546 1547 if (txg == 0) 1548 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 1549 1550 /* 1551 * If the vdev is marked as non-allocating then don't 1552 * activate the metaslabs since we want to ensure that 1553 * no allocations are performed on this device. 1554 */ 1555 if (vd->vdev_noalloc) { 1556 /* track non-allocating vdev space */ 1557 spa->spa_nonallocating_dspace += spa_deflate(spa) ? 1558 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1559 } else if (!expanding) { 1560 metaslab_group_activate(vd->vdev_mg); 1561 if (vd->vdev_log_mg != NULL) 1562 metaslab_group_activate(vd->vdev_log_mg); 1563 } 1564 1565 if (txg == 0) 1566 spa_config_exit(spa, SCL_ALLOC, FTAG); 1567 1568 return (0); 1569 } 1570 1571 void 1572 vdev_metaslab_fini(vdev_t *vd) 1573 { 1574 if (vd->vdev_checkpoint_sm != NULL) { 1575 ASSERT(spa_feature_is_active(vd->vdev_spa, 1576 SPA_FEATURE_POOL_CHECKPOINT)); 1577 space_map_close(vd->vdev_checkpoint_sm); 1578 /* 1579 * Even though we close the space map, we need to set its 1580 * pointer to NULL. The reason is that vdev_metaslab_fini() 1581 * may be called multiple times for certain operations 1582 * (i.e. when destroying a pool) so we need to ensure that 1583 * this clause never executes twice. This logic is similar 1584 * to the one used for the vdev_ms clause below. 1585 */ 1586 vd->vdev_checkpoint_sm = NULL; 1587 } 1588 1589 if (vd->vdev_ms != NULL) { 1590 metaslab_group_t *mg = vd->vdev_mg; 1591 1592 metaslab_group_passivate(mg); 1593 if (vd->vdev_log_mg != NULL) { 1594 ASSERT(!vd->vdev_islog); 1595 metaslab_group_passivate(vd->vdev_log_mg); 1596 } 1597 1598 uint64_t count = vd->vdev_ms_count; 1599 for (uint64_t m = 0; m < count; m++) { 1600 metaslab_t *msp = vd->vdev_ms[m]; 1601 if (msp != NULL) 1602 metaslab_fini(msp); 1603 } 1604 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 1605 vd->vdev_ms = NULL; 1606 vd->vdev_ms_count = 0; 1607 1608 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1609 ASSERT0(mg->mg_histogram[i]); 1610 if (vd->vdev_log_mg != NULL) 1611 ASSERT0(vd->vdev_log_mg->mg_histogram[i]); 1612 } 1613 } 1614 ASSERT0(vd->vdev_ms_count); 1615 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0); 1616 } 1617 1618 typedef struct vdev_probe_stats { 1619 boolean_t vps_readable; 1620 boolean_t vps_writeable; 1621 int vps_flags; 1622 } vdev_probe_stats_t; 1623 1624 static void 1625 vdev_probe_done(zio_t *zio) 1626 { 1627 spa_t *spa = zio->io_spa; 1628 vdev_t *vd = zio->io_vd; 1629 vdev_probe_stats_t *vps = zio->io_private; 1630 1631 ASSERT(vd->vdev_probe_zio != NULL); 1632 1633 if (zio->io_type == ZIO_TYPE_READ) { 1634 if (zio->io_error == 0) 1635 vps->vps_readable = 1; 1636 if (zio->io_error == 0 && spa_writeable(spa)) { 1637 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 1638 zio->io_offset, zio->io_size, zio->io_abd, 1639 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1640 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 1641 } else { 1642 abd_free(zio->io_abd); 1643 } 1644 } else if (zio->io_type == ZIO_TYPE_WRITE) { 1645 if (zio->io_error == 0) 1646 vps->vps_writeable = 1; 1647 abd_free(zio->io_abd); 1648 } else if (zio->io_type == ZIO_TYPE_NULL) { 1649 zio_t *pio; 1650 zio_link_t *zl; 1651 1652 vd->vdev_cant_read |= !vps->vps_readable; 1653 vd->vdev_cant_write |= !vps->vps_writeable; 1654 1655 if (vdev_readable(vd) && 1656 (vdev_writeable(vd) || !spa_writeable(spa))) { 1657 zio->io_error = 0; 1658 } else { 1659 ASSERT(zio->io_error != 0); 1660 vdev_dbgmsg(vd, "failed probe"); 1661 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 1662 spa, vd, NULL, NULL, 0); 1663 zio->io_error = SET_ERROR(ENXIO); 1664 } 1665 1666 mutex_enter(&vd->vdev_probe_lock); 1667 ASSERT(vd->vdev_probe_zio == zio); 1668 vd->vdev_probe_zio = NULL; 1669 mutex_exit(&vd->vdev_probe_lock); 1670 1671 zl = NULL; 1672 while ((pio = zio_walk_parents(zio, &zl)) != NULL) 1673 if (!vdev_accessible(vd, pio)) 1674 pio->io_error = SET_ERROR(ENXIO); 1675 1676 kmem_free(vps, sizeof (*vps)); 1677 } 1678 } 1679 1680 /* 1681 * Determine whether this device is accessible. 1682 * 1683 * Read and write to several known locations: the pad regions of each 1684 * vdev label but the first, which we leave alone in case it contains 1685 * a VTOC. 1686 */ 1687 zio_t * 1688 vdev_probe(vdev_t *vd, zio_t *zio) 1689 { 1690 spa_t *spa = vd->vdev_spa; 1691 vdev_probe_stats_t *vps = NULL; 1692 zio_t *pio; 1693 1694 ASSERT(vd->vdev_ops->vdev_op_leaf); 1695 1696 /* 1697 * Don't probe the probe. 1698 */ 1699 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1700 return (NULL); 1701 1702 /* 1703 * To prevent 'probe storms' when a device fails, we create 1704 * just one probe i/o at a time. All zios that want to probe 1705 * this vdev will become parents of the probe io. 1706 */ 1707 mutex_enter(&vd->vdev_probe_lock); 1708 1709 if ((pio = vd->vdev_probe_zio) == NULL) { 1710 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1711 1712 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1713 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1714 ZIO_FLAG_TRYHARD; 1715 1716 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1717 /* 1718 * vdev_cant_read and vdev_cant_write can only 1719 * transition from TRUE to FALSE when we have the 1720 * SCL_ZIO lock as writer; otherwise they can only 1721 * transition from FALSE to TRUE. This ensures that 1722 * any zio looking at these values can assume that 1723 * failures persist for the life of the I/O. That's 1724 * important because when a device has intermittent 1725 * connectivity problems, we want to ensure that 1726 * they're ascribed to the device (ENXIO) and not 1727 * the zio (EIO). 1728 * 1729 * Since we hold SCL_ZIO as writer here, clear both 1730 * values so the probe can reevaluate from first 1731 * principles. 1732 */ 1733 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1734 vd->vdev_cant_read = B_FALSE; 1735 vd->vdev_cant_write = B_FALSE; 1736 } 1737 1738 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1739 vdev_probe_done, vps, 1740 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1741 1742 /* 1743 * We can't change the vdev state in this context, so we 1744 * kick off an async task to do it on our behalf. 1745 */ 1746 if (zio != NULL) { 1747 vd->vdev_probe_wanted = B_TRUE; 1748 spa_async_request(spa, SPA_ASYNC_PROBE); 1749 } 1750 } 1751 1752 if (zio != NULL) 1753 zio_add_child(zio, pio); 1754 1755 mutex_exit(&vd->vdev_probe_lock); 1756 1757 if (vps == NULL) { 1758 ASSERT(zio != NULL); 1759 return (NULL); 1760 } 1761 1762 for (int l = 1; l < VDEV_LABELS; l++) { 1763 zio_nowait(zio_read_phys(pio, vd, 1764 vdev_label_offset(vd->vdev_psize, l, 1765 offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, 1766 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), 1767 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1768 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1769 } 1770 1771 if (zio == NULL) 1772 return (pio); 1773 1774 zio_nowait(pio); 1775 return (NULL); 1776 } 1777 1778 static void 1779 vdev_load_child(void *arg) 1780 { 1781 vdev_t *vd = arg; 1782 1783 vd->vdev_load_error = vdev_load(vd); 1784 } 1785 1786 static void 1787 vdev_open_child(void *arg) 1788 { 1789 vdev_t *vd = arg; 1790 1791 vd->vdev_open_thread = curthread; 1792 vd->vdev_open_error = vdev_open(vd); 1793 vd->vdev_open_thread = NULL; 1794 } 1795 1796 static boolean_t 1797 vdev_uses_zvols(vdev_t *vd) 1798 { 1799 #ifdef _KERNEL 1800 if (zvol_is_zvol(vd->vdev_path)) 1801 return (B_TRUE); 1802 #endif 1803 1804 for (int c = 0; c < vd->vdev_children; c++) 1805 if (vdev_uses_zvols(vd->vdev_child[c])) 1806 return (B_TRUE); 1807 1808 return (B_FALSE); 1809 } 1810 1811 /* 1812 * Returns B_TRUE if the passed child should be opened. 1813 */ 1814 static boolean_t 1815 vdev_default_open_children_func(vdev_t *vd) 1816 { 1817 (void) vd; 1818 return (B_TRUE); 1819 } 1820 1821 /* 1822 * Open the requested child vdevs. If any of the leaf vdevs are using 1823 * a ZFS volume then do the opens in a single thread. This avoids a 1824 * deadlock when the current thread is holding the spa_namespace_lock. 1825 */ 1826 static void 1827 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) 1828 { 1829 int children = vd->vdev_children; 1830 1831 taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, 1832 children, children, TASKQ_PREPOPULATE); 1833 vd->vdev_nonrot = B_TRUE; 1834 1835 for (int c = 0; c < children; c++) { 1836 vdev_t *cvd = vd->vdev_child[c]; 1837 1838 if (open_func(cvd) == B_FALSE) 1839 continue; 1840 1841 if (tq == NULL || vdev_uses_zvols(vd)) { 1842 cvd->vdev_open_error = vdev_open(cvd); 1843 } else { 1844 VERIFY(taskq_dispatch(tq, vdev_open_child, 1845 cvd, TQ_SLEEP) != TASKQID_INVALID); 1846 } 1847 1848 vd->vdev_nonrot &= cvd->vdev_nonrot; 1849 } 1850 1851 if (tq != NULL) { 1852 taskq_wait(tq); 1853 taskq_destroy(tq); 1854 } 1855 } 1856 1857 /* 1858 * Open all child vdevs. 1859 */ 1860 void 1861 vdev_open_children(vdev_t *vd) 1862 { 1863 vdev_open_children_impl(vd, vdev_default_open_children_func); 1864 } 1865 1866 /* 1867 * Conditionally open a subset of child vdevs. 1868 */ 1869 void 1870 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) 1871 { 1872 vdev_open_children_impl(vd, open_func); 1873 } 1874 1875 /* 1876 * Compute the raidz-deflation ratio. Note, we hard-code 1877 * in 128k (1 << 17) because it is the "typical" blocksize. 1878 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 1879 * otherwise it would inconsistently account for existing bp's. 1880 */ 1881 static void 1882 vdev_set_deflate_ratio(vdev_t *vd) 1883 { 1884 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { 1885 vd->vdev_deflate_ratio = (1 << 17) / 1886 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 1887 } 1888 } 1889 1890 /* 1891 * Choose the best of two ashifts, preferring one between logical ashift 1892 * (absolute minimum) and administrator defined maximum, otherwise take 1893 * the biggest of the two. 1894 */ 1895 uint64_t 1896 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) 1897 { 1898 if (a > logical && a <= zfs_vdev_max_auto_ashift) { 1899 if (b <= logical || b > zfs_vdev_max_auto_ashift) 1900 return (a); 1901 else 1902 return (MAX(a, b)); 1903 } else if (b <= logical || b > zfs_vdev_max_auto_ashift) 1904 return (MAX(a, b)); 1905 return (b); 1906 } 1907 1908 /* 1909 * Maximize performance by inflating the configured ashift for top level 1910 * vdevs to be as close to the physical ashift as possible while maintaining 1911 * administrator defined limits and ensuring it doesn't go below the 1912 * logical ashift. 1913 */ 1914 static void 1915 vdev_ashift_optimize(vdev_t *vd) 1916 { 1917 ASSERT(vd == vd->vdev_top); 1918 1919 if (vd->vdev_ashift < vd->vdev_physical_ashift && 1920 vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { 1921 vd->vdev_ashift = MIN( 1922 MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), 1923 MAX(zfs_vdev_min_auto_ashift, 1924 vd->vdev_physical_ashift)); 1925 } else { 1926 /* 1927 * If the logical and physical ashifts are the same, then 1928 * we ensure that the top-level vdev's ashift is not smaller 1929 * than our minimum ashift value. For the unusual case 1930 * where logical ashift > physical ashift, we can't cap 1931 * the calculated ashift based on max ashift as that 1932 * would cause failures. 1933 * We still check if we need to increase it to match 1934 * the min ashift. 1935 */ 1936 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, 1937 vd->vdev_ashift); 1938 } 1939 } 1940 1941 /* 1942 * Prepare a virtual device for access. 1943 */ 1944 int 1945 vdev_open(vdev_t *vd) 1946 { 1947 spa_t *spa = vd->vdev_spa; 1948 int error; 1949 uint64_t osize = 0; 1950 uint64_t max_osize = 0; 1951 uint64_t asize, max_asize, psize; 1952 uint64_t logical_ashift = 0; 1953 uint64_t physical_ashift = 0; 1954 1955 ASSERT(vd->vdev_open_thread == curthread || 1956 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1957 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1958 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1959 vd->vdev_state == VDEV_STATE_OFFLINE); 1960 1961 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1962 vd->vdev_cant_read = B_FALSE; 1963 vd->vdev_cant_write = B_FALSE; 1964 vd->vdev_min_asize = vdev_get_min_asize(vd); 1965 1966 /* 1967 * If this vdev is not removed, check its fault status. If it's 1968 * faulted, bail out of the open. 1969 */ 1970 if (!vd->vdev_removed && vd->vdev_faulted) { 1971 ASSERT(vd->vdev_children == 0); 1972 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1973 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1974 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1975 vd->vdev_label_aux); 1976 return (SET_ERROR(ENXIO)); 1977 } else if (vd->vdev_offline) { 1978 ASSERT(vd->vdev_children == 0); 1979 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1980 return (SET_ERROR(ENXIO)); 1981 } 1982 1983 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, 1984 &logical_ashift, &physical_ashift); 1985 1986 /* Keep the device in removed state if unplugged */ 1987 if (error == ENOENT && vd->vdev_removed) { 1988 vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, 1989 VDEV_AUX_NONE); 1990 return (error); 1991 } 1992 1993 /* 1994 * Physical volume size should never be larger than its max size, unless 1995 * the disk has shrunk while we were reading it or the device is buggy 1996 * or damaged: either way it's not safe for use, bail out of the open. 1997 */ 1998 if (osize > max_osize) { 1999 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2000 VDEV_AUX_OPEN_FAILED); 2001 return (SET_ERROR(ENXIO)); 2002 } 2003 2004 /* 2005 * Reset the vdev_reopening flag so that we actually close 2006 * the vdev on error. 2007 */ 2008 vd->vdev_reopening = B_FALSE; 2009 if (zio_injection_enabled && error == 0) 2010 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); 2011 2012 if (error) { 2013 if (vd->vdev_removed && 2014 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 2015 vd->vdev_removed = B_FALSE; 2016 2017 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { 2018 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, 2019 vd->vdev_stat.vs_aux); 2020 } else { 2021 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2022 vd->vdev_stat.vs_aux); 2023 } 2024 return (error); 2025 } 2026 2027 vd->vdev_removed = B_FALSE; 2028 2029 /* 2030 * Recheck the faulted flag now that we have confirmed that 2031 * the vdev is accessible. If we're faulted, bail. 2032 */ 2033 if (vd->vdev_faulted) { 2034 ASSERT(vd->vdev_children == 0); 2035 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 2036 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 2037 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2038 vd->vdev_label_aux); 2039 return (SET_ERROR(ENXIO)); 2040 } 2041 2042 if (vd->vdev_degraded) { 2043 ASSERT(vd->vdev_children == 0); 2044 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2045 VDEV_AUX_ERR_EXCEEDED); 2046 } else { 2047 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 2048 } 2049 2050 /* 2051 * For hole or missing vdevs we just return success. 2052 */ 2053 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 2054 return (0); 2055 2056 for (int c = 0; c < vd->vdev_children; c++) { 2057 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 2058 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 2059 VDEV_AUX_NONE); 2060 break; 2061 } 2062 } 2063 2064 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 2065 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 2066 2067 if (vd->vdev_children == 0) { 2068 if (osize < SPA_MINDEVSIZE) { 2069 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2070 VDEV_AUX_TOO_SMALL); 2071 return (SET_ERROR(EOVERFLOW)); 2072 } 2073 psize = osize; 2074 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 2075 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 2076 VDEV_LABEL_END_SIZE); 2077 } else { 2078 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 2079 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 2080 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2081 VDEV_AUX_TOO_SMALL); 2082 return (SET_ERROR(EOVERFLOW)); 2083 } 2084 psize = 0; 2085 asize = osize; 2086 max_asize = max_osize; 2087 } 2088 2089 /* 2090 * If the vdev was expanded, record this so that we can re-create the 2091 * uberblock rings in labels {2,3}, during the next sync. 2092 */ 2093 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) 2094 vd->vdev_copy_uberblocks = B_TRUE; 2095 2096 vd->vdev_psize = psize; 2097 2098 /* 2099 * Make sure the allocatable size hasn't shrunk too much. 2100 */ 2101 if (asize < vd->vdev_min_asize) { 2102 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2103 VDEV_AUX_BAD_LABEL); 2104 return (SET_ERROR(EINVAL)); 2105 } 2106 2107 /* 2108 * We can always set the logical/physical ashift members since 2109 * their values are only used to calculate the vdev_ashift when 2110 * the device is first added to the config. These values should 2111 * not be used for anything else since they may change whenever 2112 * the device is reopened and we don't store them in the label. 2113 */ 2114 vd->vdev_physical_ashift = 2115 MAX(physical_ashift, vd->vdev_physical_ashift); 2116 vd->vdev_logical_ashift = MAX(logical_ashift, 2117 vd->vdev_logical_ashift); 2118 2119 if (vd->vdev_asize == 0) { 2120 /* 2121 * This is the first-ever open, so use the computed values. 2122 * For compatibility, a different ashift can be requested. 2123 */ 2124 vd->vdev_asize = asize; 2125 vd->vdev_max_asize = max_asize; 2126 2127 /* 2128 * If the vdev_ashift was not overridden at creation time, 2129 * then set it the logical ashift and optimize the ashift. 2130 */ 2131 if (vd->vdev_ashift == 0) { 2132 vd->vdev_ashift = vd->vdev_logical_ashift; 2133 2134 if (vd->vdev_logical_ashift > ASHIFT_MAX) { 2135 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2136 VDEV_AUX_ASHIFT_TOO_BIG); 2137 return (SET_ERROR(EDOM)); 2138 } 2139 2140 if (vd->vdev_top == vd) { 2141 vdev_ashift_optimize(vd); 2142 } 2143 } 2144 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || 2145 vd->vdev_ashift > ASHIFT_MAX)) { 2146 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2147 VDEV_AUX_BAD_ASHIFT); 2148 return (SET_ERROR(EDOM)); 2149 } 2150 } else { 2151 /* 2152 * Make sure the alignment required hasn't increased. 