1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 * Copyright (c) 2023, Klara Inc. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/zfs_chksum.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/zio_compress.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_initialize.h> 45 #include <sys/vdev_trim.h> 46 #include <sys/vdev_file.h> 47 #include <sys/vdev_raidz.h> 48 #include <sys/metaslab.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/fm/util.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/arc.h> 61 #include <sys/brt.h> 62 #include <sys/ddt.h> 63 #include <sys/kstat.h> 64 #include "zfs_prop.h" 65 #include <sys/btree.h> 66 #include <sys/zfeature.h> 67 #include <sys/qat.h> 68 #include <sys/zstd/zstd.h> 69 70 /* 71 * SPA locking 72 * 73 * There are three basic locks for managing spa_t structures: 74 * 75 * spa_namespace_lock (global mutex) 76 * 77 * This lock must be acquired to do any of the following: 78 * 79 * - Lookup a spa_t by name 80 * - Add or remove a spa_t from the namespace 81 * - Increase spa_refcount from non-zero 82 * - Check if spa_refcount is zero 83 * - Rename a spa_t 84 * - add/remove/attach/detach devices 85 * - Held for the duration of create/destroy/export 86 * - Held at the start and end of import 87 * 88 * It does not need to handle recursion. A create or destroy may 89 * reference objects (files or zvols) in other pools, but by 90 * definition they must have an existing reference, and will never need 91 * to lookup a spa_t by name. 92 * 93 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 94 * 95 * This reference count keep track of any active users of the spa_t. The 96 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 97 * the refcount is never really 'zero' - opening a pool implicitly keeps 98 * some references in the DMU. Internally we check against spa_minref, but 99 * present the image of a zero/non-zero value to consumers. 100 * 101 * spa_config_lock[] (per-spa array of rwlocks) 102 * 103 * This protects the spa_t from config changes, and must be held in 104 * the following circumstances: 105 * 106 * - RW_READER to perform I/O to the spa 107 * - RW_WRITER to change the vdev config 108 * 109 * The locking order is fairly straightforward: 110 * 111 * spa_namespace_lock -> spa_refcount 112 * 113 * The namespace lock must be acquired to increase the refcount from 0 114 * or to check if it is zero. 115 * 116 * spa_refcount -> spa_config_lock[] 117 * 118 * There must be at least one valid reference on the spa_t to acquire 119 * the config lock. 120 * 121 * spa_namespace_lock -> spa_config_lock[] 122 * 123 * The namespace lock must always be taken before the config lock. 124 * 125 * 126 * The spa_namespace_lock can be acquired directly and is globally visible. 127 * 128 * The namespace is manipulated using the following functions, all of which 129 * require the spa_namespace_lock to be held. 130 * 131 * spa_lookup() Lookup a spa_t by name. 132 * 133 * spa_add() Create a new spa_t in the namespace. 134 * 135 * spa_remove() Remove a spa_t from the namespace. This also 136 * frees up any memory associated with the spa_t. 137 * 138 * spa_next() Returns the next spa_t in the system, or the 139 * first if NULL is passed. 140 * 141 * spa_evict_all() Shutdown and remove all spa_t structures in 142 * the system. 143 * 144 * spa_guid_exists() Determine whether a pool/device guid exists. 145 * 146 * The spa_refcount is manipulated using the following functions: 147 * 148 * spa_open_ref() Adds a reference to the given spa_t. Must be 149 * called with spa_namespace_lock held if the 150 * refcount is currently zero. 151 * 152 * spa_close() Remove a reference from the spa_t. This will 153 * not free the spa_t or remove it from the 154 * namespace. No locking is required. 155 * 156 * spa_refcount_zero() Returns true if the refcount is currently 157 * zero. Must be called with spa_namespace_lock 158 * held. 159 * 160 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 161 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 162 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 163 * 164 * To read the configuration, it suffices to hold one of these locks as reader. 165 * To modify the configuration, you must hold all locks as writer. To modify 166 * vdev state without altering the vdev tree's topology (e.g. online/offline), 167 * you must hold SCL_STATE and SCL_ZIO as writer. 168 * 169 * We use these distinct config locks to avoid recursive lock entry. 170 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 171 * block allocations (SCL_ALLOC), which may require reading space maps 172 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 173 * 174 * The spa config locks cannot be normal rwlocks because we need the 175 * ability to hand off ownership. For example, SCL_ZIO is acquired 176 * by the issuing thread and later released by an interrupt thread. 177 * They do, however, obey the usual write-wanted semantics to prevent 178 * writer (i.e. system administrator) starvation. 179 * 180 * The lock acquisition rules are as follows: 181 * 182 * SCL_CONFIG 183 * Protects changes to the vdev tree topology, such as vdev 184 * add/remove/attach/detach. Protects the dirty config list 185 * (spa_config_dirty_list) and the set of spares and l2arc devices. 186 * 187 * SCL_STATE 188 * Protects changes to pool state and vdev state, such as vdev 189 * online/offline/fault/degrade/clear. Protects the dirty state list 190 * (spa_state_dirty_list) and global pool state (spa_state). 191 * 192 * SCL_ALLOC 193 * Protects changes to metaslab groups and classes. 194 * Held as reader by metaslab_alloc() and metaslab_claim(). 195 * 196 * SCL_ZIO 197 * Held by bp-level zios (those which have no io_vd upon entry) 198 * to prevent changes to the vdev tree. The bp-level zio implicitly 199 * protects all of its vdev child zios, which do not hold SCL_ZIO. 200 * 201 * SCL_FREE 202 * Protects changes to metaslab groups and classes. 203 * Held as reader by metaslab_free(). SCL_FREE is distinct from 204 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 205 * blocks in zio_done() while another i/o that holds either 206 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 207 * 208 * SCL_VDEV 209 * Held as reader to prevent changes to the vdev tree during trivial 210 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 211 * other locks, and lower than all of them, to ensure that it's safe 212 * to acquire regardless of caller context. 213 * 214 * In addition, the following rules apply: 215 * 216 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 217 * The lock ordering is SCL_CONFIG > spa_props_lock. 218 * 219 * (b) I/O operations on leaf vdevs. For any zio operation that takes 220 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 221 * or zio_write_phys() -- the caller must ensure that the config cannot 222 * cannot change in the interim, and that the vdev cannot be reopened. 223 * SCL_STATE as reader suffices for both. 224 * 225 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 226 * 227 * spa_vdev_enter() Acquire the namespace lock and the config lock 228 * for writing. 229 * 230 * spa_vdev_exit() Release the config lock, wait for all I/O 231 * to complete, sync the updated configs to the 232 * cache, and release the namespace lock. 233 * 234 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 235 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 236 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 237 */ 238 239 avl_tree_t spa_namespace_avl; 240 kmutex_t spa_namespace_lock; 241 kcondvar_t spa_namespace_cv; 242 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 243 244 static kmutex_t spa_spare_lock; 245 static avl_tree_t spa_spare_avl; 246 static kmutex_t spa_l2cache_lock; 247 static avl_tree_t spa_l2cache_avl; 248 249 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 250 251 #ifdef ZFS_DEBUG 252 /* 253 * Everything except dprintf, set_error, spa, and indirect_remap is on 254 * by default in debug builds. 255 */ 256 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 257 ZFS_DEBUG_INDIRECT_REMAP); 258 #else 259 int zfs_flags = 0; 260 #endif 261 262 /* 263 * zfs_recover can be set to nonzero to attempt to recover from 264 * otherwise-fatal errors, typically caused by on-disk corruption. When 265 * set, calls to zfs_panic_recover() will turn into warning messages. 266 * This should only be used as a last resort, as it typically results 267 * in leaked space, or worse. 268 */ 269 int zfs_recover = B_FALSE; 270 271 /* 272 * If destroy encounters an EIO while reading metadata (e.g. indirect 273 * blocks), space referenced by the missing metadata can not be freed. 274 * Normally this causes the background destroy to become "stalled", as 275 * it is unable to make forward progress. While in this stalled state, 276 * all remaining space to free from the error-encountering filesystem is 277 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 278 * permanently leak the space from indirect blocks that can not be read, 279 * and continue to free everything else that it can. 280 * 281 * The default, "stalling" behavior is useful if the storage partially 282 * fails (i.e. some but not all i/os fail), and then later recovers. In 283 * this case, we will be able to continue pool operations while it is 284 * partially failed, and when it recovers, we can continue to free the 285 * space, with no leaks. However, note that this case is actually 286 * fairly rare. 287 * 288 * Typically pools either (a) fail completely (but perhaps temporarily, 289 * e.g. a top-level vdev going offline), or (b) have localized, 290 * permanent errors (e.g. disk returns the wrong data due to bit flip or 291 * firmware bug). In case (a), this setting does not matter because the 292 * pool will be suspended and the sync thread will not be able to make 293 * forward progress regardless. In case (b), because the error is 294 * permanent, the best we can do is leak the minimum amount of space, 295 * which is what setting this flag will do. Therefore, it is reasonable 296 * for this flag to normally be set, but we chose the more conservative 297 * approach of not setting it, so that there is no possibility of 298 * leaking space in the "partial temporary" failure case. 299 */ 300 int zfs_free_leak_on_eio = B_FALSE; 301 302 /* 303 * Expiration time in milliseconds. This value has two meanings. First it is 304 * used to determine when the spa_deadman() logic should fire. By default the 305 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 306 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 307 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 308 * in one of three behaviors controlled by zfs_deadman_failmode. 309 */ 310 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 311 312 /* 313 * This value controls the maximum amount of time zio_wait() will block for an 314 * outstanding IO. By default this is 300 seconds at which point the "hung" 315 * behavior will be applied as described for zfs_deadman_synctime_ms. 316 */ 317 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 318 319 /* 320 * Check time in milliseconds. This defines the frequency at which we check 321 * for hung I/O. 322 */ 323 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 324 325 /* 326 * By default the deadman is enabled. 