xref: /freebsd/sys/contrib/openzfs/module/zfs/spa_misc.c (revision e63d20b70ee1dbee9b075f29de6f30cdcfe1abe1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  * Copyright (c) 2023, Klara Inc.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/zfs_chksum.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_initialize.h>
45 #include <sys/vdev_trim.h>
46 #include <sys/vdev_file.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/fm/util.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/brt.h>
62 #include <sys/ddt.h>
63 #include <sys/kstat.h>
64 #include "zfs_prop.h"
65 #include <sys/btree.h>
66 #include <sys/zfeature.h>
67 #include <sys/qat.h>
68 #include <sys/zstd/zstd.h>
69 
70 /*
71  * SPA locking
72  *
73  * There are three basic locks for managing spa_t structures:
74  *
75  * spa_namespace_lock (global mutex)
76  *
77  *	This lock must be acquired to do any of the following:
78  *
79  *		- Lookup a spa_t by name
80  *		- Add or remove a spa_t from the namespace
81  *		- Increase spa_refcount from non-zero
82  *		- Check if spa_refcount is zero
83  *		- Rename a spa_t
84  *		- add/remove/attach/detach devices
85  *		- Held for the duration of create/destroy/export
86  *		- Held at the start and end of import
87  *
88  *	It does not need to handle recursion.  A create or destroy may
89  *	reference objects (files or zvols) in other pools, but by
90  *	definition they must have an existing reference, and will never need
91  *	to lookup a spa_t by name.
92  *
93  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
94  *
95  *	This reference count keep track of any active users of the spa_t.  The
96  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
97  *	the refcount is never really 'zero' - opening a pool implicitly keeps
98  *	some references in the DMU.  Internally we check against spa_minref, but
99  *	present the image of a zero/non-zero value to consumers.
100  *
101  * spa_config_lock[] (per-spa array of rwlocks)
102  *
103  *	This protects the spa_t from config changes, and must be held in
104  *	the following circumstances:
105  *
106  *		- RW_READER to perform I/O to the spa
107  *		- RW_WRITER to change the vdev config
108  *
109  * The locking order is fairly straightforward:
110  *
111  *		spa_namespace_lock	->	spa_refcount
112  *
113  *	The namespace lock must be acquired to increase the refcount from 0
114  *	or to check if it is zero.
115  *
116  *		spa_refcount		->	spa_config_lock[]
117  *
118  *	There must be at least one valid reference on the spa_t to acquire
119  *	the config lock.
120  *
121  *		spa_namespace_lock	->	spa_config_lock[]
122  *
123  *	The namespace lock must always be taken before the config lock.
124  *
125  *
126  * The spa_namespace_lock can be acquired directly and is globally visible.
127  *
128  * The namespace is manipulated using the following functions, all of which
129  * require the spa_namespace_lock to be held.
130  *
131  *	spa_lookup()		Lookup a spa_t by name.
132  *
133  *	spa_add()		Create a new spa_t in the namespace.
134  *
135  *	spa_remove()		Remove a spa_t from the namespace.  This also
136  *				frees up any memory associated with the spa_t.
137  *
138  *	spa_next()		Returns the next spa_t in the system, or the
139  *				first if NULL is passed.
140  *
141  *	spa_evict_all()		Shutdown and remove all spa_t structures in
142  *				the system.
143  *
144  *	spa_guid_exists()	Determine whether a pool/device guid exists.
145  *
146  * The spa_refcount is manipulated using the following functions:
147  *
148  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
149  *				called with spa_namespace_lock held if the
150  *				refcount is currently zero.
151  *
152  *	spa_close()		Remove a reference from the spa_t.  This will
153  *				not free the spa_t or remove it from the
154  *				namespace.  No locking is required.
155  *
156  *	spa_refcount_zero()	Returns true if the refcount is currently
157  *				zero.  Must be called with spa_namespace_lock
158  *				held.
159  *
160  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
161  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
162  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
163  *
164  * To read the configuration, it suffices to hold one of these locks as reader.
165  * To modify the configuration, you must hold all locks as writer.  To modify
166  * vdev state without altering the vdev tree's topology (e.g. online/offline),
167  * you must hold SCL_STATE and SCL_ZIO as writer.
168  *
169  * We use these distinct config locks to avoid recursive lock entry.
170  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
171  * block allocations (SCL_ALLOC), which may require reading space maps
172  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
173  *
174  * The spa config locks cannot be normal rwlocks because we need the
175  * ability to hand off ownership.  For example, SCL_ZIO is acquired
176  * by the issuing thread and later released by an interrupt thread.
177  * They do, however, obey the usual write-wanted semantics to prevent
178  * writer (i.e. system administrator) starvation.
179  *
180  * The lock acquisition rules are as follows:
181  *
182  * SCL_CONFIG
183  *	Protects changes to the vdev tree topology, such as vdev
184  *	add/remove/attach/detach.  Protects the dirty config list
185  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
186  *
187  * SCL_STATE
188  *	Protects changes to pool state and vdev state, such as vdev
189  *	online/offline/fault/degrade/clear.  Protects the dirty state list
190  *	(spa_state_dirty_list) and global pool state (spa_state).
191  *
192  * SCL_ALLOC
193  *	Protects changes to metaslab groups and classes.
194  *	Held as reader by metaslab_alloc() and metaslab_claim().
195  *
196  * SCL_ZIO
197  *	Held by bp-level zios (those which have no io_vd upon entry)
198  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
199  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
200  *
201  * SCL_FREE
202  *	Protects changes to metaslab groups and classes.
203  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
204  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
205  *	blocks in zio_done() while another i/o that holds either
206  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
207  *
208  * SCL_VDEV
209  *	Held as reader to prevent changes to the vdev tree during trivial
210  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
211  *	other locks, and lower than all of them, to ensure that it's safe
212  *	to acquire regardless of caller context.
213  *
214  * In addition, the following rules apply:
215  *
216  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
217  *	The lock ordering is SCL_CONFIG > spa_props_lock.
218  *
219  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
220  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
221  *	or zio_write_phys() -- the caller must ensure that the config cannot
222  *	cannot change in the interim, and that the vdev cannot be reopened.
223  *	SCL_STATE as reader suffices for both.
224  *
225  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
226  *
227  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
228  *				for writing.
229  *
230  *	spa_vdev_exit()		Release the config lock, wait for all I/O
231  *				to complete, sync the updated configs to the
232  *				cache, and release the namespace lock.
233  *
234  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
235  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
236  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
237  */
238 
239 avl_tree_t spa_namespace_avl;
240 kmutex_t spa_namespace_lock;
241 kcondvar_t spa_namespace_cv;
242 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
243 
244 static kmutex_t spa_spare_lock;
245 static avl_tree_t spa_spare_avl;
246 static kmutex_t spa_l2cache_lock;
247 static avl_tree_t spa_l2cache_avl;
248 
249 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
250 
251 #ifdef ZFS_DEBUG
252 /*
253  * Everything except dprintf, set_error, spa, and indirect_remap is on
254  * by default in debug builds.
255  */
256 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
257     ZFS_DEBUG_INDIRECT_REMAP);
258 #else
259 int zfs_flags = 0;
260 #endif
261 
262 /*
263  * zfs_recover can be set to nonzero to attempt to recover from
264  * otherwise-fatal errors, typically caused by on-disk corruption.  When
265  * set, calls to zfs_panic_recover() will turn into warning messages.
266  * This should only be used as a last resort, as it typically results
267  * in leaked space, or worse.
268  */
269 int zfs_recover = B_FALSE;
270 
271 /*
272  * If destroy encounters an EIO while reading metadata (e.g. indirect
273  * blocks), space referenced by the missing metadata can not be freed.
274  * Normally this causes the background destroy to become "stalled", as
275  * it is unable to make forward progress.  While in this stalled state,
276  * all remaining space to free from the error-encountering filesystem is
277  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
278  * permanently leak the space from indirect blocks that can not be read,
279  * and continue to free everything else that it can.
280  *
281  * The default, "stalling" behavior is useful if the storage partially
282  * fails (i.e. some but not all i/os fail), and then later recovers.  In
283  * this case, we will be able to continue pool operations while it is
284  * partially failed, and when it recovers, we can continue to free the
285  * space, with no leaks.  However, note that this case is actually
286  * fairly rare.
287  *
288  * Typically pools either (a) fail completely (but perhaps temporarily,
289  * e.g. a top-level vdev going offline), or (b) have localized,
290  * permanent errors (e.g. disk returns the wrong data due to bit flip or
291  * firmware bug).  In case (a), this setting does not matter because the
292  * pool will be suspended and the sync thread will not be able to make
293  * forward progress regardless.  In case (b), because the error is
294  * permanent, the best we can do is leak the minimum amount of space,
295  * which is what setting this flag will do.  Therefore, it is reasonable
296  * for this flag to normally be set, but we chose the more conservative
297  * approach of not setting it, so that there is no possibility of
298  * leaking space in the "partial temporary" failure case.
299  */
300 int zfs_free_leak_on_eio = B_FALSE;
301 
302 /*
303  * Expiration time in milliseconds. This value has two meanings. First it is
304  * used to determine when the spa_deadman() logic should fire. By default the
305  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
306  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
307  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
308  * in one of three behaviors controlled by zfs_deadman_failmode.
309  */
310 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
311 
312 /*
313  * This value controls the maximum amount of time zio_wait() will block for an
314  * outstanding IO.  By default this is 300 seconds at which point the "hung"
315  * behavior will be applied as described for zfs_deadman_synctime_ms.
316  */
317 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
318 
319 /*
320  * Check time in milliseconds. This defines the frequency at which we check
321  * for hung I/O.
322  */
323 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
324 
325 /*
326  * By default the deadman is enabled.
327  */
328 int zfs_deadman_enabled = B_TRUE;
329 
330 /*
331  * Controls the behavior of the deadman when it detects a "hung" I/O.
332  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
333  *
334  * wait     - Wait for the "hung" I/O (default)
335  * continue - Attempt to recover from a "hung" I/O
336  * panic    - Panic the system
337  */
338 const char *zfs_deadman_failmode = "wait";
339 
340 /*
341  * The worst case is single-sector max-parity RAID-Z blocks, in which
342  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
343  * times the size; so just assume that.  Add to this the fact that
344  * we can have up to 3 DVAs per bp, and one more factor of 2 because
345  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
346  * the worst case is:
347  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
348  */
349 uint_t spa_asize_inflation = 24;
350 
351 /*
352  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
353  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
354  * don't run the pool completely out of space, due to unaccounted changes (e.g.
355  * to the MOS).  It also limits the worst-case time to allocate space.  If we
356  * have less than this amount of free space, most ZPL operations (e.g.  write,
357  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
358  * also part of this 3.2% of space which can't be consumed by normal writes;
359  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
360  * log space.
361  *
362  * Certain operations (e.g. file removal, most administrative actions) can
363  * use half the slop space.  They will only return ENOSPC if less than half
364  * the slop space is free.  Typically, once the pool has less than the slop
365  * space free, the user will use these operations to free up space in the pool.
366  * These are the operations that call dsl_pool_adjustedsize() with the netfree
367  * argument set to TRUE.
368  *
369  * Operations that are almost guaranteed to free up space in the absence of
370  * a pool checkpoint can use up to three quarters of the slop space
371  * (e.g zfs destroy).
372  *
373  * A very restricted set of operations are always permitted, regardless of
374  * the amount of free space.  These are the operations that call
375  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
376  * increase in the amount of space used, it is possible to run the pool
377  * completely out of space, causing it to be permanently read-only.
378  *
379  * Note that on very small pools, the slop space will be larger than
380  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
381  * but we never allow it to be more than half the pool size.
