xref: /freebsd/sys/contrib/openzfs/module/zfs/vdev.c (revision a50d73d5782a351ad83e8d1f84d11720a12e70d3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  * Copyright (c) 2021, Klara Inc.
32  * Copyright [2021] Hewlett Packard Enterprise Development LP
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
51 #include <sys/zio.h>
52 #include <sys/zap.h>
53 #include <sys/fs/zfs.h>
54 #include <sys/arc.h>
55 #include <sys/zil.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
58 #include <sys/abd.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/zvol.h>
62 #include <sys/zfs_ratelimit.h>
63 #include "zfs_prop.h"
64 
65 /*
66  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
67  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68  * part of the spa_embedded_log_class.  The metaslab with the most free space
69  * in each vdev is selected for this purpose when the pool is opened (or a
70  * vdev is added).  See vdev_metaslab_init().
71  *
72  * Log blocks can be allocated from the following locations.  Each one is tried
73  * in order until the allocation succeeds:
74  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75  * 2. embedded slog metaslabs (spa_embedded_log_class)
76  * 3. other metaslabs in normal vdevs (spa_normal_class)
77  *
78  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79  * than this number of metaslabs in the vdev.  This ensures that we don't set
80  * aside an unreasonable amount of space for the ZIL.  If set to less than
81  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
83  */
84 static uint_t zfs_embedded_slog_min_ms = 64;
85 
86 /* default target for number of metaslabs per top-level vdev */
87 static uint_t zfs_vdev_default_ms_count = 200;
88 
89 /* minimum number of metaslabs per top-level vdev */
90 static uint_t zfs_vdev_min_ms_count = 16;
91 
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static uint_t zfs_vdev_ms_count_limit = 1ULL << 17;
94 
95 /* lower limit for metaslab size (512M) */
96 static uint_t zfs_vdev_default_ms_shift = 29;
97 
98 /* upper limit for metaslab size (16G) */
99 static const uint_t zfs_vdev_max_ms_shift = 34;
100 
101 int vdev_validate_skip = B_FALSE;
102 
103 /*
104  * Since the DTL space map of a vdev is not expected to have a lot of
105  * entries, we default its block size to 4K.
106  */
107 int zfs_vdev_dtl_sm_blksz = (1 << 12);
108 
109 /*
110  * Rate limit slow IO (delay) events to this many per second.
111  */
112 static unsigned int zfs_slow_io_events_per_second = 20;
113 
114 /*
115  * Rate limit checksum events after this many checksum errors per second.
116  */
117 static unsigned int zfs_checksum_events_per_second = 20;
118 
119 /*
120  * Ignore errors during scrub/resilver.  Allows to work around resilver
121  * upon import when there are pool errors.
122  */
123 static int zfs_scan_ignore_errors = 0;
124 
125 /*
126  * vdev-wide space maps that have lots of entries written to them at
127  * the end of each transaction can benefit from a higher I/O bandwidth
128  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
129  */
130 int zfs_vdev_standard_sm_blksz = (1 << 17);
131 
132 /*
133  * Tunable parameter for debugging or performance analysis. Setting this
134  * will cause pool corruption on power loss if a volatile out-of-order
135  * write cache is enabled.
136  */
137 int zfs_nocacheflush = 0;
138 
139 /*
140  * Maximum and minimum ashift values that can be automatically set based on
141  * vdev's physical ashift (disk's physical sector size).  While ASHIFT_MAX
142  * is higher than the maximum value, it is intentionally limited here to not
143  * excessively impact pool space efficiency.  Higher ashift values may still
144  * be forced by vdev logical ashift or by user via ashift property, but won't
145  * be set automatically as a performance optimization.
146  */
147 uint_t zfs_vdev_max_auto_ashift = 14;
148 uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
149 
150 void
151 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
152 {
153 	va_list adx;
154 	char buf[256];
155 
156 	va_start(adx, fmt);
157 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
158 	va_end(adx);
159 
160 	if (vd->vdev_path != NULL) {
161 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
162 		    vd->vdev_path, buf);
163 	} else {
164 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
165 		    vd->vdev_ops->vdev_op_type,
166 		    (u_longlong_t)vd->vdev_id,
167 		    (u_longlong_t)vd->vdev_guid, buf);
168 	}
169 }
170 
171 void
172 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
173 {
174 	char state[20];
175 
176 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
177 		zfs_dbgmsg("%*svdev %llu: %s", indent, "",
178 		    (u_longlong_t)vd->vdev_id,
179 		    vd->vdev_ops->vdev_op_type);
180 		return;
181 	}
182 
183 	switch (vd->vdev_state) {
184 	case VDEV_STATE_UNKNOWN:
185 		(void) snprintf(state, sizeof (state), "unknown");
186 		break;
187 	case VDEV_STATE_CLOSED:
188 		(void) snprintf(state, sizeof (state), "closed");
189 		break;
190 	case VDEV_STATE_OFFLINE:
191 		(void) snprintf(state, sizeof (state), "offline");
192 		break;
193 	case VDEV_STATE_REMOVED:
194 		(void) snprintf(state, sizeof (state), "removed");
195 		break;
196 	case VDEV_STATE_CANT_OPEN:
197 		(void) snprintf(state, sizeof (state), "can't open");
198 		break;
199 	case VDEV_STATE_FAULTED:
200 		(void) snprintf(state, sizeof (state), "faulted");
201 		break;
202 	case VDEV_STATE_DEGRADED:
203 		(void) snprintf(state, sizeof (state), "degraded");
204 		break;
205 	case VDEV_STATE_HEALTHY:
206 		(void) snprintf(state, sizeof (state), "healthy");
207 		break;
208 	default:
209 		(void) snprintf(state, sizeof (state), "<state %u>",
210 		    (uint_t)vd->vdev_state);
211 	}
212 
213 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
214 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
215 	    vd->vdev_islog ? " (log)" : "",
216 	    (u_longlong_t)vd->vdev_guid,
217 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
218 
219 	for (uint64_t i = 0; i < vd->vdev_children; i++)
220 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
221 }
222 
223 /*
224  * Virtual device management.
225  */
226 
227 static vdev_ops_t *const vdev_ops_table[] = {
228 	&vdev_root_ops,
229 	&vdev_raidz_ops,
230 	&vdev_draid_ops,
231 	&vdev_draid_spare_ops,
232 	&vdev_mirror_ops,
233 	&vdev_replacing_ops,
234 	&vdev_spare_ops,
235 	&vdev_disk_ops,
236 	&vdev_file_ops,
237 	&vdev_missing_ops,
238 	&vdev_hole_ops,
239 	&vdev_indirect_ops,
240 	NULL
241 };
242 
243 /*
244  * Given a vdev type, return the appropriate ops vector.
245  */
246 static vdev_ops_t *
247 vdev_getops(const char *type)
248 {
249 	vdev_ops_t *ops, *const *opspp;
250 
251 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
252 		if (strcmp(ops->vdev_op_type, type) == 0)
253 			break;
254 
255 	return (ops);
256 }
257 
258 /*
259  * Given a vdev and a metaslab class, find which metaslab group we're
260  * interested in. All vdevs may belong to two different metaslab classes.
261  * Dedicated slog devices use only the primary metaslab group, rather than a
262  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
263  */
264 metaslab_group_t *
265 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
266 {
267 	if (mc == spa_embedded_log_class(vd->vdev_spa) &&
268 	    vd->vdev_log_mg != NULL)
269 		return (vd->vdev_log_mg);
270 	else
271 		return (vd->vdev_mg);
272 }
273 
274 void
275 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
276     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
277 {
278 	(void) vd, (void) remain_rs;
279 
280 	physical_rs->rs_start = logical_rs->rs_start;
281 	physical_rs->rs_end = logical_rs->rs_end;
282 }
283 
284 /*
285  * Derive the enumerated allocation bias from string input.
286  * String origin is either the per-vdev zap or zpool(8).
287  */
288 static vdev_alloc_bias_t
289 vdev_derive_alloc_bias(const char *bias)
290 {
291 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
292 
293 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
294 		alloc_bias = VDEV_BIAS_LOG;
295 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
296 		alloc_bias = VDEV_BIAS_SPECIAL;
297 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
298 		alloc_bias = VDEV_BIAS_DEDUP;
299 
300 	return (alloc_bias);
301 }
302 
303 /*
304  * Default asize function: return the MAX of psize with the asize of
305  * all children.  This is what's used by anything other than RAID-Z.
306  */
307 uint64_t
308 vdev_default_asize(vdev_t *vd, uint64_t psize)
309 {
310 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
311 	uint64_t csize;
312 
313 	for (int c = 0; c < vd->vdev_children; c++) {
314 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
315 		asize = MAX(asize, csize);
316 	}
317 
318 	return (asize);
319 }
320 
321 uint64_t
322 vdev_default_min_asize(vdev_t *vd)
323 {
324 	return (vd->vdev_min_asize);
325 }
326 
327 /*
328  * Get the minimum allocatable size. We define the allocatable size as
329  * the vdev's asize rounded to the nearest metaslab. This allows us to
330  * replace or attach devices which don't have the same physical size but
331  * can still satisfy the same number of allocations.
332  */
333 uint64_t
334 vdev_get_min_asize(vdev_t *vd)
335 {
336 	vdev_t *pvd = vd->vdev_parent;
337 
338 	/*
339 	 * If our parent is NULL (inactive spare or cache) or is the root,
340 	 * just return our own asize.
341 	 */
342 	if (pvd == NULL)
343 		return (vd->vdev_asize);
344 
345 	/*
346 	 * The top-level vdev just returns the allocatable size rounded
347 	 * to the nearest metaslab.
348 	 */
349 	if (vd == vd->vdev_top)
350 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
351 
352 	return (pvd->vdev_ops->vdev_op_min_asize(pvd));
353 }
354 
355 void
356 vdev_set_min_asize(vdev_t *vd)
357 {
358 	vd->vdev_min_asize = vdev_get_min_asize(vd);
359 
360 	for (int c = 0; c < vd->vdev_children; c++)
361 		vdev_set_min_asize(vd->vdev_child[c]);
362 }
363 
364 /*
365  * Get the minimal allocation size for the top-level vdev.
366  */
367 uint64_t
368 vdev_get_min_alloc(vdev_t *vd)
369 {
370 	uint64_t min_alloc = 1ULL << vd->vdev_ashift;
371 
372 	if (vd->vdev_ops->vdev_op_min_alloc != NULL)
373 		min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
374 
375 	return (min_alloc);
376 }
377 
378 /*
379  * Get the parity level for a top-level vdev.
380  */
381 uint64_t
382 vdev_get_nparity(vdev_t *vd)
383 {
384 	uint64_t nparity = 0;
385 
386 	if (vd->vdev_ops->vdev_op_nparity != NULL)
387 		nparity = vd->vdev_ops->vdev_op_nparity(vd);
388 
389 	return (nparity);
390 }
391 
392 static int
393 vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value)
394 {
395 	spa_t *spa = vd->vdev_spa;
396 	objset_t *mos = spa->spa_meta_objset;
397 	uint64_t objid;
398 	int err;
399 
400 	if (vd->vdev_top_zap != 0) {
401 		objid = vd->vdev_top_zap;
402 	} else if (vd->vdev_leaf_zap != 0) {
403 		objid = vd->vdev_leaf_zap;
404 	} else {
405 		return (EINVAL);
406 	}
407 
408 	err = zap_lookup(mos, objid, vdev_prop_to_name(prop),
409 	    sizeof (uint64_t), 1, value);
410 
411 	if (err == ENOENT)
412 		*value = vdev_prop_default_numeric(prop);
413 
414 	return (err);
415 }
416 
417 /*
418  * Get the number of data disks for a top-level vdev.
419  */
420 uint64_t
421 vdev_get_ndisks(vdev_t *vd)
422 {
423 	uint64_t ndisks = 1;
424 
425 	if (vd->vdev_ops->vdev_op_ndisks != NULL)
426 		ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
427 
428 	return (ndisks);
429 }
430 
431 vdev_t *
432 vdev_lookup_top(spa_t *spa, uint64_t vdev)
433 {
434 	vdev_t *rvd = spa->spa_root_vdev;
435 
436 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
437 
438 	if (vdev < rvd->vdev_children) {
439 		ASSERT(rvd->vdev_child[vdev] != NULL);
440 		return (rvd->vdev_child[vdev]);
441 	}
442 
443 	return (NULL);
444 }
445 
446 vdev_t *
447 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
448 {
449 	vdev_t *mvd;
450 
451 	if (vd->vdev_guid == guid)
452 		return (vd);
453 
454 	for (int c = 0; c < vd->vdev_children; c++)
455 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
456 		    NULL)
457 			return (mvd);
458 
459 	return (NULL);
460 }
461 
462 static int
463 vdev_count_leaves_impl(vdev_t *vd)
464 {
465 	int n = 0;
466 
467 	if (vd->vdev_ops->vdev_op_leaf)
468 		return (1);
469 
470 	for (int c = 0; c < vd->vdev_children; c++)
471 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
472 
473 	return (n);
474 }
475 
476 int
477 vdev_count_leaves(spa_t *spa)
478 {
479 	int rc;
480 
481 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
482 	rc = vdev_count_leaves_impl(spa->spa_root_vdev);
483 	spa_config_exit(spa, SCL_VDEV, FTAG);
484 
485 	return (rc);
486 }
487 
488 void
489 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
490 {
491 	size_t oldsize, newsize;
492 	uint64_t id = cvd->vdev_id;
493 	vdev_t **newchild;
494 
495 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
496 	ASSERT(cvd->vdev_parent == NULL);
497 
498 	cvd->vdev_parent = pvd;
499 
500 	if (pvd == NULL)
501 		return;
502 
503 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
504 
505 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
506 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
507 	newsize = pvd->vdev_children * sizeof (vdev_t *);
508 
509 	newchild = kmem_alloc(newsize, KM_SLEEP);
510 	if (pvd->vdev_child != NULL) {
511 		memcpy(newchild, pvd->vdev_child, oldsize);
512 		kmem_free(pvd->vdev_child, oldsize);
513 	}
514 
515 	pvd->vdev_child = newchild;
516 	pvd->vdev_child[id] = cvd;
517 
518 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
519 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
520 
521 	/*
522 	 * Walk up all ancestors to update guid sum.
523 	 */
524 	for (; pvd != NULL; pvd = pvd->vdev_parent)
525 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
526 
527 	if (cvd->vdev_ops->vdev_op_leaf) {
528 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
529 		cvd->vdev_spa->spa_leaf_list_gen++;
530 	}
531 }
532 
533 void
534 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
535 {
536 	int c;
537 	uint_t id = cvd->vdev_id;
538 
539 	ASSERT(cvd->vdev_parent == pvd);
540 
541 	if (pvd == NULL)
542 		return;
543 
544 	ASSERT(id < pvd->vdev_children);
545 	ASSERT(pvd->vdev_child[id] == cvd);
546 
547 	pvd->vdev_child[id] = NULL;
548 	cvd->vdev_parent = NULL;
549 
550 	for (c = 0; c < pvd->vdev_children; c++)
551 		if (pvd->vdev_child[c])
552 			break;
553 
554 	if (c == pvd->vdev_children) {
555 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
556 		pvd->vdev_child = NULL;
557 		pvd->vdev_children = 0;
558 	}
559 
560 	if (cvd->vdev_ops->vdev_op_leaf) {
561 		spa_t *spa = cvd->vdev_spa;
562 		list_remove(&spa->spa_leaf_list, cvd);
563 		spa->spa_leaf_list_gen++;
564 	}
565 
566 	/*
567 	 * Walk up all ancestors to update guid sum.
568 	 */
569 	for (; pvd != NULL; pvd = pvd->vdev_parent)
570 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
571 }
572 
573 /*
574  * Remove any holes in the child array.
575  */
576 void
577 vdev_compact_children(vdev_t *pvd)
578 {
579 	vdev_t **newchild, *cvd;
580 	int oldc = pvd->vdev_children;
581 	int newc;
582 
583 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
584 
585 	if (oldc == 0)
586 		return;
587 
588 	for (int c = newc = 0; c < oldc; c++)
589 		if (pvd->vdev_child[c])
590 			newc++;
591 
592 	if (newc > 0) {
593 		newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
594 
595 		for (int c = newc = 0; c < oldc; c++) {
596 			if ((cvd = pvd->vdev_child[c]) != NULL) {
597 				newchild[newc] = cvd;
598 				cvd->vdev_id = newc++;
599 			}
600 		}
601 	} else {
602 		newchild = NULL;
603 	}
604 
605 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
606 	pvd->vdev_child = newchild;
607 	pvd->vdev_children = newc;
608 }
609 
610 /*
611  * Allocate and minimally initialize a vdev_t.
612  */
613 vdev_t *
614 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
615 {
616 	vdev_t *vd;
617 	vdev_indirect_config_t *vic;
618 
619 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
620 	vic = &vd->vdev_indirect_config;
621 
622 	if (spa->spa_root_vdev == NULL) {
623 		ASSERT(ops == &vdev_root_ops);
624 		spa->spa_root_vdev = vd;
625 		spa->spa_load_guid = spa_generate_guid(NULL);
626 	}
627 
628 	if (guid == 0 && ops != &vdev_hole_ops) {
629 		if (spa->spa_root_vdev == vd) {
630 			/*
631 			 * The root vdev's guid will also be the pool guid,
632 			 * which must be unique among all pools.
633 			 */
634 			guid = spa_generate_guid(NULL);
635 		} else {
636 			/*
637 			 * Any other vdev's guid must be unique within the pool.
638 			 */
639 			guid = spa_generate_guid(spa);
640 		}
641 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
642 	}
643 
644 	vd->vdev_spa = spa;
645 	vd->vdev_id = id;
646 	vd->vdev_guid = guid;
647 	vd->vdev_guid_sum = guid;
648 	vd->vdev_ops = ops;
649 	vd->vdev_state = VDEV_STATE_CLOSED;
650 	vd->vdev_ishole = (ops == &vdev_hole_ops);
651 	vic->vic_prev_indirect_vdev = UINT64_MAX;
652 
653 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
654 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
655 	vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
656 	    0, 0);
657 
658 	/*
659 	 * Initialize rate limit structs for events.  We rate limit ZIO delay
660 	 * and checksum events so that we don't overwhelm ZED with thousands
661 	 * of events when a disk is acting up.
662 	 */
663 	zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
664 	    1);
665 	zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second,
666 	    1);
667 	zfs_ratelimit_init(&vd->vdev_checksum_rl,
668 	    &zfs_checksum_events_per_second, 1);
669 
670 	/*
671 	 * Default Thresholds for tuning ZED
672 	 */
673 	vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N);
674 	vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T);
675 	vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N);
676 	vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T);
677 
678 	list_link_init(&vd->vdev_config_dirty_node);
679 	list_link_init(&vd->vdev_state_dirty_node);
680 	list_link_init(&vd->vdev_initialize_node);
681 	list_link_init(&vd->vdev_leaf_node);
682 	list_link_init(&vd->vdev_trim_node);
683 
684 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
685 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
686 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
687 	mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
688 
689 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
690 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
691 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
692 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
693 
694 	mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
695 	mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
696 	mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
697 	cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
698 	cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
699 	cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL);
700 	cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
701 
702 	mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
703 	cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
704 
705 	for (int t = 0; t < DTL_TYPES; t++) {
706 		vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
707 		    0);
708 	}
709 
710 	txg_list_create(&vd->vdev_ms_list, spa,
711 	    offsetof(struct metaslab, ms_txg_node));
712 	txg_list_create(&vd->vdev_dtl_list, spa,
713 	    offsetof(struct vdev, vdev_dtl_node));
714 	vd->vdev_stat.vs_timestamp = gethrtime();
715 	vdev_queue_init(vd);
716 	vdev_cache_init(vd);
717 
718 	return (vd);
719 }
720 
721 /*
722  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
723  * creating a new vdev or loading an existing one - the behavior is slightly
724  * different for each case.
725  */
726 int
727 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
728     int alloctype)
729 {
730 	vdev_ops_t *ops;
731 	const char *type;
732 	uint64_t guid = 0, islog;
733 	vdev_t *vd;
734 	vdev_indirect_config_t *vic;
735 	const char *tmp = NULL;
736 	int rc;
737 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
738 	boolean_t top_level = (parent && !parent->vdev_parent);
739 
740 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
741 
742 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
743 		return (SET_ERROR(EINVAL));
744 
745 	if ((ops = vdev_getops(type)) == NULL)
746 		return (SET_ERROR(EINVAL));
747 
748 	/*
749 	 * If this is a load, get the vdev guid from the nvlist.
750 	 * Otherwise, vdev_alloc_common() will generate one for us.
751 	 */
752 	if (alloctype == VDEV_ALLOC_LOAD) {
753 		uint64_t label_id;
754 
755 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
756 		    label_id != id)
757 			return (SET_ERROR(EINVAL));
758 
759 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
760 			return (SET_ERROR(EINVAL));
761 	} else if (alloctype == VDEV_ALLOC_SPARE) {
762 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
763 			return (SET_ERROR(EINVAL));
764 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
765 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
766 			return (SET_ERROR(EINVAL));
767 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
768 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
769 			return (SET_ERROR(EINVAL));
770 	}
771 
772 	/*
773 	 * The first allocated vdev must be of type 'root'.
774 	 */
775 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
776 		return (SET_ERROR(EINVAL));
777 
778 	/*
779 	 * Determine whether we're a log vdev.
780 	 */
781 	islog = 0;
782 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
783 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
784 		return (SET_ERROR(ENOTSUP));
785 
786 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
787 		return (SET_ERROR(ENOTSUP));
788 
789 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
790 		const char *bias;
791 
792 		/*
793 		 * If creating a top-level vdev, check for allocation
794 		 * classes input.
795 		 */
796 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
797 		    &bias) == 0) {
798 			alloc_bias = vdev_derive_alloc_bias(bias);
799 
800 			/* spa_vdev_add() expects feature to be enabled */
801 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
802 			    !spa_feature_is_enabled(spa,
803 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
804 				return (SET_ERROR(ENOTSUP));
805 			}
806 		}
807 
808 		/* spa_vdev_add() expects feature to be enabled */
809 		if (ops == &vdev_draid_ops &&
810 		    spa->spa_load_state != SPA_LOAD_CREATE &&
811 		    !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
812 			return (SET_ERROR(ENOTSUP));
813 		}
814 	}
815 
816 	/*
817 	 * Initialize the vdev specific data.  This is done before calling
818 	 * vdev_alloc_common() since it may fail and this simplifies the
819 	 * error reporting and cleanup code paths.
820 	 */
821 	void *tsd = NULL;
822 	if (ops->vdev_op_init != NULL) {
823 		rc = ops->vdev_op_init(spa, nv, &tsd);
824 		if (rc != 0) {
825 			return (rc);
826 		}
827 	}
828 
829 	vd = vdev_alloc_common(spa, id, guid, ops);
830 	vd->vdev_tsd = tsd;
831 	vd->vdev_islog = islog;
832 
833 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
834 		vd->vdev_alloc_bias = alloc_bias;
835 
836 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0)
837 		vd->vdev_path = spa_strdup(tmp);
838 
839 	/*
840 	 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
841 	 * fault on a vdev and want it to persist across imports (like with
842 	 * zpool offline -f).
843 	 */
844 	rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
845 	if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
846 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
847 		vd->vdev_faulted = 1;
848 		vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
849 	}
850 
851 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0)
852 		vd->vdev_devid = spa_strdup(tmp);
853 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0)
854 		vd->vdev_physpath = spa_strdup(tmp);
855 
856 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
857 	    &tmp) == 0)
858 		vd->vdev_enc_sysfs_path = spa_strdup(tmp);
859 
860 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0)
861 		vd->vdev_fru = spa_strdup(tmp);
862 
863 	/*
864 	 * Set the whole_disk property.  If it's not specified, leave the value
865 	 * as -1.
866 	 */
867 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
868 	    &vd->vdev_wholedisk) != 0)
869 		vd->vdev_wholedisk = -1ULL;
870 
871 	vic = &vd->vdev_indirect_config;
872 
873 	ASSERT0(vic->vic_mapping_object);
874 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
875 	    &vic->vic_mapping_object);
876 	ASSERT0(vic->vic_births_object);
877 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
878 	    &vic->vic_births_object);
879 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
880 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
881 	    &vic->vic_prev_indirect_vdev);
882 
883 	/*
884 	 * Look for the 'not present' flag.  This will only be set if the device
885 	 * was not present at the time of import.
886 	 */
887 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
888 	    &vd->vdev_not_present);
889 
890 	/*
891 	 * Get the alignment requirement.
892 	 */
893 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
894 
895 	/*
896 	 * Retrieve the vdev creation time.
897 	 */
898 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
899 	    &vd->vdev_crtxg);
900 
901 	/*
902 	 * If we're a top-level vdev, try to load the allocation parameters.
903 	 */
904 	if (top_level &&
905 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
906 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
907 		    &vd->vdev_ms_array);
908 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
909 		    &vd->vdev_ms_shift);
910 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
911 		    &vd->vdev_asize);
912 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
913 		    &vd->vdev_noalloc);
914 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
915 		    &vd->vdev_removing);
916 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
917 		    &vd->vdev_top_zap);
918 	} else {
919 		ASSERT0(vd->vdev_top_zap);
920 	}
921 
922 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
923 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
924 		    alloctype == VDEV_ALLOC_ADD ||
925 		    alloctype == VDEV_ALLOC_SPLIT ||
926 		    alloctype == VDEV_ALLOC_ROOTPOOL);
927 		/* Note: metaslab_group_create() is now deferred */
928 	}
929 
930 	if (vd->vdev_ops->vdev_op_leaf &&
931 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
932 		(void) nvlist_lookup_uint64(nv,
933 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
934 	} else {
935 		ASSERT0(vd->vdev_leaf_zap);
936 	}
937 
938 	/*
939 	 * If we're a leaf vdev, try to load the DTL object and other state.
