1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2017 Datto Inc. 29 * Copyright (c) 2017, Intel Corporation. 30 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 31 * Copyright (c) 2023, 2024, 2025, Klara, Inc. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/zfs_chksum.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/zio_compress.h> 40 #include <sys/dmu.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/zap.h> 43 #include <sys/zil.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/vdev_initialize.h> 46 #include <sys/vdev_trim.h> 47 #include <sys/vdev_file.h> 48 #include <sys/vdev_raidz.h> 49 #include <sys/metaslab.h> 50 #include <sys/uberblock_impl.h> 51 #include <sys/txg.h> 52 #include <sys/avl.h> 53 #include <sys/unique.h> 54 #include <sys/dsl_pool.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/fm/util.h> 58 #include <sys/dsl_scan.h> 59 #include <sys/fs/zfs.h> 60 #include <sys/metaslab_impl.h> 61 #include <sys/arc.h> 62 #include <sys/brt.h> 63 #include <sys/ddt.h> 64 #include <sys/kstat.h> 65 #include "zfs_prop.h" 66 #include <sys/btree.h> 67 #include <sys/zfeature.h> 68 #include <sys/qat.h> 69 #include <sys/zstd/zstd.h> 70 71 /* 72 * SPA locking 73 * 74 * There are three basic locks for managing spa_t structures: 75 * 76 * spa_namespace_lock (global mutex) 77 * 78 * This lock must be acquired to do any of the following: 79 * 80 * - Lookup a spa_t by name 81 * - Add or remove a spa_t from the namespace 82 * - Increase spa_refcount from non-zero 83 * - Check if spa_refcount is zero 84 * - Rename a spa_t 85 * - add/remove/attach/detach devices 86 * - Held for the duration of create/destroy 87 * - Held at the start and end of import and export 88 * 89 * It does not need to handle recursion. A create or destroy may 90 * reference objects (files or zvols) in other pools, but by 91 * definition they must have an existing reference, and will never need 92 * to lookup a spa_t by name. 93 * 94 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 95 * 96 * This reference count keep track of any active users of the spa_t. The 97 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 98 * the refcount is never really 'zero' - opening a pool implicitly keeps 99 * some references in the DMU. Internally we check against spa_minref, but 100 * present the image of a zero/non-zero value to consumers. 101 * 102 * spa_config_lock[] (per-spa array of rwlocks) 103 * 104 * This protects the spa_t from config changes, and must be held in 105 * the following circumstances: 106 * 107 * - RW_READER to perform I/O to the spa 108 * - RW_WRITER to change the vdev config 109 * 110 * The locking order is fairly straightforward: 111 * 112 * spa_namespace_lock -> spa_refcount 113 * 114 * The namespace lock must be acquired to increase the refcount from 0 115 * or to check if it is zero. 116 * 117 * spa_refcount -> spa_config_lock[] 118 * 119 * There must be at least one valid reference on the spa_t to acquire 120 * the config lock. 121 * 122 * spa_namespace_lock -> spa_config_lock[] 123 * 124 * The namespace lock must always be taken before the config lock. 125 * 126 * 127 * The spa_namespace_lock can be acquired directly and is globally visible. 128 * 129 * The namespace is manipulated using the following functions, all of which 130 * require the spa_namespace_lock to be held. 131 * 132 * spa_lookup() Lookup a spa_t by name. 133 * 134 * spa_add() Create a new spa_t in the namespace. 135 * 136 * spa_remove() Remove a spa_t from the namespace. This also 137 * frees up any memory associated with the spa_t. 138 * 139 * spa_next() Returns the next spa_t in the system, or the 140 * first if NULL is passed. 141 * 142 * spa_evict_all() Shutdown and remove all spa_t structures in 143 * the system. 144 * 145 * spa_guid_exists() Determine whether a pool/device guid exists. 146 * 147 * The spa_refcount is manipulated using the following functions: 148 * 149 * spa_open_ref() Adds a reference to the given spa_t. Must be 150 * called with spa_namespace_lock held if the 151 * refcount is currently zero. 152 * 153 * spa_close() Remove a reference from the spa_t. This will 154 * not free the spa_t or remove it from the 155 * namespace. No locking is required. 156 * 157 * spa_refcount_zero() Returns true if the refcount is currently 158 * zero. Must be called with spa_namespace_lock 159 * held. 160 * 161 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 162 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 163 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 164 * 165 * To read the configuration, it suffices to hold one of these locks as reader. 166 * To modify the configuration, you must hold all locks as writer. To modify 167 * vdev state without altering the vdev tree's topology (e.g. online/offline), 168 * you must hold SCL_STATE and SCL_ZIO as writer. 169 * 170 * We use these distinct config locks to avoid recursive lock entry. 171 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 172 * block allocations (SCL_ALLOC), which may require reading space maps 173 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 174 * 175 * The spa config locks cannot be normal rwlocks because we need the 176 * ability to hand off ownership. For example, SCL_ZIO is acquired 177 * by the issuing thread and later released by an interrupt thread. 178 * They do, however, obey the usual write-wanted semantics to prevent 179 * writer (i.e. system administrator) starvation. 180 * 181 * The lock acquisition rules are as follows: 182 * 183 * SCL_CONFIG 184 * Protects changes to the vdev tree topology, such as vdev 185 * add/remove/attach/detach. Protects the dirty config list 186 * (spa_config_dirty_list) and the set of spares and l2arc devices. 187 * 188 * SCL_STATE 189 * Protects changes to pool state and vdev state, such as vdev 190 * online/offline/fault/degrade/clear. Protects the dirty state list 191 * (spa_state_dirty_list) and global pool state (spa_state). 192 * 193 * SCL_ALLOC 194 * Protects changes to metaslab groups and classes. 195 * Held as reader by metaslab_alloc() and metaslab_claim(). 196 * 197 * SCL_ZIO 198 * Held by bp-level zios (those which have no io_vd upon entry) 199 * to prevent changes to the vdev tree. The bp-level zio implicitly 200 * protects all of its vdev child zios, which do not hold SCL_ZIO. 201 * 202 * SCL_FREE 203 * Protects changes to metaslab groups and classes. 204 * Held as reader by metaslab_free(). SCL_FREE is distinct from 205 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 206 * blocks in zio_done() while another i/o that holds either 207 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 208 * 209 * SCL_VDEV 210 * Held as reader to prevent changes to the vdev tree during trivial 211 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 212 * other locks, and lower than all of them, to ensure that it's safe 213 * to acquire regardless of caller context. 214 * 215 * In addition, the following rules apply: 216 * 217 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 218 * The lock ordering is SCL_CONFIG > spa_props_lock. 219 * 220 * (b) I/O operations on leaf vdevs. For any zio operation that takes 221 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 222 * or zio_write_phys() -- the caller must ensure that the config cannot 223 * cannot change in the interim, and that the vdev cannot be reopened. 224 * SCL_STATE as reader suffices for both. 225 * 226 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 227 * 228 * spa_vdev_enter() Acquire the namespace lock and the config lock 229 * for writing. 230 * 231 * spa_vdev_exit() Release the config lock, wait for all I/O 232 * to complete, sync the updated configs to the 233 * cache, and release the namespace lock. 234 * 235 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 236 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 237 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 238 */ 239 240 static avl_tree_t spa_namespace_avl; 241 static kmutex_t spa_namespace_lock; 242 static kcondvar_t spa_namespace_cv; 243 244 static const int spa_max_replication_override = SPA_DVAS_PER_BP; 245 246 static kmutex_t spa_spare_lock; 247 static avl_tree_t spa_spare_avl; 248 static kmutex_t spa_l2cache_lock; 249 static avl_tree_t spa_l2cache_avl; 250 251 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 252 253 #ifdef ZFS_DEBUG 254 /* 255 * Everything except dprintf, set_error, indirect_remap, and raidz_reconstruct 256 * is on by default in debug builds. 257 */ 258 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 259 ZFS_DEBUG_INDIRECT_REMAP | ZFS_DEBUG_RAIDZ_RECONSTRUCT); 260 #else 261 int zfs_flags = 0; 262 #endif 263 264 /* 265 * zfs_recover can be set to nonzero to attempt to recover from 266 * otherwise-fatal errors, typically caused by on-disk corruption. When 267 * set, calls to zfs_panic_recover() will turn into warning messages. 268 * This should only be used as a last resort, as it typically results 269 * in leaked space, or worse. 270 */ 271 int zfs_recover = B_FALSE; 272 273 /* 274 * If destroy encounters an EIO while reading metadata (e.g. indirect 275 * blocks), space referenced by the missing metadata can not be freed. 276 * Normally this causes the background destroy to become "stalled", as 277 * it is unable to make forward progress. While in this stalled state, 278 * all remaining space to free from the error-encountering filesystem is 279 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 280 * permanently leak the space from indirect blocks that can not be read, 281 * and continue to free everything else that it can. 282 * 283 * The default, "stalling" behavior is useful if the storage partially 284 * fails (i.e. some but not all i/os fail), and then later recovers. In 285 * this case, we will be able to continue pool operations while it is 286 * partially failed, and when it recovers, we can continue to free the 287 * space, with no leaks. However, note that this case is actually 288 * fairly rare. 289 * 290 * Typically pools either (a) fail completely (but perhaps temporarily, 291 * e.g. a top-level vdev going offline), or (b) have localized, 292 * permanent errors (e.g. disk returns the wrong data due to bit flip or 293 * firmware bug). In case (a), this setting does not matter because the 294 * pool will be suspended and the sync thread will not be able to make 295 * forward progress regardless. In case (b), because the error is 296 * permanent, the best we can do is leak the minimum amount of space, 297 * which is what setting this flag will do. Therefore, it is reasonable 298 * for this flag to normally be set, but we chose the more conservative 299 * approach of not setting it, so that there is no possibility of 300 * leaking space in the "partial temporary" failure case. 301 */ 302 int zfs_free_leak_on_eio = B_FALSE; 303 304 /* 305 * Expiration time in milliseconds. This value has two meanings. First it is 306 * used to determine when the spa_deadman() logic should fire. By default the 307 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 308 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 309 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 310 * in one of three behaviors controlled by zfs_deadman_failmode. 311 */ 312 uint64_t zfs_deadman_synctime_ms = 600000UL; /* 10 min. */ 313 314 /* 315 * This value controls the maximum amount of time zio_wait() will block for an 316 * outstanding IO. By default this is 300 seconds at which point the "hung" 317 * behavior will be applied as described for zfs_deadman_synctime_ms. 318 */ 319 uint64_t zfs_deadman_ziotime_ms = 300000UL; /* 5 min. */ 320 321 /* 322 * Check time in milliseconds. This defines the frequency at which we check 323 * for hung I/O. 324 */ 325 uint64_t zfs_deadman_checktime_ms = 60000UL; /* 1 min. */ 326 327 /* 328 * By default the deadman is enabled. 