1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 * Copyright (c) 2023, 2024, Klara Inc. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/zfs_chksum.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/zio_compress.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/vdev_initialize.h> 45 #include <sys/vdev_trim.h> 46 #include <sys/vdev_file.h> 47 #include <sys/vdev_raidz.h> 48 #include <sys/metaslab.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/fm/util.h> 57 #include <sys/dsl_scan.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/arc.h> 61 #include <sys/brt.h> 62 #include <sys/ddt.h> 63 #include <sys/kstat.h> 64 #include "zfs_prop.h" 65 #include <sys/btree.h> 66 #include <sys/zfeature.h> 67 #include <sys/qat.h> 68 #include <sys/zstd/zstd.h> 69 70 /* 71 * SPA locking 72 * 73 * There are three basic locks for managing spa_t structures: 74 * 75 * spa_namespace_lock (global mutex) 76 * 77 * This lock must be acquired to do any of the following: 78 * 79 * - Lookup a spa_t by name 80 * - Add or remove a spa_t from the namespace 81 * - Increase spa_refcount from non-zero 82 * - Check if spa_refcount is zero 83 * - Rename a spa_t 84 * - add/remove/attach/detach devices 85 * - Held for the duration of create/destroy 86 * - Held at the start and end of import and export 87 * 88 * It does not need to handle recursion. A create or destroy may 89 * reference objects (files or zvols) in other pools, but by 90 * definition they must have an existing reference, and will never need 91 * to lookup a spa_t by name. 92 * 93 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 94 * 95 * This reference count keep track of any active users of the spa_t. The 96 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 97 * the refcount is never really 'zero' - opening a pool implicitly keeps 98 * some references in the DMU. Internally we check against spa_minref, but 99 * present the image of a zero/non-zero value to consumers. 100 * 101 * spa_config_lock[] (per-spa array of rwlocks) 102 * 103 * This protects the spa_t from config changes, and must be held in 104 * the following circumstances: 105 * 106 * - RW_READER to perform I/O to the spa 107 * - RW_WRITER to change the vdev config 108 * 109 * The locking order is fairly straightforward: 110 * 111 * spa_namespace_lock -> spa_refcount 112 * 113 * The namespace lock must be acquired to increase the refcount from 0 114 * or to check if it is zero. 115 * 116 * spa_refcount -> spa_config_lock[] 117 * 118 * There must be at least one valid reference on the spa_t to acquire 119 * the config lock. 120 * 121 * spa_namespace_lock -> spa_config_lock[] 122 * 123 * The namespace lock must always be taken before the config lock. 124 * 125 * 126 * The spa_namespace_lock can be acquired directly and is globally visible. 127 * 128 * The namespace is manipulated using the following functions, all of which 129 * require the spa_namespace_lock to be held. 130 * 131 * spa_lookup() Lookup a spa_t by name. 132 * 133 * spa_add() Create a new spa_t in the namespace. 134 * 135 * spa_remove() Remove a spa_t from the namespace. This also 136 * frees up any memory associated with the spa_t. 137 * 138 * spa_next() Returns the next spa_t in the system, or the 139 * first if NULL is passed. 140 * 141 * spa_evict_all() Shutdown and remove all spa_t structures in 142 * the system. 143 * 144 * spa_guid_exists() Determine whether a pool/device guid exists. 145 * 146 * The spa_refcount is manipulated using the following functions: 147 * 148 * spa_open_ref() Adds a reference to the given spa_t. Must be 149 * called with spa_namespace_lock held if the 150 * refcount is currently zero. 151 * 152 * spa_close() Remove a reference from the spa_t. This will 153 * not free the spa_t or remove it from the 154 * namespace. No locking is required. 155 * 156 * spa_refcount_zero() Returns true if the refcount is currently 157 * zero. Must be called with spa_namespace_lock 158 * held. 159 * 160 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 161 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 162 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 163 * 164 * To read the configuration, it suffices to hold one of these locks as reader. 165 * To modify the configuration, you must hold all locks as writer. To modify 166 * vdev state without altering the vdev tree's topology (e.g. online/offline), 167 * you must hold SCL_STATE and SCL_ZIO as writer. 168 * 169 * We use these distinct config locks to avoid recursive lock entry. 170 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 171 * block allocations (SCL_ALLOC), which may require reading space maps 172 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 173 * 174 * The spa config locks cannot be normal rwlocks because we need the 175 * ability to hand off ownership. For example, SCL_ZIO is acquired 176 * by the issuing thread and later released by an interrupt thread. 177 * They do, however, obey the usual write-wanted semantics to prevent 178 * writer (i.e. system administrator) starvation. 179 * 180 * The lock acquisition rules are as follows: 181 * 182 * SCL_CONFIG 183 * Protects changes to the vdev tree topology, such as vdev 184 * add/remove/attach/detach. Protects the dirty config list 185 * (spa_config_dirty_list) and the set of spares and l2arc devices. 186 * 187 * SCL_STATE 188 * Protects changes to pool state and vdev state, such as vdev 189 * online/offline/fault/degrade/clear. Protects the dirty state list 190 * (spa_state_dirty_list) and global pool state (spa_state). 191 * 192 * SCL_ALLOC 193 * Protects changes to metaslab groups and classes. 194 * Held as reader by metaslab_alloc() and metaslab_claim(). 195 * 196 * SCL_ZIO 197 * Held by bp-level zios (those which have no io_vd upon entry) 198 * to prevent changes to the vdev tree. The bp-level zio implicitly 199 * protects all of its vdev child zios, which do not hold SCL_ZIO. 200 * 201 * SCL_FREE 202 * Protects changes to metaslab groups and classes. 203 * Held as reader by metaslab_free(). SCL_FREE is distinct from 204 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 205 * blocks in zio_done() while another i/o that holds either 206 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 207 * 208 * SCL_VDEV 209 * Held as reader to prevent changes to the vdev tree during trivial 210 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 211 * other locks, and lower than all of them, to ensure that it's safe 212 * to acquire regardless of caller context. 213 * 214 * In addition, the following rules apply: 215 * 216 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 217 * The lock ordering is SCL_CONFIG > spa_props_lock. 218 * 219 * (b) I/O operations on leaf vdevs. For any zio operation that takes 220 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 221 * or zio_write_phys() -- the caller must ensure that the config cannot 222 * cannot change in the interim, and that the vdev cannot be reopened. 223 * SCL_STATE as reader suffices for both. 224 * 225 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 226 * 227 * spa_vdev_enter() Acquire the namespace lock and the config lock 228 * for writing. 229 * 230 * spa_vdev_exit() Release the config lock, wait for all I/O 231 * to complete, sync the updated configs to the 232 * cache, and release the namespace lock. 233 * 234 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 235 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 236 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 237 */ 238 239 avl_tree_t spa_namespace_avl; 240 kmutex_t spa_namespace_lock; 241 kcondvar_t spa_namespace_cv; 242 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 243 244 static kmutex_t spa_spare_lock; 245 static avl_tree_t spa_spare_avl; 246 static kmutex_t spa_l2cache_lock; 247 static avl_tree_t spa_l2cache_avl; 248 249 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 250 251 #ifdef ZFS_DEBUG 252 /* 253 * Everything except dprintf, set_error, spa, and indirect_remap is on 254 * by default in debug builds. 255 */ 256 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 257 ZFS_DEBUG_INDIRECT_REMAP); 258 #else 259 int zfs_flags = 0; 260 #endif 261 262 /* 263 * zfs_recover can be set to nonzero to attempt to recover from 264 * otherwise-fatal errors, typically caused by on-disk corruption. When 265 * set, calls to zfs_panic_recover() will turn into warning messages. 266 * This should only be used as a last resort, as it typically results 267 * in leaked space, or worse. 268 */ 269 int zfs_recover = B_FALSE; 270 271 /* 272 * If destroy encounters an EIO while reading metadata (e.g. indirect 273 * blocks), space referenced by the missing metadata can not be freed. 274 * Normally this causes the background destroy to become "stalled", as 275 * it is unable to make forward progress. While in this stalled state, 276 * all remaining space to free from the error-encountering filesystem is 277 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 278 * permanently leak the space from indirect blocks that can not be read, 279 * and continue to free everything else that it can. 280 * 281 * The default, "stalling" behavior is useful if the storage partially 282 * fails (i.e. some but not all i/os fail), and then later recovers. In 283 * this case, we will be able to continue pool operations while it is 284 * partially failed, and when it recovers, we can continue to free the 285 * space, with no leaks. However, note that this case is actually 286 * fairly rare. 287 * 288 * Typically pools either (a) fail completely (but perhaps temporarily, 289 * e.g. a top-level vdev going offline), or (b) have localized, 290 * permanent errors (e.g. disk returns the wrong data due to bit flip or 291 * firmware bug). In case (a), this setting does not matter because the 292 * pool will be suspended and the sync thread will not be able to make 293 * forward progress regardless. In case (b), because the error is 294 * permanent, the best we can do is leak the minimum amount of space, 295 * which is what setting this flag will do. Therefore, it is reasonable 296 * for this flag to normally be set, but we chose the more conservative 297 * approach of not setting it, so that there is no possibility of 298 * leaking space in the "partial temporary" failure case. 299 */ 300 int zfs_free_leak_on_eio = B_FALSE; 301 302 /* 303 * Expiration time in milliseconds. This value has two meanings. First it is 304 * used to determine when the spa_deadman() logic should fire. By default the 305 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 306 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 307 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 308 * in one of three behaviors controlled by zfs_deadman_failmode. 309 */ 310 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 311 312 /* 313 * This value controls the maximum amount of time zio_wait() will block for an 314 * outstanding IO. By default this is 300 seconds at which point the "hung" 315 * behavior will be applied as described for zfs_deadman_synctime_ms. 316 */ 317 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 318 319 /* 320 * Check time in milliseconds. This defines the frequency at which we check 321 * for hung I/O. 322 */ 323 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 324 325 /* 326 * By default the deadman is enabled. 