940 	 */
941 
942 	if (vd->vdev_ops->vdev_op_leaf &&
943 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
944 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
945 		if (alloctype == VDEV_ALLOC_LOAD) {
946 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
947 			    &vd->vdev_dtl_object);
948 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
949 			    &vd->vdev_unspare);
950 		}
951 
952 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
953 			uint64_t spare = 0;
954 
955 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
956 			    &spare) == 0 && spare)
957 				spa_spare_add(vd);
958 		}
959 
960 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
961 		    &vd->vdev_offline);
962 
963 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
964 		    &vd->vdev_resilver_txg);
965 
966 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
967 		    &vd->vdev_rebuild_txg);
968 
969 		if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
970 			vdev_defer_resilver(vd);
971 
972 		/*
973 		 * In general, when importing a pool we want to ignore the
974 		 * persistent fault state, as the diagnosis made on another
975 		 * system may not be valid in the current context.  The only
976 		 * exception is if we forced a vdev to a persistently faulted
977 		 * state with 'zpool offline -f'.  The persistent fault will
978 		 * remain across imports until cleared.
979 		 *
980 		 * Local vdevs will remain in the faulted state.
981 		 */
982 		if (spa_load_state(spa) == SPA_LOAD_OPEN ||
983 		    spa_load_state(spa) == SPA_LOAD_IMPORT) {
984 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
985 			    &vd->vdev_faulted);
986 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
987 			    &vd->vdev_degraded);
988 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
989 			    &vd->vdev_removed);
990 
991 			if (vd->vdev_faulted || vd->vdev_degraded) {
992 				const char *aux;
993 
994 				vd->vdev_label_aux =
995 				    VDEV_AUX_ERR_EXCEEDED;
996 				if (nvlist_lookup_string(nv,
997 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
998 				    strcmp(aux, "external") == 0)
999 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
1000 				else
1001 					vd->vdev_faulted = 0ULL;
1002 			}
1003 		}
1004 	}
1005 
1006 	/*
1007 	 * Add ourselves to the parent's list of children.
1008 	 */
1009 	vdev_add_child(parent, vd);
1010 
1011 	*vdp = vd;
1012 
1013 	return (0);
1014 }
1015 
1016 void
1017 vdev_free(vdev_t *vd)
1018 {
1019 	spa_t *spa = vd->vdev_spa;
1020 
1021 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1022 	ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1023 	ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1024 	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
1025 
1026 	/*
1027 	 * Scan queues are normally destroyed at the end of a scan. If the
1028 	 * queue exists here, that implies the vdev is being removed while
1029 	 * the scan is still running.
1030 	 */
1031 	if (vd->vdev_scan_io_queue != NULL) {
1032 		mutex_enter(&vd->vdev_scan_io_queue_lock);
1033 		dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
1034 		vd->vdev_scan_io_queue = NULL;
1035 		mutex_exit(&vd->vdev_scan_io_queue_lock);
1036 	}
1037 
1038 	/*
1039 	 * vdev_free() implies closing the vdev first.  This is simpler than
1040 	 * trying to ensure complicated semantics for all callers.
1041 	 */
1042 	vdev_close(vd);
1043 
1044 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
1045 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1046 
1047 	/*
1048 	 * Free all children.
1049 	 */
1050 	for (int c = 0; c < vd->vdev_children; c++)
1051 		vdev_free(vd->vdev_child[c]);
1052 
1053 	ASSERT(vd->vdev_child == NULL);
1054 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1055 
1056 	if (vd->vdev_ops->vdev_op_fini != NULL)
1057 		vd->vdev_ops->vdev_op_fini(vd);
1058 
1059 	/*
1060 	 * Discard allocation state.
1061 	 */
1062 	if (vd->vdev_mg != NULL) {
1063 		vdev_metaslab_fini(vd);
1064 		metaslab_group_destroy(vd->vdev_mg);
1065 		vd->vdev_mg = NULL;
1066 	}
1067 	if (vd->vdev_log_mg != NULL) {
1068 		ASSERT0(vd->vdev_ms_count);
1069 		metaslab_group_destroy(vd->vdev_log_mg);
1070 		vd->vdev_log_mg = NULL;
1071 	}
1072 
1073 	ASSERT0(vd->vdev_stat.vs_space);
1074 	ASSERT0(vd->vdev_stat.vs_dspace);
1075 	ASSERT0(vd->vdev_stat.vs_alloc);
1076 
1077 	/*
1078 	 * Remove this vdev from its parent's child list.
1079 	 */
1080 	vdev_remove_child(vd->vdev_parent, vd);
1081 
1082 	ASSERT(vd->vdev_parent == NULL);
1083 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
1084 
1085 	/*
1086 	 * Clean up vdev structure.
1087 	 */
1088 	vdev_queue_fini(vd);
1089 	vdev_cache_fini(vd);
1090 
1091 	if (vd->vdev_path)
1092 		spa_strfree(vd->vdev_path);
1093 	if (vd->vdev_devid)
1094 		spa_strfree(vd->vdev_devid);
1095 	if (vd->vdev_physpath)
1096 		spa_strfree(vd->vdev_physpath);
1097 
1098 	if (vd->vdev_enc_sysfs_path)
1099 		spa_strfree(vd->vdev_enc_sysfs_path);
1100 
1101 	if (vd->vdev_fru)
1102 		spa_strfree(vd->vdev_fru);
1103 
1104 	if (vd->vdev_isspare)
1105 		spa_spare_remove(vd);
1106 	if (vd->vdev_isl2cache)
1107 		spa_l2cache_remove(vd);
1108 
1109 	txg_list_destroy(&vd->vdev_ms_list);
1110 	txg_list_destroy(&vd->vdev_dtl_list);
1111 
1112 	mutex_enter(&vd->vdev_dtl_lock);
1113 	space_map_close(vd->vdev_dtl_sm);
1114 	for (int t = 0; t < DTL_TYPES; t++) {
1115 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1116 		range_tree_destroy(vd->vdev_dtl[t]);
1117 	}
1118 	mutex_exit(&vd->vdev_dtl_lock);
1119 
1120 	EQUIV(vd->vdev_indirect_births != NULL,
1121 	    vd->vdev_indirect_mapping != NULL);
1122 	if (vd->vdev_indirect_births != NULL) {
1123 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1124 		vdev_indirect_births_close(vd->vdev_indirect_births);
1125 	}
1126 
1127 	if (vd->vdev_obsolete_sm != NULL) {
1128 		ASSERT(vd->vdev_removing ||
1129 		    vd->vdev_ops == &vdev_indirect_ops);
1130 		space_map_close(vd->vdev_obsolete_sm);
1131 		vd->vdev_obsolete_sm = NULL;
1132 	}
1133 	range_tree_destroy(vd->vdev_obsolete_segments);
1134 	rw_destroy(&vd->vdev_indirect_rwlock);
1135 	mutex_destroy(&vd->vdev_obsolete_lock);
1136 
1137 	mutex_destroy(&vd->vdev_dtl_lock);
1138 	mutex_destroy(&vd->vdev_stat_lock);
1139 	mutex_destroy(&vd->vdev_probe_lock);
1140 	mutex_destroy(&vd->vdev_scan_io_queue_lock);
1141 
1142 	mutex_destroy(&vd->vdev_initialize_lock);
1143 	mutex_destroy(&vd->vdev_initialize_io_lock);
1144 	cv_destroy(&vd->vdev_initialize_io_cv);
1145 	cv_destroy(&vd->vdev_initialize_cv);
1146 
1147 	mutex_destroy(&vd->vdev_trim_lock);
1148 	mutex_destroy(&vd->vdev_autotrim_lock);
1149 	mutex_destroy(&vd->vdev_trim_io_lock);
1150 	cv_destroy(&vd->vdev_trim_cv);
1151 	cv_destroy(&vd->vdev_autotrim_cv);
1152 	cv_destroy(&vd->vdev_autotrim_kick_cv);
1153 	cv_destroy(&vd->vdev_trim_io_cv);
1154 
1155 	mutex_destroy(&vd->vdev_rebuild_lock);
1156 	cv_destroy(&vd->vdev_rebuild_cv);
1157 
1158 	zfs_ratelimit_fini(&vd->vdev_delay_rl);
1159 	zfs_ratelimit_fini(&vd->vdev_deadman_rl);
1160 	zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1161 
1162 	if (vd == spa->spa_root_vdev)
1163 		spa->spa_root_vdev = NULL;
1164 
1165 	kmem_free(vd, sizeof (vdev_t));
1166 }
1167 
1168 /*
1169  * Transfer top-level vdev state from svd to tvd.
1170  */
1171 static void
1172 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1173 {
1174 	spa_t *spa = svd->vdev_spa;
1175 	metaslab_t *msp;
1176 	vdev_t *vd;
1177 	int t;
1178 
1179 	ASSERT(tvd == tvd->vdev_top);
1180 
1181 	tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1182 	tvd->vdev_ms_array = svd->vdev_ms_array;
1183 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
1184 	tvd->vdev_ms_count = svd->vdev_ms_count;
1185 	tvd->vdev_top_zap = svd->vdev_top_zap;
1186 
1187 	svd->vdev_ms_array = 0;
1188 	svd->vdev_ms_shift = 0;
1189 	svd->vdev_ms_count = 0;
1190 	svd->vdev_top_zap = 0;
1191 
1192 	if (tvd->vdev_mg)
1193 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1194 	if (tvd->vdev_log_mg)
1195 		ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1196 	tvd->vdev_mg = svd->vdev_mg;
1197 	tvd->vdev_log_mg = svd->vdev_log_mg;
1198 	tvd->vdev_ms = svd->vdev_ms;
1199 
1200 	svd->vdev_mg = NULL;
1201 	svd->vdev_log_mg = NULL;
1202 	svd->vdev_ms = NULL;
1203 
1204 	if (tvd->vdev_mg != NULL)
1205 		tvd->vdev_mg->mg_vd = tvd;
1206 	if (tvd->vdev_log_mg != NULL)
1207 		tvd->vdev_log_mg->mg_vd = tvd;
1208 
1209 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1210 	svd->vdev_checkpoint_sm = NULL;
1211 
1212 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1213 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1214 
1215 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1216 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1217 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1218 
1219 	svd->vdev_stat.vs_alloc = 0;
1220 	svd->vdev_stat.vs_space = 0;
1221 	svd->vdev_stat.vs_dspace = 0;
1222 
1223 	/*
1224 	 * State which may be set on a top-level vdev that's in the
1225 	 * process of being removed.
1226 	 */
1227 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1228 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1229 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1230 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1231 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1232 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1233 	ASSERT0(tvd->vdev_noalloc);
1234 	ASSERT0(tvd->vdev_removing);
1235 	ASSERT0(tvd->vdev_rebuilding);
1236 	tvd->vdev_noalloc = svd->vdev_noalloc;
1237 	tvd->vdev_removing = svd->vdev_removing;
1238 	tvd->vdev_rebuilding = svd->vdev_rebuilding;
1239 	tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1240 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
1241 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1242 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
1243 	range_tree_swap(&svd->vdev_obsolete_segments,
1244 	    &tvd->vdev_obsolete_segments);
1245 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1246 	svd->vdev_indirect_config.vic_mapping_object = 0;
1247 	svd->vdev_indirect_config.vic_births_object = 0;
1248 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1249 	svd->vdev_indirect_mapping = NULL;
1250 	svd->vdev_indirect_births = NULL;
1251 	svd->vdev_obsolete_sm = NULL;
1252 	svd->vdev_noalloc = 0;
1253 	svd->vdev_removing = 0;
1254 	svd->vdev_rebuilding = 0;
1255 
1256 	for (t = 0; t < TXG_SIZE; t++) {
1257 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1258 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1259 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1260 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1261 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1262 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1263 	}
1264 
1265 	if (list_link_active(&svd->vdev_config_dirty_node)) {
1266 		vdev_config_clean(svd);
1267 		vdev_config_dirty(tvd);
1268 	}
1269 
1270 	if (list_link_active(&svd->vdev_state_dirty_node)) {
1271 		vdev_state_clean(svd);
1272 		vdev_state_dirty(tvd);
1273 	}
1274 
1275 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1276 	svd->vdev_deflate_ratio = 0;
1277 
1278 	tvd->vdev_islog = svd->vdev_islog;
1279 	svd->vdev_islog = 0;
1280 
1281 	dsl_scan_io_queue_vdev_xfer(svd, tvd);
1282 }
1283 
1284 static void
1285 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1286 {
1287 	if (vd == NULL)
1288 		return;
1289 
1290 	vd->vdev_top = tvd;
1291 
1292 	for (int c = 0; c < vd->vdev_children; c++)
1293 		vdev_top_update(tvd, vd->vdev_child[c]);
1294 }
1295 
1296 /*
1297  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1298  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1299  */
1300 vdev_t *
1301 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1302 {
1303 	spa_t *spa = cvd->vdev_spa;
1304 	vdev_t *pvd = cvd->vdev_parent;
1305 	vdev_t *mvd;
1306 
1307 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1308 
1309 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1310 
1311 	mvd->vdev_asize = cvd->vdev_asize;
1312 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1313 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1314 	mvd->vdev_psize = cvd->vdev_psize;
1315 	mvd->vdev_ashift = cvd->vdev_ashift;
1316 	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1317 	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1318 	mvd->vdev_state = cvd->vdev_state;
1319 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1320 
1321 	vdev_remove_child(pvd, cvd);
1322 	vdev_add_child(pvd, mvd);
1323 	cvd->vdev_id = mvd->vdev_children;
1324 	vdev_add_child(mvd, cvd);
1325 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1326 
1327 	if (mvd == mvd->vdev_top)
1328 		vdev_top_transfer(cvd, mvd);
1329 
1330 	return (mvd);
1331 }
1332 
1333 /*
1334  * Remove a 1-way mirror/replacing vdev from the tree.
1335  */
1336 void
1337 vdev_remove_parent(vdev_t *cvd)
1338 {
1339 	vdev_t *mvd = cvd->vdev_parent;
1340 	vdev_t *pvd = mvd->vdev_parent;
1341 
1342 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1343 
1344 	ASSERT(mvd->vdev_children == 1);
1345 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1346 	    mvd->vdev_ops == &vdev_replacing_ops ||
1347 	    mvd->vdev_ops == &vdev_spare_ops);
1348 	cvd->vdev_ashift = mvd->vdev_ashift;
1349 	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1350 	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1351 	vdev_remove_child(mvd, cvd);
1352 	vdev_remove_child(pvd, mvd);
1353 
1354 	/*
1355 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1356 	 * Otherwise, we could have detached an offline device, and when we
1357 	 * go to import the pool we'll think we have two top-level vdevs,
1358 	 * instead of a different version of the same top-level vdev.
1359 	 */
1360 	if (mvd->vdev_top == mvd) {
1361 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1362 		cvd->vdev_orig_guid = cvd->vdev_guid;
1363 		cvd->vdev_guid += guid_delta;
1364 		cvd->vdev_guid_sum += guid_delta;
1365 
1366 		/*
1367 		 * If pool not set for autoexpand, we need to also preserve
1368 		 * mvd's asize to prevent automatic expansion of cvd.
1369 		 * Otherwise if we are adjusting the mirror by attaching and
1370 		 * detaching children of non-uniform sizes, the mirror could
1371 		 * autoexpand, unexpectedly requiring larger devices to
1372 		 * re-establish the mirror.
1373 		 */
1374 		if (!cvd->vdev_spa->spa_autoexpand)
1375 			cvd->vdev_asize = mvd->vdev_asize;
1376 	}
1377 	cvd->vdev_id = mvd->vdev_id;
1378 	vdev_add_child(pvd, cvd);
1379 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1380 
1381 	if (cvd == cvd->vdev_top)
1382 		vdev_top_transfer(mvd, cvd);
1383 
1384 	ASSERT(mvd->vdev_children == 0);
1385 	vdev_free(mvd);
1386 }
1387 
1388 void
1389 vdev_metaslab_group_create(vdev_t *vd)
1390 {
1391 	spa_t *spa = vd->vdev_spa;
1392 
1393 	/*
1394 	 * metaslab_group_create was delayed until allocation bias was available
1395 	 */
1396 	if (vd->vdev_mg == NULL) {
1397 		metaslab_class_t *mc;
1398 
1399 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1400 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1401 
1402 		ASSERT3U(vd->vdev_islog, ==,
1403 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1404 
1405 		switch (vd->vdev_alloc_bias) {
1406 		case VDEV_BIAS_LOG:
1407 			mc = spa_log_class(spa);
1408 			break;
1409 		case VDEV_BIAS_SPECIAL:
1410 			mc = spa_special_class(spa);
1411 			break;
1412 		case VDEV_BIAS_DEDUP:
1413 			mc = spa_dedup_class(spa);
1414 			break;
1415 		default:
1416 			mc = spa_normal_class(spa);
1417 		}
1418 
1419 		vd->vdev_mg = metaslab_group_create(mc, vd,
1420 		    spa->spa_alloc_count);
1421 
1422 		if (!vd->vdev_islog) {
1423 			vd->vdev_log_mg = metaslab_group_create(
1424 			    spa_embedded_log_class(spa), vd, 1);
1425 		}
1426 
1427 		/*
1428 		 * The spa ashift min/max only apply for the normal metaslab
1429 		 * class. Class destination is late binding so ashift boundary
1430 		 * setting had to wait until now.
1431 		 */
1432 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1433 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1434 			if (vd->vdev_ashift > spa->spa_max_ashift)
1435 				spa->spa_max_ashift = vd->vdev_ashift;
1436 			if (vd->vdev_ashift < spa->spa_min_ashift)
1437 				spa->spa_min_ashift = vd->vdev_ashift;
1438 
1439 			uint64_t min_alloc = vdev_get_min_alloc(vd);
1440 			if (min_alloc < spa->spa_min_alloc)
1441 				spa->spa_min_alloc = min_alloc;
1442 		}
1443 	}
1444 }
1445 
1446 int
1447 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1448 {
1449 	spa_t *spa = vd->vdev_spa;
1450 	uint64_t oldc = vd->vdev_ms_count;
1451 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1452 	metaslab_t **mspp;
1453 	int error;
1454 	boolean_t expanding = (oldc != 0);
1455 
1456 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1457 
1458 	/*
1459 	 * This vdev is not being allocated from yet or is a hole.
1460 	 */
1461 	if (vd->vdev_ms_shift == 0)
1462 		return (0);
1463 
1464 	ASSERT(!vd->vdev_ishole);
1465 
1466 	ASSERT(oldc <= newc);
1467 
1468 	mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1469 
1470 	if (expanding) {
1471 		memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp));
1472 		vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1473 	}
1474 
1475 	vd->vdev_ms = mspp;
1476 	vd->vdev_ms_count = newc;
1477 
1478 	for (uint64_t m = oldc; m < newc; m++) {
1479 		uint64_t object = 0;
1480 		/*
1481 		 * vdev_ms_array may be 0 if we are creating the "fake"
1482 		 * metaslabs for an indirect vdev for zdb's leak detection.
1483 		 * See zdb_leak_init().
1484 		 */
1485 		if (txg == 0 && vd->vdev_ms_array != 0) {
1486 			error = dmu_read(spa->spa_meta_objset,
1487 			    vd->vdev_ms_array,
1488 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1489 			    DMU_READ_PREFETCH);
1490 			if (error != 0) {
1491 				vdev_dbgmsg(vd, "unable to read the metaslab "
1492 				    "array [error=%d]", error);
1493 				return (error);
1494 			}
1495 		}
1496 
1497 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1498 		    &(vd->vdev_ms[m]));
1499 		if (error != 0) {
1500 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1501 			    error);
1502 			return (error);
1503 		}
1504 	}
1505 
1506 	/*
1507 	 * Find the emptiest metaslab on the vdev and mark it for use for
1508 	 * embedded slog by moving it from the regular to the log metaslab
1509 	 * group.
1510 	 */
1511 	if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1512 	    vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1513 	    avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1514 		uint64_t slog_msid = 0;
1515 		uint64_t smallest = UINT64_MAX;
1516 
1517 		/*
1518 		 * Note, we only search the new metaslabs, because the old
1519 		 * (pre-existing) ones may be active (e.g. have non-empty
1520 		 * range_tree's), and we don't move them to the new
1521 		 * metaslab_t.
1522 		 */
1523 		for (uint64_t m = oldc; m < newc; m++) {
1524 			uint64_t alloc =
1525 			    space_map_allocated(vd->vdev_ms[m]->ms_sm);
1526 			if (alloc < smallest) {
1527 				slog_msid = m;
1528 				smallest = alloc;
1529 			}
1530 		}
1531 		metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1532 		/*
1533 		 * The metaslab was marked as dirty at the end of
1534 		 * metaslab_init(). Remove it from the dirty list so that we
1535 		 * can uninitialize and reinitialize it to the new class.
1536 		 */
1537 		if (txg != 0) {
1538 			(void) txg_list_remove_this(&vd->vdev_ms_list,
1539 			    slog_ms, txg);
1540 		}
1541 		uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1542 		metaslab_fini(slog_ms);
1543 		VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1544 		    &vd->vdev_ms[slog_msid]));
1545 	}
1546 
1547 	if (txg == 0)
1548 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1549 
1550 	/*
1551 	 * If the vdev is marked as non-allocating then don't
1552 	 * activate the metaslabs since we want to ensure that
1553 	 * no allocations are performed on this device.
1554 	 */
1555 	if (vd->vdev_noalloc) {
1556 		/* track non-allocating vdev space */
1557 		spa->spa_nonallocating_dspace += spa_deflate(spa) ?
1558 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1559 	} else if (!expanding) {
1560 		metaslab_group_activate(vd->vdev_mg);
1561 		if (vd->vdev_log_mg != NULL)
1562 			metaslab_group_activate(vd->vdev_log_mg);
1563 	}
1564 
1565 	if (txg == 0)
1566 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1567 
1568 	return (0);
1569 }
1570 
1571 void
1572 vdev_metaslab_fini(vdev_t *vd)
1573 {
1574 	if (vd->vdev_checkpoint_sm != NULL) {
1575 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1576 		    SPA_FEATURE_POOL_CHECKPOINT));
1577 		space_map_close(vd->vdev_checkpoint_sm);
1578 		/*
1579 		 * Even though we close the space map, we need to set its
1580 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1581 		 * may be called multiple times for certain operations
1582 		 * (i.e. when destroying a pool) so we need to ensure that
1583 		 * this clause never executes twice. This logic is similar
1584 		 * to the one used for the vdev_ms clause below.
1585 		 */
1586 		vd->vdev_checkpoint_sm = NULL;
1587 	}
1588 
1589 	if (vd->vdev_ms != NULL) {
1590 		metaslab_group_t *mg = vd->vdev_mg;
1591 
1592 		metaslab_group_passivate(mg);
1593 		if (vd->vdev_log_mg != NULL) {
1594 			ASSERT(!vd->vdev_islog);
1595 			metaslab_group_passivate(vd->vdev_log_mg);
1596 		}
1597 
1598 		uint64_t count = vd->vdev_ms_count;
1599 		for (uint64_t m = 0; m < count; m++) {
1600 			metaslab_t *msp = vd->vdev_ms[m];
1601 			if (msp != NULL)
1602 				metaslab_fini(msp);
1603 		}
1604 		vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1605 		vd->vdev_ms = NULL;
1606 		vd->vdev_ms_count = 0;
1607 
1608 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1609 			ASSERT0(mg->mg_histogram[i]);
1610 			if (vd->vdev_log_mg != NULL)
1611 				ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1612 		}
1613 	}
1614 	ASSERT0(vd->vdev_ms_count);
1615 	ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1616 }
1617 
1618 typedef struct vdev_probe_stats {
1619 	boolean_t	vps_readable;
1620 	boolean_t	vps_writeable;
1621 	int		vps_flags;
1622 } vdev_probe_stats_t;
1623 
1624 static void
1625 vdev_probe_done(zio_t *zio)
1626 {
1627 	spa_t *spa = zio->io_spa;
1628 	vdev_t *vd = zio->io_vd;
1629 	vdev_probe_stats_t *vps = zio->io_private;
1630 
1631 	ASSERT(vd->vdev_probe_zio != NULL);
1632 
1633 	if (zio->io_type == ZIO_TYPE_READ) {
1634 		if (zio->io_error == 0)
1635 			vps->vps_readable = 1;
1636 		if (zio->io_error == 0 && spa_writeable(spa)) {
1637 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1638 			    zio->io_offset, zio->io_size, zio->io_abd,
1639 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1640 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1641 		} else {
1642 			abd_free(zio->io_abd);
1643 		}
1644 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1645 		if (zio->io_error == 0)
1646 			vps->vps_writeable = 1;
1647 		abd_free(zio->io_abd);
1648 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1649 		zio_t *pio;
1650 		zio_link_t *zl;
1651 
1652 		vd->vdev_cant_read |= !vps->vps_readable;
1653 		vd->vdev_cant_write |= !vps->vps_writeable;
1654 
1655 		if (vdev_readable(vd) &&
1656 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1657 			zio->io_error = 0;
1658 		} else {
1659 			ASSERT(zio->io_error != 0);
1660 			vdev_dbgmsg(vd, "failed probe");
1661 			(void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1662 			    spa, vd, NULL, NULL, 0);
1663 			zio->io_error = SET_ERROR(ENXIO);
1664 		}
1665 
1666 		mutex_enter(&vd->vdev_probe_lock);
1667 		ASSERT(vd->vdev_probe_zio == zio);
1668 		vd->vdev_probe_zio = NULL;
1669 		mutex_exit(&vd->vdev_probe_lock);
1670 
1671 		zl = NULL;
1672 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1673 			if (!vdev_accessible(vd, pio))
1674 				pio->io_error = SET_ERROR(ENXIO);
1675 
1676 		kmem_free(vps, sizeof (*vps));
1677 	}
1678 }
1679 
1680 /*
1681  * Determine whether this device is accessible.