329 */ 330 int zfs_deadman_enabled = B_TRUE; 331 332 /* 333 * Controls the behavior of the deadman when it detects a "hung" I/O. 334 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 335 * 336 * wait - Wait for the "hung" I/O (default) 337 * continue - Attempt to recover from a "hung" I/O 338 * panic - Panic the system 339 */ 340 const char *zfs_deadman_failmode = "wait"; 341 342 /* 343 * The worst case is single-sector max-parity RAID-Z blocks, in which 344 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 345 * times the size; so just assume that. Add to this the fact that 346 * we can have up to 3 DVAs per bp, and one more factor of 2 because 347 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 348 * the worst case is: 349 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 350 */ 351 uint_t spa_asize_inflation = 24; 352 353 /* 354 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 355 * the pool to be consumed (bounded by spa_max_slop). This ensures that we 356 * don't run the pool completely out of space, due to unaccounted changes (e.g. 357 * to the MOS). It also limits the worst-case time to allocate space. If we 358 * have less than this amount of free space, most ZPL operations (e.g. write, 359 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are 360 * also part of this 3.2% of space which can't be consumed by normal writes; 361 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded 362 * log space. 363 * 364 * Certain operations (e.g. file removal, most administrative actions) can 365 * use half the slop space. They will only return ENOSPC if less than half 366 * the slop space is free. Typically, once the pool has less than the slop 367 * space free, the user will use these operations to free up space in the pool. 368 * These are the operations that call dsl_pool_adjustedsize() with the netfree 369 * argument set to TRUE. 370 * 371 * Operations that are almost guaranteed to free up space in the absence of 372 * a pool checkpoint can use up to three quarters of the slop space 373 * (e.g zfs destroy). 374 * 375 * A very restricted set of operations are always permitted, regardless of 376 * the amount of free space. These are the operations that call 377 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 378 * increase in the amount of space used, it is possible to run the pool 379 * completely out of space, causing it to be permanently read-only. 380 * 381 * Note that on very small pools, the slop space will be larger than 382 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 383 * but we never allow it to be more than half the pool size. 384 * 385 * Further, on very large pools, the slop space will be smaller than 386 * 3.2%, to avoid reserving much more space than we actually need; bounded 387 * by spa_max_slop (128GB). 388 * 389 * See also the comments in zfs_space_check_t. 390 */ 391 uint_t spa_slop_shift = 5; 392 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024; 393 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024; 394 395 /* 396 * Number of allocators to use, per spa instance 397 */ 398 static int spa_num_allocators = 4; 399 static int spa_cpus_per_allocator = 4; 400 401 /* 402 * Spa active allocator. 403 * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>. 404 */ 405 const char *zfs_active_allocator = "dynamic"; 406 407 void 408 spa_load_failed(spa_t *spa, const char *fmt, ...) 409 { 410 va_list adx; 411 char buf[256]; 412 413 va_start(adx, fmt); 414 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 415 va_end(adx); 416 417 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 418 spa->spa_trust_config ? "trusted" : "untrusted", buf); 419 } 420 421 void 422 spa_load_note(spa_t *spa, const char *fmt, ...) 423 { 424 va_list adx; 425 char buf[256]; 426 427 va_start(adx, fmt); 428 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 429 va_end(adx); 430 431 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 432 spa->spa_trust_config ? "trusted" : "untrusted", buf); 433 434 spa_import_progress_set_notes_nolog(spa, "%s", buf); 435 } 436 437 /* 438 * By default dedup and user data indirects land in the special class 439 */ 440 static int zfs_ddt_data_is_special = B_TRUE; 441 static int zfs_user_indirect_is_special = B_TRUE; 442 443 /* 444 * The percentage of special class final space reserved for metadata only. 445 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 446 * let metadata into the class. 447 */ 448 static uint_t zfs_special_class_metadata_reserve_pct = 25; 449 450 /* 451 * ========================================================================== 452 * SPA config locking 453 * ========================================================================== 454 */ 455 static void 456 spa_config_lock_init(spa_t *spa) 457 { 458 for (int i = 0; i < SCL_LOCKS; i++) { 459 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 460 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 461 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 462 scl->scl_writer = NULL; 463 scl->scl_write_wanted = 0; 464 scl->scl_count = 0; 465 } 466 } 467 468 static void 469 spa_config_lock_destroy(spa_t *spa) 470 { 471 for (int i = 0; i < SCL_LOCKS; i++) { 472 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 473 mutex_destroy(&scl->scl_lock); 474 cv_destroy(&scl->scl_cv); 475 ASSERT0P(scl->scl_writer); 476 ASSERT0(scl->scl_write_wanted); 477 ASSERT0(scl->scl_count); 478 } 479 } 480 481 int 482 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw) 483 { 484 for (int i = 0; i < SCL_LOCKS; i++) { 485 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 486 if (!(locks & (1 << i))) 487 continue; 488 mutex_enter(&scl->scl_lock); 489 if (rw == RW_READER) { 490 if (scl->scl_writer || scl->scl_write_wanted) { 491 mutex_exit(&scl->scl_lock); 492 spa_config_exit(spa, locks & ((1 << i) - 1), 493 tag); 494 return (0); 495 } 496 } else { 497 ASSERT(scl->scl_writer != curthread); 498 if (scl->scl_count != 0) { 499 mutex_exit(&scl->scl_lock); 500 spa_config_exit(spa, locks & ((1 << i) - 1), 501 tag); 502 return (0); 503 } 504 scl->scl_writer = curthread; 505 } 506 scl->scl_count++; 507 mutex_exit(&scl->scl_lock); 508 } 509 return (1); 510 } 511 512 static void 513 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw, 514 int priority_flag) 515 { 516 (void) tag; 517 int wlocks_held = 0; 518 519 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 520 521 for (int i = 0; i < SCL_LOCKS; i++) { 522 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 523 if (scl->scl_writer == curthread) 524 wlocks_held |= (1 << i); 525 if (!(locks & (1 << i))) 526 continue; 527 mutex_enter(&scl->scl_lock); 528 if (rw == RW_READER) { 529 while (scl->scl_writer || 530 (!priority_flag && scl->scl_write_wanted)) { 531 cv_wait(&scl->scl_cv, &scl->scl_lock); 532 } 533 } else { 534 ASSERT(scl->scl_writer != curthread); 535 while (scl->scl_count != 0) { 536 scl->scl_write_wanted++; 537 cv_wait(&scl->scl_cv, &scl->scl_lock); 538 scl->scl_write_wanted--; 539 } 540 scl->scl_writer = curthread; 541 } 542 scl->scl_count++; 543 mutex_exit(&scl->scl_lock); 544 } 545 ASSERT3U(wlocks_held, <=, locks); 546 } 547 548 void 549 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 550 { 551 spa_config_enter_impl(spa, locks, tag, rw, 0); 552 } 553 554 /* 555 * The spa_config_enter_priority() allows the mmp thread to cut in front of 556 * outstanding write lock requests. This is needed since the mmp updates are 557 * time sensitive and failure to service them promptly will result in a 558 * suspended pool. This pool suspension has been seen in practice when there is 559 * a single disk in a pool that is responding slowly and presumably about to 560 * fail. 561 */ 562 563 void 564 spa_config_enter_priority(spa_t *spa, int locks, const void *tag, krw_t rw) 565 { 566 spa_config_enter_impl(spa, locks, tag, rw, 1); 567 } 568 569 void 570 spa_config_exit(spa_t *spa, int locks, const void *tag) 571 { 572 (void) tag; 573 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 574 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 575 if (!(locks & (1 << i))) 576 continue; 577 mutex_enter(&scl->scl_lock); 578 ASSERT(scl->scl_count > 0); 579 if (--scl->scl_count == 0) { 580 ASSERT(scl->scl_writer == NULL || 581 scl->scl_writer == curthread); 582 scl->scl_writer = NULL; /* OK in either case */ 583 cv_broadcast(&scl->scl_cv); 584 } 585 mutex_exit(&scl->scl_lock); 586 } 587 } 588 589 int 590 spa_config_held(spa_t *spa, int locks, krw_t rw) 591 { 592 int locks_held = 0; 593 594 for (int i = 0; i < SCL_LOCKS; i++) { 595 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 596 if (!(locks & (1 << i))) 597 continue; 598 if ((rw == RW_READER && scl->scl_count != 0) || 599 (rw == RW_WRITER && scl->scl_writer == curthread)) 600 locks_held |= 1 << i; 601 } 602 603 return (locks_held); 604 } 605 606 /* 607 * ========================================================================== 608 * SPA namespace functions 609 * ========================================================================== 610 */ 611 612 void 613 spa_namespace_enter(const void *tag) 614 { 615 (void) tag; 616 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 617 mutex_enter(&spa_namespace_lock); 618 } 619 620 boolean_t 621 spa_namespace_tryenter(const void *tag) 622 { 623 (void) tag; 624 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 625 return (mutex_tryenter(&spa_namespace_lock)); 626 } 627 628 int 629 spa_namespace_enter_interruptible(const void *tag) 630 { 631 (void) tag; 632 ASSERT(!MUTEX_HELD(&spa_namespace_lock)); 633 return (mutex_enter_interruptible(&spa_namespace_lock)); 634 } 635 636 void 637 spa_namespace_exit(const void *tag) 638 { 639 (void) tag; 640 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 641 mutex_exit(&spa_namespace_lock); 642 } 643 644 boolean_t 645 spa_namespace_held(void) 646 { 647 return (MUTEX_HELD(&spa_namespace_lock)); 648 } 649 650 void 651 spa_namespace_wait(void) 652 { 653 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 654 cv_wait(&spa_namespace_cv, &spa_namespace_lock); 655 } 656 657 void 658 spa_namespace_broadcast(void) 659 { 660 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 661 cv_broadcast(&spa_namespace_cv); 662 } 663 664 /* 665 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 666 * Returns NULL if no matching spa_t is found. 667 */ 668 spa_t * 669 spa_lookup(const char *name) 670 { 671 static spa_t search; /* spa_t is large; don't allocate on stack */ 672 spa_t *spa; 673 avl_index_t where; 674 char *cp; 675 676 ASSERT(spa_namespace_held()); 677 678 retry: 679 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 680 681 /* 682 * If it's a full dataset name, figure out the pool name and 683 * just use that. 684 */ 685 cp = strpbrk(search.spa_name, "/@#"); 686 if (cp != NULL) 687 *cp = '\0'; 688 689 spa = avl_find(&spa_namespace_avl, &search, &where); 690 if (spa == NULL) 691 return (NULL); 692 693 /* 694 * Avoid racing with import/export, which don't hold the namespace 695 * lock for their entire duration. 696 */ 697 if ((spa->spa_load_thread != NULL && 698 spa->spa_load_thread != curthread) || 699 (spa->spa_export_thread != NULL && 700 spa->spa_export_thread != curthread)) { 701 spa_namespace_wait(); 702 goto retry; 703 } 704 705 return (spa); 706 } 707 708 /* 709 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 710 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 711 * looking for potentially hung I/Os. 712 */ 713 void 714 spa_deadman(void *arg) 715 { 716 spa_t *spa = arg; 717 718 /* Disable the deadman if the pool is suspended. */ 719 if (spa_suspended(spa)) 720 return; 721 722 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 723 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 724 (u_longlong_t)++spa->spa_deadman_calls); 725 if (zfs_deadman_enabled) 726 vdev_deadman(spa->spa_root_vdev, FTAG); 727 728 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 729 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 730 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 731 } 732 733 static int 734 spa_log_sm_sort_by_txg(const void *va, const void *vb) 735 { 736 const spa_log_sm_t *a = va; 737 const spa_log_sm_t *b = vb; 738 739 return (TREE_CMP(a->sls_txg, b->sls_txg)); 740 } 741 742 /* 743 * Create an uninitialized spa_t with the given name. Requires 744 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 745 * exist by calling spa_lookup() first. 