1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2024 by Delphix. All rights reserved. 26 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 28 * Copyright 2013 Saso Kiselkov. All rights reserved. 29 * Copyright (c) 2014 Integros [integros.com] 30 * Copyright 2016 Toomas Soome <tsoome@me.com> 31 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 32 * Copyright 2018 Joyent, Inc. 33 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 34 * Copyright 2017 Joyent, Inc. 35 * Copyright (c) 2017, Intel Corporation. 36 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org> 37 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP. 38 * Copyright (c) 2023, 2024, Klara Inc. 39 */ 40 41 /* 42 * SPA: Storage Pool Allocator 43 * 44 * This file contains all the routines used when modifying on-disk SPA state. 45 * This includes opening, importing, destroying, exporting a pool, and syncing a 46 * pool. 47 */ 48 49 #include <sys/zfs_context.h> 50 #include <sys/fm/fs/zfs.h> 51 #include <sys/spa_impl.h> 52 #include <sys/zio.h> 53 #include <sys/zio_checksum.h> 54 #include <sys/dmu.h> 55 #include <sys/dmu_tx.h> 56 #include <sys/zap.h> 57 #include <sys/zil.h> 58 #include <sys/brt.h> 59 #include <sys/ddt.h> 60 #include <sys/vdev_impl.h> 61 #include <sys/vdev_removal.h> 62 #include <sys/vdev_indirect_mapping.h> 63 #include <sys/vdev_indirect_births.h> 64 #include <sys/vdev_initialize.h> 65 #include <sys/vdev_rebuild.h> 66 #include <sys/vdev_trim.h> 67 #include <sys/vdev_disk.h> 68 #include <sys/vdev_raidz.h> 69 #include <sys/vdev_draid.h> 70 #include <sys/metaslab.h> 71 #include <sys/metaslab_impl.h> 72 #include <sys/mmp.h> 73 #include <sys/uberblock_impl.h> 74 #include <sys/txg.h> 75 #include <sys/avl.h> 76 #include <sys/bpobj.h> 77 #include <sys/dmu_traverse.h> 78 #include <sys/dmu_objset.h> 79 #include <sys/unique.h> 80 #include <sys/dsl_pool.h> 81 #include <sys/dsl_dataset.h> 82 #include <sys/dsl_dir.h> 83 #include <sys/dsl_prop.h> 84 #include <sys/dsl_synctask.h> 85 #include <sys/fs/zfs.h> 86 #include <sys/arc.h> 87 #include <sys/callb.h> 88 #include <sys/systeminfo.h> 89 #include <sys/zfs_ioctl.h> 90 #include <sys/dsl_scan.h> 91 #include <sys/zfeature.h> 92 #include <sys/dsl_destroy.h> 93 #include <sys/zvol.h> 94 95 #ifdef _KERNEL 96 #include <sys/fm/protocol.h> 97 #include <sys/fm/util.h> 98 #include <sys/callb.h> 99 #include <sys/zone.h> 100 #include <sys/vmsystm.h> 101 #endif /* _KERNEL */ 102 103 #include "zfs_prop.h" 104 #include "zfs_comutil.h" 105 #include <cityhash.h> 106 107 /* 108 * spa_thread() existed on Illumos as a parent thread for the various worker 109 * threads that actually run the pool, as a way to both reference the entire 110 * pool work as a single object, and to share properties like scheduling 111 * options. It has not yet been adapted to Linux or FreeBSD. This define is 112 * used to mark related parts of the code to make things easier for the reader, 113 * and to compile this code out. It can be removed when someone implements it, 114 * moves it to some Illumos-specific place, or removes it entirely. 115 */ 116 #undef HAVE_SPA_THREAD 117 118 /* 119 * The "System Duty Cycle" scheduling class is an Illumos feature to help 120 * prevent CPU-intensive kernel threads from affecting latency on interactive 121 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is 122 * gated behind a define. On Illumos SDC depends on spa_thread(), but 123 * spa_thread() also has other uses, so this is a separate define. 124 */ 125 #undef HAVE_SYSDC 126 127 /* 128 * The interval, in seconds, at which failed configuration cache file writes 129 * should be retried. 130 */ 131 int zfs_ccw_retry_interval = 300; 132 133 typedef enum zti_modes { 134 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 135 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */ 136 ZTI_MODE_SYNC, /* sync thread assigned */ 137 ZTI_MODE_NULL, /* don't create a taskq */ 138 ZTI_NMODES 139 } zti_modes_t; 140 141 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 142 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 143 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 } 144 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 } 145 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 146 147 #define ZTI_N(n) ZTI_P(n, 1) 148 #define ZTI_ONE ZTI_N(1) 149 150 typedef struct zio_taskq_info { 151 zti_modes_t zti_mode; 152 uint_t zti_value; 153 uint_t zti_count; 154 } zio_taskq_info_t; 155 156 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 157 "iss", "iss_h", "int", "int_h" 158 }; 159 160 /* 161 * This table defines the taskq settings for each ZFS I/O type. When 162 * initializing a pool, we use this table to create an appropriately sized 163 * taskq. Some operations are low volume and therefore have a small, static 164 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 165 * macros. Other operations process a large amount of data; the ZTI_SCALE 166 * macro causes us to create a taskq oriented for throughput. Some operations 167 * are so high frequency and short-lived that the taskq itself can become a 168 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 169 * additional degree of parallelism specified by the number of threads per- 170 * taskq and the number of taskqs; when dispatching an event in this case, the 171 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs 172 * that scales with the number of CPUs. 173 * 174 * The different taskq priorities are to handle the different contexts (issue 175 * and interrupt) and then to reserve threads for high priority I/Os that 176 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT 177 * implementation, so separate high priority threads are used there. 178 */ 179 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 180 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 181 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 182 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */ 183 #ifdef illumos 184 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */ 185 #else 186 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */ 187 #endif 188 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 190 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */ 191 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 192 }; 193 194 static void spa_sync_version(void *arg, dmu_tx_t *tx); 195 static void spa_sync_props(void *arg, dmu_tx_t *tx); 196 static boolean_t spa_has_active_shared_spare(spa_t *spa); 197 static int spa_load_impl(spa_t *spa, spa_import_type_t type, 198 const char **ereport); 199 static void spa_vdev_resilver_done(spa_t *spa); 200 201 /* 202 * Percentage of all CPUs that can be used by the metaslab preload taskq. 