327 */ 328 int zfs_deadman_enabled = B_TRUE; 329 330 /* 331 * Controls the behavior of the deadman when it detects a "hung" I/O. 332 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 333 * 334 * wait - Wait for the "hung" I/O (default) 335 * continue - Attempt to recover from a "hung" I/O 336 * panic - Panic the system 337 */ 338 const char *zfs_deadman_failmode = "wait"; 339 340 /* 341 * The worst case is single-sector max-parity RAID-Z blocks, in which 342 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 343 * times the size; so just assume that. Add to this the fact that 344 * we can have up to 3 DVAs per bp, and one more factor of 2 because 345 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 346 * the worst case is: 347 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 348 */ 349 uint_t spa_asize_inflation = 24; 350 351 /* 352 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 353 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 354 * don't run the pool completely out of space, due to unaccounted changes (e.g. 355 * to the MOS). It also limits the worst-case time to allocate space. If we 356 * have less than this amount of free space, most ZPL operations (e.g. write, 357 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 358 * also part of this 3.2% of space which can't be consumed by normal writes; 359 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 360 * log space. 361 * 362 * Certain operations (e.g. file removal, most administrative actions) can 363 * use half the slop space. They will only return ENOSPC if less than half 364 * the slop space is free. Typically, once the pool has less than the slop 365 * space free, the user will use these operations to free up space in the pool. 366 * These are the operations that call dsl_pool_adjustedsize() with the netfree 367 * argument set to TRUE. 368 * 369 * Operations that are almost guaranteed to free up space in the absence of 370 * a pool checkpoint can use up to three quarters of the slop space 371 * (e.g zfs destroy). 372 * 373 * A very restricted set of operations are always permitted, regardless of 374 * the amount of free space. These are the operations that call 375 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 376 * increase in the amount of space used, it is possible to run the pool 377 * completely out of space, causing it to be permanently read-only. 378 * 379 * Note that on very small pools, the slop space will be larger than 380 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 381 * but we never allow it to be more than half the pool size. 382 * 383 * Further, on very large pools, the slop space will be smaller than 384 * 3.2%, to avoid reserving much more space than we actually need; bounded 385 * by spa_max_slop (128GB). 386 * 387 * See also the comments in zfs_space_check_t. 388 */ 389 uint_t spa_slop_shift = 5; 390 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 391 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 392 393 /* 394 * Number of allocators to use, per spa instance 395 */ 396 static int spa_num_allocators = 4; 397 static int spa_cpus_per_allocator = 4; 398 399 /* 400 * Spa active allocator. 401 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>. 402 */ 403 const char *zfs_active_allocator = "dynamic"; 404 405 void 406 spa_load_failed(spa_t *spa, const char *fmt, ...) 407 { 408 va_list adx; 409 char buf[256]; 410 411 va_start(adx, fmt); 412 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 413 va_end(adx); 414 415 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 416 spa->spa_trust_config ? "trusted" : "untrusted", buf); 417 } 418 419 void 420 spa_load_note(spa_t *spa, const char *fmt, ...) 421 { 422 va_list adx; 423 char buf[256]; 424 425 va_start(adx, fmt); 426 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 427 va_end(adx); 428 429 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 430 spa->spa_trust_config ? "trusted" : "untrusted", buf); 431 432 spa_import_progress_set_notes_nolog(spa, "%s", buf); 433 } 434 435 /* 436 * By default dedup and user data indirects land in the special class 437 */ 438 static int zfs_ddt_data_is_special = B_TRUE; 439 static int zfs_user_indirect_is_special = B_TRUE; 440 441 /* 442 * The percentage of special class final space reserved for metadata only. 443 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 444 * let metadata into the class. 445 */ 446 static uint_t zfs_special_class_metadata_reserve_pct = 25; 447 448 /* 449 * ========================================================================== 450 * SPA config locking 451 * ========================================================================== 452 */ 453 static void 454 spa_config_lock_init(spa_t *spa) 455 { 456 for (int i = 0; i < SCL_LOCKS; i++) { 457 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 458 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 459 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 460 scl->scl_writer = NULL; 461 scl->scl_write_wanted = 0; 462 scl->scl_count = 0; 463 } 464 } 465 466 static void 467 spa_config_lock_destroy(spa_t *spa) 468 { 469 for (int i = 0; i < SCL_LOCKS; i++) { 470 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 471 mutex_destroy(&scl->scl_lock); 472 cv_destroy(&scl->scl_cv); 473 ASSERT(scl->scl_writer == NULL); 474 ASSERT(scl->scl_write_wanted == 0); 475 ASSERT(scl->scl_count == 0); 476 } 477 } 478 479 int 480 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 481 { 482 for (int i = 0; i < SCL_LOCKS; i++) { 483 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 484 if (!(locks & (1 << i))) 485 continue; 486 mutex_enter(&scl->scl_lock); 487 if (rw == RW_READER) { 488 if (scl->scl_writer || scl->scl_write_wanted) { 489 mutex_exit(&scl->scl_lock); 490 spa_config_exit(spa, locks & ((1 << i) - 1), 491 tag); 492 return (0); 493 } 494 } else { 495 ASSERT(scl->scl_writer != curthread); 496 if (scl->scl_count != 0) { 497 mutex_exit(&scl->scl_lock); 498 spa_config_exit(spa, locks & ((1 << i) - 1), 499 tag); 500 return (0); 501 } 502 scl->scl_writer = curthread; 503 } 504 scl->scl_count++; 505 mutex_exit(&scl->scl_lock); 506 } 507 return (1); 508 } 509 510 static void 511 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 512 int mmp_flag) 513 { 514 (void) tag; 515 int wlocks_held = 0; 516 517 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 518 519 for (int i = 0; i < SCL_LOCKS; i++) { 520 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 521 if (scl->scl_writer == curthread) 522 wlocks_held |= (1 << i); 523 if (!(locks & (1 << i))) 524 continue; 525 mutex_enter(&scl->scl_lock); 526 if (rw == RW_READER) { 527 while (scl->scl_writer || 528 (!mmp_flag && scl->scl_write_wanted)) { 529 cv_wait(&scl->scl_cv, &scl->scl_lock); 530 } 531 } else { 532 ASSERT(scl->scl_writer != curthread); 533 while (scl->scl_count != 0) { 534 scl->scl_write_wanted++; 535 cv_wait(&scl->scl_cv, &scl->scl_lock); 536 scl->scl_write_wanted--; 537 } 538 scl->scl_writer = curthread; 539 } 540 scl->scl_count++; 541 mutex_exit(&scl->scl_lock); 542 } 543 ASSERT3U(wlocks_held, <=, locks); 544 } 545 546 void 547 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 548 { 549 spa_config_enter_impl(spa, locks, tag, rw, 0); 550 } 551 552 /* 553 * The spa_config_enter_mmp() allows the mmp thread to cut in front of 554 * outstanding write lock requests. This is needed since the mmp updates are 555 * time sensitive and failure to service them promptly will result in a 556 * suspended pool. This pool suspension has been seen in practice when there is 557 * a single disk in a pool that is responding slowly and presumably about to 558 * fail. 559 */ 560 561 void 562 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw) 563 { 564 spa_config_enter_impl(spa, locks, tag, rw, 1); 565 } 566 567 void 568 spa_config_exit(spa_t *spa, int locks, const void *tag) 569 { 570 (void) tag; 571 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 572 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 573 if (!(locks & (1 << i))) 574 continue; 575 mutex_enter(&scl->scl_lock); 576 ASSERT(scl->scl_count > 0); 577 if (--scl->scl_count == 0) { 578 ASSERT(scl->scl_writer == NULL || 579 scl->scl_writer == curthread); 580 scl->scl_writer = NULL; /* OK in either case */ 581 cv_broadcast(&scl->scl_cv); 582 } 583 mutex_exit(&scl->scl_lock); 584 } 585 } 586 587 int 588 spa_config_held(spa_t *spa, int locks, krw_t rw) 589 { 590 int locks_held = 0; 591 592 for (int i = 0; i < SCL_LOCKS; i++) { 593 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 594 if (!(locks & (1 << i))) 595 continue; 596 if ((rw == RW_READER && scl->scl_count != 0) || 597 (rw == RW_WRITER && scl->scl_writer == curthread)) 598 locks_held |= 1 << i; 599 } 600 601 return (locks_held); 602 } 603 604 /* 605 * ========================================================================== 606 * SPA namespace functions 607 * ========================================================================== 608 */ 609 610 /* 611 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 612 * Returns NULL if no matching spa_t is found. 613 */ 614 spa_t * 615 spa_lookup(const char *name) 616 { 617 static spa_t search; /* spa_t is large; don't allocate on stack */ 618 spa_t *spa; 619 avl_index_t where; 620 char *cp; 621 622 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 623 624 retry: 625 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 626 627 /* 628 * If it's a full dataset name, figure out the pool name and 629 * just use that. 630 */ 631 cp = strpbrk(search.spa_name, "/@#"); 632 if (cp != NULL) 633 *cp = '\0'; 634 635 spa = avl_find(&spa_namespace_avl, &search, &where); 636 if (spa == NULL) 637 return (NULL); 638 639 /* 640 * Avoid racing with import/export, which don't hold the namespace 641 * lock for their entire duration. 642 */ 643 if ((spa->spa_load_thread != NULL && 644 spa->spa_load_thread != curthread) || 645 (spa->spa_export_thread != NULL && 646 spa->spa_export_thread != curthread)) { 647 cv_wait(&spa_namespace_cv, &spa_namespace_lock); 648 goto retry; 649 } 650 651 return (spa); 652 } 653 654 /* 655 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 656 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 657 * looking for potentially hung I/Os. 658 */ 659 void 660 spa_deadman(void *arg) 661 { 662 spa_t *spa = arg; 663 664 /* Disable the deadman if the pool is suspended. */ 665 if (spa_suspended(spa)) 666 return; 667 668 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 669 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 670 (u_longlong_t)++spa->spa_deadman_calls); 671 if (zfs_deadman_enabled) 672 vdev_deadman(spa->spa_root_vdev, FTAG); 673 674 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 675 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 676 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 677 } 678 679 static int 680 spa_log_sm_sort_by_txg(const void *va, const void *vb) 681 { 682 const spa_log_sm_t *a = va; 683 const spa_log_sm_t *b = vb; 684 685 return (TREE_CMP(a->sls_txg, b->sls_txg)); 686 } 687 688 /* 689 * Create an uninitialized spa_t with the given name. Requires 690 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 691 * exist by calling spa_lookup() first. 