2153 */ 2154 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && 2155 vd->vdev_ops->vdev_op_leaf) { 2156 (void) zfs_ereport_post( 2157 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, 2158 spa, vd, NULL, NULL, 0); 2159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2160 VDEV_AUX_BAD_LABEL); 2161 return (SET_ERROR(EDOM)); 2162 } 2163 vd->vdev_max_asize = max_asize; 2164 } 2165 2166 /* 2167 * If all children are healthy we update asize if either: 2168 * The asize has increased, due to a device expansion caused by dynamic 2169 * LUN growth or vdev replacement, and automatic expansion is enabled; 2170 * making the additional space available. 2171 * 2172 * The asize has decreased, due to a device shrink usually caused by a 2173 * vdev replace with a smaller device. This ensures that calculations 2174 * based of max_asize and asize e.g. esize are always valid. It's safe 2175 * to do this as we've already validated that asize is greater than 2176 * vdev_min_asize. 2177 */ 2178 if (vd->vdev_state == VDEV_STATE_HEALTHY && 2179 ((asize > vd->vdev_asize && 2180 (vd->vdev_expanding || spa->spa_autoexpand)) || 2181 (asize < vd->vdev_asize))) 2182 vd->vdev_asize = asize; 2183 2184 vdev_set_min_asize(vd); 2185 2186 /* 2187 * Ensure we can issue some IO before declaring the 2188 * vdev open for business. 2189 */ 2190 if (vd->vdev_ops->vdev_op_leaf && 2191 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 2192 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 2193 VDEV_AUX_ERR_EXCEEDED); 2194 return (error); 2195 } 2196 2197 /* 2198 * Track the minimum allocation size. 2199 */ 2200 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 2201 vd->vdev_islog == 0 && vd->vdev_aux == NULL) { 2202 uint64_t min_alloc = vdev_get_min_alloc(vd); 2203 if (min_alloc < spa->spa_min_alloc) 2204 spa->spa_min_alloc = min_alloc; 2205 } 2206 2207 /* 2208 * If this is a leaf vdev, assess whether a resilver is needed. 2209 * But don't do this if we are doing a reopen for a scrub, since 2210 * this would just restart the scrub we are already doing. 2211 */ 2212 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) 2213 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); 2214 2215 return (0); 2216 } 2217 2218 static void 2219 vdev_validate_child(void *arg) 2220 { 2221 vdev_t *vd = arg; 2222 2223 vd->vdev_validate_thread = curthread; 2224 vd->vdev_validate_error = vdev_validate(vd); 2225 vd->vdev_validate_thread = NULL; 2226 } 2227 2228 /* 2229 * Called once the vdevs are all opened, this routine validates the label 2230 * contents. This needs to be done before vdev_load() so that we don't 2231 * inadvertently do repair I/Os to the wrong device. 2232 * 2233 * This function will only return failure if one of the vdevs indicates that it 2234 * has since been destroyed or exported. This is only possible if 2235 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 2236 * will be updated but the function will return 0. 2237 */ 2238 int 2239 vdev_validate(vdev_t *vd) 2240 { 2241 spa_t *spa = vd->vdev_spa; 2242 taskq_t *tq = NULL; 2243 nvlist_t *label; 2244 uint64_t guid = 0, aux_guid = 0, top_guid; 2245 uint64_t state; 2246 nvlist_t *nvl; 2247 uint64_t txg; 2248 int children = vd->vdev_children; 2249 2250 if (vdev_validate_skip) 2251 return (0); 2252 2253 if (children > 0) { 2254 tq = taskq_create("vdev_validate", children, minclsyspri, 2255 children, children, TASKQ_PREPOPULATE); 2256 } 2257 2258 for (uint64_t c = 0; c < children; c++) { 2259 vdev_t *cvd = vd->vdev_child[c]; 2260 2261 if (tq == NULL || vdev_uses_zvols(cvd)) { 2262 vdev_validate_child(cvd); 2263 } else { 2264 VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, 2265 TQ_SLEEP) != TASKQID_INVALID); 2266 } 2267 } 2268 if (tq != NULL) { 2269 taskq_wait(tq); 2270 taskq_destroy(tq); 2271 } 2272 for (int c = 0; c < children; c++) { 2273 int error = vd->vdev_child[c]->vdev_validate_error; 2274 2275 if (error != 0) 2276 return (SET_ERROR(EBADF)); 2277 } 2278 2279 2280 /* 2281 * If the device has already failed, or was marked offline, don't do 2282 * any further validation. Otherwise, label I/O will fail and we will 2283 * overwrite the previous state. 2284 */ 2285 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) 2286 return (0); 2287 2288 /* 2289 * If we are performing an extreme rewind, we allow for a label that 2290 * was modified at a point after the current txg. 2291 * If config lock is not held do not check for the txg. spa_sync could 2292 * be updating the vdev's label before updating spa_last_synced_txg. 2293 */ 2294 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || 2295 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) 2296 txg = UINT64_MAX; 2297 else 2298 txg = spa_last_synced_txg(spa); 2299 2300 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 2301 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2302 VDEV_AUX_BAD_LABEL); 2303 vdev_dbgmsg(vd, "vdev_validate: failed reading config for " 2304 "txg %llu", (u_longlong_t)txg); 2305 return (0); 2306 } 2307 2308 /* 2309 * Determine if this vdev has been split off into another 2310 * pool. If so, then refuse to open it. 2311 */ 2312 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 2313 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 2314 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2315 VDEV_AUX_SPLIT_POOL); 2316 nvlist_free(label); 2317 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); 2318 return (0); 2319 } 2320 2321 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { 2322 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2323 VDEV_AUX_CORRUPT_DATA); 2324 nvlist_free(label); 2325 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2326 ZPOOL_CONFIG_POOL_GUID); 2327 return (0); 2328 } 2329 2330 /* 2331 * If config is not trusted then ignore the spa guid check. This is 2332 * necessary because if the machine crashed during a re-guid the new 2333 * guid might have been written to all of the vdev labels, but not the 2334 * cached config. The check will be performed again once we have the 2335 * trusted config from the MOS. 2336 */ 2337 if (spa->spa_trust_config && guid != spa_guid(spa)) { 2338 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2339 VDEV_AUX_CORRUPT_DATA); 2340 nvlist_free(label); 2341 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " 2342 "match config (%llu != %llu)", (u_longlong_t)guid, 2343 (u_longlong_t)spa_guid(spa)); 2344 return (0); 2345 } 2346 2347 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 2348 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 2349 &aux_guid) != 0) 2350 aux_guid = 0; 2351 2352 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { 2353 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2354 VDEV_AUX_CORRUPT_DATA); 2355 nvlist_free(label); 2356 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2357 ZPOOL_CONFIG_GUID); 2358 return (0); 2359 } 2360 2361 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) 2362 != 0) { 2363 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2364 VDEV_AUX_CORRUPT_DATA); 2365 nvlist_free(label); 2366 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2367 ZPOOL_CONFIG_TOP_GUID); 2368 return (0); 2369 } 2370 2371 /* 2372 * If this vdev just became a top-level vdev because its sibling was 2373 * detached, it will have adopted the parent's vdev guid -- but the 2374 * label may or may not be on disk yet. Fortunately, either version 2375 * of the label will have the same top guid, so if we're a top-level 2376 * vdev, we can safely compare to that instead. 2377 * However, if the config comes from a cachefile that failed to update 2378 * after the detach, a top-level vdev will appear as a non top-level 2379 * vdev in the config. Also relax the constraints if we perform an 2380 * extreme rewind. 2381 * 2382 * If we split this vdev off instead, then we also check the 2383 * original pool's guid. We don't want to consider the vdev 2384 * corrupt if it is partway through a split operation. 2385 */ 2386 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { 2387 boolean_t mismatch = B_FALSE; 2388 if (spa->spa_trust_config && !spa->spa_extreme_rewind) { 2389 if (vd != vd->vdev_top || vd->vdev_guid != top_guid) 2390 mismatch = B_TRUE; 2391 } else { 2392 if (vd->vdev_guid != top_guid && 2393 vd->vdev_top->vdev_guid != guid) 2394 mismatch = B_TRUE; 2395 } 2396 2397 if (mismatch) { 2398 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2399 VDEV_AUX_CORRUPT_DATA); 2400 nvlist_free(label); 2401 vdev_dbgmsg(vd, "vdev_validate: config guid " 2402 "doesn't match label guid"); 2403 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", 2404 (u_longlong_t)vd->vdev_guid, 2405 (u_longlong_t)vd->vdev_top->vdev_guid); 2406 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " 2407 "aux_guid %llu", (u_longlong_t)guid, 2408 (u_longlong_t)top_guid, (u_longlong_t)aux_guid); 2409 return (0); 2410 } 2411 } 2412 2413 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 2414 &state) != 0) { 2415 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2416 VDEV_AUX_CORRUPT_DATA); 2417 nvlist_free(label); 2418 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", 2419 ZPOOL_CONFIG_POOL_STATE); 2420 return (0); 2421 } 2422 2423 nvlist_free(label); 2424 2425 /* 2426 * If this is a verbatim import, no need to check the 2427 * state of the pool. 2428 */ 2429 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 2430 spa_load_state(spa) == SPA_LOAD_OPEN && 2431 state != POOL_STATE_ACTIVE) { 2432 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " 2433 "for spa %s", (u_longlong_t)state, spa->spa_name); 2434 return (SET_ERROR(EBADF)); 2435 } 2436 2437 /* 2438 * If we were able to open and validate a vdev that was 2439 * previously marked permanently unavailable, clear that state 2440 * now. 2441 */ 2442 if (vd->vdev_not_present) 2443 vd->vdev_not_present = 0; 2444 2445 return (0); 2446 } 2447 2448 static void 2449 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) 2450 { 2451 char *old, *new; 2452 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { 2453 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { 2454 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " 2455 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2456 dvd->vdev_path, svd->vdev_path); 2457 spa_strfree(dvd->vdev_path); 2458 dvd->vdev_path = spa_strdup(svd->vdev_path); 2459 } 2460 } else if (svd->vdev_path != NULL) { 2461 dvd->vdev_path = spa_strdup(svd->vdev_path); 2462 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", 2463 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); 2464 } 2465 2466 /* 2467 * Our enclosure sysfs path may have changed between imports 2468 */ 2469 old = dvd->vdev_enc_sysfs_path; 2470 new = svd->vdev_enc_sysfs_path; 2471 if ((old != NULL && new == NULL) || 2472 (old == NULL && new != NULL) || 2473 ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { 2474 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " 2475 "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, 2476 old, new); 2477 2478 if (dvd->vdev_enc_sysfs_path) 2479 spa_strfree(dvd->vdev_enc_sysfs_path); 2480 2481 if (svd->vdev_enc_sysfs_path) { 2482 dvd->vdev_enc_sysfs_path = spa_strdup( 2483 svd->vdev_enc_sysfs_path); 2484 } else { 2485 dvd->vdev_enc_sysfs_path = NULL; 2486 } 2487 } 2488 } 2489 2490 /* 2491 * Recursively copy vdev paths from one vdev to another. Source and destination 2492 * vdev trees must have same geometry otherwise return error. Intended to copy 2493 * paths from userland config into MOS config. 2494 */ 2495 int 2496 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) 2497 { 2498 if ((svd->vdev_ops == &vdev_missing_ops) || 2499 (svd->vdev_ishole && dvd->vdev_ishole) || 2500 (dvd->vdev_ops == &vdev_indirect_ops)) 2501 return (0); 2502 2503 if (svd->vdev_ops != dvd->vdev_ops) { 2504 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", 2505 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); 2506 return (SET_ERROR(EINVAL)); 2507 } 2508 2509 if (svd->vdev_guid != dvd->vdev_guid) { 2510 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " 2511 "%llu)", (u_longlong_t)svd->vdev_guid, 2512 (u_longlong_t)dvd->vdev_guid); 2513 return (SET_ERROR(EINVAL)); 2514 } 2515 2516 if (svd->vdev_children != dvd->vdev_children) { 2517 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " 2518 "%llu != %llu", (u_longlong_t)svd->vdev_children, 2519 (u_longlong_t)dvd->vdev_children); 2520 return (SET_ERROR(EINVAL)); 2521 } 2522 2523 for (uint64_t i = 0; i < svd->vdev_children; i++) { 2524 int error = vdev_copy_path_strict(svd->vdev_child[i], 2525 dvd->vdev_child[i]); 2526 if (error != 0) 2527 return (error); 2528 } 2529 2530 if (svd->vdev_ops->vdev_op_leaf) 2531 vdev_copy_path_impl(svd, dvd); 2532 2533 return (0); 2534 } 2535 2536 static void 2537 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) 2538 { 2539 ASSERT(stvd->vdev_top == stvd); 2540 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); 2541 2542 for (uint64_t i = 0; i < dvd->vdev_children; i++) { 2543 vdev_copy_path_search(stvd, dvd->vdev_child[i]); 2544 } 2545 2546 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) 2547 return; 2548 2549 /* 2550 * The idea here is that while a vdev can shift positions within 2551 * a top vdev (when replacing, attaching mirror, etc.) it cannot 2552 * step outside of it. 2553 */ 2554 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); 2555 2556 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) 2557 return; 2558 2559 ASSERT(vd->vdev_ops->vdev_op_leaf); 2560 2561 vdev_copy_path_impl(vd, dvd); 2562 } 2563 2564 /* 2565 * Recursively copy vdev paths from one root vdev to another. Source and 2566 * destination vdev trees may differ in geometry. For each destination leaf 2567 * vdev, search a vdev with the same guid and top vdev id in the source. 2568 * Intended to copy paths from userland config into MOS config. 2569 */ 2570 void 2571 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) 2572 { 2573 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); 2574 ASSERT(srvd->vdev_ops == &vdev_root_ops); 2575 ASSERT(drvd->vdev_ops == &vdev_root_ops); 2576 2577 for (uint64_t i = 0; i < children; i++) { 2578 vdev_copy_path_search(srvd->vdev_child[i], 2579 drvd->vdev_child[i]); 2580 } 2581 } 2582 2583 /* 2584 * Close a virtual device. 2585 */ 2586 void 2587 vdev_close(vdev_t *vd) 2588 { 2589 vdev_t *pvd = vd->vdev_parent; 2590 spa_t *spa __maybe_unused = vd->vdev_spa; 2591 2592 ASSERT(vd != NULL); 2593 ASSERT(vd->vdev_open_thread == curthread || 2594 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2595 2596 /* 2597 * If our parent is reopening, then we are as well, unless we are 2598 * going offline. 2599 */ 2600 if (pvd != NULL && pvd->vdev_reopening) 2601 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 2602 2603 vd->vdev_ops->vdev_op_close(vd); 2604 2605 vdev_cache_purge(vd); 2606 2607 /* 2608 * We record the previous state before we close it, so that if we are 2609 * doing a reopen(), we don't generate FMA ereports if we notice that 2610 * it's still faulted. 2611 */ 2612 vd->vdev_prevstate = vd->vdev_state; 2613 2614 if (vd->vdev_offline) 2615 vd->vdev_state = VDEV_STATE_OFFLINE; 2616 else 2617 vd->vdev_state = VDEV_STATE_CLOSED; 2618 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2619 } 2620 2621 void 2622 vdev_hold(vdev_t *vd) 2623 { 2624 spa_t *spa = vd->vdev_spa; 2625 2626 ASSERT(spa_is_root(spa)); 2627 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 2628 return; 2629 2630 for (int c = 0; c < vd->vdev_children; c++) 2631 vdev_hold(vd->vdev_child[c]); 2632 2633 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) 2634 vd->vdev_ops->vdev_op_hold(vd); 2635 } 2636 2637 void 2638 vdev_rele(vdev_t *vd) 2639 { 2640 ASSERT(spa_is_root(vd->vdev_spa)); 2641 for (int c = 0; c < vd->vdev_children; c++) 2642 vdev_rele(vd->vdev_child[c]); 2643 2644 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) 2645 vd->vdev_ops->vdev_op_rele(vd); 2646 } 2647 2648 /* 2649 * Reopen all interior vdevs and any unopened leaves. We don't actually 2650 * reopen leaf vdevs which had previously been opened as they might deadlock 2651 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 2652 * If the leaf has never been opened then open it, as usual. 2653 */ 2654 void 2655 vdev_reopen(vdev_t *vd) 2656 { 2657 spa_t *spa = vd->vdev_spa; 2658 2659 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2660 2661 /* set the reopening flag unless we're taking the vdev offline */ 2662 vd->vdev_reopening = !vd->vdev_offline; 2663 vdev_close(vd); 2664 (void) vdev_open(vd); 2665 2666 /* 2667 * Call vdev_validate() here to make sure we have the same device. 2668 * Otherwise, a device with an invalid label could be successfully 2669 * opened in response to vdev_reopen(). 2670 */ 2671 if (vd->vdev_aux) { 2672 (void) vdev_validate_aux(vd); 2673 if (vdev_readable(vd) && vdev_writeable(vd) && 2674 vd->vdev_aux == &spa->spa_l2cache) { 2675 /* 2676 * In case the vdev is present we should evict all ARC 2677 * buffers and pointers to log blocks and reclaim their 2678 * space before restoring its contents to L2ARC. 2679 */ 2680 if (l2arc_vdev_present(vd)) { 2681 l2arc_rebuild_vdev(vd, B_TRUE); 2682 } else { 2683 l2arc_add_vdev(spa, vd); 2684 } 2685 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 2686 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2687 } 2688 } else { 2689 (void) vdev_validate(vd); 2690 } 2691 2692 /* 2693 * Reassess parent vdev's health. 2694 */ 2695 vdev_propagate_state(vd); 2696 } 2697 2698 int 2699 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 2700 { 2701 int error; 2702 2703 /* 2704 * Normally, partial opens (e.g. of a mirror) are allowed. 2705 * For a create, however, we want to fail the request if 2706 * there are any components we can't open. 2707 */ 2708 error = vdev_open(vd); 2709 2710 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 2711 vdev_close(vd); 2712 return (error ? error : SET_ERROR(ENXIO)); 2713 } 2714 2715 /* 2716 * Recursively load DTLs and initialize all labels. 2717 */ 2718 if ((error = vdev_dtl_load(vd)) != 0 || 2719 (error = vdev_label_init(vd, txg, isreplacing ? 2720 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 2721 vdev_close(vd); 2722 return (error); 2723 } 2724 2725 return (0); 2726 } 2727 2728 void 2729 vdev_metaslab_set_size(vdev_t *vd) 2730 { 2731 uint64_t asize = vd->vdev_asize; 2732 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; 2733 uint64_t ms_shift; 2734 2735 /* 2736 * There are two dimensions to the metaslab sizing calculation: 2737 * the size of the metaslab and the count of metaslabs per vdev. 2738 * 2739 * The default values used below are a good balance between memory 2740 * usage (larger metaslab size means more memory needed for loaded 2741 * metaslabs; more metaslabs means more memory needed for the 2742 * metaslab_t structs), metaslab load time (larger metaslabs take 2743 * longer to load), and metaslab sync time (more metaslabs means 2744 * more time spent syncing all of them). 