746 */ 747 spa_t * 748 spa_add(const char *name, nvlist_t *config, const char *altroot) 749 { 750 spa_t *spa; 751 spa_config_dirent_t *dp; 752 753 ASSERT(spa_namespace_held()); 754 755 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 756 757 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 758 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 759 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 760 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 761 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 762 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 763 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 764 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 765 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 766 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 767 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 768 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 769 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 770 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 771 mutex_init(&spa->spa_txg_log_time_lock, NULL, MUTEX_DEFAULT, NULL); 772 773 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 774 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 775 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 776 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 777 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 778 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 779 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 780 781 for (int t = 0; t < TXG_SIZE; t++) 782 bplist_create(&spa->spa_free_bplist[t]); 783 784 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 785 spa->spa_state = POOL_STATE_UNINITIALIZED; 786 spa->spa_freeze_txg = UINT64_MAX; 787 spa->spa_final_txg = UINT64_MAX; 788 spa->spa_load_max_txg = UINT64_MAX; 789 spa->spa_proc = &p0; 790 spa->spa_proc_state = SPA_PROC_NONE; 791 spa->spa_trust_config = B_TRUE; 792 spa->spa_hostid = zone_get_hostid(NULL); 793 794 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 795 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 796 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 797 spa_set_allocator(spa, zfs_active_allocator); 798 799 zfs_refcount_create(&spa->spa_refcount); 800 spa_config_lock_init(spa); 801 spa_stats_init(spa); 802 803 ASSERT(spa_namespace_held()); 804 avl_add(&spa_namespace_avl, spa); 805 806 /* 807 * Set the alternate root, if there is one. 808 */ 809 if (altroot) 810 spa->spa_root = spa_strdup(altroot); 811 812 /* Do not allow more allocators than fraction of CPUs. */ 813 spa->spa_alloc_count = MAX(MIN(spa_num_allocators, 814 boot_ncpus / MAX(spa_cpus_per_allocator, 1)), 1); 815 816 if (spa->spa_alloc_count > 1) { 817 spa->spa_allocs_use = kmem_zalloc(offsetof(spa_allocs_use_t, 818 sau_inuse[spa->spa_alloc_count]), KM_SLEEP); 819 mutex_init(&spa->spa_allocs_use->sau_lock, NULL, MUTEX_DEFAULT, 820 NULL); 821 } 822 823 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 824 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 825 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 826 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 827 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 828 offsetof(log_summary_entry_t, lse_node)); 829 830 /* 831 * Every pool starts with the default cachefile 832 */ 833 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 834 offsetof(spa_config_dirent_t, scd_link)); 835 836 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 837 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 838 list_insert_head(&spa->spa_config_list, dp); 839 840 VERIFY0(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, KM_SLEEP)); 841 842 if (config != NULL) { 843 nvlist_t *features; 844 845 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 846 &features) == 0) { 847 VERIFY0(nvlist_dup(features, 848 &spa->spa_label_features, 0)); 849 } 850 851 VERIFY0(nvlist_dup(config, &spa->spa_config, 0)); 852 } 853 854 if (spa->spa_label_features == NULL) { 855 VERIFY0(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 856 KM_SLEEP)); 857 } 858 859 spa->spa_min_ashift = INT_MAX; 860 spa->spa_max_ashift = 0; 861 spa->spa_min_alloc = INT_MAX; 862 spa->spa_max_alloc = 0; 863 spa->spa_gcd_alloc = INT_MAX; 864 865 /* Reset cached value */ 866 spa->spa_dedup_dspace = ~0ULL; 867 868 /* 869 * As a pool is being created, treat all features as disabled by 870 * setting SPA_FEATURE_DISABLED for all entries in the feature 871 * refcount cache. 872 */ 873 for (int i = 0; i < SPA_FEATURES; i++) { 874 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 875 } 876 877 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 878 offsetof(vdev_t, vdev_leaf_node)); 879 880 return (spa); 881 } 882 883 /* 884 * Removes a spa_t from the namespace, freeing up any memory used. Requires 885 * spa_namespace_lock. This is called only after the spa_t has been closed and 886 * deactivated. 887 */ 888 void 889 spa_remove(spa_t *spa) 890 { 891 spa_config_dirent_t *dp; 892 893 ASSERT(spa_namespace_held()); 894 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 895 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 896 ASSERT0(spa->spa_waiters); 897 898 nvlist_free(spa->spa_config_splitting); 899 900 avl_remove(&spa_namespace_avl, spa); 901 902 if (spa->spa_root) 903 spa_strfree(spa->spa_root); 904 905 while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) { 906 if (dp->scd_path != NULL) 907 spa_strfree(dp->scd_path); 908 kmem_free(dp, sizeof (spa_config_dirent_t)); 909 } 910 911 if (spa->spa_alloc_count > 1) { 912 mutex_destroy(&spa->spa_allocs_use->sau_lock); 913 kmem_free(spa->spa_allocs_use, offsetof(spa_allocs_use_t, 914 sau_inuse[spa->spa_alloc_count])); 915 } 916 917 avl_destroy(&spa->spa_metaslabs_by_flushed); 918 avl_destroy(&spa->spa_sm_logs_by_txg); 919 list_destroy(&spa->spa_log_summary); 920 list_destroy(&spa->spa_config_list); 921 list_destroy(&spa->spa_leaf_list); 922 923 nvlist_free(spa->spa_label_features); 924 nvlist_free(spa->spa_load_info); 925 nvlist_free(spa->spa_feat_stats); 926 spa_config_set(spa, NULL); 927 928 zfs_refcount_destroy(&spa->spa_refcount); 929 930 spa_stats_destroy(spa); 931 spa_config_lock_destroy(spa); 932 933 for (int t = 0; t < TXG_SIZE; t++) 934 bplist_destroy(&spa->spa_free_bplist[t]); 935 936 zio_checksum_templates_free(spa); 937 938 cv_destroy(&spa->spa_async_cv); 939 cv_destroy(&spa->spa_evicting_os_cv); 940 cv_destroy(&spa->spa_proc_cv); 941 cv_destroy(&spa->spa_scrub_io_cv); 942 cv_destroy(&spa->spa_suspend_cv); 943 cv_destroy(&spa->spa_activities_cv); 944 cv_destroy(&spa->spa_waiters_cv); 945 946 mutex_destroy(&spa->spa_flushed_ms_lock); 947 mutex_destroy(&spa->spa_async_lock); 948 mutex_destroy(&spa->spa_errlist_lock); 949 mutex_destroy(&spa->spa_errlog_lock); 950 mutex_destroy(&spa->spa_evicting_os_lock); 951 mutex_destroy(&spa->spa_history_lock); 952 mutex_destroy(&spa->spa_proc_lock); 953 mutex_destroy(&spa->spa_props_lock); 954 mutex_destroy(&spa->spa_cksum_tmpls_lock); 955 mutex_destroy(&spa->spa_scrub_lock); 956 mutex_destroy(&spa->spa_suspend_lock); 957 mutex_destroy(&spa->spa_vdev_top_lock); 958 mutex_destroy(&spa->spa_feat_stats_lock); 959 mutex_destroy(&spa->spa_activities_lock); 960 mutex_destroy(&spa->spa_txg_log_time_lock); 961 962 kmem_free(spa, sizeof (spa_t)); 963 } 964 965 /* 966 * Given a pool, return the next pool in the namespace, or NULL if there is 967 * none. If 'prev' is NULL, return the first pool. 968 */ 969 spa_t * 970 spa_next(spa_t *prev) 971 { 972 ASSERT(spa_namespace_held()); 973 974 if (prev) 975 return (AVL_NEXT(&spa_namespace_avl, prev)); 976 else 977 return (avl_first(&spa_namespace_avl)); 978 } 979 980 /* 981 * ========================================================================== 982 * SPA refcount functions 983 * ========================================================================== 984 */ 985 986 /* 987 * Add a reference to the given spa_t. Must have at least one reference, or 988 * have the namespace lock held. 989 */ 990 void 991 spa_open_ref(spa_t *spa, const void *tag) 992 { 993 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 994 spa_namespace_held() || 995 spa->spa_load_thread == curthread); 996 (void) zfs_refcount_add(&spa->spa_refcount, tag); 997 } 998 999 /* 1000 * Remove a reference to the given spa_t. Must have at least one reference, or 1001 * have the namespace lock held or be part of a pool import/export. 1002 */ 1003 void 1004 spa_close(spa_t *spa, const void *tag) 1005 { 1006 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 1007 spa_namespace_held() || 1008 spa->spa_load_thread == curthread || 1009 spa->spa_export_thread == curthread); 1010 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 1011 } 1012 1013 /* 1014 * Remove a reference to the given spa_t held by a dsl dir that is 1015 * being asynchronously released. Async releases occur from a taskq 1016 * performing eviction of dsl datasets and dirs. The namespace lock 1017 * isn't held and the hold by the object being evicted may contribute to 1018 * spa_minref (e.g. dataset or directory released during pool export), 1019 * so the asserts in spa_close() do not apply. 1020 */ 1021 void 1022 spa_async_close(spa_t *spa, const void *tag) 1023 { 1024 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 1025 } 1026 1027 /* 1028 * Check to see if the spa refcount is zero. Must be called with 1029 * spa_namespace_lock held or be the spa export thread. We really 1030 * compare against spa_minref, which is the number of references 1031 * acquired when opening a pool 1032 */ 1033 boolean_t 1034 spa_refcount_zero(spa_t *spa) 1035 { 1036 ASSERT(spa_namespace_held() || 1037 spa->spa_export_thread == curthread); 1038 1039 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 1040 } 1041 1042 /* 1043 * ========================================================================== 1044 * SPA spare and l2cache tracking 1045 * ========================================================================== 1046 */ 1047 1048 /* 1049 * Hot spares and cache devices are tracked using the same code below, 1050 * for 'auxiliary' devices. 