692 */ 693 spa_t * 694 spa_add(const char *name, nvlist_t *config, const char *altroot) 695 { 696 spa_t *spa; 697 spa_config_dirent_t *dp; 698 699 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 700 701 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 702 703 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 704 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 705 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 706 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 707 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 708 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 709 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 710 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 711 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 712 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 713 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 714 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 715 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 716 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 717 718 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 719 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 720 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 721 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 722 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 723 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 724 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 725 726 for (int t = 0; t < TXG_SIZE; t++) 727 bplist_create(&spa->spa_free_bplist[t]); 728 729 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 730 spa->spa_state = POOL_STATE_UNINITIALIZED; 731 spa->spa_freeze_txg = UINT64_MAX; 732 spa->spa_final_txg = UINT64_MAX; 733 spa->spa_load_max_txg = UINT64_MAX; 734 spa->spa_proc = &p0; 735 spa->spa_proc_state = SPA_PROC_NONE; 736 spa->spa_trust_config = B_TRUE; 737 spa->spa_hostid = zone_get_hostid(NULL); 738 739 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 740 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 741 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 742 spa_set_allocator(spa, zfs_active_allocator); 743 744 zfs_refcount_create(&spa->spa_refcount); 745 spa_config_lock_init(spa); 746 spa_stats_init(spa); 747 748 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 749 avl_add(&spa_namespace_avl, spa); 750 751 /* 752 * Set the alternate root, if there is one. 753 */ 754 if (altroot) 755 spa->spa_root = spa_strdup(altroot); 756 757 /* Do not allow more allocators than fraction of CPUs. */ 758 spa->spa_alloc_count = MAX(MIN(spa_num_allocators, 759 boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1); 760 761 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count * 762 sizeof (spa_alloc_t), KM_SLEEP); 763 for (int i = 0; i < spa->spa_alloc_count; i++) { 764 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT, 765 NULL); 766 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare, 767 sizeof (zio_t), offsetof(zio_t, io_queue_node.a)); 768 } 769 if (spa->spa_alloc_count > 1) { 770 spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t, 771 sau_inuse[spa->spa_alloc_count]), KM_SLEEP); 772 mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT, 773 NULL); 774 } 775 776 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 777 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 778 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 779 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 780 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 781 offsetof(log_summary_entry_t, lse_node)); 782 783 /* 784 * Every pool starts with the default cachefile 785 */ 786 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 787 offsetof(spa_config_dirent_t, scd_link)); 788 789 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 790 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 791 list_insert_head(&spa->spa_config_list, dp); 792 793 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 794 KM_SLEEP) == 0); 795 796 if (config != NULL) { 797 nvlist_t *features; 798 799 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 800 &features) == 0) { 801 VERIFY(nvlist_dup(features, &spa->spa_label_features, 802 0) == 0); 803 } 804 805 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 806 } 807 808 if (spa->spa_label_features == NULL) { 809 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 810 KM_SLEEP) == 0); 811 } 812 813 spa->spa_min_ashift = INT_MAX; 814 spa->spa_max_ashift = 0; 815 spa->spa_min_alloc = INT_MAX; 816 spa->spa_gcd_alloc = INT_MAX; 817 818 /* Reset cached value */ 819 spa->spa_dedup_dspace = ~0ULL; 820 821 /* 822 * As a pool is being created, treat all features as disabled by 823 * setting SPA_FEATURE_DISABLED for all entries in the feature 824 * refcount cache. 825 */ 826 for (int i = 0; i < SPA_FEATURES; i++) { 827 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 828 } 829 830 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 831 offsetof(vdev_t, vdev_leaf_node)); 832 833 return (spa); 834 } 835 836 /* 837 * Removes a spa_t from the namespace, freeing up any memory used. Requires 838 * spa_namespace_lock. This is called only after the spa_t has been closed and 839 * deactivated. 840 */ 841 void 842 spa_remove(spa_t *spa) 843 { 844 spa_config_dirent_t *dp; 845 846 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 847 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 848 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 849 ASSERT0(spa->spa_waiters); 850 851 nvlist_free(spa->spa_config_splitting); 852 853 avl_remove(&spa_namespace_avl, spa); 854 855 if (spa->spa_root) 856 spa_strfree(spa->spa_root); 857 858 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { 859 if (dp->scd_path != NULL) 860 spa_strfree(dp->scd_path); 861 kmem_free(dp, sizeof (spa_config_dirent_t)); 862 } 863 864 for (int i = 0; i < spa->spa_alloc_count; i++) { 865 avl_destroy(&spa->spa_allocs[i].spaa_tree); 866 mutex_destroy(&spa->spa_allocs[i].spaa_lock); 867 } 868 kmem_free(spa->spa_allocs, spa->spa_alloc_count * 869 sizeof (spa_alloc_t)); 870 if (spa->spa_alloc_count > 1) { 871 mutex_destroy(&spa->spa_allocs_use->sau_lock); 872 kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t, 873 sau_inuse[spa->spa_alloc_count])); 874 } 875 876 avl_destroy(&spa->spa_metaslabs_by_flushed); 877 avl_destroy(&spa->spa_sm_logs_by_txg); 878 list_destroy(&spa->spa_log_summary); 879 list_destroy(&spa->spa_config_list); 880 list_destroy(&spa->spa_leaf_list); 881 882 nvlist_free(spa->spa_label_features); 883 nvlist_free(spa->spa_load_info); 884 nvlist_free(spa->spa_feat_stats); 885 spa_config_set(spa, NULL); 886 887 zfs_refcount_destroy(&spa->spa_refcount); 888 889 spa_stats_destroy(spa); 890 spa_config_lock_destroy(spa); 891 892 for (int t = 0; t < TXG_SIZE; t++) 893 bplist_destroy(&spa->spa_free_bplist[t]); 894 895 zio_checksum_templates_free(spa); 896 897 cv_destroy(&spa->spa_async_cv); 898 cv_destroy(&spa->spa_evicting_os_cv); 899 cv_destroy(&spa->spa_proc_cv); 900 cv_destroy(&spa->spa_scrub_io_cv); 901 cv_destroy(&spa->spa_suspend_cv); 902 cv_destroy(&spa->spa_activities_cv); 903 cv_destroy(&spa->spa_waiters_cv); 904 905 mutex_destroy(&spa->spa_flushed_ms_lock); 906 mutex_destroy(&spa->spa_async_lock); 907 mutex_destroy(&spa->spa_errlist_lock); 908 mutex_destroy(&spa->spa_errlog_lock); 909 mutex_destroy(&spa->spa_evicting_os_lock); 910 mutex_destroy(&spa->spa_history_lock); 911 mutex_destroy(&spa->spa_proc_lock); 912 mutex_destroy(&spa->spa_props_lock); 913 mutex_destroy(&spa->spa_cksum_tmpls_lock); 914 mutex_destroy(&spa->spa_scrub_lock); 915 mutex_destroy(&spa->spa_suspend_lock); 916 mutex_destroy(&spa->spa_vdev_top_lock); 917 mutex_destroy(&spa->spa_feat_stats_lock); 918 mutex_destroy(&spa->spa_activities_lock); 919 920 kmem_free(spa, sizeof (spa_t)); 921 } 922 923 /* 924 * Given a pool, return the next pool in the namespace, or NULL if there is 925 * none. If 'prev' is NULL, return the first pool. 926 */ 927 spa_t * 928 spa_next(spa_t *prev) 929 { 930 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 931 932 if (prev) 933 return (AVL_NEXT(&spa_namespace_avl, prev)); 934 else 935 return (avl_first(&spa_namespace_avl)); 936 } 937 938 /* 939 * ========================================================================== 940 * SPA refcount functions 941 * ========================================================================== 942 */ 943 944 /* 945 * Add a reference to the given spa_t. Must have at least one reference, or 946 * have the namespace lock held. 947 */ 948 void 949 spa_open_ref(spa_t *spa, const void *tag) 950 { 951 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 952 MUTEX_HELD(&spa_namespace_lock) || 953 spa->spa_load_thread == curthread); 954 (void) zfs_refcount_add(&spa->spa_refcount, tag); 955 } 956 957 /* 958 * Remove a reference to the given spa_t. Must have at least one reference, or 959 * have the namespace lock held or be part of a pool import/export. 960 */ 961 void 962 spa_close(spa_t *spa, const void *tag) 963 { 964 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 965 MUTEX_HELD(&spa_namespace_lock) || 966 spa->spa_load_thread == curthread || 967 spa->spa_export_thread == curthread); 968 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 969 } 970 971 /* 972 * Remove a reference to the given spa_t held by a dsl dir that is 973 * being asynchronously released. Async releases occur from a taskq 974 * performing eviction of dsl datasets and dirs. The namespace lock 975 * isn't held and the hold by the object being evicted may contribute to 976 * spa_minref (e.g. dataset or directory released during pool export), 977 * so the asserts in spa_close() do not apply. 978 */ 979 void 980 spa_async_close(spa_t *spa, const void *tag) 981 { 982 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 983 } 984 985 /* 986 * Check to see if the spa refcount is zero. Must be called with 987 * spa_namespace_lock held or be the spa export thread. We really 988 * compare against spa_minref, which is the number of references 989 * acquired when opening a pool 990 */ 991 boolean_t 992 spa_refcount_zero(spa_t *spa) 993 { 994 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 995 spa->spa_export_thread == curthread); 996 997 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 998 } 999 1000 /* 1001 * ========================================================================== 1002 * SPA spare and l2cache tracking 1003 * ========================================================================== 1004 */ 1005 1006 /* 1007 * Hot spares and cache devices are tracked using the same code below, 1008 * for 'auxiliary' devices. 1009 */ 1010 1011 typedef struct spa_aux { 1012 uint64_t aux_guid; 1013 uint64_t aux_pool; 1014 avl_node_t aux_avl; 1015 int aux_count; 1016 } spa_aux_t; 1017 1018 static inline int 1019 spa_aux_compare(const void *a, const void *b) 1020 { 1021 const spa_aux_t *sa = (const spa_aux_t *)a; 1022 const spa_aux_t *sb = (const spa_aux_t *)b; 1023 1024 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 1025 } 1026 1027 static void 1028 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 1029 { 1030 avl_index_t where; 1031 spa_aux_t search; 1032 spa_aux_t *aux; 1033 1034 search.aux_guid = vd->vdev_guid; 1035 if ((aux = avl_find(avl, &search, &where)) != NULL) { 1036 aux->aux_count++; 1037 } else { 1038 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 1039 aux->aux_guid = vd->vdev_guid; 1040 aux->aux_count = 1; 1041 avl_insert(avl, aux, where); 1042 } 1043 } 1044 1045 static void 1046 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 1047 { 1048 spa_aux_t search; 1049 spa_aux_t *aux; 1050 avl_index_t where; 1051 1052 search.aux_guid = vd->vdev_guid; 1053 aux = avl_find(avl, &search, &where); 1054 1055 ASSERT(aux != NULL); 1056 1057 if (--aux->aux_count == 0) { 1058 avl_remove(avl, aux); 1059 kmem_free(aux, sizeof (spa_aux_t)); 1060 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1061 aux->aux_pool = 0ULL; 1062 } 1063 } 1064 1065 static boolean_t 1066 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1067 { 1068 spa_aux_t search, *found; 1069 1070 search.aux_guid = guid; 1071 found = avl_find(avl, &search, NULL); 1072 1073 if (pool) { 1074 if (found) 1075 *pool = found->aux_pool; 1076 else 1077 *pool = 0ULL; 1078 } 1079 1080 if (refcnt) { 1081 if (found) 1082 *refcnt = found->aux_count; 1083 else 1084 *refcnt = 0; 1085 } 1086 1087 return (found != NULL); 1088 } 1089 1090 static void 1091 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1092 { 1093 spa_aux_t search, *found; 1094 avl_index_t where; 1095 1096 search.aux_guid = vd->vdev_guid; 1097 found = avl_find(avl, &search, &where); 1098 ASSERT(found != NULL); 1099 ASSERT(found->aux_pool == 0ULL); 1100 1101 found->aux_pool = spa_guid(vd->vdev_spa); 1102 } 1103 1104 /* 1105 * Spares are tracked globally due to the following constraints: 1106 * 1107 * - A spare may be part of multiple pools. 