327 */ 328 int zfs_deadman_enabled = B_TRUE; 329 330 /* 331 * Controls the behavior of the deadman when it detects a "hung" I/O. 332 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 333 * 334 * wait - Wait for the "hung" I/O (default) 335 * continue - Attempt to recover from a "hung" I/O 336 * panic - Panic the system 337 */ 338 const char *zfs_deadman_failmode = "wait"; 339 340 /* 341 * The worst case is single-sector max-parity RAID-Z blocks, in which 342 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 343 * times the size; so just assume that. Add to this the fact that 344 * we can have up to 3 DVAs per bp, and one more factor of 2 because 345 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 346 * the worst case is: 347 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 348 */ 349 uint_t spa_asize_inflation = 24; 350 351 /* 352 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 353 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 354 * don't run the pool completely out of space, due to unaccounted changes (e.g. 355 * to the MOS). It also limits the worst-case time to allocate space. If we 356 * have less than this amount of free space, most ZPL operations (e.g. write, 357 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 358 * also part of this 3.2% of space which can't be consumed by normal writes; 359 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 360 * log space. 361 * 362 * Certain operations (e.g. file removal, most administrative actions) can 363 * use half the slop space. They will only return ENOSPC if less than half 364 * the slop space is free. Typically, once the pool has less than the slop 365 * space free, the user will use these operations to free up space in the pool. 366 * These are the operations that call dsl_pool_adjustedsize() with the netfree 367 * argument set to TRUE. 368 * 369 * Operations that are almost guaranteed to free up space in the absence of 370 * a pool checkpoint can use up to three quarters of the slop space 371 * (e.g zfs destroy). 372 * 373 * A very restricted set of operations are always permitted, regardless of 374 * the amount of free space. These are the operations that call 375 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 376 * increase in the amount of space used, it is possible to run the pool 377 * completely out of space, causing it to be permanently read-only. 378 * 379 * Note that on very small pools, the slop space will be larger than 380 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 381 * but we never allow it to be more than half the pool size. 382 * 383 * Further, on very large pools, the slop space will be smaller than 384 * 3.2%, to avoid reserving much more space than we actually need; bounded 385 * by spa_max_slop (128GB). 386 * 387 * See also the comments in zfs_space_check_t. 388 */ 389 uint_t spa_slop_shift = 5; 390 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 391 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 392 393 /* 394 * Number of allocators to use, per spa instance 395 */ 396 static int spa_num_allocators = 4; 397 static int spa_cpus_per_allocator = 4; 398 399 /* 400 * Spa active allocator. 401 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>. 402 */ 403 const char *zfs_active_allocator = "dynamic"; 404 405 void 406 spa_load_failed(spa_t *spa, const char *fmt, ...) 407 { 408 va_list adx; 409 char buf[256]; 410 411 va_start(adx, fmt); 412 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 413 va_end(adx); 414 415 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 416 spa->spa_trust_config ? "trusted" : "untrusted", buf); 417 } 418 419 void 420 spa_load_note(spa_t *spa, const char *fmt, ...) 421 { 422 va_list adx; 423 char buf[256]; 424 425 va_start(adx, fmt); 426 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 427 va_end(adx); 428 429 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 430 spa->spa_trust_config ? "trusted" : "untrusted", buf); 431 432 spa_import_progress_set_notes_nolog(spa, "%s", buf); 433 } 434 435 /* 436 * By default dedup and user data indirects land in the special class 437 */ 438 static int zfs_ddt_data_is_special = B_TRUE; 439 static int zfs_user_indirect_is_special = B_TRUE; 440 441 /* 442 * The percentage of special class final space reserved for metadata only. 443 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 444 * let metadata into the class. 445 */ 446 static uint_t zfs_special_class_metadata_reserve_pct = 25; 447 448 /* 449 * ========================================================================== 450 * SPA config locking 451 * ========================================================================== 452 */ 453 static void 454 spa_config_lock_init(spa_t *spa) 455 { 456 for (int i = 0; i < SCL_LOCKS; i++) { 457 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 458 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 459 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 460 scl->scl_writer = NULL; 461 scl->scl_write_wanted = 0; 462 scl->scl_count = 0; 463 } 464 } 465 466 static void 467 spa_config_lock_destroy(spa_t *spa) 468 { 469 for (int i = 0; i < SCL_LOCKS; i++) { 470 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 471 mutex_destroy(&scl->scl_lock); 472 cv_destroy(&scl->scl_cv); 473 ASSERT(scl->scl_writer == NULL); 474 ASSERT(scl->scl_write_wanted == 0); 475 ASSERT(scl->scl_count == 0); 476 } 477 } 478 479 int 480 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 481 { 482 for (int i = 0; i < SCL_LOCKS; i++) { 483 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 484 if (!(locks & (1 << i))) 485 continue; 486 mutex_enter(&scl->scl_lock); 487 if (rw == RW_READER) { 488 if (scl->scl_writer || scl->scl_write_wanted) { 489 mutex_exit(&scl->scl_lock); 490 spa_config_exit(spa, locks & ((1 << i) - 1), 491 tag); 492 return (0); 493 } 494 } else { 495 ASSERT(scl->scl_writer != curthread); 496 if (scl->scl_count != 0) { 497 mutex_exit(&scl->scl_lock); 498 spa_config_exit(spa, locks & ((1 << i) - 1), 499 tag); 500 return (0); 501 } 502 scl->scl_writer = curthread; 503 } 504 scl->scl_count++; 505 mutex_exit(&scl->scl_lock); 506 } 507 return (1); 508 } 509 510 static void 511 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 512 int mmp_flag) 513 { 514 (void) tag; 515 int wlocks_held = 0; 516 517 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 518 519 for (int i = 0; i < SCL_LOCKS; i++) { 520 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 521 if (scl->scl_writer == curthread) 522 wlocks_held |= (1 << i); 523 if (!(locks & (1 << i))) 524 continue; 525 mutex_enter(&scl->scl_lock); 526 if (rw == RW_READER) { 527 while (scl->scl_writer || 528 (!mmp_flag && scl->scl_write_wanted)) { 529 cv_wait(&scl->scl_cv, &scl->scl_lock); 530 } 531 } else { 532 ASSERT(scl->scl_writer != curthread); 533 while (scl->scl_count != 0) { 534 scl->scl_write_wanted++; 535 cv_wait(&scl->scl_cv, &scl->scl_lock); 536 scl->scl_write_wanted--; 537 } 538 scl->scl_writer = curthread; 539 } 540 scl->scl_count++; 541 mutex_exit(&scl->scl_lock); 542 } 543 ASSERT3U(wlocks_held, <=, locks); 544 } 545 546 void 547 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 548 { 549 spa_config_enter_impl(spa, locks, tag, rw, 0); 550 } 551 552 /* 553 * The spa_config_enter_mmp() allows the mmp thread to cut in front of 554 * outstanding write lock requests. This is needed since the mmp updates are 555 * time sensitive and failure to service them promptly will result in a 556 * suspended pool. This pool suspension has been seen in practice when there is 557 * a single disk in a pool that is responding slowly and presumably about to 558 * fail. 559 */ 560 561 void 562 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) 563 { 564 spa_config_enter_impl(spa, locks, tag, rw, 1); 565 } 566 567 void 568 spa_config_exit(spa_t *spa, int locks, const void *tag) 569 { 570 (void) tag; 571 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 572 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 573 if (!(locks & (1 << i))) 574 continue; 575 mutex_enter(&scl->scl_lock); 576 ASSERT(scl->scl_count > 0); 577 if (--scl->scl_count == 0) { 578 ASSERT(scl->scl_writer == NULL || 579 scl->scl_writer == curthread); 580 scl->scl_writer = NULL; /* OK in either case */ 581 cv_broadcast(&scl->scl_cv); 582 } 583 mutex_exit(&scl->scl_lock); 584 } 585 } 586 587 int 588 spa_config_held(spa_t *spa, int locks, krw_t rw) 589 { 590 int locks_held = 0; 591 592 for (int i = 0; i < SCL_LOCKS; i++) { 593 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 594 if (!(locks & (1 << i))) 595 continue; 596 if ((rw == RW_READER && scl->scl_count != 0) || 597 (rw == RW_WRITER && scl->scl_writer == curthread)) 598 locks_held |= 1 << i; 599 } 600 601 return (locks_held); 602 } 603 604 /* 605 * ========================================================================== 606 * SPA namespace functions 607 * ========================================================================== 608 */ 609 610 /* 611 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 612 * Returns NULL if no matching spa_t is found. 613 */ 614 spa_t * 615 spa_lookup(const char *name) 616 { 617 static spa_t search; /* spa_t is large; don't allocate on stack */ 618 spa_t *spa; 619 avl_index_t where; 620 char *cp; 621 622 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 623 624 retry: 625 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 626 627 /* 628 * If it's a full dataset name, figure out the pool name and 629 * just use that. 630 */ 631 cp = strpbrk(search.spa_name, "/@#"); 632 if (cp != NULL) 633 *cp = '\0'; 634 635 spa = avl_find(&spa_namespace_avl, &search, &where); 636 if (spa == NULL) 637 return (NULL); 638 639 if (spa->spa_load_thread != NULL && 640 spa->spa_load_thread != curthread) { 641 cv_wait(&spa_namespace_cv, &spa_namespace_lock); 642 goto retry; 643 } 644 645 return (spa); 646 } 647 648 /* 649 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 650 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 651 * looking for potentially hung I/Os. 652 */ 653 void 654 spa_deadman(void *arg) 655 { 656 spa_t *spa = arg; 657 658 /* Disable the deadman if the pool is suspended. */ 659 if (spa_suspended(spa)) 660 return; 661 662 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 663 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 664 (u_longlong_t)++spa->spa_deadman_calls); 665 if (zfs_deadman_enabled) 666 vdev_deadman(spa->spa_root_vdev, FTAG); 667 668 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 669 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 670 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 671 } 672 673 static int 674 spa_log_sm_sort_by_txg(const void *va, const void *vb) 675 { 676 const spa_log_sm_t *a = va; 677 const spa_log_sm_t *b = vb; 678 679 return (TREE_CMP(a->sls_txg, b->sls_txg)); 680 } 681 682 /* 683 * Create an uninitialized spa_t with the given name. Requires 684 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 685 * exist by calling spa_lookup() first. 