1051 */ 1052 1053 typedef struct spa_aux { 1054 uint64_t aux_guid; 1055 uint64_t aux_pool; 1056 avl_node_t aux_avl; 1057 int aux_count; 1058 } spa_aux_t; 1059 1060 static inline int 1061 spa_aux_compare(const void *a, const void *b) 1062 { 1063 const spa_aux_t *sa = (const spa_aux_t *)a; 1064 const spa_aux_t *sb = (const spa_aux_t *)b; 1065 1066 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 1067 } 1068 1069 static void 1070 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 1071 { 1072 avl_index_t where; 1073 spa_aux_t search; 1074 spa_aux_t *aux; 1075 1076 search.aux_guid = vd->vdev_guid; 1077 if ((aux = avl_find(avl, &search, &where)) != NULL) { 1078 aux->aux_count++; 1079 } else { 1080 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 1081 aux->aux_guid = vd->vdev_guid; 1082 aux->aux_count = 1; 1083 avl_insert(avl, aux, where); 1084 } 1085 } 1086 1087 static void 1088 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 1089 { 1090 spa_aux_t search; 1091 spa_aux_t *aux; 1092 avl_index_t where; 1093 1094 search.aux_guid = vd->vdev_guid; 1095 aux = avl_find(avl, &search, &where); 1096 1097 ASSERT(aux != NULL); 1098 1099 if (--aux->aux_count == 0) { 1100 avl_remove(avl, aux); 1101 kmem_free(aux, sizeof (spa_aux_t)); 1102 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 1103 aux->aux_pool = 0ULL; 1104 } 1105 } 1106 1107 static boolean_t 1108 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 1109 { 1110 spa_aux_t search, *found; 1111 1112 search.aux_guid = guid; 1113 found = avl_find(avl, &search, NULL); 1114 1115 if (pool) { 1116 if (found) 1117 *pool = found->aux_pool; 1118 else 1119 *pool = 0ULL; 1120 } 1121 1122 if (refcnt) { 1123 if (found) 1124 *refcnt = found->aux_count; 1125 else 1126 *refcnt = 0; 1127 } 1128 1129 return (found != NULL); 1130 } 1131 1132 static void 1133 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1134 { 1135 spa_aux_t search, *found; 1136 avl_index_t where; 1137 1138 search.aux_guid = vd->vdev_guid; 1139 found = avl_find(avl, &search, &where); 1140 ASSERT(found != NULL); 1141 ASSERT(found->aux_pool == 0ULL); 1142 1143 found->aux_pool = spa_guid(vd->vdev_spa); 1144 } 1145 1146 /* 1147 * Spares are tracked globally due to the following constraints: 1148 * 1149 * - A spare may be part of multiple pools. 1150 * - A spare may be added to a pool even if it's actively in use within 1151 * another pool. 1152 * - A spare in use in any pool can only be the source of a replacement if 1153 * the target is a spare in the same pool. 1154 * 1155 * We keep track of all spares on the system through the use of a reference 1156 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1157 * spare, then we bump the reference count in the AVL tree. In addition, we set 1158 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1159 * inactive). When a spare is made active (used to replace a device in the 1160 * pool), we also keep track of which pool its been made a part of. 1161 * 1162 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1163 * called under the spa_namespace lock as part of vdev reconfiguration. The 1164 * separate spare lock exists for the status query path, which does not need to 1165 * be completely consistent with respect to other vdev configuration changes. 1166 */ 1167 1168 static int 1169 spa_spare_compare(const void *a, const void *b) 1170 { 1171 return (spa_aux_compare(a, b)); 1172 } 1173 1174 void 1175 spa_spare_add(vdev_t *vd) 1176 { 1177 mutex_enter(&spa_spare_lock); 1178 ASSERT(!vd->vdev_isspare); 1179 spa_aux_add(vd, &spa_spare_avl); 1180 vd->vdev_isspare = B_TRUE; 1181 mutex_exit(&spa_spare_lock); 1182 } 1183 1184 void 1185 spa_spare_remove(vdev_t *vd) 1186 { 1187 mutex_enter(&spa_spare_lock); 1188 ASSERT(vd->vdev_isspare); 1189 spa_aux_remove(vd, &spa_spare_avl); 1190 vd->vdev_isspare = B_FALSE; 1191 mutex_exit(&spa_spare_lock); 1192 } 1193 1194 boolean_t 1195 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1196 { 1197 boolean_t found; 1198 1199 mutex_enter(&spa_spare_lock); 1200 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1201 mutex_exit(&spa_spare_lock); 1202 1203 return (found); 1204 } 1205 1206 void 1207 spa_spare_activate(vdev_t *vd) 1208 { 1209 mutex_enter(&spa_spare_lock); 1210 ASSERT(vd->vdev_isspare); 1211 spa_aux_activate(vd, &spa_spare_avl); 1212 mutex_exit(&spa_spare_lock); 1213 } 1214 1215 /* 1216 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1217 * Cache devices currently only support one pool per cache device, and so 1218 * for these devices the aux reference count is currently unused beyond 1. 1219 */ 1220 1221 static int 1222 spa_l2cache_compare(const void *a, const void *b) 1223 { 1224 return (spa_aux_compare(a, b)); 1225 } 1226 1227 void 1228 spa_l2cache_add(vdev_t *vd) 1229 { 1230 mutex_enter(&spa_l2cache_lock); 1231 ASSERT(!vd->vdev_isl2cache); 1232 spa_aux_add(vd, &spa_l2cache_avl); 1233 vd->vdev_isl2cache = B_TRUE; 1234 mutex_exit(&spa_l2cache_lock); 1235 } 1236 1237 void 1238 spa_l2cache_remove(vdev_t *vd) 1239 { 1240 mutex_enter(&spa_l2cache_lock); 1241 ASSERT(vd->vdev_isl2cache); 1242 spa_aux_remove(vd, &spa_l2cache_avl); 1243 vd->vdev_isl2cache = B_FALSE; 1244 mutex_exit(&spa_l2cache_lock); 1245 } 1246 1247 boolean_t 1248 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1249 { 1250 boolean_t found; 1251 1252 mutex_enter(&spa_l2cache_lock); 1253 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1254 mutex_exit(&spa_l2cache_lock); 1255 1256 return (found); 1257 } 1258 1259 void 1260 spa_l2cache_activate(vdev_t *vd) 1261 { 1262 mutex_enter(&spa_l2cache_lock); 1263 ASSERT(vd->vdev_isl2cache); 1264 spa_aux_activate(vd, &spa_l2cache_avl); 1265 mutex_exit(&spa_l2cache_lock); 1266 } 1267 1268 /* 1269 * ========================================================================== 1270 * SPA vdev locking 1271 * ========================================================================== 1272 */ 1273 1274 /* 1275 * Lock the given spa_t for the purpose of adding or removing a vdev. 1276 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1277 * It returns the next transaction group for the spa_t. 1278 */ 1279 uint64_t 1280 spa_vdev_enter(spa_t *spa) 1281 { 1282 mutex_enter(&spa->spa_vdev_top_lock); 1283 spa_namespace_enter(FTAG); 1284 1285 ASSERT0(spa->spa_export_thread); 1286 1287 vdev_autotrim_stop_all(spa); 1288 1289 return (spa_vdev_config_enter(spa)); 1290 } 1291 1292 /* 1293 * The same as spa_vdev_enter() above but additionally takes the guid of 1294 * the vdev being detached. When there is a rebuild in process it will be 1295 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1296 * The rebuild is canceled if only a single child remains after the detach. 1297 */ 1298 uint64_t 1299 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1300 { 1301 mutex_enter(&spa->spa_vdev_top_lock); 1302 spa_namespace_enter(FTAG); 1303 1304 ASSERT0(spa->spa_export_thread); 1305 1306 vdev_autotrim_stop_all(spa); 1307 1308 if (guid != 0) { 1309 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1310 if (vd) { 1311 vdev_rebuild_stop_wait(vd->vdev_top); 1312 } 1313 } 1314 1315 return (spa_vdev_config_enter(spa)); 1316 } 1317 1318 /* 1319 * Internal implementation for spa_vdev_enter(). Used when a vdev 1320 * operation requires multiple syncs (i.e. removing a device) while 1321 * keeping the spa_namespace_lock held. 1322 */ 1323 uint64_t 1324 spa_vdev_config_enter(spa_t *spa) 1325 { 1326 ASSERT(spa_namespace_held()); 1327 1328 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1329 1330 return (spa_last_synced_txg(spa) + 1); 1331 } 1332 1333 /* 1334 * Used in combination with spa_vdev_config_enter() to allow the syncing 1335 * of multiple transactions without releasing the spa_namespace_lock. 1336 */ 1337 void 1338 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, 1339 const char *tag) 1340 { 1341 ASSERT(spa_namespace_held()); 1342 1343 int config_changed = B_FALSE; 1344 1345 ASSERT(txg > spa_last_synced_txg(spa)); 1346 1347 spa->spa_pending_vdev = NULL; 1348 1349 /* 1350 * Reassess the DTLs. 1351 */ 1352 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1353 1354 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1355 config_changed = B_TRUE; 1356 spa->spa_config_generation++; 1357 } 1358 1359 /* 1360 * Verify the metaslab classes. 1361 */ 1362 metaslab_class_validate(spa_normal_class(spa)); 1363 metaslab_class_validate(spa_log_class(spa)); 1364 metaslab_class_validate(spa_embedded_log_class(spa)); 1365 metaslab_class_validate(spa_special_class(spa)); 1366 metaslab_class_validate(spa_special_embedded_log_class(spa)); 1367 metaslab_class_validate(spa_dedup_class(spa)); 1368 1369 spa_config_exit(spa, SCL_ALL, spa); 1370 1371 /* 1372 * Panic the system if the specified tag requires it. This 1373 * is useful for ensuring that configurations are updated 1374 * transactionally. 1375 */ 1376 if (zio_injection_enabled) 1377 zio_handle_panic_injection(spa, tag, 0); 1378 1379 /* 1380 * Note: this txg_wait_synced() is important because it ensures 1381 * that there won't be more than one config change per txg. 1382 * This allows us to use the txg as the generation number. 1383 */ 1384 if (error == 0) 1385 txg_wait_synced(spa->spa_dsl_pool, txg); 1386 1387 if (vd != NULL) { 1388 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1389 if (vd->vdev_ops->vdev_op_leaf) { 1390 mutex_enter(&vd->vdev_initialize_lock); 1391 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1392 NULL); 1393 mutex_exit(&vd->vdev_initialize_lock); 1394 1395 mutex_enter(&vd->vdev_trim_lock); 1396 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1397 mutex_exit(&vd->vdev_trim_lock); 1398 } 1399 1400 /* 1401 * The vdev may be both a leaf and top-level device. 1402 */ 1403 vdev_autotrim_stop_wait(vd); 1404 1405 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER); 1406 vdev_free(vd); 1407 spa_config_exit(spa, SCL_STATE_ALL, spa); 1408 } 1409 1410 /* 1411 * If the config changed, update the config cache. 1412 */ 1413 if (config_changed) 1414 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1415 } 1416 1417 /* 1418 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1419 * locking of spa_vdev_enter(), we also want make sure the transactions have 1420 * synced to disk, and then update the global configuration cache with the new 1421 * information. 1422 */ 1423 int 1424 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1425 { 1426 vdev_autotrim_restart(spa); 1427 vdev_rebuild_restart(spa); 1428 1429 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1430 spa_namespace_exit(FTAG); 1431 mutex_exit(&spa->spa_vdev_top_lock); 1432 1433 return (error); 1434 } 1435 1436 /* 1437 * Lock the given spa_t for the purpose of changing vdev state. 1438 */ 1439 void 1440 spa_vdev_state_enter(spa_t *spa, int oplocks) 1441 { 1442 int locks = SCL_STATE_ALL | oplocks; 1443 1444 /* 1445 * Root pools may need to read of the underlying devfs filesystem 1446 * when opening up a vdev. Unfortunately if we're holding the 1447 * SCL_ZIO lock it will result in a deadlock when we try to issue 1448 * the read from the root filesystem. Instead we "prefetch" 1449 * the associated vnodes that we need prior to opening the 1450 * underlying devices and cache them so that we can prevent 1451 * any I/O when we are doing the actual open. 1452 */ 1453 if (spa_is_root(spa)) { 1454 int low = locks & ~(SCL_ZIO - 1); 1455 int high = locks & ~low; 1456 1457 spa_config_enter(spa, high, spa, RW_WRITER); 1458 vdev_hold(spa->spa_root_vdev); 1459 spa_config_enter(spa, low, spa, RW_WRITER); 1460 } else { 1461 spa_config_enter(spa, locks, spa, RW_WRITER); 1462 } 1463 spa->spa_vdev_locks = locks; 1464 } 1465 1466 int 1467 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1468 { 1469 boolean_t config_changed = B_FALSE; 1470 vdev_t *vdev_top; 1471 1472 if (vd == NULL || vd == spa->spa_root_vdev) { 1473 vdev_top = spa->spa_root_vdev; 1474 } else { 1475 vdev_top = vd->vdev_top; 1476 } 1477 1478 if (vd != NULL || error == 0) 1479 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1480 1481 if (vd != NULL) { 1482 if (vd != spa->spa_root_vdev) 1483 vdev_state_dirty(vdev_top); 1484 1485 config_changed = B_TRUE; 1486 spa->spa_config_generation++; 1487 } 1488 1489 if (spa_is_root(spa)) 1490 vdev_rele(spa->spa_root_vdev); 1491 1492 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1493 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1494 1495 /* 1496 * If anything changed, wait for it to sync. This ensures that, 1497 * from the system administrator's perspective, zpool(8) commands 1498 * are synchronous. This is important for things like zpool offline: 1499 * when the command completes, you expect no further I/O from ZFS. 1500 */ 1501 if (vd != NULL) 1502 txg_wait_synced(spa->spa_dsl_pool, 0); 1503 1504 /* 1505 * If the config changed, update the config cache. 