2745 * 2746 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. 2747 * The range of the dimensions are as follows: 2748 * 2749 * 2^29 <= ms_size <= 2^34 2750 * 16 <= ms_count <= 131,072 2751 * 2752 * On the lower end of vdev sizes, we aim for metaslabs sizes of 2753 * at least 512MB (2^29) to minimize fragmentation effects when 2754 * testing with smaller devices. However, the count constraint 2755 * of at least 16 metaslabs will override this minimum size goal. 2756 * 2757 * On the upper end of vdev sizes, we aim for a maximum metaslab 2758 * size of 16GB. However, we will cap the total count to 2^17 2759 * metaslabs to keep our memory footprint in check and let the 2760 * metaslab size grow from there if that limit is hit. 2761 * 2762 * The net effect of applying above constrains is summarized below. 2763 * 2764 * vdev size metaslab count 2765 * --------------|----------------- 2766 * < 8GB ~16 2767 * 8GB - 100GB one per 512MB 2768 * 100GB - 3TB ~200 2769 * 3TB - 2PB one per 16GB 2770 * > 2PB ~131,072 2771 * -------------------------------- 2772 * 2773 * Finally, note that all of the above calculate the initial 2774 * number of metaslabs. Expanding a top-level vdev will result 2775 * in additional metaslabs being allocated making it possible 2776 * to exceed the zfs_vdev_ms_count_limit. 2777 */ 2778 2779 if (ms_count < zfs_vdev_min_ms_count) 2780 ms_shift = highbit64(asize / zfs_vdev_min_ms_count); 2781 else if (ms_count > zfs_vdev_default_ms_count) 2782 ms_shift = highbit64(asize / zfs_vdev_default_ms_count); 2783 else 2784 ms_shift = zfs_vdev_default_ms_shift; 2785 2786 if (ms_shift < SPA_MAXBLOCKSHIFT) { 2787 ms_shift = SPA_MAXBLOCKSHIFT; 2788 } else if (ms_shift > zfs_vdev_max_ms_shift) { 2789 ms_shift = zfs_vdev_max_ms_shift; 2790 /* cap the total count to constrain memory footprint */ 2791 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) 2792 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); 2793 } 2794 2795 vd->vdev_ms_shift = ms_shift; 2796 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); 2797 } 2798 2799 void 2800 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 2801 { 2802 ASSERT(vd == vd->vdev_top); 2803 /* indirect vdevs don't have metaslabs or dtls */ 2804 ASSERT(vdev_is_concrete(vd) || flags == 0); 2805 ASSERT(ISP2(flags)); 2806 ASSERT(spa_writeable(vd->vdev_spa)); 2807 2808 if (flags & VDD_METASLAB) 2809 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 2810 2811 if (flags & VDD_DTL) 2812 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 2813 2814 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 2815 } 2816 2817 void 2818 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 2819 { 2820 for (int c = 0; c < vd->vdev_children; c++) 2821 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 2822 2823 if (vd->vdev_ops->vdev_op_leaf) 2824 vdev_dirty(vd->vdev_top, flags, vd, txg); 2825 } 2826 2827 /* 2828 * DTLs. 2829 * 2830 * A vdev's DTL (dirty time log) is the set of transaction groups for which 2831 * the vdev has less than perfect replication. There are four kinds of DTL: 2832 * 2833 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 2834 * 2835 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 2836 * 2837 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 2838 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 2839 * txgs that was scrubbed. 2840 * 2841 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 2842 * persistent errors or just some device being offline. 2843 * Unlike the other three, the DTL_OUTAGE map is not generally 2844 * maintained; it's only computed when needed, typically to 2845 * determine whether a device can be detached. 2846 * 2847 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 2848 * either has the data or it doesn't. 2849 * 2850 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 2851 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 2852 * if any child is less than fully replicated, then so is its parent. 2853 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 2854 * comprising only those txgs which appear in 'maxfaults' or more children; 2855 * those are the txgs we don't have enough replication to read. For example, 2856 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 2857 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 2858 * two child DTL_MISSING maps. 2859 * 2860 * It should be clear from the above that to compute the DTLs and outage maps 2861 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 2862 * Therefore, that is all we keep on disk. When loading the pool, or after 2863 * a configuration change, we generate all other DTLs from first principles. 2864 */ 2865 void 2866 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2867 { 2868 range_tree_t *rt = vd->vdev_dtl[t]; 2869 2870 ASSERT(t < DTL_TYPES); 2871 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2872 ASSERT(spa_writeable(vd->vdev_spa)); 2873 2874 mutex_enter(&vd->vdev_dtl_lock); 2875 if (!range_tree_contains(rt, txg, size)) 2876 range_tree_add(rt, txg, size); 2877 mutex_exit(&vd->vdev_dtl_lock); 2878 } 2879 2880 boolean_t 2881 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 2882 { 2883 range_tree_t *rt = vd->vdev_dtl[t]; 2884 boolean_t dirty = B_FALSE; 2885 2886 ASSERT(t < DTL_TYPES); 2887 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2888 2889 /* 2890 * While we are loading the pool, the DTLs have not been loaded yet. 2891 * This isn't a problem but it can result in devices being tried 2892 * which are known to not have the data. In which case, the import 2893 * is relying on the checksum to ensure that we get the right data. 2894 * Note that while importing we are only reading the MOS, which is 2895 * always checksummed. 2896 */ 2897 mutex_enter(&vd->vdev_dtl_lock); 2898 if (!range_tree_is_empty(rt)) 2899 dirty = range_tree_contains(rt, txg, size); 2900 mutex_exit(&vd->vdev_dtl_lock); 2901 2902 return (dirty); 2903 } 2904 2905 boolean_t 2906 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 2907 { 2908 range_tree_t *rt = vd->vdev_dtl[t]; 2909 boolean_t empty; 2910 2911 mutex_enter(&vd->vdev_dtl_lock); 2912 empty = range_tree_is_empty(rt); 2913 mutex_exit(&vd->vdev_dtl_lock); 2914 2915 return (empty); 2916 } 2917 2918 /* 2919 * Check if the txg falls within the range which must be 2920 * resilvered. DVAs outside this range can always be skipped. 2921 */ 2922 boolean_t 2923 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2924 uint64_t phys_birth) 2925 { 2926 (void) dva, (void) psize; 2927 2928 /* Set by sequential resilver. */ 2929 if (phys_birth == TXG_UNKNOWN) 2930 return (B_TRUE); 2931 2932 return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); 2933 } 2934 2935 /* 2936 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. 2937 */ 2938 boolean_t 2939 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, 2940 uint64_t phys_birth) 2941 { 2942 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 2943 2944 if (vd->vdev_ops->vdev_op_need_resilver == NULL || 2945 vd->vdev_ops->vdev_op_leaf) 2946 return (B_TRUE); 2947 2948 return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, 2949 phys_birth)); 2950 } 2951 2952 /* 2953 * Returns the lowest txg in the DTL range. 2954 */ 2955 static uint64_t 2956 vdev_dtl_min(vdev_t *vd) 2957 { 2958 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2959 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2960 ASSERT0(vd->vdev_children); 2961 2962 return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); 2963 } 2964 2965 /* 2966 * Returns the highest txg in the DTL. 2967 */ 2968 static uint64_t 2969 vdev_dtl_max(vdev_t *vd) 2970 { 2971 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 2972 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 2973 ASSERT0(vd->vdev_children); 2974 2975 return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); 2976 } 2977 2978 /* 2979 * Determine if a resilvering vdev should remove any DTL entries from 2980 * its range. If the vdev was resilvering for the entire duration of the 2981 * scan then it should excise that range from its DTLs. Otherwise, this 2982 * vdev is considered partially resilvered and should leave its DTL 2983 * entries intact. The comment in vdev_dtl_reassess() describes how we 2984 * excise the DTLs. 2985 */ 2986 static boolean_t 2987 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) 2988 { 2989 ASSERT0(vd->vdev_children); 2990 2991 if (vd->vdev_state < VDEV_STATE_DEGRADED) 2992 return (B_FALSE); 2993 2994 if (vd->vdev_resilver_deferred) 2995 return (B_FALSE); 2996 2997 if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) 2998 return (B_TRUE); 2999 3000 if (rebuild_done) { 3001 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3002 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 3003 3004 /* Rebuild not initiated by attach */ 3005 if (vd->vdev_rebuild_txg == 0) 3006 return (B_TRUE); 3007 3008 /* 3009 * When a rebuild completes without error then all missing data 3010 * up to the rebuild max txg has been reconstructed and the DTL 3011 * is eligible for excision. 3012 */ 3013 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && 3014 vdev_dtl_max(vd) <= vrp->vrp_max_txg) { 3015 ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); 3016 ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); 3017 ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); 3018 return (B_TRUE); 3019 } 3020 } else { 3021 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; 3022 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; 3023 3024 /* Resilver not initiated by attach */ 3025 if (vd->vdev_resilver_txg == 0) 3026 return (B_TRUE); 3027 3028 /* 3029 * When a resilver is initiated the scan will assign the 3030 * scn_max_txg value to the highest txg value that exists 3031 * in all DTLs. If this device's max DTL is not part of this 3032 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] 3033 * then it is not eligible for excision. 3034 */ 3035 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 3036 ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); 3037 ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); 3038 ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); 3039 return (B_TRUE); 3040 } 3041 } 3042 3043 return (B_FALSE); 3044 } 3045 3046 /* 3047 * Reassess DTLs after a config change or scrub completion. If txg == 0 no 3048 * write operations will be issued to the pool. 3049 */ 3050 void 3051 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, 3052 boolean_t scrub_done, boolean_t rebuild_done) 3053 { 3054 spa_t *spa = vd->vdev_spa; 3055 avl_tree_t reftree; 3056 int minref; 3057 3058 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 3059 3060 for (int c = 0; c < vd->vdev_children; c++) 3061 vdev_dtl_reassess(vd->vdev_child[c], txg, 3062 scrub_txg, scrub_done, rebuild_done); 3063 3064 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) 3065 return; 3066 3067 if (vd->vdev_ops->vdev_op_leaf) { 3068 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 3069 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; 3070 boolean_t check_excise = B_FALSE; 3071 boolean_t wasempty = B_TRUE; 3072 3073 mutex_enter(&vd->vdev_dtl_lock); 3074 3075 /* 3076 * If requested, pretend the scan or rebuild completed cleanly. 3077 */ 3078 if (zfs_scan_ignore_errors) { 3079 if (scn != NULL) 3080 scn->scn_phys.scn_errors = 0; 3081 if (vr != NULL) 3082 vr->vr_rebuild_phys.vrp_errors = 0; 3083 } 3084 3085 if (scrub_txg != 0 && 3086 !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3087 wasempty = B_FALSE; 3088 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " 3089 "dtl:%llu/%llu errors:%llu", 3090 (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, 3091 (u_longlong_t)scrub_txg, spa->spa_scrub_started, 3092 (u_longlong_t)vdev_dtl_min(vd), 3093 (u_longlong_t)vdev_dtl_max(vd), 3094 (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); 3095 } 3096 3097 /* 3098 * If we've completed a scrub/resilver or a rebuild cleanly 3099 * then determine if this vdev should remove any DTLs. We 3100 * only want to excise regions on vdevs that were available 3101 * during the entire duration of this scan. 3102 */ 3103 if (rebuild_done && 3104 vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { 3105 check_excise = B_TRUE; 3106 } else { 3107 if (spa->spa_scrub_started || 3108 (scn != NULL && scn->scn_phys.scn_errors == 0)) { 3109 check_excise = B_TRUE; 3110 } 3111 } 3112 3113 if (scrub_txg && check_excise && 3114 vdev_dtl_should_excise(vd, rebuild_done)) { 3115 /* 3116 * We completed a scrub, resilver or rebuild up to 3117 * scrub_txg. If we did it without rebooting, then 3118 * the scrub dtl will be valid, so excise the old 3119 * region and fold in the scrub dtl. Otherwise, 3120 * leave the dtl as-is if there was an error. 3121 * 3122 * There's little trick here: to excise the beginning 3123 * of the DTL_MISSING map, we put it into a reference 3124 * tree and then add a segment with refcnt -1 that 3125 * covers the range [0, scrub_txg). This means 3126 * that each txg in that range has refcnt -1 or 0. 3127 * We then add DTL_SCRUB with a refcnt of 2, so that 3128 * entries in the range [0, scrub_txg) will have a 3129 * positive refcnt -- either 1 or 2. We then convert 3130 * the reference tree into the new DTL_MISSING map. 3131 */ 3132 space_reftree_create(&reftree); 3133 space_reftree_add_map(&reftree, 3134 vd->vdev_dtl[DTL_MISSING], 1); 3135 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 3136 space_reftree_add_map(&reftree, 3137 vd->vdev_dtl[DTL_SCRUB], 2); 3138 space_reftree_generate_map(&reftree, 3139 vd->vdev_dtl[DTL_MISSING], 1); 3140 space_reftree_destroy(&reftree); 3141 3142 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { 3143 zfs_dbgmsg("update DTL_MISSING:%llu/%llu", 3144 (u_longlong_t)vdev_dtl_min(vd), 3145 (u_longlong_t)vdev_dtl_max(vd)); 3146 } else if (!wasempty) { 3147 zfs_dbgmsg("DTL_MISSING is now empty"); 3148 } 3149 } 3150 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 3151 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3152 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 3153 if (scrub_done) 3154 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 3155 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 3156 if (!vdev_readable(vd)) 3157 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 3158 else 3159 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 3160 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 3161 3162 /* 3163 * If the vdev was resilvering or rebuilding and no longer 3164 * has any DTLs then reset the appropriate flag and dirty 3165 * the top level so that we persist the change. 3166 */ 3167 if (txg != 0 && 3168 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3169 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { 3170 if (vd->vdev_rebuild_txg != 0) { 3171 vd->vdev_rebuild_txg = 0; 3172 vdev_config_dirty(vd->vdev_top); 3173 } else if (vd->vdev_resilver_txg != 0) { 3174 vd->vdev_resilver_txg = 0; 3175 vdev_config_dirty(vd->vdev_top); 3176 } 3177 } 3178 3179 mutex_exit(&vd->vdev_dtl_lock); 3180 3181 if (txg != 0) 3182 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 3183 return; 3184 } 3185 3186 mutex_enter(&vd->vdev_dtl_lock); 3187 for (int t = 0; t < DTL_TYPES; t++) { 3188 /* account for child's outage in parent's missing map */ 3189 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 3190 if (t == DTL_SCRUB) 3191 continue; /* leaf vdevs only */ 3192 if (t == DTL_PARTIAL) 3193 minref = 1; /* i.e. non-zero */ 3194 else if (vdev_get_nparity(vd) != 0) 3195 minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */ 3196 else 3197 minref = vd->vdev_children; /* any kind of mirror */ 3198 space_reftree_create(&reftree); 3199 for (int c = 0; c < vd->vdev_children; c++) { 3200 vdev_t *cvd = vd->vdev_child[c]; 3201 mutex_enter(&cvd->vdev_dtl_lock); 3202 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 3203 mutex_exit(&cvd->vdev_dtl_lock); 3204 } 3205 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 3206 space_reftree_destroy(&reftree); 3207 } 3208 mutex_exit(&vd->vdev_dtl_lock); 3209 } 3210 3211 /* 3212 * Iterate over all the vdevs except spare, and post kobj events 3213 */ 3214 void 3215 vdev_post_kobj_evt(vdev_t *vd) 3216 { 3217 if (vd->vdev_ops->vdev_op_kobj_evt_post && 3218 vd->vdev_kobj_flag == B_FALSE) { 3219 vd->vdev_kobj_flag = B_TRUE; 3220 vd->vdev_ops->vdev_op_kobj_evt_post(vd); 3221 } 3222 3223 for (int c = 0; c < vd->vdev_children; c++) 3224 vdev_post_kobj_evt(vd->vdev_child[c]); 3225 } 3226 3227 /* 3228 * Iterate over all the vdevs except spare, and clear kobj events 3229 */ 3230 void 3231 vdev_clear_kobj_evt(vdev_t *vd) 3232 { 3233 vd->vdev_kobj_flag = B_FALSE; 3234 3235 for (int c = 0; c < vd->vdev_children; c++) 3236 vdev_clear_kobj_evt(vd->vdev_child[c]); 3237 } 3238 3239 int 3240 vdev_dtl_load(vdev_t *vd) 3241 { 3242 spa_t *spa = vd->vdev_spa; 3243 objset_t *mos = spa->spa_meta_objset; 3244 range_tree_t *rt; 3245 int error = 0; 3246 3247 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 3248 ASSERT(vdev_is_concrete(vd)); 3249 3250 /* 3251 * If the dtl cannot be sync'd there is no need to open it. 3252 */ 3253 if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) 3254 return (0); 3255 3256 error = space_map_open(&vd->vdev_dtl_sm, mos, 3257 vd->vdev_dtl_object, 0, -1ULL, 0); 3258 if (error) 3259 return (error); 3260 ASSERT(vd->vdev_dtl_sm != NULL); 3261 3262 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3263 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); 3264 if (error == 0) { 3265 mutex_enter(&vd->vdev_dtl_lock); 3266 range_tree_walk(rt, range_tree_add, 3267 vd->vdev_dtl[DTL_MISSING]); 3268 mutex_exit(&vd->vdev_dtl_lock); 3269 } 3270 3271 range_tree_vacate(rt, NULL, NULL); 3272 range_tree_destroy(rt); 3273 3274 return (error); 3275 } 3276 3277 for (int c = 0; c < vd->vdev_children; c++) { 3278 error = vdev_dtl_load(vd->vdev_child[c]); 3279 if (error != 0) 3280 break; 3281 } 3282 3283 return (error); 3284 } 3285 3286 static void 3287 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) 3288 { 3289 spa_t *spa = vd->vdev_spa; 3290 objset_t *mos = spa->spa_meta_objset; 3291 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 3292 const char *string; 3293 3294 ASSERT(alloc_bias != VDEV_BIAS_NONE); 3295 3296 string = 3297 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : 3298 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : 3299 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; 3300 3301 ASSERT(string != NULL); 3302 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, 3303 1, strlen(string) + 1, string, tx)); 3304 3305 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { 3306 spa_activate_allocation_classes(spa, tx); 3307 } 3308 } 3309 3310 void 3311 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) 3312 { 3313 spa_t *spa = vd->vdev_spa; 3314 3315 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); 3316 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3317 zapobj, tx)); 3318 } 3319 3320 uint64_t 3321 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) 3322 { 3323 spa_t *spa = vd->vdev_spa; 3324 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, 3325 DMU_OT_NONE, 0, tx); 3326 3327 ASSERT(zap != 0); 3328 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, 3329 zap, tx)); 3330 3331 return (zap); 3332 } 3333 3334 void 3335 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) 3336 { 3337 if (vd->vdev_ops != &vdev_hole_ops && 3338 vd->vdev_ops != &vdev_missing_ops && 3339 vd->vdev_ops != &vdev_root_ops && 3340 !vd->vdev_top->vdev_removing) { 3341 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { 3342 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); 3343 } 3344 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { 3345 vd->vdev_top_zap = vdev_create_link_zap(vd, tx); 3346 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) 3347 vdev_zap_allocation_data(vd, tx); 3348 } 3349 } 3350 3351 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3352 vdev_construct_zaps(vd->vdev_child[i], tx); 3353 } 3354 } 3355 3356 static void 3357 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 3358 { 3359 spa_t *spa = vd->vdev_spa; 3360 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 3361 objset_t *mos = spa->spa_meta_objset; 3362 range_tree_t *rtsync; 3363 dmu_tx_t *tx; 3364 uint64_t object = space_map_object(vd->vdev_dtl_sm); 3365 3366 ASSERT(vdev_is_concrete(vd)); 3367 ASSERT(vd->vdev_ops->vdev_op_leaf); 3368 3369 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3370 3371 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 3372 mutex_enter(&vd->vdev_dtl_lock); 3373 space_map_free(vd->vdev_dtl_sm, tx); 3374 space_map_close(vd->vdev_dtl_sm); 3375 vd->vdev_dtl_sm = NULL; 3376 mutex_exit(&vd->vdev_dtl_lock); 3377 3378 /* 3379 * We only destroy the leaf ZAP for detached leaves or for 3380 * removed log devices. Removed data devices handle leaf ZAP 3381 * cleanup later, once cancellation is no longer possible. 3382 */ 3383 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || 3384 vd->vdev_top->vdev_islog)) { 3385 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); 3386 vd->vdev_leaf_zap = 0; 3387 } 3388 3389 dmu_tx_commit(tx); 3390 return; 3391 } 3392 3393 if (vd->vdev_dtl_sm == NULL) { 3394 uint64_t new_object; 3395 3396 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); 3397 VERIFY3U(new_object, !=, 0); 3398 3399 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 3400 0, -1ULL, 0)); 3401 ASSERT(vd->vdev_dtl_sm != NULL); 3402 } 3403 3404 rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 3405 3406 mutex_enter(&vd->vdev_dtl_lock); 3407 range_tree_walk(rt, range_tree_add, rtsync); 3408 mutex_exit(&vd->vdev_dtl_lock); 3409 3410 space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); 3411 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); 3412 range_tree_vacate(rtsync, NULL, NULL); 3413 3414 range_tree_destroy(rtsync); 3415 3416 /* 3417 * If the object for the space map has changed then dirty 3418 * the top level so that we update the config. 3419 */ 3420 if (object != space_map_object(vd->vdev_dtl_sm)) { 3421 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " 3422 "new object %llu", (u_longlong_t)txg, spa_name(spa), 3423 (u_longlong_t)object, 3424 (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); 3425 vdev_config_dirty(vd->vdev_top); 3426 } 3427 3428 dmu_tx_commit(tx); 3429 } 3430 3431 /* 3432 * Determine whether the specified vdev can be offlined/detached/removed 3433 * without losing data. 3434 */ 3435 boolean_t 3436 vdev_dtl_required(vdev_t *vd) 3437 { 3438 spa_t *spa = vd->vdev_spa; 3439 vdev_t *tvd = vd->vdev_top; 3440 uint8_t cant_read = vd->vdev_cant_read; 3441 boolean_t required; 3442 3443 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3444 3445 if (vd == spa->spa_root_vdev || vd == tvd) 3446 return (B_TRUE); 3447 3448 /* 3449 * Temporarily mark the device as unreadable, and then determine 3450 * whether this results in any DTL outages in the top-level vdev. 3451 * If not, we can safely offline/detach/remove the device. 3452 */ 3453 vd->vdev_cant_read = B_TRUE; 3454 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3455 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 3456 vd->vdev_cant_read = cant_read; 3457 vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); 3458 3459 if (!required && zio_injection_enabled) { 3460 required = !!zio_handle_device_injection(vd, NULL, 3461 SET_ERROR(ECHILD)); 3462 } 3463 3464 return (required); 3465 } 3466 3467 /* 3468 * Determine if resilver is needed, and if so the txg range. 3469 */ 3470 boolean_t 3471 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 3472 { 3473 boolean_t needed = B_FALSE; 3474 uint64_t thismin = UINT64_MAX; 3475 uint64_t thismax = 0; 3476 3477 if (vd->vdev_children == 0) { 3478 mutex_enter(&vd->vdev_dtl_lock); 3479 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && 3480 vdev_writeable(vd)) { 3481 3482 thismin = vdev_dtl_min(vd); 3483 thismax = vdev_dtl_max(vd); 3484 needed = B_TRUE; 3485 } 3486 mutex_exit(&vd->vdev_dtl_lock); 3487 } else { 3488 for (int c = 0; c < vd->vdev_children; c++) { 3489 vdev_t *cvd = vd->vdev_child[c]; 3490 uint64_t cmin, cmax; 3491 3492 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 3493 thismin = MIN(thismin, cmin); 3494 thismax = MAX(thismax, cmax); 3495 needed = B_TRUE; 3496 } 3497 } 3498 } 3499 3500 if (needed && minp) { 3501 *minp = thismin; 3502 *maxp = thismax; 3503 } 3504 return (needed); 3505 } 3506 3507 /* 3508 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj 3509 * will contain either the checkpoint spacemap object or zero if none exists. 3510 * All other errors are returned to the caller. 3511 */ 3512 int 3513 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) 3514 { 3515 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); 3516 3517 if (vd->vdev_top_zap == 0) { 3518 *sm_obj = 0; 3519 return (0); 3520 } 3521 3522 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, 3523 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); 3524 if (error == ENOENT) { 3525 *sm_obj = 0; 3526 error = 0; 3527 } 3528 3529 return (error); 3530 } 3531 3532 int 3533 vdev_load(vdev_t *vd) 3534 { 3535 int children = vd->vdev_children; 3536 int error = 0; 3537 taskq_t *tq = NULL; 3538 3539 /* 3540 * It's only worthwhile to use the taskq for the root vdev, because the 3541 * slow part is metaslab_init, and that only happens for top-level 3542 * vdevs. 3543 */ 3544 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { 3545 tq = taskq_create("vdev_load", children, minclsyspri, 3546 children, children, TASKQ_PREPOPULATE); 3547 } 3548 3549 /* 3550 * Recursively load all children. 3551 */ 3552 for (int c = 0; c < vd->vdev_children; c++) { 3553 vdev_t *cvd = vd->vdev_child[c]; 3554 3555 if (tq == NULL || vdev_uses_zvols(cvd)) { 3556 cvd->vdev_load_error = vdev_load(cvd); 3557 } else { 3558 VERIFY(taskq_dispatch(tq, vdev_load_child, 3559 cvd, TQ_SLEEP) != TASKQID_INVALID); 3560 } 3561 } 3562 3563 if (tq != NULL) { 3564 taskq_wait(tq); 3565 taskq_destroy(tq); 3566 } 3567 3568 for (int c = 0; c < vd->vdev_children; c++) { 3569 int error = vd->vdev_child[c]->vdev_load_error; 3570 3571 if (error != 0) 3572 return (error); 3573 } 3574 3575 vdev_set_deflate_ratio(vd); 3576 3577 /* 3578 * On spa_load path, grab the allocation bias from our zap 3579 */ 3580 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3581 spa_t *spa = vd->vdev_spa; 3582 char bias_str[64]; 3583 3584 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3585 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), 3586 bias_str); 3587 if (error == 0) { 3588 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); 3589 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); 3590 } else if (error != ENOENT) { 3591 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3592 VDEV_AUX_CORRUPT_DATA); 3593 vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " 3594 "failed [error=%d]", 3595 (u_longlong_t)vd->vdev_top_zap, error); 3596 return (error); 3597 } 3598 } 3599 3600 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3601 spa_t *spa = vd->vdev_spa; 3602 uint64_t failfast; 3603 3604 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, 3605 vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), 3606 1, &failfast); 3607 if (error == 0) { 3608 vd->vdev_failfast = failfast & 1; 3609 } else if (error == ENOENT) { 3610 vd->vdev_failfast = vdev_prop_default_numeric( 3611 VDEV_PROP_FAILFAST); 3612 } else { 3613 vdev_dbgmsg(vd, 3614 "vdev_load: zap_lookup(top_zap=%llu) " 3615 "failed [error=%d]", 3616 (u_longlong_t)vd->vdev_top_zap, error); 3617 } 3618 } 3619 3620 /* 3621 * Load any rebuild state from the top-level vdev zap. 3622 */ 3623 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { 3624 error = vdev_rebuild_load(vd); 3625 if (error && error != ENOTSUP) { 3626 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3627 VDEV_AUX_CORRUPT_DATA); 3628 vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " 3629 "failed [error=%d]", error); 3630 return (error); 3631 } 3632 } 3633 3634 if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { 3635 uint64_t zapobj; 3636 3637 if (vd->vdev_top_zap != 0) 3638 zapobj = vd->vdev_top_zap; 3639 else 3640 zapobj = vd->vdev_leaf_zap; 3641 3642 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, 3643 &vd->vdev_checksum_n); 3644 if (error && error != ENOENT) 3645 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3646 "failed [error=%d]", (u_longlong_t)zapobj, error); 3647 3648 error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, 3649 &vd->vdev_checksum_t); 3650 if (error && error != ENOENT) 3651 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3652 "failed [error=%d]", (u_longlong_t)zapobj, error); 3653 3654 error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, 3655 &vd->vdev_io_n); 3656 if (error && error != ENOENT) 3657 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3658 "failed [error=%d]", (u_longlong_t)zapobj, error); 3659 3660 error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, 3661 &vd->vdev_io_t); 3662 if (error && error != ENOENT) 3663 vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " 3664 "failed [error=%d]", (u_longlong_t)zapobj, error); 3665 } 3666 3667 /* 3668 * If this is a top-level vdev, initialize its metaslabs. 3669 */ 3670 if (vd == vd->vdev_top && vdev_is_concrete(vd)) { 3671 vdev_metaslab_group_create(vd); 3672 3673 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { 3674 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3675 VDEV_AUX_CORRUPT_DATA); 3676 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " 3677 "asize=%llu", (u_longlong_t)vd->vdev_ashift, 3678 (u_longlong_t)vd->vdev_asize); 3679 return (SET_ERROR(ENXIO)); 3680 } 3681 3682 error = vdev_metaslab_init(vd, 0); 3683 if (error != 0) { 3684 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " 3685 "[error=%d]", error); 3686 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3687 VDEV_AUX_CORRUPT_DATA); 3688 return (error); 3689 } 3690 3691 uint64_t checkpoint_sm_obj; 3692 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); 3693 if (error == 0 && checkpoint_sm_obj != 0) { 3694 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3695 ASSERT(vd->vdev_asize != 0); 3696 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); 3697 3698 error = space_map_open(&vd->vdev_checkpoint_sm, 3699 mos, checkpoint_sm_obj, 0, vd->vdev_asize, 3700 vd->vdev_ashift); 3701 if (error != 0) { 3702 vdev_dbgmsg(vd, "vdev_load: space_map_open " 3703 "failed for checkpoint spacemap (obj %llu) " 3704 "[error=%d]", 3705 (u_longlong_t)checkpoint_sm_obj, error); 3706 return (error); 3707 } 3708 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3709 3710 /* 3711 * Since the checkpoint_sm contains free entries 3712 * exclusively we can use space_map_allocated() to 3713 * indicate the cumulative checkpointed space that 3714 * has been freed. 3715 */ 3716 vd->vdev_stat.vs_checkpoint_space = 3717 -space_map_allocated(vd->vdev_checkpoint_sm); 3718 vd->vdev_spa->spa_checkpoint_info.sci_dspace += 3719 vd->vdev_stat.vs_checkpoint_space; 3720 } else if (error != 0) { 3721 vdev_dbgmsg(vd, "vdev_load: failed to retrieve " 3722 "checkpoint space map object from vdev ZAP " 3723 "[error=%d]", error); 3724 return (error); 3725 } 3726 } 3727 3728 /* 3729 * If this is a leaf vdev, load its DTL. 3730 */ 3731 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { 3732 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3733 VDEV_AUX_CORRUPT_DATA); 3734 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " 3735 "[error=%d]", error); 3736 return (error); 3737 } 3738 3739 uint64_t obsolete_sm_object; 3740 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); 3741 if (error == 0 && obsolete_sm_object != 0) { 3742 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3743 ASSERT(vd->vdev_asize != 0); 3744 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 3745 3746 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, 3747 obsolete_sm_object, 0, vd->vdev_asize, 0))) { 3748 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 3749 VDEV_AUX_CORRUPT_DATA); 3750 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " 3751 "obsolete spacemap (obj %llu) [error=%d]", 3752 (u_longlong_t)obsolete_sm_object, error); 3753 return (error); 3754 } 3755 } else if (error != 0) { 3756 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " 3757 "space map object from vdev ZAP [error=%d]", error); 3758 return (error); 3759 } 3760 3761 return (0); 3762 } 3763 3764 /* 3765 * The special vdev case is used for hot spares and l2cache devices. Its 3766 * sole purpose it to set the vdev state for the associated vdev. To do this, 3767 * we make sure that we can open the underlying device, then try to read the 3768 * label, and make sure that the label is sane and that it hasn't been 3769 * repurposed to another pool. 3770 */ 3771 int 3772 vdev_validate_aux(vdev_t *vd) 3773 { 3774 nvlist_t *label; 3775 uint64_t guid, version; 3776 uint64_t state; 3777 3778 if (!vdev_readable(vd)) 3779 return (0); 3780 3781 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 3782 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3783 VDEV_AUX_CORRUPT_DATA); 3784 return (-1); 3785 } 3786 3787 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 3788 !SPA_VERSION_IS_SUPPORTED(version) || 3789 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 3790 guid != vd->vdev_guid || 3791 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 3792 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 3793 VDEV_AUX_CORRUPT_DATA); 3794 nvlist_free(label); 3795 return (-1); 3796 } 3797 3798 /* 3799 * We don't actually check the pool state here. If it's in fact in 3800 * use by another pool, we update this fact on the fly when requested. 3801 */ 3802 nvlist_free(label); 3803 return (0); 3804 } 3805 3806 static void 3807 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) 3808 { 3809 objset_t *mos = spa_meta_objset(vd->vdev_spa); 3810 3811 if (vd->vdev_top_zap == 0) 3812 return; 3813 3814 uint64_t object = 0; 3815 int err = zap_lookup(mos, vd->vdev_top_zap, 3816 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); 3817 if (err == ENOENT) 3818 return; 3819 VERIFY0(err); 3820 3821 VERIFY0(dmu_object_free(mos, object, tx)); 3822 VERIFY0(zap_remove(mos, vd->vdev_top_zap, 3823 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); 3824 } 3825 3826 /* 3827 * Free the objects used to store this vdev's spacemaps, and the array 3828 * that points to them. 3829 */ 3830 void 3831 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) 3832 { 3833 if (vd->vdev_ms_array == 0) 3834 return; 3835 3836 objset_t *mos = vd->vdev_spa->spa_meta_objset; 3837 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; 3838 size_t array_bytes = array_count * sizeof (uint64_t); 3839 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); 3840 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, 3841 array_bytes, smobj_array, 0)); 3842 3843 for (uint64_t i = 0; i < array_count; i++) { 3844 uint64_t smobj = smobj_array[i]; 3845 if (smobj == 0) 3846 continue; 3847 3848 space_map_free_obj(mos, smobj, tx); 3849 } 3850 3851 kmem_free(smobj_array, array_bytes); 3852 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); 3853 vdev_destroy_ms_flush_data(vd, tx); 3854 vd->vdev_ms_array = 0; 3855 } 3856 3857 static void 3858 vdev_remove_empty_log(vdev_t *vd, uint64_t txg) 3859 { 3860 spa_t *spa = vd->vdev_spa; 3861 3862 ASSERT(vd->vdev_islog); 3863 ASSERT(vd == vd->vdev_top); 3864 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 3865 3866 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3867 3868 vdev_destroy_spacemaps(vd, tx); 3869 if (vd->vdev_top_zap != 0) { 3870 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); 3871 vd->vdev_top_zap = 0; 3872 } 3873 3874 dmu_tx_commit(tx); 3875 } 3876 3877 void 3878 vdev_sync_done(vdev_t *vd, uint64_t txg) 3879 { 3880 metaslab_t *msp; 3881 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 3882 3883 ASSERT(vdev_is_concrete(vd)); 3884 3885 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 3886 != NULL) 3887 metaslab_sync_done(msp, txg); 3888 3889 if (reassess) { 3890 metaslab_sync_reassess(vd->vdev_mg); 3891 if (vd->vdev_log_mg != NULL) 3892 metaslab_sync_reassess(vd->vdev_log_mg); 3893 } 3894 } 3895 3896 void 3897 vdev_sync(vdev_t *vd, uint64_t txg) 3898 { 3899 spa_t *spa = vd->vdev_spa; 3900 vdev_t *lvd; 3901 metaslab_t *msp; 3902 3903 ASSERT3U(txg, ==, spa->spa_syncing_txg); 3904 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3905 if (range_tree_space(vd->vdev_obsolete_segments) > 0) { 3906 ASSERT(vd->vdev_removing || 3907 vd->vdev_ops == &vdev_indirect_ops); 3908 3909 vdev_indirect_sync_obsolete(vd, tx); 3910 3911 /* 3912 * If the vdev is indirect, it can't have dirty 3913 * metaslabs or DTLs. 3914 */ 3915 if (vd->vdev_ops == &vdev_indirect_ops) { 3916 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); 3917 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); 3918 dmu_tx_commit(tx); 3919 return; 3920 } 3921 } 3922 3923 ASSERT(vdev_is_concrete(vd)); 3924 3925 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && 3926 !vd->vdev_removing) { 3927 ASSERT(vd == vd->vdev_top); 3928 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 3929 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 3930 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 3931 ASSERT(vd->vdev_ms_array != 0); 3932 vdev_config_dirty(vd); 3933 } 3934 3935 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 3936 metaslab_sync(msp, txg); 3937 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 3938 } 3939 3940 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 3941 vdev_dtl_sync(lvd, txg); 3942 3943 /* 3944 * If this is an empty log device being removed, destroy the 3945 * metadata associated with it. 3946 */ 3947 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 3948 vdev_remove_empty_log(vd, txg); 3949 3950 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 3951 dmu_tx_commit(tx); 3952 } 3953 3954 uint64_t 3955 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 3956 { 3957 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 3958 } 3959 3960 /* 3961 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 3962 * not be opened, and no I/O is attempted. 