686 */ 687 spa_t * 688 spa_add(const char *name, nvlist_t *config, const char *altroot) 689 { 690 spa_t *spa; 691 spa_config_dirent_t *dp; 692 693 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 694 695 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 696 697 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 698 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 699 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 700 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 701 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 702 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 703 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 704 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 705 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 706 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 707 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 708 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 709 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 710 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 711 712 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 713 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 714 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 715 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 716 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 717 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 718 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 719 720 for (int t = 0; t < TXG_SIZE; t++) 721 bplist_create(&spa->spa_free_bplist[t]); 722 723 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 724 spa->spa_state = POOL_STATE_UNINITIALIZED; 725 spa->spa_freeze_txg = UINT64_MAX; 726 spa->spa_final_txg = UINT64_MAX; 727 spa->spa_load_max_txg = UINT64_MAX; 728 spa->spa_proc = &p0; 729 spa->spa_proc_state = SPA_PROC_NONE; 730 spa->spa_trust_config = B_TRUE; 731 spa->spa_hostid = zone_get_hostid(NULL); 732 733 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 734 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 735 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 736 spa_set_allocator(spa, zfs_active_allocator); 737 738 zfs_refcount_create(&spa->spa_refcount); 739 spa_config_lock_init(spa); 740 spa_stats_init(spa); 741 742 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 743 avl_add(&spa_namespace_avl, spa); 744 745 /* 746 * Set the alternate root, if there is one. 747 */ 748 if (altroot) 749 spa->spa_root = spa_strdup(altroot); 750 751 /* Do not allow more allocators than fraction of CPUs. */ 752 spa->spa_alloc_count = MAX(MIN(spa_num_allocators, 753 boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1); 754 755 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 756 sizeof (spa_alloc_t), KM_SLEEP); 757 for (int i = 0; i < spa->spa_alloc_count; i++) { 758 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 759 NULL); 760 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 761 sizeof (zio_t), offsetof(zio_t, io_queue_node.a)); 762 } 763 if (spa->spa_alloc_count > 1) { 764 spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t, 765 sau_inuse[spa->spa_alloc_count]), KM_SLEEP); 766 mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT, 767 NULL); 768 } 769 770 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 771 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 772 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 773 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 774 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 775 offsetof(log_summary_entry_t, lse_node)); 776 777 /* 778 * Every pool starts with the default cachefile 779 */ 780 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 781 offsetof(spa_config_dirent_t, scd_link)); 782 783 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 784 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 785 list_insert_head(&spa->spa_config_list, dp); 786 787 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 788 KM_SLEEP) == 0); 789 790 if (config != NULL) { 791 nvlist_t *features; 792 793 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 794 &features) == 0) { 795 VERIFY(nvlist_dup(features, &spa->spa_label_features, 796 0) == 0); 797 } 798 799 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 800 } 801 802 if (spa->spa_label_features == NULL) { 803 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 804 KM_SLEEP) == 0); 805 } 806 807 spa->spa_min_ashift = INT_MAX; 808 spa->spa_max_ashift = 0; 809 spa->spa_min_alloc = INT_MAX; 810 spa->spa_gcd_alloc = INT_MAX; 811 812 /* Reset cached value */ 813 spa->spa_dedup_dspace = ~0ULL; 814 815 /* 816 * As a pool is being created, treat all features as disabled by 817 * setting SPA_FEATURE_DISABLED for all entries in the feature 818 * refcount cache. 819 */ 820 for (int i = 0; i < SPA_FEATURES; i++) { 821 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 822 } 823 824 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 825 offsetof(vdev_t, vdev_leaf_node)); 826 827 return (spa); 828 } 829 830 /* 831 * Removes a spa_t from the namespace, freeing up any memory used. Requires 832 * spa_namespace_lock. This is called only after the spa_t has been closed and 833 * deactivated. 834 */ 835 void 836 spa_remove(spa_t *spa) 837 { 838 spa_config_dirent_t *dp; 839 840 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 841 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 842 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 843 ASSERT0(spa->spa_waiters); 844 845 nvlist_free(spa->spa_config_splitting); 846 847 avl_remove(&spa_namespace_avl, spa); 848 849 if (spa->spa_root) 850 spa_strfree(spa->spa_root); 851 852 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { 853 if (dp->scd_path != NULL) 854 spa_strfree(dp->scd_path); 855 kmem_free(dp, sizeof (spa_config_dirent_t)); 856 } 857 858 for (int i = 0; i < spa->spa_alloc_count; i++) { 859 avl_destroy(&spa->spa_allocs[i].spaa_tree); 860 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 861 } 862 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 863 sizeof (spa_alloc_t)); 864 if (spa->spa_alloc_count > 1) { 865 mutex_destroy(&spa->spa_allocs_use->sau_lock); 866 kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t, 867 sau_inuse[spa->spa_alloc_count])); 868 } 869 870 avl_destroy(&spa->spa_metaslabs_by_flushed); 871 avl_destroy(&spa->spa_sm_logs_by_txg); 872 list_destroy(&spa->spa_log_summary); 873 list_destroy(&spa->spa_config_list); 874 list_destroy(&spa->spa_leaf_list); 875 876 nvlist_free(spa->spa_label_features); 877 nvlist_free(spa->spa_load_info); 878 nvlist_free(spa->spa_feat_stats); 879 spa_config_set(spa, NULL); 880 881 zfs_refcount_destroy(&spa->spa_refcount); 882 883 spa_stats_destroy(spa); 884 spa_config_lock_destroy(spa); 885 886 for (int t = 0; t < TXG_SIZE; t++) 887 bplist_destroy(&spa->spa_free_bplist[t]); 888 889 zio_checksum_templates_free(spa); 890 891 cv_destroy(&spa->spa_async_cv); 892 cv_destroy(&spa->spa_evicting_os_cv); 893 cv_destroy(&spa->spa_proc_cv); 894 cv_destroy(&spa->spa_scrub_io_cv); 895 cv_destroy(&spa->spa_suspend_cv); 896 cv_destroy(&spa->spa_activities_cv); 897 cv_destroy(&spa->spa_waiters_cv); 898 899 mutex_destroy(&spa->spa_flushed_ms_lock); 900 mutex_destroy(&spa->spa_async_lock); 901 mutex_destroy(&spa->spa_errlist_lock); 902 mutex_destroy(&spa->spa_errlog_lock); 903 mutex_destroy(&spa->spa_evicting_os_lock); 904 mutex_destroy(&spa->spa_history_lock); 905 mutex_destroy(&spa->spa_proc_lock); 906 mutex_destroy(&spa->spa_props_lock); 907 mutex_destroy(&spa->spa_cksum_tmpls_lock); 908 mutex_destroy(&spa->spa_scrub_lock); 909 mutex_destroy(&spa->spa_suspend_lock); 910 mutex_destroy(&spa->spa_vdev_top_lock); 911 mutex_destroy(&spa->spa_feat_stats_lock); 912 mutex_destroy(&spa->spa_activities_lock); 913 914 kmem_free(spa, sizeof (spa_t)); 915 } 916 917 /* 918 * Given a pool, return the next pool in the namespace, or NULL if there is 919 * none. If 'prev' is NULL, return the first pool. 920 */ 921 spa_t * 922 spa_next(spa_t *prev) 923 { 924 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 925 926 if (prev) 927 return (AVL_NEXT(&spa_namespace_avl, prev)); 928 else 929 return (avl_first(&spa_namespace_avl)); 930 } 931 932 /* 933 * ========================================================================== 934 * SPA refcount functions 935 * ========================================================================== 936 */ 937 938 /* 939 * Add a reference to the given spa_t. Must have at least one reference, or 940 * have the namespace lock held. 941 */ 942 void 943 spa_open_ref(spa_t *spa, const void *tag) 944 { 945 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 946 MUTEX_HELD(&spa_namespace_lock) || 947 spa->spa_load_thread == curthread); 948 (void) zfs_refcount_add(&spa->spa_refcount, tag); 949 } 950 951 /* 952 * Remove a reference to the given spa_t. Must have at least one reference, or 953 * have the namespace lock held. 954 */ 955 void 956 spa_close(spa_t *spa, const void *tag) 957 { 958 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 959 MUTEX_HELD(&spa_namespace_lock) || 960 spa->spa_load_thread == curthread); 961 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 962 } 963 964 /* 965 * Remove a reference to the given spa_t held by a dsl dir that is 966 * being asynchronously released. Async releases occur from a taskq 967 * performing eviction of dsl datasets and dirs. The namespace lock 968 * isn't held and the hold by the object being evicted may contribute to 969 * spa_minref (e.g. dataset or directory released during pool export), 970 * so the asserts in spa_close() do not apply. 971 */ 972 void 973 spa_async_close(spa_t *spa, const void *tag) 974 { 975 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 976 } 977 978 /* 979 * Check to see if the spa refcount is zero. Must be called with 980 * spa_namespace_lock held. We really compare against spa_minref, which is the 981 * number of references acquired when opening a pool 982 */ 983 boolean_t 984 spa_refcount_zero(spa_t *spa) 985 { 986 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 987 988 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 989 } 990 991 /* 992 * ========================================================================== 993 * SPA spare and l2cache tracking 994 * ========================================================================== 995 */ 996 997 /* 998 * Hot spares and cache devices are tracked using the same code below, 999 * for 'auxiliary' devices. 1000 */ 1001 1002 typedef struct spa_aux { 1003 uint64_t aux_guid; 1004 uint64_t aux_pool; 1005 avl_node_t aux_avl; 1006 int aux_count; 1007 } spa_aux_t; 1008 1009 static inline int 1010 spa_aux_compare(const void *a, const void *b) 1011 { 1012 const spa_aux_t *sa = (const spa_aux_t *)a; 1013 const spa_aux_t *sb = (const spa_aux_t *)b; 1014 1015 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 1016 } 1017 1018 static void 1019 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 1020 { 1021 avl_index_t where; 1022 spa_aux_t search; 1023 spa_aux_t *aux; 1024 1025 search.aux_guid = vd->vdev_guid; 1026 if ((aux = avl_find(avl, &search, &where)) != NULL) { 1027 aux->aux_count++; 1028 } else { 1029 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 1030 aux->aux_guid = vd->vdev_guid; 1031 aux->aux_count = 1; 1032 avl_insert(avl, aux, where); 1033 } 1034 } 1035 1036 static void 1037 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 1038 { 1039 spa_aux_t search; 1040 spa_aux_t *aux; 1041 avl_index_t where; 1042 1043 search.aux_guid = vd->vdev_guid; 1044 aux = avl_find(avl, &search, &where); 1045 1046 ASSERT(aux != NULL); 1047 1048 if (--aux->aux_count == 0) { 1049 avl_remove(avl, aux); 1050 kmem_free(aux, sizeof (spa_aux_t)); 1051 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1052 aux->aux_pool = 0ULL; 1053 } 1054 } 1055 1056 static boolean_t 1057 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1058 { 1059 spa_aux_t search, *found; 1060 1061 search.aux_guid = guid; 1062 found = avl_find(avl, &search, NULL); 1063 1064 if (pool) { 1065 if (found) 1066 *pool = found->aux_pool; 1067 else 1068 *pool = 0ULL; 1069 } 1070 1071 if (refcnt) { 1072 if (found) 1073 *refcnt = found->aux_count; 1074 else 1075 *refcnt = 0; 1076 } 1077 1078 return (found != NULL); 1079 } 1080 1081 static void 1082 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1083 { 1084 spa_aux_t search, *found; 1085 avl_index_t where; 1086 1087 search.aux_guid = vd->vdev_guid; 1088 found = avl_find(avl, &search, &where); 1089 ASSERT(found != NULL); 1090 ASSERT(found->aux_pool == 0ULL); 1091 1092 found->aux_pool = spa_guid(vd->vdev_spa); 1093 } 1094 1095 /* 1096 * Spares are tracked globally due to the following constraints: 1097 * 1098 * - A spare may be part of multiple pools. 