203 */ 204 static uint_t metaslab_preload_pct = 50; 205 206 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */ 207 static uint_t zio_taskq_batch_tpq; /* threads per taskq */ 208 209 #ifdef HAVE_SYSDC 210 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 211 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */ 212 #endif 213 214 #ifdef HAVE_SPA_THREAD 215 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */ 216 #endif 217 218 static uint_t zio_taskq_write_tpq = 16; 219 220 /* 221 * Report any spa_load_verify errors found, but do not fail spa_load. 222 * This is used by zdb to analyze non-idle pools. 223 */ 224 boolean_t spa_load_verify_dryrun = B_FALSE; 225 226 /* 227 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ). 228 * This is used by zdb for spacemaps verification. 229 */ 230 boolean_t spa_mode_readable_spacemaps = B_FALSE; 231 232 /* 233 * This (illegal) pool name is used when temporarily importing a spa_t in order 234 * to get the vdev stats associated with the imported devices. 235 */ 236 #define TRYIMPORT_NAME "$import" 237 238 /* 239 * For debugging purposes: print out vdev tree during pool import. 240 */ 241 static int spa_load_print_vdev_tree = B_FALSE; 242 243 /* 244 * A non-zero value for zfs_max_missing_tvds means that we allow importing 245 * pools with missing top-level vdevs. This is strictly intended for advanced 246 * pool recovery cases since missing data is almost inevitable. Pools with 247 * missing devices can only be imported read-only for safety reasons, and their 248 * fail-mode will be automatically set to "continue". 249 * 250 * With 1 missing vdev we should be able to import the pool and mount all 251 * datasets. User data that was not modified after the missing device has been 252 * added should be recoverable. This means that snapshots created prior to the 253 * addition of that device should be completely intact. 254 * 255 * With 2 missing vdevs, some datasets may fail to mount since there are 256 * dataset statistics that are stored as regular metadata. Some data might be 257 * recoverable if those vdevs were added recently. 258 * 259 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 260 * may be missing entirely. Chances of data recovery are very low. Note that 261 * there are also risks of performing an inadvertent rewind as we might be 262 * missing all the vdevs with the latest uberblocks. 263 */ 264 uint64_t zfs_max_missing_tvds = 0; 265 266 /* 267 * The parameters below are similar to zfs_max_missing_tvds but are only 268 * intended for a preliminary open of the pool with an untrusted config which 269 * might be incomplete or out-dated. 270 * 271 * We are more tolerant for pools opened from a cachefile since we could have 272 * an out-dated cachefile where a device removal was not registered. 273 * We could have set the limit arbitrarily high but in the case where devices 274 * are really missing we would want to return the proper error codes; we chose 275 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 276 * and we get a chance to retrieve the trusted config. 277 */ 278 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 279 280 /* 281 * In the case where config was assembled by scanning device paths (/dev/dsks 282 * by default) we are less tolerant since all the existing devices should have 283 * been detected and we want spa_load to return the right error codes. 284 */ 285 uint64_t zfs_max_missing_tvds_scan = 0; 286 287 /* 288 * Debugging aid that pauses spa_sync() towards the end. 289 */ 290 static const boolean_t zfs_pause_spa_sync = B_FALSE; 291 292 /* 293 * Variables to indicate the livelist condense zthr func should wait at certain 294 * points for the livelist to be removed - used to test condense/destroy races 295 */ 296 static int zfs_livelist_condense_zthr_pause = 0; 297 static int zfs_livelist_condense_sync_pause = 0; 298 299 /* 300 * Variables to track whether or not condense cancellation has been 301 * triggered in testing. 302 */ 303 static int zfs_livelist_condense_sync_cancel = 0; 304 static int zfs_livelist_condense_zthr_cancel = 0; 305 306 /* 307 * Variable to track whether or not extra ALLOC blkptrs were added to a 308 * livelist entry while it was being condensed (caused by the way we track 309 * remapped blkptrs in dbuf_remap_impl) 310 */ 311 static int zfs_livelist_condense_new_alloc = 0; 312 313 /* 314 * ========================================================================== 315 * SPA properties routines 316 * ========================================================================== 317 */ 318 319 /* 320 * Add a (source=src, propname=propval) list to an nvlist. 321 */ 322 static void 323 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval, 324 uint64_t intval, zprop_source_t src) 325 { 326 const char *propname = zpool_prop_to_name(prop); 327 nvlist_t *propval; 328 329 propval = fnvlist_alloc(); 330 fnvlist_add_uint64(propval, ZPROP_SOURCE, src); 331 332 if (strval != NULL) 333 fnvlist_add_string(propval, ZPROP_VALUE, strval); 334 else 335 fnvlist_add_uint64(propval, ZPROP_VALUE, intval); 336 337 fnvlist_add_nvlist(nvl, propname, propval); 338 nvlist_free(propval); 339 } 340 341 static int 342 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl) 343 { 344 zpool_prop_t prop = zpool_name_to_prop(propname); 345 zprop_source_t src = ZPROP_SRC_NONE; 346 uint64_t intval; 347 int err; 348 349 /* 350 * NB: Not all properties lookups via this API require 351 * the spa props lock, so they must explicitly grab it here. 352 */ 353 switch (prop) { 354 case ZPOOL_PROP_DEDUPCACHED: 355 err = ddt_get_pool_dedup_cached(spa, &intval); 356 if (err != 0) 357 return (SET_ERROR(err)); 358 break; 359 default: 360 return (SET_ERROR(EINVAL)); 361 } 362 363 spa_prop_add_list(outnvl, prop, NULL, intval, src); 364 365 return (0); 366 } 367 368 int 369 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props, 370 nvlist_t *outnvl) 371 { 372 int err = 0; 373 374 if (props == NULL) 375 return (0); 376 377 for (unsigned int i = 0; i < n_props && err == 0; i++) { 378 err = spa_prop_add(spa, props[i], outnvl); 379 } 380 381 return (err); 382 } 383 384 /* 385 * Add a user property (source=src, propname=propval) to an nvlist. 386 */ 387 static void 388 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval, 389 zprop_source_t src) 390 { 391 nvlist_t *propval; 392 393 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 394 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 395 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 396 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 397 nvlist_free(propval); 398 } 399 400 /* 401 * Get property values from the spa configuration. 