1506 */ 1507 if (config_changed) { 1508 spa_namespace_enter(FTAG); 1509 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 1510 spa_namespace_exit(FTAG); 1511 } 1512 1513 return (error); 1514 } 1515 1516 /* 1517 * ========================================================================== 1518 * Miscellaneous functions 1519 * ========================================================================== 1520 */ 1521 1522 void 1523 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1524 { 1525 if (!nvlist_exists(spa->spa_label_features, feature)) { 1526 fnvlist_add_boolean(spa->spa_label_features, feature); 1527 /* 1528 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1529 * dirty the vdev config because lock SCL_CONFIG is not held. 1530 * Thankfully, in this case we don't need to dirty the config 1531 * because it will be written out anyway when we finish 1532 * creating the pool. 1533 */ 1534 if (tx->tx_txg != TXG_INITIAL) 1535 vdev_config_dirty(spa->spa_root_vdev); 1536 } 1537 } 1538 1539 void 1540 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1541 { 1542 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1543 vdev_config_dirty(spa->spa_root_vdev); 1544 } 1545 1546 /* 1547 * Return the spa_t associated with given pool_guid, if it exists. If 1548 * device_guid is non-zero, determine whether the pool exists *and* contains 1549 * a device with the specified device_guid. 1550 */ 1551 spa_t * 1552 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1553 { 1554 spa_t *spa; 1555 avl_tree_t *t = &spa_namespace_avl; 1556 1557 ASSERT(spa_namespace_held()); 1558 1559 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1560 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1561 continue; 1562 if (spa->spa_root_vdev == NULL) 1563 continue; 1564 if (spa_guid(spa) == pool_guid) { 1565 if (device_guid == 0) 1566 break; 1567 1568 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1569 device_guid) != NULL) 1570 break; 1571 1572 /* 1573 * Check any devices we may be in the process of adding. 1574 */ 1575 if (spa->spa_pending_vdev) { 1576 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1577 device_guid) != NULL) 1578 break; 1579 } 1580 } 1581 } 1582 1583 return (spa); 1584 } 1585 1586 /* 1587 * Determine whether a pool with the given pool_guid exists. 1588 */ 1589 boolean_t 1590 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1591 { 1592 return (spa_by_guid(pool_guid, device_guid) != NULL); 1593 } 1594 1595 char * 1596 spa_strdup(const char *s) 1597 { 1598 size_t len; 1599 char *new; 1600 1601 len = strlen(s); 1602 new = kmem_alloc(len + 1, KM_SLEEP); 1603 memcpy(new, s, len + 1); 1604 1605 return (new); 1606 } 1607 1608 void 1609 spa_strfree(char *s) 1610 { 1611 kmem_free(s, strlen(s) + 1); 1612 } 1613 1614 uint64_t 1615 spa_generate_guid(spa_t *spa) 1616 { 1617 uint64_t guid; 1618 1619 if (spa != NULL) { 1620 do { 1621 (void) random_get_pseudo_bytes((void *)&guid, 1622 sizeof (guid)); 1623 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)); 1624 } else { 1625 do { 1626 (void) random_get_pseudo_bytes((void *)&guid, 1627 sizeof (guid)); 1628 } while (guid == 0 || spa_guid_exists(guid, 0)); 1629 } 1630 1631 return (guid); 1632 } 1633 1634 static boolean_t 1635 spa_load_guid_exists(uint64_t guid) 1636 { 1637 avl_tree_t *t = &spa_namespace_avl; 1638 1639 ASSERT(spa_namespace_held()); 1640 1641 for (spa_t *spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1642 if (spa_load_guid(spa) == guid) 1643 return (B_TRUE); 1644 } 1645 1646 return (arc_async_flush_guid_inuse(guid)); 1647 } 1648 1649 uint64_t 1650 spa_generate_load_guid(void) 1651 { 1652 uint64_t guid; 1653 1654 do { 1655 (void) random_get_pseudo_bytes((void *)&guid, 1656 sizeof (guid)); 1657 } while (guid == 0 || spa_load_guid_exists(guid)); 1658 1659 return (guid); 1660 } 1661 1662 void 1663 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1664 { 1665 char type[256]; 1666 const char *checksum = NULL; 1667 const char *compress = NULL; 1668 1669 if (bp != NULL) { 1670 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1671 dmu_object_byteswap_t bswap = 1672 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1673 (void) snprintf(type, sizeof (type), "bswap %s %s", 1674 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1675 "metadata" : "data", 1676 dmu_ot_byteswap[bswap].ob_name); 1677 } else { 1678 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1679 sizeof (type)); 1680 } 1681 if (!BP_IS_EMBEDDED(bp)) { 1682 checksum = 1683 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1684 } 1685 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1686 } 1687 1688 SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum, 1689 compress); 1690 } 1691 1692 void 1693 spa_freeze(spa_t *spa) 1694 { 1695 uint64_t freeze_txg = 0; 1696 1697 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1698 if (spa->spa_freeze_txg == UINT64_MAX) { 1699 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1700 spa->spa_freeze_txg = freeze_txg; 1701 } 1702 spa_config_exit(spa, SCL_ALL, FTAG); 1703 if (freeze_txg != 0) 1704 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1705 } 1706 1707 void 1708 zfs_panic_recover(const char *fmt, ...) 1709 { 1710 va_list adx; 1711 1712 va_start(adx, fmt); 1713 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1714 va_end(adx); 1715 } 1716 1717 /* 1718 * This is a stripped-down version of strtoull, suitable only for converting 1719 * lowercase hexadecimal numbers that don't overflow. 1720 */ 1721 uint64_t 1722 zfs_strtonum(const char *str, char **nptr) 1723 { 1724 uint64_t val = 0; 1725 char c; 1726 int digit; 1727 1728 while ((c = *str) != '\0') { 1729 if (c >= '0' && c <= '9') 1730 digit = c - '0'; 1731 else if (c >= 'a' && c <= 'f') 1732 digit = 10 + c - 'a'; 1733 else 1734 break; 1735 1736 val *= 16; 1737 val += digit; 1738 1739 str++; 1740 } 1741 1742 if (nptr) 1743 *nptr = (char *)str; 1744 1745 return (val); 1746 } 1747 1748 void 1749 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1750 { 1751 /* 1752 * We bump the feature refcount for each special vdev added to the pool 1753 */ 1754 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1755 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1756 } 1757 1758 /* 1759 * ========================================================================== 1760 * Accessor functions 1761 * ========================================================================== 1762 */ 1763 1764 boolean_t 1765 spa_shutting_down(spa_t *spa) 1766 { 1767 return (spa->spa_async_suspended); 1768 } 1769 1770 dsl_pool_t * 1771 spa_get_dsl(spa_t *spa) 1772 { 1773 return (spa->spa_dsl_pool); 1774 } 1775 1776 boolean_t 1777 spa_is_initializing(spa_t *spa) 1778 { 1779 return (spa->spa_is_initializing); 1780 } 1781 1782 boolean_t 1783 spa_indirect_vdevs_loaded(spa_t *spa) 1784 { 1785 return (spa->spa_indirect_vdevs_loaded); 1786 } 1787 1788 blkptr_t * 1789 spa_get_rootblkptr(spa_t *spa) 1790 { 1791 return (&spa->spa_ubsync.ub_rootbp); 1792 } 1793 1794 void 1795 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1796 { 1797 spa->spa_uberblock.ub_rootbp = *bp; 1798 } 1799 1800 void 1801 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1802 { 1803 if (spa->spa_root == NULL) 1804 buf[0] = '\0'; 1805 else 1806 (void) strlcpy(buf, spa->spa_root, buflen); 1807 } 1808 1809 uint32_t 1810 spa_sync_pass(spa_t *spa) 1811 { 1812 return (spa->spa_sync_pass); 1813 } 1814 1815 char * 1816 spa_name(spa_t *spa) 1817 { 1818 return (spa->spa_name); 1819 } 1820 1821 uint64_t 1822 spa_guid(spa_t *spa) 1823 { 1824 dsl_pool_t *dp = spa_get_dsl(spa); 1825 uint64_t guid; 1826 1827 /* 1828 * If we fail to parse the config during spa_load(), we can go through 1829 * the error path (which posts an ereport) and end up here with no root 1830 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1831 * this case. 1832 */ 1833 if (spa->spa_root_vdev == NULL) 1834 return (spa->spa_config_guid); 1835 1836 guid = spa->spa_last_synced_guid != 0 ? 1837 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1838 1839 /* 1840 * Return the most recently synced out guid unless we're 1841 * in syncing context. 1842 */ 1843 if (dp && dsl_pool_sync_context(dp)) 1844 return (spa->spa_root_vdev->vdev_guid); 1845 else 1846 return (guid); 1847 } 1848 1849 uint64_t 1850 spa_load_guid(spa_t *spa) 1851 { 1852 /* 1853 * This is a GUID that exists solely as a reference for the 1854 * purposes of the arc. It is generated at load time, and 1855 * is never written to persistent storage. 1856 */ 1857 return (spa->spa_load_guid); 1858 } 1859 1860 uint64_t 1861 spa_last_synced_txg(spa_t *spa) 1862 { 1863 return (spa->spa_ubsync.ub_txg); 1864 } 1865 1866 uint64_t 1867 spa_first_txg(spa_t *spa) 1868 { 1869 return (spa->spa_first_txg); 1870 } 1871 1872 uint64_t 1873 spa_syncing_txg(spa_t *spa) 1874 { 1875 return (spa->spa_syncing_txg); 1876 } 1877 1878 /* 1879 * Return the last txg where data can be dirtied. The final txgs 1880 * will be used to just clear out any deferred frees that remain. 1881 */ 1882 uint64_t 1883 spa_final_dirty_txg(spa_t *spa) 1884 { 1885 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1886 } 1887 1888 pool_state_t 1889 spa_state(spa_t *spa) 1890 { 1891 return (spa->spa_state); 1892 } 1893 1894 spa_load_state_t 1895 spa_load_state(spa_t *spa) 1896 { 1897 return (spa->spa_load_state); 1898 } 1899 1900 uint64_t 1901 spa_freeze_txg(spa_t *spa) 1902 { 1903 return (spa->spa_freeze_txg); 1904 } 1905 1906 /* 1907 * Return the inflated asize for a logical write in bytes. This is used by the 1908 * DMU to calculate the space a logical write will require on disk. 1909 * If lsize is smaller than the largest physical block size allocatable on this 1910 * pool we use its value instead, since the write will end up using the whole 1911 * block anyway. 1912 */ 1913 uint64_t 1914 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1915 { 1916 if (lsize == 0) 1917 return (0); /* No inflation needed */ 1918 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1919 } 1920 1921 /* 1922 * Return the range of minimum allocation sizes for the normal allocation 1923 * class. This can be used by external consumers of the DMU to estimate 1924 * potential wasted capacity when setting the recordsize for an object. 1925 * This is mainly for dRAID pools which always pad to a full stripe width. 1926 */ 1927 void 1928 spa_get_min_alloc_range(spa_t *spa, uint64_t *min_alloc, uint64_t *max_alloc) 1929 { 1930 *min_alloc = spa->spa_min_alloc; 1931 *max_alloc = spa->spa_max_alloc; 1932 } 1933 1934 /* 1935 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1936 * (3.2%), minus the embedded log space. On very small pools, it may be 1937 * slightly larger than this. On very large pools, it will be capped to 1938 * the value of spa_max_slop. The embedded log space is not included in 1939 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1940 * constant 97% of the total space, regardless of metaslab size (assuming the 1941 * default spa_slop_shift=5 and a non-tiny pool). 1942 * 1943 * See the comment above spa_slop_shift for more details. 1944 */ 1945 uint64_t 1946 spa_get_slop_space(spa_t *spa) 1947 { 1948 uint64_t space = 0; 1949 uint64_t slop = 0; 1950 1951 /* 1952 * Make sure spa_dedup_dspace has been set. 1953 */ 1954 if (spa->spa_dedup_dspace == ~0ULL) 1955 spa_update_dspace(spa); 1956 1957 space = spa->spa_rdspace; 1958 slop = MIN(space >> spa_slop_shift, spa_max_slop); 1959 1960 /* 1961 * Subtract the embedded log space, but no more than half the (3.2%) 1962 * unusable space. Note, the "no more than half" is only relevant if 1963 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1964 * default. 