382  *
383  * Further, on very large pools, the slop space will be smaller than
384  * 3.2%, to avoid reserving much more space than we actually need; bounded
385  * by spa_max_slop (128GB).
386  *
387  * See also the comments in zfs_space_check_t.
388  */
389 uint_t spa_slop_shift = 5;
390 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
391 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
392 
393 /*
394  * Number of allocators to use, per spa instance
395  */
396 static int spa_num_allocators = 4;
397 static int spa_cpus_per_allocator = 4;
398 
399 /*
400  * Spa active allocator.
401  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
402  */
403 const char *zfs_active_allocator = "dynamic";
404 
405 void
406 spa_load_failed(spa_t *spa, const char *fmt, ...)
407 {
408 	va_list adx;
409 	char buf[256];
410 
411 	va_start(adx, fmt);
412 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
413 	va_end(adx);
414 
415 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
416 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
417 }
418 
419 void
420 spa_load_note(spa_t *spa, const char *fmt, ...)
421 {
422 	va_list adx;
423 	char buf[256];
424 
425 	va_start(adx, fmt);
426 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
427 	va_end(adx);
428 
429 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
430 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
431 
432 	spa_import_progress_set_notes_nolog(spa, "%s", buf);
433 }
434 
435 /*
436  * By default dedup and user data indirects land in the special class
437  */
438 static int zfs_ddt_data_is_special = B_TRUE;
439 static int zfs_user_indirect_is_special = B_TRUE;
440 
441 /*
442  * The percentage of special class final space reserved for metadata only.
443  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
444  * let metadata into the class.
445  */
446 static uint_t zfs_special_class_metadata_reserve_pct = 25;
447 
448 /*
449  * ==========================================================================
450  * SPA config locking
451  * ==========================================================================
452  */
453 static void
454 spa_config_lock_init(spa_t *spa)
455 {
456 	for (int i = 0; i < SCL_LOCKS; i++) {
457 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
458 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
459 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
460 		scl->scl_writer = NULL;
461 		scl->scl_write_wanted = 0;
462 		scl->scl_count = 0;
463 	}
464 }
465 
466 static void
467 spa_config_lock_destroy(spa_t *spa)
468 {
469 	for (int i = 0; i < SCL_LOCKS; i++) {
470 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
471 		mutex_destroy(&scl->scl_lock);
472 		cv_destroy(&scl->scl_cv);
473 		ASSERT(scl->scl_writer == NULL);
474 		ASSERT(scl->scl_write_wanted == 0);
475 		ASSERT(scl->scl_count == 0);
476 	}
477 }
478 
479 int
480 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
481 {
482 	for (int i = 0; i < SCL_LOCKS; i++) {
483 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
484 		if (!(locks & (1 << i)))
485 			continue;
486 		mutex_enter(&scl->scl_lock);
487 		if (rw == RW_READER) {
488 			if (scl->scl_writer || scl->scl_write_wanted) {
489 				mutex_exit(&scl->scl_lock);
490 				spa_config_exit(spa, locks & ((1 << i) - 1),
491 				    tag);
492 				return (0);
493 			}
494 		} else {
495 			ASSERT(scl->scl_writer != curthread);
496 			if (scl->scl_count != 0) {
497 				mutex_exit(&scl->scl_lock);
498 				spa_config_exit(spa, locks & ((1 << i) - 1),
499 				    tag);
500 				return (0);
501 			}
502 			scl->scl_writer = curthread;
503 		}
504 		scl->scl_count++;
505 		mutex_exit(&scl->scl_lock);
506 	}
507 	return (1);
508 }
509 
510 static void
511 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
512     int mmp_flag)
513 {
514 	(void) tag;
515 	int wlocks_held = 0;
516 
517 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
518 
519 	for (int i = 0; i < SCL_LOCKS; i++) {
520 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
521 		if (scl->scl_writer == curthread)
522 			wlocks_held |= (1 << i);
523 		if (!(locks & (1 << i)))
524 			continue;
525 		mutex_enter(&scl->scl_lock);
526 		if (rw == RW_READER) {
527 			while (scl->scl_writer ||
528 			    (!mmp_flag && scl->scl_write_wanted)) {
529 				cv_wait(&scl->scl_cv, &scl->scl_lock);
530 			}
531 		} else {
532 			ASSERT(scl->scl_writer != curthread);
533 			while (scl->scl_count != 0) {
534 				scl->scl_write_wanted++;
535 				cv_wait(&scl->scl_cv, &scl->scl_lock);
536 				scl->scl_write_wanted--;
537 			}
538 			scl->scl_writer = curthread;
539 		}
540 		scl->scl_count++;
541 		mutex_exit(&scl->scl_lock);
542 	}
543 	ASSERT3U(wlocks_held, <=, locks);
544 }
545 
546 void
547 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
548 {
549 	spa_config_enter_impl(spa, locks, tag, rw, 0);
550 }
551 
552 /*
553  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
554  * outstanding write lock requests. This is needed since the mmp updates are
555  * time sensitive and failure to service them promptly will result in a
556  * suspended pool. This pool suspension has been seen in practice when there is
557  * a single disk in a pool that is responding slowly and presumably about to
558  * fail.
559  */
560 
561 void
562 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
563 {
564 	spa_config_enter_impl(spa, locks, tag, rw, 1);
565 }
566 
567 void
568 spa_config_exit(spa_t *spa, int locks, const void *tag)
569 {
570 	(void) tag;
571 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
572 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
573 		if (!(locks & (1 << i)))
574 			continue;
575 		mutex_enter(&scl->scl_lock);
576 		ASSERT(scl->scl_count > 0);
577 		if (--scl->scl_count == 0) {
578 			ASSERT(scl->scl_writer == NULL ||
579 			    scl->scl_writer == curthread);
580 			scl->scl_writer = NULL;	/* OK in either case */
581 			cv_broadcast(&scl->scl_cv);
582 		}
583 		mutex_exit(&scl->scl_lock);
584 	}
585 }
586 
587 int
588 spa_config_held(spa_t *spa, int locks, krw_t rw)
589 {
590 	int locks_held = 0;
591 
592 	for (int i = 0; i < SCL_LOCKS; i++) {
593 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
594 		if (!(locks & (1 << i)))
595 			continue;
596 		if ((rw == RW_READER && scl->scl_count != 0) ||
597 		    (rw == RW_WRITER && scl->scl_writer == curthread))
598 			locks_held |= 1 << i;
599 	}
600 
601 	return (locks_held);
602 }
603 
604 /*
605  * ==========================================================================
606  * SPA namespace functions
607  * ==========================================================================
608  */
609 
610 /*
611  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
612  * Returns NULL if no matching spa_t is found.
613  */
614 spa_t *
615 spa_lookup(const char *name)
616 {
617 	static spa_t search;	/* spa_t is large; don't allocate on stack */
618 	spa_t *spa;
619 	avl_index_t where;
620 	char *cp;
621 
622 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
623 
624 retry:
625 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
626 
627 	/*
628 	 * If it's a full dataset name, figure out the pool name and
629 	 * just use that.
630 	 */
631 	cp = strpbrk(search.spa_name, "/@#");
632 	if (cp != NULL)
633 		*cp = '\0';
634 
635 	spa = avl_find(&spa_namespace_avl, &search, &where);
636 	if (spa == NULL)
637 		return (NULL);
638 
639 	if (spa->spa_load_thread != NULL &&
640 	    spa->spa_load_thread != curthread) {
641 		cv_wait(&spa_namespace_cv, &spa_namespace_lock);
642 		goto retry;
643 	}
644 
645 	return (spa);
646 }
647 
648 /*
649  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
650  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
651  * looking for potentially hung I/Os.
652  */
653 void
654 spa_deadman(void *arg)
655 {
656 	spa_t *spa = arg;
657 
658 	/* Disable the deadman if the pool is suspended. */
659 	if (spa_suspended(spa))
660 		return;
661 
662 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
663 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
664 	    (u_longlong_t)++spa->spa_deadman_calls);
665 	if (zfs_deadman_enabled)
666 		vdev_deadman(spa->spa_root_vdev, FTAG);
667 
668 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
669 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
670 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
671 }
672 
673 static int
674 spa_log_sm_sort_by_txg(const void *va, const void *vb)
675 {
676 	const spa_log_sm_t *a = va;
677 	const spa_log_sm_t *b = vb;
678 
679 	return (TREE_CMP(a->sls_txg, b->sls_txg));
680 }
681 
682 /*
683  * Create an uninitialized spa_t with the given name.  Requires
684  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
685  * exist by calling spa_lookup() first.
686  */
687 spa_t *
688 spa_add(const char *name, nvlist_t *config, const char *altroot)
689 {
690 	spa_t *spa;
691 	spa_config_dirent_t *dp;
692 
693 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
694 
695 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
696 
697 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
698 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
699 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
700 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
701 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
702 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
703 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
704 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
705 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
706 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
707 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
708 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
709 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
710 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
711 
712 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
713 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
714 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
715 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
716 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
717 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
718 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
719 
720 	for (int t = 0; t < TXG_SIZE; t++)
721 		bplist_create(&spa->spa_free_bplist[t]);
722 
723 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
724 	spa->spa_state = POOL_STATE_UNINITIALIZED;
725 	spa->spa_freeze_txg = UINT64_MAX;
726 	spa->spa_final_txg = UINT64_MAX;
727 	spa->spa_load_max_txg = UINT64_MAX;
728 	spa->spa_proc = &p0;
729 	spa->spa_proc_state = SPA_PROC_NONE;
730 	spa->spa_trust_config = B_TRUE;
731 	spa->spa_hostid = zone_get_hostid(NULL);
732 
733 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
734 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
735 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
736 	spa_set_allocator(spa, zfs_active_allocator);
737 
738 	zfs_refcount_create(&spa->spa_refcount);
739 	spa_config_lock_init(spa);
740 	spa_stats_init(spa);
741 
742 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
743 	avl_add(&spa_namespace_avl, spa);
744 
745 	/*
746 	 * Set the alternate root, if there is one.
747 	 */
748 	if (altroot)
749 		spa->spa_root = spa_strdup(altroot);
750 
751 	/* Do not allow more allocators than fraction of CPUs. */
752 	spa->spa_alloc_count = MAX(MIN(spa_num_allocators,
753 	    boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1);
754 
755 	spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
756 	    sizeof (spa_alloc_t), KM_SLEEP);
757 	for (int i = 0; i < spa->spa_alloc_count; i++) {
758 		mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
759 		    NULL);
760 		avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
761 		    sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
762 	}
763 	if (spa->spa_alloc_count > 1) {
764 		spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t,
765 		    sau_inuse[spa->spa_alloc_count]), KM_SLEEP);
766 		mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT,
767 		    NULL);
768 	}
769 
770 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
771 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
772 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
773 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
774 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
775 	    offsetof(log_summary_entry_t, lse_node));
776 
777 	/*
778 	 * Every pool starts with the default cachefile
779 	 */
780 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
781 	    offsetof(spa_config_dirent_t, scd_link));
782 
783 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
784 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
785 	list_insert_head(&spa->spa_config_list, dp);
786 
787 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
788 	    KM_SLEEP) == 0);
789 
790 	if (config != NULL) {
791 		nvlist_t *features;
792 
793 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
794 		    &features) == 0) {
795 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
796 			    0) == 0);
797 		}
798 
799 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
800 	}
801 
802 	if (spa->spa_label_features == NULL) {
803 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
804 		    KM_SLEEP) == 0);
805 	}
806 
807 	spa->spa_min_ashift = INT_MAX;
808 	spa->spa_max_ashift = 0;
809 	spa->spa_min_alloc = INT_MAX;
810 	spa->spa_gcd_alloc = INT_MAX;
811 
812 	/* Reset cached value */
813 	spa->spa_dedup_dspace = ~0ULL;
814 
815 	/*
816 	 * As a pool is being created, treat all features as disabled by
817 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
818 	 * refcount cache.