402 */ 403 static void 404 spa_prop_get_config(spa_t *spa, nvlist_t *nv) 405 { 406 vdev_t *rvd = spa->spa_root_vdev; 407 dsl_pool_t *pool = spa->spa_dsl_pool; 408 uint64_t size, alloc, cap, version; 409 const zprop_source_t src = ZPROP_SRC_NONE; 410 spa_config_dirent_t *dp; 411 metaslab_class_t *mc = spa_normal_class(spa); 412 413 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 414 415 if (rvd != NULL) { 416 alloc = metaslab_class_get_alloc(mc); 417 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 418 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 419 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa)); 420 421 size = metaslab_class_get_space(mc); 422 size += metaslab_class_get_space(spa_special_class(spa)); 423 size += metaslab_class_get_space(spa_dedup_class(spa)); 424 size += metaslab_class_get_space(spa_embedded_log_class(spa)); 425 426 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 427 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src); 428 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 429 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL, 430 size - alloc, src); 431 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL, 432 spa->spa_checkpoint_info.sci_dspace, src); 433 434 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL, 435 metaslab_class_fragmentation(mc), src); 436 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL, 437 metaslab_class_expandable_space(mc), src); 438 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL, 439 (spa_mode(spa) == SPA_MODE_READ), src); 440 441 cap = (size == 0) ? 0 : (alloc * 100 / size); 442 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src); 443 444 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL, 445 ddt_get_pool_dedup_ratio(spa), src); 446 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL, 447 brt_get_used(spa), src); 448 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL, 449 brt_get_saved(spa), src); 450 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL, 451 brt_get_ratio(spa), src); 452 453 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL, 454 ddt_get_ddt_dsize(spa), src); 455 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL, 456 rvd->vdev_state, src); 457 spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL, 458 spa_get_last_scrubbed_txg(spa), src); 459 460 version = spa_version(spa); 461 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 462 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL, 463 version, ZPROP_SRC_DEFAULT); 464 } else { 465 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL, 466 version, ZPROP_SRC_LOCAL); 467 } 468 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID, 469 NULL, spa_load_guid(spa), src); 470 } 471 472 if (pool != NULL) { 473 /* 474 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 475 * when opening pools before this version freedir will be NULL. 476 */ 477 if (pool->dp_free_dir != NULL) { 478 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL, 479 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 480 src); 481 } else { 482 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, 483 NULL, 0, src); 484 } 485 486 if (pool->dp_leak_dir != NULL) { 487 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL, 488 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 489 src); 490 } else { 491 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, 492 NULL, 0, src); 493 } 494 } 495 496 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 497 498 if (spa->spa_comment != NULL) { 499 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment, 500 0, ZPROP_SRC_LOCAL); 501 } 502 503 if (spa->spa_compatibility != NULL) { 504 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY, 505 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL); 506 } 507 508 if (spa->spa_root != NULL) 509 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root, 510 0, ZPROP_SRC_LOCAL); 511 512 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 513 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 514 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 515 } else { 516 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 517 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 518 } 519 520 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 521 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL, 522 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 523 } else { 524 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL, 525 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 526 } 527 528 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 529 if (dp->scd_path == NULL) { 530 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE, 531 "none", 0, ZPROP_SRC_LOCAL); 532 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 533 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE, 534 dp->scd_path, 0, ZPROP_SRC_LOCAL); 535 } 536 } 537 } 538 539 /* 540 * Get zpool property values. 541 */ 542 int 543 spa_prop_get(spa_t *spa, nvlist_t *nv) 544 { 545 objset_t *mos = spa->spa_meta_objset; 546 zap_cursor_t zc; 547 zap_attribute_t *za; 548 dsl_pool_t *dp; 549 int err = 0; 550 551 dp = spa_get_dsl(spa); 552 dsl_pool_config_enter(dp, FTAG); 553 za = zap_attribute_alloc(); 554 mutex_enter(&spa->spa_props_lock); 555 556 /* 557 * Get properties from the spa config. 558 */ 559 spa_prop_get_config(spa, nv); 560 561 /* If no pool property object, no more prop to get. */ 562 if (mos == NULL || spa->spa_pool_props_object == 0) 563 goto out; 564 565 /* 566 * Get properties from the MOS pool property object. 