1108 * - A spare may be added to a pool even if it's actively in use within 1109 * another pool. 1110 * - A spare in use in any pool can only be the source of a replacement if 1111 * the target is a spare in the same pool. 1112 * 1113 * We keep track of all spares on the system through the use of a reference 1114 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1115 * spare, then we bump the reference count in the AVL tree. In addition, we set 1116 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1117 * inactive). When a spare is made active (used to replace a device in the 1118 * pool), we also keep track of which pool its been made a part of. 1119 * 1120 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1121 * called under the spa_namespace lock as part of vdev reconfiguration. The 1122 * separate spare lock exists for the status query path, which does not need to 1123 * be completely consistent with respect to other vdev configuration changes. 1124 */ 1125 1126 static int 1127 spa_spare_compare(const void *a, const void *b) 1128 { 1129 return (spa_aux_compare(a, b)); 1130 } 1131 1132 void 1133 spa_spare_add(vdev_t *vd) 1134 { 1135 mutex_enter(&spa_spare_lock); 1136 ASSERT(!vd->vdev_isspare); 1137 spa_aux_add(vd, &spa_spare_avl); 1138 vd->vdev_isspare = B_TRUE; 1139 mutex_exit(&spa_spare_lock); 1140 } 1141 1142 void 1143 spa_spare_remove(vdev_t *vd) 1144 { 1145 mutex_enter(&spa_spare_lock); 1146 ASSERT(vd->vdev_isspare); 1147 spa_aux_remove(vd, &spa_spare_avl); 1148 vd->vdev_isspare = B_FALSE; 1149 mutex_exit(&spa_spare_lock); 1150 } 1151 1152 boolean_t 1153 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1154 { 1155 boolean_t found; 1156 1157 mutex_enter(&spa_spare_lock); 1158 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1159 mutex_exit(&spa_spare_lock); 1160 1161 return (found); 1162 } 1163 1164 void 1165 spa_spare_activate(vdev_t *vd) 1166 { 1167 mutex_enter(&spa_spare_lock); 1168 ASSERT(vd->vdev_isspare); 1169 spa_aux_activate(vd, &spa_spare_avl); 1170 mutex_exit(&spa_spare_lock); 1171 } 1172 1173 /* 1174 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1175 * Cache devices currently only support one pool per cache device, and so 1176 * for these devices the aux reference count is currently unused beyond 1. 1177 */ 1178 1179 static int 1180 spa_l2cache_compare(const void *a, const void *b) 1181 { 1182 return (spa_aux_compare(a, b)); 1183 } 1184 1185 void 1186 spa_l2cache_add(vdev_t *vd) 1187 { 1188 mutex_enter(&spa_l2cache_lock); 1189 ASSERT(!vd->vdev_isl2cache); 1190 spa_aux_add(vd, &spa_l2cache_avl); 1191 vd->vdev_isl2cache = B_TRUE; 1192 mutex_exit(&spa_l2cache_lock); 1193 } 1194 1195 void 1196 spa_l2cache_remove(vdev_t *vd) 1197 { 1198 mutex_enter(&spa_l2cache_lock); 1199 ASSERT(vd->vdev_isl2cache); 1200 spa_aux_remove(vd, &spa_l2cache_avl); 1201 vd->vdev_isl2cache = B_FALSE; 1202 mutex_exit(&spa_l2cache_lock); 1203 } 1204 1205 boolean_t 1206 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1207 { 1208 boolean_t found; 1209 1210 mutex_enter(&spa_l2cache_lock); 1211 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1212 mutex_exit(&spa_l2cache_lock); 1213 1214 return (found); 1215 } 1216 1217 void 1218 spa_l2cache_activate(vdev_t *vd) 1219 { 1220 mutex_enter(&spa_l2cache_lock); 1221 ASSERT(vd->vdev_isl2cache); 1222 spa_aux_activate(vd, &spa_l2cache_avl); 1223 mutex_exit(&spa_l2cache_lock); 1224 } 1225 1226 /* 1227 * ========================================================================== 1228 * SPA vdev locking 1229 * ========================================================================== 1230 */ 1231 1232 /* 1233 * Lock the given spa_t for the purpose of adding or removing a vdev. 1234 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1235 * It returns the next transaction group for the spa_t. 1236 */ 1237 uint64_t 1238 spa_vdev_enter(spa_t *spa) 1239 { 1240 mutex_enter(&spa->spa_vdev_top_lock); 1241 mutex_enter(&spa_namespace_lock); 1242 1243 ASSERT0(spa->spa_export_thread); 1244 1245 vdev_autotrim_stop_all(spa); 1246 1247 return (spa_vdev_config_enter(spa)); 1248 } 1249 1250 /* 1251 * The same as spa_vdev_enter() above but additionally takes the guid of 1252 * the vdev being detached. When there is a rebuild in process it will be 1253 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1254 * The rebuild is canceled if only a single child remains after the detach. 1255 */ 1256 uint64_t 1257 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1258 { 1259 mutex_enter(&spa->spa_vdev_top_lock); 1260 mutex_enter(&spa_namespace_lock); 1261 1262 ASSERT0(spa->spa_export_thread); 1263 1264 vdev_autotrim_stop_all(spa); 1265 1266 if (guid != 0) { 1267 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1268 if (vd) { 1269 vdev_rebuild_stop_wait(vd->vdev_top); 1270 } 1271 } 1272 1273 return (spa_vdev_config_enter(spa)); 1274 } 1275 1276 /* 1277 * Internal implementation for spa_vdev_enter(). Used when a vdev 1278 * operation requires multiple syncs (i.e. removing a device) while 1279 * keeping the spa_namespace_lock held. 1280 */ 1281 uint64_t 1282 spa_vdev_config_enter(spa_t *spa) 1283 { 1284 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1285 1286 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1287 1288 return (spa_last_synced_txg(spa) + 1); 1289 } 1290 1291 /* 1292 * Used in combination with spa_vdev_config_enter() to allow the syncing 1293 * of multiple transactions without releasing the spa_namespace_lock. 1294 */ 1295 void 1296 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1297 const char *tag) 1298 { 1299 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1300 1301 int config_changed = B_FALSE; 1302 1303 ASSERT(txg > spa_last_synced_txg(spa)); 1304 1305 spa->spa_pending_vdev = NULL; 1306 1307 /* 1308 * Reassess the DTLs. 1309 */ 1310 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1311 1312 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1313 config_changed = B_TRUE; 1314 spa->spa_config_generation++; 1315 } 1316 1317 /* 1318 * Verify the metaslab classes. 1319 */ 1320 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1321 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1322 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1323 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1324 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1325 1326 spa_config_exit(spa, SCL_ALL, spa); 1327 1328 /* 1329 * Panic the system if the specified tag requires it. This 1330 * is useful for ensuring that configurations are updated 1331 * transactionally. 1332 */ 1333 if (zio_injection_enabled) 1334 zio_handle_panic_injection(spa, tag, 0); 1335 1336 /* 1337 * Note: this txg_wait_synced() is important because it ensures 1338 * that there won't be more than one config change per txg. 1339 * This allows us to use the txg as the generation number. 1340 */ 1341 if (error == 0) 1342 txg_wait_synced(spa->spa_dsl_pool, txg); 1343 1344 if (vd != NULL) { 1345 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1346 if (vd->vdev_ops->vdev_op_leaf) { 1347 mutex_enter(&vd->vdev_initialize_lock); 1348 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1349 NULL); 1350 mutex_exit(&vd->vdev_initialize_lock); 1351 1352 mutex_enter(&vd->vdev_trim_lock); 1353 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1354 mutex_exit(&vd->vdev_trim_lock); 1355 } 1356 1357 /* 1358 * The vdev may be both a leaf and top-level device. 1359 */ 1360 vdev_autotrim_stop_wait(vd); 1361 1362 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1363 vdev_free(vd); 1364 spa_config_exit(spa, SCL_STATE_ALL, spa); 1365 } 1366 1367 /* 1368 * If the config changed, update the config cache. 1369 */ 1370 if (config_changed) 1371 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1372 } 1373 1374 /* 1375 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1376 * locking of spa_vdev_enter(), we also want make sure the transactions have 1377 * synced to disk, and then update the global configuration cache with the new 1378 * information. 1379 */ 1380 int 1381 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1382 { 1383 vdev_autotrim_restart(spa); 1384 vdev_rebuild_restart(spa); 1385 1386 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1387 mutex_exit(&spa_namespace_lock); 1388 mutex_exit(&spa->spa_vdev_top_lock); 1389 1390 return (error); 1391 } 1392 1393 /* 1394 * Lock the given spa_t for the purpose of changing vdev state. 1395 */ 1396 void 1397 spa_vdev_state_enter(spa_t *spa, int oplocks) 1398 { 1399 int locks = SCL_STATE_ALL | oplocks; 1400 1401 /* 1402 * Root pools may need to read of the underlying devfs filesystem 1403 * when opening up a vdev. Unfortunately if we're holding the 1404 * SCL_ZIO lock it will result in a deadlock when we try to issue 1405 * the read from the root filesystem. Instead we "prefetch" 1406 * the associated vnodes that we need prior to opening the 1407 * underlying devices and cache them so that we can prevent 1408 * any I/O when we are doing the actual open. 1409 */ 1410 if (spa_is_root(spa)) { 1411 int low = locks & ~(SCL_ZIO - 1); 1412 int high = locks & ~low; 1413 1414 spa_config_enter(spa, high, spa, RW_WRITER); 1415 vdev_hold(spa->spa_root_vdev); 1416 spa_config_enter(spa, low, spa, RW_WRITER); 1417 } else { 1418 spa_config_enter(spa, locks, spa, RW_WRITER); 1419 } 1420 spa->spa_vdev_locks = locks; 1421 } 1422 1423 int 1424 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1425 { 1426 boolean_t config_changed = B_FALSE; 1427 vdev_t *vdev_top; 1428 1429 if (vd == NULL || vd == spa->spa_root_vdev) { 1430 vdev_top = spa->spa_root_vdev; 1431 } else { 1432 vdev_top = vd->vdev_top; 1433 } 1434 1435 if (vd != NULL || error == 0) 1436 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1437 1438 if (vd != NULL) { 1439 if (vd != spa->spa_root_vdev) 1440 vdev_state_dirty(vdev_top); 1441 1442 config_changed = B_TRUE; 1443 spa->spa_config_generation++; 1444 } 1445 1446 if (spa_is_root(spa)) 1447 vdev_rele(spa->spa_root_vdev); 1448 1449 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1450 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1451 1452 /* 1453 * If anything changed, wait for it to sync. This ensures that, 1454 * from the system administrator's perspective, zpool(8) commands 1455 * are synchronous. This is important for things like zpool offline: 1456 * when the command completes, you expect no further I/O from ZFS. 1457 */ 1458 if (vd != NULL) 1459 txg_wait_synced(spa->spa_dsl_pool, 0); 1460 1461 /* 1462 * If the config changed, update the config cache. 