1682  *
1683  * Read and write to several known locations: the pad regions of each
1684  * vdev label but the first, which we leave alone in case it contains
1685  * a VTOC.
1686  */
1687 zio_t *
1688 vdev_probe(vdev_t *vd, zio_t *zio)
1689 {
1690 	spa_t *spa = vd->vdev_spa;
1691 	vdev_probe_stats_t *vps = NULL;
1692 	zio_t *pio;
1693 
1694 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1695 
1696 	/*
1697 	 * Don't probe the probe.
1698 	 */
1699 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1700 		return (NULL);
1701 
1702 	/*
1703 	 * To prevent 'probe storms' when a device fails, we create
1704 	 * just one probe i/o at a time.  All zios that want to probe
1705 	 * this vdev will become parents of the probe io.
1706 	 */
1707 	mutex_enter(&vd->vdev_probe_lock);
1708 
1709 	if ((pio = vd->vdev_probe_zio) == NULL) {
1710 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1711 
1712 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1713 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1714 		    ZIO_FLAG_TRYHARD;
1715 
1716 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1717 			/*
1718 			 * vdev_cant_read and vdev_cant_write can only
1719 			 * transition from TRUE to FALSE when we have the
1720 			 * SCL_ZIO lock as writer; otherwise they can only
1721 			 * transition from FALSE to TRUE.  This ensures that
1722 			 * any zio looking at these values can assume that
1723 			 * failures persist for the life of the I/O.  That's
1724 			 * important because when a device has intermittent
1725 			 * connectivity problems, we want to ensure that
1726 			 * they're ascribed to the device (ENXIO) and not
1727 			 * the zio (EIO).
1728 			 *
1729 			 * Since we hold SCL_ZIO as writer here, clear both
1730 			 * values so the probe can reevaluate from first
1731 			 * principles.
1732 			 */
1733 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1734 			vd->vdev_cant_read = B_FALSE;
1735 			vd->vdev_cant_write = B_FALSE;
1736 		}
1737 
1738 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1739 		    vdev_probe_done, vps,
1740 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1741 
1742 		/*
1743 		 * We can't change the vdev state in this context, so we
1744 		 * kick off an async task to do it on our behalf.
1745 		 */
1746 		if (zio != NULL) {
1747 			vd->vdev_probe_wanted = B_TRUE;
1748 			spa_async_request(spa, SPA_ASYNC_PROBE);
1749 		}
1750 	}
1751 
1752 	if (zio != NULL)
1753 		zio_add_child(zio, pio);
1754 
1755 	mutex_exit(&vd->vdev_probe_lock);
1756 
1757 	if (vps == NULL) {
1758 		ASSERT(zio != NULL);
1759 		return (NULL);
1760 	}
1761 
1762 	for (int l = 1; l < VDEV_LABELS; l++) {
1763 		zio_nowait(zio_read_phys(pio, vd,
1764 		    vdev_label_offset(vd->vdev_psize, l,
1765 		    offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1766 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1767 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1768 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1769 	}
1770 
1771 	if (zio == NULL)
1772 		return (pio);
1773 
1774 	zio_nowait(pio);
1775 	return (NULL);
1776 }
1777 
1778 static void
1779 vdev_load_child(void *arg)
1780 {
1781 	vdev_t *vd = arg;
1782 
1783 	vd->vdev_load_error = vdev_load(vd);
1784 }
1785 
1786 static void
1787 vdev_open_child(void *arg)
1788 {
1789 	vdev_t *vd = arg;
1790 
1791 	vd->vdev_open_thread = curthread;
1792 	vd->vdev_open_error = vdev_open(vd);
1793 	vd->vdev_open_thread = NULL;
1794 }
1795 
1796 static boolean_t
1797 vdev_uses_zvols(vdev_t *vd)
1798 {
1799 #ifdef _KERNEL
1800 	if (zvol_is_zvol(vd->vdev_path))
1801 		return (B_TRUE);
1802 #endif
1803 
1804 	for (int c = 0; c < vd->vdev_children; c++)
1805 		if (vdev_uses_zvols(vd->vdev_child[c]))
1806 			return (B_TRUE);
1807 
1808 	return (B_FALSE);
1809 }
1810 
1811 /*
1812  * Returns B_TRUE if the passed child should be opened.
1813  */
1814 static boolean_t
1815 vdev_default_open_children_func(vdev_t *vd)
1816 {
1817 	(void) vd;
1818 	return (B_TRUE);
1819 }
1820 
1821 /*
1822  * Open the requested child vdevs.  If any of the leaf vdevs are using
1823  * a ZFS volume then do the opens in a single thread.  This avoids a
1824  * deadlock when the current thread is holding the spa_namespace_lock.
1825  */
1826 static void
1827 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1828 {
1829 	int children = vd->vdev_children;
1830 
1831 	taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1832 	    children, children, TASKQ_PREPOPULATE);
1833 	vd->vdev_nonrot = B_TRUE;
1834 
1835 	for (int c = 0; c < children; c++) {
1836 		vdev_t *cvd = vd->vdev_child[c];
1837 
1838 		if (open_func(cvd) == B_FALSE)
1839 			continue;
1840 
1841 		if (tq == NULL || vdev_uses_zvols(vd)) {
1842 			cvd->vdev_open_error = vdev_open(cvd);
1843 		} else {
1844 			VERIFY(taskq_dispatch(tq, vdev_open_child,
1845 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
1846 		}
1847 
1848 		vd->vdev_nonrot &= cvd->vdev_nonrot;
1849 	}
1850 
1851 	if (tq != NULL) {
1852 		taskq_wait(tq);
1853 		taskq_destroy(tq);
1854 	}
1855 }
1856 
1857 /*
1858  * Open all child vdevs.
1859  */
1860 void
1861 vdev_open_children(vdev_t *vd)
1862 {
1863 	vdev_open_children_impl(vd, vdev_default_open_children_func);
1864 }
1865 
1866 /*
1867  * Conditionally open a subset of child vdevs.
1868  */
1869 void
1870 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1871 {
1872 	vdev_open_children_impl(vd, open_func);
1873 }
1874 
1875 /*
1876  * Compute the raidz-deflation ratio.  Note, we hard-code
1877  * in 128k (1 << 17) because it is the "typical" blocksize.
1878  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1879  * otherwise it would inconsistently account for existing bp's.
1880  */
1881 static void
1882 vdev_set_deflate_ratio(vdev_t *vd)
1883 {
1884 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1885 		vd->vdev_deflate_ratio = (1 << 17) /
1886 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1887 	}
1888 }
1889 
1890 /*
1891  * Choose the best of two ashifts, preferring one between logical ashift
1892  * (absolute minimum) and administrator defined maximum, otherwise take
1893  * the biggest of the two.
1894  */
1895 uint64_t
1896 vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b)
1897 {
1898 	if (a > logical && a <= zfs_vdev_max_auto_ashift) {
1899 		if (b <= logical || b > zfs_vdev_max_auto_ashift)
1900 			return (a);
1901 		else
1902 			return (MAX(a, b));
1903 	} else if (b <= logical || b > zfs_vdev_max_auto_ashift)
1904 		return (MAX(a, b));
1905 	return (b);
1906 }
1907 
1908 /*
1909  * Maximize performance by inflating the configured ashift for top level
1910  * vdevs to be as close to the physical ashift as possible while maintaining
1911  * administrator defined limits and ensuring it doesn't go below the
1912  * logical ashift.
1913  */
1914 static void
1915 vdev_ashift_optimize(vdev_t *vd)
1916 {
1917 	ASSERT(vd == vd->vdev_top);
1918 
1919 	if (vd->vdev_ashift < vd->vdev_physical_ashift &&
1920 	    vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) {
1921 		vd->vdev_ashift = MIN(
1922 		    MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1923 		    MAX(zfs_vdev_min_auto_ashift,
1924 		    vd->vdev_physical_ashift));
1925 	} else {
1926 		/*
1927 		 * If the logical and physical ashifts are the same, then
1928 		 * we ensure that the top-level vdev's ashift is not smaller
1929 		 * than our minimum ashift value. For the unusual case
1930 		 * where logical ashift > physical ashift, we can't cap
1931 		 * the calculated ashift based on max ashift as that
1932 		 * would cause failures.
1933 		 * We still check if we need to increase it to match
1934 		 * the min ashift.
1935 		 */
1936 		vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1937 		    vd->vdev_ashift);
1938 	}
1939 }
1940 
1941 /*
1942  * Prepare a virtual device for access.
1943  */
1944 int
1945 vdev_open(vdev_t *vd)
1946 {
1947 	spa_t *spa = vd->vdev_spa;
1948 	int error;
1949 	uint64_t osize = 0;
1950 	uint64_t max_osize = 0;
1951 	uint64_t asize, max_asize, psize;
1952 	uint64_t logical_ashift = 0;
1953 	uint64_t physical_ashift = 0;
1954 
1955 	ASSERT(vd->vdev_open_thread == curthread ||
1956 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1957 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1958 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1959 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1960 
1961 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1962 	vd->vdev_cant_read = B_FALSE;
1963 	vd->vdev_cant_write = B_FALSE;
1964 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1965 
1966 	/*
1967 	 * If this vdev is not removed, check its fault status.  If it's
1968 	 * faulted, bail out of the open.
1969 	 */
1970 	if (!vd->vdev_removed && vd->vdev_faulted) {
1971 		ASSERT(vd->vdev_children == 0);
1972 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1973 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1974 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1975 		    vd->vdev_label_aux);
1976 		return (SET_ERROR(ENXIO));
1977 	} else if (vd->vdev_offline) {
1978 		ASSERT(vd->vdev_children == 0);
1979 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1980 		return (SET_ERROR(ENXIO));
1981 	}
1982 
1983 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1984 	    &logical_ashift, &physical_ashift);
1985 
1986 	/* Keep the device in removed state if unplugged */
1987 	if (error == ENOENT && vd->vdev_removed) {
1988 		vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED,
1989 		    VDEV_AUX_NONE);
1990 		return (error);
1991 	}
1992 
1993 	/*
1994 	 * Physical volume size should never be larger than its max size, unless
1995 	 * the disk has shrunk while we were reading it or the device is buggy
1996 	 * or damaged: either way it's not safe for use, bail out of the open.
1997 	 */
1998 	if (osize > max_osize) {
1999 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2000 		    VDEV_AUX_OPEN_FAILED);
2001 		return (SET_ERROR(ENXIO));
2002 	}
2003 
2004 	/*
2005 	 * Reset the vdev_reopening flag so that we actually close
2006 	 * the vdev on error.
2007 	 */
2008 	vd->vdev_reopening = B_FALSE;
2009 	if (zio_injection_enabled && error == 0)
2010 		error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
2011 
2012 	if (error) {
2013 		if (vd->vdev_removed &&
2014 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
2015 			vd->vdev_removed = B_FALSE;
2016 
2017 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
2018 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
2019 			    vd->vdev_stat.vs_aux);
2020 		} else {
2021 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2022 			    vd->vdev_stat.vs_aux);
2023 		}
2024 		return (error);
2025 	}
2026 
2027 	vd->vdev_removed = B_FALSE;
2028 
2029 	/*
2030 	 * Recheck the faulted flag now that we have confirmed that
2031 	 * the vdev is accessible.  If we're faulted, bail.
2032 	 */
2033 	if (vd->vdev_faulted) {
2034 		ASSERT(vd->vdev_children == 0);
2035 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
2036 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
2037 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2038 		    vd->vdev_label_aux);
2039 		return (SET_ERROR(ENXIO));
2040 	}
2041 
2042 	if (vd->vdev_degraded) {
2043 		ASSERT(vd->vdev_children == 0);
2044 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2045 		    VDEV_AUX_ERR_EXCEEDED);
2046 	} else {
2047 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
2048 	}
2049 
2050 	/*
2051 	 * For hole or missing vdevs we just return success.
2052 	 */
2053 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
2054 		return (0);
2055 
2056 	for (int c = 0; c < vd->vdev_children; c++) {
2057 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
2058 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
2059 			    VDEV_AUX_NONE);
2060 			break;
2061 		}
2062 	}
2063 
2064 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
2065 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
2066 
2067 	if (vd->vdev_children == 0) {
2068 		if (osize < SPA_MINDEVSIZE) {
2069 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2070 			    VDEV_AUX_TOO_SMALL);
2071 			return (SET_ERROR(EOVERFLOW));
2072 		}
2073 		psize = osize;
2074 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
2075 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
2076 		    VDEV_LABEL_END_SIZE);
2077 	} else {
2078 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2079 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2080 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2081 			    VDEV_AUX_TOO_SMALL);
2082 			return (SET_ERROR(EOVERFLOW));
2083 		}
2084 		psize = 0;
2085 		asize = osize;
2086 		max_asize = max_osize;
2087 	}
2088 
2089 	/*
2090 	 * If the vdev was expanded, record this so that we can re-create the
2091 	 * uberblock rings in labels {2,3}, during the next sync.
2092 	 */
2093 	if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2094 		vd->vdev_copy_uberblocks = B_TRUE;
2095 
2096 	vd->vdev_psize = psize;
2097 
2098 	/*
2099 	 * Make sure the allocatable size hasn't shrunk too much.
2100 	 */
2101 	if (asize < vd->vdev_min_asize) {
2102 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2103 		    VDEV_AUX_BAD_LABEL);
2104 		return (SET_ERROR(EINVAL));
2105 	}
2106 
2107 	/*
2108 	 * We can always set the logical/physical ashift members since
2109 	 * their values are only used to calculate the vdev_ashift when
2110 	 * the device is first added to the config. These values should
2111 	 * not be used for anything else since they may change whenever
2112 	 * the device is reopened and we don't store them in the label.
2113 	 */
2114 	vd->vdev_physical_ashift =
2115 	    MAX(physical_ashift, vd->vdev_physical_ashift);
2116 	vd->vdev_logical_ashift = MAX(logical_ashift,
2117 	    vd->vdev_logical_ashift);
2118 
2119 	if (vd->vdev_asize == 0) {
2120 		/*
2121 		 * This is the first-ever open, so use the computed values.
2122 		 * For compatibility, a different ashift can be requested.
2123 		 */
2124 		vd->vdev_asize = asize;
2125 		vd->vdev_max_asize = max_asize;
2126 
2127 		/*
2128 		 * If the vdev_ashift was not overridden at creation time,
2129 		 * then set it the logical ashift and optimize the ashift.
2130 		 */
2131 		if (vd->vdev_ashift == 0) {
2132 			vd->vdev_ashift = vd->vdev_logical_ashift;
2133 
2134 			if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2135 				vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2136 				    VDEV_AUX_ASHIFT_TOO_BIG);
2137 				return (SET_ERROR(EDOM));
2138 			}
2139 
2140 			if (vd->vdev_top == vd) {
2141 				vdev_ashift_optimize(vd);
2142 			}
2143 		}
2144 		if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2145 		    vd->vdev_ashift > ASHIFT_MAX)) {
2146 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2147 			    VDEV_AUX_BAD_ASHIFT);
2148 			return (SET_ERROR(EDOM));
2149 		}
2150 	} else {
2151 		/*
2152 		 * Make sure the alignment required hasn't increased.
2153 		 */
2154 		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2155 		    vd->vdev_ops->vdev_op_leaf) {
2156 			(void) zfs_ereport_post(
2157 			    FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2158 			    spa, vd, NULL, NULL, 0);
2159 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2160 			    VDEV_AUX_BAD_LABEL);
2161 			return (SET_ERROR(EDOM));
2162 		}
2163 		vd->vdev_max_asize = max_asize;
2164 	}
2165 
2166 	/*
2167 	 * If all children are healthy we update asize if either:
2168 	 * The asize has increased, due to a device expansion caused by dynamic
2169 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
2170 	 * making the additional space available.
2171 	 *
2172 	 * The asize has decreased, due to a device shrink usually caused by a
2173 	 * vdev replace with a smaller device. This ensures that calculations
2174 	 * based of max_asize and asize e.g. esize are always valid. It's safe
2175 	 * to do this as we've already validated that asize is greater than
2176 	 * vdev_min_asize.
2177 	 */
2178 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2179 	    ((asize > vd->vdev_asize &&
2180 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
2181 	    (asize < vd->vdev_asize)))
2182 		vd->vdev_asize = asize;
2183 
2184 	vdev_set_min_asize(vd);
2185 
2186 	/*
2187 	 * Ensure we can issue some IO before declaring the
2188 	 * vdev open for business.
2189 	 */
2190 	if (vd->vdev_ops->vdev_op_leaf &&
2191 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2192 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2193 		    VDEV_AUX_ERR_EXCEEDED);
2194 		return (error);
2195 	}
2196 
2197 	/*
2198 	 * Track the minimum allocation size.
2199 	 */
2200 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2201 	    vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2202 		uint64_t min_alloc = vdev_get_min_alloc(vd);
2203 		if (min_alloc < spa->spa_min_alloc)
2204 			spa->spa_min_alloc = min_alloc;
2205 	}
2206 
2207 	/*
2208 	 * If this is a leaf vdev, assess whether a resilver is needed.
2209 	 * But don't do this if we are doing a reopen for a scrub, since
2210 	 * this would just restart the scrub we are already doing.
2211 	 */
2212 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2213 		dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2214 
2215 	return (0);
2216 }
2217 
2218 static void
2219 vdev_validate_child(void *arg)
2220 {
2221 	vdev_t *vd = arg;
2222 
2223 	vd->vdev_validate_thread = curthread;
2224 	vd->vdev_validate_error = vdev_validate(vd);
2225 	vd->vdev_validate_thread = NULL;
2226 }
2227 
2228 /*
2229  * Called once the vdevs are all opened, this routine validates the label
2230  * contents. This needs to be done before vdev_load() so that we don't
2231  * inadvertently do repair I/Os to the wrong device.
2232  *
2233  * This function will only return failure if one of the vdevs indicates that it
2234  * has since been destroyed or exported.  This is only possible if
2235  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2236  * will be updated but the function will return 0.
2237  */
2238 int
2239 vdev_validate(vdev_t *vd)
2240 {
2241 	spa_t *spa = vd->vdev_spa;
2242 	taskq_t *tq = NULL;
2243 	nvlist_t *label;
2244 	uint64_t guid = 0, aux_guid = 0, top_guid;
2245 	uint64_t state;
2246 	nvlist_t *nvl;
2247 	uint64_t txg;
2248 	int children = vd->vdev_children;
2249 
2250 	if (vdev_validate_skip)
2251 		return (0);
2252 
2253 	if (children > 0) {
2254 		tq = taskq_create("vdev_validate", children, minclsyspri,
2255 		    children, children, TASKQ_PREPOPULATE);
2256 	}
2257 
2258 	for (uint64_t c = 0; c < children; c++) {
2259 		vdev_t *cvd = vd->vdev_child[c];
2260 
2261 		if (tq == NULL || vdev_uses_zvols(cvd)) {
2262 			vdev_validate_child(cvd);
2263 		} else {
2264 			VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2265 			    TQ_SLEEP) != TASKQID_INVALID);
2266 		}
2267 	}
2268 	if (tq != NULL) {
2269 		taskq_wait(tq);
2270 		taskq_destroy(tq);
2271 	}
2272 	for (int c = 0; c < children; c++) {
2273 		int error = vd->vdev_child[c]->vdev_validate_error;
2274 
2275 		if (error != 0)
2276 			return (SET_ERROR(EBADF));
2277 	}
2278 
2279 
2280 	/*
2281 	 * If the device has already failed, or was marked offline, don't do
2282 	 * any further validation.  Otherwise, label I/O will fail and we will
2283 	 * overwrite the previous state.
2284 	 */
2285 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2286 		return (0);
2287 
2288 	/*
2289 	 * If we are performing an extreme rewind, we allow for a label that
2290 	 * was modified at a point after the current txg.
2291 	 * If config lock is not held do not check for the txg. spa_sync could
2292 	 * be updating the vdev's label before updating spa_last_synced_txg.
2293 	 */
2294 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2295 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2296 		txg = UINT64_MAX;
2297 	else
2298 		txg = spa_last_synced_txg(spa);
2299 
2300 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2301 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2302 		    VDEV_AUX_BAD_LABEL);
2303 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2304 		    "txg %llu", (u_longlong_t)txg);
2305 		return (0);
2306 	}
2307 
2308 	/*
2309 	 * Determine if this vdev has been split off into another
2310 	 * pool.  If so, then refuse to open it.
2311 	 */
2312 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2313 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2314 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2315 		    VDEV_AUX_SPLIT_POOL);
2316 		nvlist_free(label);
2317 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2318 		return (0);
2319 	}
2320 
2321 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2322 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2323 		    VDEV_AUX_CORRUPT_DATA);
2324 		nvlist_free(label);
2325 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2326 		    ZPOOL_CONFIG_POOL_GUID);
2327 		return (0);
2328 	}
2329 
2330 	/*
2331 	 * If config is not trusted then ignore the spa guid check. This is
2332 	 * necessary because if the machine crashed during a re-guid the new
2333 	 * guid might have been written to all of the vdev labels, but not the
2334 	 * cached config. The check will be performed again once we have the
2335 	 * trusted config from the MOS.
2336 	 */
2337 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
2338 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2339 		    VDEV_AUX_CORRUPT_DATA);
2340 		nvlist_free(label);
2341 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2342 		    "match config (%llu != %llu)", (u_longlong_t)guid,
2343 		    (u_longlong_t)spa_guid(spa));
2344 		return (0);
2345 	}
2346 
2347 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2348 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2349 	    &aux_guid) != 0)
2350 		aux_guid = 0;
2351 
2352 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2353 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2354 		    VDEV_AUX_CORRUPT_DATA);
2355 		nvlist_free(label);
2356 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2357 		    ZPOOL_CONFIG_GUID);
2358 		return (0);
2359 	}
2360 
2361 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2362 	    != 0) {
2363 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2364 		    VDEV_AUX_CORRUPT_DATA);
2365 		nvlist_free(label);
2366 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2367 		    ZPOOL_CONFIG_TOP_GUID);
2368 		return (0);
2369 	}
2370 
2371 	/*
2372 	 * If this vdev just became a top-level vdev because its sibling was
2373 	 * detached, it will have adopted the parent's vdev guid -- but the
2374 	 * label may or may not be on disk yet. Fortunately, either version
2375 	 * of the label will have the same top guid, so if we're a top-level
2376 	 * vdev, we can safely compare to that instead.
2377 	 * However, if the config comes from a cachefile that failed to update
2378 	 * after the detach, a top-level vdev will appear as a non top-level
2379 	 * vdev in the config. Also relax the constraints if we perform an
2380 	 * extreme rewind.
2381 	 *
2382 	 * If we split this vdev off instead, then we also check the
2383 	 * original pool's guid. We don't want to consider the vdev
2384 	 * corrupt if it is partway through a split operation.
2385 	 */
2386 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2387 		boolean_t mismatch = B_FALSE;
2388 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2389 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2390 				mismatch = B_TRUE;
2391 		} else {
2392 			if (vd->vdev_guid != top_guid &&
2393 			    vd->vdev_top->vdev_guid != guid)
2394 				mismatch = B_TRUE;
2395 		}
2396 
2397 		if (mismatch) {
2398 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2399 			    VDEV_AUX_CORRUPT_DATA);
2400 			nvlist_free(label);
2401 			vdev_dbgmsg(vd, "vdev_validate: config guid "
2402 			    "doesn't match label guid");
2403 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2404 			    (u_longlong_t)vd->vdev_guid,
2405 			    (u_longlong_t)vd->vdev_top->vdev_guid);
2406 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2407 			    "aux_guid %llu", (u_longlong_t)guid,
2408 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2409 			return (0);
2410 		}
2411 	}
2412 
2413 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2414 	    &state) != 0) {
2415 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2416 		    VDEV_AUX_CORRUPT_DATA);
2417 		nvlist_free(label);
2418 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2419 		    ZPOOL_CONFIG_POOL_STATE);
2420 		return (0);
2421 	}
2422 
2423 	nvlist_free(label);
2424 
2425 	/*
2426 	 * If this is a verbatim import, no need to check the
2427 	 * state of the pool.
2428 	 */
2429 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2430 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
2431 	    state != POOL_STATE_ACTIVE) {
2432 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2433 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
2434 		return (SET_ERROR(EBADF));
2435 	}
2436 
2437 	/*
2438 	 * If we were able to open and validate a vdev that was
2439 	 * previously marked permanently unavailable, clear that state
2440 	 * now.