1099 * - A spare may be added to a pool even if it's actively in use within 1100 * another pool. 1101 * - A spare in use in any pool can only be the source of a replacement if 1102 * the target is a spare in the same pool. 1103 * 1104 * We keep track of all spares on the system through the use of a reference 1105 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1106 * spare, then we bump the reference count in the AVL tree. In addition, we set 1107 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1108 * inactive). When a spare is made active (used to replace a device in the 1109 * pool), we also keep track of which pool its been made a part of. 1110 * 1111 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1112 * called under the spa_namespace lock as part of vdev reconfiguration. The 1113 * separate spare lock exists for the status query path, which does not need to 1114 * be completely consistent with respect to other vdev configuration changes. 1115 */ 1116 1117 static int 1118 spa_spare_compare(const void *a, const void *b) 1119 { 1120 return (spa_aux_compare(a, b)); 1121 } 1122 1123 void 1124 spa_spare_add(vdev_t *vd) 1125 { 1126 mutex_enter(&spa_spare_lock); 1127 ASSERT(!vd->vdev_isspare); 1128 spa_aux_add(vd, &spa_spare_avl); 1129 vd->vdev_isspare = B_TRUE; 1130 mutex_exit(&spa_spare_lock); 1131 } 1132 1133 void 1134 spa_spare_remove(vdev_t *vd) 1135 { 1136 mutex_enter(&spa_spare_lock); 1137 ASSERT(vd->vdev_isspare); 1138 spa_aux_remove(vd, &spa_spare_avl); 1139 vd->vdev_isspare = B_FALSE; 1140 mutex_exit(&spa_spare_lock); 1141 } 1142 1143 boolean_t 1144 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1145 { 1146 boolean_t found; 1147 1148 mutex_enter(&spa_spare_lock); 1149 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1150 mutex_exit(&spa_spare_lock); 1151 1152 return (found); 1153 } 1154 1155 void 1156 spa_spare_activate(vdev_t *vd) 1157 { 1158 mutex_enter(&spa_spare_lock); 1159 ASSERT(vd->vdev_isspare); 1160 spa_aux_activate(vd, &spa_spare_avl); 1161 mutex_exit(&spa_spare_lock); 1162 } 1163 1164 /* 1165 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1166 * Cache devices currently only support one pool per cache device, and so 1167 * for these devices the aux reference count is currently unused beyond 1. 1168 */ 1169 1170 static int 1171 spa_l2cache_compare(const void *a, const void *b) 1172 { 1173 return (spa_aux_compare(a, b)); 1174 } 1175 1176 void 1177 spa_l2cache_add(vdev_t *vd) 1178 { 1179 mutex_enter(&spa_l2cache_lock); 1180 ASSERT(!vd->vdev_isl2cache); 1181 spa_aux_add(vd, &spa_l2cache_avl); 1182 vd->vdev_isl2cache = B_TRUE; 1183 mutex_exit(&spa_l2cache_lock); 1184 } 1185 1186 void 1187 spa_l2cache_remove(vdev_t *vd) 1188 { 1189 mutex_enter(&spa_l2cache_lock); 1190 ASSERT(vd->vdev_isl2cache); 1191 spa_aux_remove(vd, &spa_l2cache_avl); 1192 vd->vdev_isl2cache = B_FALSE; 1193 mutex_exit(&spa_l2cache_lock); 1194 } 1195 1196 boolean_t 1197 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1198 { 1199 boolean_t found; 1200 1201 mutex_enter(&spa_l2cache_lock); 1202 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1203 mutex_exit(&spa_l2cache_lock); 1204 1205 return (found); 1206 } 1207 1208 void 1209 spa_l2cache_activate(vdev_t *vd) 1210 { 1211 mutex_enter(&spa_l2cache_lock); 1212 ASSERT(vd->vdev_isl2cache); 1213 spa_aux_activate(vd, &spa_l2cache_avl); 1214 mutex_exit(&spa_l2cache_lock); 1215 } 1216 1217 /* 1218 * ========================================================================== 1219 * SPA vdev locking 1220 * ========================================================================== 1221 */ 1222 1223 /* 1224 * Lock the given spa_t for the purpose of adding or removing a vdev. 1225 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1226 * It returns the next transaction group for the spa_t. 1227 */ 1228 uint64_t 1229 spa_vdev_enter(spa_t *spa) 1230 { 1231 mutex_enter(&spa->spa_vdev_top_lock); 1232 mutex_enter(&spa_namespace_lock); 1233 1234 vdev_autotrim_stop_all(spa); 1235 1236 return (spa_vdev_config_enter(spa)); 1237 } 1238 1239 /* 1240 * The same as spa_vdev_enter() above but additionally takes the guid of 1241 * the vdev being detached. When there is a rebuild in process it will be 1242 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1243 * The rebuild is canceled if only a single child remains after the detach. 1244 */ 1245 uint64_t 1246 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1247 { 1248 mutex_enter(&spa->spa_vdev_top_lock); 1249 mutex_enter(&spa_namespace_lock); 1250 1251 vdev_autotrim_stop_all(spa); 1252 1253 if (guid != 0) { 1254 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1255 if (vd) { 1256 vdev_rebuild_stop_wait(vd->vdev_top); 1257 } 1258 } 1259 1260 return (spa_vdev_config_enter(spa)); 1261 } 1262 1263 /* 1264 * Internal implementation for spa_vdev_enter(). Used when a vdev 1265 * operation requires multiple syncs (i.e. removing a device) while 1266 * keeping the spa_namespace_lock held. 1267 */ 1268 uint64_t 1269 spa_vdev_config_enter(spa_t *spa) 1270 { 1271 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1272 1273 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1274 1275 return (spa_last_synced_txg(spa) + 1); 1276 } 1277 1278 /* 1279 * Used in combination with spa_vdev_config_enter() to allow the syncing 1280 * of multiple transactions without releasing the spa_namespace_lock. 1281 */ 1282 void 1283 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1284 const char *tag) 1285 { 1286 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1287 1288 int config_changed = B_FALSE; 1289 1290 ASSERT(txg > spa_last_synced_txg(spa)); 1291 1292 spa->spa_pending_vdev = NULL; 1293 1294 /* 1295 * Reassess the DTLs. 1296 */ 1297 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1298 1299 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1300 config_changed = B_TRUE; 1301 spa->spa_config_generation++; 1302 } 1303 1304 /* 1305 * Verify the metaslab classes. 1306 */ 1307 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1308 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1309 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1310 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1311 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1312 1313 spa_config_exit(spa, SCL_ALL, spa); 1314 1315 /* 1316 * Panic the system if the specified tag requires it. This 1317 * is useful for ensuring that configurations are updated 1318 * transactionally. 1319 */ 1320 if (zio_injection_enabled) 1321 zio_handle_panic_injection(spa, tag, 0); 1322 1323 /* 1324 * Note: this txg_wait_synced() is important because it ensures 1325 * that there won't be more than one config change per txg. 1326 * This allows us to use the txg as the generation number. 1327 */ 1328 if (error == 0) 1329 txg_wait_synced(spa->spa_dsl_pool, txg); 1330 1331 if (vd != NULL) { 1332 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1333 if (vd->vdev_ops->vdev_op_leaf) { 1334 mutex_enter(&vd->vdev_initialize_lock); 1335 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1336 NULL); 1337 mutex_exit(&vd->vdev_initialize_lock); 1338 1339 mutex_enter(&vd->vdev_trim_lock); 1340 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1341 mutex_exit(&vd->vdev_trim_lock); 1342 } 1343 1344 /* 1345 * The vdev may be both a leaf and top-level device. 1346 */ 1347 vdev_autotrim_stop_wait(vd); 1348 1349 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1350 vdev_free(vd); 1351 spa_config_exit(spa, SCL_STATE_ALL, spa); 1352 } 1353 1354 /* 1355 * If the config changed, update the config cache. 1356 */ 1357 if (config_changed) 1358 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1359 } 1360 1361 /* 1362 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1363 * locking of spa_vdev_enter(), we also want make sure the transactions have 1364 * synced to disk, and then update the global configuration cache with the new 1365 * information. 1366 */ 1367 int 1368 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1369 { 1370 vdev_autotrim_restart(spa); 1371 vdev_rebuild_restart(spa); 1372 1373 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1374 mutex_exit(&spa_namespace_lock); 1375 mutex_exit(&spa->spa_vdev_top_lock); 1376 1377 return (error); 1378 } 1379 1380 /* 1381 * Lock the given spa_t for the purpose of changing vdev state. 1382 */ 1383 void 1384 spa_vdev_state_enter(spa_t *spa, int oplocks) 1385 { 1386 int locks = SCL_STATE_ALL | oplocks; 1387 1388 /* 1389 * Root pools may need to read of the underlying devfs filesystem 1390 * when opening up a vdev. Unfortunately if we're holding the 1391 * SCL_ZIO lock it will result in a deadlock when we try to issue 1392 * the read from the root filesystem. Instead we "prefetch" 1393 * the associated vnodes that we need prior to opening the 1394 * underlying devices and cache them so that we can prevent 1395 * any I/O when we are doing the actual open. 1396 */ 1397 if (spa_is_root(spa)) { 1398 int low = locks & ~(SCL_ZIO - 1); 1399 int high = locks & ~low; 1400 1401 spa_config_enter(spa, high, spa, RW_WRITER); 1402 vdev_hold(spa->spa_root_vdev); 1403 spa_config_enter(spa, low, spa, RW_WRITER); 1404 } else { 1405 spa_config_enter(spa, locks, spa, RW_WRITER); 1406 } 1407 spa->spa_vdev_locks = locks; 1408 } 1409 1410 int 1411 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1412 { 1413 boolean_t config_changed = B_FALSE; 1414 vdev_t *vdev_top; 1415 1416 if (vd == NULL || vd == spa->spa_root_vdev) { 1417 vdev_top = spa->spa_root_vdev; 1418 } else { 1419 vdev_top = vd->vdev_top; 1420 } 1421 1422 if (vd != NULL || error == 0) 1423 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1424 1425 if (vd != NULL) { 1426 if (vd != spa->spa_root_vdev) 1427 vdev_state_dirty(vdev_top); 1428 1429 config_changed = B_TRUE; 1430 spa->spa_config_generation++; 1431 } 1432 1433 if (spa_is_root(spa)) 1434 vdev_rele(spa->spa_root_vdev); 1435 1436 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1437 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1438 1439 /* 1440 * If anything changed, wait for it to sync. This ensures that, 1441 * from the system administrator's perspective, zpool(8) commands 1442 * are synchronous. This is important for things like zpool offline: 1443 * when the command completes, you expect no further I/O from ZFS. 1444 */ 1445 if (vd != NULL) 1446 txg_wait_synced(spa->spa_dsl_pool, 0); 1447 1448 /* 1449 * If the config changed, update the config cache. 