819 	 */
820 	for (int i = 0; i < SPA_FEATURES; i++) {
821 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
822 	}
823 
824 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
825 	    offsetof(vdev_t, vdev_leaf_node));
826 
827 	return (spa);
828 }
829 
830 /*
831  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
832  * spa_namespace_lock.  This is called only after the spa_t has been closed and
833  * deactivated.
834  */
835 void
836 spa_remove(spa_t *spa)
837 {
838 	spa_config_dirent_t *dp;
839 
840 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
841 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
842 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
843 	ASSERT0(spa->spa_waiters);
844 
845 	nvlist_free(spa->spa_config_splitting);
846 
847 	avl_remove(&spa_namespace_avl, spa);
848 
849 	if (spa->spa_root)
850 		spa_strfree(spa->spa_root);
851 
852 	while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
853 		if (dp->scd_path != NULL)
854 			spa_strfree(dp->scd_path);
855 		kmem_free(dp, sizeof (spa_config_dirent_t));
856 	}
857 
858 	for (int i = 0; i < spa->spa_alloc_count; i++) {
859 		avl_destroy(&spa->spa_allocs[i].spaa_tree);
860 		mutex_destroy(&spa->spa_allocs[i].spaa_lock);
861 	}
862 	kmem_free(spa->spa_allocs, spa->spa_alloc_count *
863 	    sizeof (spa_alloc_t));
864 	if (spa->spa_alloc_count > 1) {
865 		mutex_destroy(&spa->spa_allocs_use->sau_lock);
866 		kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t,
867 		    sau_inuse[spa->spa_alloc_count]));
868 	}
869 
870 	avl_destroy(&spa->spa_metaslabs_by_flushed);
871 	avl_destroy(&spa->spa_sm_logs_by_txg);
872 	list_destroy(&spa->spa_log_summary);
873 	list_destroy(&spa->spa_config_list);
874 	list_destroy(&spa->spa_leaf_list);
875 
876 	nvlist_free(spa->spa_label_features);
877 	nvlist_free(spa->spa_load_info);
878 	nvlist_free(spa->spa_feat_stats);
879 	spa_config_set(spa, NULL);
880 
881 	zfs_refcount_destroy(&spa->spa_refcount);
882 
883 	spa_stats_destroy(spa);
884 	spa_config_lock_destroy(spa);
885 
886 	for (int t = 0; t < TXG_SIZE; t++)
887 		bplist_destroy(&spa->spa_free_bplist[t]);
888 
889 	zio_checksum_templates_free(spa);
890 
891 	cv_destroy(&spa->spa_async_cv);
892 	cv_destroy(&spa->spa_evicting_os_cv);
893 	cv_destroy(&spa->spa_proc_cv);
894 	cv_destroy(&spa->spa_scrub_io_cv);
895 	cv_destroy(&spa->spa_suspend_cv);
896 	cv_destroy(&spa->spa_activities_cv);
897 	cv_destroy(&spa->spa_waiters_cv);
898 
899 	mutex_destroy(&spa->spa_flushed_ms_lock);
900 	mutex_destroy(&spa->spa_async_lock);
901 	mutex_destroy(&spa->spa_errlist_lock);
902 	mutex_destroy(&spa->spa_errlog_lock);
903 	mutex_destroy(&spa->spa_evicting_os_lock);
904 	mutex_destroy(&spa->spa_history_lock);
905 	mutex_destroy(&spa->spa_proc_lock);
906 	mutex_destroy(&spa->spa_props_lock);
907 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
908 	mutex_destroy(&spa->spa_scrub_lock);
909 	mutex_destroy(&spa->spa_suspend_lock);
910 	mutex_destroy(&spa->spa_vdev_top_lock);
911 	mutex_destroy(&spa->spa_feat_stats_lock);
912 	mutex_destroy(&spa->spa_activities_lock);
913 
914 	kmem_free(spa, sizeof (spa_t));
915 }
916 
917 /*
918  * Given a pool, return the next pool in the namespace, or NULL if there is
919  * none.  If 'prev' is NULL, return the first pool.
920  */
921 spa_t *
922 spa_next(spa_t *prev)
923 {
924 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
925 
926 	if (prev)
927 		return (AVL_NEXT(&spa_namespace_avl, prev));
928 	else
929 		return (avl_first(&spa_namespace_avl));
930 }
931 
932 /*
933  * ==========================================================================
934  * SPA refcount functions
935  * ==========================================================================
936  */
937 
938 /*
939  * Add a reference to the given spa_t.  Must have at least one reference, or
940  * have the namespace lock held.
941  */
942 void
943 spa_open_ref(spa_t *spa, const void *tag)
944 {
945 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
946 	    MUTEX_HELD(&spa_namespace_lock) ||
947 	    spa->spa_load_thread == curthread);
948 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
949 }
950 
951 /*
952  * Remove a reference to the given spa_t.  Must have at least one reference, or
953  * have the namespace lock held.
954  */
955 void
956 spa_close(spa_t *spa, const void *tag)
957 {
958 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
959 	    MUTEX_HELD(&spa_namespace_lock) ||
960 	    spa->spa_load_thread == curthread);
961 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
962 }
963 
964 /*
965  * Remove a reference to the given spa_t held by a dsl dir that is
966  * being asynchronously released.  Async releases occur from a taskq
967  * performing eviction of dsl datasets and dirs.  The namespace lock
968  * isn't held and the hold by the object being evicted may contribute to
969  * spa_minref (e.g. dataset or directory released during pool export),
970  * so the asserts in spa_close() do not apply.
971  */
972 void
973 spa_async_close(spa_t *spa, const void *tag)
974 {
975 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
976 }
977 
978 /*
979  * Check to see if the spa refcount is zero.  Must be called with
980  * spa_namespace_lock held.  We really compare against spa_minref, which is the
981  * number of references acquired when opening a pool
982  */
983 boolean_t
984 spa_refcount_zero(spa_t *spa)
985 {
986 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
987 
988 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
989 }
990 
991 /*
992  * ==========================================================================
993  * SPA spare and l2cache tracking
994  * ==========================================================================
995  */
996 
997 /*
998  * Hot spares and cache devices are tracked using the same code below,
999  * for 'auxiliary' devices.
1000  */
1001 
1002 typedef struct spa_aux {
1003 	uint64_t	aux_guid;
1004 	uint64_t	aux_pool;
1005 	avl_node_t	aux_avl;
1006 	int		aux_count;
1007 } spa_aux_t;
1008 
1009 static inline int
1010 spa_aux_compare(const void *a, const void *b)
1011 {
1012 	const spa_aux_t *sa = (const spa_aux_t *)a;
1013 	const spa_aux_t *sb = (const spa_aux_t *)b;
1014 
1015 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
1016 }
1017 
1018 static void
1019 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1020 {
1021 	avl_index_t where;
1022 	spa_aux_t search;
1023 	spa_aux_t *aux;
1024 
1025 	search.aux_guid = vd->vdev_guid;
1026 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1027 		aux->aux_count++;
1028 	} else {
1029 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1030 		aux->aux_guid = vd->vdev_guid;
1031 		aux->aux_count = 1;
1032 		avl_insert(avl, aux, where);
1033 	}
1034 }
1035 
1036 static void
1037 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1038 {
1039 	spa_aux_t search;
1040 	spa_aux_t *aux;
1041 	avl_index_t where;
1042 
1043 	search.aux_guid = vd->vdev_guid;
1044 	aux = avl_find(avl, &search, &where);
1045 
1046 	ASSERT(aux != NULL);
1047 
1048 	if (--aux->aux_count == 0) {
1049 		avl_remove(avl, aux);
1050 		kmem_free(aux, sizeof (spa_aux_t));
1051 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1052 		aux->aux_pool = 0ULL;
1053 	}
1054 }
1055 
1056 static boolean_t
1057 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1058 {
1059 	spa_aux_t search, *found;
1060 
1061 	search.aux_guid = guid;
1062 	found = avl_find(avl, &search, NULL);
1063 
1064 	if (pool) {
1065 		if (found)
1066 			*pool = found->aux_pool;
1067 		else
1068 			*pool = 0ULL;
1069 	}
1070 
1071 	if (refcnt) {
1072 		if (found)
1073 			*refcnt = found->aux_count;
1074 		else
1075 			*refcnt = 0;
1076 	}
1077 
1078 	return (found != NULL);
1079 }
1080 
1081 static void
1082 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1083 {
1084 	spa_aux_t search, *found;
1085 	avl_index_t where;
1086 
1087 	search.aux_guid = vd->vdev_guid;
1088 	found = avl_find(avl, &search, &where);
1089 	ASSERT(found != NULL);
1090 	ASSERT(found->aux_pool == 0ULL);
1091 
1092 	found->aux_pool = spa_guid(vd->vdev_spa);
1093 }
1094 
1095 /*
1096  * Spares are tracked globally due to the following constraints:
1097  *
1098  *	- A spare may be part of multiple pools.
1099  *	- A spare may be added to a pool even if it's actively in use within
1100  *	  another pool.
1101  *	- A spare in use in any pool can only be the source of a replacement if
1102  *	  the target is a spare in the same pool.
1103  *
1104  * We keep track of all spares on the system through the use of a reference
1105  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1106  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1107  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1108  * inactive).  When a spare is made active (used to replace a device in the
1109  * pool), we also keep track of which pool its been made a part of.
1110  *
1111  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1112  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1113  * separate spare lock exists for the status query path, which does not need to
1114  * be completely consistent with respect to other vdev configuration changes.
1115  */
1116 
1117 static int
1118 spa_spare_compare(const void *a, const void *b)
1119 {
1120 	return (spa_aux_compare(a, b));
1121 }
1122 
1123 void
1124 spa_spare_add(vdev_t *vd)
1125 {
1126 	mutex_enter(&spa_spare_lock);
1127 	ASSERT(!vd->vdev_isspare);
1128 	spa_aux_add(vd, &spa_spare_avl);
1129 	vd->vdev_isspare = B_TRUE;
1130 	mutex_exit(&spa_spare_lock);
1131 }
1132 
1133 void
1134 spa_spare_remove(vdev_t *vd)
1135 {
1136 	mutex_enter(&spa_spare_lock);
1137 	ASSERT(vd->vdev_isspare);
1138 	spa_aux_remove(vd, &spa_spare_avl);
1139 	vd->vdev_isspare = B_FALSE;
1140 	mutex_exit(&spa_spare_lock);
1141 }
1142 
1143 boolean_t
1144 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1145 {
1146 	boolean_t found;
1147 
1148 	mutex_enter(&spa_spare_lock);
1149 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1150 	mutex_exit(&spa_spare_lock);
1151 
1152 	return (found);
1153 }
1154 
1155 void
1156 spa_spare_activate(vdev_t *vd)
1157 {
1158 	mutex_enter(&spa_spare_lock);
1159 	ASSERT(vd->vdev_isspare);
1160 	spa_aux_activate(vd, &spa_spare_avl);
1161 	mutex_exit(&spa_spare_lock);
1162 }
1163 
1164 /*
1165  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1166  * Cache devices currently only support one pool per cache device, and so
1167  * for these devices the aux reference count is currently unused beyond 1.