3963 */ 3964 int 3965 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 3966 { 3967 vdev_t *vd, *tvd; 3968 3969 spa_vdev_state_enter(spa, SCL_NONE); 3970 3971 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 3972 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 3973 3974 if (!vd->vdev_ops->vdev_op_leaf) 3975 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 3976 3977 tvd = vd->vdev_top; 3978 3979 /* 3980 * If user did a 'zpool offline -f' then make the fault persist across 3981 * reboots. 3982 */ 3983 if (aux == VDEV_AUX_EXTERNAL_PERSIST) { 3984 /* 3985 * There are two kinds of forced faults: temporary and 3986 * persistent. Temporary faults go away at pool import, while 3987 * persistent faults stay set. Both types of faults can be 3988 * cleared with a zpool clear. 3989 * 3990 * We tell if a vdev is persistently faulted by looking at the 3991 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at 3992 * import then it's a persistent fault. Otherwise, it's 3993 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" 3994 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This 3995 * tells vdev_config_generate() (which gets run later) to set 3996 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. 3997 */ 3998 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; 3999 vd->vdev_tmpoffline = B_FALSE; 4000 aux = VDEV_AUX_EXTERNAL; 4001 } else { 4002 vd->vdev_tmpoffline = B_TRUE; 4003 } 4004 4005 /* 4006 * We don't directly use the aux state here, but if we do a 4007 * vdev_reopen(), we need this value to be present to remember why we 4008 * were faulted. 4009 */ 4010 vd->vdev_label_aux = aux; 4011 4012 /* 4013 * Faulted state takes precedence over degraded. 4014 */ 4015 vd->vdev_delayed_close = B_FALSE; 4016 vd->vdev_faulted = 1ULL; 4017 vd->vdev_degraded = 0ULL; 4018 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 4019 4020 /* 4021 * If this device has the only valid copy of the data, then 4022 * back off and simply mark the vdev as degraded instead. 4023 */ 4024 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 4025 vd->vdev_degraded = 1ULL; 4026 vd->vdev_faulted = 0ULL; 4027 4028 /* 4029 * If we reopen the device and it's not dead, only then do we 4030 * mark it degraded. 4031 */ 4032 vdev_reopen(tvd); 4033 4034 if (vdev_readable(vd)) 4035 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 4036 } 4037 4038 return (spa_vdev_state_exit(spa, vd, 0)); 4039 } 4040 4041 /* 4042 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 4043 * user that something is wrong. The vdev continues to operate as normal as far 4044 * as I/O is concerned. 4045 */ 4046 int 4047 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 4048 { 4049 vdev_t *vd; 4050 4051 spa_vdev_state_enter(spa, SCL_NONE); 4052 4053 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4054 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4055 4056 if (!vd->vdev_ops->vdev_op_leaf) 4057 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4058 4059 /* 4060 * If the vdev is already faulted, then don't do anything. 4061 */ 4062 if (vd->vdev_faulted || vd->vdev_degraded) 4063 return (spa_vdev_state_exit(spa, NULL, 0)); 4064 4065 vd->vdev_degraded = 1ULL; 4066 if (!vdev_is_dead(vd)) 4067 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 4068 aux); 4069 4070 return (spa_vdev_state_exit(spa, vd, 0)); 4071 } 4072 4073 int 4074 vdev_remove_wanted(spa_t *spa, uint64_t guid) 4075 { 4076 vdev_t *vd; 4077 4078 spa_vdev_state_enter(spa, SCL_NONE); 4079 4080 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4081 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4082 4083 /* 4084 * If the vdev is already removed, then don't do anything. 4085 */ 4086 if (vd->vdev_removed) 4087 return (spa_vdev_state_exit(spa, NULL, 0)); 4088 4089 vd->vdev_remove_wanted = B_TRUE; 4090 spa_async_request(spa, SPA_ASYNC_REMOVE); 4091 4092 return (spa_vdev_state_exit(spa, vd, 0)); 4093 } 4094 4095 4096 /* 4097 * Online the given vdev. 4098 * 4099 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 4100 * spare device should be detached when the device finishes resilvering. 4101 * Second, the online should be treated like a 'test' online case, so no FMA 4102 * events are generated if the device fails to open. 4103 */ 4104 int 4105 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 4106 { 4107 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 4108 boolean_t wasoffline; 4109 vdev_state_t oldstate; 4110 4111 spa_vdev_state_enter(spa, SCL_NONE); 4112 4113 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4114 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4115 4116 if (!vd->vdev_ops->vdev_op_leaf) 4117 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4118 4119 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); 4120 oldstate = vd->vdev_state; 4121 4122 tvd = vd->vdev_top; 4123 vd->vdev_offline = B_FALSE; 4124 vd->vdev_tmpoffline = B_FALSE; 4125 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 4126 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 4127 4128 /* XXX - L2ARC 1.0 does not support expansion */ 4129 if (!vd->vdev_aux) { 4130 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4131 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || 4132 spa->spa_autoexpand); 4133 vd->vdev_expansion_time = gethrestime_sec(); 4134 } 4135 4136 vdev_reopen(tvd); 4137 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 4138 4139 if (!vd->vdev_aux) { 4140 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4141 pvd->vdev_expanding = B_FALSE; 4142 } 4143 4144 if (newstate) 4145 *newstate = vd->vdev_state; 4146 if ((flags & ZFS_ONLINE_UNSPARE) && 4147 !vdev_is_dead(vd) && vd->vdev_parent && 4148 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4149 vd->vdev_parent->vdev_child[0] == vd) 4150 vd->vdev_unspare = B_TRUE; 4151 4152 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 4153 4154 /* XXX - L2ARC 1.0 does not support expansion */ 4155 if (vd->vdev_aux) 4156 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 4157 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4158 } 4159 4160 /* Restart initializing if necessary */ 4161 mutex_enter(&vd->vdev_initialize_lock); 4162 if (vdev_writeable(vd) && 4163 vd->vdev_initialize_thread == NULL && 4164 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { 4165 (void) vdev_initialize(vd); 4166 } 4167 mutex_exit(&vd->vdev_initialize_lock); 4168 4169 /* 4170 * Restart trimming if necessary. We do not restart trimming for cache 4171 * devices here. This is triggered by l2arc_rebuild_vdev() 4172 * asynchronously for the whole device or in l2arc_evict() as it evicts 4173 * space for upcoming writes. 4174 */ 4175 mutex_enter(&vd->vdev_trim_lock); 4176 if (vdev_writeable(vd) && !vd->vdev_isl2cache && 4177 vd->vdev_trim_thread == NULL && 4178 vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { 4179 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, 4180 vd->vdev_trim_secure); 4181 } 4182 mutex_exit(&vd->vdev_trim_lock); 4183 4184 if (wasoffline || 4185 (oldstate < VDEV_STATE_DEGRADED && 4186 vd->vdev_state >= VDEV_STATE_DEGRADED)) 4187 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); 4188 4189 return (spa_vdev_state_exit(spa, vd, 0)); 4190 } 4191 4192 static int 4193 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 4194 { 4195 vdev_t *vd, *tvd; 4196 int error = 0; 4197 uint64_t generation; 4198 metaslab_group_t *mg; 4199 4200 top: 4201 spa_vdev_state_enter(spa, SCL_ALLOC); 4202 4203 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4204 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); 4205 4206 if (!vd->vdev_ops->vdev_op_leaf) 4207 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); 4208 4209 if (vd->vdev_ops == &vdev_draid_spare_ops) 4210 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4211 4212 tvd = vd->vdev_top; 4213 mg = tvd->vdev_mg; 4214 generation = spa->spa_config_generation + 1; 4215 4216 /* 4217 * If the device isn't already offline, try to offline it. 4218 */ 4219 if (!vd->vdev_offline) { 4220 /* 4221 * If this device has the only valid copy of some data, 4222 * don't allow it to be offlined. Log devices are always 4223 * expendable. 4224 */ 4225 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4226 vdev_dtl_required(vd)) 4227 return (spa_vdev_state_exit(spa, NULL, 4228 SET_ERROR(EBUSY))); 4229 4230 /* 4231 * If the top-level is a slog and it has had allocations 4232 * then proceed. We check that the vdev's metaslab group 4233 * is not NULL since it's possible that we may have just 4234 * added this vdev but not yet initialized its metaslabs. 4235 */ 4236 if (tvd->vdev_islog && mg != NULL) { 4237 /* 4238 * Prevent any future allocations. 4239 */ 4240 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 4241 metaslab_group_passivate(mg); 4242 (void) spa_vdev_state_exit(spa, vd, 0); 4243 4244 error = spa_reset_logs(spa); 4245 4246 /* 4247 * If the log device was successfully reset but has 4248 * checkpointed data, do not offline it. 4249 */ 4250 if (error == 0 && 4251 tvd->vdev_checkpoint_sm != NULL) { 4252 ASSERT3U(space_map_allocated( 4253 tvd->vdev_checkpoint_sm), !=, 0); 4254 error = ZFS_ERR_CHECKPOINT_EXISTS; 4255 } 4256 4257 spa_vdev_state_enter(spa, SCL_ALLOC); 4258 4259 /* 4260 * Check to see if the config has changed. 4261 */ 4262 if (error || generation != spa->spa_config_generation) { 4263 metaslab_group_activate(mg); 4264 if (error) 4265 return (spa_vdev_state_exit(spa, 4266 vd, error)); 4267 (void) spa_vdev_state_exit(spa, vd, 0); 4268 goto top; 4269 } 4270 ASSERT0(tvd->vdev_stat.vs_alloc); 4271 } 4272 4273 /* 4274 * Offline this device and reopen its top-level vdev. 4275 * If the top-level vdev is a log device then just offline 4276 * it. Otherwise, if this action results in the top-level 4277 * vdev becoming unusable, undo it and fail the request. 4278 */ 4279 vd->vdev_offline = B_TRUE; 4280 vdev_reopen(tvd); 4281 4282 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 4283 vdev_is_dead(tvd)) { 4284 vd->vdev_offline = B_FALSE; 4285 vdev_reopen(tvd); 4286 return (spa_vdev_state_exit(spa, NULL, 4287 SET_ERROR(EBUSY))); 4288 } 4289 4290 /* 4291 * Add the device back into the metaslab rotor so that 4292 * once we online the device it's open for business. 4293 */ 4294 if (tvd->vdev_islog && mg != NULL) 4295 metaslab_group_activate(mg); 4296 } 4297 4298 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 4299 4300 return (spa_vdev_state_exit(spa, vd, 0)); 4301 } 4302 4303 int 4304 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 4305 { 4306 int error; 4307 4308 mutex_enter(&spa->spa_vdev_top_lock); 4309 error = vdev_offline_locked(spa, guid, flags); 4310 mutex_exit(&spa->spa_vdev_top_lock); 4311 4312 return (error); 4313 } 4314 4315 /* 4316 * Clear the error counts associated with this vdev. Unlike vdev_online() and 4317 * vdev_offline(), we assume the spa config is locked. We also clear all 4318 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 4319 */ 4320 void 4321 vdev_clear(spa_t *spa, vdev_t *vd) 4322 { 4323 vdev_t *rvd = spa->spa_root_vdev; 4324 4325 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 4326 4327 if (vd == NULL) 4328 vd = rvd; 4329 4330 vd->vdev_stat.vs_read_errors = 0; 4331 vd->vdev_stat.vs_write_errors = 0; 4332 vd->vdev_stat.vs_checksum_errors = 0; 4333 vd->vdev_stat.vs_slow_ios = 0; 4334 4335 for (int c = 0; c < vd->vdev_children; c++) 4336 vdev_clear(spa, vd->vdev_child[c]); 4337 4338 /* 4339 * It makes no sense to "clear" an indirect or removed vdev. 4340 */ 4341 if (!vdev_is_concrete(vd) || vd->vdev_removed) 4342 return; 4343 4344 /* 4345 * If we're in the FAULTED state or have experienced failed I/O, then 4346 * clear the persistent state and attempt to reopen the device. We 4347 * also mark the vdev config dirty, so that the new faulted state is 4348 * written out to disk. 4349 */ 4350 if (vd->vdev_faulted || vd->vdev_degraded || 4351 !vdev_readable(vd) || !vdev_writeable(vd)) { 4352 /* 4353 * When reopening in response to a clear event, it may be due to 4354 * a fmadm repair request. In this case, if the device is 4355 * still broken, we want to still post the ereport again. 4356 */ 4357 vd->vdev_forcefault = B_TRUE; 4358 4359 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 4360 vd->vdev_cant_read = B_FALSE; 4361 vd->vdev_cant_write = B_FALSE; 4362 vd->vdev_stat.vs_aux = 0; 4363 4364 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 4365 4366 vd->vdev_forcefault = B_FALSE; 4367 4368 if (vd != rvd && vdev_writeable(vd->vdev_top)) 4369 vdev_state_dirty(vd->vdev_top); 4370 4371 /* If a resilver isn't required, check if vdevs can be culled */ 4372 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && 4373 !dsl_scan_resilvering(spa->spa_dsl_pool) && 4374 !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) 4375 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4376 4377 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); 4378 } 4379 4380 /* 4381 * When clearing a FMA-diagnosed fault, we always want to 4382 * unspare the device, as we assume that the original spare was 4383 * done in response to the FMA fault. 4384 */ 4385 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 4386 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 4387 vd->vdev_parent->vdev_child[0] == vd) 4388 vd->vdev_unspare = B_TRUE; 4389 4390 /* Clear recent error events cache (i.e. duplicate events tracking) */ 4391 zfs_ereport_clear(spa, vd); 4392 } 4393 4394 boolean_t 4395 vdev_is_dead(vdev_t *vd) 4396 { 4397 /* 4398 * Holes and missing devices are always considered "dead". 4399 * This simplifies the code since we don't have to check for 4400 * these types of devices in the various code paths. 4401 * Instead we rely on the fact that we skip over dead devices 4402 * before issuing I/O to them. 4403 */ 4404 return (vd->vdev_state < VDEV_STATE_DEGRADED || 4405 vd->vdev_ops == &vdev_hole_ops || 4406 vd->vdev_ops == &vdev_missing_ops); 4407 } 4408 4409 boolean_t 4410 vdev_readable(vdev_t *vd) 4411 { 4412 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 4413 } 4414 4415 boolean_t 4416 vdev_writeable(vdev_t *vd) 4417 { 4418 return (!vdev_is_dead(vd) && !vd->vdev_cant_write && 4419 vdev_is_concrete(vd)); 4420 } 4421 4422 boolean_t 4423 vdev_allocatable(vdev_t *vd) 4424 { 4425 uint64_t state = vd->vdev_state; 4426 4427 /* 4428 * We currently allow allocations from vdevs which may be in the 4429 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 4430 * fails to reopen then we'll catch it later when we're holding 4431 * the proper locks. Note that we have to get the vdev state 4432 * in a local variable because although it changes atomically, 4433 * we're asking two separate questions about it. 4434 */ 4435 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 4436 !vd->vdev_cant_write && vdev_is_concrete(vd) && 4437 vd->vdev_mg->mg_initialized); 4438 } 4439 4440 boolean_t 4441 vdev_accessible(vdev_t *vd, zio_t *zio) 4442 { 4443 ASSERT(zio->io_vd == vd); 4444 4445 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 4446 return (B_FALSE); 4447 4448 if (zio->io_type == ZIO_TYPE_READ) 4449 return (!vd->vdev_cant_read); 4450 4451 if (zio->io_type == ZIO_TYPE_WRITE) 4452 return (!vd->vdev_cant_write); 4453 4454 return (B_TRUE); 4455 } 4456 4457 static void 4458 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) 4459 { 4460 /* 4461 * Exclude the dRAID spare when aggregating to avoid double counting 4462 * the ops and bytes. These IOs are counted by the physical leaves. 4463 */ 4464 if (cvd->vdev_ops == &vdev_draid_spare_ops) 4465 return; 4466 4467 for (int t = 0; t < VS_ZIO_TYPES; t++) { 4468 vs->vs_ops[t] += cvs->vs_ops[t]; 4469 vs->vs_bytes[t] += cvs->vs_bytes[t]; 4470 } 4471 4472 cvs->vs_scan_removing = cvd->vdev_removing; 4473 } 4474 4475 /* 4476 * Get extended stats 4477 */ 4478 static void 4479 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) 4480 { 4481 (void) cvd; 4482 4483 int t, b; 4484 for (t = 0; t < ZIO_TYPES; t++) { 4485 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) 4486 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; 4487 4488 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { 4489 vsx->vsx_total_histo[t][b] += 4490 cvsx->vsx_total_histo[t][b]; 4491 } 4492 } 4493 4494 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { 4495 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { 4496 vsx->vsx_queue_histo[t][b] += 4497 cvsx->vsx_queue_histo[t][b]; 4498 } 4499 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; 4500 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; 4501 4502 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) 4503 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; 4504 4505 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) 4506 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; 4507 } 4508 4509 } 4510 4511 boolean_t 4512 vdev_is_spacemap_addressable(vdev_t *vd) 4513 { 4514 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) 4515 return (B_TRUE); 4516 4517 /* 4518 * If double-word space map entries are not enabled we assume 4519 * 47 bits of the space map entry are dedicated to the entry's 4520 * offset (see SM_OFFSET_BITS in space_map.h). We then use that 4521 * to calculate the maximum address that can be described by a 4522 * space map entry for the given device. 