567 */ 568 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 569 (err = zap_cursor_retrieve(&zc, za)) == 0; 570 zap_cursor_advance(&zc)) { 571 uint64_t intval = 0; 572 char *strval = NULL; 573 zprop_source_t src = ZPROP_SRC_DEFAULT; 574 zpool_prop_t prop; 575 576 if ((prop = zpool_name_to_prop(za->za_name)) == 577 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name)) 578 continue; 579 580 switch (za->za_integer_length) { 581 case 8: 582 /* integer property */ 583 if (za->za_first_integer != 584 zpool_prop_default_numeric(prop)) 585 src = ZPROP_SRC_LOCAL; 586 587 if (prop == ZPOOL_PROP_BOOTFS) { 588 dsl_dataset_t *ds = NULL; 589 590 err = dsl_dataset_hold_obj(dp, 591 za->za_first_integer, FTAG, &ds); 592 if (err != 0) 593 break; 594 595 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 596 KM_SLEEP); 597 dsl_dataset_name(ds, strval); 598 dsl_dataset_rele(ds, FTAG); 599 } else { 600 strval = NULL; 601 intval = za->za_first_integer; 602 } 603 604 spa_prop_add_list(nv, prop, strval, intval, src); 605 606 if (strval != NULL) 607 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 608 609 break; 610 611 case 1: 612 /* string property */ 613 strval = kmem_alloc(za->za_num_integers, KM_SLEEP); 614 err = zap_lookup(mos, spa->spa_pool_props_object, 615 za->za_name, 1, za->za_num_integers, strval); 616 if (err) { 617 kmem_free(strval, za->za_num_integers); 618 break; 619 } 620 if (prop != ZPOOL_PROP_INVAL) { 621 spa_prop_add_list(nv, prop, strval, 0, src); 622 } else { 623 src = ZPROP_SRC_LOCAL; 624 spa_prop_add_user(nv, za->za_name, strval, 625 src); 626 } 627 kmem_free(strval, za->za_num_integers); 628 break; 629 630 default: 631 break; 632 } 633 } 634 zap_cursor_fini(&zc); 635 out: 636 mutex_exit(&spa->spa_props_lock); 637 dsl_pool_config_exit(dp, FTAG); 638 zap_attribute_free(za); 639 640 if (err && err != ENOENT) 641 return (err); 642 643 return (0); 644 } 645 646 /* 647 * Validate the given pool properties nvlist and modify the list 648 * for the property values to be set. 649 */ 650 static int 651 spa_prop_validate(spa_t *spa, nvlist_t *props) 652 { 653 nvpair_t *elem; 654 int error = 0, reset_bootfs = 0; 655 uint64_t objnum = 0; 656 boolean_t has_feature = B_FALSE; 657 658 elem = NULL; 659 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 660 uint64_t intval; 661 const char *strval, *slash, *check, *fname; 662 const char *propname = nvpair_name(elem); 663 zpool_prop_t prop = zpool_name_to_prop(propname); 664 665 switch (prop) { 666 case ZPOOL_PROP_INVAL: 667 /* 668 * Sanitize the input. 669 */ 670 if (zfs_prop_user(propname)) { 671 if (strlen(propname) >= ZAP_MAXNAMELEN) { 672 error = SET_ERROR(ENAMETOOLONG); 673 break; 674 } 675 676 if (strlen(fnvpair_value_string(elem)) >= 677 ZAP_MAXVALUELEN) { 678 error = SET_ERROR(E2BIG); 679 break; 680 } 681 } else if (zpool_prop_feature(propname)) { 682 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 683 error = SET_ERROR(EINVAL); 684 break; 685 } 686 687 if (nvpair_value_uint64(elem, &intval) != 0) { 688 error = SET_ERROR(EINVAL); 689 break; 690 } 691 692 if (intval != 0) { 693 error = SET_ERROR(EINVAL); 694 break; 695 } 696 697 fname = strchr(propname, '@') + 1; 698 if (zfeature_lookup_name(fname, NULL) != 0) { 699 error = SET_ERROR(EINVAL); 700 break; 701 } 702 703 has_feature = B_TRUE; 704 } else { 705 error = SET_ERROR(EINVAL); 706 break; 707 } 708 break; 709 710 case ZPOOL_PROP_VERSION: 711 error = nvpair_value_uint64(elem, &intval); 712 if (!error && 713 (intval < spa_version(spa) || 714 intval > SPA_VERSION_BEFORE_FEATURES || 715 has_feature)) 716 error = SET_ERROR(EINVAL); 717 break; 718 719 case ZPOOL_PROP_DEDUP_TABLE_QUOTA: 720 error = nvpair_value_uint64(elem, &intval); 721 break; 722 723 case ZPOOL_PROP_DELEGATION: 724 case ZPOOL_PROP_AUTOREPLACE: 725 case ZPOOL_PROP_LISTSNAPS: 726 case ZPOOL_PROP_AUTOEXPAND: 727 case ZPOOL_PROP_AUTOTRIM: 728 error = nvpair_value_uint64(elem, &intval); 729 if (!error && intval > 1) 730 error = SET_ERROR(EINVAL); 731 break; 732 733 case ZPOOL_PROP_MULTIHOST: 734 error = nvpair_value_uint64(elem, &intval); 735 if (!error && intval > 1) 736 error = SET_ERROR(EINVAL); 737 738 if (!error) { 739 uint32_t hostid = zone_get_hostid(NULL); 740 if (hostid) 741 spa->spa_hostid = hostid; 742 else 743 error = SET_ERROR(ENOTSUP); 744 } 745 746 break; 747 748 case ZPOOL_PROP_BOOTFS: 749 /* 750 * If the pool version is less than SPA_VERSION_BOOTFS, 751 * or the pool is still being created (version == 0), 752 * the bootfs property cannot be set. 753 */ 754 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 755 error = SET_ERROR(ENOTSUP); 756 break; 757 } 758 759 /* 760 * Make sure the vdev config is bootable 761 */ 762 if (!vdev_is_bootable(spa->spa_root_vdev)) { 763 error = SET_ERROR(ENOTSUP); 764 break; 765 } 766 767 reset_bootfs = 1; 768 769 error = nvpair_value_string(elem, &strval); 770 771 if (!error) { 772 objset_t *os; 773 774 if (strval == NULL || strval[0] == '\0') { 775 objnum = zpool_prop_default_numeric( 776 ZPOOL_PROP_BOOTFS); 777 break; 778 } 779 780 error = dmu_objset_hold(strval, FTAG, &os); 781 if (error != 0) 782 break; 783 784 /* Must be ZPL. */ 785 if (dmu_objset_type(os) != DMU_OST_ZFS) { 786 error = SET_ERROR(ENOTSUP); 787 } else { 788 objnum = dmu_objset_id(os); 789 } 790 dmu_objset_rele(os, FTAG); 791 } 792 break; 793 794 case ZPOOL_PROP_FAILUREMODE: 795 error = nvpair_value_uint64(elem, &intval); 796 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 797 error = SET_ERROR(EINVAL); 798 799 /* 800 * This is a special case which only occurs when 801 * the pool has completely failed. This allows 802 * the user to change the in-core failmode property 803 * without syncing it out to disk (I/Os might 804 * currently be blocked). We do this by returning 805 * EIO to the caller (spa_prop_set) to trick it 806 * into thinking we encountered a property validation 807 * error. 808 */ 809 if (!error && spa_suspended(spa)) { 810 spa->spa_failmode = intval; 811 error = SET_ERROR(EIO); 812 } 813 break; 814 815 case ZPOOL_PROP_CACHEFILE: 816 if ((error = nvpair_value_string(elem, &strval)) != 0) 817 break; 818 819 if (strval[0] == '\0') 820 break; 821 822 if (strcmp(strval, "none") == 0) 823 break; 824 825 if (strval[0] != '/') { 826 error = SET_ERROR(EINVAL); 827 break; 828 } 829 830 slash = strrchr(strval, '/'); 831 ASSERT(slash != NULL); 832 833 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 834 strcmp(slash, "/..") == 0) 835 error = SET_ERROR(EINVAL); 836 break; 837 838 case ZPOOL_PROP_COMMENT: 839 if ((error = nvpair_value_string(elem, &strval)) != 0) 840 break; 841 for (check = strval; *check != '\0'; check++) { 842 if (!isprint(*check)) { 843 error = SET_ERROR(EINVAL); 844 break; 845 } 846 } 847 if (strlen(strval) > ZPROP_MAX_COMMENT) 848 error = SET_ERROR(E2BIG); 849 break; 850 851 default: 852 break; 853 } 854 855 if (error) 856 break; 857 } 858 859 (void) nvlist_remove_all(props, 860 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 861 862 if (!error && reset_bootfs) { 863 error = nvlist_remove(props, 864 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 865 866 if (!error) { 867 error = nvlist_add_uint64(props, 868 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 869 } 870 } 871 872 return (error); 873 } 874 875 void 876 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 877 { 878 const char *cachefile; 879 spa_config_dirent_t *dp; 880 881 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 882 &cachefile) != 0) 883 return; 884 885 dp = kmem_alloc(sizeof (spa_config_dirent_t), 886 KM_SLEEP); 887 888 if (cachefile[0] == '\0') 889 dp->scd_path = spa_strdup(spa_config_path); 890 else if (strcmp(cachefile, "none") == 0) 891 dp->scd_path = NULL; 892 else 893 dp->scd_path = spa_strdup(cachefile); 894 895 list_insert_head(&spa->spa_config_list, dp); 896 if (need_sync) 897 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 898 } 899 900 int 901 spa_prop_set(spa_t *spa, nvlist_t *nvp) 902 { 903 int error; 904 nvpair_t *elem = NULL; 905 boolean_t need_sync = B_FALSE; 906 907 if ((error = spa_prop_validate(spa, nvp)) != 0) 908 return (error); 909 910 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 911 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 912 913 if (prop == ZPOOL_PROP_CACHEFILE || 914 prop == ZPOOL_PROP_ALTROOT || 915 prop == ZPOOL_PROP_READONLY) 916 continue; 917 918 if (prop == ZPOOL_PROP_INVAL && 919 zfs_prop_user(nvpair_name(elem))) { 920 need_sync = B_TRUE; 921 break; 922 } 923 924 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 925 uint64_t ver = 0; 926 927 if (prop == ZPOOL_PROP_VERSION) { 928 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 929 } else { 930 ASSERT(zpool_prop_feature(nvpair_name(elem))); 931 ver = SPA_VERSION_FEATURES; 932 need_sync = B_TRUE; 933 } 934 935 /* Save time if the version is already set. */ 936 if (ver == spa_version(spa)) 937 continue; 938 939 /* 940 * In addition to the pool directory object, we might 941 * create the pool properties object, the features for 942 * read object, the features for write object, or the 943 * feature descriptions object. 944 */ 945 error = dsl_sync_task(spa->spa_name, NULL, 946 spa_sync_version, &ver, 947 6, ZFS_SPACE_CHECK_RESERVED); 948 if (error) 949 return (error); 950 continue; 951 } 952 953 need_sync = B_TRUE; 954 break; 955 } 956 957 if (need_sync) { 958 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 959 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 960 } 961 962 return (0); 963 } 964 965 /* 966 * If the bootfs property value is dsobj, clear it. 967 */ 968 void 969 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 970 { 971 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 972 VERIFY(zap_remove(spa->spa_meta_objset, 973 spa->spa_pool_props_object, 974 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 975 spa->spa_bootfs = 0; 976 } 977 } 978 979 static int 980 spa_change_guid_check(void *arg, dmu_tx_t *tx) 981 { 982 uint64_t *newguid __maybe_unused = arg; 983 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 984 vdev_t *rvd = spa->spa_root_vdev; 985 uint64_t vdev_state; 986 987 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 988 int error = (spa_has_checkpoint(spa)) ? 989 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 990 return (SET_ERROR(error)); 991 } 992 993 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 994 vdev_state = rvd->vdev_state; 995 spa_config_exit(spa, SCL_STATE, FTAG); 996 997 if (vdev_state != VDEV_STATE_HEALTHY) 998 return (SET_ERROR(ENXIO)); 999 1000 ASSERT3U(spa_guid(spa), !=, *newguid); 1001 1002 return (0); 1003 } 1004 1005 static void 1006 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 1007 { 1008 uint64_t *newguid = arg; 1009 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 1010 uint64_t oldguid; 1011 vdev_t *rvd = spa->spa_root_vdev; 1012 1013 oldguid = spa_guid(spa); 1014 1015 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 1016 rvd->vdev_guid = *newguid; 1017 rvd->vdev_guid_sum += (*newguid - oldguid); 1018 vdev_config_dirty(rvd); 1019 spa_config_exit(spa, SCL_STATE, FTAG); 1020 1021 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 1022 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 1023 } 1024 1025 /* 1026 * Change the GUID for the pool. This is done so that we can later 1027 * re-import a pool built from a clone of our own vdevs. We will modify 1028 * the root vdev's guid, our own pool guid, and then mark all of our 1029 * vdevs dirty. Note that we must make sure that all our vdevs are 1030 * online when we do this, or else any vdevs that weren't present 1031 * would be orphaned from our pool. We are also going to issue a 1032 * sysevent to update any watchers. 1033 * 1034 * The GUID of the pool will be changed to the value pointed to by guidp. 1035 * The GUID may not be set to the reserverd value of 0. 1036 * The new GUID will be generated if guidp is NULL. 1037 */ 1038 int 1039 spa_change_guid(spa_t *spa, const uint64_t *guidp) 1040 { 1041 uint64_t guid; 1042 int error; 1043 1044 mutex_enter(&spa->spa_vdev_top_lock); 1045 mutex_enter(&spa_namespace_lock); 1046 1047 if (guidp != NULL) { 1048 guid = *guidp; 1049 if (guid == 0) { 1050 error = SET_ERROR(EINVAL); 1051 goto out; 1052 } 1053 1054 if (spa_guid_exists(guid, 0)) { 1055 error = SET_ERROR(EEXIST); 1056 goto out; 1057 } 1058 } else { 1059 guid = spa_generate_guid(NULL); 1060 } 1061 1062 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 1063 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 1064 1065 if (error == 0) { 1066 /* 1067 * Clear the kobj flag from all the vdevs to allow 1068 * vdev_cache_process_kobj_evt() to post events to all the 1069 * vdevs since GUID is updated. 1070 */ 1071 vdev_clear_kobj_evt(spa->spa_root_vdev); 1072 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 1073 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]); 1074 1075 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 1076 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 1077 } 1078 1079 out: 1080 mutex_exit(&spa_namespace_lock); 1081 mutex_exit(&spa->spa_vdev_top_lock); 1082 1083 return (error); 1084 } 1085 1086 /* 1087 * ========================================================================== 1088 * SPA state manipulation (open/create/destroy/import/export) 1089 * ========================================================================== 1090 */ 1091 1092 static int 1093 spa_error_entry_compare(const void *a, const void *b) 1094 { 1095 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 1096 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 1097 int ret; 1098 1099 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 1100 sizeof (zbookmark_phys_t)); 1101 1102 return (TREE_ISIGN(ret)); 1103 } 1104 1105 /* 1106 * Utility function which retrieves copies of the current logs and 1107 * re-initializes them in the process. 