1168  */
1169 
1170 static int
1171 spa_l2cache_compare(const void *a, const void *b)
1172 {
1173 	return (spa_aux_compare(a, b));
1174 }
1175 
1176 void
1177 spa_l2cache_add(vdev_t *vd)
1178 {
1179 	mutex_enter(&spa_l2cache_lock);
1180 	ASSERT(!vd->vdev_isl2cache);
1181 	spa_aux_add(vd, &spa_l2cache_avl);
1182 	vd->vdev_isl2cache = B_TRUE;
1183 	mutex_exit(&spa_l2cache_lock);
1184 }
1185 
1186 void
1187 spa_l2cache_remove(vdev_t *vd)
1188 {
1189 	mutex_enter(&spa_l2cache_lock);
1190 	ASSERT(vd->vdev_isl2cache);
1191 	spa_aux_remove(vd, &spa_l2cache_avl);
1192 	vd->vdev_isl2cache = B_FALSE;
1193 	mutex_exit(&spa_l2cache_lock);
1194 }
1195 
1196 boolean_t
1197 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1198 {
1199 	boolean_t found;
1200 
1201 	mutex_enter(&spa_l2cache_lock);
1202 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1203 	mutex_exit(&spa_l2cache_lock);
1204 
1205 	return (found);
1206 }
1207 
1208 void
1209 spa_l2cache_activate(vdev_t *vd)
1210 {
1211 	mutex_enter(&spa_l2cache_lock);
1212 	ASSERT(vd->vdev_isl2cache);
1213 	spa_aux_activate(vd, &spa_l2cache_avl);
1214 	mutex_exit(&spa_l2cache_lock);
1215 }
1216 
1217 /*
1218  * ==========================================================================
1219  * SPA vdev locking
1220  * ==========================================================================
1221  */
1222 
1223 /*
1224  * Lock the given spa_t for the purpose of adding or removing a vdev.
1225  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1226  * It returns the next transaction group for the spa_t.
1227  */
1228 uint64_t
1229 spa_vdev_enter(spa_t *spa)
1230 {
1231 	mutex_enter(&spa->spa_vdev_top_lock);
1232 	mutex_enter(&spa_namespace_lock);
1233 
1234 	vdev_autotrim_stop_all(spa);
1235 
1236 	return (spa_vdev_config_enter(spa));
1237 }
1238 
1239 /*
1240  * The same as spa_vdev_enter() above but additionally takes the guid of
1241  * the vdev being detached.  When there is a rebuild in process it will be
1242  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1243  * The rebuild is canceled if only a single child remains after the detach.
1244  */
1245 uint64_t
1246 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1247 {
1248 	mutex_enter(&spa->spa_vdev_top_lock);
1249 	mutex_enter(&spa_namespace_lock);
1250 
1251 	vdev_autotrim_stop_all(spa);
1252 
1253 	if (guid != 0) {
1254 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1255 		if (vd) {
1256 			vdev_rebuild_stop_wait(vd->vdev_top);
1257 		}
1258 	}
1259 
1260 	return (spa_vdev_config_enter(spa));
1261 }
1262 
1263 /*
1264  * Internal implementation for spa_vdev_enter().  Used when a vdev
1265  * operation requires multiple syncs (i.e. removing a device) while
1266  * keeping the spa_namespace_lock held.
1267  */
1268 uint64_t
1269 spa_vdev_config_enter(spa_t *spa)
1270 {
1271 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1272 
1273 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1274 
1275 	return (spa_last_synced_txg(spa) + 1);
1276 }
1277 
1278 /*
1279  * Used in combination with spa_vdev_config_enter() to allow the syncing
1280  * of multiple transactions without releasing the spa_namespace_lock.
1281  */
1282 void
1283 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1284     const char *tag)
1285 {
1286 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1287 
1288 	int config_changed = B_FALSE;
1289 
1290 	ASSERT(txg > spa_last_synced_txg(spa));
1291 
1292 	spa->spa_pending_vdev = NULL;
1293 
1294 	/*
1295 	 * Reassess the DTLs.
1296 	 */
1297 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1298 
1299 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1300 		config_changed = B_TRUE;
1301 		spa->spa_config_generation++;
1302 	}
1303 
1304 	/*
1305 	 * Verify the metaslab classes.
1306 	 */
1307 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1308 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1309 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1310 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1311 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1312 
1313 	spa_config_exit(spa, SCL_ALL, spa);
1314 
1315 	/*
1316 	 * Panic the system if the specified tag requires it.  This
1317 	 * is useful for ensuring that configurations are updated
1318 	 * transactionally.
1319 	 */
1320 	if (zio_injection_enabled)
1321 		zio_handle_panic_injection(spa, tag, 0);
1322 
1323 	/*
1324 	 * Note: this txg_wait_synced() is important because it ensures
1325 	 * that there won't be more than one config change per txg.
1326 	 * This allows us to use the txg as the generation number.
1327 	 */
1328 	if (error == 0)
1329 		txg_wait_synced(spa->spa_dsl_pool, txg);
1330 
1331 	if (vd != NULL) {
1332 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1333 		if (vd->vdev_ops->vdev_op_leaf) {
1334 			mutex_enter(&vd->vdev_initialize_lock);
1335 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1336 			    NULL);
1337 			mutex_exit(&vd->vdev_initialize_lock);
1338 
1339 			mutex_enter(&vd->vdev_trim_lock);
1340 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1341 			mutex_exit(&vd->vdev_trim_lock);
1342 		}
1343 
1344 		/*
1345 		 * The vdev may be both a leaf and top-level device.
1346 		 */
1347 		vdev_autotrim_stop_wait(vd);
1348 
1349 		spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1350 		vdev_free(vd);
1351 		spa_config_exit(spa, SCL_STATE_ALL, spa);
1352 	}
1353 
1354 	/*
1355 	 * If the config changed, update the config cache.
1356 	 */
1357 	if (config_changed)
1358 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1359 }
1360 
1361 /*
1362  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1363  * locking of spa_vdev_enter(), we also want make sure the transactions have
1364  * synced to disk, and then update the global configuration cache with the new
1365  * information.
1366  */
1367 int
1368 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1369 {
1370 	vdev_autotrim_restart(spa);
1371 	vdev_rebuild_restart(spa);
1372 
1373 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1374 	mutex_exit(&spa_namespace_lock);
1375 	mutex_exit(&spa->spa_vdev_top_lock);
1376 
1377 	return (error);
1378 }
1379 
1380 /*
1381  * Lock the given spa_t for the purpose of changing vdev state.
1382  */
1383 void
1384 spa_vdev_state_enter(spa_t *spa, int oplocks)
1385 {
1386 	int locks = SCL_STATE_ALL | oplocks;
1387 
1388 	/*
1389 	 * Root pools may need to read of the underlying devfs filesystem
1390 	 * when opening up a vdev.  Unfortunately if we're holding the
1391 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1392 	 * the read from the root filesystem.  Instead we "prefetch"
1393 	 * the associated vnodes that we need prior to opening the
1394 	 * underlying devices and cache them so that we can prevent
1395 	 * any I/O when we are doing the actual open.
1396 	 */
1397 	if (spa_is_root(spa)) {
1398 		int low = locks & ~(SCL_ZIO - 1);
1399 		int high = locks & ~low;
1400 
1401 		spa_config_enter(spa, high, spa, RW_WRITER);
1402 		vdev_hold(spa->spa_root_vdev);
1403 		spa_config_enter(spa, low, spa, RW_WRITER);
1404 	} else {
1405 		spa_config_enter(spa, locks, spa, RW_WRITER);
1406 	}
1407 	spa->spa_vdev_locks = locks;
1408 }
1409 
1410 int
1411 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1412 {
1413 	boolean_t config_changed = B_FALSE;
1414 	vdev_t *vdev_top;
1415 
1416 	if (vd == NULL || vd == spa->spa_root_vdev) {
1417 		vdev_top = spa->spa_root_vdev;
1418 	} else {
1419 		vdev_top = vd->vdev_top;
1420 	}
1421 
1422 	if (vd != NULL || error == 0)
1423 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1424 
1425 	if (vd != NULL) {
1426 		if (vd != spa->spa_root_vdev)
1427 			vdev_state_dirty(vdev_top);
1428 
1429 		config_changed = B_TRUE;
1430 		spa->spa_config_generation++;
1431 	}
1432 
1433 	if (spa_is_root(spa))
1434 		vdev_rele(spa->spa_root_vdev);
1435 
1436 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1437 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1438 
1439 	/*
1440 	 * If anything changed, wait for it to sync.  This ensures that,
1441 	 * from the system administrator's perspective, zpool(8) commands
1442 	 * are synchronous.  This is important for things like zpool offline:
1443 	 * when the command completes, you expect no further I/O from ZFS.
1444 	 */
1445 	if (vd != NULL)
1446 		txg_wait_synced(spa->spa_dsl_pool, 0);
1447 
1448 	/*
1449 	 * If the config changed, update the config cache.
1450 	 */
1451 	if (config_changed) {
1452 		mutex_enter(&spa_namespace_lock);
1453 		spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1454 		mutex_exit(&spa_namespace_lock);
1455 	}
1456 
1457 	return (error);
1458 }
1459 
1460 /*
1461  * ==========================================================================
1462  * Miscellaneous functions
1463  * ==========================================================================
1464  */
1465 
1466 void
1467 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1468 {
1469 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1470 		fnvlist_add_boolean(spa->spa_label_features, feature);
1471 		/*
1472 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1473 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1474 		 * Thankfully, in this case we don't need to dirty the config
1475 		 * because it will be written out anyway when we finish
1476 		 * creating the pool.
1477 		 */
1478 		if (tx->tx_txg != TXG_INITIAL)
1479 			vdev_config_dirty(spa->spa_root_vdev);
1480 	}
1481 }
1482 
1483 void
1484 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1485 {
1486 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1487 		vdev_config_dirty(spa->spa_root_vdev);
1488 }
1489 
1490 /*
1491  * Return the spa_t associated with given pool_guid, if it exists.  If
1492  * device_guid is non-zero, determine whether the pool exists *and* contains
1493  * a device with the specified device_guid.
1494  */
1495 spa_t *
1496 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1497 {
1498 	spa_t *spa;
1499 	avl_tree_t *t = &spa_namespace_avl;
1500 
1501 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1502 
1503 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1504 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1505 			continue;
1506 		if (spa->spa_root_vdev == NULL)
1507 			continue;
1508 		if (spa_guid(spa) == pool_guid) {
1509 			if (device_guid == 0)
1510 				break;
1511 
1512 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1513 			    device_guid) != NULL)
1514 				break;
1515 
1516 			/*
1517 			 * Check any devices we may be in the process of adding.
1518 			 */
1519 			if (spa->spa_pending_vdev) {
1520 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1521 				    device_guid) != NULL)
1522 					break;
1523 			}
1524 		}
1525 	}
1526 
1527 	return (spa);
1528 }
1529 
1530 /*
1531  * Determine whether a pool with the given pool_guid exists.