4523 */ 4524 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; 4525 4526 if (shift >= 63) /* detect potential overflow */ 4527 return (B_TRUE); 4528 4529 return (vd->vdev_asize < (1ULL << shift)); 4530 } 4531 4532 /* 4533 * Get statistics for the given vdev. 4534 */ 4535 static void 4536 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4537 { 4538 int t; 4539 /* 4540 * If we're getting stats on the root vdev, aggregate the I/O counts 4541 * over all top-level vdevs (i.e. the direct children of the root). 4542 */ 4543 if (!vd->vdev_ops->vdev_op_leaf) { 4544 if (vs) { 4545 memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); 4546 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); 4547 } 4548 if (vsx) 4549 memset(vsx, 0, sizeof (*vsx)); 4550 4551 for (int c = 0; c < vd->vdev_children; c++) { 4552 vdev_t *cvd = vd->vdev_child[c]; 4553 vdev_stat_t *cvs = &cvd->vdev_stat; 4554 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; 4555 4556 vdev_get_stats_ex_impl(cvd, cvs, cvsx); 4557 if (vs) 4558 vdev_get_child_stat(cvd, vs, cvs); 4559 if (vsx) 4560 vdev_get_child_stat_ex(cvd, vsx, cvsx); 4561 } 4562 } else { 4563 /* 4564 * We're a leaf. Just copy our ZIO active queue stats in. The 4565 * other leaf stats are updated in vdev_stat_update(). 4566 */ 4567 if (!vsx) 4568 return; 4569 4570 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); 4571 4572 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) { 4573 vsx->vsx_active_queue[t] = 4574 vd->vdev_queue.vq_class[t].vqc_active; 4575 vsx->vsx_pend_queue[t] = avl_numnodes( 4576 &vd->vdev_queue.vq_class[t].vqc_queued_tree); 4577 } 4578 } 4579 } 4580 4581 void 4582 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) 4583 { 4584 vdev_t *tvd = vd->vdev_top; 4585 mutex_enter(&vd->vdev_stat_lock); 4586 if (vs) { 4587 memcpy(vs, &vd->vdev_stat, sizeof (*vs)); 4588 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 4589 vs->vs_state = vd->vdev_state; 4590 vs->vs_rsize = vdev_get_min_asize(vd); 4591 4592 if (vd->vdev_ops->vdev_op_leaf) { 4593 vs->vs_pspace = vd->vdev_psize; 4594 vs->vs_rsize += VDEV_LABEL_START_SIZE + 4595 VDEV_LABEL_END_SIZE; 4596 /* 4597 * Report initializing progress. Since we don't 4598 * have the initializing locks held, this is only 4599 * an estimate (although a fairly accurate one). 4600 */ 4601 vs->vs_initialize_bytes_done = 4602 vd->vdev_initialize_bytes_done; 4603 vs->vs_initialize_bytes_est = 4604 vd->vdev_initialize_bytes_est; 4605 vs->vs_initialize_state = vd->vdev_initialize_state; 4606 vs->vs_initialize_action_time = 4607 vd->vdev_initialize_action_time; 4608 4609 /* 4610 * Report manual TRIM progress. Since we don't have 4611 * the manual TRIM locks held, this is only an 4612 * estimate (although fairly accurate one). 4613 */ 4614 vs->vs_trim_notsup = !vd->vdev_has_trim; 4615 vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; 4616 vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; 4617 vs->vs_trim_state = vd->vdev_trim_state; 4618 vs->vs_trim_action_time = vd->vdev_trim_action_time; 4619 4620 /* Set when there is a deferred resilver. */ 4621 vs->vs_resilver_deferred = vd->vdev_resilver_deferred; 4622 } 4623 4624 /* 4625 * Report expandable space on top-level, non-auxiliary devices 4626 * only. The expandable space is reported in terms of metaslab 4627 * sized units since that determines how much space the pool 4628 * can expand. 4629 */ 4630 if (vd->vdev_aux == NULL && tvd != NULL) { 4631 vs->vs_esize = P2ALIGN( 4632 vd->vdev_max_asize - vd->vdev_asize, 4633 1ULL << tvd->vdev_ms_shift); 4634 } 4635 4636 vs->vs_configured_ashift = vd->vdev_top != NULL 4637 ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; 4638 vs->vs_logical_ashift = vd->vdev_logical_ashift; 4639 if (vd->vdev_physical_ashift <= ASHIFT_MAX) 4640 vs->vs_physical_ashift = vd->vdev_physical_ashift; 4641 else 4642 vs->vs_physical_ashift = 0; 4643 4644 /* 4645 * Report fragmentation and rebuild progress for top-level, 4646 * non-auxiliary, concrete devices. 4647 */ 4648 if (vd->vdev_aux == NULL && vd == vd->vdev_top && 4649 vdev_is_concrete(vd)) { 4650 /* 4651 * The vdev fragmentation rating doesn't take into 4652 * account the embedded slog metaslab (vdev_log_mg). 4653 * Since it's only one metaslab, it would have a tiny 4654 * impact on the overall fragmentation. 4655 */ 4656 vs->vs_fragmentation = (vd->vdev_mg != NULL) ? 4657 vd->vdev_mg->mg_fragmentation : 0; 4658 } 4659 vs->vs_noalloc = MAX(vd->vdev_noalloc, 4660 tvd ? tvd->vdev_noalloc : 0); 4661 } 4662 4663 vdev_get_stats_ex_impl(vd, vs, vsx); 4664 mutex_exit(&vd->vdev_stat_lock); 4665 } 4666 4667 void 4668 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 4669 { 4670 return (vdev_get_stats_ex(vd, vs, NULL)); 4671 } 4672 4673 void 4674 vdev_clear_stats(vdev_t *vd) 4675 { 4676 mutex_enter(&vd->vdev_stat_lock); 4677 vd->vdev_stat.vs_space = 0; 4678 vd->vdev_stat.vs_dspace = 0; 4679 vd->vdev_stat.vs_alloc = 0; 4680 mutex_exit(&vd->vdev_stat_lock); 4681 } 4682 4683 void 4684 vdev_scan_stat_init(vdev_t *vd) 4685 { 4686 vdev_stat_t *vs = &vd->vdev_stat; 4687 4688 for (int c = 0; c < vd->vdev_children; c++) 4689 vdev_scan_stat_init(vd->vdev_child[c]); 4690 4691 mutex_enter(&vd->vdev_stat_lock); 4692 vs->vs_scan_processed = 0; 4693 mutex_exit(&vd->vdev_stat_lock); 4694 } 4695 4696 void 4697 vdev_stat_update(zio_t *zio, uint64_t psize) 4698 { 4699 spa_t *spa = zio->io_spa; 4700 vdev_t *rvd = spa->spa_root_vdev; 4701 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 4702 vdev_t *pvd; 4703 uint64_t txg = zio->io_txg; 4704 /* Suppress ASAN false positive */ 4705 #ifdef __SANITIZE_ADDRESS__ 4706 vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; 4707 vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; 4708 #else 4709 vdev_stat_t *vs = &vd->vdev_stat; 4710 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; 4711 #endif 4712 zio_type_t type = zio->io_type; 4713 int flags = zio->io_flags; 4714 4715 /* 4716 * If this i/o is a gang leader, it didn't do any actual work. 4717 */ 4718 if (zio->io_gang_tree) 4719 return; 4720 4721 if (zio->io_error == 0) { 4722 /* 4723 * If this is a root i/o, don't count it -- we've already 4724 * counted the top-level vdevs, and vdev_get_stats() will 4725 * aggregate them when asked. This reduces contention on 4726 * the root vdev_stat_lock and implicitly handles blocks 4727 * that compress away to holes, for which there is no i/o. 4728 * (Holes never create vdev children, so all the counters 4729 * remain zero, which is what we want.) 4730 * 4731 * Note: this only applies to successful i/o (io_error == 0) 4732 * because unlike i/o counts, errors are not additive. 4733 * When reading a ditto block, for example, failure of 4734 * one top-level vdev does not imply a root-level error. 4735 */ 4736 if (vd == rvd) 4737 return; 4738 4739 ASSERT(vd == zio->io_vd); 4740 4741 if (flags & ZIO_FLAG_IO_BYPASS) 4742 return; 4743 4744 mutex_enter(&vd->vdev_stat_lock); 4745 4746 if (flags & ZIO_FLAG_IO_REPAIR) { 4747 /* 4748 * Repair is the result of a resilver issued by the 4749 * scan thread (spa_sync). 4750 */ 4751 if (flags & ZIO_FLAG_SCAN_THREAD) { 4752 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 4753 dsl_scan_phys_t *scn_phys = &scn->scn_phys; 4754 uint64_t *processed = &scn_phys->scn_processed; 4755 4756 if (vd->vdev_ops->vdev_op_leaf) 4757 atomic_add_64(processed, psize); 4758 vs->vs_scan_processed += psize; 4759 } 4760 4761 /* 4762 * Repair is the result of a rebuild issued by the 4763 * rebuild thread (vdev_rebuild_thread). To avoid 4764 * double counting repaired bytes the virtual dRAID 4765 * spare vdev is excluded from the processed bytes. 4766 */ 4767 if (zio->io_priority == ZIO_PRIORITY_REBUILD) { 4768 vdev_t *tvd = vd->vdev_top; 4769 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; 4770 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; 4771 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; 4772 4773 if (vd->vdev_ops->vdev_op_leaf && 4774 vd->vdev_ops != &vdev_draid_spare_ops) { 4775 atomic_add_64(rebuilt, psize); 4776 } 4777 vs->vs_rebuild_processed += psize; 4778 } 4779 4780 if (flags & ZIO_FLAG_SELF_HEAL) 4781 vs->vs_self_healed += psize; 4782 } 4783 4784 /* 4785 * The bytes/ops/histograms are recorded at the leaf level and 4786 * aggregated into the higher level vdevs in vdev_get_stats(). 4787 */ 4788 if (vd->vdev_ops->vdev_op_leaf && 4789 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { 4790 zio_type_t vs_type = type; 4791 zio_priority_t priority = zio->io_priority; 4792 4793 /* 4794 * TRIM ops and bytes are reported to user space as 4795 * ZIO_TYPE_IOCTL. This is done to preserve the 4796 * vdev_stat_t structure layout for user space. 4797 */ 4798 if (type == ZIO_TYPE_TRIM) 4799 vs_type = ZIO_TYPE_IOCTL; 4800 4801 /* 4802 * Solely for the purposes of 'zpool iostat -lqrw' 4803 * reporting use the priority to categorize the IO. 4804 * Only the following are reported to user space: 4805 * 4806 * ZIO_PRIORITY_SYNC_READ, 4807 * ZIO_PRIORITY_SYNC_WRITE, 4808 * ZIO_PRIORITY_ASYNC_READ, 4809 * ZIO_PRIORITY_ASYNC_WRITE, 4810 * ZIO_PRIORITY_SCRUB, 4811 * ZIO_PRIORITY_TRIM, 4812 * ZIO_PRIORITY_REBUILD. 4813 */ 4814 if (priority == ZIO_PRIORITY_INITIALIZING) { 4815 ASSERT3U(type, ==, ZIO_TYPE_WRITE); 4816 priority = ZIO_PRIORITY_ASYNC_WRITE; 4817 } else if (priority == ZIO_PRIORITY_REMOVAL) { 4818 priority = ((type == ZIO_TYPE_WRITE) ? 4819 ZIO_PRIORITY_ASYNC_WRITE : 4820 ZIO_PRIORITY_ASYNC_READ); 4821 } 4822 4823 vs->vs_ops[vs_type]++; 4824 vs->vs_bytes[vs_type] += psize; 4825 4826 if (flags & ZIO_FLAG_DELEGATED) { 4827 vsx->vsx_agg_histo[priority] 4828 [RQ_HISTO(zio->io_size)]++; 4829 } else { 4830 vsx->vsx_ind_histo[priority] 4831 [RQ_HISTO(zio->io_size)]++; 4832 } 4833 4834 if (zio->io_delta && zio->io_delay) { 4835 vsx->vsx_queue_histo[priority] 4836 [L_HISTO(zio->io_delta - zio->io_delay)]++; 4837 vsx->vsx_disk_histo[type] 4838 [L_HISTO(zio->io_delay)]++; 4839 vsx->vsx_total_histo[type] 4840 [L_HISTO(zio->io_delta)]++; 4841 } 4842 } 4843 4844 mutex_exit(&vd->vdev_stat_lock); 4845 return; 4846 } 4847 4848 if (flags & ZIO_FLAG_SPECULATIVE) 4849 return; 4850 4851 /* 4852 * If this is an I/O error that is going to be retried, then ignore the 4853 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 4854 * hard errors, when in reality they can happen for any number of 4855 * innocuous reasons (bus resets, MPxIO link failure, etc). 4856 */ 4857 if (zio->io_error == EIO && 4858 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 4859 return; 4860 4861 /* 4862 * Intent logs writes won't propagate their error to the root 4863 * I/O so don't mark these types of failures as pool-level 4864 * errors. 4865 */ 4866 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 4867 return; 4868 4869 if (type == ZIO_TYPE_WRITE && txg != 0 && 4870 (!(flags & ZIO_FLAG_IO_REPAIR) || 4871 (flags & ZIO_FLAG_SCAN_THREAD) || 4872 spa->spa_claiming)) { 4873 /* 4874 * This is either a normal write (not a repair), or it's 4875 * a repair induced by the scrub thread, or it's a repair 4876 * made by zil_claim() during spa_load() in the first txg. 4877 * In the normal case, we commit the DTL change in the same 4878 * txg as the block was born. In the scrub-induced repair 4879 * case, we know that scrubs run in first-pass syncing context, 4880 * so we commit the DTL change in spa_syncing_txg(spa). 4881 * In the zil_claim() case, we commit in spa_first_txg(spa). 4882 * 4883 * We currently do not make DTL entries for failed spontaneous 4884 * self-healing writes triggered by normal (non-scrubbing) 4885 * reads, because we have no transactional context in which to 4886 * do so -- and it's not clear that it'd be desirable anyway. 4887 */ 4888 if (vd->vdev_ops->vdev_op_leaf) { 4889 uint64_t commit_txg = txg; 4890 if (flags & ZIO_FLAG_SCAN_THREAD) { 4891 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4892 ASSERT(spa_sync_pass(spa) == 1); 4893 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 4894 commit_txg = spa_syncing_txg(spa); 4895 } else if (spa->spa_claiming) { 4896 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 4897 commit_txg = spa_first_txg(spa); 4898 } 4899 ASSERT(commit_txg >= spa_syncing_txg(spa)); 4900 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 4901 return; 4902 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 4903 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 4904 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 4905 } 4906 if (vd != rvd) 4907 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 4908 } 4909 } 4910 4911 int64_t 4912 vdev_deflated_space(vdev_t *vd, int64_t space) 4913 { 4914 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); 4915 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 4916 4917 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); 4918 } 4919 4920 /* 4921 * Update the in-core space usage stats for this vdev, its metaslab class, 4922 * and the root vdev. 4923 */ 4924 void 4925 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 4926 int64_t space_delta) 4927 { 4928 (void) defer_delta; 4929 int64_t dspace_delta; 4930 spa_t *spa = vd->vdev_spa; 4931 vdev_t *rvd = spa->spa_root_vdev; 4932 4933 ASSERT(vd == vd->vdev_top); 4934 4935 /* 4936 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 4937 * factor. We must calculate this here and not at the root vdev 4938 * because the root vdev's psize-to-asize is simply the max of its 4939 * children's, thus not accurate enough for us. 4940 */ 4941 dspace_delta = vdev_deflated_space(vd, space_delta); 4942 4943 mutex_enter(&vd->vdev_stat_lock); 4944 /* ensure we won't underflow */ 4945 if (alloc_delta < 0) { 4946 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); 4947 } 4948 4949 vd->vdev_stat.vs_alloc += alloc_delta; 4950 vd->vdev_stat.vs_space += space_delta; 4951 vd->vdev_stat.vs_dspace += dspace_delta; 4952 mutex_exit(&vd->vdev_stat_lock); 4953 4954 /* every class but log contributes to root space stats */ 4955 if (vd->vdev_mg != NULL && !vd->vdev_islog) { 4956 ASSERT(!vd->vdev_isl2cache); 4957 mutex_enter(&rvd->vdev_stat_lock); 4958 rvd->vdev_stat.vs_alloc += alloc_delta; 4959 rvd->vdev_stat.vs_space += space_delta; 4960 rvd->vdev_stat.vs_dspace += dspace_delta; 4961 mutex_exit(&rvd->vdev_stat_lock); 4962 } 4963 /* Note: metaslab_class_space_update moved to metaslab_space_update */ 4964 } 4965 4966 /* 4967 * Mark a top-level vdev's config as dirty, placing it on the dirty list 4968 * so that it will be written out next time the vdev configuration is synced. 4969 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 4970 */ 4971 void 4972 vdev_config_dirty(vdev_t *vd) 4973 { 4974 spa_t *spa = vd->vdev_spa; 4975 vdev_t *rvd = spa->spa_root_vdev; 4976 int c; 4977 4978 ASSERT(spa_writeable(spa)); 4979 4980 /* 4981 * If this is an aux vdev (as with l2cache and spare devices), then we 4982 * update the vdev config manually and set the sync flag. 4983 */ 4984 if (vd->vdev_aux != NULL) { 4985 spa_aux_vdev_t *sav = vd->vdev_aux; 4986 nvlist_t **aux; 4987 uint_t naux; 4988 4989 for (c = 0; c < sav->sav_count; c++) { 4990 if (sav->sav_vdevs[c] == vd) 4991 break; 4992 } 4993 4994 if (c == sav->sav_count) { 4995 /* 4996 * We're being removed. There's nothing more to do. 4997 */ 4998 ASSERT(sav->sav_sync == B_TRUE); 4999 return; 5000 } 5001 5002 sav->sav_sync = B_TRUE; 5003 5004 if (nvlist_lookup_nvlist_array(sav->sav_config, 5005 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 5006 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 5007 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 5008 } 5009 5010 ASSERT(c < naux); 5011 5012 /* 5013 * Setting the nvlist in the middle if the array is a little 5014 * sketchy, but it will work. 5015 */ 5016 nvlist_free(aux[c]); 5017 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 5018 5019 return; 5020 } 5021 5022 /* 5023 * The dirty list is protected by the SCL_CONFIG lock. The caller 5024 * must either hold SCL_CONFIG as writer, or must be the sync thread 5025 * (which holds SCL_CONFIG as reader). There's only one sync thread, 5026 * so this is sufficient to ensure mutual exclusion. 5027 */ 5028 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5029 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5030 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5031 5032 if (vd == rvd) { 5033 for (c = 0; c < rvd->vdev_children; c++) 5034 vdev_config_dirty(rvd->vdev_child[c]); 5035 } else { 5036 ASSERT(vd == vd->vdev_top); 5037 5038 if (!list_link_active(&vd->vdev_config_dirty_node) && 5039 vdev_is_concrete(vd)) { 5040 list_insert_head(&spa->spa_config_dirty_list, vd); 5041 } 5042 } 5043 } 5044 5045 void 5046 vdev_config_clean(vdev_t *vd) 5047 { 5048 spa_t *spa = vd->vdev_spa; 5049 5050 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 5051 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5052 spa_config_held(spa, SCL_CONFIG, RW_READER))); 5053 5054 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 5055 list_remove(&spa->spa_config_dirty_list, vd); 5056 } 5057 5058 /* 5059 * Mark a top-level vdev's state as dirty, so that the next pass of 5060 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 5061 * the state changes from larger config changes because they require 5062 * much less locking, and are often needed for administrative actions. 5063 */ 5064 void 5065 vdev_state_dirty(vdev_t *vd) 5066 { 5067 spa_t *spa = vd->vdev_spa; 5068 5069 ASSERT(spa_writeable(spa)); 5070 ASSERT(vd == vd->vdev_top); 5071 5072 /* 5073 * The state list is protected by the SCL_STATE lock. The caller 5074 * must either hold SCL_STATE as writer, or must be the sync thread 5075 * (which holds SCL_STATE as reader). There's only one sync thread, 5076 * so this is sufficient to ensure mutual exclusion. 