1463 */ 1464 if (config_changed) { 1465 mutex_enter(&spa_namespace_lock); 1466 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1467 mutex_exit(&spa_namespace_lock); 1468 } 1469 1470 return (error); 1471 } 1472 1473 /* 1474 * ========================================================================== 1475 * Miscellaneous functions 1476 * ========================================================================== 1477 */ 1478 1479 void 1480 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1481 { 1482 if (!nvlist_exists(spa->spa_label_features, feature)) { 1483 fnvlist_add_boolean(spa->spa_label_features, feature); 1484 /* 1485 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1486 * dirty the vdev config because lock SCL_CONFIG is not held. 1487 * Thankfully, in this case we don't need to dirty the config 1488 * because it will be written out anyway when we finish 1489 * creating the pool. 1490 */ 1491 if (tx->tx_txg != TXG_INITIAL) 1492 vdev_config_dirty(spa->spa_root_vdev); 1493 } 1494 } 1495 1496 void 1497 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1498 { 1499 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1500 vdev_config_dirty(spa->spa_root_vdev); 1501 } 1502 1503 /* 1504 * Return the spa_t associated with given pool_guid, if it exists. If 1505 * device_guid is non-zero, determine whether the pool exists *and* contains 1506 * a device with the specified device_guid. 1507 */ 1508 spa_t * 1509 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1510 { 1511 spa_t *spa; 1512 avl_tree_t *t = &spa_namespace_avl; 1513 1514 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1515 1516 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1517 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1518 continue; 1519 if (spa->spa_root_vdev == NULL) 1520 continue; 1521 if (spa_guid(spa) == pool_guid) { 1522 if (device_guid == 0) 1523 break; 1524 1525 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1526 device_guid) != NULL) 1527 break; 1528 1529 /* 1530 * Check any devices we may be in the process of adding. 1531 */ 1532 if (spa->spa_pending_vdev) { 1533 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1534 device_guid) != NULL) 1535 break; 1536 } 1537 } 1538 } 1539 1540 return (spa); 1541 } 1542 1543 /* 1544 * Determine whether a pool with the given pool_guid exists. 1545 */ 1546 boolean_t 1547 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1548 { 1549 return (spa_by_guid(pool_guid, device_guid) != NULL); 1550 } 1551 1552 char * 1553 spa_strdup(const char *s) 1554 { 1555 size_t len; 1556 char *new; 1557 1558 len = strlen(s); 1559 new = kmem_alloc(len + 1, KM_SLEEP); 1560 memcpy(new, s, len + 1); 1561 1562 return (new); 1563 } 1564 1565 void 1566 spa_strfree(char *s) 1567 { 1568 kmem_free(s, strlen(s) + 1); 1569 } 1570 1571 uint64_t 1572 spa_generate_guid(spa_t *spa) 1573 { 1574 uint64_t guid; 1575 1576 if (spa != NULL) { 1577 do { 1578 (void) random_get_pseudo_bytes((void *)&guid, 1579 sizeof (guid)); 1580 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1581 } else { 1582 do { 1583 (void) random_get_pseudo_bytes((void *)&guid, 1584 sizeof (guid)); 1585 } while (guid == 0 || spa_guid_exists(guid, 0)); 1586 } 1587 1588 return (guid); 1589 } 1590 1591 void 1592 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1593 { 1594 char type[256]; 1595 const char *checksum = NULL; 1596 const char *compress = NULL; 1597 1598 if (bp != NULL) { 1599 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1600 dmu_object_byteswap_t bswap = 1601 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1602 (void) snprintf(type, sizeof (type), "bswap %s %s", 1603 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1604 "metadata" : "data", 1605 dmu_ot_byteswap[bswap].ob_name); 1606 } else { 1607 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1608 sizeof (type)); 1609 } 1610 if (!BP_IS_EMBEDDED(bp)) { 1611 checksum = 1612 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1613 } 1614 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1615 } 1616 1617 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1618 compress); 1619 } 1620 1621 void 1622 spa_freeze(spa_t *spa) 1623 { 1624 uint64_t freeze_txg = 0; 1625 1626 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1627 if (spa->spa_freeze_txg == UINT64_MAX) { 1628 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1629 spa->spa_freeze_txg = freeze_txg; 1630 } 1631 spa_config_exit(spa, SCL_ALL, FTAG); 1632 if (freeze_txg != 0) 1633 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1634 } 1635 1636 void 1637 zfs_panic_recover(const char *fmt, ...) 1638 { 1639 va_list adx; 1640 1641 va_start(adx, fmt); 1642 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1643 va_end(adx); 1644 } 1645 1646 /* 1647 * This is a stripped-down version of strtoull, suitable only for converting 1648 * lowercase hexadecimal numbers that don't overflow. 1649 */ 1650 uint64_t 1651 zfs_strtonum(const char *str, char **nptr) 1652 { 1653 uint64_t val = 0; 1654 char c; 1655 int digit; 1656 1657 while ((c = *str) != '\0') { 1658 if (c >= '0' && c <= '9') 1659 digit = c - '0'; 1660 else if (c >= 'a' && c <= 'f') 1661 digit = 10 + c - 'a'; 1662 else 1663 break; 1664 1665 val *= 16; 1666 val += digit; 1667 1668 str++; 1669 } 1670 1671 if (nptr) 1672 *nptr = (char *)str; 1673 1674 return (val); 1675 } 1676 1677 void 1678 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1679 { 1680 /* 1681 * We bump the feature refcount for each special vdev added to the pool 1682 */ 1683 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1684 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1685 } 1686 1687 /* 1688 * ========================================================================== 1689 * Accessor functions 1690 * ========================================================================== 1691 */ 1692 1693 boolean_t 1694 spa_shutting_down(spa_t *spa) 1695 { 1696 return (spa->spa_async_suspended); 1697 } 1698 1699 dsl_pool_t * 1700 spa_get_dsl(spa_t *spa) 1701 { 1702 return (spa->spa_dsl_pool); 1703 } 1704 1705 boolean_t 1706 spa_is_initializing(spa_t *spa) 1707 { 1708 return (spa->spa_is_initializing); 1709 } 1710 1711 boolean_t 1712 spa_indirect_vdevs_loaded(spa_t *spa) 1713 { 1714 return (spa->spa_indirect_vdevs_loaded); 1715 } 1716 1717 blkptr_t * 1718 spa_get_rootblkptr(spa_t *spa) 1719 { 1720 return (&spa->spa_ubsync.ub_rootbp); 1721 } 1722 1723 void 1724 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1725 { 1726 spa->spa_uberblock.ub_rootbp = *bp; 1727 } 1728 1729 void 1730 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1731 { 1732 if (spa->spa_root == NULL) 1733 buf[0] = '\0'; 1734 else 1735 (void) strlcpy(buf, spa->spa_root, buflen); 1736 } 1737 1738 uint32_t 1739 spa_sync_pass(spa_t *spa) 1740 { 1741 return (spa->spa_sync_pass); 1742 } 1743 1744 char * 1745 spa_name(spa_t *spa) 1746 { 1747 return (spa->spa_name); 1748 } 1749 1750 uint64_t 1751 spa_guid(spa_t *spa) 1752 { 1753 dsl_pool_t *dp = spa_get_dsl(spa); 1754 uint64_t guid; 1755 1756 /* 1757 * If we fail to parse the config during spa_load(), we can go through 1758 * the error path (which posts an ereport) and end up here with no root 1759 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1760 * this case. 1761 */ 1762 if (spa->spa_root_vdev == NULL) 1763 return (spa->spa_config_guid); 1764 1765 guid = spa->spa_last_synced_guid != 0 ? 1766 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1767 1768 /* 1769 * Return the most recently synced out guid unless we're 1770 * in syncing context. 1771 */ 1772 if (dp && dsl_pool_sync_context(dp)) 1773 return (spa->spa_root_vdev->vdev_guid); 1774 else 1775 return (guid); 1776 } 1777 1778 uint64_t 1779 spa_load_guid(spa_t *spa) 1780 { 1781 /* 1782 * This is a GUID that exists solely as a reference for the 1783 * purposes of the arc. It is generated at load time, and 1784 * is never written to persistent storage. 1785 */ 1786 return (spa->spa_load_guid); 1787 } 1788 1789 uint64_t 1790 spa_last_synced_txg(spa_t *spa) 1791 { 1792 return (spa->spa_ubsync.ub_txg); 1793 } 1794 1795 uint64_t 1796 spa_first_txg(spa_t *spa) 1797 { 1798 return (spa->spa_first_txg); 1799 } 1800 1801 uint64_t 1802 spa_syncing_txg(spa_t *spa) 1803 { 1804 return (spa->spa_syncing_txg); 1805 } 1806 1807 /* 1808 * Return the last txg where data can be dirtied. The final txgs 1809 * will be used to just clear out any deferred frees that remain. 1810 */ 1811 uint64_t 1812 spa_final_dirty_txg(spa_t *spa) 1813 { 1814 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1815 } 1816 1817 pool_state_t 1818 spa_state(spa_t *spa) 1819 { 1820 return (spa->spa_state); 1821 } 1822 1823 spa_load_state_t 1824 spa_load_state(spa_t *spa) 1825 { 1826 return (spa->spa_load_state); 1827 } 1828 1829 uint64_t 1830 spa_freeze_txg(spa_t *spa) 1831 { 1832 return (spa->spa_freeze_txg); 1833 } 1834 1835 /* 1836 * Return the inflated asize for a logical write in bytes. This is used by the 1837 * DMU to calculate the space a logical write will require on disk. 1838 * If lsize is smaller than the largest physical block size allocatable on this 1839 * pool we use its value instead, since the write will end up using the whole 1840 * block anyway. 1841 */ 1842 uint64_t 1843 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1844 { 1845 if (lsize == 0) 1846 return (0); /* No inflation needed */ 1847 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1848 } 1849 1850 /* 1851 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1852 * (3.2%), minus the embedded log space. On very small pools, it may be 1853 * slightly larger than this. On very large pools, it will be capped to 1854 * the value of spa_max_slop. The embedded log space is not included in 1855 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1856 * constant 97% of the total space, regardless of metaslab size (assuming the 1857 * default spa_slop_shift=5 and a non-tiny pool). 1858 * 1859 * See the comment above spa_slop_shift for more details. 1860 */ 1861 uint64_t 1862 spa_get_slop_space(spa_t *spa) 1863 { 1864 uint64_t space = 0; 1865 uint64_t slop = 0; 1866 1867 /* 1868 * Make sure spa_dedup_dspace has been set. 1869 */ 1870 if (spa->spa_dedup_dspace == ~0ULL) 1871 spa_update_dspace(spa); 1872 1873 /* 1874 * spa_get_dspace() includes the space only logically "used" by 1875 * deduplicated data, so since it's not useful to reserve more 1876 * space with more deduplicated data, we subtract that out here. 1877 */ 1878 space = 1879 spa_get_dspace(spa) - spa->spa_dedup_dspace - brt_get_dspace(spa); 1880 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1881 1882 /* 1883 * Subtract the embedded log space, but no more than half the (3.2%) 1884 * unusable space. Note, the "no more than half" is only relevant if 1885 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1886 * default. 