1965 */ 1966 uint64_t embedded_log = 1967 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1968 embedded_log += metaslab_class_get_dspace( 1969 spa_special_embedded_log_class(spa)); 1970 slop -= MIN(embedded_log, slop >> 1); 1971 1972 /* 1973 * Slop space should be at least spa_min_slop, but no more than half 1974 * the entire pool. 1975 */ 1976 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1977 return (slop); 1978 } 1979 1980 uint64_t 1981 spa_get_dspace(spa_t *spa) 1982 { 1983 return (spa->spa_dspace); 1984 } 1985 1986 uint64_t 1987 spa_get_checkpoint_space(spa_t *spa) 1988 { 1989 return (spa->spa_checkpoint_info.sci_dspace); 1990 } 1991 1992 void 1993 spa_update_dspace(spa_t *spa) 1994 { 1995 spa->spa_rdspace = metaslab_class_get_dspace(spa_normal_class(spa)); 1996 if (spa->spa_nonallocating_dspace > 0) { 1997 /* 1998 * Subtract the space provided by all non-allocating vdevs that 1999 * contribute to dspace. If a file is overwritten, its old 2000 * blocks are freed and new blocks are allocated. If there are 2001 * no snapshots of the file, the available space should remain 2002 * the same. The old blocks could be freed from the 2003 * non-allocating vdev, but the new blocks must be allocated on 2004 * other (allocating) vdevs. By reserving the entire size of 2005 * the non-allocating vdevs (including allocated space), we 2006 * ensure that there will be enough space on the allocating 2007 * vdevs for this file overwrite to succeed. 2008 * 2009 * Note that the DMU/DSL doesn't actually know or care 2010 * how much space is allocated (it does its own tracking 2011 * of how much space has been logically used). So it 2012 * doesn't matter that the data we are moving may be 2013 * allocated twice (on the old device and the new device). 2014 */ 2015 ASSERT3U(spa->spa_rdspace, >=, spa->spa_nonallocating_dspace); 2016 spa->spa_rdspace -= spa->spa_nonallocating_dspace; 2017 } 2018 spa->spa_dspace = spa->spa_rdspace + ddt_get_dedup_dspace(spa) + 2019 brt_get_dspace(spa); 2020 } 2021 2022 /* 2023 * Return the failure mode that has been set to this pool. The default 2024 * behavior will be to block all I/Os when a complete failure occurs. 2025 */ 2026 uint64_t 2027 spa_get_failmode(spa_t *spa) 2028 { 2029 return (spa->spa_failmode); 2030 } 2031 2032 boolean_t 2033 spa_suspended(spa_t *spa) 2034 { 2035 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 2036 } 2037 2038 uint64_t 2039 spa_version(spa_t *spa) 2040 { 2041 return (spa->spa_ubsync.ub_version); 2042 } 2043 2044 boolean_t 2045 spa_deflate(spa_t *spa) 2046 { 2047 return (spa->spa_deflate); 2048 } 2049 2050 metaslab_class_t * 2051 spa_normal_class(spa_t *spa) 2052 { 2053 return (spa->spa_normal_class); 2054 } 2055 2056 metaslab_class_t * 2057 spa_log_class(spa_t *spa) 2058 { 2059 return (spa->spa_log_class); 2060 } 2061 2062 metaslab_class_t * 2063 spa_embedded_log_class(spa_t *spa) 2064 { 2065 return (spa->spa_embedded_log_class); 2066 } 2067 2068 metaslab_class_t * 2069 spa_special_class(spa_t *spa) 2070 { 2071 return (spa->spa_special_class); 2072 } 2073 2074 metaslab_class_t * 2075 spa_special_embedded_log_class(spa_t *spa) 2076 { 2077 return (spa->spa_special_embedded_log_class); 2078 } 2079 2080 metaslab_class_t * 2081 spa_dedup_class(spa_t *spa) 2082 { 2083 return (spa->spa_dedup_class); 2084 } 2085 2086 boolean_t 2087 spa_special_has_ddt(spa_t *spa) 2088 { 2089 return (zfs_ddt_data_is_special && spa_has_special(spa)); 2090 } 2091 2092 /* 2093 * Locate an appropriate allocation class 2094 */ 2095 metaslab_class_t * 2096 spa_preferred_class(spa_t *spa, const zio_t *zio) 2097 { 2098 metaslab_class_t *mc = zio->io_metaslab_class; 2099 boolean_t tried_dedup = (mc == spa_dedup_class(spa)); 2100 boolean_t tried_special = (mc == spa_special_class(spa)); 2101 const zio_prop_t *zp = &zio->io_prop; 2102 2103 /* 2104 * Override object type for the purposes of selecting a storage class. 2105 * Primarily for DMU_OTN_ types where we can't explicitly control their 2106 * storage class; instead, choose a static type most closely matches 2107 * what we want. 2108 */ 2109 dmu_object_type_t objtype = 2110 zp->zp_storage_type == DMU_OT_NONE ? 2111 zp->zp_type : zp->zp_storage_type; 2112 2113 /* 2114 * ZIL allocations determine their class in zio_alloc_zil(). 2115 */ 2116 ASSERT(objtype != DMU_OT_INTENT_LOG); 2117 2118 if (DMU_OT_IS_DDT(objtype)) { 2119 if (spa_has_dedup(spa) && !tried_dedup && !tried_special) 2120 return (spa_dedup_class(spa)); 2121 else if (spa_special_has_ddt(spa) && !tried_special) 2122 return (spa_special_class(spa)); 2123 else 2124 return (spa_normal_class(spa)); 2125 } 2126 2127 /* Indirect blocks for user data can land in special if allowed */ 2128 if (zp->zp_level > 0 && 2129 (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 2130 if (zfs_user_indirect_is_special && spa_has_special(spa) && 2131 !tried_special) 2132 return (spa_special_class(spa)); 2133 else 2134 return (spa_normal_class(spa)); 2135 } 2136 2137 if (DMU_OT_IS_METADATA(objtype) || zp->zp_level > 0) { 2138 if (spa_has_special(spa) && !tried_special) 2139 return (spa_special_class(spa)); 2140 else 2141 return (spa_normal_class(spa)); 2142 } 2143 2144 /* 2145 * Allow small file or zvol blocks in special class if opted in by 2146 * the special_smallblk property. However, always leave a reserve of 2147 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 2148 */ 2149 if ((DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL) && 2150 spa_has_special(spa) && !tried_special && 2151 zio->io_size <= zp->zp_zpl_smallblk) { 2152 metaslab_class_t *special = spa_special_class(spa); 2153 uint64_t alloc = metaslab_class_get_alloc(special); 2154 uint64_t space = metaslab_class_get_space(special); 2155 uint64_t limit = 2156 (space * (100 - zfs_special_class_metadata_reserve_pct)) 2157 / 100; 2158 2159 if (alloc < limit) 2160 return (special); 2161 } 2162 2163 return (spa_normal_class(spa)); 2164 } 2165 2166 void 2167 spa_evicting_os_register(spa_t *spa, objset_t *os) 2168 { 2169 mutex_enter(&spa->spa_evicting_os_lock); 2170 list_insert_head(&spa->spa_evicting_os_list, os); 2171 mutex_exit(&spa->spa_evicting_os_lock); 2172 } 2173 2174 void 2175 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 2176 { 2177 mutex_enter(&spa->spa_evicting_os_lock); 2178 list_remove(&spa->spa_evicting_os_list, os); 2179 cv_broadcast(&spa->spa_evicting_os_cv); 2180 mutex_exit(&spa->spa_evicting_os_lock); 2181 } 2182 2183 void 2184 spa_evicting_os_wait(spa_t *spa) 2185 { 2186 mutex_enter(&spa->spa_evicting_os_lock); 2187 while (!list_is_empty(&spa->spa_evicting_os_list)) 2188 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 2189 mutex_exit(&spa->spa_evicting_os_lock); 2190 2191 dmu_buf_user_evict_wait(); 2192 } 2193 2194 int 2195 spa_max_replication(spa_t *spa) 2196 { 2197 /* 2198 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2199 * handle BPs with more than one DVA allocated. Set our max 2200 * replication level accordingly. 2201 */ 2202 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2203 return (1); 2204 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2205 } 2206 2207 int 2208 spa_prev_software_version(spa_t *spa) 2209 { 2210 return (spa->spa_prev_software_version); 2211 } 2212 2213 uint64_t 2214 spa_deadman_synctime(spa_t *spa) 2215 { 2216 return (spa->spa_deadman_synctime); 2217 } 2218 2219 spa_autotrim_t 2220 spa_get_autotrim(spa_t *spa) 2221 { 2222 return (spa->spa_autotrim); 2223 } 2224 2225 uint64_t 2226 spa_deadman_ziotime(spa_t *spa) 2227 { 2228 return (spa->spa_deadman_ziotime); 2229 } 2230 2231 uint64_t 2232 spa_get_deadman_failmode(spa_t *spa) 2233 { 2234 return (spa->spa_deadman_failmode); 2235 } 2236 2237 void 2238 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2239 { 2240 if (strcmp(failmode, "wait") == 0) 2241 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2242 else if (strcmp(failmode, "continue") == 0) 2243 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2244 else if (strcmp(failmode, "panic") == 0) 2245 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2246 else 2247 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2248 } 2249 2250 void 2251 spa_set_deadman_ziotime(hrtime_t ns) 2252 { 2253 spa_t *spa = NULL; 2254 2255 if (spa_mode_global != SPA_MODE_UNINIT) { 2256 spa_namespace_enter(FTAG); 2257 while ((spa = spa_next(spa)) != NULL) 2258 spa->spa_deadman_ziotime = ns; 2259 spa_namespace_exit(FTAG); 2260 } 2261 } 2262 2263 void 2264 spa_set_deadman_synctime(hrtime_t ns) 2265 { 2266 spa_t *spa = NULL; 2267 2268 if (spa_mode_global != SPA_MODE_UNINIT) { 2269 spa_namespace_enter(FTAG); 2270 while ((spa = spa_next(spa)) != NULL) 2271 spa->spa_deadman_synctime = ns; 2272 spa_namespace_exit(FTAG); 2273 } 2274 } 2275 2276 uint64_t 2277 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2278 { 2279 uint64_t asize = DVA_GET_ASIZE(dva); 2280 uint64_t dsize = asize; 2281 2282 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2283 2284 if (asize != 0 && spa->spa_deflate) { 2285 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2286 if (vd != NULL) 2287 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2288 vd->vdev_deflate_ratio; 2289 } 2290 2291 return (dsize); 2292 } 2293 2294 uint64_t 2295 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2296 { 2297 uint64_t dsize = 0; 2298 2299 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2300 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2301 2302 return (dsize); 2303 } 2304 2305 uint64_t 2306 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2307 { 2308 uint64_t dsize = 0; 2309 2310 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2311 2312 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2313 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2314 2315 spa_config_exit(spa, SCL_VDEV, FTAG); 2316 2317 return (dsize); 2318 } 2319 2320 uint64_t 2321 spa_dirty_data(spa_t *spa) 2322 { 2323 return (spa->spa_dsl_pool->dp_dirty_total); 2324 } 2325 2326 /* 2327 * ========================================================================== 2328 * SPA Import Progress Routines 2329 * ========================================================================== 2330 */ 2331 2332 typedef struct spa_import_progress { 2333 uint64_t pool_guid; /* unique id for updates */ 2334 char *pool_name; 2335 spa_load_state_t spa_load_state; 2336 char *spa_load_notes; 2337 uint64_t mmp_sec_remaining; /* MMP activity check */ 2338 uint64_t spa_load_max_txg; /* rewind txg */ 2339 procfs_list_node_t smh_node; 2340 } spa_import_progress_t; 2341 2342 spa_history_list_t *spa_import_progress_list = NULL; 2343 2344 static int 2345 spa_import_progress_show_header(struct seq_file *f) 2346 { 2347 seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid", 2348 "load_state", "multihost_secs", "max_txg", 2349 "pool_name", "notes"); 2350 return (0); 2351 } 2352 2353 static int 2354 spa_import_progress_show(struct seq_file *f, void *data) 2355 { 2356 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2357 2358 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n", 2359 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2360 (u_longlong_t)sip->mmp_sec_remaining, 2361 (u_longlong_t)sip->spa_load_max_txg, 2362 (sip->pool_name ? sip->pool_name : "-"), 2363 (sip->spa_load_notes ? sip->spa_load_notes : "-")); 2364 2365 return (0); 2366 } 2367 2368 /* Remove oldest elements from list until there are no more than 'size' left */ 2369 static void 2370 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2371 { 2372 spa_import_progress_t *sip; 2373 while (shl->size > size) { 2374 sip = list_remove_head(&shl->procfs_list.pl_list); 2375 if (sip->pool_name) 2376 spa_strfree(sip->pool_name); 2377 if (sip->spa_load_notes) 2378 kmem_strfree(sip->spa_load_notes); 2379 kmem_free(sip, sizeof (spa_import_progress_t)); 2380 shl->size--; 2381 } 2382 2383 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2384 } 2385 2386 static void 2387 spa_import_progress_init(void) 2388 { 2389 