5077 */ 5078 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5079 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5080 spa_config_held(spa, SCL_STATE, RW_READER))); 5081 5082 if (!list_link_active(&vd->vdev_state_dirty_node) && 5083 vdev_is_concrete(vd)) 5084 list_insert_head(&spa->spa_state_dirty_list, vd); 5085 } 5086 5087 void 5088 vdev_state_clean(vdev_t *vd) 5089 { 5090 spa_t *spa = vd->vdev_spa; 5091 5092 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 5093 (dsl_pool_sync_context(spa_get_dsl(spa)) && 5094 spa_config_held(spa, SCL_STATE, RW_READER))); 5095 5096 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 5097 list_remove(&spa->spa_state_dirty_list, vd); 5098 } 5099 5100 /* 5101 * Propagate vdev state up from children to parent. 5102 */ 5103 void 5104 vdev_propagate_state(vdev_t *vd) 5105 { 5106 spa_t *spa = vd->vdev_spa; 5107 vdev_t *rvd = spa->spa_root_vdev; 5108 int degraded = 0, faulted = 0; 5109 int corrupted = 0; 5110 vdev_t *child; 5111 5112 if (vd->vdev_children > 0) { 5113 for (int c = 0; c < vd->vdev_children; c++) { 5114 child = vd->vdev_child[c]; 5115 5116 /* 5117 * Don't factor holes or indirect vdevs into the 5118 * decision. 5119 */ 5120 if (!vdev_is_concrete(child)) 5121 continue; 5122 5123 if (!vdev_readable(child) || 5124 (!vdev_writeable(child) && spa_writeable(spa))) { 5125 /* 5126 * Root special: if there is a top-level log 5127 * device, treat the root vdev as if it were 5128 * degraded. 5129 */ 5130 if (child->vdev_islog && vd == rvd) 5131 degraded++; 5132 else 5133 faulted++; 5134 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 5135 degraded++; 5136 } 5137 5138 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 5139 corrupted++; 5140 } 5141 5142 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 5143 5144 /* 5145 * Root special: if there is a top-level vdev that cannot be 5146 * opened due to corrupted metadata, then propagate the root 5147 * vdev's aux state as 'corrupt' rather than 'insufficient 5148 * replicas'. 5149 */ 5150 if (corrupted && vd == rvd && 5151 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 5152 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 5153 VDEV_AUX_CORRUPT_DATA); 5154 } 5155 5156 if (vd->vdev_parent) 5157 vdev_propagate_state(vd->vdev_parent); 5158 } 5159 5160 /* 5161 * Set a vdev's state. If this is during an open, we don't update the parent 5162 * state, because we're in the process of opening children depth-first. 5163 * Otherwise, we propagate the change to the parent. 5164 * 5165 * If this routine places a device in a faulted state, an appropriate ereport is 5166 * generated. 5167 */ 5168 void 5169 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 5170 { 5171 uint64_t save_state; 5172 spa_t *spa = vd->vdev_spa; 5173 5174 if (state == vd->vdev_state) { 5175 /* 5176 * Since vdev_offline() code path is already in an offline 5177 * state we can miss a statechange event to OFFLINE. Check 5178 * the previous state to catch this condition. 5179 */ 5180 if (vd->vdev_ops->vdev_op_leaf && 5181 (state == VDEV_STATE_OFFLINE) && 5182 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { 5183 /* post an offline state change */ 5184 zfs_post_state_change(spa, vd, vd->vdev_prevstate); 5185 } 5186 vd->vdev_stat.vs_aux = aux; 5187 return; 5188 } 5189 5190 save_state = vd->vdev_state; 5191 5192 vd->vdev_state = state; 5193 vd->vdev_stat.vs_aux = aux; 5194 5195 /* 5196 * If we are setting the vdev state to anything but an open state, then 5197 * always close the underlying device unless the device has requested 5198 * a delayed close (i.e. we're about to remove or fault the device). 5199 * Otherwise, we keep accessible but invalid devices open forever. 5200 * We don't call vdev_close() itself, because that implies some extra 5201 * checks (offline, etc) that we don't want here. This is limited to 5202 * leaf devices, because otherwise closing the device will affect other 5203 * children. 5204 */ 5205 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 5206 vd->vdev_ops->vdev_op_leaf) 5207 vd->vdev_ops->vdev_op_close(vd); 5208 5209 if (vd->vdev_removed && 5210 state == VDEV_STATE_CANT_OPEN && 5211 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 5212 /* 5213 * If the previous state is set to VDEV_STATE_REMOVED, then this 5214 * device was previously marked removed and someone attempted to 5215 * reopen it. If this failed due to a nonexistent device, then 5216 * keep the device in the REMOVED state. We also let this be if 5217 * it is one of our special test online cases, which is only 5218 * attempting to online the device and shouldn't generate an FMA 5219 * fault. 5220 */ 5221 vd->vdev_state = VDEV_STATE_REMOVED; 5222 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 5223 } else if (state == VDEV_STATE_REMOVED) { 5224 vd->vdev_removed = B_TRUE; 5225 } else if (state == VDEV_STATE_CANT_OPEN) { 5226 /* 5227 * If we fail to open a vdev during an import or recovery, we 5228 * mark it as "not available", which signifies that it was 5229 * never there to begin with. Failure to open such a device 5230 * is not considered an error. 5231 */ 5232 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 5233 spa_load_state(spa) == SPA_LOAD_RECOVER) && 5234 vd->vdev_ops->vdev_op_leaf) 5235 vd->vdev_not_present = 1; 5236 5237 /* 5238 * Post the appropriate ereport. If the 'prevstate' field is 5239 * set to something other than VDEV_STATE_UNKNOWN, it indicates 5240 * that this is part of a vdev_reopen(). In this case, we don't 5241 * want to post the ereport if the device was already in the 5242 * CANT_OPEN state beforehand. 5243 * 5244 * If the 'checkremove' flag is set, then this is an attempt to 5245 * online the device in response to an insertion event. If we 5246 * hit this case, then we have detected an insertion event for a 5247 * faulted or offline device that wasn't in the removed state. 5248 * In this scenario, we don't post an ereport because we are 5249 * about to replace the device, or attempt an online with 5250 * vdev_forcefault, which will generate the fault for us. 5251 */ 5252 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 5253 !vd->vdev_not_present && !vd->vdev_checkremove && 5254 vd != spa->spa_root_vdev) { 5255 const char *class; 5256 5257 switch (aux) { 5258 case VDEV_AUX_OPEN_FAILED: 5259 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 5260 break; 5261 case VDEV_AUX_CORRUPT_DATA: 5262 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 5263 break; 5264 case VDEV_AUX_NO_REPLICAS: 5265 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 5266 break; 5267 case VDEV_AUX_BAD_GUID_SUM: 5268 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 5269 break; 5270 case VDEV_AUX_TOO_SMALL: 5271 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 5272 break; 5273 case VDEV_AUX_BAD_LABEL: 5274 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 5275 break; 5276 case VDEV_AUX_BAD_ASHIFT: 5277 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; 5278 break; 5279 default: 5280 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 5281 } 5282 5283 (void) zfs_ereport_post(class, spa, vd, NULL, NULL, 5284 save_state); 5285 } 5286 5287 /* Erase any notion of persistent removed state */ 5288 vd->vdev_removed = B_FALSE; 5289 } else { 5290 vd->vdev_removed = B_FALSE; 5291 } 5292 5293 /* 5294 * Notify ZED of any significant state-change on a leaf vdev. 5295 * 5296 */ 5297 if (vd->vdev_ops->vdev_op_leaf) { 5298 /* preserve original state from a vdev_reopen() */ 5299 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && 5300 (vd->vdev_prevstate != vd->vdev_state) && 5301 (save_state <= VDEV_STATE_CLOSED)) 5302 save_state = vd->vdev_prevstate; 5303 5304 /* filter out state change due to initial vdev_open */ 5305 if (save_state > VDEV_STATE_CLOSED) 5306 zfs_post_state_change(spa, vd, save_state); 5307 } 5308 5309 if (!isopen && vd->vdev_parent) 5310 vdev_propagate_state(vd->vdev_parent); 5311 } 5312 5313 boolean_t 5314 vdev_children_are_offline(vdev_t *vd) 5315 { 5316 ASSERT(!vd->vdev_ops->vdev_op_leaf); 5317 5318 for (uint64_t i = 0; i < vd->vdev_children; i++) { 5319 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) 5320 return (B_FALSE); 5321 } 5322 5323 return (B_TRUE); 5324 } 5325 5326 /* 5327 * Check the vdev configuration to ensure that it's capable of supporting 5328 * a root pool. We do not support partial configuration. 5329 */ 5330 boolean_t 5331 vdev_is_bootable(vdev_t *vd) 5332 { 5333 if (!vd->vdev_ops->vdev_op_leaf) { 5334 const char *vdev_type = vd->vdev_ops->vdev_op_type; 5335 5336 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) 5337 return (B_FALSE); 5338 } 5339 5340 for (int c = 0; c < vd->vdev_children; c++) { 5341 if (!vdev_is_bootable(vd->vdev_child[c])) 5342 return (B_FALSE); 5343 } 5344 return (B_TRUE); 5345 } 5346 5347 boolean_t 5348 vdev_is_concrete(vdev_t *vd) 5349 { 5350 vdev_ops_t *ops = vd->vdev_ops; 5351 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || 5352 ops == &vdev_missing_ops || ops == &vdev_root_ops) { 5353 return (B_FALSE); 5354 } else { 5355 return (B_TRUE); 5356 } 5357 } 5358 5359 /* 5360 * Determine if a log device has valid content. If the vdev was 5361 * removed or faulted in the MOS config then we know that 5362 * the content on the log device has already been written to the pool. 5363 */ 5364 boolean_t 5365 vdev_log_state_valid(vdev_t *vd) 5366 { 5367 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 5368 !vd->vdev_removed) 5369 return (B_TRUE); 5370 5371 for (int c = 0; c < vd->vdev_children; c++) 5372 if (vdev_log_state_valid(vd->vdev_child[c])) 5373 return (B_TRUE); 5374 5375 return (B_FALSE); 5376 } 5377 5378 /* 5379 * Expand a vdev if possible. 5380 */ 5381 void 5382 vdev_expand(vdev_t *vd, uint64_t txg) 5383 { 5384 ASSERT(vd->vdev_top == vd); 5385 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5386 ASSERT(vdev_is_concrete(vd)); 5387 5388 vdev_set_deflate_ratio(vd); 5389 5390 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && 5391 vdev_is_concrete(vd)) { 5392 vdev_metaslab_group_create(vd); 5393 VERIFY(vdev_metaslab_init(vd, txg) == 0); 5394 vdev_config_dirty(vd); 5395 } 5396 } 5397 5398 /* 5399 * Split a vdev. 5400 */ 5401 void 5402 vdev_split(vdev_t *vd) 5403 { 5404 vdev_t *cvd, *pvd = vd->vdev_parent; 5405 5406 VERIFY3U(pvd->vdev_children, >, 1); 5407 5408 vdev_remove_child(pvd, vd); 5409 vdev_compact_children(pvd); 5410 5411 ASSERT3P(pvd->vdev_child, !=, NULL); 5412 5413 cvd = pvd->vdev_child[0]; 5414 if (pvd->vdev_children == 1) { 5415 vdev_remove_parent(cvd); 5416 cvd->vdev_splitting = B_TRUE; 5417 } 5418 vdev_propagate_state(cvd); 5419 } 5420 5421 void 5422 vdev_deadman(vdev_t *vd, const char *tag) 5423 { 5424 for (int c = 0; c < vd->vdev_children; c++) { 5425 vdev_t *cvd = vd->vdev_child[c]; 5426 5427 vdev_deadman(cvd, tag); 5428 } 5429 5430 if (vd->vdev_ops->vdev_op_leaf) { 5431 vdev_queue_t *vq = &vd->vdev_queue; 5432 5433 mutex_enter(&vq->vq_lock); 5434 if (avl_numnodes(&vq->vq_active_tree) > 0) { 5435 spa_t *spa = vd->vdev_spa; 5436 zio_t *fio; 5437 uint64_t delta; 5438 5439 zfs_dbgmsg("slow vdev: %s has %lu active IOs", 5440 vd->vdev_path, avl_numnodes(&vq->vq_active_tree)); 5441 5442 /* 5443 * Look at the head of all the pending queues, 5444 * if any I/O has been outstanding for longer than 5445 * the spa_deadman_synctime invoke the deadman logic. 5446 */ 5447 fio = avl_first(&vq->vq_active_tree); 5448 delta = gethrtime() - fio->io_timestamp; 5449 if (delta > spa_deadman_synctime(spa)) 5450 zio_deadman(fio, tag); 5451 } 5452 mutex_exit(&vq->vq_lock); 5453 } 5454 } 5455 5456 void 5457 vdev_defer_resilver(vdev_t *vd) 5458 { 5459 ASSERT(vd->vdev_ops->vdev_op_leaf); 5460 5461 vd->vdev_resilver_deferred = B_TRUE; 5462 vd->vdev_spa->spa_resilver_deferred = B_TRUE; 5463 } 5464 5465 /* 5466 * Clears the resilver deferred flag on all leaf devs under vd. Returns 5467 * B_TRUE if we have devices that need to be resilvered and are available to 5468 * accept resilver I/Os. 5469 */ 5470 boolean_t 5471 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) 5472 { 5473 boolean_t resilver_needed = B_FALSE; 5474 spa_t *spa = vd->vdev_spa; 5475 5476 for (int c = 0; c < vd->vdev_children; c++) { 5477 vdev_t *cvd = vd->vdev_child[c]; 5478 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); 5479 } 5480 5481 if (vd == spa->spa_root_vdev && 5482 spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { 5483 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); 5484 vdev_config_dirty(vd); 5485 spa->spa_resilver_deferred = B_FALSE; 5486 return (resilver_needed); 5487 } 5488 5489 if (!vdev_is_concrete(vd) || vd->vdev_aux || 5490 !vd->vdev_ops->vdev_op_leaf) 5491 return (resilver_needed); 5492 5493 vd->vdev_resilver_deferred = B_FALSE; 5494 5495 return (!vdev_is_dead(vd) && !vd->vdev_offline && 5496 vdev_resilver_needed(vd, NULL, NULL)); 5497 } 5498 5499 boolean_t 5500 vdev_xlate_is_empty(range_seg64_t *rs) 5501 { 5502 return (rs->rs_start == rs->rs_end); 5503 } 5504 5505 /* 5506 * Translate a logical range to the first contiguous physical range for the 5507 * specified vdev_t. This function is initially called with a leaf vdev and 5508 * will walk each parent vdev until it reaches a top-level vdev. Once the 5509 * top-level is reached the physical range is initialized and the recursive 5510 * function begins to unwind. As it unwinds it calls the parent's vdev 5511 * specific translation function to do the real conversion. 5512 */ 5513 void 5514 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, 5515 range_seg64_t *physical_rs, range_seg64_t *remain_rs) 5516 { 5517 /* 5518 * Walk up the vdev tree 5519 */ 5520 if (vd != vd->vdev_top) { 5521 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, 5522 remain_rs); 5523 } else { 5524 /* 5525 * We've reached the top-level vdev, initialize the physical 5526 * range to the logical range and set an empty remaining 5527 * range then start to unwind. 5528 */ 5529 physical_rs->rs_start = logical_rs->rs_start; 5530 physical_rs->rs_end = logical_rs->rs_end; 5531 5532 remain_rs->rs_start = logical_rs->rs_start; 5533 remain_rs->rs_end = logical_rs->rs_start; 5534 5535 return; 5536 } 5537 5538 vdev_t *pvd = vd->vdev_parent; 5539 ASSERT3P(pvd, !=, NULL); 5540 ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); 5541 5542 /* 5543 * As this recursive function unwinds, translate the logical 5544 * range into its physical and any remaining components by calling 5545 * the vdev specific translate function. 5546 */ 5547 range_seg64_t intermediate = { 0 }; 5548 pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); 5549 5550 physical_rs->rs_start = intermediate.rs_start; 5551 physical_rs->rs_end = intermediate.rs_end; 5552 } 5553 5554 void 5555 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, 5556 vdev_xlate_func_t *func, void *arg) 5557 { 5558 range_seg64_t iter_rs = *logical_rs; 5559 range_seg64_t physical_rs; 5560 range_seg64_t remain_rs; 5561 5562 while (!vdev_xlate_is_empty(&iter_rs)) { 5563 5564 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); 5565 5566 /* 5567 * With raidz and dRAID, it's possible that the logical range 5568 * does not live on this leaf vdev. Only when there is a non- 5569 * zero physical size call the provided function. 5570 */ 5571 if (!vdev_xlate_is_empty(&physical_rs)) 5572 func(arg, &physical_rs); 5573 5574 iter_rs = remain_rs; 5575 } 5576 } 5577 5578 static char * 5579 vdev_name(vdev_t *vd, char *buf, int buflen) 5580 { 5581 if (vd->vdev_path == NULL) { 5582 if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { 5583 strlcpy(buf, vd->vdev_spa->spa_name, buflen); 5584 } else if (!vd->vdev_ops->vdev_op_leaf) { 5585 snprintf(buf, buflen, "%s-%llu", 5586 vd->vdev_ops->vdev_op_type, 5587 (u_longlong_t)vd->vdev_id); 5588 } 5589 } else { 5590 strlcpy(buf, vd->vdev_path, buflen); 5591 } 5592 return (buf); 5593 } 5594 5595 /* 5596 * Look at the vdev tree and determine whether any devices are currently being 5597 * replaced. 5598 */ 5599 boolean_t 5600 vdev_replace_in_progress(vdev_t *vdev) 5601 { 5602 ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); 5603 5604 if (vdev->vdev_ops == &vdev_replacing_ops) 5605 return (B_TRUE); 5606 5607 /* 5608 * A 'spare' vdev indicates that we have a replace in progress, unless 5609 * it has exactly two children, and the second, the hot spare, has 5610 * finished being resilvered. 5611 */ 5612 if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || 5613 !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) 5614 return (B_TRUE); 5615 5616 for (int i = 0; i < vdev->vdev_children; i++) { 5617 if (vdev_replace_in_progress(vdev->vdev_child[i])) 5618 return (B_TRUE); 5619 } 5620 5621 return (B_FALSE); 5622 } 5623 5624 /* 5625 * Add a (source=src, propname=propval) list to an nvlist. 5626 */ 5627 static void 5628 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, 5629 uint64_t intval, zprop_source_t src) 5630 { 5631 nvlist_t *propval; 5632 5633 propval = fnvlist_alloc(); 5634 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 5635 5636 if (strval != NULL) 5637 fnvlist_add_string(propval, ZPROP_VALUE, strval); 5638 else 5639 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 5640 5641 fnvlist_add_nvlist(nvl, propname, propval); 5642 nvlist_free(propval); 5643 } 5644 5645 static void 5646 vdev_props_set_sync(void *arg, dmu_tx_t *tx) 5647 { 5648 vdev_t *vd; 5649 nvlist_t *nvp = arg; 5650 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5651 objset_t *mos = spa->spa_meta_objset; 5652 nvpair_t *elem = NULL; 5653 uint64_t vdev_guid; 5654 nvlist_t *nvprops; 5655 5656 vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); 5657 nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); 5658 vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); 5659 5660 /* this vdev could get removed while waiting for this sync task */ 5661 if (vd == NULL) 5662 return; 5663 5664 mutex_enter(&spa->spa_props_lock); 5665 5666 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5667 uint64_t intval, objid = 0; 5668 const char *strval; 5669 vdev_prop_t prop; 5670 const char *propname = nvpair_name(elem); 5671 zprop_type_t proptype; 5672 5673 /* 5674 * Set vdev property values in the vdev props mos object. 