1450 */ 1451 if (config_changed) { 1452 mutex_enter(&spa_namespace_lock); 1453 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1454 mutex_exit(&spa_namespace_lock); 1455 } 1456 1457 return (error); 1458 } 1459 1460 /* 1461 * ========================================================================== 1462 * Miscellaneous functions 1463 * ========================================================================== 1464 */ 1465 1466 void 1467 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1468 { 1469 if (!nvlist_exists(spa->spa_label_features, feature)) { 1470 fnvlist_add_boolean(spa->spa_label_features, feature); 1471 /* 1472 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1473 * dirty the vdev config because lock SCL_CONFIG is not held. 1474 * Thankfully, in this case we don't need to dirty the config 1475 * because it will be written out anyway when we finish 1476 * creating the pool. 1477 */ 1478 if (tx->tx_txg != TXG_INITIAL) 1479 vdev_config_dirty(spa->spa_root_vdev); 1480 } 1481 } 1482 1483 void 1484 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1485 { 1486 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1487 vdev_config_dirty(spa->spa_root_vdev); 1488 } 1489 1490 /* 1491 * Return the spa_t associated with given pool_guid, if it exists. If 1492 * device_guid is non-zero, determine whether the pool exists *and* contains 1493 * a device with the specified device_guid. 1494 */ 1495 spa_t * 1496 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1497 { 1498 spa_t *spa; 1499 avl_tree_t *t = &spa_namespace_avl; 1500 1501 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1502 1503 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1504 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1505 continue; 1506 if (spa->spa_root_vdev == NULL) 1507 continue; 1508 if (spa_guid(spa) == pool_guid) { 1509 if (device_guid == 0) 1510 break; 1511 1512 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1513 device_guid) != NULL) 1514 break; 1515 1516 /* 1517 * Check any devices we may be in the process of adding. 1518 */ 1519 if (spa->spa_pending_vdev) { 1520 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1521 device_guid) != NULL) 1522 break; 1523 } 1524 } 1525 } 1526 1527 return (spa); 1528 } 1529 1530 /* 1531 * Determine whether a pool with the given pool_guid exists. 1532 */ 1533 boolean_t 1534 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1535 { 1536 return (spa_by_guid(pool_guid, device_guid) != NULL); 1537 } 1538 1539 char * 1540 spa_strdup(const char *s) 1541 { 1542 size_t len; 1543 char *new; 1544 1545 len = strlen(s); 1546 new = kmem_alloc(len + 1, KM_SLEEP); 1547 memcpy(new, s, len + 1); 1548 1549 return (new); 1550 } 1551 1552 void 1553 spa_strfree(char *s) 1554 { 1555 kmem_free(s, strlen(s) + 1); 1556 } 1557 1558 uint64_t 1559 spa_generate_guid(spa_t *spa) 1560 { 1561 uint64_t guid; 1562 1563 if (spa != NULL) { 1564 do { 1565 (void) random_get_pseudo_bytes((void *)&guid, 1566 sizeof (guid)); 1567 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1568 } else { 1569 do { 1570 (void) random_get_pseudo_bytes((void *)&guid, 1571 sizeof (guid)); 1572 } while (guid == 0 || spa_guid_exists(guid, 0)); 1573 } 1574 1575 return (guid); 1576 } 1577 1578 void 1579 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1580 { 1581 char type[256]; 1582 const char *checksum = NULL; 1583 const char *compress = NULL; 1584 1585 if (bp != NULL) { 1586 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1587 dmu_object_byteswap_t bswap = 1588 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1589 (void) snprintf(type, sizeof (type), "bswap %s %s", 1590 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1591 "metadata" : "data", 1592 dmu_ot_byteswap[bswap].ob_name); 1593 } else { 1594 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1595 sizeof (type)); 1596 } 1597 if (!BP_IS_EMBEDDED(bp)) { 1598 checksum = 1599 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1600 } 1601 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1602 } 1603 1604 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1605 compress); 1606 } 1607 1608 void 1609 spa_freeze(spa_t *spa) 1610 { 1611 uint64_t freeze_txg = 0; 1612 1613 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1614 if (spa->spa_freeze_txg == UINT64_MAX) { 1615 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1616 spa->spa_freeze_txg = freeze_txg; 1617 } 1618 spa_config_exit(spa, SCL_ALL, FTAG); 1619 if (freeze_txg != 0) 1620 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1621 } 1622 1623 void 1624 zfs_panic_recover(const char *fmt, ...) 1625 { 1626 va_list adx; 1627 1628 va_start(adx, fmt); 1629 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1630 va_end(adx); 1631 } 1632 1633 /* 1634 * This is a stripped-down version of strtoull, suitable only for converting 1635 * lowercase hexadecimal numbers that don't overflow. 1636 */ 1637 uint64_t 1638 zfs_strtonum(const char *str, char **nptr) 1639 { 1640 uint64_t val = 0; 1641 char c; 1642 int digit; 1643 1644 while ((c = *str) != '\0') { 1645 if (c >= '0' && c <= '9') 1646 digit = c - '0'; 1647 else if (c >= 'a' && c <= 'f') 1648 digit = 10 + c - 'a'; 1649 else 1650 break; 1651 1652 val *= 16; 1653 val += digit; 1654 1655 str++; 1656 } 1657 1658 if (nptr) 1659 *nptr = (char *)str; 1660 1661 return (val); 1662 } 1663 1664 void 1665 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1666 { 1667 /* 1668 * We bump the feature refcount for each special vdev added to the pool 1669 */ 1670 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1671 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1672 } 1673 1674 /* 1675 * ========================================================================== 1676 * Accessor functions 1677 * ========================================================================== 1678 */ 1679 1680 boolean_t 1681 spa_shutting_down(spa_t *spa) 1682 { 1683 return (spa->spa_async_suspended); 1684 } 1685 1686 dsl_pool_t * 1687 spa_get_dsl(spa_t *spa) 1688 { 1689 return (spa->spa_dsl_pool); 1690 } 1691 1692 boolean_t 1693 spa_is_initializing(spa_t *spa) 1694 { 1695 return (spa->spa_is_initializing); 1696 } 1697 1698 boolean_t 1699 spa_indirect_vdevs_loaded(spa_t *spa) 1700 { 1701 return (spa->spa_indirect_vdevs_loaded); 1702 } 1703 1704 blkptr_t * 1705 spa_get_rootblkptr(spa_t *spa) 1706 { 1707 return (&spa->spa_ubsync.ub_rootbp); 1708 } 1709 1710 void 1711 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1712 { 1713 spa->spa_uberblock.ub_rootbp = *bp; 1714 } 1715 1716 void 1717 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1718 { 1719 if (spa->spa_root == NULL) 1720 buf[0] = '\0'; 1721 else 1722 (void) strlcpy(buf, spa->spa_root, buflen); 1723 } 1724 1725 uint32_t 1726 spa_sync_pass(spa_t *spa) 1727 { 1728 return (spa->spa_sync_pass); 1729 } 1730 1731 char * 1732 spa_name(spa_t *spa) 1733 { 1734 return (spa->spa_name); 1735 } 1736 1737 uint64_t 1738 spa_guid(spa_t *spa) 1739 { 1740 dsl_pool_t *dp = spa_get_dsl(spa); 1741 uint64_t guid; 1742 1743 /* 1744 * If we fail to parse the config during spa_load(), we can go through 1745 * the error path (which posts an ereport) and end up here with no root 1746 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1747 * this case. 1748 */ 1749 if (spa->spa_root_vdev == NULL) 1750 return (spa->spa_config_guid); 1751 1752 guid = spa->spa_last_synced_guid != 0 ? 1753 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1754 1755 /* 1756 * Return the most recently synced out guid unless we're 1757 * in syncing context. 1758 */ 1759 if (dp && dsl_pool_sync_context(dp)) 1760 return (spa->spa_root_vdev->vdev_guid); 1761 else 1762 return (guid); 1763 } 1764 1765 uint64_t 1766 spa_load_guid(spa_t *spa) 1767 { 1768 /* 1769 * This is a GUID that exists solely as a reference for the 1770 * purposes of the arc. It is generated at load time, and 1771 * is never written to persistent storage. 1772 */ 1773 return (spa->spa_load_guid); 1774 } 1775 1776 uint64_t 1777 spa_last_synced_txg(spa_t *spa) 1778 { 1779 return (spa->spa_ubsync.ub_txg); 1780 } 1781 1782 uint64_t 1783 spa_first_txg(spa_t *spa) 1784 { 1785 return (spa->spa_first_txg); 1786 } 1787 1788 uint64_t 1789 spa_syncing_txg(spa_t *spa) 1790 { 1791 return (spa->spa_syncing_txg); 1792 } 1793 1794 /* 1795 * Return the last txg where data can be dirtied. The final txgs 1796 * will be used to just clear out any deferred frees that remain. 1797 */ 1798 uint64_t 1799 spa_final_dirty_txg(spa_t *spa) 1800 { 1801 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1802 } 1803 1804 pool_state_t 1805 spa_state(spa_t *spa) 1806 { 1807 return (spa->spa_state); 1808 } 1809 1810 spa_load_state_t 1811 spa_load_state(spa_t *spa) 1812 { 1813 return (spa->spa_load_state); 1814 } 1815 1816 uint64_t 1817 spa_freeze_txg(spa_t *spa) 1818 { 1819 return (spa->spa_freeze_txg); 1820 } 1821 1822 /* 1823 * Return the inflated asize for a logical write in bytes. This is used by the 1824 * DMU to calculate the space a logical write will require on disk. 1825 * If lsize is smaller than the largest physical block size allocatable on this 1826 * pool we use its value instead, since the write will end up using the whole 1827 * block anyway. 1828 */ 1829 uint64_t 1830 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1831 { 1832 if (lsize == 0) 1833 return (0); /* No inflation needed */ 1834 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1835 } 1836 1837 /* 1838 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1839 * (3.2%), minus the embedded log space. On very small pools, it may be 1840 * slightly larger than this. On very large pools, it will be capped to 1841 * the value of spa_max_slop. The embedded log space is not included in 1842 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1843 * constant 97% of the total space, regardless of metaslab size (assuming the 1844 * default spa_slop_shift=5 and a non-tiny pool). 1845 * 1846 * See the comment above spa_slop_shift for more details. 1847 */ 1848 uint64_t 1849 spa_get_slop_space(spa_t *spa) 1850 { 1851 uint64_t space = 0; 1852 uint64_t slop = 0; 1853 1854 /* 1855 * Make sure spa_dedup_dspace has been set. 1856 */ 1857 if (spa->spa_dedup_dspace == ~0ULL) 1858 spa_update_dspace(spa); 1859 1860 /* 1861 * spa_get_dspace() includes the space only logically "used" by 1862 * deduplicated data, so since it's not useful to reserve more 1863 * space with more deduplicated data, we subtract that out here. 1864 */ 1865 space = 1866 spa_get_dspace(spa) - spa->spa_dedup_dspace - brt_get_dspace(spa); 1867 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1868 1869 /* 1870 * Subtract the embedded log space, but no more than half the (3.2%) 1871 * unusable space. Note, the "no more than half" is only relevant if 1872 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1873 * default. 