1887 */ 1888 uint64_t embedded_log = 1889 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1890 slop -= MIN(embedded_log, slop >> 1); 1891 1892 /* 1893 * Slop space should be at least spa_min_slop, but no more than half 1894 * the entire pool. 1895 */ 1896 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1897 return (slop); 1898 } 1899 1900 uint64_t 1901 spa_get_dspace(spa_t *spa) 1902 { 1903 return (spa->spa_dspace); 1904 } 1905 1906 uint64_t 1907 spa_get_checkpoint_space(spa_t *spa) 1908 { 1909 return (spa->spa_checkpoint_info.sci_dspace); 1910 } 1911 1912 void 1913 spa_update_dspace(spa_t *spa) 1914 { 1915 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1916 ddt_get_dedup_dspace(spa) + brt_get_dspace(spa); 1917 if (spa->spa_nonallocating_dspace > 0) { 1918 /* 1919 * Subtract the space provided by all non-allocating vdevs that 1920 * contribute to dspace. If a file is overwritten, its old 1921 * blocks are freed and new blocks are allocated. If there are 1922 * no snapshots of the file, the available space should remain 1923 * the same. The old blocks could be freed from the 1924 * non-allocating vdev, but the new blocks must be allocated on 1925 * other (allocating) vdevs. By reserving the entire size of 1926 * the non-allocating vdevs (including allocated space), we 1927 * ensure that there will be enough space on the allocating 1928 * vdevs for this file overwrite to succeed. 1929 * 1930 * Note that the DMU/DSL doesn't actually know or care 1931 * how much space is allocated (it does its own tracking 1932 * of how much space has been logically used). So it 1933 * doesn't matter that the data we are moving may be 1934 * allocated twice (on the old device and the new device). 1935 */ 1936 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace); 1937 spa->spa_dspace -= spa->spa_nonallocating_dspace; 1938 } 1939 } 1940 1941 /* 1942 * Return the failure mode that has been set to this pool. The default 1943 * behavior will be to block all I/Os when a complete failure occurs. 1944 */ 1945 uint64_t 1946 spa_get_failmode(spa_t *spa) 1947 { 1948 return (spa->spa_failmode); 1949 } 1950 1951 boolean_t 1952 spa_suspended(spa_t *spa) 1953 { 1954 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1955 } 1956 1957 uint64_t 1958 spa_version(spa_t *spa) 1959 { 1960 return (spa->spa_ubsync.ub_version); 1961 } 1962 1963 boolean_t 1964 spa_deflate(spa_t *spa) 1965 { 1966 return (spa->spa_deflate); 1967 } 1968 1969 metaslab_class_t * 1970 spa_normal_class(spa_t *spa) 1971 { 1972 return (spa->spa_normal_class); 1973 } 1974 1975 metaslab_class_t * 1976 spa_log_class(spa_t *spa) 1977 { 1978 return (spa->spa_log_class); 1979 } 1980 1981 metaslab_class_t * 1982 spa_embedded_log_class(spa_t *spa) 1983 { 1984 return (spa->spa_embedded_log_class); 1985 } 1986 1987 metaslab_class_t * 1988 spa_special_class(spa_t *spa) 1989 { 1990 return (spa->spa_special_class); 1991 } 1992 1993 metaslab_class_t * 1994 spa_dedup_class(spa_t *spa) 1995 { 1996 return (spa->spa_dedup_class); 1997 } 1998 1999 boolean_t 2000 spa_special_has_ddt(spa_t *spa) 2001 { 2002 return (zfs_ddt_data_is_special && 2003 spa->spa_special_class->mc_groups != 0); 2004 } 2005 2006 /* 2007 * Locate an appropriate allocation class 2008 */ 2009 metaslab_class_t * 2010 spa_preferred_class(spa_t *spa, const zio_t *zio) 2011 { 2012 const zio_prop_t *zp = &zio->io_prop; 2013 2014 /* 2015 * Override object type for the purposes of selecting a storage class. 2016 * Primarily for DMU_OTN_ types where we can't explicitly control their 2017 * storage class; instead, choose a static type most closely matches 2018 * what we want. 2019 */ 2020 dmu_object_type_t objtype = 2021 zp->zp_storage_type == DMU_OT_NONE ? 2022 zp->zp_type : zp->zp_storage_type; 2023 2024 /* 2025 * ZIL allocations determine their class in zio_alloc_zil(). 2026 */ 2027 ASSERT(objtype != DMU_OT_INTENT_LOG); 2028 2029 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 2030 2031 if (DMU_OT_IS_DDT(objtype)) { 2032 if (spa->spa_dedup_class->mc_groups != 0) 2033 return (spa_dedup_class(spa)); 2034 else if (has_special_class && zfs_ddt_data_is_special) 2035 return (spa_special_class(spa)); 2036 else 2037 return (spa_normal_class(spa)); 2038 } 2039 2040 /* Indirect blocks for user data can land in special if allowed */ 2041 if (zp->zp_level > 0 && 2042 (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 2043 if (has_special_class && zfs_user_indirect_is_special) 2044 return (spa_special_class(spa)); 2045 else 2046 return (spa_normal_class(spa)); 2047 } 2048 2049 if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) { 2050 if (has_special_class) 2051 return (spa_special_class(spa)); 2052 else 2053 return (spa_normal_class(spa)); 2054 } 2055 2056 /* 2057 * Allow small file blocks in special class in some cases (like 2058 * for the dRAID vdev feature). But always leave a reserve of 2059 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 2060 */ 2061 if (DMU_OT_IS_FILE(objtype) && 2062 has_special_class && zio->io_size <= zp->zp_zpl_smallblk) { 2063 metaslab_class_t *special = spa_special_class(spa); 2064 uint64_t alloc = metaslab_class_get_alloc(special); 2065 uint64_t space = metaslab_class_get_space(special); 2066 uint64_t limit = 2067 (space * (100 - zfs_special_class_metadata_reserve_pct)) 2068 / 100; 2069 2070 if (alloc < limit) 2071 return (special); 2072 } 2073 2074 return (spa_normal_class(spa)); 2075 } 2076 2077 void 2078 spa_evicting_os_register(spa_t *spa, objset_t *os) 2079 { 2080 mutex_enter(&spa->spa_evicting_os_lock); 2081 list_insert_head(&spa->spa_evicting_os_list, os); 2082 mutex_exit(&spa->spa_evicting_os_lock); 2083 } 2084 2085 void 2086 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2087 { 2088 mutex_enter(&spa->spa_evicting_os_lock); 2089 list_remove(&spa->spa_evicting_os_list, os); 2090 cv_broadcast(&spa->spa_evicting_os_cv); 2091 mutex_exit(&spa->spa_evicting_os_lock); 2092 } 2093 2094 void 2095 spa_evicting_os_wait(spa_t *spa) 2096 { 2097 mutex_enter(&spa->spa_evicting_os_lock); 2098 while (!list_is_empty(&spa->spa_evicting_os_list)) 2099 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2100 mutex_exit(&spa->spa_evicting_os_lock); 2101 2102 dmu_buf_user_evict_wait(); 2103 } 2104 2105 int 2106 spa_max_replication(spa_t *spa) 2107 { 2108 /* 2109 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2110 * handle BPs with more than one DVA allocated. Set our max 2111 * replication level accordingly. 2112 */ 2113 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2114 return (1); 2115 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2116 } 2117 2118 int 2119 spa_prev_software_version(spa_t *spa) 2120 { 2121 return (spa->spa_prev_software_version); 2122 } 2123 2124 uint64_t 2125 spa_deadman_synctime(spa_t *spa) 2126 { 2127 return (spa->spa_deadman_synctime); 2128 } 2129 2130 spa_autotrim_t 2131 spa_get_autotrim(spa_t *spa) 2132 { 2133 return (spa->spa_autotrim); 2134 } 2135 2136 uint64_t 2137 spa_deadman_ziotime(spa_t *spa) 2138 { 2139 return (spa->spa_deadman_ziotime); 2140 } 2141 2142 uint64_t 2143 spa_get_deadman_failmode(spa_t *spa) 2144 { 2145 return (spa->spa_deadman_failmode); 2146 } 2147 2148 void 2149 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2150 { 2151 if (strcmp(failmode, "wait") == 0) 2152 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2153 else if (strcmp(failmode, "continue") == 0) 2154 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2155 else if (strcmp(failmode, "panic") == 0) 2156 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2157 else 2158 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2159 } 2160 2161 void 2162 spa_set_deadman_ziotime(hrtime_t ns) 2163 { 2164 spa_t *spa = NULL; 2165 2166 if (spa_mode_global != SPA_MODE_UNINIT) { 2167 mutex_enter(&spa_namespace_lock); 2168 while ((spa = spa_next(spa)) != NULL) 2169 spa->spa_deadman_ziotime = ns; 2170 mutex_exit(&spa_namespace_lock); 2171 } 2172 } 2173 2174 void 2175 spa_set_deadman_synctime(hrtime_t ns) 2176 { 2177 spa_t *spa = NULL; 2178 2179 if (spa_mode_global != SPA_MODE_UNINIT) { 2180 mutex_enter(&spa_namespace_lock); 2181 while ((spa = spa_next(spa)) != NULL) 2182 spa->spa_deadman_synctime = ns; 2183 mutex_exit(&spa_namespace_lock); 2184 } 2185 } 2186 2187 uint64_t 2188 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2189 { 2190 uint64_t asize = DVA_GET_ASIZE(dva); 2191 uint64_t dsize = asize; 2192 2193 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2194 2195 if (asize != 0 && spa->spa_deflate) { 2196 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2197 if (vd != NULL) 2198 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2199 vd->vdev_deflate_ratio; 2200 } 2201 2202 return (dsize); 2203 } 2204 2205 uint64_t 2206 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2207 { 2208 uint64_t dsize = 0; 2209 2210 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2211 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2212 2213 return (dsize); 2214 } 2215 2216 uint64_t 2217 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2218 { 2219 uint64_t dsize = 0; 2220 2221 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2222 2223 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2224 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2225 2226 spa_config_exit(spa, SCL_VDEV, FTAG); 2227 2228 return (dsize); 2229 } 2230 2231 uint64_t 2232 spa_dirty_data(spa_t *spa) 2233 { 2234 return (spa->spa_dsl_pool->dp_dirty_total); 2235 } 2236 2237 /* 2238 * ========================================================================== 2239 * SPA Import Progress Routines 2240 * ========================================================================== 2241 */ 2242 2243 typedef struct spa_import_progress { 2244 uint64_t pool_guid; /* unique id for updates */ 2245 char *pool_name; 2246 spa_load_state_t spa_load_state; 2247 char *spa_load_notes; 2248 uint64_t mmp_sec_remaining; /* MMP activity check */ 2249 uint64_t spa_load_max_txg; /* rewind txg */ 2250 procfs_list_node_t smh_node; 2251 } spa_import_progress_t; 2252 2253 spa_history_list_t *spa_import_progress_list = NULL; 2254 2255 static int 2256 spa_import_progress_show_header(struct seq_file *f) 2257 { 2258 seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid", 2259 "load_state", "multihost_secs", "max_txg", 2260 "pool_name", "notes"); 2261 return (0); 2262 } 2263 2264 static int 2265 spa_import_progress_show(struct seq_file *f, void *data) 2266 { 2267 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2268 2269 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n", 2270 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2271 (u_longlong_t)sip->mmp_sec_remaining, 2272 (u_longlong_t)sip->spa_load_max_txg, 2273 (sip->pool_name ? sip->pool_name : "-"), 2274 (sip->spa_load_notes ? sip->spa_load_notes : "-")); 2275 2276 return (0); 2277 } 2278 2279 /* Remove oldest elements from list until there are no more than 'size' left */ 2280 static void 2281 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2282 { 2283 spa_import_progress_t *sip; 2284 while (shl->size > size) { 2285 sip = list_remove_head(&shl->procfs_list.pl_list); 2286 if (sip->pool_name) 2287 spa_strfree(sip->pool_name); 2288 if (sip->spa_load_notes) 2289 kmem_strfree(sip->spa_load_notes); 2290 kmem_free(sip, sizeof (spa_import_progress_t)); 2291 shl->size--; 2292 } 2293 2294 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2295 } 2296 2297 static void 2298 spa_import_progress_init(void) 2299 { 2300 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2301 KM_SLEEP); 2302 2303 spa_import_progress_list->size = 0; 2304 2305 spa_import_progress_list->procfs_list.pl_private = 2306 spa_import_progress_list; 2307 2308 procfs_list_install("zfs", 2309 NULL, 2310 "import_progress", 2311 0644, 2312 &spa_import_progress_list->procfs_list, 2313 spa_import_progress_show, 2314 spa_import_progress_show_header, 2315 NULL, 2316 