2441 	 */
2442 	if (vd->vdev_not_present)
2443 		vd->vdev_not_present = 0;
2444 
2445 	return (0);
2446 }
2447 
2448 static void
2449 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2450 {
2451 	char *old, *new;
2452 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2453 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2454 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2455 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2456 			    dvd->vdev_path, svd->vdev_path);
2457 			spa_strfree(dvd->vdev_path);
2458 			dvd->vdev_path = spa_strdup(svd->vdev_path);
2459 		}
2460 	} else if (svd->vdev_path != NULL) {
2461 		dvd->vdev_path = spa_strdup(svd->vdev_path);
2462 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2463 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2464 	}
2465 
2466 	/*
2467 	 * Our enclosure sysfs path may have changed between imports
2468 	 */
2469 	old = dvd->vdev_enc_sysfs_path;
2470 	new = svd->vdev_enc_sysfs_path;
2471 	if ((old != NULL && new == NULL) ||
2472 	    (old == NULL && new != NULL) ||
2473 	    ((old != NULL && new != NULL) && strcmp(new, old) != 0)) {
2474 		zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2475 		    "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2476 		    old, new);
2477 
2478 		if (dvd->vdev_enc_sysfs_path)
2479 			spa_strfree(dvd->vdev_enc_sysfs_path);
2480 
2481 		if (svd->vdev_enc_sysfs_path) {
2482 			dvd->vdev_enc_sysfs_path = spa_strdup(
2483 			    svd->vdev_enc_sysfs_path);
2484 		} else {
2485 			dvd->vdev_enc_sysfs_path = NULL;
2486 		}
2487 	}
2488 }
2489 
2490 /*
2491  * Recursively copy vdev paths from one vdev to another. Source and destination
2492  * vdev trees must have same geometry otherwise return error. Intended to copy
2493  * paths from userland config into MOS config.
2494  */
2495 int
2496 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2497 {
2498 	if ((svd->vdev_ops == &vdev_missing_ops) ||
2499 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
2500 	    (dvd->vdev_ops == &vdev_indirect_ops))
2501 		return (0);
2502 
2503 	if (svd->vdev_ops != dvd->vdev_ops) {
2504 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2505 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2506 		return (SET_ERROR(EINVAL));
2507 	}
2508 
2509 	if (svd->vdev_guid != dvd->vdev_guid) {
2510 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2511 		    "%llu)", (u_longlong_t)svd->vdev_guid,
2512 		    (u_longlong_t)dvd->vdev_guid);
2513 		return (SET_ERROR(EINVAL));
2514 	}
2515 
2516 	if (svd->vdev_children != dvd->vdev_children) {
2517 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2518 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
2519 		    (u_longlong_t)dvd->vdev_children);
2520 		return (SET_ERROR(EINVAL));
2521 	}
2522 
2523 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
2524 		int error = vdev_copy_path_strict(svd->vdev_child[i],
2525 		    dvd->vdev_child[i]);
2526 		if (error != 0)
2527 			return (error);
2528 	}
2529 
2530 	if (svd->vdev_ops->vdev_op_leaf)
2531 		vdev_copy_path_impl(svd, dvd);
2532 
2533 	return (0);
2534 }
2535 
2536 static void
2537 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2538 {
2539 	ASSERT(stvd->vdev_top == stvd);
2540 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2541 
2542 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2543 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2544 	}
2545 
2546 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2547 		return;
2548 
2549 	/*
2550 	 * The idea here is that while a vdev can shift positions within
2551 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2552 	 * step outside of it.
2553 	 */
2554 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2555 
2556 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2557 		return;
2558 
2559 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2560 
2561 	vdev_copy_path_impl(vd, dvd);
2562 }
2563 
2564 /*
2565  * Recursively copy vdev paths from one root vdev to another. Source and
2566  * destination vdev trees may differ in geometry. For each destination leaf
2567  * vdev, search a vdev with the same guid and top vdev id in the source.
2568  * Intended to copy paths from userland config into MOS config.
2569  */
2570 void
2571 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2572 {
2573 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2574 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2575 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2576 
2577 	for (uint64_t i = 0; i < children; i++) {
2578 		vdev_copy_path_search(srvd->vdev_child[i],
2579 		    drvd->vdev_child[i]);
2580 	}
2581 }
2582 
2583 /*
2584  * Close a virtual device.
2585  */
2586 void
2587 vdev_close(vdev_t *vd)
2588 {
2589 	vdev_t *pvd = vd->vdev_parent;
2590 	spa_t *spa __maybe_unused = vd->vdev_spa;
2591 
2592 	ASSERT(vd != NULL);
2593 	ASSERT(vd->vdev_open_thread == curthread ||
2594 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2595 
2596 	/*
2597 	 * If our parent is reopening, then we are as well, unless we are
2598 	 * going offline.
2599 	 */
2600 	if (pvd != NULL && pvd->vdev_reopening)
2601 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2602 
2603 	vd->vdev_ops->vdev_op_close(vd);
2604 
2605 	vdev_cache_purge(vd);
2606 
2607 	/*
2608 	 * We record the previous state before we close it, so that if we are
2609 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2610 	 * it's still faulted.
2611 	 */
2612 	vd->vdev_prevstate = vd->vdev_state;
2613 
2614 	if (vd->vdev_offline)
2615 		vd->vdev_state = VDEV_STATE_OFFLINE;
2616 	else
2617 		vd->vdev_state = VDEV_STATE_CLOSED;
2618 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2619 }
2620 
2621 void
2622 vdev_hold(vdev_t *vd)
2623 {
2624 	spa_t *spa = vd->vdev_spa;
2625 
2626 	ASSERT(spa_is_root(spa));
2627 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2628 		return;
2629 
2630 	for (int c = 0; c < vd->vdev_children; c++)
2631 		vdev_hold(vd->vdev_child[c]);
2632 
2633 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL)
2634 		vd->vdev_ops->vdev_op_hold(vd);
2635 }
2636 
2637 void
2638 vdev_rele(vdev_t *vd)
2639 {
2640 	ASSERT(spa_is_root(vd->vdev_spa));
2641 	for (int c = 0; c < vd->vdev_children; c++)
2642 		vdev_rele(vd->vdev_child[c]);
2643 
2644 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL)
2645 		vd->vdev_ops->vdev_op_rele(vd);
2646 }
2647 
2648 /*
2649  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2650  * reopen leaf vdevs which had previously been opened as they might deadlock
2651  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2652  * If the leaf has never been opened then open it, as usual.
2653  */
2654 void
2655 vdev_reopen(vdev_t *vd)
2656 {
2657 	spa_t *spa = vd->vdev_spa;
2658 
2659 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2660 
2661 	/* set the reopening flag unless we're taking the vdev offline */
2662 	vd->vdev_reopening = !vd->vdev_offline;
2663 	vdev_close(vd);
2664 	(void) vdev_open(vd);
2665 
2666 	/*
2667 	 * Call vdev_validate() here to make sure we have the same device.
2668 	 * Otherwise, a device with an invalid label could be successfully
2669 	 * opened in response to vdev_reopen().
2670 	 */
2671 	if (vd->vdev_aux) {
2672 		(void) vdev_validate_aux(vd);
2673 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2674 		    vd->vdev_aux == &spa->spa_l2cache) {
2675 			/*
2676 			 * In case the vdev is present we should evict all ARC
2677 			 * buffers and pointers to log blocks and reclaim their
2678 			 * space before restoring its contents to L2ARC.
2679 			 */
2680 			if (l2arc_vdev_present(vd)) {
2681 				l2arc_rebuild_vdev(vd, B_TRUE);
2682 			} else {
2683 				l2arc_add_vdev(spa, vd);
2684 			}
2685 			spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2686 			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2687 		}
2688 	} else {
2689 		(void) vdev_validate(vd);
2690 	}
2691 
2692 	/*
2693 	 * Reassess parent vdev's health.
2694 	 */
2695 	vdev_propagate_state(vd);
2696 }
2697 
2698 int
2699 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2700 {
2701 	int error;
2702 
2703 	/*
2704 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2705 	 * For a create, however, we want to fail the request if
2706 	 * there are any components we can't open.
2707 	 */
2708 	error = vdev_open(vd);
2709 
2710 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2711 		vdev_close(vd);
2712 		return (error ? error : SET_ERROR(ENXIO));
2713 	}
2714 
2715 	/*
2716 	 * Recursively load DTLs and initialize all labels.
2717 	 */
2718 	if ((error = vdev_dtl_load(vd)) != 0 ||
2719 	    (error = vdev_label_init(vd, txg, isreplacing ?
2720 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2721 		vdev_close(vd);
2722 		return (error);
2723 	}
2724 
2725 	return (0);
2726 }
2727 
2728 void
2729 vdev_metaslab_set_size(vdev_t *vd)
2730 {
2731 	uint64_t asize = vd->vdev_asize;
2732 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2733 	uint64_t ms_shift;
2734 
2735 	/*
2736 	 * There are two dimensions to the metaslab sizing calculation:
2737 	 * the size of the metaslab and the count of metaslabs per vdev.
2738 	 *
2739 	 * The default values used below are a good balance between memory
2740 	 * usage (larger metaslab size means more memory needed for loaded
2741 	 * metaslabs; more metaslabs means more memory needed for the
2742 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2743 	 * longer to load), and metaslab sync time (more metaslabs means
2744 	 * more time spent syncing all of them).
2745 	 *
2746 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2747 	 * The range of the dimensions are as follows:
2748 	 *
2749 	 *	2^29 <= ms_size  <= 2^34
2750 	 *	  16 <= ms_count <= 131,072
2751 	 *
2752 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2753 	 * at least 512MB (2^29) to minimize fragmentation effects when
2754 	 * testing with smaller devices.  However, the count constraint
2755 	 * of at least 16 metaslabs will override this minimum size goal.
2756 	 *
2757 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2758 	 * size of 16GB.  However, we will cap the total count to 2^17
2759 	 * metaslabs to keep our memory footprint in check and let the
2760 	 * metaslab size grow from there if that limit is hit.
2761 	 *
2762 	 * The net effect of applying above constrains is summarized below.
2763 	 *
2764 	 *   vdev size       metaslab count
2765 	 *  --------------|-----------------
2766 	 *      < 8GB        ~16
2767 	 *  8GB   - 100GB   one per 512MB
2768 	 *  100GB - 3TB     ~200
2769 	 *  3TB   - 2PB     one per 16GB
2770 	 *      > 2PB       ~131,072
2771 	 *  --------------------------------
2772 	 *
2773 	 *  Finally, note that all of the above calculate the initial
2774 	 *  number of metaslabs. Expanding a top-level vdev will result
2775 	 *  in additional metaslabs being allocated making it possible
2776 	 *  to exceed the zfs_vdev_ms_count_limit.
2777 	 */
2778 
2779 	if (ms_count < zfs_vdev_min_ms_count)
2780 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2781 	else if (ms_count > zfs_vdev_default_ms_count)
2782 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2783 	else
2784 		ms_shift = zfs_vdev_default_ms_shift;
2785 
2786 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2787 		ms_shift = SPA_MAXBLOCKSHIFT;
2788 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2789 		ms_shift = zfs_vdev_max_ms_shift;
2790 		/* cap the total count to constrain memory footprint */
2791 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2792 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2793 	}
2794 
2795 	vd->vdev_ms_shift = ms_shift;
2796 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2797 }
2798 
2799 void
2800 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2801 {
2802 	ASSERT(vd == vd->vdev_top);
2803 	/* indirect vdevs don't have metaslabs or dtls */
2804 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2805 	ASSERT(ISP2(flags));
2806 	ASSERT(spa_writeable(vd->vdev_spa));
2807 
2808 	if (flags & VDD_METASLAB)
2809 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2810 
2811 	if (flags & VDD_DTL)
2812 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2813 
2814 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2815 }
2816 
2817 void
2818 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2819 {
2820 	for (int c = 0; c < vd->vdev_children; c++)
2821 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2822 
2823 	if (vd->vdev_ops->vdev_op_leaf)
2824 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2825 }
2826 
2827 /*
2828  * DTLs.
2829  *
2830  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2831  * the vdev has less than perfect replication.  There are four kinds of DTL:
2832  *
2833  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2834  *
2835  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2836  *
2837  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2838  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2839  *	txgs that was scrubbed.
2840  *
2841  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2842  *	persistent errors or just some device being offline.
2843  *	Unlike the other three, the DTL_OUTAGE map is not generally
2844  *	maintained; it's only computed when needed, typically to
2845  *	determine whether a device can be detached.
2846  *
2847  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2848  * either has the data or it doesn't.
2849  *
2850  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2851  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2852  * if any child is less than fully replicated, then so is its parent.
2853  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2854  * comprising only those txgs which appear in 'maxfaults' or more children;
2855  * those are the txgs we don't have enough replication to read.  For example,
2856  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2857  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2858  * two child DTL_MISSING maps.
2859  *
2860  * It should be clear from the above that to compute the DTLs and outage maps
2861  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2862  * Therefore, that is all we keep on disk.  When loading the pool, or after
2863  * a configuration change, we generate all other DTLs from first principles.
2864  */
2865 void
2866 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2867 {
2868 	range_tree_t *rt = vd->vdev_dtl[t];
2869 
2870 	ASSERT(t < DTL_TYPES);
2871 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2872 	ASSERT(spa_writeable(vd->vdev_spa));
2873 
2874 	mutex_enter(&vd->vdev_dtl_lock);
2875 	if (!range_tree_contains(rt, txg, size))
2876 		range_tree_add(rt, txg, size);
2877 	mutex_exit(&vd->vdev_dtl_lock);
2878 }
2879 
2880 boolean_t
2881 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2882 {
2883 	range_tree_t *rt = vd->vdev_dtl[t];
2884 	boolean_t dirty = B_FALSE;
2885 
2886 	ASSERT(t < DTL_TYPES);
2887 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2888 
2889 	/*
2890 	 * While we are loading the pool, the DTLs have not been loaded yet.
2891 	 * This isn't a problem but it can result in devices being tried
2892 	 * which are known to not have the data.  In which case, the import
2893 	 * is relying on the checksum to ensure that we get the right data.
2894 	 * Note that while importing we are only reading the MOS, which is
2895 	 * always checksummed.
2896 	 */
2897 	mutex_enter(&vd->vdev_dtl_lock);
2898 	if (!range_tree_is_empty(rt))
2899 		dirty = range_tree_contains(rt, txg, size);
2900 	mutex_exit(&vd->vdev_dtl_lock);
2901 
2902 	return (dirty);
2903 }
2904 
2905 boolean_t
2906 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2907 {
2908 	range_tree_t *rt = vd->vdev_dtl[t];
2909 	boolean_t empty;
2910 
2911 	mutex_enter(&vd->vdev_dtl_lock);
2912 	empty = range_tree_is_empty(rt);
2913 	mutex_exit(&vd->vdev_dtl_lock);
2914 
2915 	return (empty);
2916 }
2917 
2918 /*
2919  * Check if the txg falls within the range which must be
2920  * resilvered.  DVAs outside this range can always be skipped.
2921  */
2922 boolean_t
2923 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2924     uint64_t phys_birth)
2925 {
2926 	(void) dva, (void) psize;
2927 
2928 	/* Set by sequential resilver. */
2929 	if (phys_birth == TXG_UNKNOWN)
2930 		return (B_TRUE);
2931 
2932 	return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2933 }
2934 
2935 /*
2936  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2937  */
2938 boolean_t
2939 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2940     uint64_t phys_birth)
2941 {
2942 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2943 
2944 	if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2945 	    vd->vdev_ops->vdev_op_leaf)
2946 		return (B_TRUE);
2947 
2948 	return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2949 	    phys_birth));
2950 }
2951 
2952 /*
2953  * Returns the lowest txg in the DTL range.
2954  */
2955 static uint64_t
2956 vdev_dtl_min(vdev_t *vd)
2957 {
2958 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2959 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2960 	ASSERT0(vd->vdev_children);
2961 
2962 	return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2963 }
2964 
2965 /*
2966  * Returns the highest txg in the DTL.
2967  */
2968 static uint64_t
2969 vdev_dtl_max(vdev_t *vd)
2970 {
2971 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2972 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2973 	ASSERT0(vd->vdev_children);
2974 
2975 	return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2976 }
2977 
2978 /*
2979  * Determine if a resilvering vdev should remove any DTL entries from
2980  * its range. If the vdev was resilvering for the entire duration of the
2981  * scan then it should excise that range from its DTLs. Otherwise, this
2982  * vdev is considered partially resilvered and should leave its DTL
2983  * entries intact. The comment in vdev_dtl_reassess() describes how we
2984  * excise the DTLs.
2985  */
2986 static boolean_t
2987 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2988 {
2989 	ASSERT0(vd->vdev_children);
2990 
2991 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2992 		return (B_FALSE);
2993 
2994 	if (vd->vdev_resilver_deferred)
2995 		return (B_FALSE);
2996 
2997 	if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2998 		return (B_TRUE);
2999 
3000 	if (rebuild_done) {
3001 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3002 		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
3003 
3004 		/* Rebuild not initiated by attach */
3005 		if (vd->vdev_rebuild_txg == 0)
3006 			return (B_TRUE);
3007 
3008 		/*
3009 		 * When a rebuild completes without error then all missing data
3010 		 * up to the rebuild max txg has been reconstructed and the DTL
3011 		 * is eligible for excision.
3012 		 */
3013 		if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
3014 		    vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
3015 			ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
3016 			ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
3017 			ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
3018 			return (B_TRUE);
3019 		}
3020 	} else {
3021 		dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
3022 		dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
3023 
3024 		/* Resilver not initiated by attach */
3025 		if (vd->vdev_resilver_txg == 0)
3026 			return (B_TRUE);
3027 
3028 		/*
3029 		 * When a resilver is initiated the scan will assign the
3030 		 * scn_max_txg value to the highest txg value that exists
3031 		 * in all DTLs. If this device's max DTL is not part of this
3032 		 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3033 		 * then it is not eligible for excision.
3034 		 */
3035 		if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
3036 			ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
3037 			ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
3038 			ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
3039 			return (B_TRUE);
3040 		}
3041 	}
3042 
3043 	return (B_FALSE);
3044 }
3045 
3046 /*
3047  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3048  * write operations will be issued to the pool.
3049  */
3050 void
3051 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
3052     boolean_t scrub_done, boolean_t rebuild_done)
3053 {
3054 	spa_t *spa = vd->vdev_spa;
3055 	avl_tree_t reftree;
3056 	int minref;
3057 
3058 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3059 
3060 	for (int c = 0; c < vd->vdev_children; c++)
3061 		vdev_dtl_reassess(vd->vdev_child[c], txg,
3062 		    scrub_txg, scrub_done, rebuild_done);
3063 
3064 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
3065 		return;
3066 
3067 	if (vd->vdev_ops->vdev_op_leaf) {
3068 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
3069 		vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
3070 		boolean_t check_excise = B_FALSE;
3071 		boolean_t wasempty = B_TRUE;
3072 
3073 		mutex_enter(&vd->vdev_dtl_lock);
3074 
3075 		/*
3076 		 * If requested, pretend the scan or rebuild completed cleanly.
3077 		 */
3078 		if (zfs_scan_ignore_errors) {
3079 			if (scn != NULL)
3080 				scn->scn_phys.scn_errors = 0;
3081 			if (vr != NULL)
3082 				vr->vr_rebuild_phys.vrp_errors = 0;
3083 		}
3084 
3085 		if (scrub_txg != 0 &&
3086 		    !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3087 			wasempty = B_FALSE;
3088 			zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3089 			    "dtl:%llu/%llu errors:%llu",
3090 			    (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
3091 			    (u_longlong_t)scrub_txg, spa->spa_scrub_started,
3092 			    (u_longlong_t)vdev_dtl_min(vd),
3093 			    (u_longlong_t)vdev_dtl_max(vd),
3094 			    (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
3095 		}
3096 
3097 		/*
3098 		 * If we've completed a scrub/resilver or a rebuild cleanly
3099 		 * then determine if this vdev should remove any DTLs. We
3100 		 * only want to excise regions on vdevs that were available
3101 		 * during the entire duration of this scan.
3102 		 */
3103 		if (rebuild_done &&
3104 		    vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3105 			check_excise = B_TRUE;
3106 		} else {
3107 			if (spa->spa_scrub_started ||
3108 			    (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3109 				check_excise = B_TRUE;
3110 			}
3111 		}
3112 
3113 		if (scrub_txg && check_excise &&
3114 		    vdev_dtl_should_excise(vd, rebuild_done)) {
3115 			/*
3116 			 * We completed a scrub, resilver or rebuild up to
3117 			 * scrub_txg.  If we did it without rebooting, then
3118 			 * the scrub dtl will be valid, so excise the old
3119 			 * region and fold in the scrub dtl.  Otherwise,
3120 			 * leave the dtl as-is if there was an error.
3121 			 *
3122 			 * There's little trick here: to excise the beginning
3123 			 * of the DTL_MISSING map, we put it into a reference
3124 			 * tree and then add a segment with refcnt -1 that
3125 			 * covers the range [0, scrub_txg).  This means
3126 			 * that each txg in that range has refcnt -1 or 0.
3127 			 * We then add DTL_SCRUB with a refcnt of 2, so that
3128 			 * entries in the range [0, scrub_txg) will have a
3129 			 * positive refcnt -- either 1 or 2.  We then convert
3130 			 * the reference tree into the new DTL_MISSING map.
3131 			 */
3132 			space_reftree_create(&reftree);
3133 			space_reftree_add_map(&reftree,
3134 			    vd->vdev_dtl[DTL_MISSING], 1);
3135 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3136 			space_reftree_add_map(&reftree,
3137 			    vd->vdev_dtl[DTL_SCRUB], 2);
3138 			space_reftree_generate_map(&reftree,
3139 			    vd->vdev_dtl[DTL_MISSING], 1);
3140 			space_reftree_destroy(&reftree);
3141 
3142 			if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3143 				zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3144 				    (u_longlong_t)vdev_dtl_min(vd),
3145 				    (u_longlong_t)vdev_dtl_max(vd));
3146 			} else if (!wasempty) {
3147 				zfs_dbgmsg("DTL_MISSING is now empty");
3148 			}
3149 		}
3150 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3151 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3152 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3153 		if (scrub_done)
3154 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3155 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3156 		if (!vdev_readable(vd))
3157 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3158 		else
3159 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3160 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3161 
3162 		/*
3163 		 * If the vdev was resilvering or rebuilding and no longer
3164 		 * has any DTLs then reset the appropriate flag and dirty
3165 		 * the top level so that we persist the change.
3166 		 */
3167 		if (txg != 0 &&
3168 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3169 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3170 			if (vd->vdev_rebuild_txg != 0) {
3171 				vd->vdev_rebuild_txg = 0;
3172 				vdev_config_dirty(vd->vdev_top);
3173 			} else if (vd->vdev_resilver_txg != 0) {
3174 				vd->vdev_resilver_txg = 0;
3175 				vdev_config_dirty(vd->vdev_top);
3176 			}
3177 		}
3178 
3179 		mutex_exit(&vd->vdev_dtl_lock);
3180 
3181 		if (txg != 0)
3182 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3183 		return;
3184 	}
3185 
3186 	mutex_enter(&vd->vdev_dtl_lock);
3187 	for (int t = 0; t < DTL_TYPES; t++) {
3188 		/* account for child's outage in parent's missing map */
3189 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3190 		if (t == DTL_SCRUB)
3191 			continue;			/* leaf vdevs only */
3192 		if (t == DTL_PARTIAL)
3193 			minref = 1;			/* i.e. non-zero */
3194 		else if (vdev_get_nparity(vd) != 0)
3195 			minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3196 		else
3197 			minref = vd->vdev_children;	/* any kind of mirror */
3198 		space_reftree_create(&reftree);
3199 		for (int c = 0; c < vd->vdev_children; c++) {
3200 			vdev_t *cvd = vd->vdev_child[c];
3201 			mutex_enter(&cvd->vdev_dtl_lock);
3202 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3203 			mutex_exit(&cvd->vdev_dtl_lock);
3204 		}
3205 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3206 		space_reftree_destroy(&reftree);
3207 	}
3208 	mutex_exit(&vd->vdev_dtl_lock);
3209 }
3210 
3211 /*
3212  * Iterate over all the vdevs except spare, and post kobj events
3213  */
3214 void
3215 vdev_post_kobj_evt(vdev_t *vd)
3216 {
3217 	if (vd->vdev_ops->vdev_op_kobj_evt_post &&
3218 	    vd->vdev_kobj_flag == B_FALSE) {
3219 		vd->vdev_kobj_flag = B_TRUE;
3220 		vd->vdev_ops->vdev_op_kobj_evt_post(vd);
3221 	}
3222 
3223 	for (int c = 0; c < vd->vdev_children; c++)
3224 		vdev_post_kobj_evt(vd->vdev_child[c]);
3225 }
3226 
3227 /*
3228  * Iterate over all the vdevs except spare, and clear kobj events
3229  */
3230 void
3231 vdev_clear_kobj_evt(vdev_t *vd)
3232 {
3233 	vd->vdev_kobj_flag = B_FALSE;
3234 
3235 	for (int c = 0; c < vd->vdev_children; c++)
3236 		vdev_clear_kobj_evt(vd->vdev_child[c]);
3237 }
3238 
3239 int
3240 vdev_dtl_load(vdev_t *vd)
3241 {
3242 	spa_t *spa = vd->vdev_spa;
3243 	objset_t *mos = spa->spa_meta_objset;
3244 	range_tree_t *rt;
3245 	int error = 0;
3246 
3247 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3248 		ASSERT(vdev_is_concrete(vd));
3249 
3250 		/*
3251 		 * If the dtl cannot be sync'd there is no need to open it.