1874 */ 1875 uint64_t embedded_log = 1876 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1877 slop -= MIN(embedded_log, slop >> 1); 1878 1879 /* 1880 * Slop space should be at least spa_min_slop, but no more than half 1881 * the entire pool. 1882 */ 1883 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1884 return (slop); 1885 } 1886 1887 uint64_t 1888 spa_get_dspace(spa_t *spa) 1889 { 1890 return (spa->spa_dspace); 1891 } 1892 1893 uint64_t 1894 spa_get_checkpoint_space(spa_t *spa) 1895 { 1896 return (spa->spa_checkpoint_info.sci_dspace); 1897 } 1898 1899 void 1900 spa_update_dspace(spa_t *spa) 1901 { 1902 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1903 ddt_get_dedup_dspace(spa) + brt_get_dspace(spa); 1904 if (spa->spa_nonallocating_dspace > 0) { 1905 /* 1906 * Subtract the space provided by all non-allocating vdevs that 1907 * contribute to dspace. If a file is overwritten, its old 1908 * blocks are freed and new blocks are allocated. If there are 1909 * no snapshots of the file, the available space should remain 1910 * the same. The old blocks could be freed from the 1911 * non-allocating vdev, but the new blocks must be allocated on 1912 * other (allocating) vdevs. By reserving the entire size of 1913 * the non-allocating vdevs (including allocated space), we 1914 * ensure that there will be enough space on the allocating 1915 * vdevs for this file overwrite to succeed. 1916 * 1917 * Note that the DMU/DSL doesn't actually know or care 1918 * how much space is allocated (it does its own tracking 1919 * of how much space has been logically used). So it 1920 * doesn't matter that the data we are moving may be 1921 * allocated twice (on the old device and the new device). 1922 */ 1923 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); 1924 spa->spa_dspace -= spa->spa_nonallocating_dspace; 1925 } 1926 } 1927 1928 /* 1929 * Return the failure mode that has been set to this pool. The default 1930 * behavior will be to block all I/Os when a complete failure occurs. 1931 */ 1932 uint64_t 1933 spa_get_failmode(spa_t *spa) 1934 { 1935 return (spa->spa_failmode); 1936 } 1937 1938 boolean_t 1939 spa_suspended(spa_t *spa) 1940 { 1941 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1942 } 1943 1944 uint64_t 1945 spa_version(spa_t *spa) 1946 { 1947 return (spa->spa_ubsync.ub_version); 1948 } 1949 1950 boolean_t 1951 spa_deflate(spa_t *spa) 1952 { 1953 return (spa->spa_deflate); 1954 } 1955 1956 metaslab_class_t * 1957 spa_normal_class(spa_t *spa) 1958 { 1959 return (spa->spa_normal_class); 1960 } 1961 1962 metaslab_class_t * 1963 spa_log_class(spa_t *spa) 1964 { 1965 return (spa->spa_log_class); 1966 } 1967 1968 metaslab_class_t * 1969 spa_embedded_log_class(spa_t *spa) 1970 { 1971 return (spa->spa_embedded_log_class); 1972 } 1973 1974 metaslab_class_t * 1975 spa_special_class(spa_t *spa) 1976 { 1977 return (spa->spa_special_class); 1978 } 1979 1980 metaslab_class_t * 1981 spa_dedup_class(spa_t *spa) 1982 { 1983 return (spa->spa_dedup_class); 1984 } 1985 1986 /* 1987 * Locate an appropriate allocation class 1988 */ 1989 metaslab_class_t * 1990 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1991 uint_t level, uint_t special_smallblk) 1992 { 1993 /* 1994 * ZIL allocations determine their class in zio_alloc_zil(). 1995 */ 1996 ASSERT(objtype != DMU_OT_INTENT_LOG); 1997 1998 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1999 2000 if (DMU_OT_IS_DDT(objtype)) { 2001 if (spa->spa_dedup_class->mc_groups != 0) 2002 return (spa_dedup_class(spa)); 2003 else if (has_special_class && zfs_ddt_data_is_special) 2004 return (spa_special_class(spa)); 2005 else 2006 return (spa_normal_class(spa)); 2007 } 2008 2009 /* Indirect blocks for user data can land in special if allowed */ 2010 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 2011 if (has_special_class && zfs_user_indirect_is_special) 2012 return (spa_special_class(spa)); 2013 else 2014 return (spa_normal_class(spa)); 2015 } 2016 2017 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 2018 if (has_special_class) 2019 return (spa_special_class(spa)); 2020 else 2021 return (spa_normal_class(spa)); 2022 } 2023 2024 /* 2025 * Allow small file blocks in special class in some cases (like 2026 * for the dRAID vdev feature). But always leave a reserve of 2027 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 2028 */ 2029 if (DMU_OT_IS_FILE(objtype) && 2030 has_special_class && size <= special_smallblk) { 2031 metaslab_class_t *special = spa_special_class(spa); 2032 uint64_t alloc = metaslab_class_get_alloc(special); 2033 uint64_t space = metaslab_class_get_space(special); 2034 uint64_t limit = 2035 (space * (100 - zfs_special_class_metadata_reserve_pct)) 2036 / 100; 2037 2038 if (alloc < limit) 2039 return (special); 2040 } 2041 2042 return (spa_normal_class(spa)); 2043 } 2044 2045 void 2046 spa_evicting_os_register(spa_t *spa, objset_t *os) 2047 { 2048 mutex_enter(&spa->spa_evicting_os_lock); 2049 list_insert_head(&spa->spa_evicting_os_list, os); 2050 mutex_exit(&spa->spa_evicting_os_lock); 2051 } 2052 2053 void 2054 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2055 { 2056 mutex_enter(&spa->spa_evicting_os_lock); 2057 list_remove(&spa->spa_evicting_os_list, os); 2058 cv_broadcast(&spa->spa_evicting_os_cv); 2059 mutex_exit(&spa->spa_evicting_os_lock); 2060 } 2061 2062 void 2063 spa_evicting_os_wait(spa_t *spa) 2064 { 2065 mutex_enter(&spa->spa_evicting_os_lock); 2066 while (!list_is_empty(&spa->spa_evicting_os_list)) 2067 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2068 mutex_exit(&spa->spa_evicting_os_lock); 2069 2070 dmu_buf_user_evict_wait(); 2071 } 2072 2073 int 2074 spa_max_replication(spa_t *spa) 2075 { 2076 /* 2077 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2078 * handle BPs with more than one DVA allocated. Set our max 2079 * replication level accordingly. 2080 */ 2081 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2082 return (1); 2083 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2084 } 2085 2086 int 2087 spa_prev_software_version(spa_t *spa) 2088 { 2089 return (spa->spa_prev_software_version); 2090 } 2091 2092 uint64_t 2093 spa_deadman_synctime(spa_t *spa) 2094 { 2095 return (spa->spa_deadman_synctime); 2096 } 2097 2098 spa_autotrim_t 2099 spa_get_autotrim(spa_t *spa) 2100 { 2101 return (spa->spa_autotrim); 2102 } 2103 2104 uint64_t 2105 spa_deadman_ziotime(spa_t *spa) 2106 { 2107 return (spa->spa_deadman_ziotime); 2108 } 2109 2110 uint64_t 2111 spa_get_deadman_failmode(spa_t *spa) 2112 { 2113 return (spa->spa_deadman_failmode); 2114 } 2115 2116 void 2117 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2118 { 2119 if (strcmp(failmode, "wait") == 0) 2120 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2121 else if (strcmp(failmode, "continue") == 0) 2122 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2123 else if (strcmp(failmode, "panic") == 0) 2124 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2125 else 2126 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2127 } 2128 2129 void 2130 spa_set_deadman_ziotime(hrtime_t ns) 2131 { 2132 spa_t *spa = NULL; 2133 2134 if (spa_mode_global != SPA_MODE_UNINIT) { 2135 mutex_enter(&spa_namespace_lock); 2136 while ((spa = spa_next(spa)) != NULL) 2137 spa->spa_deadman_ziotime = ns; 2138 mutex_exit(&spa_namespace_lock); 2139 } 2140 } 2141 2142 void 2143 spa_set_deadman_synctime(hrtime_t ns) 2144 { 2145 spa_t *spa = NULL; 2146 2147 if (spa_mode_global != SPA_MODE_UNINIT) { 2148 mutex_enter(&spa_namespace_lock); 2149 while ((spa = spa_next(spa)) != NULL) 2150 spa->spa_deadman_synctime = ns; 2151 mutex_exit(&spa_namespace_lock); 2152 } 2153 } 2154 2155 uint64_t 2156 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2157 { 2158 uint64_t asize = DVA_GET_ASIZE(dva); 2159 uint64_t dsize = asize; 2160 2161 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2162 2163 if (asize != 0 && spa->spa_deflate) { 2164 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2165 if (vd != NULL) 2166 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2167 vd->vdev_deflate_ratio; 2168 } 2169 2170 return (dsize); 2171 } 2172 2173 uint64_t 2174 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2175 { 2176 uint64_t dsize = 0; 2177 2178 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2179 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2180 2181 return (dsize); 2182 } 2183 2184 uint64_t 2185 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2186 { 2187 uint64_t dsize = 0; 2188 2189 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2190 2191 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2192 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2193 2194 spa_config_exit(spa, SCL_VDEV, FTAG); 2195 2196 return (dsize); 2197 } 2198 2199 uint64_t 2200 spa_dirty_data(spa_t *spa) 2201 { 2202 return (spa->spa_dsl_pool->dp_dirty_total); 2203 } 2204 2205 /* 2206 * ========================================================================== 2207 * SPA Import Progress Routines 2208 * ========================================================================== 2209 */ 2210 2211 typedef struct spa_import_progress { 2212 uint64_t pool_guid; /* unique id for updates */ 2213 char *pool_name; 2214 spa_load_state_t spa_load_state; 2215 char *spa_load_notes; 2216 uint64_t mmp_sec_remaining; /* MMP activity check */ 2217 uint64_t spa_load_max_txg; /* rewind txg */ 2218 procfs_list_node_t smh_node; 2219 } spa_import_progress_t; 2220 2221 spa_history_list_t *spa_import_progress_list = NULL; 2222 2223 static int 2224 spa_import_progress_show_header(struct seq_file *f) 2225 { 2226 seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid", 2227 "load_state", "multihost_secs", "max_txg", 2228 "pool_name", "notes"); 2229 return (0); 2230 } 2231 2232 static int 2233 spa_import_progress_show(struct seq_file *f, void *data) 2234 { 2235 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2236 2237 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n", 2238 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2239 (u_longlong_t)sip->mmp_sec_remaining, 2240 (u_longlong_t)sip->spa_load_max_txg, 2241 (sip->pool_name ? sip->pool_name : "-"), 2242 (sip->spa_load_notes ? sip->spa_load_notes : "-")); 2243 2244 return (0); 2245 } 2246 2247 /* Remove oldest elements from list until there are no more than 'size' left */ 2248 static void 2249 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2250 { 2251 spa_import_progress_t *sip; 2252 while (shl->size > size) { 2253 sip = list_remove_head(&shl->procfs_list.pl_list); 2254 if (sip->pool_name) 2255 spa_strfree(sip->pool_name); 2256 if (sip->spa_load_notes) 2257 kmem_strfree(sip->spa_load_notes); 2258 kmem_free(sip, sizeof (spa_import_progress_t)); 2259 shl->size--; 2260 } 2261 2262 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2263 } 2264 2265 static void 2266 spa_import_progress_init(void) 2267 { 2268 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2269 KM_SLEEP); 2270 2271 spa_import_progress_list->size = 0; 2272 2273 spa_import_progress_list->procfs_list.pl_private = 2274 spa_import_progress_list; 2275 2276 procfs_list_install("zfs", 2277 NULL, 2278 "import_progress", 2279 0644, 2280 &spa_import_progress_list->procfs_list, 2281 spa_import_progress_show, 2282 spa_import_progress_show_header, 2283 NULL, 2284 offsetof(spa_import_progress_t, smh_node)); 2285 } 2286 2287 static void 2288 spa_import_progress_destroy(void) 2289 { 2290 spa_history_list_t *shl = spa_import_progress_list; 2291 procfs_list_uninstall(&shl->procfs_list); 2292 spa_import_progress_truncate(shl, 