5675 */ 5676 if (vd->vdev_top_zap != 0) { 5677 objid = vd->vdev_top_zap; 5678 } else if (vd->vdev_leaf_zap != 0) { 5679 objid = vd->vdev_leaf_zap; 5680 } else { 5681 panic("vdev not top or leaf"); 5682 } 5683 5684 switch (prop = vdev_name_to_prop(propname)) { 5685 case VDEV_PROP_USERPROP: 5686 if (vdev_prop_user(propname)) { 5687 strval = fnvpair_value_string(elem); 5688 if (strlen(strval) == 0) { 5689 /* remove the property if value == "" */ 5690 (void) zap_remove(mos, objid, propname, 5691 tx); 5692 } else { 5693 VERIFY0(zap_update(mos, objid, propname, 5694 1, strlen(strval) + 1, strval, tx)); 5695 } 5696 spa_history_log_internal(spa, "vdev set", tx, 5697 "vdev_guid=%llu: %s=%s", 5698 (u_longlong_t)vdev_guid, nvpair_name(elem), 5699 strval); 5700 } 5701 break; 5702 default: 5703 /* normalize the property name */ 5704 propname = vdev_prop_to_name(prop); 5705 proptype = vdev_prop_get_type(prop); 5706 5707 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5708 ASSERT(proptype == PROP_TYPE_STRING); 5709 strval = fnvpair_value_string(elem); 5710 VERIFY0(zap_update(mos, objid, propname, 5711 1, strlen(strval) + 1, strval, tx)); 5712 spa_history_log_internal(spa, "vdev set", tx, 5713 "vdev_guid=%llu: %s=%s", 5714 (u_longlong_t)vdev_guid, nvpair_name(elem), 5715 strval); 5716 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5717 intval = fnvpair_value_uint64(elem); 5718 5719 if (proptype == PROP_TYPE_INDEX) { 5720 const char *unused; 5721 VERIFY0(vdev_prop_index_to_string( 5722 prop, intval, &unused)); 5723 } 5724 VERIFY0(zap_update(mos, objid, propname, 5725 sizeof (uint64_t), 1, &intval, tx)); 5726 spa_history_log_internal(spa, "vdev set", tx, 5727 "vdev_guid=%llu: %s=%lld", 5728 (u_longlong_t)vdev_guid, 5729 nvpair_name(elem), (longlong_t)intval); 5730 } else { 5731 panic("invalid vdev property type %u", 5732 nvpair_type(elem)); 5733 } 5734 } 5735 5736 } 5737 5738 mutex_exit(&spa->spa_props_lock); 5739 } 5740 5741 int 5742 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5743 { 5744 spa_t *spa = vd->vdev_spa; 5745 nvpair_t *elem = NULL; 5746 uint64_t vdev_guid; 5747 nvlist_t *nvprops; 5748 int error = 0; 5749 5750 ASSERT(vd != NULL); 5751 5752 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, 5753 &vdev_guid) != 0) 5754 return (SET_ERROR(EINVAL)); 5755 5756 if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, 5757 &nvprops) != 0) 5758 return (SET_ERROR(EINVAL)); 5759 5760 if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) 5761 return (SET_ERROR(EINVAL)); 5762 5763 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5764 const char *propname = nvpair_name(elem); 5765 vdev_prop_t prop = vdev_name_to_prop(propname); 5766 uint64_t intval = 0; 5767 const char *strval = NULL; 5768 5769 if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { 5770 error = EINVAL; 5771 goto end; 5772 } 5773 5774 if (vdev_prop_readonly(prop)) { 5775 error = EROFS; 5776 goto end; 5777 } 5778 5779 /* Special Processing */ 5780 switch (prop) { 5781 case VDEV_PROP_PATH: 5782 if (vd->vdev_path == NULL) { 5783 error = EROFS; 5784 break; 5785 } 5786 if (nvpair_value_string(elem, &strval) != 0) { 5787 error = EINVAL; 5788 break; 5789 } 5790 /* New path must start with /dev/ */ 5791 if (strncmp(strval, "/dev/", 5)) { 5792 error = EINVAL; 5793 break; 5794 } 5795 error = spa_vdev_setpath(spa, vdev_guid, strval); 5796 break; 5797 case VDEV_PROP_ALLOCATING: 5798 if (nvpair_value_uint64(elem, &intval) != 0) { 5799 error = EINVAL; 5800 break; 5801 } 5802 if (intval != vd->vdev_noalloc) 5803 break; 5804 if (intval == 0) 5805 error = spa_vdev_noalloc(spa, vdev_guid); 5806 else 5807 error = spa_vdev_alloc(spa, vdev_guid); 5808 break; 5809 case VDEV_PROP_FAILFAST: 5810 if (nvpair_value_uint64(elem, &intval) != 0) { 5811 error = EINVAL; 5812 break; 5813 } 5814 vd->vdev_failfast = intval & 1; 5815 break; 5816 case VDEV_PROP_CHECKSUM_N: 5817 if (nvpair_value_uint64(elem, &intval) != 0) { 5818 error = EINVAL; 5819 break; 5820 } 5821 vd->vdev_checksum_n = intval; 5822 break; 5823 case VDEV_PROP_CHECKSUM_T: 5824 if (nvpair_value_uint64(elem, &intval) != 0) { 5825 error = EINVAL; 5826 break; 5827 } 5828 vd->vdev_checksum_t = intval; 5829 break; 5830 case VDEV_PROP_IO_N: 5831 if (nvpair_value_uint64(elem, &intval) != 0) { 5832 error = EINVAL; 5833 break; 5834 } 5835 vd->vdev_io_n = intval; 5836 break; 5837 case VDEV_PROP_IO_T: 5838 if (nvpair_value_uint64(elem, &intval) != 0) { 5839 error = EINVAL; 5840 break; 5841 } 5842 vd->vdev_io_t = intval; 5843 break; 5844 default: 5845 /* Most processing is done in vdev_props_set_sync */ 5846 break; 5847 } 5848 end: 5849 if (error != 0) { 5850 intval = error; 5851 vdev_prop_add_list(outnvl, propname, strval, intval, 0); 5852 return (error); 5853 } 5854 } 5855 5856 return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, 5857 innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); 5858 } 5859 5860 int 5861 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) 5862 { 5863 spa_t *spa = vd->vdev_spa; 5864 objset_t *mos = spa->spa_meta_objset; 5865 int err = 0; 5866 uint64_t objid; 5867 uint64_t vdev_guid; 5868 nvpair_t *elem = NULL; 5869 nvlist_t *nvprops = NULL; 5870 uint64_t intval = 0; 5871 char *strval = NULL; 5872 const char *propname = NULL; 5873 vdev_prop_t prop; 5874 5875 ASSERT(vd != NULL); 5876 ASSERT(mos != NULL); 5877 5878 if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, 5879 &vdev_guid) != 0) 5880 return (SET_ERROR(EINVAL)); 5881 5882 nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); 5883 5884 if (vd->vdev_top_zap != 0) { 5885 objid = vd->vdev_top_zap; 5886 } else if (vd->vdev_leaf_zap != 0) { 5887 objid = vd->vdev_leaf_zap; 5888 } else { 5889 return (SET_ERROR(EINVAL)); 5890 } 5891 ASSERT(objid != 0); 5892 5893 mutex_enter(&spa->spa_props_lock); 5894 5895 if (nvprops != NULL) { 5896 char namebuf[64] = { 0 }; 5897 5898 while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { 5899 intval = 0; 5900 strval = NULL; 5901 propname = nvpair_name(elem); 5902 prop = vdev_name_to_prop(propname); 5903 zprop_source_t src = ZPROP_SRC_DEFAULT; 5904 uint64_t integer_size, num_integers; 5905 5906 switch (prop) { 5907 /* Special Read-only Properties */ 5908 case VDEV_PROP_NAME: 5909 strval = vdev_name(vd, namebuf, 5910 sizeof (namebuf)); 5911 if (strval == NULL) 5912 continue; 5913 vdev_prop_add_list(outnvl, propname, strval, 0, 5914 ZPROP_SRC_NONE); 5915 continue; 5916 case VDEV_PROP_CAPACITY: 5917 /* percent used */ 5918 intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : 5919 (vd->vdev_stat.vs_alloc * 100 / 5920 vd->vdev_stat.vs_dspace); 5921 vdev_prop_add_list(outnvl, propname, NULL, 5922 intval, ZPROP_SRC_NONE); 5923 continue; 5924 case VDEV_PROP_STATE: 5925 vdev_prop_add_list(outnvl, propname, NULL, 5926 vd->vdev_state, ZPROP_SRC_NONE); 5927 continue; 5928 case VDEV_PROP_GUID: 5929 vdev_prop_add_list(outnvl, propname, NULL, 5930 vd->vdev_guid, ZPROP_SRC_NONE); 5931 continue; 5932 case VDEV_PROP_ASIZE: 5933 vdev_prop_add_list(outnvl, propname, NULL, 5934 vd->vdev_asize, ZPROP_SRC_NONE); 5935 continue; 5936 case VDEV_PROP_PSIZE: 5937 vdev_prop_add_list(outnvl, propname, NULL, 5938 vd->vdev_psize, ZPROP_SRC_NONE); 5939 continue; 5940 case VDEV_PROP_ASHIFT: 5941 vdev_prop_add_list(outnvl, propname, NULL, 5942 vd->vdev_ashift, ZPROP_SRC_NONE); 5943 continue; 5944 case VDEV_PROP_SIZE: 5945 vdev_prop_add_list(outnvl, propname, NULL, 5946 vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); 5947 continue; 5948 case VDEV_PROP_FREE: 5949 vdev_prop_add_list(outnvl, propname, NULL, 5950 vd->vdev_stat.vs_dspace - 5951 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5952 continue; 5953 case VDEV_PROP_ALLOCATED: 5954 vdev_prop_add_list(outnvl, propname, NULL, 5955 vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); 5956 continue; 5957 case VDEV_PROP_EXPANDSZ: 5958 vdev_prop_add_list(outnvl, propname, NULL, 5959 vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); 5960 continue; 5961 case VDEV_PROP_FRAGMENTATION: 5962 vdev_prop_add_list(outnvl, propname, NULL, 5963 vd->vdev_stat.vs_fragmentation, 5964 ZPROP_SRC_NONE); 5965 continue; 5966 case VDEV_PROP_PARITY: 5967 vdev_prop_add_list(outnvl, propname, NULL, 5968 vdev_get_nparity(vd), ZPROP_SRC_NONE); 5969 continue; 5970 case VDEV_PROP_PATH: 5971 if (vd->vdev_path == NULL) 5972 continue; 5973 vdev_prop_add_list(outnvl, propname, 5974 vd->vdev_path, 0, ZPROP_SRC_NONE); 5975 continue; 5976 case VDEV_PROP_DEVID: 5977 if (vd->vdev_devid == NULL) 5978 continue; 5979 vdev_prop_add_list(outnvl, propname, 5980 vd->vdev_devid, 0, ZPROP_SRC_NONE); 5981 continue; 5982 case VDEV_PROP_PHYS_PATH: 5983 if (vd->vdev_physpath == NULL) 5984 continue; 5985 vdev_prop_add_list(outnvl, propname, 5986 vd->vdev_physpath, 0, ZPROP_SRC_NONE); 5987 continue; 5988 case VDEV_PROP_ENC_PATH: 5989 if (vd->vdev_enc_sysfs_path == NULL) 5990 continue; 5991 vdev_prop_add_list(outnvl, propname, 5992 vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); 5993 continue; 5994 case VDEV_PROP_FRU: 5995 if (vd->vdev_fru == NULL) 5996 continue; 5997 vdev_prop_add_list(outnvl, propname, 5998 vd->vdev_fru, 0, ZPROP_SRC_NONE); 5999 continue; 6000 case VDEV_PROP_PARENT: 6001 if (vd->vdev_parent != NULL) { 6002 strval = vdev_name(vd->vdev_parent, 6003 namebuf, sizeof (namebuf)); 6004 vdev_prop_add_list(outnvl, propname, 6005 strval, 0, ZPROP_SRC_NONE); 6006 } 6007 continue; 6008 case VDEV_PROP_CHILDREN: 6009 if (vd->vdev_children > 0) 6010 strval = kmem_zalloc(ZAP_MAXVALUELEN, 6011 KM_SLEEP); 6012 for (uint64_t i = 0; i < vd->vdev_children; 6013 i++) { 6014 const char *vname; 6015 6016 vname = vdev_name(vd->vdev_child[i], 6017 namebuf, sizeof (namebuf)); 6018 if (vname == NULL) 6019 vname = "(unknown)"; 6020 if (strlen(strval) > 0) 6021 strlcat(strval, ",", 6022 ZAP_MAXVALUELEN); 6023 strlcat(strval, vname, ZAP_MAXVALUELEN); 6024 } 6025 if (strval != NULL) { 6026 vdev_prop_add_list(outnvl, propname, 6027 strval, 0, ZPROP_SRC_NONE); 6028 kmem_free(strval, ZAP_MAXVALUELEN); 6029 } 6030 continue; 6031 case VDEV_PROP_NUMCHILDREN: 6032 vdev_prop_add_list(outnvl, propname, NULL, 6033 vd->vdev_children, ZPROP_SRC_NONE); 6034 continue; 6035 case VDEV_PROP_READ_ERRORS: 6036 vdev_prop_add_list(outnvl, propname, NULL, 6037 vd->vdev_stat.vs_read_errors, 6038 ZPROP_SRC_NONE); 6039 continue; 6040 case VDEV_PROP_WRITE_ERRORS: 6041 vdev_prop_add_list(outnvl, propname, NULL, 6042 vd->vdev_stat.vs_write_errors, 6043 ZPROP_SRC_NONE); 6044 continue; 6045 case VDEV_PROP_CHECKSUM_ERRORS: 6046 vdev_prop_add_list(outnvl, propname, NULL, 6047 vd->vdev_stat.vs_checksum_errors, 6048 ZPROP_SRC_NONE); 6049 continue; 6050 case VDEV_PROP_INITIALIZE_ERRORS: 6051 vdev_prop_add_list(outnvl, propname, NULL, 6052 vd->vdev_stat.vs_initialize_errors, 6053 ZPROP_SRC_NONE); 6054 continue; 6055 case VDEV_PROP_OPS_NULL: 6056 vdev_prop_add_list(outnvl, propname, NULL, 6057 vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], 6058 ZPROP_SRC_NONE); 6059 continue; 6060 case VDEV_PROP_OPS_READ: 6061 vdev_prop_add_list(outnvl, propname, NULL, 6062 vd->vdev_stat.vs_ops[ZIO_TYPE_READ], 6063 ZPROP_SRC_NONE); 6064 continue; 6065 case VDEV_PROP_OPS_WRITE: 6066 vdev_prop_add_list(outnvl, propname, NULL, 6067 vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], 6068 ZPROP_SRC_NONE); 6069 continue; 6070 case VDEV_PROP_OPS_FREE: 6071 vdev_prop_add_list(outnvl, propname, NULL, 6072 vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], 6073 ZPROP_SRC_NONE); 6074 continue; 6075 case VDEV_PROP_OPS_CLAIM: 6076 vdev_prop_add_list(outnvl, propname, NULL, 6077 vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], 6078 ZPROP_SRC_NONE); 6079 continue; 6080 case VDEV_PROP_OPS_TRIM: 6081 /* 6082 * TRIM ops and bytes are reported to user 6083 * space as ZIO_TYPE_IOCTL. This is done to 6084 * preserve the vdev_stat_t structure layout 6085 * for user space. 6086 */ 6087 vdev_prop_add_list(outnvl, propname, NULL, 6088 vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], 6089 ZPROP_SRC_NONE); 6090 continue; 6091 case VDEV_PROP_BYTES_NULL: 6092 vdev_prop_add_list(outnvl, propname, NULL, 6093 vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], 6094 ZPROP_SRC_NONE); 6095 continue; 6096 case VDEV_PROP_BYTES_READ: 6097 vdev_prop_add_list(outnvl, propname, NULL, 6098 vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], 6099 ZPROP_SRC_NONE); 6100 continue; 6101 case VDEV_PROP_BYTES_WRITE: 6102 vdev_prop_add_list(outnvl, propname, NULL, 6103 vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], 6104 ZPROP_SRC_NONE); 6105 continue; 6106 case VDEV_PROP_BYTES_FREE: 6107 vdev_prop_add_list(outnvl, propname, NULL, 6108 vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], 6109 ZPROP_SRC_NONE); 6110 continue; 6111 case VDEV_PROP_BYTES_CLAIM: 6112 vdev_prop_add_list(outnvl, propname, NULL, 6113 vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], 6114 ZPROP_SRC_NONE); 6115 continue; 6116 case VDEV_PROP_BYTES_TRIM: 6117 /* 6118 * TRIM ops and bytes are reported to user 6119 * space as ZIO_TYPE_IOCTL. This is done to 6120 * preserve the vdev_stat_t structure layout 6121 * for user space. 6122 */ 6123 vdev_prop_add_list(outnvl, propname, NULL, 6124 vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], 6125 ZPROP_SRC_NONE); 6126 continue; 6127 case VDEV_PROP_REMOVING: 6128 vdev_prop_add_list(outnvl, propname, NULL, 6129 vd->vdev_removing, ZPROP_SRC_NONE); 6130 continue; 6131 /* Numeric Properites */ 6132 case VDEV_PROP_ALLOCATING: 6133 /* Leaf vdevs cannot have this property */ 6134 if (vd->vdev_mg == NULL && 6135 vd->vdev_top != NULL) { 6136 src = ZPROP_SRC_NONE; 6137 intval = ZPROP_BOOLEAN_NA; 6138 } else { 6139 err = vdev_prop_get_int(vd, prop, 6140 &intval); 6141 if (err && err != ENOENT) 6142 break; 6143 6144 if (intval == 6145 vdev_prop_default_numeric(prop)) 6146 src = ZPROP_SRC_DEFAULT; 6147 else 6148 src = ZPROP_SRC_LOCAL; 6149 } 6150 6151 vdev_prop_add_list(outnvl, propname, NULL, 6152 intval, src); 6153 break; 6154 case VDEV_PROP_FAILFAST: 6155 src = ZPROP_SRC_LOCAL; 6156 strval = NULL; 6157 6158 err = zap_lookup(mos, objid, nvpair_name(elem), 6159 sizeof (uint64_t), 1, &intval); 6160 if (err == ENOENT) { 6161 intval = vdev_prop_default_numeric( 6162 prop); 6163 err = 0; 6164 } else if (err) { 6165 break; 6166 } 6167 if (intval == vdev_prop_default_numeric(prop)) 6168 src = ZPROP_SRC_DEFAULT; 6169 6170 vdev_prop_add_list(outnvl, propname, strval, 6171 intval, src); 6172 break; 6173 case VDEV_PROP_CHECKSUM_N: 6174 case VDEV_PROP_CHECKSUM_T: 6175 case VDEV_PROP_IO_N: 6176 case VDEV_PROP_IO_T: 6177 err = vdev_prop_get_int(vd, prop, &intval); 6178 if (err && err != ENOENT) 6179 break; 6180 6181 if (intval == vdev_prop_default_numeric(prop)) 6182 src = ZPROP_SRC_DEFAULT; 6183 else 6184 src = ZPROP_SRC_LOCAL; 6185 6186 vdev_prop_add_list(outnvl, propname, NULL, 6187 intval, src); 6188 break; 6189 /* Text Properties */ 6190 case VDEV_PROP_COMMENT: 6191 /* Exists in the ZAP below */ 6192 /* FALLTHRU */ 6193 case VDEV_PROP_USERPROP: 6194 /* User Properites */ 6195 src = ZPROP_SRC_LOCAL; 6196 6197 err = zap_length(mos, objid, nvpair_name(elem), 6198 &integer_size, &num_integers); 6199 if (err) 6200 break; 6201 6202 switch (integer_size) { 6203 case 8: 6204 /* User properties cannot be integers */ 6205 err = EINVAL; 6206 break; 6207 case 1: 6208 /* string property */ 6209 strval = kmem_alloc(num_integers, 6210 KM_SLEEP); 6211 err = zap_lookup(mos, objid, 6212 nvpair_name(elem), 1, 6213 num_integers, strval); 6214 if (err) { 6215 kmem_free(strval, 6216 num_integers); 6217 break; 6218 } 6219 vdev_prop_add_list(outnvl, propname, 6220 strval, 0, src); 6221 kmem_free(strval, num_integers); 6222 break; 6223 } 6224 break; 6225 default: 6226 err = ENOENT; 6227 break; 6228 } 6229 if (err) 6230 break; 6231 } 6232 } else { 6233 /* 6234 * Get all properties from the MOS vdev property object. 6235 */ 6236 zap_cursor_t zc; 6237 zap_attribute_t za; 6238 for (zap_cursor_init(&zc, mos, objid); 6239 (err = zap_cursor_retrieve(&zc, &za)) == 0; 6240 zap_cursor_advance(&zc)) { 6241 intval = 0; 6242 strval = NULL; 6243 zprop_source_t src = ZPROP_SRC_DEFAULT; 6244 propname = za.za_name; 6245 6246 switch (za.za_integer_length) { 6247 case 8: 6248 /* We do not allow integer user properties */ 6249 /* This is likely an internal value */ 6250 break; 6251 case 1: 6252 /* string property */ 6253 strval = kmem_alloc(za.za_num_integers, 6254 KM_SLEEP); 6255 err = zap_lookup(mos, objid, za.za_name, 1, 6256 za.za_num_integers, strval); 6257 if (err) { 6258 kmem_free(strval, za.za_num_integers); 6259 break; 6260 } 6261 vdev_prop_add_list(outnvl, propname, strval, 0, 6262 src); 6263 kmem_free(strval, za.za_num_integers); 6264 break; 6265 6266 default: 6267 break; 6268 } 6269 } 6270 zap_cursor_fini(&zc); 6271 } 6272 6273 mutex_exit(&spa->spa_props_lock); 6274 if (err && err != ENOENT) { 6275 return (err); 6276 } 6277 6278 return (0); 6279 } 6280 6281 EXPORT_SYMBOL(vdev_fault); 6282 EXPORT_SYMBOL(vdev_degrade); 6283 EXPORT_SYMBOL(vdev_online); 6284 EXPORT_SYMBOL(vdev_offline); 6285 EXPORT_SYMBOL(vdev_clear); 6286 6287 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, 6288 "Target number of metaslabs per top-level vdev"); 6289 6290 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, 6291 "Default limit for metaslab size"); 6292 6293 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, 6294 "Minimum number of metaslabs per top-level vdev"); 6295 6296 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, 6297 "Practical upper limit of total metaslabs per top-level vdev"); 6298 6299 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, 6300 "Rate limit slow IO (delay) events to this many per second"); 6301 6302 /* BEGIN CSTYLED */ 6303 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, 6304 "Rate limit checksum events to this many checksum errors per second " 6305 "(do not set below ZED threshold)."); 6306 /* END CSTYLED */ 6307 6308 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, 6309 "Ignore errors during resilver/scrub"); 6310 6311 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, 6312 "Bypass vdev_validate()"); 6313 6314 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, 6315 "Disable cache flushes"); 6316 6317 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, 6318 "Minimum number of metaslabs required to dedicate one for log blocks"); 6319 6320 /* BEGIN CSTYLED */ 6321 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, 6322 param_set_min_auto_ashift, param_get_uint, ZMOD_RW, 6323 "Minimum ashift used when creating new top-level vdevs"); 6324 6325 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, 6326 param_set_max_auto_ashift, param_get_uint, ZMOD_RW, 6327 "Maximum ashift used when optimizing for logical -> physical sector " 6328 "size on new top-level vdevs"); 6329 /* END CSTYLED */ 6330