1108 */ 1109 void 1110 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 1111 { 1112 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 1113 1114 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t)); 1115 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t)); 1116 1117 avl_create(&spa->spa_errlist_scrub, 1118 spa_error_entry_compare, sizeof (spa_error_entry_t), 1119 offsetof(spa_error_entry_t, se_avl)); 1120 avl_create(&spa->spa_errlist_last, 1121 spa_error_entry_compare, sizeof (spa_error_entry_t), 1122 offsetof(spa_error_entry_t, se_avl)); 1123 } 1124 1125 static void 1126 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1127 { 1128 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 1129 enum zti_modes mode = ztip->zti_mode; 1130 uint_t value = ztip->zti_value; 1131 uint_t count = ztip->zti_count; 1132 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1133 uint_t cpus, flags = TASKQ_DYNAMIC; 1134 1135 switch (mode) { 1136 case ZTI_MODE_FIXED: 1137 ASSERT3U(value, >, 0); 1138 break; 1139 1140 case ZTI_MODE_SYNC: 1141 1142 /* 1143 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs, 1144 * not to exceed the number of spa allocators, and align to it. 1145 */ 1146 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1147 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq)); 1148 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1149 count = MIN(count, spa->spa_alloc_count); 1150 while (spa->spa_alloc_count % count != 0 && 1151 spa->spa_alloc_count < count * 2) 1152 count--; 1153 1154 /* 1155 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no 1156 * single taskq may have more threads than 100% of online cpus. 1157 */ 1158 value = (zio_taskq_batch_pct + count / 2) / count; 1159 value = MIN(value, 100); 1160 flags |= TASKQ_THREADS_CPU_PCT; 1161 break; 1162 1163 case ZTI_MODE_SCALE: 1164 flags |= TASKQ_THREADS_CPU_PCT; 1165 /* 1166 * We want more taskqs to reduce lock contention, but we want 1167 * less for better request ordering and CPU utilization. 1168 */ 1169 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100); 1170 if (zio_taskq_batch_tpq > 0) { 1171 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) / 1172 zio_taskq_batch_tpq); 1173 } else { 1174 /* 1175 * Prefer 6 threads per taskq, but no more taskqs 1176 * than threads in them on large systems. For 80%: 1177 * 1178 * taskq taskq total 1179 * cpus taskqs percent threads threads 1180 * ------- ------- ------- ------- ------- 1181 * 1 1 80% 1 1 1182 * 2 1 80% 1 1 1183 * 4 1 80% 3 3 1184 * 8 2 40% 3 6 1185 * 16 3 27% 4 12 1186 * 32 5 16% 5 25 1187 * 64 7 11% 7 49 1188 * 128 10 8% 10 100 1189 * 256 14 6% 15 210 1190 */ 1191 count = 1 + cpus / 6; 1192 while (count * count > cpus) 1193 count--; 1194 } 1195 /* Limit each taskq within 100% to not trigger assertion. */ 1196 count = MAX(count, (zio_taskq_batch_pct + 99) / 100); 1197 value = (zio_taskq_batch_pct + count / 2) / count; 1198 break; 1199 1200 case ZTI_MODE_NULL: 1201 tqs->stqs_count = 0; 1202 tqs->stqs_taskq = NULL; 1203 return; 1204 1205 default: 1206 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 1207 "spa_taskqs_init()", 1208 zio_type_name[t], zio_taskq_types[q], mode, value); 1209 break; 1210 } 1211 1212 ASSERT3U(count, >, 0); 1213 tqs->stqs_count = count; 1214 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 1215 1216 for (uint_t i = 0; i < count; i++) { 1217 taskq_t *tq; 1218 char name[32]; 1219 1220 if (count > 1) 1221 (void) snprintf(name, sizeof (name), "%s_%s_%u", 1222 zio_type_name[t], zio_taskq_types[q], i); 1223 else 1224 (void) snprintf(name, sizeof (name), "%s_%s", 1225 zio_type_name[t], zio_taskq_types[q]); 1226 1227 #ifdef HAVE_SYSDC 1228 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 1229 (void) zio_taskq_basedc; 1230 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 1231 spa->spa_proc, zio_taskq_basedc, flags); 1232 } else { 1233 #endif 1234 pri_t pri = maxclsyspri; 1235 /* 1236 * The write issue taskq can be extremely CPU 1237 * intensive. Run it at slightly less important 1238 * priority than the other taskqs. 1239 * 1240 * Under Linux and FreeBSD this means incrementing 1241 * the priority value as opposed to platforms like 1242 * illumos where it should be decremented. 1243 * 1244 * On FreeBSD, if priorities divided by four (RQ_PPQ) 1245 * are equal then a difference between them is 1246 * insignificant. 1247 */ 1248 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) { 1249 #if defined(__linux__) 1250 pri++; 1251 #elif defined(__FreeBSD__) 1252 pri += 4; 1253 #else 1254 #error "unknown OS" 1255 #endif 1256 } 1257 tq = taskq_create_proc(name, value, pri, 50, 1258 INT_MAX, spa->spa_proc, flags); 1259 #ifdef HAVE_SYSDC 1260 } 1261 #endif 1262 1263 tqs->stqs_taskq[i] = tq; 1264 } 1265 } 1266 1267 static void 1268 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1269 { 1270 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1271 1272 if (tqs->stqs_taskq == NULL) { 1273 ASSERT3U(tqs->stqs_count, ==, 0); 1274 return; 1275 } 1276 1277 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1278 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1279 taskq_destroy(tqs->stqs_taskq[i]); 1280 } 1281 1282 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1283 tqs->stqs_taskq = NULL; 1284 } 1285 1286 #ifdef _KERNEL 1287 /* 1288 * The READ and WRITE rows of zio_taskqs are configurable at module load time 1289 * by setting zio_taskq_read or zio_taskq_write. 1290 * 1291 * Example (the defaults for READ and WRITE) 1292 * zio_taskq_read='fixed,1,8 null scale null' 1293 * zio_taskq_write='sync null scale null' 1294 * 1295 * Each sets the entire row at a time. 1296 * 1297 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number 1298 * of threads per taskq. 1299 * 1300 * 'null' can only be set on the high-priority queues (queue selection for 1301 * high-priority queues will fall back to the regular queue if the high-pri 1302 * is NULL. 1303 */ 1304 static const char *const modes[ZTI_NMODES] = { 1305 "fixed", "scale", "sync", "null" 1306 }; 1307 1308 /* Parse the incoming config string. Modifies cfg */ 1309 static int 1310 spa_taskq_param_set(zio_type_t t, char *cfg) 1311 { 1312 int err = 0; 1313 1314 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}}; 1315 1316 char *next = cfg, *tok, *c; 1317 1318 /* 1319 * Parse out each element from the string and fill `row`. The entire 1320 * row has to be set at once, so any errors are flagged by just 1321 * breaking out of this loop early. 