offsetof(spa_import_progress_t, smh_node)); 2317 } 2318 2319 static void 2320 spa_import_progress_destroy(void) 2321 { 2322 spa_history_list_t *shl = spa_import_progress_list; 2323 procfs_list_uninstall(&shl->procfs_list); 2324 spa_import_progress_truncate(shl, 0); 2325 procfs_list_destroy(&shl->procfs_list); 2326 kmem_free(shl, sizeof (spa_history_list_t)); 2327 } 2328 2329 int 2330 spa_import_progress_set_state(uint64_t pool_guid, 2331 spa_load_state_t load_state) 2332 { 2333 spa_history_list_t *shl = spa_import_progress_list; 2334 spa_import_progress_t *sip; 2335 int error = ENOENT; 2336 2337 if (shl->size == 0) 2338 return (0); 2339 2340 mutex_enter(&shl->procfs_list.pl_lock); 2341 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2342 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2343 if (sip->pool_guid == pool_guid) { 2344 sip->spa_load_state = load_state; 2345 if (sip->spa_load_notes != NULL) { 2346 kmem_strfree(sip->spa_load_notes); 2347 sip->spa_load_notes = NULL; 2348 } 2349 error = 0; 2350 break; 2351 } 2352 } 2353 mutex_exit(&shl->procfs_list.pl_lock); 2354 2355 return (error); 2356 } 2357 2358 static void 2359 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg, 2360 const char *fmt, va_list adx) 2361 { 2362 spa_history_list_t *shl = spa_import_progress_list; 2363 spa_import_progress_t *sip; 2364 uint64_t pool_guid = spa_guid(spa); 2365 2366 if (shl->size == 0) 2367 return; 2368 2369 char *notes = kmem_vasprintf(fmt, adx); 2370 2371 mutex_enter(&shl->procfs_list.pl_lock); 2372 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2373 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2374 if (sip->pool_guid == pool_guid) { 2375 if (sip->spa_load_notes != NULL) { 2376 kmem_strfree(sip->spa_load_notes); 2377 sip->spa_load_notes = NULL; 2378 } 2379 sip->spa_load_notes = notes; 2380 if (log_dbgmsg) 2381 zfs_dbgmsg("'%s' %s", sip->pool_name, notes); 2382 notes = NULL; 2383 break; 2384 } 2385 } 2386 mutex_exit(&shl->procfs_list.pl_lock); 2387 if (notes != NULL) 2388 kmem_strfree(notes); 2389 } 2390 2391 void 2392 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...) 2393 { 2394 va_list adx; 2395 2396 va_start(adx, fmt); 2397 spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx); 2398 va_end(adx); 2399 } 2400 2401 void 2402 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...) 2403 { 2404 va_list adx; 2405 2406 va_start(adx, fmt); 2407 spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx); 2408 va_end(adx); 2409 } 2410 2411 int 2412 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2413 { 2414 spa_history_list_t *shl = spa_import_progress_list; 2415 spa_import_progress_t *sip; 2416 int error = ENOENT; 2417 2418 if (shl->size == 0) 2419 return (0); 2420 2421 mutex_enter(&shl->procfs_list.pl_lock); 2422 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2423 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2424 if (sip->pool_guid == pool_guid) { 2425 sip->spa_load_max_txg = load_max_txg; 2426 error = 0; 2427 break; 2428 } 2429 } 2430 mutex_exit(&shl->procfs_list.pl_lock); 2431 2432 return (error); 2433 } 2434 2435 int 2436 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2437 uint64_t mmp_sec_remaining) 2438 { 2439 spa_history_list_t *shl = spa_import_progress_list; 2440 spa_import_progress_t *sip; 2441 int error = ENOENT; 2442 2443 if (shl->size == 0) 2444 return (0); 2445 2446 mutex_enter(&shl->procfs_list.pl_lock); 2447 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2448 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2449 if (sip->pool_guid == pool_guid) { 2450 sip->mmp_sec_remaining = mmp_sec_remaining; 2451 error = 0; 2452 break; 2453 } 2454 } 2455 mutex_exit(&shl->procfs_list.pl_lock); 2456 2457 return (error); 2458 } 2459 2460 /* 2461 * A new import is in progress, add an entry. 2462 */ 2463 void 2464 spa_import_progress_add(spa_t *spa) 2465 { 2466 spa_history_list_t *shl = spa_import_progress_list; 2467 spa_import_progress_t *sip; 2468 const char *poolname = NULL; 2469 2470 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2471 sip->pool_guid = spa_guid(spa); 2472 2473 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2474 &poolname); 2475 if (poolname == NULL) 2476 poolname = spa_name(spa); 2477 sip->pool_name = spa_strdup(poolname); 2478 sip->spa_load_state = spa_load_state(spa); 2479 sip->spa_load_notes = NULL; 2480 2481 mutex_enter(&shl->procfs_list.pl_lock); 2482 procfs_list_add(&shl->procfs_list, sip); 2483 shl->size++; 2484 mutex_exit(&shl->procfs_list.pl_lock); 2485 } 2486 2487 void 2488 spa_import_progress_remove(uint64_t pool_guid) 2489 { 2490 spa_history_list_t *shl = spa_import_progress_list; 2491 spa_import_progress_t *sip; 2492 2493 mutex_enter(&shl->procfs_list.pl_lock); 2494 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2495 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2496 if (sip->pool_guid == pool_guid) { 2497 if (sip->pool_name) 2498 spa_strfree(sip->pool_name); 2499 if (sip->spa_load_notes) 2500 spa_strfree(sip->spa_load_notes); 2501 list_remove(&shl->procfs_list.pl_list, sip); 2502 shl->size--; 2503 kmem_free(sip, sizeof (spa_import_progress_t)); 2504 break; 2505 } 2506 } 2507 mutex_exit(&shl->procfs_list.pl_lock); 2508 } 2509 2510 /* 2511 * ========================================================================== 2512 * Initialization and Termination 2513 * ========================================================================== 2514 */ 2515 2516 static int 2517 spa_name_compare(const void *a1, const void *a2) 2518 { 2519 const spa_t *s1 = a1; 2520 const spa_t *s2 = a2; 2521 int s; 2522 2523 s = strcmp(s1->spa_name, s2->spa_name); 2524 2525 return (TREE_ISIGN(s)); 2526 } 2527 2528 void 2529 spa_boot_init(void) 2530 { 2531 spa_config_load(); 2532 } 2533 2534 void 2535 spa_init(spa_mode_t mode) 2536 { 2537 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2538 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2539 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2540 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2541 2542 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2543 offsetof(spa_t, spa_avl)); 2544 2545 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2546 offsetof(spa_aux_t, aux_avl)); 2547 2548 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2549 offsetof(spa_aux_t, aux_avl)); 2550 2551 spa_mode_global = mode; 2552 2553 #ifndef _KERNEL 2554 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2555 struct sigaction sa; 2556 2557 sa.sa_flags = SA_SIGINFO; 2558 sigemptyset(&sa.sa_mask); 2559 sa.sa_sigaction = arc_buf_sigsegv; 2560 2561 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2562 perror("could not enable watchpoints: " 2563 "sigaction(SIGSEGV, ...) = "); 2564 } else { 2565 arc_watch = B_TRUE; 2566 } 2567 } 2568 #endif 2569 2570 fm_init(); 2571 zfs_refcount_init(); 2572 unique_init(); 2573 zfs_btree_init(); 2574 metaslab_stat_init(); 2575 brt_init(); 2576 ddt_init(); 2577 zio_init(); 2578 dmu_init(); 2579 zil_init(); 2580 vdev_mirror_stat_init(); 2581 vdev_raidz_math_init(); 2582 vdev_file_init(); 2583 zfs_prop_init(); 2584 chksum_init(); 2585 zpool_prop_init(); 2586 zpool_feature_init(); 2587 spa_config_load(); 2588 vdev_prop_init(); 2589 l2arc_start(); 2590 scan_init(); 2591 qat_init(); 2592 spa_import_progress_init(); 2593 zap_init(); 2594 } 2595 2596 void 2597 spa_fini(void) 2598 { 2599 l2arc_stop(); 2600 2601 spa_evict_all(); 2602 2603 vdev_file_fini(); 2604 vdev_mirror_stat_fini(); 2605 vdev_raidz_math_fini(); 2606 chksum_fini(); 2607 zil_fini(); 2608 dmu_fini(); 2609 zio_fini(); 2610 ddt_fini(); 2611 brt_fini(); 2612 metaslab_stat_fini(); 2613 zfs_btree_fini(); 2614 unique_fini(); 2615 zfs_refcount_fini(); 2616 fm_fini(); 2617 scan_fini(); 2618 qat_fini(); 2619 spa_import_progress_destroy(); 2620 zap_fini(); 2621 2622 avl_destroy(&spa_namespace_avl); 2623 avl_destroy(&spa_spare_avl); 2624 avl_destroy(&spa_l2cache_avl); 2625 2626 cv_destroy(&spa_namespace_cv); 2627 mutex_destroy(&spa_namespace_lock); 2628 mutex_destroy(&spa_spare_lock); 2629 mutex_destroy(&spa_l2cache_lock); 2630 } 2631 2632 /* 2633 * Return whether this pool has a dedicated slog device. No locking needed. 2634 * It's not a problem if the wrong answer is returned as it's only for 2635 * performance and not correctness. 2636 */ 2637 boolean_t 2638 spa_has_slogs(spa_t *spa) 2639 { 2640 return (spa->spa_log_class->mc_groups != 0); 2641 } 2642 2643 spa_log_state_t 2644 spa_get_log_state(spa_t *spa) 2645 { 2646 return (spa->spa_log_state); 2647 } 2648 2649 void 2650 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2651 { 2652 spa->spa_log_state = state; 2653 } 2654 2655 boolean_t 2656 spa_is_root(spa_t *spa) 2657 { 2658 return (spa->spa_is_root); 2659 } 2660 2661 boolean_t 2662 spa_writeable(spa_t *spa) 2663 { 2664 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2665 } 2666 2667 /* 2668 * Returns true if there is a pending sync task in any of the current 2669 * syncing txg, the current quiescing txg, or the current open txg. 2670 */ 2671 boolean_t 2672 spa_has_pending_synctask(spa_t *spa) 2673 { 2674 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2675 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2676 } 2677 2678 spa_mode_t 2679 spa_mode(spa_t *spa) 2680 { 2681 return (spa->spa_mode); 2682 } 2683 2684 uint64_t 2685 spa_bootfs(spa_t *spa) 2686 { 2687 return (spa->spa_bootfs); 2688 } 2689 2690 uint64_t 2691 spa_delegation(spa_t *spa) 2692 { 2693 return (spa->spa_delegation); 2694 } 2695 2696 objset_t * 2697 spa_meta_objset(spa_t *spa) 2698 { 2699 return (spa->spa_meta_objset); 2700 } 2701 2702 enum zio_checksum 2703 spa_dedup_checksum(spa_t *spa) 2704 { 2705 return (spa->spa_dedup_checksum); 2706 } 2707 2708 /* 2709 * Reset pool scan stat per scan pass (or reboot). 