0); 2293 procfs_list_destroy(&shl->procfs_list); 2294 kmem_free(shl, sizeof (spa_history_list_t)); 2295 } 2296 2297 int 2298 spa_import_progress_set_state(uint64_t pool_guid, 2299 spa_load_state_t load_state) 2300 { 2301 spa_history_list_t *shl = spa_import_progress_list; 2302 spa_import_progress_t *sip; 2303 int error = ENOENT; 2304 2305 if (shl->size == 0) 2306 return (0); 2307 2308 mutex_enter(&shl->procfs_list.pl_lock); 2309 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2310 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2311 if (sip->pool_guid == pool_guid) { 2312 sip->spa_load_state = load_state; 2313 if (sip->spa_load_notes != NULL) { 2314 kmem_strfree(sip->spa_load_notes); 2315 sip->spa_load_notes = NULL; 2316 } 2317 error = 0; 2318 break; 2319 } 2320 } 2321 mutex_exit(&shl->procfs_list.pl_lock); 2322 2323 return (error); 2324 } 2325 2326 static void 2327 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg, 2328 const char *fmt, va_list adx) 2329 { 2330 spa_history_list_t *shl = spa_import_progress_list; 2331 spa_import_progress_t *sip; 2332 uint64_t pool_guid = spa_guid(spa); 2333 2334 if (shl->size == 0) 2335 return; 2336 2337 char *notes = kmem_vasprintf(fmt, adx); 2338 2339 mutex_enter(&shl->procfs_list.pl_lock); 2340 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2341 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2342 if (sip->pool_guid == pool_guid) { 2343 if (sip->spa_load_notes != NULL) { 2344 kmem_strfree(sip->spa_load_notes); 2345 sip->spa_load_notes = NULL; 2346 } 2347 sip->spa_load_notes = notes; 2348 if (log_dbgmsg) 2349 zfs_dbgmsg("'%s' %s", sip->pool_name, notes); 2350 notes = NULL; 2351 break; 2352 } 2353 } 2354 mutex_exit(&shl->procfs_list.pl_lock); 2355 if (notes != NULL) 2356 kmem_strfree(notes); 2357 } 2358 2359 void 2360 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...) 2361 { 2362 va_list adx; 2363 2364 va_start(adx, fmt); 2365 spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx); 2366 va_end(adx); 2367 } 2368 2369 void 2370 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...) 2371 { 2372 va_list adx; 2373 2374 va_start(adx, fmt); 2375 spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx); 2376 va_end(adx); 2377 } 2378 2379 int 2380 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2381 { 2382 spa_history_list_t *shl = spa_import_progress_list; 2383 spa_import_progress_t *sip; 2384 int error = ENOENT; 2385 2386 if (shl->size == 0) 2387 return (0); 2388 2389 mutex_enter(&shl->procfs_list.pl_lock); 2390 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2391 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2392 if (sip->pool_guid == pool_guid) { 2393 sip->spa_load_max_txg = load_max_txg; 2394 error = 0; 2395 break; 2396 } 2397 } 2398 mutex_exit(&shl->procfs_list.pl_lock); 2399 2400 return (error); 2401 } 2402 2403 int 2404 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2405 uint64_t mmp_sec_remaining) 2406 { 2407 spa_history_list_t *shl = spa_import_progress_list; 2408 spa_import_progress_t *sip; 2409 int error = ENOENT; 2410 2411 if (shl->size == 0) 2412 return (0); 2413 2414 mutex_enter(&shl->procfs_list.pl_lock); 2415 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2416 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2417 if (sip->pool_guid == pool_guid) { 2418 sip->mmp_sec_remaining = mmp_sec_remaining; 2419 error = 0; 2420 break; 2421 } 2422 } 2423 mutex_exit(&shl->procfs_list.pl_lock); 2424 2425 return (error); 2426 } 2427 2428 /* 2429 * A new import is in progress, add an entry. 2430 */ 2431 void 2432 spa_import_progress_add(spa_t *spa) 2433 { 2434 spa_history_list_t *shl = spa_import_progress_list; 2435 spa_import_progress_t *sip; 2436 const char *poolname = NULL; 2437 2438 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2439 sip->pool_guid = spa_guid(spa); 2440 2441 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2442 &poolname); 2443 if (poolname == NULL) 2444 poolname = spa_name(spa); 2445 sip->pool_name = spa_strdup(poolname); 2446 sip->spa_load_state = spa_load_state(spa); 2447 sip->spa_load_notes = NULL; 2448 2449 mutex_enter(&shl->procfs_list.pl_lock); 2450 procfs_list_add(&shl->procfs_list, sip); 2451 shl->size++; 2452 mutex_exit(&shl->procfs_list.pl_lock); 2453 } 2454 2455 void 2456 spa_import_progress_remove(uint64_t pool_guid) 2457 { 2458 spa_history_list_t *shl = spa_import_progress_list; 2459 spa_import_progress_t *sip; 2460 2461 mutex_enter(&shl->procfs_list.pl_lock); 2462 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2463 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2464 if (sip->pool_guid == pool_guid) { 2465 if (sip->pool_name) 2466 spa_strfree(sip->pool_name); 2467 if (sip->spa_load_notes) 2468 spa_strfree(sip->spa_load_notes); 2469 list_remove(&shl->procfs_list.pl_list, sip); 2470 shl->size--; 2471 kmem_free(sip, sizeof (spa_import_progress_t)); 2472 break; 2473 } 2474 } 2475 mutex_exit(&shl->procfs_list.pl_lock); 2476 } 2477 2478 /* 2479 * ========================================================================== 2480 * Initialization and Termination 2481 * ========================================================================== 2482 */ 2483 2484 static int 2485 spa_name_compare(const void *a1, const void *a2) 2486 { 2487 const spa_t *s1 = a1; 2488 const spa_t *s2 = a2; 2489 int s; 2490 2491 s = strcmp(s1->spa_name, s2->spa_name); 2492 2493 return (TREE_ISIGN(s)); 2494 } 2495 2496 void 2497 spa_boot_init(void) 2498 { 2499 spa_config_load(); 2500 } 2501 2502 void 2503 spa_init(spa_mode_t mode) 2504 { 2505 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2506 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2507 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2508 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2509 2510 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2511 offsetof(spa_t, spa_avl)); 2512 2513 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2514 offsetof(spa_aux_t, aux_avl)); 2515 2516 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2517 offsetof(spa_aux_t, aux_avl)); 2518 2519 spa_mode_global = mode; 2520 2521 #ifndef _KERNEL 2522 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2523 struct sigaction sa; 2524 2525 sa.sa_flags = SA_SIGINFO; 2526 sigemptyset(&sa.sa_mask); 2527 sa.sa_sigaction = arc_buf_sigsegv; 2528 2529 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2530 perror("could not enable watchpoints: " 2531 "sigaction(SIGSEGV, ...) = "); 2532 } else { 2533 arc_watch = B_TRUE; 2534 } 2535 } 2536 #endif 2537 2538 fm_init(); 2539 zfs_refcount_init(); 2540 unique_init(); 2541 zfs_btree_init(); 2542 metaslab_stat_init(); 2543 brt_init(); 2544 ddt_init(); 2545 zio_init(); 2546 dmu_init(); 2547 zil_init(); 2548 vdev_mirror_stat_init(); 2549 vdev_raidz_math_init(); 2550 vdev_file_init(); 2551 zfs_prop_init(); 2552 chksum_init(); 2553 zpool_prop_init(); 2554 zpool_feature_init(); 2555 spa_config_load(); 2556 vdev_prop_init(); 2557 l2arc_start(); 2558 scan_init(); 2559 qat_init(); 2560 spa_import_progress_init(); 2561 } 2562 2563 void 2564 spa_fini(void) 2565 { 2566 l2arc_stop(); 2567 2568 spa_evict_all(); 2569 2570 vdev_file_fini(); 2571 vdev_mirror_stat_fini(); 2572 vdev_raidz_math_fini(); 2573 chksum_fini(); 2574 zil_fini(); 2575 dmu_fini(); 2576 zio_fini(); 2577 ddt_fini(); 2578 brt_fini(); 2579 metaslab_stat_fini(); 2580 zfs_btree_fini(); 2581 unique_fini(); 2582 zfs_refcount_fini(); 2583 fm_fini(); 2584 scan_fini(); 2585 qat_fini(); 2586 spa_import_progress_destroy(); 2587 2588 avl_destroy(&spa_namespace_avl); 2589 avl_destroy(&spa_spare_avl); 2590 avl_destroy(&spa_l2cache_avl); 2591 2592 cv_destroy(&spa_namespace_cv); 2593 mutex_destroy(&spa_namespace_lock); 2594 mutex_destroy(&spa_spare_lock); 2595 mutex_destroy(&spa_l2cache_lock); 2596 } 2597 2598 /* 2599 * Return whether this pool has a dedicated slog device. No locking needed. 2600 * It's not a problem if the wrong answer is returned as it's only for 2601 * performance and not correctness. 2602 */ 2603 boolean_t 2604 spa_has_slogs(spa_t *spa) 2605 { 2606 return (spa->spa_log_class->mc_groups != 0); 2607 } 2608 2609 spa_log_state_t 2610 spa_get_log_state(spa_t *spa) 2611 { 2612 return (spa->spa_log_state); 2613 } 2614 2615 void 2616 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2617 { 2618 spa->spa_log_state = state; 2619 } 2620 2621 boolean_t 2622 spa_is_root(spa_t *spa) 2623 { 2624 return (spa->spa_is_root); 2625 } 2626 2627 boolean_t 2628 spa_writeable(spa_t *spa) 2629 { 2630 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2631 } 2632 2633 /* 2634 * Returns true if there is a pending sync task in any of the current 2635 * syncing txg, the current quiescing txg, or the current open txg. 2636 */ 2637 boolean_t 2638 spa_has_pending_synctask(spa_t *spa) 2639 { 2640 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2641 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2642 } 2643 2644 spa_mode_t 2645 spa_mode(spa_t *spa) 2646 { 2647 return (spa->spa_mode); 2648 } 2649 2650 uint64_t 2651 spa_bootfs(spa_t *spa) 2652 { 2653 return (spa->spa_bootfs); 2654 } 2655 2656 uint64_t 2657 spa_delegation(spa_t *spa) 2658 { 2659 return (spa->spa_delegation); 2660 } 2661 2662 objset_t * 2663 spa_meta_objset(spa_t *spa) 2664 { 2665 return (spa->spa_meta_objset); 2666 } 2667 2668 enum zio_checksum 2669 spa_dedup_checksum(spa_t *spa) 2670 { 2671 return (spa->spa_dedup_checksum); 2672 } 2673 2674 /* 2675 * Reset pool scan stat per scan pass (or reboot). 2676 */ 2677 void 2678 spa_scan_stat_init(spa_t *spa) 2679 { 2680 /* data not stored on disk */ 2681 spa->spa_scan_pass_start = gethrestime_sec(); 2682 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2683 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2684 else 2685 spa->spa_scan_pass_scrub_pause = 0; 2686 2687 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2688 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2689 else 2690 spa->spa_scan_pass_errorscrub_pause = 0; 2691 2692 spa->spa_scan_pass_scrub_spent_paused = 0; 2693 spa->spa_scan_pass_exam = 0; 2694 spa->spa_scan_pass_issued = 0; 2695 2696 // error scrub stats 2697 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2698 } 2699 2700 /* 2701 * Get scan stats for zpool status reports 2702 */ 2703 int 2704 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2705 { 2706 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2707 2708 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2709 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2710 return (SET_ERROR(ENOENT)); 2711 2712 memset(ps, 0, sizeof (pool_scan_stat_t)); 2713 2714 /* data stored on disk */ 2715 ps->pss_func = scn->scn_phys.scn_func; 2716 ps->pss_state = scn->scn_phys.scn_state; 2717 ps->pss_start_time = scn->scn_phys.scn_start_time; 2718 ps->pss_end_time = scn->scn_phys.scn_end_time; 2719 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2720 ps->pss_examined = scn->scn_phys.scn_examined; 2721 ps->pss_skipped = scn->scn_phys.scn_skipped; 2722 ps->pss_processed = scn->scn_phys.scn_processed; 2723 ps->pss_errors = scn->scn_phys.scn_errors; 2724 2725 /* data not stored on disk */ 2726 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2727 ps->pss_pass_start = spa->spa_scan_pass_start; 2728 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2729 