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2390 KM_SLEEP); 2391 2392 spa_import_progress_list->size = 0; 2393 2394 spa_import_progress_list->procfs_list.pl_private = 2395 spa_import_progress_list; 2396 2397 procfs_list_install("zfs", 2398 NULL, 2399 "import_progress", 2400 0644, 2401 &spa_import_progress_list->procfs_list, 2402 spa_import_progress_show, 2403 spa_import_progress_show_header, 2404 NULL, 2405 offsetof(spa_import_progress_t, smh_node)); 2406 } 2407 2408 static void 2409 spa_import_progress_destroy(void) 2410 { 2411 spa_history_list_t *shl = spa_import_progress_list; 2412 procfs_list_uninstall(&shl->procfs_list); 2413 spa_import_progress_truncate(shl, 0); 2414 procfs_list_destroy(&shl->procfs_list); 2415 kmem_free(shl, sizeof (spa_history_list_t)); 2416 } 2417 2418 int 2419 spa_import_progress_set_state(uint64_t pool_guid, 2420 spa_load_state_t load_state) 2421 { 2422 spa_history_list_t *shl = spa_import_progress_list; 2423 spa_import_progress_t *sip; 2424 int error = ENOENT; 2425 2426 if (shl->size == 0) 2427 return (0); 2428 2429 mutex_enter(&shl->procfs_list.pl_lock); 2430 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2431 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2432 if (sip->pool_guid == pool_guid) { 2433 sip->spa_load_state = load_state; 2434 if (sip->spa_load_notes != NULL) { 2435 kmem_strfree(sip->spa_load_notes); 2436 sip->spa_load_notes = NULL; 2437 } 2438 error = 0; 2439 break; 2440 } 2441 } 2442 mutex_exit(&shl->procfs_list.pl_lock); 2443 2444 return (error); 2445 } 2446 2447 static void 2448 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg, 2449 const char *fmt, va_list adx) 2450 { 2451 spa_history_list_t *shl = spa_import_progress_list; 2452 spa_import_progress_t *sip; 2453 uint64_t pool_guid = spa_guid(spa); 2454 2455 if (shl->size == 0) 2456 return; 2457 2458 char *notes = kmem_vasprintf(fmt, adx); 2459 2460 mutex_enter(&shl->procfs_list.pl_lock); 2461 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2462 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2463 if (sip->pool_guid == pool_guid) { 2464 if (sip->spa_load_notes != NULL) { 2465 kmem_strfree(sip->spa_load_notes); 2466 sip->spa_load_notes = NULL; 2467 } 2468 sip->spa_load_notes = notes; 2469 if (log_dbgmsg) 2470 zfs_dbgmsg("'%s' %s", sip->pool_name, notes); 2471 notes = NULL; 2472 break; 2473 } 2474 } 2475 mutex_exit(&shl->procfs_list.pl_lock); 2476 if (notes != NULL) 2477 kmem_strfree(notes); 2478 } 2479 2480 void 2481 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...) 2482 { 2483 va_list adx; 2484 2485 va_start(adx, fmt); 2486 spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx); 2487 va_end(adx); 2488 } 2489 2490 void 2491 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...) 2492 { 2493 va_list adx; 2494 2495 va_start(adx, fmt); 2496 spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx); 2497 va_end(adx); 2498 } 2499 2500 int 2501 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2502 { 2503 spa_history_list_t *shl = spa_import_progress_list; 2504 spa_import_progress_t *sip; 2505 int error = ENOENT; 2506 2507 if (shl->size == 0) 2508 return (0); 2509 2510 mutex_enter(&shl->procfs_list.pl_lock); 2511 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2512 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2513 if (sip->pool_guid == pool_guid) { 2514 sip->spa_load_max_txg = load_max_txg; 2515 error = 0; 2516 break; 2517 } 2518 } 2519 mutex_exit(&shl->procfs_list.pl_lock); 2520 2521 return (error); 2522 } 2523 2524 int 2525 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2526 uint64_t mmp_sec_remaining) 2527 { 2528 spa_history_list_t *shl = spa_import_progress_list; 2529 spa_import_progress_t *sip; 2530 int error = ENOENT; 2531 2532 if (shl->size == 0) 2533 return (0); 2534 2535 mutex_enter(&shl->procfs_list.pl_lock); 2536 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2537 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2538 if (sip->pool_guid == pool_guid) { 2539 sip->mmp_sec_remaining = mmp_sec_remaining; 2540 error = 0; 2541 break; 2542 } 2543 } 2544 mutex_exit(&shl->procfs_list.pl_lock); 2545 2546 return (error); 2547 } 2548 2549 /* 2550 * A new import is in progress, add an entry. 2551 */ 2552 void 2553 spa_import_progress_add(spa_t *spa) 2554 { 2555 spa_history_list_t *shl = spa_import_progress_list; 2556 spa_import_progress_t *sip; 2557 const char *poolname = NULL; 2558 2559 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2560 sip->pool_guid = spa_guid(spa); 2561 2562 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2563 &poolname); 2564 if (poolname == NULL) 2565 poolname = spa_name(spa); 2566 sip->pool_name = spa_strdup(poolname); 2567 sip->spa_load_state = spa_load_state(spa); 2568 sip->spa_load_notes = NULL; 2569 2570 mutex_enter(&shl->procfs_list.pl_lock); 2571 procfs_list_add(&shl->procfs_list, sip); 2572 shl->size++; 2573 mutex_exit(&shl->procfs_list.pl_lock); 2574 } 2575 2576 void 2577 spa_import_progress_remove(uint64_t pool_guid) 2578 { 2579 spa_history_list_t *shl = spa_import_progress_list; 2580 spa_import_progress_t *sip; 2581 2582 mutex_enter(&shl->procfs_list.pl_lock); 2583 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2584 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2585 if (sip->pool_guid == pool_guid) { 2586 if (sip->pool_name) 2587 spa_strfree(sip->pool_name); 2588 if (sip->spa_load_notes) 2589 spa_strfree(sip->spa_load_notes); 2590 list_remove(&shl->procfs_list.pl_list, sip); 2591 shl->size--; 2592 kmem_free(sip, sizeof (spa_import_progress_t)); 2593 break; 2594 } 2595 } 2596 mutex_exit(&shl->procfs_list.pl_lock); 2597 } 2598 2599 /* 2600 * ========================================================================== 2601 * Initialization and Termination 2602 * ========================================================================== 2603 */ 2604 2605 static int 2606 spa_name_compare(const void *a1, const void *a2) 2607 { 2608 const spa_t *s1 = a1; 2609 const spa_t *s2 = a2; 2610 int s; 2611 2612 s = strcmp(s1->spa_name, s2->spa_name); 2613 2614 return (TREE_ISIGN(s)); 2615 } 2616 2617 void 2618 spa_init(spa_mode_t mode) 2619 { 2620 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2621 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2622 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2623 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2624 2625 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2626 offsetof(spa_t, spa_avl)); 2627 2628 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2629 offsetof(spa_aux_t, aux_avl)); 2630 2631 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2632 offsetof(spa_aux_t, aux_avl)); 2633 2634 spa_mode_global = mode; 2635 2636 #ifndef _KERNEL 2637 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2638 struct sigaction sa; 2639 2640 sa.sa_flags = SA_SIGINFO; 2641 sigemptyset(&sa.sa_mask); 2642 sa.sa_sigaction = arc_buf_sigsegv; 2643 2644 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2645 perror("could not enable watchpoints: " 2646 "sigaction(SIGSEGV, ...) = "); 2647 } else { 2648 arc_watch = B_TRUE; 2649 } 2650 } 2651 #endif 2652 2653 fm_init(); 2654 zfs_refcount_init(); 2655 unique_init(); 2656 zfs_btree_init(); 2657 metaslab_stat_init(); 2658 brt_init(); 2659 ddt_init(); 2660 zio_init(); 2661 dmu_init(); 2662 zil_init(); 2663 vdev_mirror_stat_init(); 2664 vdev_raidz_math_init(); 2665 vdev_file_init(); 2666 zfs_prop_init(); 2667 chksum_init(); 2668 zpool_prop_init(); 2669 zpool_feature_init(); 2670 vdev_prop_init(); 2671 l2arc_start(); 2672 scan_init(); 2673 qat_init(); 2674 spa_import_progress_init(); 2675 zap_init(); 2676 } 2677 2678 void 2679 spa_fini(void) 2680 { 2681 l2arc_stop(); 2682 2683 spa_evict_all(); 2684 2685 vdev_file_fini(); 2686 vdev_mirror_stat_fini(); 2687 vdev_raidz_math_fini(); 2688 chksum_fini(); 2689 zil_fini(); 2690 dmu_fini(); 2691 zio_fini(); 2692 ddt_fini(); 2693 brt_fini(); 2694 metaslab_stat_fini(); 2695 zfs_btree_fini(); 2696 unique_fini(); 2697 zfs_refcount_fini(); 2698 fm_fini(); 2699 scan_fini(); 2700 qat_fini(); 2701 spa_import_progress_destroy(); 2702 zap_fini(); 2703 2704 avl_destroy(&spa_namespace_avl); 2705 avl_destroy(&spa_spare_avl); 2706 avl_destroy(&spa_l2cache_avl); 2707 2708 cv_destroy(&spa_namespace_cv); 2709 mutex_destroy(&spa_namespace_lock); 2710 mutex_destroy(&spa_spare_lock); 2711 mutex_destroy(&spa_l2cache_lock); 2712 } 2713 2714 boolean_t 2715 spa_has_dedup(spa_t *spa) 2716 { 2717 return (spa->spa_dedup_class->mc_groups != 0); 2718 } 2719 2720 /* 2721 * Return whether this pool has a dedicated slog device. No locking needed. 2722 * It's not a problem if the wrong answer is returned as it's only for 2723 * performance and not correctness. 2724 */ 2725 boolean_t 2726 spa_has_slogs(spa_t *spa) 2727 { 2728 return (spa->spa_log_class->mc_groups != 0); 2729 } 2730 2731 boolean_t 2732 spa_has_special(spa_t *spa) 2733 { 2734 return (spa->spa_special_class->mc_groups != 0); 2735 } 2736 2737 spa_log_state_t 2738 spa_get_log_state(spa_t *spa) 2739 { 2740 return (spa->spa_log_state); 2741 } 2742 2743 void 2744 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2745 { 2746 spa->spa_log_state = state; 2747 } 2748 2749 boolean_t 2750 spa_is_root(spa_t *spa) 2751 { 2752 return (spa->spa_is_root); 2753 } 2754 2755 boolean_t 2756 spa_writeable(spa_t *spa) 2757 { 2758 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2759 } 2760 2761 /* 2762 * Returns true if there is a pending sync task in any of the current 2763 * syncing txg, the current quiescing txg, or the current open txg. 2764 */ 2765 boolean_t 2766 spa_has_pending_synctask(spa_t *spa) 2767 { 2768 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2769 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2770 } 2771 2772 spa_mode_t 2773 spa_mode(spa_t *spa) 2774 { 2775 return (spa->spa_mode); 2776 } 2777 2778 uint64_t 2779 spa_get_last_scrubbed_txg(spa_t *spa) 2780 { 2781 return (spa->spa_scrubbed_last_txg); 2782 } 2783 2784 uint64_t 2785 spa_bootfs(spa_t *spa) 2786 { 2787 return (spa->spa_bootfs); 2788 } 2789 2790 uint64_t 2791 spa_delegation(spa_t *spa) 2792 { 2793 return (spa->spa_delegation); 2794 } 2795 2796 objset_t * 2797 spa_meta_objset(spa_t *spa) 2798 { 2799 return (spa->spa_meta_objset); 2800 } 2801 2802 enum zio_checksum 2803 spa_dedup_checksum(spa_t *spa) 2804 { 2805 return (spa->spa_dedup_checksum); 2806 } 2807 2808 /* 2809 * Reset pool scan stat per scan pass (or reboot). 