3252 		 */
3253 		if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps)
3254 			return (0);
3255 
3256 		error = space_map_open(&vd->vdev_dtl_sm, mos,
3257 		    vd->vdev_dtl_object, 0, -1ULL, 0);
3258 		if (error)
3259 			return (error);
3260 		ASSERT(vd->vdev_dtl_sm != NULL);
3261 
3262 		rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3263 		error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3264 		if (error == 0) {
3265 			mutex_enter(&vd->vdev_dtl_lock);
3266 			range_tree_walk(rt, range_tree_add,
3267 			    vd->vdev_dtl[DTL_MISSING]);
3268 			mutex_exit(&vd->vdev_dtl_lock);
3269 		}
3270 
3271 		range_tree_vacate(rt, NULL, NULL);
3272 		range_tree_destroy(rt);
3273 
3274 		return (error);
3275 	}
3276 
3277 	for (int c = 0; c < vd->vdev_children; c++) {
3278 		error = vdev_dtl_load(vd->vdev_child[c]);
3279 		if (error != 0)
3280 			break;
3281 	}
3282 
3283 	return (error);
3284 }
3285 
3286 static void
3287 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3288 {
3289 	spa_t *spa = vd->vdev_spa;
3290 	objset_t *mos = spa->spa_meta_objset;
3291 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3292 	const char *string;
3293 
3294 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
3295 
3296 	string =
3297 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3298 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3299 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3300 
3301 	ASSERT(string != NULL);
3302 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3303 	    1, strlen(string) + 1, string, tx));
3304 
3305 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3306 		spa_activate_allocation_classes(spa, tx);
3307 	}
3308 }
3309 
3310 void
3311 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3312 {
3313 	spa_t *spa = vd->vdev_spa;
3314 
3315 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3316 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3317 	    zapobj, tx));
3318 }
3319 
3320 uint64_t
3321 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3322 {
3323 	spa_t *spa = vd->vdev_spa;
3324 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3325 	    DMU_OT_NONE, 0, tx);
3326 
3327 	ASSERT(zap != 0);
3328 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3329 	    zap, tx));
3330 
3331 	return (zap);
3332 }
3333 
3334 void
3335 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3336 {
3337 	if (vd->vdev_ops != &vdev_hole_ops &&
3338 	    vd->vdev_ops != &vdev_missing_ops &&
3339 	    vd->vdev_ops != &vdev_root_ops &&
3340 	    !vd->vdev_top->vdev_removing) {
3341 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3342 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3343 		}
3344 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3345 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3346 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3347 				vdev_zap_allocation_data(vd, tx);
3348 		}
3349 	}
3350 
3351 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3352 		vdev_construct_zaps(vd->vdev_child[i], tx);
3353 	}
3354 }
3355 
3356 static void
3357 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3358 {
3359 	spa_t *spa = vd->vdev_spa;
3360 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3361 	objset_t *mos = spa->spa_meta_objset;
3362 	range_tree_t *rtsync;
3363 	dmu_tx_t *tx;
3364 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
3365 
3366 	ASSERT(vdev_is_concrete(vd));
3367 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3368 
3369 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3370 
3371 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3372 		mutex_enter(&vd->vdev_dtl_lock);
3373 		space_map_free(vd->vdev_dtl_sm, tx);
3374 		space_map_close(vd->vdev_dtl_sm);
3375 		vd->vdev_dtl_sm = NULL;
3376 		mutex_exit(&vd->vdev_dtl_lock);
3377 
3378 		/*
3379 		 * We only destroy the leaf ZAP for detached leaves or for
3380 		 * removed log devices. Removed data devices handle leaf ZAP
3381 		 * cleanup later, once cancellation is no longer possible.
3382 		 */
3383 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3384 		    vd->vdev_top->vdev_islog)) {
3385 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3386 			vd->vdev_leaf_zap = 0;
3387 		}
3388 
3389 		dmu_tx_commit(tx);
3390 		return;
3391 	}
3392 
3393 	if (vd->vdev_dtl_sm == NULL) {
3394 		uint64_t new_object;
3395 
3396 		new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3397 		VERIFY3U(new_object, !=, 0);
3398 
3399 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3400 		    0, -1ULL, 0));
3401 		ASSERT(vd->vdev_dtl_sm != NULL);
3402 	}
3403 
3404 	rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3405 
3406 	mutex_enter(&vd->vdev_dtl_lock);
3407 	range_tree_walk(rt, range_tree_add, rtsync);
3408 	mutex_exit(&vd->vdev_dtl_lock);
3409 
3410 	space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3411 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3412 	range_tree_vacate(rtsync, NULL, NULL);
3413 
3414 	range_tree_destroy(rtsync);
3415 
3416 	/*
3417 	 * If the object for the space map has changed then dirty
3418 	 * the top level so that we update the config.
3419 	 */
3420 	if (object != space_map_object(vd->vdev_dtl_sm)) {
3421 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3422 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
3423 		    (u_longlong_t)object,
3424 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3425 		vdev_config_dirty(vd->vdev_top);
3426 	}
3427 
3428 	dmu_tx_commit(tx);
3429 }
3430 
3431 /*
3432  * Determine whether the specified vdev can be offlined/detached/removed
3433  * without losing data.
3434  */
3435 boolean_t
3436 vdev_dtl_required(vdev_t *vd)
3437 {
3438 	spa_t *spa = vd->vdev_spa;
3439 	vdev_t *tvd = vd->vdev_top;
3440 	uint8_t cant_read = vd->vdev_cant_read;
3441 	boolean_t required;
3442 
3443 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3444 
3445 	if (vd == spa->spa_root_vdev || vd == tvd)
3446 		return (B_TRUE);
3447 
3448 	/*
3449 	 * Temporarily mark the device as unreadable, and then determine
3450 	 * whether this results in any DTL outages in the top-level vdev.
3451 	 * If not, we can safely offline/detach/remove the device.
3452 	 */
3453 	vd->vdev_cant_read = B_TRUE;
3454 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3455 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3456 	vd->vdev_cant_read = cant_read;
3457 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3458 
3459 	if (!required && zio_injection_enabled) {
3460 		required = !!zio_handle_device_injection(vd, NULL,
3461 		    SET_ERROR(ECHILD));
3462 	}
3463 
3464 	return (required);
3465 }
3466 
3467 /*
3468  * Determine if resilver is needed, and if so the txg range.
3469  */
3470 boolean_t
3471 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3472 {
3473 	boolean_t needed = B_FALSE;
3474 	uint64_t thismin = UINT64_MAX;
3475 	uint64_t thismax = 0;
3476 
3477 	if (vd->vdev_children == 0) {
3478 		mutex_enter(&vd->vdev_dtl_lock);
3479 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3480 		    vdev_writeable(vd)) {
3481 
3482 			thismin = vdev_dtl_min(vd);
3483 			thismax = vdev_dtl_max(vd);
3484 			needed = B_TRUE;
3485 		}
3486 		mutex_exit(&vd->vdev_dtl_lock);
3487 	} else {
3488 		for (int c = 0; c < vd->vdev_children; c++) {
3489 			vdev_t *cvd = vd->vdev_child[c];
3490 			uint64_t cmin, cmax;
3491 
3492 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3493 				thismin = MIN(thismin, cmin);
3494 				thismax = MAX(thismax, cmax);
3495 				needed = B_TRUE;
3496 			}
3497 		}
3498 	}
3499 
3500 	if (needed && minp) {
3501 		*minp = thismin;
3502 		*maxp = thismax;
3503 	}
3504 	return (needed);
3505 }
3506 
3507 /*
3508  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3509  * will contain either the checkpoint spacemap object or zero if none exists.
3510  * All other errors are returned to the caller.
3511  */
3512 int
3513 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3514 {
3515 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3516 
3517 	if (vd->vdev_top_zap == 0) {
3518 		*sm_obj = 0;
3519 		return (0);
3520 	}
3521 
3522 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3523 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3524 	if (error == ENOENT) {
3525 		*sm_obj = 0;
3526 		error = 0;
3527 	}
3528 
3529 	return (error);
3530 }
3531 
3532 int
3533 vdev_load(vdev_t *vd)
3534 {
3535 	int children = vd->vdev_children;
3536 	int error = 0;
3537 	taskq_t *tq = NULL;
3538 
3539 	/*
3540 	 * It's only worthwhile to use the taskq for the root vdev, because the
3541 	 * slow part is metaslab_init, and that only happens for top-level
3542 	 * vdevs.
3543 	 */
3544 	if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3545 		tq = taskq_create("vdev_load", children, minclsyspri,
3546 		    children, children, TASKQ_PREPOPULATE);
3547 	}
3548 
3549 	/*
3550 	 * Recursively load all children.
3551 	 */
3552 	for (int c = 0; c < vd->vdev_children; c++) {
3553 		vdev_t *cvd = vd->vdev_child[c];
3554 
3555 		if (tq == NULL || vdev_uses_zvols(cvd)) {
3556 			cvd->vdev_load_error = vdev_load(cvd);
3557 		} else {
3558 			VERIFY(taskq_dispatch(tq, vdev_load_child,
3559 			    cvd, TQ_SLEEP) != TASKQID_INVALID);
3560 		}
3561 	}
3562 
3563 	if (tq != NULL) {
3564 		taskq_wait(tq);
3565 		taskq_destroy(tq);
3566 	}
3567 
3568 	for (int c = 0; c < vd->vdev_children; c++) {
3569 		int error = vd->vdev_child[c]->vdev_load_error;
3570 
3571 		if (error != 0)
3572 			return (error);
3573 	}
3574 
3575 	vdev_set_deflate_ratio(vd);
3576 
3577 	/*
3578 	 * On spa_load path, grab the allocation bias from our zap
3579 	 */
3580 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3581 		spa_t *spa = vd->vdev_spa;
3582 		char bias_str[64];
3583 
3584 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3585 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3586 		    bias_str);
3587 		if (error == 0) {
3588 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3589 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3590 		} else if (error != ENOENT) {
3591 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3592 			    VDEV_AUX_CORRUPT_DATA);
3593 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3594 			    "failed [error=%d]",
3595 			    (u_longlong_t)vd->vdev_top_zap, error);
3596 			return (error);
3597 		}
3598 	}
3599 
3600 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3601 		spa_t *spa = vd->vdev_spa;
3602 		uint64_t failfast;
3603 
3604 		error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3605 		    vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast),
3606 		    1, &failfast);
3607 		if (error == 0) {
3608 			vd->vdev_failfast = failfast & 1;
3609 		} else if (error == ENOENT) {
3610 			vd->vdev_failfast = vdev_prop_default_numeric(
3611 			    VDEV_PROP_FAILFAST);
3612 		} else {
3613 			vdev_dbgmsg(vd,
3614 			    "vdev_load: zap_lookup(top_zap=%llu) "
3615 			    "failed [error=%d]",
3616 			    (u_longlong_t)vd->vdev_top_zap, error);
3617 		}
3618 	}
3619 
3620 	/*
3621 	 * Load any rebuild state from the top-level vdev zap.
3622 	 */
3623 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3624 		error = vdev_rebuild_load(vd);
3625 		if (error && error != ENOTSUP) {
3626 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3627 			    VDEV_AUX_CORRUPT_DATA);
3628 			vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3629 			    "failed [error=%d]", error);
3630 			return (error);
3631 		}
3632 	}
3633 
3634 	if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) {
3635 		uint64_t zapobj;
3636 
3637 		if (vd->vdev_top_zap != 0)
3638 			zapobj = vd->vdev_top_zap;
3639 		else
3640 			zapobj = vd->vdev_leaf_zap;
3641 
3642 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N,
3643 		    &vd->vdev_checksum_n);
3644 		if (error && error != ENOENT)
3645 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3646 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3647 
3648 		error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T,
3649 		    &vd->vdev_checksum_t);
3650 		if (error && error != ENOENT)
3651 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3652 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3653 
3654 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_N,
3655 		    &vd->vdev_io_n);
3656 		if (error && error != ENOENT)
3657 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3658 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3659 
3660 		error = vdev_prop_get_int(vd, VDEV_PROP_IO_T,
3661 		    &vd->vdev_io_t);
3662 		if (error && error != ENOENT)
3663 			vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) "
3664 			    "failed [error=%d]", (u_longlong_t)zapobj, error);
3665 	}
3666 
3667 	/*
3668 	 * If this is a top-level vdev, initialize its metaslabs.
3669 	 */
3670 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3671 		vdev_metaslab_group_create(vd);
3672 
3673 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3674 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3675 			    VDEV_AUX_CORRUPT_DATA);
3676 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3677 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3678 			    (u_longlong_t)vd->vdev_asize);
3679 			return (SET_ERROR(ENXIO));
3680 		}
3681 
3682 		error = vdev_metaslab_init(vd, 0);
3683 		if (error != 0) {
3684 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3685 			    "[error=%d]", error);
3686 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3687 			    VDEV_AUX_CORRUPT_DATA);
3688 			return (error);
3689 		}
3690 
3691 		uint64_t checkpoint_sm_obj;
3692 		error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3693 		if (error == 0 && checkpoint_sm_obj != 0) {
3694 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
3695 			ASSERT(vd->vdev_asize != 0);
3696 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3697 
3698 			error = space_map_open(&vd->vdev_checkpoint_sm,
3699 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3700 			    vd->vdev_ashift);
3701 			if (error != 0) {
3702 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
3703 				    "failed for checkpoint spacemap (obj %llu) "
3704 				    "[error=%d]",
3705 				    (u_longlong_t)checkpoint_sm_obj, error);
3706 				return (error);
3707 			}
3708 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3709 
3710 			/*
3711 			 * Since the checkpoint_sm contains free entries
3712 			 * exclusively we can use space_map_allocated() to
3713 			 * indicate the cumulative checkpointed space that
3714 			 * has been freed.
3715 			 */
3716 			vd->vdev_stat.vs_checkpoint_space =
3717 			    -space_map_allocated(vd->vdev_checkpoint_sm);
3718 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3719 			    vd->vdev_stat.vs_checkpoint_space;
3720 		} else if (error != 0) {
3721 			vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3722 			    "checkpoint space map object from vdev ZAP "
3723 			    "[error=%d]", error);
3724 			return (error);
3725 		}
3726 	}
3727 
3728 	/*
3729 	 * If this is a leaf vdev, load its DTL.
3730 	 */
3731 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3732 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3733 		    VDEV_AUX_CORRUPT_DATA);
3734 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3735 		    "[error=%d]", error);
3736 		return (error);
3737 	}
3738 
3739 	uint64_t obsolete_sm_object;
3740 	error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3741 	if (error == 0 && obsolete_sm_object != 0) {
3742 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
3743 		ASSERT(vd->vdev_asize != 0);
3744 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3745 
3746 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3747 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3748 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3749 			    VDEV_AUX_CORRUPT_DATA);
3750 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3751 			    "obsolete spacemap (obj %llu) [error=%d]",
3752 			    (u_longlong_t)obsolete_sm_object, error);
3753 			return (error);
3754 		}
3755 	} else if (error != 0) {
3756 		vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3757 		    "space map object from vdev ZAP [error=%d]", error);
3758 		return (error);
3759 	}
3760 
3761 	return (0);
3762 }
3763 
3764 /*
3765  * The special vdev case is used for hot spares and l2cache devices.  Its
3766  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3767  * we make sure that we can open the underlying device, then try to read the
3768  * label, and make sure that the label is sane and that it hasn't been
3769  * repurposed to another pool.
3770  */
3771 int
3772 vdev_validate_aux(vdev_t *vd)
3773 {
3774 	nvlist_t *label;
3775 	uint64_t guid, version;
3776 	uint64_t state;
3777 
3778 	if (!vdev_readable(vd))
3779 		return (0);
3780 
3781 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3782 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3783 		    VDEV_AUX_CORRUPT_DATA);
3784 		return (-1);
3785 	}
3786 
3787 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3788 	    !SPA_VERSION_IS_SUPPORTED(version) ||
3789 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3790 	    guid != vd->vdev_guid ||
3791 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3792 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3793 		    VDEV_AUX_CORRUPT_DATA);
3794 		nvlist_free(label);
3795 		return (-1);
3796 	}
3797 
3798 	/*
3799 	 * We don't actually check the pool state here.  If it's in fact in
3800 	 * use by another pool, we update this fact on the fly when requested.
3801 	 */
3802 	nvlist_free(label);
3803 	return (0);
3804 }
3805 
3806 static void
3807 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3808 {
3809 	objset_t *mos = spa_meta_objset(vd->vdev_spa);
3810 
3811 	if (vd->vdev_top_zap == 0)
3812 		return;
3813 
3814 	uint64_t object = 0;
3815 	int err = zap_lookup(mos, vd->vdev_top_zap,
3816 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3817 	if (err == ENOENT)
3818 		return;
3819 	VERIFY0(err);
3820 
3821 	VERIFY0(dmu_object_free(mos, object, tx));
3822 	VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3823 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3824 }
3825 
3826 /*
3827  * Free the objects used to store this vdev's spacemaps, and the array
3828  * that points to them.
3829  */
3830 void
3831 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3832 {
3833 	if (vd->vdev_ms_array == 0)
3834 		return;
3835 
3836 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
3837 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3838 	size_t array_bytes = array_count * sizeof (uint64_t);
3839 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3840 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3841 	    array_bytes, smobj_array, 0));
3842 
3843 	for (uint64_t i = 0; i < array_count; i++) {
3844 		uint64_t smobj = smobj_array[i];
3845 		if (smobj == 0)
3846 			continue;
3847 
3848 		space_map_free_obj(mos, smobj, tx);
3849 	}
3850 
3851 	kmem_free(smobj_array, array_bytes);
3852 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3853 	vdev_destroy_ms_flush_data(vd, tx);
3854 	vd->vdev_ms_array = 0;
3855 }
3856 
3857 static void
3858 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3859 {
3860 	spa_t *spa = vd->vdev_spa;
3861 
3862 	ASSERT(vd->vdev_islog);
3863 	ASSERT(vd == vd->vdev_top);
3864 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3865 
3866 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3867 
3868 	vdev_destroy_spacemaps(vd, tx);
3869 	if (vd->vdev_top_zap != 0) {
3870 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3871 		vd->vdev_top_zap = 0;
3872 	}
3873 
3874 	dmu_tx_commit(tx);
3875 }
3876 
3877 void
3878 vdev_sync_done(vdev_t *vd, uint64_t txg)
3879 {
3880 	metaslab_t *msp;
3881 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3882 
3883 	ASSERT(vdev_is_concrete(vd));
3884 
3885 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3886 	    != NULL)
3887 		metaslab_sync_done(msp, txg);
3888 
3889 	if (reassess) {
3890 		metaslab_sync_reassess(vd->vdev_mg);
3891 		if (vd->vdev_log_mg != NULL)
3892 			metaslab_sync_reassess(vd->vdev_log_mg);
3893 	}
3894 }
3895 
3896 void
3897 vdev_sync(vdev_t *vd, uint64_t txg)
3898 {
3899 	spa_t *spa = vd->vdev_spa;
3900 	vdev_t *lvd;
3901 	metaslab_t *msp;
3902 
3903 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3904 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3905 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3906 		ASSERT(vd->vdev_removing ||
3907 		    vd->vdev_ops == &vdev_indirect_ops);
3908 
3909 		vdev_indirect_sync_obsolete(vd, tx);
3910 
3911 		/*
3912 		 * If the vdev is indirect, it can't have dirty
3913 		 * metaslabs or DTLs.
3914 		 */
3915 		if (vd->vdev_ops == &vdev_indirect_ops) {
3916 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3917 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3918 			dmu_tx_commit(tx);
3919 			return;
3920 		}
3921 	}
3922 
3923 	ASSERT(vdev_is_concrete(vd));
3924 
3925 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3926 	    !vd->vdev_removing) {
3927 		ASSERT(vd == vd->vdev_top);
3928 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3929 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3930 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3931 		ASSERT(vd->vdev_ms_array != 0);
3932 		vdev_config_dirty(vd);
3933 	}
3934 
3935 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3936 		metaslab_sync(msp, txg);
3937 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3938 	}
3939 
3940 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3941 		vdev_dtl_sync(lvd, txg);
3942 
3943 	/*
3944 	 * If this is an empty log device being removed, destroy the
3945 	 * metadata associated with it.
3946 	 */
3947 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3948 		vdev_remove_empty_log(vd, txg);
3949 
3950 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3951 	dmu_tx_commit(tx);
3952 }
3953 
3954 uint64_t
3955 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3956 {
3957 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3958 }
3959 
3960 /*
3961  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3962  * not be opened, and no I/O is attempted.
3963  */
3964 int
3965 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3966 {
3967 	vdev_t *vd, *tvd;
3968 
3969 	spa_vdev_state_enter(spa, SCL_NONE);
3970 
3971 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3972 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3973 
3974 	if (!vd->vdev_ops->vdev_op_leaf)
3975 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3976 
3977 	tvd = vd->vdev_top;
3978 
3979 	/*
3980 	 * If user did a 'zpool offline -f' then make the fault persist across
3981 	 * reboots.
3982 	 */
3983 	if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3984 		/*
3985 		 * There are two kinds of forced faults: temporary and
3986 		 * persistent.  Temporary faults go away at pool import, while
3987 		 * persistent faults stay set.  Both types of faults can be
3988 		 * cleared with a zpool clear.
3989 		 *
3990 		 * We tell if a vdev is persistently faulted by looking at the
3991 		 * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3992 		 * import then it's a persistent fault.  Otherwise, it's
3993 		 * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3994 		 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3995 		 * tells vdev_config_generate() (which gets run later) to set
3996 		 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3997 		 */
3998 		vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3999 		vd->vdev_tmpoffline = B_FALSE;
4000 		aux = VDEV_AUX_EXTERNAL;
4001 	} else {
4002 		vd->vdev_tmpoffline = B_TRUE;
4003 	}
4004 
4005 	/*
4006 	 * We don't directly use the aux state here, but if we do a
4007 	 * vdev_reopen(), we need this value to be present to remember why we
4008 	 * were faulted.
4009 	 */
4010 	vd->vdev_label_aux = aux;
4011 
4012 	/*
4013 	 * Faulted state takes precedence over degraded.
4014 	 */
4015 	vd->vdev_delayed_close = B_FALSE;
4016 	vd->vdev_faulted = 1ULL;
4017 	vd->vdev_degraded = 0ULL;
4018 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
4019 
4020 	/*
4021 	 * If this device has the only valid copy of the data, then
4022 	 * back off and simply mark the vdev as degraded instead.
4023 	 */
4024 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
4025 		vd->vdev_degraded = 1ULL;
4026 		vd->vdev_faulted = 0ULL;
4027 
4028 		/*
4029 		 * If we reopen the device and it's not dead, only then do we
4030 		 * mark it degraded.
4031 		 */
4032 		vdev_reopen(tvd);
4033 
4034 		if (vdev_readable(vd))
4035 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
4036 	}
4037 
4038 	return (spa_vdev_state_exit(spa, vd, 0));
4039 }
4040 
4041 /*
4042  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
4043  * user that something is wrong.  The vdev continues to operate as normal as far
4044  * as I/O is concerned.
4045  */
4046 int
4047 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
4048 {
4049 	vdev_t *vd;
4050 
4051 	spa_vdev_state_enter(spa, SCL_NONE);
4052 
4053 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4054 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4055 
4056 	if (!vd->vdev_ops->vdev_op_leaf)
4057 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4058 
4059 	/*
4060 	 * If the vdev is already faulted, then don't do anything.
4061 	 */
4062 	if (vd->vdev_faulted || vd->vdev_degraded)
4063 		return (spa_vdev_state_exit(spa, NULL, 0));
4064 
4065 	vd->vdev_degraded = 1ULL;
4066 	if (!vdev_is_dead(vd))
4067 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
4068 		    aux);
4069 
4070 	return (spa_vdev_state_exit(spa, vd, 0));
4071 }
4072 
4073 int
4074 vdev_remove_wanted(spa_t *spa, uint64_t guid)
4075 {
4076 	vdev_t *vd;
4077 
4078 	spa_vdev_state_enter(spa, SCL_NONE);
4079 
4080 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4081 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4082 
4083 	/*
4084 	 * If the vdev is already removed, then don't do anything.
4085 	 */
4086 	if (vd->vdev_removed)
4087 		return (spa_vdev_state_exit(spa, NULL, 0));
4088 
4089 	vd->vdev_remove_wanted = B_TRUE;
4090 	spa_async_request(spa, SPA_ASYNC_REMOVE);
4091 
4092 	return (spa_vdev_state_exit(spa, vd, 0));
4093 }
4094 
4095 
4096 /*
4097  * Online the given vdev.
4098  *
4099  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
4100  * spare device should be detached when the device finishes resilvering.
4101  * Second, the online should be treated like a 'test' online case, so no FMA
4102  * events are generated if the device fails to open.
4103  */
4104 int
4105 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
4106 {
4107 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
4108 	boolean_t wasoffline;
4109 	vdev_state_t oldstate;
4110 
4111 	spa_vdev_state_enter(spa, SCL_NONE);
4112 
4113 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4114 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4115 
4116 	if (!vd->vdev_ops->vdev_op_leaf)
4117 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4118 
4119 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
4120 	oldstate = vd->vdev_state;
4121 
4122 	tvd = vd->vdev_top;
4123 	vd->vdev_offline = B_FALSE;
4124 	vd->vdev_tmpoffline = B_FALSE;
4125 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
4126 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
4127 
4128 	/* XXX - L2ARC 1.0 does not support expansion */
4129 	if (!vd->vdev_aux) {
4130 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4131 			pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
4132 			    spa->spa_autoexpand);
4133 		vd->vdev_expansion_time = gethrestime_sec();
4134 	}
4135 
4136 	vdev_reopen(tvd);
4137 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
4138 
4139 	if (!vd->vdev_aux) {
4140 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4141 			pvd->vdev_expanding = B_FALSE;
4142 	}
4143 
4144 	if (newstate)
4145 		*newstate = vd->vdev_state;
4146 	if ((flags & ZFS_ONLINE_UNSPARE) &&
4147 	    !vdev_is_dead(vd) && vd->vdev_parent &&
4148 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4149 	    vd->vdev_parent->vdev_child[0] == vd)
4150 		vd->vdev_unspare = B_TRUE;
4151 
4152 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
4153 
4154 		/* XXX - L2ARC 1.0 does not support expansion */
4155 		if (vd->vdev_aux)
4156 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
4157 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4158 	}
4159 
4160 	/* Restart initializing if necessary */
4161 	mutex_enter(&vd->vdev_initialize_lock);
4162 	if (vdev_writeable(vd) &&
4163 	    vd->vdev_initialize_thread == NULL &&
4164 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
4165 		(void) vdev_initialize(vd);
4166 	}
4167 	mutex_exit(&vd->vdev_initialize_lock);
4168 
4169 	/*
4170 	 * Restart trimming if necessary. We do not restart trimming for cache
4171 	 * devices here. This is triggered by l2arc_rebuild_vdev()
4172 	 * asynchronously for the whole device or in l2arc_evict() as it evicts
4173 	 * space for upcoming writes.