1322 */ 1323 uint_t q; 1324 for (q = 0; q < ZIO_TASKQ_TYPES; q++) { 1325 /* `next` is the start of the config */ 1326 if (next == NULL) 1327 break; 1328 1329 /* Eat up leading space */ 1330 while (isspace(*next)) 1331 next++; 1332 if (*next == '\0') 1333 break; 1334 1335 /* Mode ends at space or end of string */ 1336 tok = next; 1337 next = strchr(tok, ' '); 1338 if (next != NULL) *next++ = '\0'; 1339 1340 /* Parameters start after a comma */ 1341 c = strchr(tok, ','); 1342 if (c != NULL) *c++ = '\0'; 1343 1344 /* Match mode string */ 1345 uint_t mode; 1346 for (mode = 0; mode < ZTI_NMODES; mode++) 1347 if (strcmp(tok, modes[mode]) == 0) 1348 break; 1349 if (mode == ZTI_NMODES) 1350 break; 1351 1352 /* Invalid canary */ 1353 row[q].zti_mode = ZTI_NMODES; 1354 1355 /* Per-mode setup */ 1356 switch (mode) { 1357 1358 /* 1359 * FIXED is parameterised: number of queues, and number of 1360 * threads per queue. 1361 */ 1362 case ZTI_MODE_FIXED: { 1363 /* No parameters? */ 1364 if (c == NULL || *c == '\0') 1365 break; 1366 1367 /* Find next parameter */ 1368 tok = c; 1369 c = strchr(tok, ','); 1370 if (c == NULL) 1371 break; 1372 1373 /* Take digits and convert */ 1374 unsigned long long nq; 1375 if (!(isdigit(*tok))) 1376 break; 1377 err = ddi_strtoull(tok, &tok, 10, &nq); 1378 /* Must succeed and also end at the next param sep */ 1379 if (err != 0 || tok != c) 1380 break; 1381 1382 /* Move past the comma */ 1383 tok++; 1384 /* Need another number */ 1385 if (!(isdigit(*tok))) 1386 break; 1387 /* Remember start to make sure we moved */ 1388 c = tok; 1389 1390 /* Take digits */ 1391 unsigned long long ntpq; 1392 err = ddi_strtoull(tok, &tok, 10, &ntpq); 1393 /* Must succeed, and moved forward */ 1394 if (err != 0 || tok == c || *tok != '\0') 1395 break; 1396 1397 /* 1398 * sanity; zero queues/threads make no sense, and 1399 * 16K is almost certainly more than anyone will ever 1400 * need and avoids silly numbers like UINT32_MAX 1401 */ 1402 if (nq == 0 || nq >= 16384 || 1403 ntpq == 0 || ntpq >= 16384) 1404 break; 1405 1406 const zio_taskq_info_t zti = ZTI_P(ntpq, nq); 1407 row[q] = zti; 1408 break; 1409 } 1410 1411 case ZTI_MODE_SCALE: { 1412 const zio_taskq_info_t zti = ZTI_SCALE; 1413 row[q] = zti; 1414 break; 1415 } 1416 1417 case ZTI_MODE_SYNC: { 1418 const zio_taskq_info_t zti = ZTI_SYNC; 1419 row[q] = zti; 1420 break; 1421 } 1422 1423 case ZTI_MODE_NULL: { 1424 /* 1425 * Can only null the high-priority queues; the general- 1426 * purpose ones have to exist. 1427 */ 1428 if (q != ZIO_TASKQ_ISSUE_HIGH && 1429 q != ZIO_TASKQ_INTERRUPT_HIGH) 1430 break; 1431 1432 const zio_taskq_info_t zti = ZTI_NULL; 1433 row[q] = zti; 1434 break; 1435 } 1436 1437 default: 1438 break; 1439 } 1440 1441 /* Ensure we set a mode */ 1442 if (row[q].zti_mode == ZTI_NMODES) 1443 break; 1444 } 1445 1446 /* Didn't get a full row, fail */ 1447 if (q < ZIO_TASKQ_TYPES) 1448 return (SET_ERROR(EINVAL)); 1449 1450 /* Eat trailing space */ 1451 if (next != NULL) 1452 while (isspace(*next)) 1453 next++; 1454 1455 /* If there's anything left over then fail */ 1456 if (next != NULL && *next != '\0') 1457 return (SET_ERROR(EINVAL)); 1458 1459 /* Success! Copy it into the real config */ 1460 for (q = 0; q < ZIO_TASKQ_TYPES; q++) 1461 zio_taskqs[t][q] = row[q]; 1462 1463 return (0); 1464 } 1465 1466 static int 1467 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline) 1468 { 1469 int pos = 0; 1470 1471 /* Build paramater string from live config */ 1472 const char *sep = ""; 1473 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) { 1474 const zio_taskq_info_t *zti = &zio_taskqs[t][q]; 1475 if (zti->zti_mode == ZTI_MODE_FIXED) 1476 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep, 1477 modes[zti->zti_mode], zti->zti_count, 1478 zti->zti_value); 1479 else 1480 pos += sprintf(&buf[pos], "%s%s", sep, 1481 modes[zti->zti_mode]); 1482 sep = " "; 1483 } 1484 1485 if (add_newline) 1486 buf[pos++] = '\n'; 1487 buf[pos] = '\0'; 1488 1489 return (pos); 1490 } 1491 1492 #ifdef __linux__ 1493 static int 1494 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp) 1495 { 1496 char *cfg = kmem_strdup(val); 1497 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg); 1498 kmem_free(cfg, strlen(val)+1); 1499 return (-err); 1500 } 1501 static int 1502 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp) 1503 { 1504 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE)); 1505 } 1506 1507 static int 1508 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp) 1509 { 1510 char *cfg = kmem_strdup(val); 1511 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg); 1512 kmem_free(cfg, strlen(val)+1); 1513 return (-err); 1514 } 1515 static int 1516 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp) 1517 { 1518 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE)); 1519 } 1520 #else 1521 /* 1522 * On FreeBSD load-time parameters can be set up before malloc() is available, 1523 * so we have to do all the parsing work on the stack. 1524 */ 1525 #define SPA_TASKQ_PARAM_MAX (128) 1526 1527 static int 1528 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS) 1529 { 1530 char buf[SPA_TASKQ_PARAM_MAX]; 1531 int err; 1532 1533 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE); 1534 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1535 if (err || req->newptr == NULL) 1536 return (err); 1537 return (spa_taskq_param_set(ZIO_TYPE_READ, buf)); 1538 } 1539 1540 static int 1541 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS) 1542 { 1543 char buf[SPA_TASKQ_PARAM_MAX]; 1544 int err; 1545 1546 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE); 1547 err = sysctl_handle_string(oidp, buf, sizeof (buf), req); 1548 if (err || req->newptr == NULL) 1549 return (err); 1550 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf)); 1551 } 1552 #endif 1553 #endif /* _KERNEL */ 1554 1555 /* 1556 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1557 * Note that a type may have multiple discrete taskqs to avoid lock contention 1558 * on the taskq itself. 1559 */ 1560 void 1561 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1562 task_func_t *func, zio_t *zio, boolean_t cutinline) 1563 { 1564 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1565 taskq_t *tq; 1566 1567 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1568 ASSERT3U(tqs->stqs_count, !