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2730 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2731 ps->pss_issued = 2732 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2733 2734 /* error scrub data stored on disk */ 2735 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2736 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2737 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2738 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2739 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2740 ps->pss_error_scrub_to_be_examined = 2741 scn->errorscrub_phys.dep_to_examine; 2742 2743 /* error scrub data not stored on disk */ 2744 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2745 2746 return (0); 2747 } 2748 2749 int 2750 spa_maxblocksize(spa_t *spa) 2751 { 2752 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2753 return (SPA_MAXBLOCKSIZE); 2754 else 2755 return (SPA_OLD_MAXBLOCKSIZE); 2756 } 2757 2758 2759 /* 2760 * Returns the txg that the last device removal completed. No indirect mappings 2761 * have been added since this txg. 2762 */ 2763 uint64_t 2764 spa_get_last_removal_txg(spa_t *spa) 2765 { 2766 uint64_t vdevid; 2767 uint64_t ret = -1ULL; 2768 2769 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2770 /* 2771 * sr_prev_indirect_vdev is only modified while holding all the 2772 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2773 * examining it. 2774 */ 2775 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2776 2777 while (vdevid != -1ULL) { 2778 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2779 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2780 2781 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2782 2783 /* 2784 * If the removal did not remap any data, we don't care. 2785 */ 2786 if (vdev_indirect_births_count(vib) != 0) { 2787 ret = vdev_indirect_births_last_entry_txg(vib); 2788 break; 2789 } 2790 2791 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2792 } 2793 spa_config_exit(spa, SCL_VDEV, FTAG); 2794 2795 IMPLY(ret != -1ULL, 2796 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2797 2798 return (ret); 2799 } 2800 2801 int 2802 spa_maxdnodesize(spa_t *spa) 2803 { 2804 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2805 return (DNODE_MAX_SIZE); 2806 else 2807 return (DNODE_MIN_SIZE); 2808 } 2809 2810 boolean_t 2811 spa_multihost(spa_t *spa) 2812 { 2813 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2814 } 2815 2816 uint32_t 2817 spa_get_hostid(spa_t *spa) 2818 { 2819 return (spa->spa_hostid); 2820 } 2821 2822 boolean_t 2823 spa_trust_config(spa_t *spa) 2824 { 2825 return (spa->spa_trust_config); 2826 } 2827 2828 uint64_t 2829 spa_missing_tvds_allowed(spa_t *spa) 2830 { 2831 return (spa->spa_missing_tvds_allowed); 2832 } 2833 2834 space_map_t * 2835 spa_syncing_log_sm(spa_t *spa) 2836 { 2837 return (spa->spa_syncing_log_sm); 2838 } 2839 2840 void 2841 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2842 { 2843 spa->spa_missing_tvds = missing; 2844 } 2845 2846 /* 2847 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2848 */ 2849 const char * 2850 spa_state_to_name(spa_t *spa) 2851 { 2852 ASSERT3P(spa, !=, NULL); 2853 2854 /* 2855 * it is possible for the spa to exist, without root vdev 2856 * as the spa transitions during import/export 2857 */ 2858 vdev_t *rvd = spa->spa_root_vdev; 2859 if (rvd == NULL) { 2860 return ("TRANSITIONING"); 2861 } 2862 vdev_state_t state = rvd->vdev_state; 2863 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2864 2865 if (spa_suspended(spa)) 2866 return ("SUSPENDED"); 2867 2868 switch (state) { 2869 case VDEV_STATE_CLOSED: 2870 case VDEV_STATE_OFFLINE: 2871 return ("OFFLINE"); 2872 case VDEV_STATE_REMOVED: 2873 return ("REMOVED"); 2874 case VDEV_STATE_CANT_OPEN: 2875 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2876 return ("FAULTED"); 2877 else if (aux == VDEV_AUX_SPLIT_POOL) 2878 return ("SPLIT"); 2879 else 2880 return ("UNAVAIL"); 2881 case VDEV_STATE_FAULTED: 2882 return ("FAULTED"); 2883 case VDEV_STATE_DEGRADED: 2884 return ("DEGRADED"); 2885 case VDEV_STATE_HEALTHY: 2886 return ("ONLINE"); 2887 default: 2888 break; 2889 } 2890 2891 return ("UNKNOWN"); 2892 } 2893 2894 boolean_t 2895 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2896 { 2897 vdev_t *rvd = spa->spa_root_vdev; 2898 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2899 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2900 return (B_FALSE); 2901 } 2902 return (B_TRUE); 2903 } 2904 2905 boolean_t 2906 spa_has_checkpoint(spa_t *spa) 2907 { 2908 return (spa->spa_checkpoint_txg != 0); 2909 } 2910 2911 boolean_t 2912 spa_importing_readonly_checkpoint(spa_t *spa) 2913 { 2914 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2915 spa->spa_mode == SPA_MODE_READ); 2916 } 2917 2918 uint64_t 2919 spa_min_claim_txg(spa_t *spa) 2920 { 2921 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2922 2923 if (checkpoint_txg != 0) 2924 return (checkpoint_txg + 1); 2925 2926 return (spa->spa_first_txg); 2927 } 2928 2929 /* 2930 * If there is a checkpoint, async destroys may consume more space from 2931 * the pool instead of freeing it. In an attempt to save the pool from 2932 * getting suspended when it is about to run out of space, we stop 2933 * processing async destroys. 2934 */ 2935 boolean_t 2936 spa_suspend_async_destroy(spa_t *spa) 2937 { 2938 dsl_pool_t *dp = spa_get_dsl(spa); 2939 2940 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2941 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2942 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2943 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2944 2945 if (spa_has_checkpoint(spa) && avail == 0) 2946 return (B_TRUE); 2947 2948 return (B_FALSE); 2949 } 2950 2951 #if defined(_KERNEL) 2952 2953 int 2954 param_set_deadman_failmode_common(const char *val) 2955 { 2956 spa_t *spa = NULL; 2957 char *p; 2958 2959 if (val == NULL) 2960 return (SET_ERROR(EINVAL)); 2961 2962 if ((p = strchr(val, '\n')) != NULL) 2963 *p = '\0'; 2964 2965 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2966 strcmp(val, "panic")) 2967 return (SET_ERROR(EINVAL)); 2968 2969 if (spa_mode_global != SPA_MODE_UNINIT) { 2970 mutex_enter(&spa_namespace_lock); 2971 while ((spa = spa_next(spa)) != NULL) 2972 spa_set_deadman_failmode(spa, val); 2973 mutex_exit(&spa_namespace_lock); 2974 } 2975 2976 return (0); 2977 } 2978 #endif 2979 2980 /* Namespace manipulation */ 2981 EXPORT_SYMBOL(spa_lookup); 2982 EXPORT_SYMBOL(spa_add); 2983 EXPORT_SYMBOL(spa_remove); 2984 EXPORT_SYMBOL(spa_next); 2985 2986 /* Refcount functions */ 2987 EXPORT_SYMBOL(spa_open_ref); 2988 EXPORT_SYMBOL(spa_close); 2989 EXPORT_SYMBOL(spa_refcount_zero); 2990 2991 /* Pool configuration lock */ 2992 EXPORT_SYMBOL(spa_config_tryenter); 2993 EXPORT_SYMBOL(spa_config_enter); 2994 EXPORT_SYMBOL(spa_config_exit); 2995 EXPORT_SYMBOL(spa_config_held); 2996 2997 /* Pool vdev add/remove lock */ 2998 EXPORT_SYMBOL(spa_vdev_enter); 2999 EXPORT_SYMBOL(spa_vdev_exit); 3000 3001 /* Pool vdev state change lock */ 3002 EXPORT_SYMBOL(spa_vdev_state_enter); 3003 EXPORT_SYMBOL(spa_vdev_state_exit); 3004 3005 /* Accessor functions */ 3006 EXPORT_SYMBOL(spa_shutting_down); 3007 EXPORT_SYMBOL(spa_get_dsl); 3008 EXPORT_SYMBOL(spa_get_rootblkptr); 3009 EXPORT_SYMBOL(spa_set_rootblkptr); 3010 EXPORT_SYMBOL(spa_altroot); 3011 EXPORT_SYMBOL(spa_sync_pass); 3012 EXPORT_SYMBOL(spa_name); 3013 EXPORT_SYMBOL(spa_guid); 3014 EXPORT_SYMBOL(spa_last_synced_txg); 3015 EXPORT_SYMBOL(spa_first_txg); 3016 EXPORT_SYMBOL(spa_syncing_txg); 3017 EXPORT_SYMBOL(spa_version); 3018 EXPORT_SYMBOL(spa_state); 3019 EXPORT_SYMBOL(spa_load_state); 3020 EXPORT_SYMBOL(spa_freeze_txg); 3021 EXPORT_SYMBOL(spa_get_dspace); 3022 EXPORT_SYMBOL(spa_update_dspace); 3023 EXPORT_SYMBOL(spa_deflate); 3024 EXPORT_SYMBOL(spa_normal_class); 3025 EXPORT_SYMBOL(spa_log_class); 3026 EXPORT_SYMBOL(spa_special_class); 3027 EXPORT_SYMBOL(spa_preferred_class); 3028 EXPORT_SYMBOL(spa_max_replication); 3029 EXPORT_SYMBOL(spa_prev_software_version); 3030 EXPORT_SYMBOL(spa_get_failmode); 3031 EXPORT_SYMBOL(spa_suspended); 3032 EXPORT_SYMBOL(spa_bootfs); 3033 EXPORT_SYMBOL(spa_delegation); 3034 EXPORT_SYMBOL(spa_meta_objset); 3035 EXPORT_SYMBOL(spa_maxblocksize); 3036 EXPORT_SYMBOL(spa_maxdnodesize); 3037 3038 /* Miscellaneous support routines */ 3039 EXPORT_SYMBOL(spa_guid_exists); 3040 EXPORT_SYMBOL(spa_strdup); 3041 EXPORT_SYMBOL(spa_strfree); 3042 EXPORT_SYMBOL(spa_generate_guid); 3043 EXPORT_SYMBOL(snprintf_blkptr); 3044 EXPORT_SYMBOL(spa_freeze); 3045 EXPORT_SYMBOL(spa_upgrade); 3046 EXPORT_SYMBOL(spa_evict_all); 3047 EXPORT_SYMBOL(spa_lookup_by_guid); 3048 EXPORT_SYMBOL(spa_has_spare); 3049 EXPORT_SYMBOL(dva_get_dsize_sync); 3050 EXPORT_SYMBOL(bp_get_dsize_sync); 3051 EXPORT_SYMBOL(bp_get_dsize); 3052 EXPORT_SYMBOL(spa_has_slogs); 3053 EXPORT_SYMBOL(spa_is_root); 3054 EXPORT_SYMBOL(spa_writeable); 3055 EXPORT_SYMBOL(spa_mode); 3056 EXPORT_SYMBOL(spa_namespace_lock); 3057 EXPORT_SYMBOL(spa_trust_config); 3058 EXPORT_SYMBOL(spa_missing_tvds_allowed); 3059 EXPORT_SYMBOL(spa_set_missing_tvds); 3060 EXPORT_SYMBOL(spa_state_to_name); 3061 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 3062 EXPORT_SYMBOL(spa_min_claim_txg); 3063 EXPORT_SYMBOL(spa_suspend_async_destroy); 3064 EXPORT_SYMBOL(spa_has_checkpoint); 3065 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 3066 3067 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 3068 "Set additional debugging flags"); 3069 3070 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 3071 "Set to attempt to recover from fatal errors"); 3072 3073 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 3074 "Set to ignore IO errors during free and permanently leak the space"); 3075 3076 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 3077 "Dead I/O check interval in milliseconds"); 3078 3079 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 3080 "Enable deadman timer"); 3081 3082 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 3083 "SPA size estimate multiplication factor"); 3084 3085 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 3086 "Place DDT data into the special class"); 3087 3088 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 3089 "Place user data indirect blocks into the special class"); 3090 3091 /* BEGIN CSTYLED */ 3092 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 3093 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 3094 "Failmode for deadman timer"); 3095 3096 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 3097 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 3098 "Pool sync expiration time in milliseconds"); 3099 3100 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 3101 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 3102 "IO expiration time in milliseconds"); 3103 3104 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3105 "Small file blocks in special vdevs depends on this much " 3106 "free space available"); 3107 /* END CSTYLED */ 3108 3109 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3110 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3111 3112 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW, 3113 "Number of allocators per spa"); 3114 3115 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW, 3116 "Minimum number of CPUs per allocators"); 3117