4174 	 */
4175 	mutex_enter(&vd->vdev_trim_lock);
4176 	if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
4177 	    vd->vdev_trim_thread == NULL &&
4178 	    vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
4179 		(void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
4180 		    vd->vdev_trim_secure);
4181 	}
4182 	mutex_exit(&vd->vdev_trim_lock);
4183 
4184 	if (wasoffline ||
4185 	    (oldstate < VDEV_STATE_DEGRADED &&
4186 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
4187 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
4188 
4189 	return (spa_vdev_state_exit(spa, vd, 0));
4190 }
4191 
4192 static int
4193 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
4194 {
4195 	vdev_t *vd, *tvd;
4196 	int error = 0;
4197 	uint64_t generation;
4198 	metaslab_group_t *mg;
4199 
4200 top:
4201 	spa_vdev_state_enter(spa, SCL_ALLOC);
4202 
4203 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4204 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
4205 
4206 	if (!vd->vdev_ops->vdev_op_leaf)
4207 		return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
4208 
4209 	if (vd->vdev_ops == &vdev_draid_spare_ops)
4210 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4211 
4212 	tvd = vd->vdev_top;
4213 	mg = tvd->vdev_mg;
4214 	generation = spa->spa_config_generation + 1;
4215 
4216 	/*
4217 	 * If the device isn't already offline, try to offline it.
4218 	 */
4219 	if (!vd->vdev_offline) {
4220 		/*
4221 		 * If this device has the only valid copy of some data,
4222 		 * don't allow it to be offlined. Log devices are always
4223 		 * expendable.
4224 		 */
4225 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4226 		    vdev_dtl_required(vd))
4227 			return (spa_vdev_state_exit(spa, NULL,
4228 			    SET_ERROR(EBUSY)));
4229 
4230 		/*
4231 		 * If the top-level is a slog and it has had allocations
4232 		 * then proceed.  We check that the vdev's metaslab group
4233 		 * is not NULL since it's possible that we may have just
4234 		 * added this vdev but not yet initialized its metaslabs.
4235 		 */
4236 		if (tvd->vdev_islog && mg != NULL) {
4237 			/*
4238 			 * Prevent any future allocations.
4239 			 */
4240 			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4241 			metaslab_group_passivate(mg);
4242 			(void) spa_vdev_state_exit(spa, vd, 0);
4243 
4244 			error = spa_reset_logs(spa);
4245 
4246 			/*
4247 			 * If the log device was successfully reset but has
4248 			 * checkpointed data, do not offline it.
4249 			 */
4250 			if (error == 0 &&
4251 			    tvd->vdev_checkpoint_sm != NULL) {
4252 				ASSERT3U(space_map_allocated(
4253 				    tvd->vdev_checkpoint_sm), !=, 0);
4254 				error = ZFS_ERR_CHECKPOINT_EXISTS;
4255 			}
4256 
4257 			spa_vdev_state_enter(spa, SCL_ALLOC);
4258 
4259 			/*
4260 			 * Check to see if the config has changed.
4261 			 */
4262 			if (error || generation != spa->spa_config_generation) {
4263 				metaslab_group_activate(mg);
4264 				if (error)
4265 					return (spa_vdev_state_exit(spa,
4266 					    vd, error));
4267 				(void) spa_vdev_state_exit(spa, vd, 0);
4268 				goto top;
4269 			}
4270 			ASSERT0(tvd->vdev_stat.vs_alloc);
4271 		}
4272 
4273 		/*
4274 		 * Offline this device and reopen its top-level vdev.
4275 		 * If the top-level vdev is a log device then just offline
4276 		 * it. Otherwise, if this action results in the top-level
4277 		 * vdev becoming unusable, undo it and fail the request.
4278 		 */
4279 		vd->vdev_offline = B_TRUE;
4280 		vdev_reopen(tvd);
4281 
4282 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4283 		    vdev_is_dead(tvd)) {
4284 			vd->vdev_offline = B_FALSE;
4285 			vdev_reopen(tvd);
4286 			return (spa_vdev_state_exit(spa, NULL,
4287 			    SET_ERROR(EBUSY)));
4288 		}
4289 
4290 		/*
4291 		 * Add the device back into the metaslab rotor so that
4292 		 * once we online the device it's open for business.
4293 		 */
4294 		if (tvd->vdev_islog && mg != NULL)
4295 			metaslab_group_activate(mg);
4296 	}
4297 
4298 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4299 
4300 	return (spa_vdev_state_exit(spa, vd, 0));
4301 }
4302 
4303 int
4304 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4305 {
4306 	int error;
4307 
4308 	mutex_enter(&spa->spa_vdev_top_lock);
4309 	error = vdev_offline_locked(spa, guid, flags);
4310 	mutex_exit(&spa->spa_vdev_top_lock);
4311 
4312 	return (error);
4313 }
4314 
4315 /*
4316  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4317  * vdev_offline(), we assume the spa config is locked.  We also clear all
4318  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4319  */
4320 void
4321 vdev_clear(spa_t *spa, vdev_t *vd)
4322 {
4323 	vdev_t *rvd = spa->spa_root_vdev;
4324 
4325 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4326 
4327 	if (vd == NULL)
4328 		vd = rvd;
4329 
4330 	vd->vdev_stat.vs_read_errors = 0;
4331 	vd->vdev_stat.vs_write_errors = 0;
4332 	vd->vdev_stat.vs_checksum_errors = 0;
4333 	vd->vdev_stat.vs_slow_ios = 0;
4334 
4335 	for (int c = 0; c < vd->vdev_children; c++)
4336 		vdev_clear(spa, vd->vdev_child[c]);
4337 
4338 	/*
4339 	 * It makes no sense to "clear" an indirect  or removed vdev.
4340 	 */
4341 	if (!vdev_is_concrete(vd) || vd->vdev_removed)
4342 		return;
4343 
4344 	/*
4345 	 * If we're in the FAULTED state or have experienced failed I/O, then
4346 	 * clear the persistent state and attempt to reopen the device.  We
4347 	 * also mark the vdev config dirty, so that the new faulted state is
4348 	 * written out to disk.
4349 	 */
4350 	if (vd->vdev_faulted || vd->vdev_degraded ||
4351 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
4352 		/*
4353 		 * When reopening in response to a clear event, it may be due to
4354 		 * a fmadm repair request.  In this case, if the device is
4355 		 * still broken, we want to still post the ereport again.
4356 		 */
4357 		vd->vdev_forcefault = B_TRUE;
4358 
4359 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4360 		vd->vdev_cant_read = B_FALSE;
4361 		vd->vdev_cant_write = B_FALSE;
4362 		vd->vdev_stat.vs_aux = 0;
4363 
4364 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4365 
4366 		vd->vdev_forcefault = B_FALSE;
4367 
4368 		if (vd != rvd && vdev_writeable(vd->vdev_top))
4369 			vdev_state_dirty(vd->vdev_top);
4370 
4371 		/* If a resilver isn't required, check if vdevs can be culled */
4372 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4373 		    !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4374 		    !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4375 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4376 
4377 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4378 	}
4379 
4380 	/*
4381 	 * When clearing a FMA-diagnosed fault, we always want to
4382 	 * unspare the device, as we assume that the original spare was
4383 	 * done in response to the FMA fault.
4384 	 */
4385 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4386 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4387 	    vd->vdev_parent->vdev_child[0] == vd)
4388 		vd->vdev_unspare = B_TRUE;
4389 
4390 	/* Clear recent error events cache (i.e. duplicate events tracking) */
4391 	zfs_ereport_clear(spa, vd);
4392 }
4393 
4394 boolean_t
4395 vdev_is_dead(vdev_t *vd)
4396 {
4397 	/*
4398 	 * Holes and missing devices are always considered "dead".
4399 	 * This simplifies the code since we don't have to check for
4400 	 * these types of devices in the various code paths.
4401 	 * Instead we rely on the fact that we skip over dead devices
4402 	 * before issuing I/O to them.
4403 	 */
4404 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4405 	    vd->vdev_ops == &vdev_hole_ops ||
4406 	    vd->vdev_ops == &vdev_missing_ops);
4407 }
4408 
4409 boolean_t
4410 vdev_readable(vdev_t *vd)
4411 {
4412 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4413 }
4414 
4415 boolean_t
4416 vdev_writeable(vdev_t *vd)
4417 {
4418 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4419 	    vdev_is_concrete(vd));
4420 }
4421 
4422 boolean_t
4423 vdev_allocatable(vdev_t *vd)
4424 {
4425 	uint64_t state = vd->vdev_state;
4426 
4427 	/*
4428 	 * We currently allow allocations from vdevs which may be in the
4429 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4430 	 * fails to reopen then we'll catch it later when we're holding
4431 	 * the proper locks.  Note that we have to get the vdev state
4432 	 * in a local variable because although it changes atomically,
4433 	 * we're asking two separate questions about it.
4434 	 */
4435 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4436 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4437 	    vd->vdev_mg->mg_initialized);
4438 }
4439 
4440 boolean_t
4441 vdev_accessible(vdev_t *vd, zio_t *zio)
4442 {
4443 	ASSERT(zio->io_vd == vd);
4444 
4445 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4446 		return (B_FALSE);
4447 
4448 	if (zio->io_type == ZIO_TYPE_READ)
4449 		return (!vd->vdev_cant_read);
4450 
4451 	if (zio->io_type == ZIO_TYPE_WRITE)
4452 		return (!vd->vdev_cant_write);
4453 
4454 	return (B_TRUE);
4455 }
4456 
4457 static void
4458 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4459 {
4460 	/*
4461 	 * Exclude the dRAID spare when aggregating to avoid double counting
4462 	 * the ops and bytes.  These IOs are counted by the physical leaves.
4463 	 */
4464 	if (cvd->vdev_ops == &vdev_draid_spare_ops)
4465 		return;
4466 
4467 	for (int t = 0; t < VS_ZIO_TYPES; t++) {
4468 		vs->vs_ops[t] += cvs->vs_ops[t];
4469 		vs->vs_bytes[t] += cvs->vs_bytes[t];
4470 	}
4471 
4472 	cvs->vs_scan_removing = cvd->vdev_removing;
4473 }
4474 
4475 /*
4476  * Get extended stats
4477  */
4478 static void
4479 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4480 {
4481 	(void) cvd;
4482 
4483 	int t, b;
4484 	for (t = 0; t < ZIO_TYPES; t++) {
4485 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4486 			vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4487 
4488 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4489 			vsx->vsx_total_histo[t][b] +=
4490 			    cvsx->vsx_total_histo[t][b];
4491 		}
4492 	}
4493 
4494 	for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4495 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4496 			vsx->vsx_queue_histo[t][b] +=
4497 			    cvsx->vsx_queue_histo[t][b];
4498 		}
4499 		vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4500 		vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4501 
4502 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4503 			vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4504 
4505 		for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4506 			vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4507 	}
4508 
4509 }
4510 
4511 boolean_t
4512 vdev_is_spacemap_addressable(vdev_t *vd)
4513 {
4514 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4515 		return (B_TRUE);
4516 
4517 	/*
4518 	 * If double-word space map entries are not enabled we assume
4519 	 * 47 bits of the space map entry are dedicated to the entry's
4520 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4521 	 * to calculate the maximum address that can be described by a
4522 	 * space map entry for the given device.
4523 	 */
4524 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4525 
4526 	if (shift >= 63) /* detect potential overflow */
4527 		return (B_TRUE);
4528 
4529 	return (vd->vdev_asize < (1ULL << shift));
4530 }
4531 
4532 /*
4533  * Get statistics for the given vdev.
4534  */
4535 static void
4536 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4537 {
4538 	int t;
4539 	/*
4540 	 * If we're getting stats on the root vdev, aggregate the I/O counts
4541 	 * over all top-level vdevs (i.e. the direct children of the root).
4542 	 */
4543 	if (!vd->vdev_ops->vdev_op_leaf) {
4544 		if (vs) {
4545 			memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4546 			memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4547 		}
4548 		if (vsx)
4549 			memset(vsx, 0, sizeof (*vsx));
4550 
4551 		for (int c = 0; c < vd->vdev_children; c++) {
4552 			vdev_t *cvd = vd->vdev_child[c];
4553 			vdev_stat_t *cvs = &cvd->vdev_stat;
4554 			vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4555 
4556 			vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4557 			if (vs)
4558 				vdev_get_child_stat(cvd, vs, cvs);
4559 			if (vsx)
4560 				vdev_get_child_stat_ex(cvd, vsx, cvsx);
4561 		}
4562 	} else {
4563 		/*
4564 		 * We're a leaf.  Just copy our ZIO active queue stats in.  The
4565 		 * other leaf stats are updated in vdev_stat_update().
4566 		 */
4567 		if (!vsx)
4568 			return;
4569 
4570 		memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4571 
4572 		for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4573 			vsx->vsx_active_queue[t] =
4574 			    vd->vdev_queue.vq_class[t].vqc_active;
4575 			vsx->vsx_pend_queue[t] = avl_numnodes(
4576 			    &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4577 		}
4578 	}
4579 }
4580 
4581 void
4582 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4583 {
4584 	vdev_t *tvd = vd->vdev_top;
4585 	mutex_enter(&vd->vdev_stat_lock);
4586 	if (vs) {
4587 		memcpy(vs, &vd->vdev_stat, sizeof (*vs));
4588 		vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4589 		vs->vs_state = vd->vdev_state;
4590 		vs->vs_rsize = vdev_get_min_asize(vd);
4591 
4592 		if (vd->vdev_ops->vdev_op_leaf) {
4593 			vs->vs_pspace = vd->vdev_psize;
4594 			vs->vs_rsize += VDEV_LABEL_START_SIZE +
4595 			    VDEV_LABEL_END_SIZE;
4596 			/*
4597 			 * Report initializing progress. Since we don't
4598 			 * have the initializing locks held, this is only
4599 			 * an estimate (although a fairly accurate one).
4600 			 */
4601 			vs->vs_initialize_bytes_done =
4602 			    vd->vdev_initialize_bytes_done;
4603 			vs->vs_initialize_bytes_est =
4604 			    vd->vdev_initialize_bytes_est;
4605 			vs->vs_initialize_state = vd->vdev_initialize_state;
4606 			vs->vs_initialize_action_time =
4607 			    vd->vdev_initialize_action_time;
4608 
4609 			/*
4610 			 * Report manual TRIM progress. Since we don't have
4611 			 * the manual TRIM locks held, this is only an
4612 			 * estimate (although fairly accurate one).
4613 			 */
4614 			vs->vs_trim_notsup = !vd->vdev_has_trim;
4615 			vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4616 			vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4617 			vs->vs_trim_state = vd->vdev_trim_state;
4618 			vs->vs_trim_action_time = vd->vdev_trim_action_time;
4619 
4620 			/* Set when there is a deferred resilver. */
4621 			vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4622 		}
4623 
4624 		/*
4625 		 * Report expandable space on top-level, non-auxiliary devices
4626 		 * only. The expandable space is reported in terms of metaslab
4627 		 * sized units since that determines how much space the pool
4628 		 * can expand.
4629 		 */
4630 		if (vd->vdev_aux == NULL && tvd != NULL) {
4631 			vs->vs_esize = P2ALIGN(
4632 			    vd->vdev_max_asize - vd->vdev_asize,
4633 			    1ULL << tvd->vdev_ms_shift);
4634 		}
4635 
4636 		vs->vs_configured_ashift = vd->vdev_top != NULL
4637 		    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4638 		vs->vs_logical_ashift = vd->vdev_logical_ashift;
4639 		if (vd->vdev_physical_ashift <= ASHIFT_MAX)
4640 			vs->vs_physical_ashift = vd->vdev_physical_ashift;
4641 		else
4642 			vs->vs_physical_ashift = 0;
4643 
4644 		/*
4645 		 * Report fragmentation and rebuild progress for top-level,
4646 		 * non-auxiliary, concrete devices.
4647 		 */
4648 		if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4649 		    vdev_is_concrete(vd)) {
4650 			/*
4651 			 * The vdev fragmentation rating doesn't take into
4652 			 * account the embedded slog metaslab (vdev_log_mg).
4653 			 * Since it's only one metaslab, it would have a tiny
4654 			 * impact on the overall fragmentation.
4655 			 */
4656 			vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4657 			    vd->vdev_mg->mg_fragmentation : 0;
4658 		}
4659 		vs->vs_noalloc = MAX(vd->vdev_noalloc,
4660 		    tvd ? tvd->vdev_noalloc : 0);
4661 	}
4662 
4663 	vdev_get_stats_ex_impl(vd, vs, vsx);
4664 	mutex_exit(&vd->vdev_stat_lock);
4665 }
4666 
4667 void
4668 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4669 {
4670 	return (vdev_get_stats_ex(vd, vs, NULL));
4671 }
4672 
4673 void
4674 vdev_clear_stats(vdev_t *vd)
4675 {
4676 	mutex_enter(&vd->vdev_stat_lock);
4677 	vd->vdev_stat.vs_space = 0;
4678 	vd->vdev_stat.vs_dspace = 0;
4679 	vd->vdev_stat.vs_alloc = 0;
4680 	mutex_exit(&vd->vdev_stat_lock);
4681 }
4682 
4683 void
4684 vdev_scan_stat_init(vdev_t *vd)
4685 {
4686 	vdev_stat_t *vs = &vd->vdev_stat;
4687 
4688 	for (int c = 0; c < vd->vdev_children; c++)
4689 		vdev_scan_stat_init(vd->vdev_child[c]);
4690 
4691 	mutex_enter(&vd->vdev_stat_lock);
4692 	vs->vs_scan_processed = 0;
4693 	mutex_exit(&vd->vdev_stat_lock);
4694 }
4695 
4696 void
4697 vdev_stat_update(zio_t *zio, uint64_t psize)
4698 {
4699 	spa_t *spa = zio->io_spa;
4700 	vdev_t *rvd = spa->spa_root_vdev;
4701 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4702 	vdev_t *pvd;
4703 	uint64_t txg = zio->io_txg;
4704 /* Suppress ASAN false positive */
4705 #ifdef __SANITIZE_ADDRESS__
4706 	vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL;
4707 	vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL;
4708 #else
4709 	vdev_stat_t *vs = &vd->vdev_stat;
4710 	vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4711 #endif
4712 	zio_type_t type = zio->io_type;
4713 	int flags = zio->io_flags;
4714 
4715 	/*
4716 	 * If this i/o is a gang leader, it didn't do any actual work.
4717 	 */
4718 	if (zio->io_gang_tree)
4719 		return;
4720 
4721 	if (zio->io_error == 0) {
4722 		/*
4723 		 * If this is a root i/o, don't count it -- we've already
4724 		 * counted the top-level vdevs, and vdev_get_stats() will
4725 		 * aggregate them when asked.  This reduces contention on
4726 		 * the root vdev_stat_lock and implicitly handles blocks
4727 		 * that compress away to holes, for which there is no i/o.
4728 		 * (Holes never create vdev children, so all the counters
4729 		 * remain zero, which is what we want.)
4730 		 *
4731 		 * Note: this only applies to successful i/o (io_error == 0)
4732 		 * because unlike i/o counts, errors are not additive.
4733 		 * When reading a ditto block, for example, failure of
4734 		 * one top-level vdev does not imply a root-level error.
4735 		 */
4736 		if (vd == rvd)
4737 			return;
4738 
4739 		ASSERT(vd == zio->io_vd);
4740 
4741 		if (flags & ZIO_FLAG_IO_BYPASS)
4742 			return;
4743 
4744 		mutex_enter(&vd->vdev_stat_lock);
4745 
4746 		if (flags & ZIO_FLAG_IO_REPAIR) {
4747 			/*
4748 			 * Repair is the result of a resilver issued by the
4749 			 * scan thread (spa_sync).
4750 			 */
4751 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4752 				dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4753 				dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4754 				uint64_t *processed = &scn_phys->scn_processed;
4755 
4756 				if (vd->vdev_ops->vdev_op_leaf)
4757 					atomic_add_64(processed, psize);
4758 				vs->vs_scan_processed += psize;
4759 			}
4760 
4761 			/*
4762 			 * Repair is the result of a rebuild issued by the
4763 			 * rebuild thread (vdev_rebuild_thread).  To avoid
4764 			 * double counting repaired bytes the virtual dRAID
4765 			 * spare vdev is excluded from the processed bytes.
4766 			 */
4767 			if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4768 				vdev_t *tvd = vd->vdev_top;
4769 				vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4770 				vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4771 				uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4772 
4773 				if (vd->vdev_ops->vdev_op_leaf &&
4774 				    vd->vdev_ops != &vdev_draid_spare_ops) {
4775 					atomic_add_64(rebuilt, psize);
4776 				}
4777 				vs->vs_rebuild_processed += psize;
4778 			}
4779 
4780 			if (flags & ZIO_FLAG_SELF_HEAL)
4781 				vs->vs_self_healed += psize;
4782 		}
4783 
4784 		/*
4785 		 * The bytes/ops/histograms are recorded at the leaf level and
4786 		 * aggregated into the higher level vdevs in vdev_get_stats().
4787 		 */
4788 		if (vd->vdev_ops->vdev_op_leaf &&
4789 		    (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4790 			zio_type_t vs_type = type;
4791 			zio_priority_t priority = zio->io_priority;
4792 
4793 			/*
4794 			 * TRIM ops and bytes are reported to user space as
4795 			 * ZIO_TYPE_IOCTL.  This is done to preserve the
4796 			 * vdev_stat_t structure layout for user space.
4797 			 */
4798 			if (type == ZIO_TYPE_TRIM)
4799 				vs_type = ZIO_TYPE_IOCTL;
4800 
4801 			/*
4802 			 * Solely for the purposes of 'zpool iostat -lqrw'
4803 			 * reporting use the priority to categorize the IO.
4804 			 * Only the following are reported to user space:
4805 			 *
4806 			 *   ZIO_PRIORITY_SYNC_READ,
4807 			 *   ZIO_PRIORITY_SYNC_WRITE,
4808 			 *   ZIO_PRIORITY_ASYNC_READ,
4809 			 *   ZIO_PRIORITY_ASYNC_WRITE,
4810 			 *   ZIO_PRIORITY_SCRUB,
4811 			 *   ZIO_PRIORITY_TRIM,
4812 			 *   ZIO_PRIORITY_REBUILD.
4813 			 */
4814 			if (priority == ZIO_PRIORITY_INITIALIZING) {
4815 				ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4816 				priority = ZIO_PRIORITY_ASYNC_WRITE;
4817 			} else if (priority == ZIO_PRIORITY_REMOVAL) {
4818 				priority = ((type == ZIO_TYPE_WRITE) ?
4819 				    ZIO_PRIORITY_ASYNC_WRITE :
4820 				    ZIO_PRIORITY_ASYNC_READ);
4821 			}
4822 
4823 			vs->vs_ops[vs_type]++;
4824 			vs->vs_bytes[vs_type] += psize;
4825 
4826 			if (flags & ZIO_FLAG_DELEGATED) {
4827 				vsx->vsx_agg_histo[priority]
4828 				    [RQ_HISTO(zio->io_size)]++;
4829 			} else {
4830 				vsx->vsx_ind_histo[priority]
4831 				    [RQ_HISTO(zio->io_size)]++;
4832 			}
4833 
4834 			if (zio->io_delta && zio->io_delay) {
4835 				vsx->vsx_queue_histo[priority]
4836 				    [L_HISTO(zio->io_delta - zio->io_delay)]++;
4837 				vsx->vsx_disk_histo[type]
4838 				    [L_HISTO(zio->io_delay)]++;
4839 				vsx->vsx_total_histo[type]
4840 				    [L_HISTO(zio->io_delta)]++;
4841 			}
4842 		}
4843 
4844 		mutex_exit(&vd->vdev_stat_lock);
4845 		return;
4846 	}
4847 
4848 	if (flags & ZIO_FLAG_SPECULATIVE)
4849 		return;
4850 
4851 	/*
4852 	 * If this is an I/O error that is going to be retried, then ignore the
4853 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4854 	 * hard errors, when in reality they can happen for any number of
4855 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
4856 	 */
4857 	if (zio->io_error == EIO &&
4858 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4859 		return;
4860 
4861 	/*
4862 	 * Intent logs writes won't propagate their error to the root
4863 	 * I/O so don't mark these types of failures as pool-level
4864 	 * errors.
4865 	 */
4866 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4867 		return;
4868 
4869 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
4870 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
4871 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
4872 	    spa->spa_claiming)) {
4873 		/*
4874 		 * This is either a normal write (not a repair), or it's
4875 		 * a repair induced by the scrub thread, or it's a repair
4876 		 * made by zil_claim() during spa_load() in the first txg.
4877 		 * In the normal case, we commit the DTL change in the same
4878 		 * txg as the block was born.  In the scrub-induced repair
4879 		 * case, we know that scrubs run in first-pass syncing context,
4880 		 * so we commit the DTL change in spa_syncing_txg(spa).