1532  */
1533 boolean_t
1534 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1535 {
1536 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1537 }
1538 
1539 char *
1540 spa_strdup(const char *s)
1541 {
1542 	size_t len;
1543 	char *new;
1544 
1545 	len = strlen(s);
1546 	new = kmem_alloc(len + 1, KM_SLEEP);
1547 	memcpy(new, s, len + 1);
1548 
1549 	return (new);
1550 }
1551 
1552 void
1553 spa_strfree(char *s)
1554 {
1555 	kmem_free(s, strlen(s) + 1);
1556 }
1557 
1558 uint64_t
1559 spa_generate_guid(spa_t *spa)
1560 {
1561 	uint64_t guid;
1562 
1563 	if (spa != NULL) {
1564 		do {
1565 			(void) random_get_pseudo_bytes((void *)&guid,
1566 			    sizeof (guid));
1567 		} while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1568 	} else {
1569 		do {
1570 			(void) random_get_pseudo_bytes((void *)&guid,
1571 			    sizeof (guid));
1572 		} while (guid == 0 || spa_guid_exists(guid, 0));
1573 	}
1574 
1575 	return (guid);
1576 }
1577 
1578 void
1579 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1580 {
1581 	char type[256];
1582 	const char *checksum = NULL;
1583 	const char *compress = NULL;
1584 
1585 	if (bp != NULL) {
1586 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1587 			dmu_object_byteswap_t bswap =
1588 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1589 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1590 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1591 			    "metadata" : "data",
1592 			    dmu_ot_byteswap[bswap].ob_name);
1593 		} else {
1594 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1595 			    sizeof (type));
1596 		}
1597 		if (!BP_IS_EMBEDDED(bp)) {
1598 			checksum =
1599 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1600 		}
1601 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1602 	}
1603 
1604 	SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1605 	    compress);
1606 }
1607 
1608 void
1609 spa_freeze(spa_t *spa)
1610 {
1611 	uint64_t freeze_txg = 0;
1612 
1613 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1614 	if (spa->spa_freeze_txg == UINT64_MAX) {
1615 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1616 		spa->spa_freeze_txg = freeze_txg;
1617 	}
1618 	spa_config_exit(spa, SCL_ALL, FTAG);
1619 	if (freeze_txg != 0)
1620 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1621 }
1622 
1623 void
1624 zfs_panic_recover(const char *fmt, ...)
1625 {
1626 	va_list adx;
1627 
1628 	va_start(adx, fmt);
1629 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1630 	va_end(adx);
1631 }
1632 
1633 /*
1634  * This is a stripped-down version of strtoull, suitable only for converting
1635  * lowercase hexadecimal numbers that don't overflow.
1636  */
1637 uint64_t
1638 zfs_strtonum(const char *str, char **nptr)
1639 {
1640 	uint64_t val = 0;
1641 	char c;
1642 	int digit;
1643 
1644 	while ((c = *str) != '\0') {
1645 		if (c >= '0' && c <= '9')
1646 			digit = c - '0';
1647 		else if (c >= 'a' && c <= 'f')
1648 			digit = 10 + c - 'a';
1649 		else
1650 			break;
1651 
1652 		val *= 16;
1653 		val += digit;
1654 
1655 		str++;
1656 	}
1657 
1658 	if (nptr)
1659 		*nptr = (char *)str;
1660 
1661 	return (val);
1662 }
1663 
1664 void
1665 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1666 {
1667 	/*
1668 	 * We bump the feature refcount for each special vdev added to the pool
1669 	 */
1670 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1671 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1672 }
1673 
1674 /*
1675  * ==========================================================================
1676  * Accessor functions
1677  * ==========================================================================
1678  */
1679 
1680 boolean_t
1681 spa_shutting_down(spa_t *spa)
1682 {
1683 	return (spa->spa_async_suspended);
1684 }
1685 
1686 dsl_pool_t *
1687 spa_get_dsl(spa_t *spa)
1688 {
1689 	return (spa->spa_dsl_pool);
1690 }
1691 
1692 boolean_t
1693 spa_is_initializing(spa_t *spa)
1694 {
1695 	return (spa->spa_is_initializing);
1696 }
1697 
1698 boolean_t
1699 spa_indirect_vdevs_loaded(spa_t *spa)
1700 {
1701 	return (spa->spa_indirect_vdevs_loaded);
1702 }
1703 
1704 blkptr_t *
1705 spa_get_rootblkptr(spa_t *spa)
1706 {
1707 	return (&spa->spa_ubsync.ub_rootbp);
1708 }
1709 
1710 void
1711 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1712 {
1713 	spa->spa_uberblock.ub_rootbp = *bp;
1714 }
1715 
1716 void
1717 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1718 {
1719 	if (spa->spa_root == NULL)
1720 		buf[0] = '\0';
1721 	else
1722 		(void) strlcpy(buf, spa->spa_root, buflen);
1723 }
1724 
1725 uint32_t
1726 spa_sync_pass(spa_t *spa)
1727 {
1728 	return (spa->spa_sync_pass);
1729 }
1730 
1731 char *
1732 spa_name(spa_t *spa)
1733 {
1734 	return (spa->spa_name);
1735 }
1736 
1737 uint64_t
1738 spa_guid(spa_t *spa)
1739 {
1740 	dsl_pool_t *dp = spa_get_dsl(spa);
1741 	uint64_t guid;
1742 
1743 	/*
1744 	 * If we fail to parse the config during spa_load(), we can go through
1745 	 * the error path (which posts an ereport) and end up here with no root
1746 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1747 	 * this case.
1748 	 */
1749 	if (spa->spa_root_vdev == NULL)
1750 		return (spa->spa_config_guid);
1751 
1752 	guid = spa->spa_last_synced_guid != 0 ?
1753 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1754 
1755 	/*
1756 	 * Return the most recently synced out guid unless we're
1757 	 * in syncing context.
1758 	 */
1759 	if (dp && dsl_pool_sync_context(dp))
1760 		return (spa->spa_root_vdev->vdev_guid);
1761 	else
1762 		return (guid);
1763 }
1764 
1765 uint64_t
1766 spa_load_guid(spa_t *spa)
1767 {
1768 	/*
1769 	 * This is a GUID that exists solely as a reference for the
1770 	 * purposes of the arc.  It is generated at load time, and
1771 	 * is never written to persistent storage.
1772 	 */
1773 	return (spa->spa_load_guid);
1774 }
1775 
1776 uint64_t
1777 spa_last_synced_txg(spa_t *spa)
1778 {
1779 	return (spa->spa_ubsync.ub_txg);
1780 }
1781 
1782 uint64_t
1783 spa_first_txg(spa_t *spa)
1784 {
1785 	return (spa->spa_first_txg);
1786 }
1787 
1788 uint64_t
1789 spa_syncing_txg(spa_t *spa)
1790 {
1791 	return (spa->spa_syncing_txg);
1792 }
1793 
1794 /*
1795  * Return the last txg where data can be dirtied. The final txgs
1796  * will be used to just clear out any deferred frees that remain.
1797  */
1798 uint64_t
1799 spa_final_dirty_txg(spa_t *spa)
1800 {
1801 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1802 }
1803 
1804 pool_state_t
1805 spa_state(spa_t *spa)
1806 {
1807 	return (spa->spa_state);
1808 }
1809 
1810 spa_load_state_t
1811 spa_load_state(spa_t *spa)
1812 {
1813 	return (spa->spa_load_state);
1814 }
1815 
1816 uint64_t
1817 spa_freeze_txg(spa_t *spa)
1818 {
1819 	return (spa->spa_freeze_txg);
1820 }
1821 
1822 /*
1823  * Return the inflated asize for a logical write in bytes. This is used by the
1824  * DMU to calculate the space a logical write will require on disk.
1825  * If lsize is smaller than the largest physical block size allocatable on this
1826  * pool we use its value instead, since the write will end up using the whole
1827  * block anyway.
1828  */
1829 uint64_t
1830 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1831 {
1832 	if (lsize == 0)
1833 		return (0);	/* No inflation needed */
1834 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1835 }
1836 
1837 /*
1838  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1839  * (3.2%), minus the embedded log space.  On very small pools, it may be
1840  * slightly larger than this.  On very large pools, it will be capped to
1841  * the value of spa_max_slop.  The embedded log space is not included in
1842  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1843  * constant 97% of the total space, regardless of metaslab size (assuming the
1844  * default spa_slop_shift=5 and a non-tiny pool).
1845  *
1846  * See the comment above spa_slop_shift for more details.
1847  */
1848 uint64_t
1849 spa_get_slop_space(spa_t *spa)
1850 {
1851 	uint64_t space = 0;
1852 	uint64_t slop = 0;
1853 
1854 	/*
1855 	 * Make sure spa_dedup_dspace has been set.
1856 	 */
1857 	if (spa->spa_dedup_dspace == ~0ULL)
1858 		spa_update_dspace(spa);
1859 
1860 	/*
1861 	 * spa_get_dspace() includes the space only logically "used" by
1862 	 * deduplicated data, so since it's not useful to reserve more
1863 	 * space with more deduplicated data, we subtract that out here.
1864 	 */
1865 	space =
1866 	    spa_get_dspace(spa) - spa->spa_dedup_dspace - brt_get_dspace(spa);
1867 	slop = MIN(space >> spa_slop_shift, spa_max_slop);
1868 
1869 	/*
1870 	 * Subtract the embedded log space, but no more than half the (3.2%)
1871 	 * unusable space.  Note, the "no more than half" is only relevant if
1872 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1873 	 * default.
1874 	 */
1875 	uint64_t embedded_log =
1876 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1877 	slop -= MIN(embedded_log, slop >> 1);
1878 
1879 	/*
1880 	 * Slop space should be at least spa_min_slop, but no more than half
1881 	 * the entire pool.
1882 	 */
1883 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1884 	return (slop);
1885 }
1886 
1887 uint64_t
1888 spa_get_dspace(spa_t *spa)
1889 {
1890 	return (spa->spa_dspace);
1891 }
1892 
1893 uint64_t
1894 spa_get_checkpoint_space(spa_t *spa)
1895 {
1896 	return (spa->spa_checkpoint_info.sci_dspace);
1897 }
1898 
1899 void
1900 spa_update_dspace(spa_t *spa)
1901 {
1902 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1903 	    ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1904 	if (spa->spa_nonallocating_dspace > 0) {
1905 		/*
1906 		 * Subtract the space provided by all non-allocating vdevs that
1907 		 * contribute to dspace.  If a file is overwritten, its old
1908 		 * blocks are freed and new blocks are allocated.  If there are
1909 		 * no snapshots of the file, the available space should remain
1910 		 * the same.  The old blocks could be freed from the
1911 		 * non-allocating vdev, but the new blocks must be allocated on
1912 		 * other (allocating) vdevs.  By reserving the entire size of
1913 		 * the non-allocating vdevs (including allocated space), we
1914 		 * ensure that there will be enough space on the allocating
1915 		 * vdevs for this file overwrite to succeed.
1916 		 *
1917 		 * Note that the DMU/DSL doesn't actually know or care
1918 		 * how much space is allocated (it does its own tracking
1919 		 * of how much space has been logically used).  So it
1920 		 * doesn't matter that the data we are moving may be
1921 		 * allocated twice (on the old device and the new device).
1922 		 */
1923 		ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1924 		spa->spa_dspace -= spa->spa_nonallocating_dspace;
1925 	}
1926 }
1927 
1928 /*
1929  * Return the failure mode that has been set to this pool. The default
1930  * behavior will be to block all I/Os when a complete failure occurs.
1931  */
1932 uint64_t
1933 spa_get_failmode(spa_t *spa)
1934 {
1935 	return (spa->spa_failmode);
1936 }
1937 
1938 boolean_t
1939 spa_suspended(spa_t *spa)
1940 {
1941 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1942 }
1943 
1944 uint64_t
1945 spa_version(spa_t *spa)
1946 {
1947 	return (spa->spa_ubsync.ub_version);
1948 }
1949 
1950 boolean_t
1951 spa_deflate(spa_t *spa)
1952 {
1953 	return (spa->spa_deflate);
1954 }
1955 
1956 metaslab_class_t *
1957 spa_normal_class(spa_t *spa)
1958 {
1959 	return (spa->spa_normal_class);
1960 }
1961 
1962 metaslab_class_t *
1963 spa_log_class(spa_t *spa)
1964 {
1965 	return (spa->spa_log_class);
1966 }
1967 
1968 metaslab_class_t *
1969 spa_embedded_log_class(spa_t *spa)
1970 {
1971 	return (spa->spa_embedded_log_class);
1972 }
1973 
1974 metaslab_class_t *
1975 spa_special_class(spa_t *spa)
1976 {
1977 	return (spa->spa_special_class);
1978 }
1979 
1980 metaslab_class_t *
1981 spa_dedup_class(spa_t *spa)
1982 {
1983 	return (spa->spa_dedup_class);
1984 }
1985 
1986 /*
1987  * Locate an appropriate allocation class
1988  */
1989 metaslab_class_t *
1990 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1991     uint_t level, uint_t special_smallblk)
1992 {
1993 	/*
1994 	 * ZIL allocations determine their class in zio_alloc_zil().