2810 */ 2811 void 2812 spa_scan_stat_init(spa_t *spa) 2813 { 2814 /* data not stored on disk */ 2815 spa->spa_scan_pass_start = gethrestime_sec(); 2816 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2817 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2818 else 2819 spa->spa_scan_pass_scrub_pause = 0; 2820 2821 if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) 2822 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start; 2823 else 2824 spa->spa_scan_pass_errorscrub_pause = 0; 2825 2826 spa->spa_scan_pass_scrub_spent_paused = 0; 2827 spa->spa_scan_pass_exam = 0; 2828 spa->spa_scan_pass_issued = 0; 2829 2830 // error scrub stats 2831 spa->spa_scan_pass_errorscrub_spent_paused = 0; 2832 } 2833 2834 /* 2835 * Get scan stats for zpool status reports 2836 */ 2837 int 2838 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2839 { 2840 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2841 2842 if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE && 2843 scn->errorscrub_phys.dep_func == POOL_SCAN_NONE)) 2844 return (SET_ERROR(ENOENT)); 2845 2846 memset(ps, 0, sizeof (pool_scan_stat_t)); 2847 2848 /* data stored on disk */ 2849 ps->pss_func = scn->scn_phys.scn_func; 2850 ps->pss_state = scn->scn_phys.scn_state; 2851 ps->pss_start_time = scn->scn_phys.scn_start_time; 2852 ps->pss_end_time = scn->scn_phys.scn_end_time; 2853 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2854 ps->pss_examined = scn->scn_phys.scn_examined; 2855 ps->pss_skipped = scn->scn_phys.scn_skipped; 2856 ps->pss_processed = scn->scn_phys.scn_processed; 2857 ps->pss_errors = scn->scn_phys.scn_errors; 2858 2859 /* data not stored on disk */ 2860 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2861 ps->pss_pass_start = spa->spa_scan_pass_start; 2862 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2863 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2864 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2865 ps->pss_issued = 2866 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2867 2868 /* error scrub data stored on disk */ 2869 ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func; 2870 ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state; 2871 ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time; 2872 ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time; 2873 ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined; 2874 ps->pss_error_scrub_to_be_examined = 2875 scn->errorscrub_phys.dep_to_examine; 2876 2877 /* error scrub data not stored on disk */ 2878 ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause; 2879 2880 return (0); 2881 } 2882 2883 int 2884 spa_maxblocksize(spa_t *spa) 2885 { 2886 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2887 return (SPA_MAXBLOCKSIZE); 2888 else 2889 return (SPA_OLD_MAXBLOCKSIZE); 2890 } 2891 2892 2893 /* 2894 * Returns the txg that the last device removal completed. No indirect mappings 2895 * have been added since this txg. 2896 */ 2897 uint64_t 2898 spa_get_last_removal_txg(spa_t *spa) 2899 { 2900 uint64_t vdevid; 2901 uint64_t ret = -1ULL; 2902 2903 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2904 /* 2905 * sr_prev_indirect_vdev is only modified while holding all the 2906 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2907 * examining it. 2908 */ 2909 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2910 2911 while (vdevid != -1ULL) { 2912 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2913 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2914 2915 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2916 2917 /* 2918 * If the removal did not remap any data, we don't care. 2919 */ 2920 if (vdev_indirect_births_count(vib) != 0) { 2921 ret = vdev_indirect_births_last_entry_txg(vib); 2922 break; 2923 } 2924 2925 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2926 } 2927 spa_config_exit(spa, SCL_VDEV, FTAG); 2928 2929 IMPLY(ret != -1ULL, 2930 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2931 2932 return (ret); 2933 } 2934 2935 int 2936 spa_maxdnodesize(spa_t *spa) 2937 { 2938 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2939 return (DNODE_MAX_SIZE); 2940 else 2941 return (DNODE_MIN_SIZE); 2942 } 2943 2944 boolean_t 2945 spa_multihost(spa_t *spa) 2946 { 2947 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2948 } 2949 2950 uint32_t 2951 spa_get_hostid(spa_t *spa) 2952 { 2953 return (spa->spa_hostid); 2954 } 2955 2956 boolean_t 2957 spa_trust_config(spa_t *spa) 2958 { 2959 return (spa->spa_trust_config); 2960 } 2961 2962 uint64_t 2963 spa_missing_tvds_allowed(spa_t *spa) 2964 { 2965 return (spa->spa_missing_tvds_allowed); 2966 } 2967 2968 space_map_t * 2969 spa_syncing_log_sm(spa_t *spa) 2970 { 2971 return (spa->spa_syncing_log_sm); 2972 } 2973 2974 void 2975 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2976 { 2977 spa->spa_missing_tvds = missing; 2978 } 2979 2980 /* 2981 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2982 */ 2983 const char * 2984 spa_state_to_name(spa_t *spa) 2985 { 2986 ASSERT3P(spa, !=, NULL); 2987 2988 /* 2989 * it is possible for the spa to exist, without root vdev 2990 * as the spa transitions during import/export 2991 */ 2992 vdev_t *rvd = spa->spa_root_vdev; 2993 if (rvd == NULL) { 2994 return ("TRANSITIONING"); 2995 } 2996 vdev_state_t state = rvd->vdev_state; 2997 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2998 2999 if (spa_suspended(spa)) 3000 return ("SUSPENDED"); 3001 3002 switch (state) { 3003 case VDEV_STATE_CLOSED: 3004 case VDEV_STATE_OFFLINE: 3005 return ("OFFLINE"); 3006 case VDEV_STATE_REMOVED: 3007 return ("REMOVED"); 3008 case VDEV_STATE_CANT_OPEN: 3009 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 3010 return ("FAULTED"); 3011 else if (aux == VDEV_AUX_SPLIT_POOL) 3012 return ("SPLIT"); 3013 else 3014 return ("UNAVAIL"); 3015 case VDEV_STATE_FAULTED: 3016 return ("FAULTED"); 3017 case VDEV_STATE_DEGRADED: 3018 return ("DEGRADED"); 3019 case VDEV_STATE_HEALTHY: 3020 return ("ONLINE"); 3021 default: 3022 break; 3023 } 3024 3025 return ("UNKNOWN"); 3026 } 3027 3028 boolean_t 3029 spa_top_vdevs_spacemap_addressable(spa_t *spa) 3030 { 3031 vdev_t *rvd = spa->spa_root_vdev; 3032 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 3033 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 3034 return (B_FALSE); 3035 } 3036 return (B_TRUE); 3037 } 3038 3039 boolean_t 3040 spa_has_checkpoint(spa_t *spa) 3041 { 3042 return (spa->spa_checkpoint_txg != 0); 3043 } 3044 3045 boolean_t 3046 spa_importing_readonly_checkpoint(spa_t *spa) 3047 { 3048 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 3049 spa->spa_mode == SPA_MODE_READ); 3050 } 3051 3052 uint64_t 3053 spa_min_claim_txg(spa_t *spa) 3054 { 3055 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 3056 3057 if (checkpoint_txg != 0) 3058 return (checkpoint_txg + 1); 3059 3060 return (spa->spa_first_txg); 3061 } 3062 3063 /* 3064 * If there is a checkpoint, async destroys may consume more space from 3065 * the pool instead of freeing it. In an attempt to save the pool from 3066 * getting suspended when it is about to run out of space, we stop 3067 * processing async destroys. 3068 */ 3069 boolean_t 3070 spa_suspend_async_destroy(spa_t *spa) 3071 { 3072 dsl_pool_t *dp = spa_get_dsl(spa); 3073 3074 uint64_t unreserved = dsl_pool_unreserved_space(dp, 3075 ZFS_SPACE_CHECK_EXTRA_RESERVED); 3076 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 3077 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 3078 3079 if (spa_has_checkpoint(spa) && avail == 0) 3080 return (B_TRUE); 3081 3082 return (B_FALSE); 3083 } 3084 3085 #if defined(_KERNEL) 3086 3087 int 3088 param_set_deadman_failmode_common(const char *val) 3089 { 3090 spa_t *spa = NULL; 3091 char *p; 3092 3093 if (val == NULL) 3094 return (SET_ERROR(EINVAL)); 3095 3096 if ((p = strchr(val, '\n')) != NULL) 3097 *p = '\0'; 3098 3099 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 3100 strcmp(val, "panic")) 3101 return (SET_ERROR(EINVAL)); 3102 3103 if (spa_mode_global != SPA_MODE_UNINIT) { 3104 spa_namespace_enter(FTAG); 3105 while ((spa = spa_next(spa)) != NULL) 3106 spa_set_deadman_failmode(spa, val); 3107 spa_namespace_exit(FTAG); 3108 } 3109 3110 return (0); 3111 } 3112 #endif 3113 3114 /* Namespace manipulation */ 3115 EXPORT_SYMBOL(spa_lookup); 3116 EXPORT_SYMBOL(spa_add); 3117 EXPORT_SYMBOL(spa_remove); 3118 EXPORT_SYMBOL(spa_next); 3119 3120 /* Refcount functions */ 3121 EXPORT_SYMBOL(spa_open_ref); 3122 EXPORT_SYMBOL(spa_close); 3123 EXPORT_SYMBOL(spa_refcount_zero); 3124 3125 /* Pool configuration lock */ 3126 EXPORT_SYMBOL(spa_config_tryenter); 3127 EXPORT_SYMBOL(spa_config_enter); 3128 EXPORT_SYMBOL(spa_config_exit); 3129 EXPORT_SYMBOL(spa_config_held); 3130 3131 /* Pool vdev add/remove lock */ 3132 EXPORT_SYMBOL(spa_vdev_enter); 3133 EXPORT_SYMBOL(spa_vdev_exit); 3134 3135 /* Pool vdev state change lock */ 3136 EXPORT_SYMBOL(spa_vdev_state_enter); 3137 EXPORT_SYMBOL(spa_vdev_state_exit); 3138 3139 /* Accessor functions */ 3140 EXPORT_SYMBOL(spa_shutting_down); 3141 EXPORT_SYMBOL(spa_get_dsl); 3142 EXPORT_SYMBOL(spa_get_rootblkptr); 3143 EXPORT_SYMBOL(spa_set_rootblkptr); 3144 EXPORT_SYMBOL(spa_altroot); 3145 EXPORT_SYMBOL(spa_sync_pass); 3146 EXPORT_SYMBOL(spa_name); 3147 EXPORT_SYMBOL(spa_guid); 3148 EXPORT_SYMBOL(spa_last_synced_txg); 3149 EXPORT_SYMBOL(spa_first_txg); 3150 EXPORT_SYMBOL(spa_syncing_txg); 3151 EXPORT_SYMBOL(spa_version); 3152 EXPORT_SYMBOL(spa_state); 3153 EXPORT_SYMBOL(spa_load_state); 3154 EXPORT_SYMBOL(spa_freeze_txg); 3155 EXPORT_SYMBOL(spa_get_min_alloc_range); /* for Lustre */ 3156 EXPORT_SYMBOL(spa_get_dspace); 3157 EXPORT_SYMBOL(spa_update_dspace); 3158 EXPORT_SYMBOL(spa_deflate); 3159 EXPORT_SYMBOL(spa_normal_class); 3160 EXPORT_SYMBOL(spa_log_class); 3161 EXPORT_SYMBOL(spa_special_class); 3162 EXPORT_SYMBOL(spa_preferred_class); 3163 EXPORT_SYMBOL(spa_max_replication); 3164 EXPORT_SYMBOL(spa_prev_software_version); 3165 EXPORT_SYMBOL(spa_get_failmode); 3166 EXPORT_SYMBOL(spa_suspended); 3167 EXPORT_SYMBOL(spa_bootfs); 3168 EXPORT_SYMBOL(spa_delegation); 3169 EXPORT_SYMBOL(spa_meta_objset); 3170 EXPORT_SYMBOL(spa_maxblocksize); 3171 EXPORT_SYMBOL(spa_maxdnodesize); 3172 3173 /* Miscellaneous support routines */ 3174 EXPORT_SYMBOL(spa_guid_exists); 3175 EXPORT_SYMBOL(spa_strdup); 3176 EXPORT_SYMBOL(spa_strfree); 3177 EXPORT_SYMBOL(spa_generate_guid); 3178 EXPORT_SYMBOL(snprintf_blkptr); 3179 EXPORT_SYMBOL(spa_freeze); 3180 EXPORT_SYMBOL(spa_upgrade); 3181 EXPORT_SYMBOL(spa_evict_all); 3182 EXPORT_SYMBOL(spa_lookup_by_guid); 3183 EXPORT_SYMBOL(spa_has_spare); 3184 EXPORT_SYMBOL(dva_get_dsize_sync); 3185 EXPORT_SYMBOL(bp_get_dsize_sync); 3186 EXPORT_SYMBOL(bp_get_dsize); 3187 EXPORT_SYMBOL(spa_has_slogs); 3188 EXPORT_SYMBOL(spa_is_root); 3189 EXPORT_SYMBOL(spa_writeable); 3190 EXPORT_SYMBOL(spa_mode); 3191 EXPORT_SYMBOL(spa_trust_config); 3192 EXPORT_SYMBOL(spa_missing_tvds_allowed); 3193 EXPORT_SYMBOL(spa_set_missing_tvds); 3194 EXPORT_SYMBOL(spa_state_to_name); 3195 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 3196 EXPORT_SYMBOL(spa_min_claim_txg); 3197 EXPORT_SYMBOL(spa_suspend_async_destroy); 3198 EXPORT_SYMBOL(spa_has_checkpoint); 3199 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 3200 3201 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 3202 "Set additional debugging flags"); 3203 3204 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 3205 "Set to attempt to recover from fatal errors"); 3206 3207 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 3208 "Set to ignore IO errors during free and permanently leak the space"); 3209 3210 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW, 3211 "Dead I/O check interval in milliseconds"); 3212 3213 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW, 3214 "Enable deadman timer"); 3215 3216 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW, 3217 "SPA size estimate multiplication factor"); 3218 3219 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 3220 "Place DDT data into the special class"); 3221 3222 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 3223 "Place user data indirect blocks into the special class"); 3224 3225 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 3226 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 3227 "Failmode for deadman timer"); 3228 3229 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 3230 param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW, 3231 "Pool sync expiration time in milliseconds"); 3232 3233 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 3234 param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW, 3235 "IO expiration time in milliseconds"); 3236 3237 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW, 3238 "Small file blocks in special vdevs depends on this much " 3239 "free space available"); 3240 3241 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 3242 param_get_uint, ZMOD_RW, "Reserved free space in pool"); 3243 3244 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW, 3245 "Number of allocators per spa"); 3246 3247 ZFS_MODULE_PARAM(zfs, spa_, cpus_per_allocator, INT, ZMOD_RW, 3248 "Minimum number of CPUs per allocators"); 3249