4881 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
4882 		 *
4883 		 * We currently do not make DTL entries for failed spontaneous
4884 		 * self-healing writes triggered by normal (non-scrubbing)
4885 		 * reads, because we have no transactional context in which to
4886 		 * do so -- and it's not clear that it'd be desirable anyway.
4887 		 */
4888 		if (vd->vdev_ops->vdev_op_leaf) {
4889 			uint64_t commit_txg = txg;
4890 			if (flags & ZIO_FLAG_SCAN_THREAD) {
4891 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4892 				ASSERT(spa_sync_pass(spa) == 1);
4893 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4894 				commit_txg = spa_syncing_txg(spa);
4895 			} else if (spa->spa_claiming) {
4896 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4897 				commit_txg = spa_first_txg(spa);
4898 			}
4899 			ASSERT(commit_txg >= spa_syncing_txg(spa));
4900 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4901 				return;
4902 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4903 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4904 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4905 		}
4906 		if (vd != rvd)
4907 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4908 	}
4909 }
4910 
4911 int64_t
4912 vdev_deflated_space(vdev_t *vd, int64_t space)
4913 {
4914 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4915 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4916 
4917 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4918 }
4919 
4920 /*
4921  * Update the in-core space usage stats for this vdev, its metaslab class,
4922  * and the root vdev.
4923  */
4924 void
4925 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4926     int64_t space_delta)
4927 {
4928 	(void) defer_delta;
4929 	int64_t dspace_delta;
4930 	spa_t *spa = vd->vdev_spa;
4931 	vdev_t *rvd = spa->spa_root_vdev;
4932 
4933 	ASSERT(vd == vd->vdev_top);
4934 
4935 	/*
4936 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4937 	 * factor.  We must calculate this here and not at the root vdev
4938 	 * because the root vdev's psize-to-asize is simply the max of its
4939 	 * children's, thus not accurate enough for us.
4940 	 */
4941 	dspace_delta = vdev_deflated_space(vd, space_delta);
4942 
4943 	mutex_enter(&vd->vdev_stat_lock);
4944 	/* ensure we won't underflow */
4945 	if (alloc_delta < 0) {
4946 		ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4947 	}
4948 
4949 	vd->vdev_stat.vs_alloc += alloc_delta;
4950 	vd->vdev_stat.vs_space += space_delta;
4951 	vd->vdev_stat.vs_dspace += dspace_delta;
4952 	mutex_exit(&vd->vdev_stat_lock);
4953 
4954 	/* every class but log contributes to root space stats */
4955 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4956 		ASSERT(!vd->vdev_isl2cache);
4957 		mutex_enter(&rvd->vdev_stat_lock);
4958 		rvd->vdev_stat.vs_alloc += alloc_delta;
4959 		rvd->vdev_stat.vs_space += space_delta;
4960 		rvd->vdev_stat.vs_dspace += dspace_delta;
4961 		mutex_exit(&rvd->vdev_stat_lock);
4962 	}
4963 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
4964 }
4965 
4966 /*
4967  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4968  * so that it will be written out next time the vdev configuration is synced.
4969  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4970  */
4971 void
4972 vdev_config_dirty(vdev_t *vd)
4973 {
4974 	spa_t *spa = vd->vdev_spa;
4975 	vdev_t *rvd = spa->spa_root_vdev;
4976 	int c;
4977 
4978 	ASSERT(spa_writeable(spa));
4979 
4980 	/*
4981 	 * If this is an aux vdev (as with l2cache and spare devices), then we
4982 	 * update the vdev config manually and set the sync flag.
4983 	 */
4984 	if (vd->vdev_aux != NULL) {
4985 		spa_aux_vdev_t *sav = vd->vdev_aux;
4986 		nvlist_t **aux;
4987 		uint_t naux;
4988 
4989 		for (c = 0; c < sav->sav_count; c++) {
4990 			if (sav->sav_vdevs[c] == vd)
4991 				break;
4992 		}
4993 
4994 		if (c == sav->sav_count) {
4995 			/*
4996 			 * We're being removed.  There's nothing more to do.
4997 			 */
4998 			ASSERT(sav->sav_sync == B_TRUE);
4999 			return;
5000 		}
5001 
5002 		sav->sav_sync = B_TRUE;
5003 
5004 		if (nvlist_lookup_nvlist_array(sav->sav_config,
5005 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
5006 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
5007 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
5008 		}
5009 
5010 		ASSERT(c < naux);
5011 
5012 		/*
5013 		 * Setting the nvlist in the middle if the array is a little
5014 		 * sketchy, but it will work.
5015 		 */
5016 		nvlist_free(aux[c]);
5017 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
5018 
5019 		return;
5020 	}
5021 
5022 	/*
5023 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
5024 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
5025 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
5026 	 * so this is sufficient to ensure mutual exclusion.
5027 	 */
5028 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5029 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5030 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5031 
5032 	if (vd == rvd) {
5033 		for (c = 0; c < rvd->vdev_children; c++)
5034 			vdev_config_dirty(rvd->vdev_child[c]);
5035 	} else {
5036 		ASSERT(vd == vd->vdev_top);
5037 
5038 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
5039 		    vdev_is_concrete(vd)) {
5040 			list_insert_head(&spa->spa_config_dirty_list, vd);
5041 		}
5042 	}
5043 }
5044 
5045 void
5046 vdev_config_clean(vdev_t *vd)
5047 {
5048 	spa_t *spa = vd->vdev_spa;
5049 
5050 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
5051 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5052 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
5053 
5054 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
5055 	list_remove(&spa->spa_config_dirty_list, vd);
5056 }
5057 
5058 /*
5059  * Mark a top-level vdev's state as dirty, so that the next pass of
5060  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
5061  * the state changes from larger config changes because they require
5062  * much less locking, and are often needed for administrative actions.
5063  */
5064 void
5065 vdev_state_dirty(vdev_t *vd)
5066 {
5067 	spa_t *spa = vd->vdev_spa;
5068 
5069 	ASSERT(spa_writeable(spa));
5070 	ASSERT(vd == vd->vdev_top);
5071 
5072 	/*
5073 	 * The state list is protected by the SCL_STATE lock.  The caller
5074 	 * must either hold SCL_STATE as writer, or must be the sync thread
5075 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
5076 	 * so this is sufficient to ensure mutual exclusion.
5077 	 */
5078 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5079 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5080 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5081 
5082 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
5083 	    vdev_is_concrete(vd))
5084 		list_insert_head(&spa->spa_state_dirty_list, vd);
5085 }
5086 
5087 void
5088 vdev_state_clean(vdev_t *vd)
5089 {
5090 	spa_t *spa = vd->vdev_spa;
5091 
5092 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
5093 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
5094 	    spa_config_held(spa, SCL_STATE, RW_READER)));
5095 
5096 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
5097 	list_remove(&spa->spa_state_dirty_list, vd);
5098 }
5099 
5100 /*
5101  * Propagate vdev state up from children to parent.
5102  */
5103 void
5104 vdev_propagate_state(vdev_t *vd)
5105 {
5106 	spa_t *spa = vd->vdev_spa;
5107 	vdev_t *rvd = spa->spa_root_vdev;
5108 	int degraded = 0, faulted = 0;
5109 	int corrupted = 0;
5110 	vdev_t *child;
5111 
5112 	if (vd->vdev_children > 0) {
5113 		for (int c = 0; c < vd->vdev_children; c++) {
5114 			child = vd->vdev_child[c];
5115 
5116 			/*
5117 			 * Don't factor holes or indirect vdevs into the
5118 			 * decision.
5119 			 */
5120 			if (!vdev_is_concrete(child))
5121 				continue;
5122 
5123 			if (!vdev_readable(child) ||
5124 			    (!vdev_writeable(child) && spa_writeable(spa))) {
5125 				/*
5126 				 * Root special: if there is a top-level log
5127 				 * device, treat the root vdev as if it were
5128 				 * degraded.
5129 				 */
5130 				if (child->vdev_islog && vd == rvd)
5131 					degraded++;
5132 				else
5133 					faulted++;
5134 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
5135 				degraded++;
5136 			}
5137 
5138 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
5139 				corrupted++;
5140 		}
5141 
5142 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
5143 
5144 		/*
5145 		 * Root special: if there is a top-level vdev that cannot be
5146 		 * opened due to corrupted metadata, then propagate the root
5147 		 * vdev's aux state as 'corrupt' rather than 'insufficient
5148 		 * replicas'.
5149 		 */
5150 		if (corrupted && vd == rvd &&
5151 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
5152 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
5153 			    VDEV_AUX_CORRUPT_DATA);
5154 	}
5155 
5156 	if (vd->vdev_parent)
5157 		vdev_propagate_state(vd->vdev_parent);
5158 }
5159 
5160 /*
5161  * Set a vdev's state.  If this is during an open, we don't update the parent
5162  * state, because we're in the process of opening children depth-first.
5163  * Otherwise, we propagate the change to the parent.
5164  *
5165  * If this routine places a device in a faulted state, an appropriate ereport is
5166  * generated.
5167  */
5168 void
5169 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
5170 {
5171 	uint64_t save_state;
5172 	spa_t *spa = vd->vdev_spa;
5173 
5174 	if (state == vd->vdev_state) {
5175 		/*
5176 		 * Since vdev_offline() code path is already in an offline
5177 		 * state we can miss a statechange event to OFFLINE. Check
5178 		 * the previous state to catch this condition.
5179 		 */
5180 		if (vd->vdev_ops->vdev_op_leaf &&
5181 		    (state == VDEV_STATE_OFFLINE) &&
5182 		    (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
5183 			/* post an offline state change */
5184 			zfs_post_state_change(spa, vd, vd->vdev_prevstate);
5185 		}
5186 		vd->vdev_stat.vs_aux = aux;
5187 		return;
5188 	}
5189 
5190 	save_state = vd->vdev_state;
5191 
5192 	vd->vdev_state = state;
5193 	vd->vdev_stat.vs_aux = aux;
5194 
5195 	/*
5196 	 * If we are setting the vdev state to anything but an open state, then
5197 	 * always close the underlying device unless the device has requested
5198 	 * a delayed close (i.e. we're about to remove or fault the device).
5199 	 * Otherwise, we keep accessible but invalid devices open forever.
5200 	 * We don't call vdev_close() itself, because that implies some extra
5201 	 * checks (offline, etc) that we don't want here.  This is limited to
5202 	 * leaf devices, because otherwise closing the device will affect other
5203 	 * children.
5204 	 */
5205 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
5206 	    vd->vdev_ops->vdev_op_leaf)
5207 		vd->vdev_ops->vdev_op_close(vd);
5208 
5209 	if (vd->vdev_removed &&
5210 	    state == VDEV_STATE_CANT_OPEN &&
5211 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
5212 		/*
5213 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
5214 		 * device was previously marked removed and someone attempted to
5215 		 * reopen it.  If this failed due to a nonexistent device, then
5216 		 * keep the device in the REMOVED state.  We also let this be if
5217 		 * it is one of our special test online cases, which is only
5218 		 * attempting to online the device and shouldn't generate an FMA
5219 		 * fault.
5220 		 */
5221 		vd->vdev_state = VDEV_STATE_REMOVED;
5222 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
5223 	} else if (state == VDEV_STATE_REMOVED) {
5224 		vd->vdev_removed = B_TRUE;
5225 	} else if (state == VDEV_STATE_CANT_OPEN) {
5226 		/*
5227 		 * If we fail to open a vdev during an import or recovery, we
5228 		 * mark it as "not available", which signifies that it was
5229 		 * never there to begin with.  Failure to open such a device
5230 		 * is not considered an error.
5231 		 */
5232 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5233 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5234 		    vd->vdev_ops->vdev_op_leaf)
5235 			vd->vdev_not_present = 1;
5236 
5237 		/*
5238 		 * Post the appropriate ereport.  If the 'prevstate' field is
5239 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5240 		 * that this is part of a vdev_reopen().  In this case, we don't
5241 		 * want to post the ereport if the device was already in the
5242 		 * CANT_OPEN state beforehand.
5243 		 *
5244 		 * If the 'checkremove' flag is set, then this is an attempt to
5245 		 * online the device in response to an insertion event.  If we
5246 		 * hit this case, then we have detected an insertion event for a
5247 		 * faulted or offline device that wasn't in the removed state.
5248 		 * In this scenario, we don't post an ereport because we are
5249 		 * about to replace the device, or attempt an online with
5250 		 * vdev_forcefault, which will generate the fault for us.
5251 		 */
5252 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5253 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
5254 		    vd != spa->spa_root_vdev) {
5255 			const char *class;
5256 
5257 			switch (aux) {
5258 			case VDEV_AUX_OPEN_FAILED:
5259 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5260 				break;
5261 			case VDEV_AUX_CORRUPT_DATA:
5262 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5263 				break;
5264 			case VDEV_AUX_NO_REPLICAS:
5265 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5266 				break;
5267 			case VDEV_AUX_BAD_GUID_SUM:
5268 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5269 				break;
5270 			case VDEV_AUX_TOO_SMALL:
5271 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5272 				break;
5273 			case VDEV_AUX_BAD_LABEL:
5274 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5275 				break;
5276 			case VDEV_AUX_BAD_ASHIFT:
5277 				class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5278 				break;
5279 			default:
5280 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5281 			}
5282 
5283 			(void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5284 			    save_state);
5285 		}
5286 
5287 		/* Erase any notion of persistent removed state */
5288 		vd->vdev_removed = B_FALSE;
5289 	} else {
5290 		vd->vdev_removed = B_FALSE;
5291 	}
5292 
5293 	/*
5294 	 * Notify ZED of any significant state-change on a leaf vdev.
5295 	 *
5296 	 */
5297 	if (vd->vdev_ops->vdev_op_leaf) {
5298 		/* preserve original state from a vdev_reopen() */
5299 		if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5300 		    (vd->vdev_prevstate != vd->vdev_state) &&
5301 		    (save_state <= VDEV_STATE_CLOSED))
5302 			save_state = vd->vdev_prevstate;
5303 
5304 		/* filter out state change due to initial vdev_open */
5305 		if (save_state > VDEV_STATE_CLOSED)
5306 			zfs_post_state_change(spa, vd, save_state);
5307 	}
5308 
5309 	if (!isopen && vd->vdev_parent)
5310 		vdev_propagate_state(vd->vdev_parent);
5311 }
5312 
5313 boolean_t
5314 vdev_children_are_offline(vdev_t *vd)
5315 {
5316 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
5317 
5318 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
5319 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5320 			return (B_FALSE);
5321 	}
5322 
5323 	return (B_TRUE);
5324 }
5325 
5326 /*
5327  * Check the vdev configuration to ensure that it's capable of supporting
5328  * a root pool. We do not support partial configuration.
5329  */
5330 boolean_t
5331 vdev_is_bootable(vdev_t *vd)
5332 {
5333 	if (!vd->vdev_ops->vdev_op_leaf) {
5334 		const char *vdev_type = vd->vdev_ops->vdev_op_type;
5335 
5336 		if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
5337 			return (B_FALSE);
5338 	}
5339 
5340 	for (int c = 0; c < vd->vdev_children; c++) {
5341 		if (!vdev_is_bootable(vd->vdev_child[c]))
5342 			return (B_FALSE);
5343 	}
5344 	return (B_TRUE);
5345 }
5346 
5347 boolean_t
5348 vdev_is_concrete(vdev_t *vd)
5349 {
5350 	vdev_ops_t *ops = vd->vdev_ops;
5351 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5352 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5353 		return (B_FALSE);
5354 	} else {
5355 		return (B_TRUE);
5356 	}
5357 }
5358 
5359 /*
5360  * Determine if a log device has valid content.  If the vdev was
5361  * removed or faulted in the MOS config then we know that
5362  * the content on the log device has already been written to the pool.
5363  */
5364 boolean_t
5365 vdev_log_state_valid(vdev_t *vd)
5366 {
5367 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5368 	    !vd->vdev_removed)
5369 		return (B_TRUE);
5370 
5371 	for (int c = 0; c < vd->vdev_children; c++)
5372 		if (vdev_log_state_valid(vd->vdev_child[c]))
5373 			return (B_TRUE);
5374 
5375 	return (B_FALSE);
5376 }
5377 
5378 /*
5379  * Expand a vdev if possible.
5380  */
5381 void
5382 vdev_expand(vdev_t *vd, uint64_t txg)
5383 {
5384 	ASSERT(vd->vdev_top == vd);
5385 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5386 	ASSERT(vdev_is_concrete(vd));
5387 
5388 	vdev_set_deflate_ratio(vd);
5389 
5390 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5391 	    vdev_is_concrete(vd)) {
5392 		vdev_metaslab_group_create(vd);
5393 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
5394 		vdev_config_dirty(vd);
5395 	}
5396 }
5397 
5398 /*
5399  * Split a vdev.
5400  */
5401 void
5402 vdev_split(vdev_t *vd)
5403 {
5404 	vdev_t *cvd, *pvd = vd->vdev_parent;
5405 
5406 	VERIFY3U(pvd->vdev_children, >, 1);
5407 
5408 	vdev_remove_child(pvd, vd);
5409 	vdev_compact_children(pvd);
5410 
5411 	ASSERT3P(pvd->vdev_child, !=, NULL);
5412 
5413 	cvd = pvd->vdev_child[0];
5414 	if (pvd->vdev_children == 1) {
5415 		vdev_remove_parent(cvd);
5416 		cvd->vdev_splitting = B_TRUE;
5417 	}
5418 	vdev_propagate_state(cvd);
5419 }
5420 
5421 void
5422 vdev_deadman(vdev_t *vd, const char *tag)
5423 {
5424 	for (int c = 0; c < vd->vdev_children; c++) {
5425 		vdev_t *cvd = vd->vdev_child[c];
5426 
5427 		vdev_deadman(cvd, tag);
5428 	}
5429 
5430 	if (vd->vdev_ops->vdev_op_leaf) {
5431 		vdev_queue_t *vq = &vd->vdev_queue;
5432 
5433 		mutex_enter(&vq->vq_lock);
5434 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
5435 			spa_t *spa = vd->vdev_spa;
5436 			zio_t *fio;
5437 			uint64_t delta;
5438 
5439 			zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5440 			    vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5441 
5442 			/*
5443 			 * Look at the head of all the pending queues,
5444 			 * if any I/O has been outstanding for longer than
5445 			 * the spa_deadman_synctime invoke the deadman logic.
5446 			 */
5447 			fio = avl_first(&vq->vq_active_tree);
5448 			delta = gethrtime() - fio->io_timestamp;
5449 			if (delta > spa_deadman_synctime(spa))
5450 				zio_deadman(fio, tag);
5451 		}
5452 		mutex_exit(&vq->vq_lock);
5453 	}
5454 }
5455 
5456 void
5457 vdev_defer_resilver(vdev_t *vd)
5458 {
5459 	ASSERT(vd->vdev_ops->vdev_op_leaf);
5460 
5461 	vd->vdev_resilver_deferred = B_TRUE;
5462 	vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5463 }
5464 
5465 /*
5466  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5467  * B_TRUE if we have devices that need to be resilvered and are available to
5468  * accept resilver I/Os.
5469  */
5470 boolean_t
5471 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5472 {
5473 	boolean_t resilver_needed = B_FALSE;
5474 	spa_t *spa = vd->vdev_spa;
5475 
5476 	for (int c = 0; c < vd->vdev_children; c++) {
5477 		vdev_t *cvd = vd->vdev_child[c];
5478 		resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5479 	}
5480 
5481 	if (vd == spa->spa_root_vdev &&
5482 	    spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5483 		spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5484 		vdev_config_dirty(vd);
5485 		spa->spa_resilver_deferred = B_FALSE;
5486 		return (resilver_needed);
5487 	}
5488 
5489 	if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5490 	    !vd->vdev_ops->vdev_op_leaf)
5491 		return (resilver_needed);
5492 
5493 	vd->vdev_resilver_deferred = B_FALSE;
5494 
5495 	return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5496 	    vdev_resilver_needed(vd, NULL, NULL));
5497 }
5498 
5499 boolean_t
5500 vdev_xlate_is_empty(range_seg64_t *rs)
5501 {
5502 	return (rs->rs_start == rs->rs_end);
5503 }
5504 
5505 /*
5506  * Translate a logical range to the first contiguous physical range for the
5507  * specified vdev_t.  This function is initially called with a leaf vdev and
5508  * will walk each parent vdev until it reaches a top-level vdev. Once the
5509  * top-level is reached the physical range is initialized and the recursive
5510  * function begins to unwind. As it unwinds it calls the parent's vdev
5511  * specific translation function to do the real conversion.
5512  */
5513 void
5514 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5515     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5516 {
5517 	/*
5518 	 * Walk up the vdev tree
5519 	 */
5520 	if (vd != vd->vdev_top) {
5521 		vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5522 		    remain_rs);
5523 	} else {
5524 		/*
5525 		 * We've reached the top-level vdev, initialize the physical
5526 		 * range to the logical range and set an empty remaining
5527 		 * range then start to unwind.
5528 		 */
5529 		physical_rs->rs_start = logical_rs->rs_start;
5530 		physical_rs->rs_end = logical_rs->rs_end;
5531 
5532 		remain_rs->rs_start = logical_rs->rs_start;
5533 		remain_rs->rs_end = logical_rs->rs_start;
5534 
5535 		return;
5536 	}
5537 
5538 	vdev_t *pvd = vd->vdev_parent;
5539 	ASSERT3P(pvd, !=, NULL);
5540 	ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5541 
5542 	/*
5543 	 * As this recursive function unwinds, translate the logical
5544 	 * range into its physical and any remaining components by calling
5545 	 * the vdev specific translate function.
5546 	 */
5547 	range_seg64_t intermediate = { 0 };
5548 	pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5549 
5550 	physical_rs->rs_start = intermediate.rs_start;
5551 	physical_rs->rs_end = intermediate.rs_end;
5552 }
5553 
5554 void
5555 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5556     vdev_xlate_func_t *func, void *arg)
5557 {
5558 	range_seg64_t iter_rs = *logical_rs;
5559 	range_seg64_t physical_rs;
5560 	range_seg64_t remain_rs;
5561 
5562 	while (!vdev_xlate_is_empty(&iter_rs)) {
5563 
5564 		vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5565 
5566 		/*
5567 		 * With raidz and dRAID, it's possible that the logical range
5568 		 * does not live on this leaf vdev. Only when there is a non-
5569 		 * zero physical size call the provided function.
5570 		 */
5571 		if (!vdev_xlate_is_empty(&physical_rs))
5572 			func(arg, &physical_rs);
5573 
5574 		iter_rs = remain_rs;
5575 	}
5576 }
5577 
5578 static char *
5579 vdev_name(vdev_t *vd, char *buf, int buflen)
5580 {
5581 	if (vd->vdev_path == NULL) {
5582 		if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) {
5583 			strlcpy(buf, vd->vdev_spa->spa_name, buflen);
5584 		} else if (!vd->vdev_ops->vdev_op_leaf) {
5585 			snprintf(buf, buflen, "%s-%llu",
5586 			    vd->vdev_ops->vdev_op_type,
5587 			    (u_longlong_t)vd->vdev_id);
5588 		}
5589 	} else {
5590 		strlcpy(buf, vd->vdev_path, buflen);
5591 	}
5592 	return (buf);
5593 }
5594 
5595 /*
5596  * Look at the vdev tree and determine whether any devices are currently being
5597  * replaced.
5598  */
5599 boolean_t
5600 vdev_replace_in_progress(vdev_t *vdev)
5601 {
5602 	ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5603 
5604 	if (vdev->vdev_ops == &vdev_replacing_ops)
5605 		return (B_TRUE);
5606 
5607 	/*
5608 	 * A 'spare' vdev indicates that we have a replace in progress, unless
5609 	 * it has exactly two children, and the second, the hot spare, has
5610 	 * finished being resilvered.
5611 	 */
5612 	if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5613 	    !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5614 		return (B_TRUE);
5615 
5616 	for (int i = 0; i < vdev->vdev_children; i++) {
5617 		if (vdev_replace_in_progress(vdev->vdev_child[i]))
5618 			return (B_TRUE);
5619 	}
5620 
5621 	return (B_FALSE);
5622 }
5623 
5624 /*
5625  * Add a (source=src, propname=propval) list to an nvlist.
5626  */
5627 static void
5628 vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval,
5629     uint64_t intval, zprop_source_t src)
5630 {
5631 	nvlist_t *propval;
5632 
5633 	propval = fnvlist_alloc();
5634 	fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
5635 
5636 	if (strval != NULL)
5637 		fnvlist_add_string(propval, ZPROP_VALUE, strval);
5638 	else
5639 		fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
5640 
5641 	fnvlist_add_nvlist(nvl, propname, propval);
5642 	nvlist_free(propval);
5643 }
5644 
5645 static void
5646 vdev_props_set_sync(void *arg, dmu_tx_t *tx)
5647 {
5648 	vdev_t *vd;
5649 	nvlist_t *nvp = arg;
5650 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5651 	objset_t *mos = spa->spa_meta_objset;
5652 	nvpair_t *elem = NULL;
5653 	uint64_t vdev_guid;
5654 	nvlist_t *nvprops;
5655 
5656 	vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV);
5657 	nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS);
5658 	vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE);
5659 
5660 	/* this vdev could get removed while waiting for this sync task */
5661 	if (vd == NULL)
5662 		return;
5663 
5664 	mutex_enter(&spa->spa_props_lock);
5665 
5666 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5667 		uint64_t intval, objid = 0;
5668 		const char *strval;
5669 		vdev_prop_t prop;
5670 		const char *propname = nvpair_name(elem);
5671 		zprop_type_t proptype;
5672 
5673 		/*
5674 		 * Set vdev property values in the vdev props mos object.