1995 	 */
1996 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1997 
1998 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1999 
2000 	if (DMU_OT_IS_DDT(objtype)) {
2001 		if (spa->spa_dedup_class->mc_groups != 0)
2002 			return (spa_dedup_class(spa));
2003 		else if (has_special_class && zfs_ddt_data_is_special)
2004 			return (spa_special_class(spa));
2005 		else
2006 			return (spa_normal_class(spa));
2007 	}
2008 
2009 	/* Indirect blocks for user data can land in special if allowed */
2010 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
2011 		if (has_special_class && zfs_user_indirect_is_special)
2012 			return (spa_special_class(spa));
2013 		else
2014 			return (spa_normal_class(spa));
2015 	}
2016 
2017 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
2018 		if (has_special_class)
2019 			return (spa_special_class(spa));
2020 		else
2021 			return (spa_normal_class(spa));
2022 	}
2023 
2024 	/*
2025 	 * Allow small file blocks in special class in some cases (like
2026 	 * for the dRAID vdev feature). But always leave a reserve of
2027 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2028 	 */
2029 	if (DMU_OT_IS_FILE(objtype) &&
2030 	    has_special_class && size <= special_smallblk) {
2031 		metaslab_class_t *special = spa_special_class(spa);
2032 		uint64_t alloc = metaslab_class_get_alloc(special);
2033 		uint64_t space = metaslab_class_get_space(special);
2034 		uint64_t limit =
2035 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
2036 		    / 100;
2037 
2038 		if (alloc < limit)
2039 			return (special);
2040 	}
2041 
2042 	return (spa_normal_class(spa));
2043 }
2044 
2045 void
2046 spa_evicting_os_register(spa_t *spa, objset_t *os)
2047 {
2048 	mutex_enter(&spa->spa_evicting_os_lock);
2049 	list_insert_head(&spa->spa_evicting_os_list, os);
2050 	mutex_exit(&spa->spa_evicting_os_lock);
2051 }
2052 
2053 void
2054 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2055 {
2056 	mutex_enter(&spa->spa_evicting_os_lock);
2057 	list_remove(&spa->spa_evicting_os_list, os);
2058 	cv_broadcast(&spa->spa_evicting_os_cv);
2059 	mutex_exit(&spa->spa_evicting_os_lock);
2060 }
2061 
2062 void
2063 spa_evicting_os_wait(spa_t *spa)
2064 {
2065 	mutex_enter(&spa->spa_evicting_os_lock);
2066 	while (!list_is_empty(&spa->spa_evicting_os_list))
2067 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2068 	mutex_exit(&spa->spa_evicting_os_lock);
2069 
2070 	dmu_buf_user_evict_wait();
2071 }
2072 
2073 int
2074 spa_max_replication(spa_t *spa)
2075 {
2076 	/*
2077 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2078 	 * handle BPs with more than one DVA allocated.  Set our max
2079 	 * replication level accordingly.
2080 	 */
2081 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2082 		return (1);
2083 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2084 }
2085 
2086 int
2087 spa_prev_software_version(spa_t *spa)
2088 {
2089 	return (spa->spa_prev_software_version);
2090 }
2091 
2092 uint64_t
2093 spa_deadman_synctime(spa_t *spa)
2094 {
2095 	return (spa->spa_deadman_synctime);
2096 }
2097 
2098 spa_autotrim_t
2099 spa_get_autotrim(spa_t *spa)
2100 {
2101 	return (spa->spa_autotrim);
2102 }
2103 
2104 uint64_t
2105 spa_deadman_ziotime(spa_t *spa)
2106 {
2107 	return (spa->spa_deadman_ziotime);
2108 }
2109 
2110 uint64_t
2111 spa_get_deadman_failmode(spa_t *spa)
2112 {
2113 	return (spa->spa_deadman_failmode);
2114 }
2115 
2116 void
2117 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2118 {
2119 	if (strcmp(failmode, "wait") == 0)
2120 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2121 	else if (strcmp(failmode, "continue") == 0)
2122 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2123 	else if (strcmp(failmode, "panic") == 0)
2124 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2125 	else
2126 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2127 }
2128 
2129 void
2130 spa_set_deadman_ziotime(hrtime_t ns)
2131 {
2132 	spa_t *spa = NULL;
2133 
2134 	if (spa_mode_global != SPA_MODE_UNINIT) {
2135 		mutex_enter(&spa_namespace_lock);
2136 		while ((spa = spa_next(spa)) != NULL)
2137 			spa->spa_deadman_ziotime = ns;
2138 		mutex_exit(&spa_namespace_lock);
2139 	}
2140 }
2141 
2142 void
2143 spa_set_deadman_synctime(hrtime_t ns)
2144 {
2145 	spa_t *spa = NULL;
2146 
2147 	if (spa_mode_global != SPA_MODE_UNINIT) {
2148 		mutex_enter(&spa_namespace_lock);
2149 		while ((spa = spa_next(spa)) != NULL)
2150 			spa->spa_deadman_synctime = ns;
2151 		mutex_exit(&spa_namespace_lock);
2152 	}
2153 }
2154 
2155 uint64_t
2156 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2157 {
2158 	uint64_t asize = DVA_GET_ASIZE(dva);
2159 	uint64_t dsize = asize;
2160 
2161 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2162 
2163 	if (asize != 0 && spa->spa_deflate) {
2164 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2165 		if (vd != NULL)
2166 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2167 			    vd->vdev_deflate_ratio;
2168 	}
2169 
2170 	return (dsize);
2171 }
2172 
2173 uint64_t
2174 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2175 {
2176 	uint64_t dsize = 0;
2177 
2178 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2179 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2180 
2181 	return (dsize);
2182 }
2183 
2184 uint64_t
2185 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2186 {
2187 	uint64_t dsize = 0;
2188 
2189 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2190 
2191 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2192 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2193 
2194 	spa_config_exit(spa, SCL_VDEV, FTAG);
2195 
2196 	return (dsize);
2197 }
2198 
2199 uint64_t
2200 spa_dirty_data(spa_t *spa)
2201 {
2202 	return (spa->spa_dsl_pool->dp_dirty_total);
2203 }
2204 
2205 /*
2206  * ==========================================================================
2207  * SPA Import Progress Routines
2208  * ==========================================================================
2209  */
2210 
2211 typedef struct spa_import_progress {
2212 	uint64_t		pool_guid;	/* unique id for updates */
2213 	char			*pool_name;
2214 	spa_load_state_t	spa_load_state;
2215 	char			*spa_load_notes;
2216 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2217 	uint64_t		spa_load_max_txg;	/* rewind txg */
2218 	procfs_list_node_t	smh_node;
2219 } spa_import_progress_t;
2220 
2221 spa_history_list_t *spa_import_progress_list = NULL;
2222 
2223 static int
2224 spa_import_progress_show_header(struct seq_file *f)
2225 {
2226 	seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid",
2227 	    "load_state", "multihost_secs", "max_txg",
2228 	    "pool_name", "notes");
2229 	return (0);
2230 }
2231 
2232 static int
2233 spa_import_progress_show(struct seq_file *f, void *data)
2234 {
2235 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2236 
2237 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n",
2238 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2239 	    (u_longlong_t)sip->mmp_sec_remaining,
2240 	    (u_longlong_t)sip->spa_load_max_txg,
2241 	    (sip->pool_name ? sip->pool_name : "-"),
2242 	    (sip->spa_load_notes ? sip->spa_load_notes : "-"));
2243 
2244 	return (0);
2245 }
2246 
2247 /* Remove oldest elements from list until there are no more than 'size' left */
2248 static void
2249 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2250 {
2251 	spa_import_progress_t *sip;
2252 	while (shl->size > size) {
2253 		sip = list_remove_head(&shl->procfs_list.pl_list);
2254 		if (sip->pool_name)
2255 			spa_strfree(sip->pool_name);
2256 		if (sip->spa_load_notes)
2257 			kmem_strfree(sip->spa_load_notes);
2258 		kmem_free(sip, sizeof (spa_import_progress_t));
2259 		shl->size--;
2260 	}
2261 
2262 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2263 }
2264 
2265 static void
2266 spa_import_progress_init(void)
2267 {
2268 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2269 	    KM_SLEEP);
2270 
2271 	spa_import_progress_list->size = 0;
2272 
2273 	spa_import_progress_list->procfs_list.pl_private =
2274 	    spa_import_progress_list;
2275 
2276 	procfs_list_install("zfs",
2277 	    NULL,
2278 	    "import_progress",
2279 	    0644,
2280 	    &spa_import_progress_list->procfs_list,
2281 	    spa_import_progress_show,
2282 	    spa_import_progress_show_header,
2283 	    NULL,
2284 	    offsetof(spa_import_progress_t, smh_node));
2285 }
2286 
2287 static void
2288 spa_import_progress_destroy(void)
2289 {
2290 	spa_history_list_t *shl = spa_import_progress_list;
2291 	procfs_list_uninstall(&shl->procfs_list);
2292 	spa_import_progress_truncate(shl, 0);
2293 	procfs_list_destroy(&shl->procfs_list);
2294 	kmem_free(shl, sizeof (spa_history_list_t));
2295 }
2296 
2297 int
2298 spa_import_progress_set_state(uint64_t pool_guid,
2299     spa_load_state_t load_state)
2300 {
2301 	spa_history_list_t *shl = spa_import_progress_list;
2302 	spa_import_progress_t *sip;
2303 	int error = ENOENT;
2304 
2305 	if (shl->size == 0)
2306 		return (0);
2307 
2308 	mutex_enter(&shl->procfs_list.pl_lock);
2309 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2310 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2311 		if (sip->pool_guid == pool_guid) {
2312 			sip->spa_load_state = load_state;
2313 			if (sip->spa_load_notes != NULL) {
2314 				kmem_strfree(sip->spa_load_notes);
2315 				sip->spa_load_notes = NULL;
2316 			}
2317 			error = 0;
2318 			break;
2319 		}
2320 	}
2321 	mutex_exit(&shl->procfs_list.pl_lock);
2322 
2323 	return (error);
2324 }
2325 
2326 static void
2327 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg,
2328     const char *fmt, va_list adx)
2329 {
2330 	spa_history_list_t *shl = spa_import_progress_list;
2331 	spa_import_progress_t *sip;
2332 	uint64_t pool_guid = spa_guid(spa);
2333 
2334 	if (shl->size == 0)
2335 		return;
2336 
2337 	char *notes = kmem_vasprintf(fmt, adx);
2338 
2339 	mutex_enter(&shl->procfs_list.pl_lock);
2340 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2341 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2342 		if (sip->pool_guid == pool_guid) {
2343 			if (sip->spa_load_notes != NULL) {
2344 				kmem_strfree(sip->spa_load_notes);
2345 				sip->spa_load_notes = NULL;
2346 			}
2347 			sip->spa_load_notes = notes;
2348 			if (log_dbgmsg)
2349 				zfs_dbgmsg("'%s' %s", sip->pool_name, notes);
2350 			notes = NULL;
2351 			break;
2352 		}
2353 	}
2354 	mutex_exit(&shl->procfs_list.pl_lock);
2355 	if (notes != NULL)
2356 		kmem_strfree(notes);
2357 }
2358 
2359 void
2360 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...)
2361 {
2362 	va_list adx;
2363 
2364 	va_start(adx, fmt);
2365 	spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx);
2366 	va_end(adx);
2367 }
2368 
2369 void
2370 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...)