2710 */ 2711 void 2712 spa_scan_stat_init(spa_t *spa) 2713 { 2714 /* data not stored on disk */ 2715 spa->spa_scan_pass_start = gethrestime_sec(); 2716 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2717 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2718 else 2719 spa->spa_scan_pass_scrub_pause = 0; 2720 2721 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2722 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2723 else 2724 spa->spa_scan_pass_errorscrub_pause = 0; 2725 2726 spa->spa_scan_pass_scrub_spent_paused = 0; 2727 spa->spa_scan_pass_exam = 0; 2728 spa->spa_scan_pass_issued = 0; 2729 2730 // error scrub stats 2731 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2732 } 2733 2734 /* 2735 * Get scan stats for zpool status reports 2736 */ 2737 int 2738 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2739 { 2740 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2741 2742 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2743 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2744 return (SET_ERROR(ENOENT)); 2745 2746 memset(ps, 0, sizeof (pool_scan_stat_t)); 2747 2748 /* data stored on disk */ 2749 ps->pss_func = scn->scn_phys.scn_func; 2750 ps->pss_state = scn->scn_phys.scn_state; 2751 ps->pss_start_time = scn->scn_phys.scn_start_time; 2752 ps->pss_end_time = scn->scn_phys.scn_end_time; 2753 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2754 ps->pss_examined = scn->scn_phys.scn_examined; 2755 ps->pss_skipped = scn->scn_phys.scn_skipped; 2756 ps->pss_processed = scn->scn_phys.scn_processed; 2757 ps->pss_errors = scn->scn_phys.scn_errors; 2758 2759 /* data not stored on disk */ 2760 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2761 ps->pss_pass_start = spa->spa_scan_pass_start; 2762 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2763 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2764 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2765 ps->pss_issued = 2766 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2767 2768 /* error scrub data stored on disk */ 2769 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2770 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2771 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2772 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2773 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2774 ps->pss_error_scrub_to_be_examined = 2775 scn->errorscrub_phys.dep_to_examine; 2776 2777 /* error scrub data not stored on disk */ 2778 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2779 2780 return (0); 2781 } 2782 2783 int 2784 spa_maxblocksize(spa_t *spa) 2785 { 2786 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2787 return (SPA_MAXBLOCKSIZE); 2788 else 2789 return (SPA_OLD_MAXBLOCKSIZE); 2790 } 2791 2792 2793 /* 2794 * Returns the txg that the last device removal completed. No indirect mappings 2795 * have been added since this txg. 2796 */ 2797 uint64_t 2798 spa_get_last_removal_txg(spa_t *spa) 2799 { 2800 uint64_t vdevid; 2801 uint64_t ret = -1ULL; 2802 2803 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2804 /* 2805 * sr_prev_indirect_vdev is only modified while holding all the 2806 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2807 * examining it. 2808 */ 2809 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2810 2811 while (vdevid != -1ULL) { 2812 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2813 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2814 2815 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2816 2817 /* 2818 * If the removal did not remap any data, we don't care. 2819 */ 2820 if (vdev_indirect_births_count(vib) != 0) { 2821 ret = vdev_indirect_births_last_entry_txg(vib); 2822 break; 2823 } 2824 2825 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2826 } 2827 spa_config_exit(spa, SCL_VDEV, FTAG); 2828 2829 IMPLY(ret != -1ULL, 2830 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2831 2832 return (ret); 2833 } 2834 2835 int 2836 spa_maxdnodesize(spa_t *spa) 2837 { 2838 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2839 return (DNODE_MAX_SIZE); 2840 else 2841 return (DNODE_MIN_SIZE); 2842 } 2843 2844 boolean_t 2845 spa_multihost(spa_t *spa) 2846 { 2847 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2848 } 2849 2850 uint32_t 2851 spa_get_hostid(spa_t *spa) 2852 { 2853 return (spa->spa_hostid); 2854 } 2855 2856 boolean_t 2857 spa_trust_config(spa_t *spa) 2858 { 2859 return (spa->spa_trust_config); 2860 } 2861 2862 uint64_t 2863 spa_missing_tvds_allowed(spa_t *spa) 2864 { 2865 return (spa->spa_missing_tvds_allowed); 2866 } 2867 2868 space_map_t * 2869 spa_syncing_log_sm(spa_t *spa) 2870 { 2871 return (spa->spa_syncing_log_sm); 2872 } 2873 2874 void 2875 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2876 { 2877 spa->spa_missing_tvds = missing; 2878 } 2879 2880 /* 2881 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2882 */ 2883 const char * 2884 spa_state_to_name(spa_t *spa) 2885 { 2886 ASSERT3P(spa, !=, NULL); 2887 2888 /* 2889 * it is possible for the spa to exist, without root vdev 2890 * as the spa transitions during import/export 2891 */ 2892 vdev_t *rvd = spa->spa_root_vdev; 2893 if (rvd == NULL) { 2894 return ("TRANSITIONING"); 2895 } 2896 vdev_state_t state = rvd->vdev_state; 2897 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2898 2899 if (spa_suspended(spa)) 2900 return ("SUSPENDED"); 2901 2902 switch (state) { 2903 case VDEV_STATE_CLOSED: 2904 case VDEV_STATE_OFFLINE: 2905 return ("OFFLINE"); 2906 case VDEV_STATE_REMOVED: 2907 return ("REMOVED"); 2908 case VDEV_STATE_CANT_OPEN: 2909 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2910 return ("FAULTED"); 2911 else if (aux == VDEV_AUX_SPLIT_POOL) 2912 return ("SPLIT"); 2913 else 2914 return ("UNAVAIL"); 2915 case VDEV_STATE_FAULTED: 2916 return ("FAULTED"); 2917 case VDEV_STATE_DEGRADED: 2918 return ("DEGRADED"); 2919 case VDEV_STATE_HEALTHY: 2920 return ("ONLINE"); 2921 default: 2922 break; 2923 } 2924 2925 return ("UNKNOWN"); 2926 } 2927 2928 boolean_t 2929 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2930 { 2931 vdev_t *rvd = spa->spa_root_vdev; 2932 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2933 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2934 return (B_FALSE); 2935 } 2936 return (B_TRUE); 2937 } 2938 2939 boolean_t 2940 spa_has_checkpoint(spa_t *spa) 2941 { 2942 return (spa->spa_checkpoint_txg != 0); 2943 } 2944 2945 boolean_t 2946 spa_importing_readonly_checkpoint(spa_t *spa) 2947 { 2948 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2949 spa->spa_mode == SPA_MODE_READ); 2950 } 2951 2952 uint64_t 2953 spa_min_claim_txg(spa_t *spa) 2954 { 2955 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2956 2957 if (checkpoint_txg != 0) 2958 return (checkpoint_txg + 1); 2959 2960 return (spa->spa_first_txg); 2961 } 2962 2963 /* 2964 * If there is a checkpoint, async destroys may consume more space from 2965 * the pool instead of freeing it. In an attempt to save the pool from 2966 * getting suspended when it is about to run out of space, we stop 2967 * processing async destroys. 2968 */ 2969 boolean_t 2970 spa_suspend_async_destroy(spa_t *spa) 2971 { 2972 dsl_pool_t *dp = spa_get_dsl(spa); 2973 2974 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2975 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2976 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2977 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2978 2979 if (spa_has_checkpoint(spa) && avail == 0) 2980 return (B_TRUE); 2981 2982 return (B_FALSE); 2983 } 2984 2985 #if defined(_KERNEL) 2986 2987 int 2988 param_set_deadman_failmode_common(const char *val) 2989 { 2990 spa_t *spa = NULL; 2991 char *p; 2992 2993 if (val == NULL) 2994 return (SET_ERROR(EINVAL)); 2995 2996 if ((p = strchr(val, '\n')) != NULL) 2997 *p = '\0'; 2998 2999 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 3000 strcmp(val, "panic")) 3001 return (SET_ERROR(EINVAL)); 3002 3003 if (spa_mode_global != SPA_MODE_UNINIT) { 3004 mutex_enter(&spa_namespace_lock); 3005 while ((spa = spa_next(spa)) != NULL) 3006 spa_set_deadman_failmode(spa, val); 3007 mutex_exit(&spa_namespace_lock); 3008 } 3009 3010 return (0); 3011 } 3012 #endif 3013 3014 /* Namespace manipulation */ 3015 EXPORT_SYMBOL(spa_lookup); 3016 EXPORT_SYMBOL(spa_add); 3017 EXPORT_SYMBOL(spa_remove); 3018 EXPORT_SYMBOL(spa_next); 3019 3020 /* Refcount functions */ 3021 EXPORT_SYMBOL(spa_open_ref); 3022 EXPORT_SYMBOL(spa_close); 3023 EXPORT_SYMBOL(spa_refcount_zero); 3024 3025 /* Pool configuration lock */ 3026 EXPORT_SYMBOL(spa_config_tryenter); 3027 EXPORT_SYMBOL(spa_config_enter); 3028 EXPORT_SYMBOL(spa_config_exit); 3029 EXPORT_SYMBOL(spa_config_held); 3030 3031 /* Pool vdev add/remove lock */ 3032 EXPORT_SYMBOL(spa_vdev_enter); 3033 EXPORT_SYMBOL(spa_vdev_exit); 3034 3035 /* Pool vdev state change lock */ 3036 EXPORT_SYMBOL(spa_vdev_state_enter); 3037 EXPORT_SYMBOL(spa_vdev_state_exit); 3038 3039 /* Accessor functions */ 3040 EXPORT_SYMBOL(spa_shutting_down); 3041 EXPORT_SYMBOL(spa_get_dsl); 3042 EXPORT_SYMBOL(spa_get_rootblkptr); 3043 EXPORT_SYMBOL(spa_set_rootblkptr); 3044 EXPORT_SYMBOL(spa_altroot); 3045 EXPORT_SYMBOL(spa_sync_pass); 3046 EXPORT_SYMBOL(spa_name); 3047 EXPORT_SYMBOL(spa_guid); 3048 EXPORT_SYMBOL(spa_last_synced_txg); 3049 EXPORT_SYMBOL(spa_first_txg); 3050 EXPORT_SYMBOL(spa_syncing_txg); 3051 EXPORT_SYMBOL(spa_version); 3052 EXPORT_SYMBOL(spa_state); 3053 EXPORT_SYMBOL(spa_load_state); 3054 EXPORT_SYMBOL(spa_freeze_txg); 3055 EXPORT_SYMBOL(spa_get_dspace); 3056 EXPORT_SYMBOL(spa_update_dspace); 3057 EXPORT_SYMBOL(spa_deflate); 3058 EXPORT_SYMBOL(spa_normal_class); 3059 EXPORT_SYMBOL(spa_log_class); 3060 EXPORT_SYMBOL(spa_special_class); 3061 EXPORT_SYMBOL(spa_preferred_class); 3062 EXPORT_SYMBOL(spa_max_replication); 3063 EXPORT_SYMBOL(spa_prev_software_version); 3064 EXPORT_SYMBOL(spa_get_failmode); 3065 EXPORT_SYMBOL(spa_suspended); 3066 EXPORT_SYMBOL(spa_bootfs); 3067 EXPORT_SYMBOL(spa_delegation); 3068 EXPORT_SYMBOL(spa_meta_objset); 3069 EXPORT_SYMBOL(spa_maxblocksize); 3070 EXPORT_SYMBOL(spa_maxdnodesize); 3071 3072 /* Miscellaneous support routines */ 3073 EXPORT_SYMBOL(spa_guid_exists); 3074 EXPORT_SYMBOL(spa_strdup); 3075 EXPORT_SYMBOL(spa_strfree); 3076 EXPORT_SYMBOL(spa_generate_guid); 3077 EXPORT_SYMBOL(snprintf_blkptr); 3078 EXPORT_SYMBOL(spa_freeze); 3079 EXPORT_SYMBOL(spa_upgrade); 3080 EXPORT_SYMBOL(spa_evict_all); 3081 EXPORT_SYMBOL(spa_lookup_by_guid); 3082 EXPORT_SYMBOL(spa_has_spare); 3083 EXPORT_SYMBOL(dva_get_dsize_sync); 3084 EXPORT_SYMBOL(bp_get_dsize_sync); 3085 EXPORT_SYMBOL(bp_get_dsize); 3086 EXPORT_SYMBOL(spa_has_slogs); 3087 EXPORT_SYMBOL(spa_is_root); 3088 EXPORT_SYMBOL(spa_writeable); 3089 EXPORT_SYMBOL(spa_mode); 3090 EXPORT_SYMBOL(spa_namespace_lock); 3091 EXPORT_SYMBOL(spa_trust_config); 3092 EXPORT_SYMBOL(spa_missing_tvds_allowed); 3093 EXPORT_SYMBOL(spa_set_missing_tvds); 3094 EXPORT_SYMBOL(spa_state_to_name); 3095 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 3096 EXPORT_SYMBOL(spa_min_claim_txg); 3097 EXPORT_SYMBOL(spa_suspend_async_destroy); 3098 EXPORT_SYMBOL(spa_has_checkpoint); 3099 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 3100 3101 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 3102 "Set additional debugging flags"); 3103 3104 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 3105 "Set to attempt to recover from fatal errors"); 3106 3107 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 3108 "Set to ignore IO errors during free and permanently leak the space"); 3109 3110 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 3111 "Dead I/O check interval in milliseconds"); 3112 3113 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 3114 "Enable deadman timer"); 3115 3116 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 3117 "SPA size estimate multiplication factor"); 3118 3119 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 3120 "Place DDT data into the special class"); 3121 3122 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 3123 "Place user data indirect blocks into the special class"); 3124 3125 /* BEGIN CSTYLED */ 3126 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 3127 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 3128 "Failmode for deadman timer"); 3129 3130 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 3131 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 3132 "Pool sync expiration time in milliseconds"); 3133 3134 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 3135 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 3136 "IO expiration time in milliseconds"); 3137 3138 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3139 "Small file blocks in special vdevs depends on this much " 3140 "free space available"); 3141 /* END CSTYLED */ 3142 3143 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3144 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3145 3146 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW, 3147 "Number of allocators per spa"); 3148 3149 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW, 3150 "Minimum number of CPUs per allocators"); 3151