5675 		 */
5676 		if (vd->vdev_top_zap != 0) {
5677 			objid = vd->vdev_top_zap;
5678 		} else if (vd->vdev_leaf_zap != 0) {
5679 			objid = vd->vdev_leaf_zap;
5680 		} else {
5681 			panic("vdev not top or leaf");
5682 		}
5683 
5684 		switch (prop = vdev_name_to_prop(propname)) {
5685 		case VDEV_PROP_USERPROP:
5686 			if (vdev_prop_user(propname)) {
5687 				strval = fnvpair_value_string(elem);
5688 				if (strlen(strval) == 0) {
5689 					/* remove the property if value == "" */
5690 					(void) zap_remove(mos, objid, propname,
5691 					    tx);
5692 				} else {
5693 					VERIFY0(zap_update(mos, objid, propname,
5694 					    1, strlen(strval) + 1, strval, tx));
5695 				}
5696 				spa_history_log_internal(spa, "vdev set", tx,
5697 				    "vdev_guid=%llu: %s=%s",
5698 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5699 				    strval);
5700 			}
5701 			break;
5702 		default:
5703 			/* normalize the property name */
5704 			propname = vdev_prop_to_name(prop);
5705 			proptype = vdev_prop_get_type(prop);
5706 
5707 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5708 				ASSERT(proptype == PROP_TYPE_STRING);
5709 				strval = fnvpair_value_string(elem);
5710 				VERIFY0(zap_update(mos, objid, propname,
5711 				    1, strlen(strval) + 1, strval, tx));
5712 				spa_history_log_internal(spa, "vdev set", tx,
5713 				    "vdev_guid=%llu: %s=%s",
5714 				    (u_longlong_t)vdev_guid, nvpair_name(elem),
5715 				    strval);
5716 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5717 				intval = fnvpair_value_uint64(elem);
5718 
5719 				if (proptype == PROP_TYPE_INDEX) {
5720 					const char *unused;
5721 					VERIFY0(vdev_prop_index_to_string(
5722 					    prop, intval, &unused));
5723 				}
5724 				VERIFY0(zap_update(mos, objid, propname,
5725 				    sizeof (uint64_t), 1, &intval, tx));
5726 				spa_history_log_internal(spa, "vdev set", tx,
5727 				    "vdev_guid=%llu: %s=%lld",
5728 				    (u_longlong_t)vdev_guid,
5729 				    nvpair_name(elem), (longlong_t)intval);
5730 			} else {
5731 				panic("invalid vdev property type %u",
5732 				    nvpair_type(elem));
5733 			}
5734 		}
5735 
5736 	}
5737 
5738 	mutex_exit(&spa->spa_props_lock);
5739 }
5740 
5741 int
5742 vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5743 {
5744 	spa_t *spa = vd->vdev_spa;
5745 	nvpair_t *elem = NULL;
5746 	uint64_t vdev_guid;
5747 	nvlist_t *nvprops;
5748 	int error = 0;
5749 
5750 	ASSERT(vd != NULL);
5751 
5752 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV,
5753 	    &vdev_guid) != 0)
5754 		return (SET_ERROR(EINVAL));
5755 
5756 	if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS,
5757 	    &nvprops) != 0)
5758 		return (SET_ERROR(EINVAL));
5759 
5760 	if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL)
5761 		return (SET_ERROR(EINVAL));
5762 
5763 	while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5764 		const char *propname = nvpair_name(elem);
5765 		vdev_prop_t prop = vdev_name_to_prop(propname);
5766 		uint64_t intval = 0;
5767 		const char *strval = NULL;
5768 
5769 		if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) {
5770 			error = EINVAL;
5771 			goto end;
5772 		}
5773 
5774 		if (vdev_prop_readonly(prop)) {
5775 			error = EROFS;
5776 			goto end;
5777 		}
5778 
5779 		/* Special Processing */
5780 		switch (prop) {
5781 		case VDEV_PROP_PATH:
5782 			if (vd->vdev_path == NULL) {
5783 				error = EROFS;
5784 				break;
5785 			}
5786 			if (nvpair_value_string(elem, &strval) != 0) {
5787 				error = EINVAL;
5788 				break;
5789 			}
5790 			/* New path must start with /dev/ */
5791 			if (strncmp(strval, "/dev/", 5)) {
5792 				error = EINVAL;
5793 				break;
5794 			}
5795 			error = spa_vdev_setpath(spa, vdev_guid, strval);
5796 			break;
5797 		case VDEV_PROP_ALLOCATING:
5798 			if (nvpair_value_uint64(elem, &intval) != 0) {
5799 				error = EINVAL;
5800 				break;
5801 			}
5802 			if (intval != vd->vdev_noalloc)
5803 				break;
5804 			if (intval == 0)
5805 				error = spa_vdev_noalloc(spa, vdev_guid);
5806 			else
5807 				error = spa_vdev_alloc(spa, vdev_guid);
5808 			break;
5809 		case VDEV_PROP_FAILFAST:
5810 			if (nvpair_value_uint64(elem, &intval) != 0) {
5811 				error = EINVAL;
5812 				break;
5813 			}
5814 			vd->vdev_failfast = intval & 1;
5815 			break;
5816 		case VDEV_PROP_CHECKSUM_N:
5817 			if (nvpair_value_uint64(elem, &intval) != 0) {
5818 				error = EINVAL;
5819 				break;
5820 			}
5821 			vd->vdev_checksum_n = intval;
5822 			break;
5823 		case VDEV_PROP_CHECKSUM_T:
5824 			if (nvpair_value_uint64(elem, &intval) != 0) {
5825 				error = EINVAL;
5826 				break;
5827 			}
5828 			vd->vdev_checksum_t = intval;
5829 			break;
5830 		case VDEV_PROP_IO_N:
5831 			if (nvpair_value_uint64(elem, &intval) != 0) {
5832 				error = EINVAL;
5833 				break;
5834 			}
5835 			vd->vdev_io_n = intval;
5836 			break;
5837 		case VDEV_PROP_IO_T:
5838 			if (nvpair_value_uint64(elem, &intval) != 0) {
5839 				error = EINVAL;
5840 				break;
5841 			}
5842 			vd->vdev_io_t = intval;
5843 			break;
5844 		default:
5845 			/* Most processing is done in vdev_props_set_sync */
5846 			break;
5847 		}
5848 end:
5849 		if (error != 0) {
5850 			intval = error;
5851 			vdev_prop_add_list(outnvl, propname, strval, intval, 0);
5852 			return (error);
5853 		}
5854 	}
5855 
5856 	return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync,
5857 	    innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED));
5858 }
5859 
5860 int
5861 vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl)
5862 {
5863 	spa_t *spa = vd->vdev_spa;
5864 	objset_t *mos = spa->spa_meta_objset;
5865 	int err = 0;
5866 	uint64_t objid;
5867 	uint64_t vdev_guid;
5868 	nvpair_t *elem = NULL;
5869 	nvlist_t *nvprops = NULL;
5870 	uint64_t intval = 0;
5871 	char *strval = NULL;
5872 	const char *propname = NULL;
5873 	vdev_prop_t prop;
5874 
5875 	ASSERT(vd != NULL);
5876 	ASSERT(mos != NULL);
5877 
5878 	if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV,
5879 	    &vdev_guid) != 0)
5880 		return (SET_ERROR(EINVAL));
5881 
5882 	nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops);
5883 
5884 	if (vd->vdev_top_zap != 0) {
5885 		objid = vd->vdev_top_zap;
5886 	} else if (vd->vdev_leaf_zap != 0) {
5887 		objid = vd->vdev_leaf_zap;
5888 	} else {
5889 		return (SET_ERROR(EINVAL));
5890 	}
5891 	ASSERT(objid != 0);
5892 
5893 	mutex_enter(&spa->spa_props_lock);
5894 
5895 	if (nvprops != NULL) {
5896 		char namebuf[64] = { 0 };
5897 
5898 		while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) {
5899 			intval = 0;
5900 			strval = NULL;
5901 			propname = nvpair_name(elem);
5902 			prop = vdev_name_to_prop(propname);
5903 			zprop_source_t src = ZPROP_SRC_DEFAULT;
5904 			uint64_t integer_size, num_integers;
5905 
5906 			switch (prop) {
5907 			/* Special Read-only Properties */
5908 			case VDEV_PROP_NAME:
5909 				strval = vdev_name(vd, namebuf,
5910 				    sizeof (namebuf));
5911 				if (strval == NULL)
5912 					continue;
5913 				vdev_prop_add_list(outnvl, propname, strval, 0,
5914 				    ZPROP_SRC_NONE);
5915 				continue;
5916 			case VDEV_PROP_CAPACITY:
5917 				/* percent used */
5918 				intval = (vd->vdev_stat.vs_dspace == 0) ? 0 :
5919 				    (vd->vdev_stat.vs_alloc * 100 /
5920 				    vd->vdev_stat.vs_dspace);
5921 				vdev_prop_add_list(outnvl, propname, NULL,
5922 				    intval, ZPROP_SRC_NONE);
5923 				continue;
5924 			case VDEV_PROP_STATE:
5925 				vdev_prop_add_list(outnvl, propname, NULL,
5926 				    vd->vdev_state, ZPROP_SRC_NONE);
5927 				continue;
5928 			case VDEV_PROP_GUID:
5929 				vdev_prop_add_list(outnvl, propname, NULL,
5930 				    vd->vdev_guid, ZPROP_SRC_NONE);
5931 				continue;
5932 			case VDEV_PROP_ASIZE:
5933 				vdev_prop_add_list(outnvl, propname, NULL,
5934 				    vd->vdev_asize, ZPROP_SRC_NONE);
5935 				continue;
5936 			case VDEV_PROP_PSIZE:
5937 				vdev_prop_add_list(outnvl, propname, NULL,
5938 				    vd->vdev_psize, ZPROP_SRC_NONE);
5939 				continue;
5940 			case VDEV_PROP_ASHIFT:
5941 				vdev_prop_add_list(outnvl, propname, NULL,
5942 				    vd->vdev_ashift, ZPROP_SRC_NONE);
5943 				continue;
5944 			case VDEV_PROP_SIZE:
5945 				vdev_prop_add_list(outnvl, propname, NULL,
5946 				    vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE);
5947 				continue;
5948 			case VDEV_PROP_FREE:
5949 				vdev_prop_add_list(outnvl, propname, NULL,
5950 				    vd->vdev_stat.vs_dspace -
5951 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5952 				continue;
5953 			case VDEV_PROP_ALLOCATED:
5954 				vdev_prop_add_list(outnvl, propname, NULL,
5955 				    vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE);
5956 				continue;
5957 			case VDEV_PROP_EXPANDSZ:
5958 				vdev_prop_add_list(outnvl, propname, NULL,
5959 				    vd->vdev_stat.vs_esize, ZPROP_SRC_NONE);
5960 				continue;
5961 			case VDEV_PROP_FRAGMENTATION:
5962 				vdev_prop_add_list(outnvl, propname, NULL,
5963 				    vd->vdev_stat.vs_fragmentation,
5964 				    ZPROP_SRC_NONE);
5965 				continue;
5966 			case VDEV_PROP_PARITY:
5967 				vdev_prop_add_list(outnvl, propname, NULL,
5968 				    vdev_get_nparity(vd), ZPROP_SRC_NONE);
5969 				continue;
5970 			case VDEV_PROP_PATH:
5971 				if (vd->vdev_path == NULL)
5972 					continue;
5973 				vdev_prop_add_list(outnvl, propname,
5974 				    vd->vdev_path, 0, ZPROP_SRC_NONE);
5975 				continue;
5976 			case VDEV_PROP_DEVID:
5977 				if (vd->vdev_devid == NULL)
5978 					continue;
5979 				vdev_prop_add_list(outnvl, propname,
5980 				    vd->vdev_devid, 0, ZPROP_SRC_NONE);
5981 				continue;
5982 			case VDEV_PROP_PHYS_PATH:
5983 				if (vd->vdev_physpath == NULL)
5984 					continue;
5985 				vdev_prop_add_list(outnvl, propname,
5986 				    vd->vdev_physpath, 0, ZPROP_SRC_NONE);
5987 				continue;
5988 			case VDEV_PROP_ENC_PATH:
5989 				if (vd->vdev_enc_sysfs_path == NULL)
5990 					continue;
5991 				vdev_prop_add_list(outnvl, propname,
5992 				    vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE);
5993 				continue;
5994 			case VDEV_PROP_FRU:
5995 				if (vd->vdev_fru == NULL)
5996 					continue;
5997 				vdev_prop_add_list(outnvl, propname,
5998 				    vd->vdev_fru, 0, ZPROP_SRC_NONE);
5999 				continue;
6000 			case VDEV_PROP_PARENT:
6001 				if (vd->vdev_parent != NULL) {
6002 					strval = vdev_name(vd->vdev_parent,
6003 					    namebuf, sizeof (namebuf));
6004 					vdev_prop_add_list(outnvl, propname,
6005 					    strval, 0, ZPROP_SRC_NONE);
6006 				}
6007 				continue;
6008 			case VDEV_PROP_CHILDREN:
6009 				if (vd->vdev_children > 0)
6010 					strval = kmem_zalloc(ZAP_MAXVALUELEN,
6011 					    KM_SLEEP);
6012 				for (uint64_t i = 0; i < vd->vdev_children;
6013 				    i++) {
6014 					const char *vname;
6015 
6016 					vname = vdev_name(vd->vdev_child[i],
6017 					    namebuf, sizeof (namebuf));
6018 					if (vname == NULL)
6019 						vname = "(unknown)";
6020 					if (strlen(strval) > 0)
6021 						strlcat(strval, ",",
6022 						    ZAP_MAXVALUELEN);
6023 					strlcat(strval, vname, ZAP_MAXVALUELEN);
6024 				}
6025 				if (strval != NULL) {
6026 					vdev_prop_add_list(outnvl, propname,
6027 					    strval, 0, ZPROP_SRC_NONE);
6028 					kmem_free(strval, ZAP_MAXVALUELEN);
6029 				}
6030 				continue;
6031 			case VDEV_PROP_NUMCHILDREN:
6032 				vdev_prop_add_list(outnvl, propname, NULL,
6033 				    vd->vdev_children, ZPROP_SRC_NONE);
6034 				continue;
6035 			case VDEV_PROP_READ_ERRORS:
6036 				vdev_prop_add_list(outnvl, propname, NULL,
6037 				    vd->vdev_stat.vs_read_errors,
6038 				    ZPROP_SRC_NONE);
6039 				continue;
6040 			case VDEV_PROP_WRITE_ERRORS:
6041 				vdev_prop_add_list(outnvl, propname, NULL,
6042 				    vd->vdev_stat.vs_write_errors,
6043 				    ZPROP_SRC_NONE);
6044 				continue;
6045 			case VDEV_PROP_CHECKSUM_ERRORS:
6046 				vdev_prop_add_list(outnvl, propname, NULL,
6047 				    vd->vdev_stat.vs_checksum_errors,
6048 				    ZPROP_SRC_NONE);
6049 				continue;
6050 			case VDEV_PROP_INITIALIZE_ERRORS:
6051 				vdev_prop_add_list(outnvl, propname, NULL,
6052 				    vd->vdev_stat.vs_initialize_errors,
6053 				    ZPROP_SRC_NONE);
6054 				continue;
6055 			case VDEV_PROP_OPS_NULL:
6056 				vdev_prop_add_list(outnvl, propname, NULL,
6057 				    vd->vdev_stat.vs_ops[ZIO_TYPE_NULL],
6058 				    ZPROP_SRC_NONE);
6059 				continue;
6060 			case VDEV_PROP_OPS_READ:
6061 				vdev_prop_add_list(outnvl, propname, NULL,
6062 				    vd->vdev_stat.vs_ops[ZIO_TYPE_READ],
6063 				    ZPROP_SRC_NONE);
6064 				continue;
6065 			case VDEV_PROP_OPS_WRITE:
6066 				vdev_prop_add_list(outnvl, propname, NULL,
6067 				    vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE],
6068 				    ZPROP_SRC_NONE);
6069 				continue;
6070 			case VDEV_PROP_OPS_FREE:
6071 				vdev_prop_add_list(outnvl, propname, NULL,
6072 				    vd->vdev_stat.vs_ops[ZIO_TYPE_FREE],
6073 				    ZPROP_SRC_NONE);
6074 				continue;
6075 			case VDEV_PROP_OPS_CLAIM:
6076 				vdev_prop_add_list(outnvl, propname, NULL,
6077 				    vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM],
6078 				    ZPROP_SRC_NONE);
6079 				continue;
6080 			case VDEV_PROP_OPS_TRIM:
6081 				/*
6082 				 * TRIM ops and bytes are reported to user
6083 				 * space as ZIO_TYPE_IOCTL.  This is done to
6084 				 * preserve the vdev_stat_t structure layout
6085 				 * for user space.
6086 				 */
6087 				vdev_prop_add_list(outnvl, propname, NULL,
6088 				    vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL],
6089 				    ZPROP_SRC_NONE);
6090 				continue;
6091 			case VDEV_PROP_BYTES_NULL:
6092 				vdev_prop_add_list(outnvl, propname, NULL,
6093 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL],
6094 				    ZPROP_SRC_NONE);
6095 				continue;
6096 			case VDEV_PROP_BYTES_READ:
6097 				vdev_prop_add_list(outnvl, propname, NULL,
6098 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_READ],
6099 				    ZPROP_SRC_NONE);
6100 				continue;
6101 			case VDEV_PROP_BYTES_WRITE:
6102 				vdev_prop_add_list(outnvl, propname, NULL,
6103 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE],
6104 				    ZPROP_SRC_NONE);
6105 				continue;
6106 			case VDEV_PROP_BYTES_FREE:
6107 				vdev_prop_add_list(outnvl, propname, NULL,
6108 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE],
6109 				    ZPROP_SRC_NONE);
6110 				continue;
6111 			case VDEV_PROP_BYTES_CLAIM:
6112 				vdev_prop_add_list(outnvl, propname, NULL,
6113 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM],
6114 				    ZPROP_SRC_NONE);
6115 				continue;
6116 			case VDEV_PROP_BYTES_TRIM:
6117 				/*
6118 				 * TRIM ops and bytes are reported to user
6119 				 * space as ZIO_TYPE_IOCTL.  This is done to
6120 				 * preserve the vdev_stat_t structure layout
6121 				 * for user space.
6122 				 */
6123 				vdev_prop_add_list(outnvl, propname, NULL,
6124 				    vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL],
6125 				    ZPROP_SRC_NONE);
6126 				continue;
6127 			case VDEV_PROP_REMOVING:
6128 				vdev_prop_add_list(outnvl, propname, NULL,
6129 				    vd->vdev_removing, ZPROP_SRC_NONE);
6130 				continue;
6131 			/* Numeric Properites */
6132 			case VDEV_PROP_ALLOCATING:
6133 				/* Leaf vdevs cannot have this property */
6134 				if (vd->vdev_mg == NULL &&
6135 				    vd->vdev_top != NULL) {
6136 					src = ZPROP_SRC_NONE;
6137 					intval = ZPROP_BOOLEAN_NA;
6138 				} else {
6139 					err = vdev_prop_get_int(vd, prop,
6140 					    &intval);
6141 					if (err && err != ENOENT)
6142 						break;
6143 
6144 					if (intval ==
6145 					    vdev_prop_default_numeric(prop))
6146 						src = ZPROP_SRC_DEFAULT;
6147 					else
6148 						src = ZPROP_SRC_LOCAL;
6149 				}
6150 
6151 				vdev_prop_add_list(outnvl, propname, NULL,
6152 				    intval, src);
6153 				break;
6154 			case VDEV_PROP_FAILFAST:
6155 				src = ZPROP_SRC_LOCAL;
6156 				strval = NULL;
6157 
6158 				err = zap_lookup(mos, objid, nvpair_name(elem),
6159 				    sizeof (uint64_t), 1, &intval);
6160 				if (err == ENOENT) {
6161 					intval = vdev_prop_default_numeric(
6162 					    prop);
6163 					err = 0;
6164 				} else if (err) {
6165 					break;
6166 				}
6167 				if (intval == vdev_prop_default_numeric(prop))
6168 					src = ZPROP_SRC_DEFAULT;
6169 
6170 				vdev_prop_add_list(outnvl, propname, strval,
6171 				    intval, src);
6172 				break;
6173 			case VDEV_PROP_CHECKSUM_N:
6174 			case VDEV_PROP_CHECKSUM_T:
6175 			case VDEV_PROP_IO_N:
6176 			case VDEV_PROP_IO_T:
6177 				err = vdev_prop_get_int(vd, prop, &intval);
6178 				if (err && err != ENOENT)
6179 					break;
6180 
6181 				if (intval == vdev_prop_default_numeric(prop))
6182 					src = ZPROP_SRC_DEFAULT;
6183 				else
6184 					src = ZPROP_SRC_LOCAL;
6185 
6186 				vdev_prop_add_list(outnvl, propname, NULL,
6187 				    intval, src);
6188 				break;
6189 			/* Text Properties */
6190 			case VDEV_PROP_COMMENT:
6191 				/* Exists in the ZAP below */
6192 				/* FALLTHRU */
6193 			case VDEV_PROP_USERPROP:
6194 				/* User Properites */
6195 				src = ZPROP_SRC_LOCAL;
6196 
6197 				err = zap_length(mos, objid, nvpair_name(elem),
6198 				    &integer_size, &num_integers);
6199 				if (err)
6200 					break;
6201 
6202 				switch (integer_size) {
6203 				case 8:
6204 					/* User properties cannot be integers */
6205 					err = EINVAL;
6206 					break;
6207 				case 1:
6208 					/* string property */
6209 					strval = kmem_alloc(num_integers,
6210 					    KM_SLEEP);
6211 					err = zap_lookup(mos, objid,
6212 					    nvpair_name(elem), 1,
6213 					    num_integers, strval);
6214 					if (err) {
6215 						kmem_free(strval,
6216 						    num_integers);
6217 						break;
6218 					}
6219 					vdev_prop_add_list(outnvl, propname,
6220 					    strval, 0, src);
6221 					kmem_free(strval, num_integers);
6222 					break;
6223 				}
6224 				break;
6225 			default:
6226 				err = ENOENT;
6227 				break;
6228 			}
6229 			if (err)
6230 				break;
6231 		}
6232 	} else {
6233 		/*
6234 		 * Get all properties from the MOS vdev property object.
6235 		 */
6236 		zap_cursor_t zc;
6237 		zap_attribute_t za;
6238 		for (zap_cursor_init(&zc, mos, objid);
6239 		    (err = zap_cursor_retrieve(&zc, &za)) == 0;
6240 		    zap_cursor_advance(&zc)) {
6241 			intval = 0;
6242 			strval = NULL;
6243 			zprop_source_t src = ZPROP_SRC_DEFAULT;
6244 			propname = za.za_name;
6245 
6246 			switch (za.za_integer_length) {
6247 			case 8:
6248 				/* We do not allow integer user properties */
6249 				/* This is likely an internal value */
6250 				break;
6251 			case 1:
6252 				/* string property */
6253 				strval = kmem_alloc(za.za_num_integers,
6254 				    KM_SLEEP);
6255 				err = zap_lookup(mos, objid, za.za_name, 1,
6256 				    za.za_num_integers, strval);
6257 				if (err) {
6258 					kmem_free(strval, za.za_num_integers);
6259 					break;
6260 				}
6261 				vdev_prop_add_list(outnvl, propname, strval, 0,
6262 				    src);
6263 				kmem_free(strval, za.za_num_integers);
6264 				break;
6265 
6266 			default:
6267 				break;
6268 			}
6269 		}
6270 		zap_cursor_fini(&zc);
6271 	}
6272 
6273 	mutex_exit(&spa->spa_props_lock);
6274 	if (err && err != ENOENT) {
6275 		return (err);
6276 	}
6277 
6278 	return (0);
6279 }
6280 
6281 EXPORT_SYMBOL(vdev_fault);
6282 EXPORT_SYMBOL(vdev_degrade);
6283 EXPORT_SYMBOL(vdev_online);
6284 EXPORT_SYMBOL(vdev_offline);
6285 EXPORT_SYMBOL(vdev_clear);
6286 
6287 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW,
6288 	"Target number of metaslabs per top-level vdev");
6289 
6290 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW,
6291 	"Default limit for metaslab size");
6292 
6293 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW,
6294 	"Minimum number of metaslabs per top-level vdev");
6295 
6296 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW,
6297 	"Practical upper limit of total metaslabs per top-level vdev");
6298 
6299 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
6300 	"Rate limit slow IO (delay) events to this many per second");
6301 
6302 /* BEGIN CSTYLED */
6303 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
6304 	"Rate limit checksum events to this many checksum errors per second "
6305 	"(do not set below ZED threshold).");
6306 /* END CSTYLED */
6307 
6308 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
6309 	"Ignore errors during resilver/scrub");
6310 
6311 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
6312 	"Bypass vdev_validate()");
6313 
6314 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
6315 	"Disable cache flushes");
6316 
6317 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW,
6318 	"Minimum number of metaslabs required to dedicate one for log blocks");
6319 
6320 /* BEGIN CSTYLED */
6321 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
6322 	param_set_min_auto_ashift, param_get_uint, ZMOD_RW,
6323 	"Minimum ashift used when creating new top-level vdevs");
6324 
6325 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
6326 	param_set_max_auto_ashift, param_get_uint, ZMOD_RW,
6327 	"Maximum ashift used when optimizing for logical -> physical sector "
6328 	"size on new top-level vdevs");
6329 /* END CSTYLED */
6330