2371 {
2372 	va_list adx;
2373 
2374 	va_start(adx, fmt);
2375 	spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx);
2376 	va_end(adx);
2377 }
2378 
2379 int
2380 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2381 {
2382 	spa_history_list_t *shl = spa_import_progress_list;
2383 	spa_import_progress_t *sip;
2384 	int error = ENOENT;
2385 
2386 	if (shl->size == 0)
2387 		return (0);
2388 
2389 	mutex_enter(&shl->procfs_list.pl_lock);
2390 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2391 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2392 		if (sip->pool_guid == pool_guid) {
2393 			sip->spa_load_max_txg = load_max_txg;
2394 			error = 0;
2395 			break;
2396 		}
2397 	}
2398 	mutex_exit(&shl->procfs_list.pl_lock);
2399 
2400 	return (error);
2401 }
2402 
2403 int
2404 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2405     uint64_t mmp_sec_remaining)
2406 {
2407 	spa_history_list_t *shl = spa_import_progress_list;
2408 	spa_import_progress_t *sip;
2409 	int error = ENOENT;
2410 
2411 	if (shl->size == 0)
2412 		return (0);
2413 
2414 	mutex_enter(&shl->procfs_list.pl_lock);
2415 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2416 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2417 		if (sip->pool_guid == pool_guid) {
2418 			sip->mmp_sec_remaining = mmp_sec_remaining;
2419 			error = 0;
2420 			break;
2421 		}
2422 	}
2423 	mutex_exit(&shl->procfs_list.pl_lock);
2424 
2425 	return (error);
2426 }
2427 
2428 /*
2429  * A new import is in progress, add an entry.
2430  */
2431 void
2432 spa_import_progress_add(spa_t *spa)
2433 {
2434 	spa_history_list_t *shl = spa_import_progress_list;
2435 	spa_import_progress_t *sip;
2436 	const char *poolname = NULL;
2437 
2438 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2439 	sip->pool_guid = spa_guid(spa);
2440 
2441 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2442 	    &poolname);
2443 	if (poolname == NULL)
2444 		poolname = spa_name(spa);
2445 	sip->pool_name = spa_strdup(poolname);
2446 	sip->spa_load_state = spa_load_state(spa);
2447 	sip->spa_load_notes = NULL;
2448 
2449 	mutex_enter(&shl->procfs_list.pl_lock);
2450 	procfs_list_add(&shl->procfs_list, sip);
2451 	shl->size++;
2452 	mutex_exit(&shl->procfs_list.pl_lock);
2453 }
2454 
2455 void
2456 spa_import_progress_remove(uint64_t pool_guid)
2457 {
2458 	spa_history_list_t *shl = spa_import_progress_list;
2459 	spa_import_progress_t *sip;
2460 
2461 	mutex_enter(&shl->procfs_list.pl_lock);
2462 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2463 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2464 		if (sip->pool_guid == pool_guid) {
2465 			if (sip->pool_name)
2466 				spa_strfree(sip->pool_name);
2467 			if (sip->spa_load_notes)
2468 				spa_strfree(sip->spa_load_notes);
2469 			list_remove(&shl->procfs_list.pl_list, sip);
2470 			shl->size--;
2471 			kmem_free(sip, sizeof (spa_import_progress_t));
2472 			break;
2473 		}
2474 	}
2475 	mutex_exit(&shl->procfs_list.pl_lock);
2476 }
2477 
2478 /*
2479  * ==========================================================================
2480  * Initialization and Termination
2481  * ==========================================================================
2482  */
2483 
2484 static int
2485 spa_name_compare(const void *a1, const void *a2)
2486 {
2487 	const spa_t *s1 = a1;
2488 	const spa_t *s2 = a2;
2489 	int s;
2490 
2491 	s = strcmp(s1->spa_name, s2->spa_name);
2492 
2493 	return (TREE_ISIGN(s));
2494 }
2495 
2496 void
2497 spa_boot_init(void)
2498 {
2499 	spa_config_load();
2500 }
2501 
2502 void
2503 spa_init(spa_mode_t mode)
2504 {
2505 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2506 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2507 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2508 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2509 
2510 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2511 	    offsetof(spa_t, spa_avl));
2512 
2513 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2514 	    offsetof(spa_aux_t, aux_avl));
2515 
2516 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2517 	    offsetof(spa_aux_t, aux_avl));
2518 
2519 	spa_mode_global = mode;
2520 
2521 #ifndef _KERNEL
2522 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2523 		struct sigaction sa;
2524 
2525 		sa.sa_flags = SA_SIGINFO;
2526 		sigemptyset(&sa.sa_mask);
2527 		sa.sa_sigaction = arc_buf_sigsegv;
2528 
2529 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2530 			perror("could not enable watchpoints: "
2531 			    "sigaction(SIGSEGV, ...) = ");
2532 		} else {
2533 			arc_watch = B_TRUE;
2534 		}
2535 	}
2536 #endif
2537 
2538 	fm_init();
2539 	zfs_refcount_init();
2540 	unique_init();
2541 	zfs_btree_init();
2542 	metaslab_stat_init();
2543 	brt_init();
2544 	ddt_init();
2545 	zio_init();
2546 	dmu_init();
2547 	zil_init();
2548 	vdev_mirror_stat_init();
2549 	vdev_raidz_math_init();
2550 	vdev_file_init();
2551 	zfs_prop_init();
2552 	chksum_init();
2553 	zpool_prop_init();
2554 	zpool_feature_init();
2555 	spa_config_load();
2556 	vdev_prop_init();
2557 	l2arc_start();
2558 	scan_init();
2559 	qat_init();
2560 	spa_import_progress_init();
2561 }
2562 
2563 void
2564 spa_fini(void)
2565 {
2566 	l2arc_stop();
2567 
2568 	spa_evict_all();
2569 
2570 	vdev_file_fini();
2571 	vdev_mirror_stat_fini();
2572 	vdev_raidz_math_fini();
2573 	chksum_fini();
2574 	zil_fini();
2575 	dmu_fini();
2576 	zio_fini();
2577 	ddt_fini();
2578 	brt_fini();
2579 	metaslab_stat_fini();
2580 	zfs_btree_fini();
2581 	unique_fini();
2582 	zfs_refcount_fini();
2583 	fm_fini();
2584 	scan_fini();
2585 	qat_fini();
2586 	spa_import_progress_destroy();
2587 
2588 	avl_destroy(&spa_namespace_avl);
2589 	avl_destroy(&spa_spare_avl);
2590 	avl_destroy(&spa_l2cache_avl);
2591 
2592 	cv_destroy(&spa_namespace_cv);
2593 	mutex_destroy(&spa_namespace_lock);
2594 	mutex_destroy(&spa_spare_lock);
2595 	mutex_destroy(&spa_l2cache_lock);
2596 }
2597 
2598 /*
2599  * Return whether this pool has a dedicated slog device. No locking needed.
2600  * It's not a problem if the wrong answer is returned as it's only for
2601  * performance and not correctness.
2602  */
2603 boolean_t
2604 spa_has_slogs(spa_t *spa)
2605 {
2606 	return (spa->spa_log_class->mc_groups != 0);
2607 }
2608 
2609 spa_log_state_t
2610 spa_get_log_state(spa_t *spa)
2611 {
2612 	return (spa->spa_log_state);
2613 }
2614 
2615 void
2616 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2617 {
2618 	spa->spa_log_state = state;
2619 }
2620 
2621 boolean_t
2622 spa_is_root(spa_t *spa)
2623 {
2624 	return (spa->spa_is_root);
2625 }
2626 
2627 boolean_t
2628 spa_writeable(spa_t *spa)
2629 {
2630 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2631 }
2632 
2633 /*
2634  * Returns true if there is a pending sync task in any of the current
2635  * syncing txg, the current quiescing txg, or the current open txg.
2636  */
2637 boolean_t
2638 spa_has_pending_synctask(spa_t *spa)
2639 {
2640 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2641 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2642 }
2643 
2644 spa_mode_t
2645 spa_mode(spa_t *spa)
2646 {
2647 	return (spa->spa_mode);
2648 }
2649 
2650 uint64_t
2651 spa_bootfs(spa_t *spa)
2652 {
2653 	return (spa->spa_bootfs);
2654 }
2655 
2656 uint64_t
2657 spa_delegation(spa_t *spa)
2658 {
2659 	return (spa->spa_delegation);
2660 }
2661 
2662 objset_t *
2663 spa_meta_objset(spa_t *spa)
2664 {
2665 	return (spa->spa_meta_objset);
2666 }
2667 
2668 enum zio_checksum
2669 spa_dedup_checksum(spa_t *spa)
2670 {
2671 	return (spa->spa_dedup_checksum);
2672 }
2673 
2674 /*
2675  * Reset pool scan stat per scan pass (or reboot).
2676  */
2677 void
2678 spa_scan_stat_init(spa_t *spa)
2679 {
2680 	/* data not stored on disk */
2681 	spa->spa_scan_pass_start = gethrestime_sec();
2682 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2683 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2684 	else
2685 		spa->spa_scan_pass_scrub_pause = 0;
2686 
2687 	if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2688 		spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2689 	else
2690 		spa->spa_scan_pass_errorscrub_pause = 0;
2691 
2692 	spa->spa_scan_pass_scrub_spent_paused = 0;
2693 	spa->spa_scan_pass_exam = 0;
2694 	spa->spa_scan_pass_issued = 0;
2695 
2696 	// error scrub stats
2697 	spa->spa_scan_pass_errorscrub_spent_paused = 0;
2698 }
2699 
2700 /*
2701  * Get scan stats for zpool status reports
2702  */
2703 int
2704 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2705 {
2706 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2707 
2708 	if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2709 	    scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2710 		return (SET_ERROR(ENOENT));
2711 
2712 	memset(ps, 0, sizeof (pool_scan_stat_t));
2713 
2714 	/* data stored on disk */
2715 	ps->pss_func = scn->scn_phys.scn_func;
2716 	ps->pss_state = scn->scn_phys.scn_state;
2717 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2718 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2719 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2720 	ps->pss_examined = scn->scn_phys.scn_examined;
2721 	ps->pss_skipped = scn->scn_phys.scn_skipped;
2722 	ps->pss_processed = scn->scn_phys.scn_processed;
2723 	ps->pss_errors = scn->scn_phys.scn_errors;
2724 
2725 	/* data not stored on disk */
2726 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2727 	ps->pss_pass_start = spa->spa_scan_pass_start;
2728 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2729 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2730 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2731 	ps->pss_issued =
2732 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2733 
2734 	/* error scrub data stored on disk */
2735 	ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2736 	ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2737 	ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2738 	ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2739 	ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2740 	ps->pss_error_scrub_to_be_examined =
2741 	    scn->errorscrub_phys.dep_to_examine;
2742 
2743 	/* error scrub data not stored on disk */
2744 	ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2745 
2746 	return (0);
2747 }
2748 
2749 int
2750 spa_maxblocksize(spa_t *spa)
2751 {
2752 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2753 		return (SPA_MAXBLOCKSIZE);
2754 	else
2755 		return (SPA_OLD_MAXBLOCKSIZE);
2756 }
2757 
2758 
2759 /*
2760  * Returns the txg that the last device removal completed. No indirect mappings
2761  * have been added since this txg.
2762  */
2763 uint64_t
2764 spa_get_last_removal_txg(spa_t *spa)
2765 {
2766 	uint64_t vdevid;
2767 	uint64_t ret = -1ULL;
2768 
2769 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2770 	/*
2771 	 * sr_prev_indirect_vdev is only modified while holding all the
2772 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2773 	 * examining it.
2774 	 */
2775 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2776 
2777 	while (vdevid != -1ULL) {
2778 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2779 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2780 
2781 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2782 
2783 		/*
2784 		 * If the removal did not remap any data, we don't care.
2785 		 */
2786 		if (vdev_indirect_births_count(vib) != 0) {
2787 			ret = vdev_indirect_births_last_entry_txg(vib);
2788 			break;
2789 		}
2790 
2791 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2792 	}
2793 	spa_config_exit(spa, SCL_VDEV, FTAG);
2794 
2795 	IMPLY(ret != -1ULL,
2796 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2797 
2798 	return (ret);
2799 }
2800 
2801 int
2802 spa_maxdnodesize(spa_t *spa)
2803 {
2804 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2805 		return (DNODE_MAX_SIZE);
2806 	else
2807 		return (DNODE_MIN_SIZE);
2808 }
2809 
2810 boolean_t
2811 spa_multihost(spa_t *spa)
2812 {
2813 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2814 }
2815 
2816 uint32_t
2817 spa_get_hostid(spa_t *spa)
2818 {
2819 	return (spa->spa_hostid);
2820 }
2821 
2822 boolean_t
2823 spa_trust_config(spa_t *spa)
2824 {
2825 	return (spa->spa_trust_config);
2826 }
2827 
2828 uint64_t
2829 spa_missing_tvds_allowed(spa_t *spa)
2830 {
2831 	return (spa->spa_missing_tvds_allowed);
2832 }
2833 
2834 space_map_t *
2835 spa_syncing_log_sm(spa_t *spa)
2836 {
2837 	return (spa->spa_syncing_log_sm);
2838 }
2839 
2840 void
2841 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2842 {
2843 	spa->spa_missing_tvds = missing;
2844 }
2845 
2846 /*
2847  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2848  */
2849 const char *
2850 spa_state_to_name(spa_t *spa)
2851 {
2852 	ASSERT3P(spa, !=, NULL);
2853 
2854 	/*
2855 	 * it is possible for the spa to exist, without root vdev
2856 	 * as the spa transitions during import/export
2857 	 */
2858 	vdev_t *rvd = spa->spa_root_vdev;
2859 	if (rvd == NULL) {
2860 		return ("TRANSITIONING");
2861 	}
2862 	vdev_state_t state = rvd->vdev_state;
2863 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2864 
2865 	if (spa_suspended(spa))
2866 		return ("SUSPENDED");
2867 
2868 	switch (state) {
2869 	case VDEV_STATE_CLOSED:
2870 	case VDEV_STATE_OFFLINE:
2871 		return ("OFFLINE");
2872 	case VDEV_STATE_REMOVED:
2873 		return ("REMOVED");
2874 	case VDEV_STATE_CANT_OPEN:
2875 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2876 			return ("FAULTED");
2877 		else if (aux == VDEV_AUX_SPLIT_POOL)
2878 			return ("SPLIT");
2879 		else
2880 			return ("UNAVAIL");
2881 	case VDEV_STATE_FAULTED:
2882 		return ("FAULTED");
2883 	case VDEV_STATE_DEGRADED:
2884 		return ("DEGRADED");
2885 	case VDEV_STATE_HEALTHY:
2886 		return ("ONLINE");
2887 	default:
2888 		break;
2889 	}
2890 
2891 	return ("UNKNOWN");
2892 }
2893 
2894 boolean_t
2895 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2896 {
2897 	vdev_t *rvd = spa->spa_root_vdev;
2898 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2899 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2900 			return (B_FALSE);
2901 	}
2902 	return (B_TRUE);
2903 }
2904 
2905 boolean_t
2906 spa_has_checkpoint(spa_t *spa)
2907 {
2908 	return (spa->spa_checkpoint_txg != 0);
2909 }
2910 
2911 boolean_t
2912 spa_importing_readonly_checkpoint(spa_t *spa)
2913 {
2914 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2915 	    spa->spa_mode == SPA_MODE_READ);
2916 }
2917 
2918 uint64_t
2919 spa_min_claim_txg(spa_t *spa)
2920 {
2921 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2922 
2923 	if (checkpoint_txg != 0)
2924 		return (checkpoint_txg + 1);
2925 
2926 	return (spa->spa_first_txg);
2927 }
2928 
2929 /*
2930  * If there is a checkpoint, async destroys may consume more space from
2931  * the pool instead of freeing it. In an attempt to save the pool from
2932  * getting suspended when it is about to run out of space, we stop
2933  * processing async destroys.
2934  */
2935 boolean_t
2936 spa_suspend_async_destroy(spa_t *spa)
2937 {
2938 	dsl_pool_t *dp = spa_get_dsl(spa);
2939 
2940 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2941 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2942 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2943 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2944 
2945 	if (spa_has_checkpoint(spa) && avail == 0)
2946 		return (B_TRUE);
2947 
2948 	return (B_FALSE);
2949 }
2950 
2951 #if defined(_KERNEL)
2952 
2953 int
2954 param_set_deadman_failmode_common(const char *val)
2955 {
2956 	spa_t *spa = NULL;
2957 	char *p;
2958 
2959 	if (val == NULL)
2960 		return (SET_ERROR(EINVAL));
2961 
2962 	if ((p = strchr(val, '\n')) != NULL)
2963 		*p = '\0';
2964 
2965 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2966 	    strcmp(val, "panic"))
2967 		return (SET_ERROR(EINVAL));
2968 
2969 	if (spa_mode_global != SPA_MODE_UNINIT) {
2970 		mutex_enter(&spa_namespace_lock);
2971 		while ((spa = spa_next(spa)) != NULL)
2972 			spa_set_deadman_failmode(spa, val);
2973 		mutex_exit(&spa_namespace_lock);
2974 	}
2975 
2976 	return (0);
2977 }
2978 #endif
2979 
2980 /* Namespace manipulation */
2981 EXPORT_SYMBOL(spa_lookup);
2982 EXPORT_SYMBOL(spa_add);
2983 EXPORT_SYMBOL(spa_remove);
2984 EXPORT_SYMBOL(spa_next);
2985 
2986 /* Refcount functions */
2987 EXPORT_SYMBOL(spa_open_ref);
2988 EXPORT_SYMBOL(spa_close);
2989 EXPORT_SYMBOL(spa_refcount_zero);
2990 
2991 /* Pool configuration lock */
2992 EXPORT_SYMBOL(spa_config_tryenter);
2993 EXPORT_SYMBOL(spa_config_enter);
2994 EXPORT_SYMBOL(spa_config_exit);
2995 EXPORT_SYMBOL(spa_config_held);
2996 
2997 /* Pool vdev add/remove lock */
2998 EXPORT_SYMBOL(spa_vdev_enter);
2999 EXPORT_SYMBOL(spa_vdev_exit);
3000 
3001 /* Pool vdev state change lock */
3002 EXPORT_SYMBOL(spa_vdev_state_enter);
3003 EXPORT_SYMBOL(spa_vdev_state_exit);
3004 
3005 /* Accessor functions */
3006 EXPORT_SYMBOL(spa_shutting_down);
3007 EXPORT_SYMBOL(spa_get_dsl);
3008 EXPORT_SYMBOL(spa_get_rootblkptr);
3009 EXPORT_SYMBOL(spa_set_rootblkptr);
3010 EXPORT_SYMBOL(spa_altroot);
3011 EXPORT_SYMBOL(spa_sync_pass);
3012 EXPORT_SYMBOL(spa_name);
3013 EXPORT_SYMBOL(spa_guid);
3014 EXPORT_SYMBOL(spa_last_synced_txg);
3015 EXPORT_SYMBOL(spa_first_txg);
3016 EXPORT_SYMBOL(spa_syncing_txg);
3017 EXPORT_SYMBOL(spa_version);
3018 EXPORT_SYMBOL(spa_state);
3019 EXPORT_SYMBOL(spa_load_state);
3020 EXPORT_SYMBOL(spa_freeze_txg);
3021 EXPORT_SYMBOL(spa_get_dspace);
3022 EXPORT_SYMBOL(spa_update_dspace);
3023 EXPORT_SYMBOL(spa_deflate);
3024 EXPORT_SYMBOL(spa_normal_class);
3025 EXPORT_SYMBOL(spa_log_class);
3026 EXPORT_SYMBOL(spa_special_class);
3027 EXPORT_SYMBOL(spa_preferred_class);
3028 EXPORT_SYMBOL(spa_max_replication);
3029 EXPORT_SYMBOL(spa_prev_software_version);
3030 EXPORT_SYMBOL(spa_get_failmode);
3031 EXPORT_SYMBOL(spa_suspended);
3032 EXPORT_SYMBOL(spa_bootfs);
3033 EXPORT_SYMBOL(spa_delegation);
3034 EXPORT_SYMBOL(spa_meta_objset);
3035 EXPORT_SYMBOL(spa_maxblocksize);
3036 EXPORT_SYMBOL(spa_maxdnodesize);
3037 
3038 /* Miscellaneous support routines */
3039 EXPORT_SYMBOL(spa_guid_exists);
3040 EXPORT_SYMBOL(spa_strdup);
3041 EXPORT_SYMBOL(spa_strfree);
3042 EXPORT_SYMBOL(spa_generate_guid);
3043 EXPORT_SYMBOL(snprintf_blkptr);
3044 EXPORT_SYMBOL(spa_freeze);
3045 EXPORT_SYMBOL(spa_upgrade);
3046 EXPORT_SYMBOL(spa_evict_all);
3047 EXPORT_SYMBOL(spa_lookup_by_guid);
3048 EXPORT_SYMBOL(spa_has_spare);
3049 EXPORT_SYMBOL(dva_get_dsize_sync);
3050 EXPORT_SYMBOL(bp_get_dsize_sync);
3051 EXPORT_SYMBOL(bp_get_dsize);
3052 EXPORT_SYMBOL(spa_has_slogs);
3053 EXPORT_SYMBOL(spa_is_root);
3054 EXPORT_SYMBOL(spa_writeable);
3055 EXPORT_SYMBOL(spa_mode);
3056 EXPORT_SYMBOL(spa_namespace_lock);
3057 EXPORT_SYMBOL(spa_trust_config);
3058 EXPORT_SYMBOL(spa_missing_tvds_allowed);
3059 EXPORT_SYMBOL(spa_set_missing_tvds);
3060 EXPORT_SYMBOL(spa_state_to_name);
3061 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
3062 EXPORT_SYMBOL(spa_min_claim_txg);
3063 EXPORT_SYMBOL(spa_suspend_async_destroy);
3064 EXPORT_SYMBOL(spa_has_checkpoint);
3065 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
3066 
3067 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
3068 	"Set additional debugging flags");
3069 
3070 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
3071 	"Set to attempt to recover from fatal errors");
3072 
3073 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
3074 	"Set to ignore IO errors during free and permanently leak the space");
3075 
3076 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
3077 	"Dead I/O check interval in milliseconds");
3078 
3079 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
3080 	"Enable deadman timer");
3081 
3082 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
3083 	"SPA size estimate multiplication factor");
3084 
3085 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
3086 	"Place DDT data into the special class");
3087 
3088 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
3089 	"Place user data indirect blocks into the special class");
3090 
3091 /* BEGIN CSTYLED */
3092 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3093 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3094 	"Failmode for deadman timer");
3095 
3096 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3097 	param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3098 	"Pool sync expiration time in milliseconds");
3099 
3100 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3101 	param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3102 	"IO expiration time in milliseconds");
3103 
3104 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3105 	"Small file blocks in special vdevs depends on this much "
3106 	"free space available");
3107 /* END CSTYLED */
3108 
3109 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3110 	param_get_uint, ZMOD_RW, "Reserved free space in pool");
3111 
3112 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3113 	"Number of allocators per spa");
3114 
3115 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW,
3116 	"Minimum number of CPUs per allocators");
3117