=, 0); 1569 1570 /* 1571 * NB: We are assuming that the zio can only be dispatched 1572 * to a single taskq at a time. It would be a grievous error 1573 * to dispatch the zio to another taskq at the same time. 1574 */ 1575 ASSERT(zio); 1576 ASSERT(taskq_empty_ent(&zio->io_tqent)); 1577 1578 if (tqs->stqs_count == 1) { 1579 tq = tqs->stqs_taskq[0]; 1580 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) && 1581 ZIO_HAS_ALLOCATOR(zio)) { 1582 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count]; 1583 } else { 1584 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1585 } 1586 1587 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0, 1588 &zio->io_tqent); 1589 } 1590 1591 static void 1592 spa_create_zio_taskqs(spa_t *spa) 1593 { 1594 for (int t = 0; t < ZIO_TYPES; t++) { 1595 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1596 spa_taskqs_init(spa, t, q); 1597 } 1598 } 1599 } 1600 1601 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1602 static void 1603 spa_thread(void *arg) 1604 { 1605 psetid_t zio_taskq_psrset_bind = PS_NONE; 1606 callb_cpr_t cprinfo; 1607 1608 spa_t *spa = arg; 1609 user_t *pu = PTOU(curproc); 1610 1611 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1612 spa->spa_name); 1613 1614 ASSERT(curproc != &p0); 1615 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1616 "zpool-%s", spa->spa_name); 1617 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1618 1619 /* bind this thread to the requested psrset */ 1620 if (zio_taskq_psrset_bind != PS_NONE) { 1621 pool_lock(); 1622 mutex_enter(&cpu_lock); 1623 mutex_enter(&pidlock); 1624 mutex_enter(&curproc->p_lock); 1625 1626 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1627 0, NULL, NULL) == 0) { 1628 curthread->t_bind_pset = zio_taskq_psrset_bind; 1629 } else { 1630 cmn_err(CE_WARN, 1631 "Couldn't bind process for zfs pool \"%s\" to " 1632 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1633 } 1634 1635 mutex_exit(&curproc->p_lock); 1636 mutex_exit(&pidlock); 1637 mutex_exit(&cpu_lock); 1638 pool_unlock(); 1639 } 1640 1641 #ifdef HAVE_SYSDC 1642 if (zio_taskq_sysdc) { 1643 sysdc_thread_enter(curthread, 100, 0); 1644 } 1645 #endif 1646 1647 spa->spa_proc = curproc; 1648 spa->spa_did = curthread->t_did; 1649 1650 spa_create_zio_taskqs(spa); 1651 1652 mutex_enter(&spa->spa_proc_lock); 1653 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1654 1655 spa->spa_proc_state = SPA_PROC_ACTIVE; 1656 cv_broadcast(&spa->spa_proc_cv); 1657 1658 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1659 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1660 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1661 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1662 1663 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1664 spa->spa_proc_state = SPA_PROC_GONE; 1665 spa->spa_proc = &p0; 1666 cv_broadcast(&spa->spa_proc_cv); 1667 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1668 1669 mutex_enter(&curproc->p_lock); 1670 lwp_exit(); 1671 } 1672 #endif 1673 1674 extern metaslab_ops_t *metaslab_allocator(spa_t *spa); 1675 1676 /* 1677 * Activate an uninitialized pool. 1678 */ 1679 static void 1680 spa_activate(spa_t *spa, spa_mode_t mode) 1681 { 1682 metaslab_ops_t *msp = metaslab_allocator(spa); 1683 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1684 1685 spa->spa_state = POOL_STATE_ACTIVE; 1686 spa->spa_final_txg = UINT64_MAX; 1687 spa->spa_mode = mode; 1688 spa->spa_read_spacemaps = spa_mode_readable_spacemaps; 1689 1690 spa->spa_normal_class = metaslab_class_create(spa, msp, B_FALSE); 1691 spa->spa_log_class = metaslab_class_create(spa, msp, B_TRUE); 1692 spa->spa_embedded_log_class = metaslab_class_create(spa, msp, B_TRUE); 1693 spa->spa_special_class = metaslab_class_create(spa, msp, B_FALSE); 1694 spa->spa_dedup_class = metaslab_class_create(spa, msp, B_FALSE); 1695 1696 /* Try to create a covering process */ 1697 mutex_enter(&spa->spa_proc_lock); 1698 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1699 ASSERT(spa->spa_proc == &p0); 1700 spa->spa_did = 0; 1701 1702 #ifdef HAVE_SPA_THREAD 1703 /* Only create a process if we're going to be around a while. */ 1704 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1705 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1706 NULL, 0) == 0) { 1707 spa->spa_proc_state = SPA_PROC_CREATED; 1708 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1709 cv_wait(&spa->spa_proc_cv, 1710 &spa->spa_proc_lock); 1711 } 1712 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1713 ASSERT(spa->spa_proc != &p0); 1714 ASSERT(spa->spa_did != 0); 1715 } else { 1716 #ifdef _KERNEL 1717 cmn_err(CE_WARN, 1718 "Couldn't create process for zfs pool \"%s\"\n", 1719 spa->spa_name); 1720 #endif 1721 } 1722 } 1723 #endif /* HAVE_SPA_THREAD */ 1724 mutex_exit(&spa->spa_proc_lock); 1725 1726 /* If we didn't create a process, we need to create our taskqs. */ 1727 if (spa->spa_proc == &p0) { 1728 spa_create_zio_taskqs(spa); 1729 } 1730 1731 for (size_t i = 0; i < TXG_SIZE; i++) { 1732 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1733 ZIO_FLAG_CANFAIL); 1734 } 1735 1736 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1737 offsetof(vdev_t, vdev_config_dirty_node)); 1738 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1739 offsetof(objset_t, os_evicting_node)); 1740 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1741 offsetof(vdev_t, vdev_state_dirty_node)); 1742 1743 txg_list_create(&spa->spa_vdev_txg_list, spa, 1744 offsetof(struct vdev, vdev_txg_node)); 1745 1746 avl_create(&spa->spa_errlist_scrub, 1747 spa_error_entry_compare, sizeof (spa_error_entry_t), 1748 offsetof(spa_error_entry_t, se_avl)); 1749 avl_create(&spa->spa_errlist_last, 1750 spa_error_entry_compare, sizeof (spa_error_entry_t), 1751 offsetof(spa_error_entry_t, se_avl)); 1752 avl_create(&spa->spa_errlist_healed, 1753 spa_error_entry_compare, sizeof (spa_error_entry_t), 1754 offsetof(spa_error_entry_t, se_avl)); 1755 1756 spa_activate_os(spa); 1757 1758 spa_keystore_init(&spa->spa_keystore); 1759 1760 /* 1761 * This taskq is used to perform zvol-minor-related tasks 1762 * asynchronously. This has several advantages, including easy 1763 * resolution of various deadlocks. 1764 * 1765 * The taskq must be single threaded to ensure tasks are always 1766 * processed in the order in which they were dispatched. 1767 * 1768 * A taskq per pool allows one to keep the pools independent. 1769 * This way if one pool is suspended, it will not impact another. 1770 * 1771 * The preferred location to dispatch a zvol minor task is a sync 1772 * task. In this context, there is easy access to the spa_t and minimal 1773 * error handling is required because the sync task must succeed. 1774 */ 1775 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1776 1, INT_MAX, 0); 1777 1778 /* 1779 * The taskq to preload metaslabs. 1780 */ 1781 spa->spa_metaslab_taskq = taskq_create("z_metaslab", 1782 metaslab_preload_pct, maxclsyspri, 1, INT_MAX, 1783 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1784 1785 /* 1786 * Taskq dedicated to prefetcher threads: this is used to prevent the 1787 * pool traverse code from monopolizing the global (and limited) 1788 * system_taskq by inappropriately scheduling long running tasks on it. 1789 */ 1790 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100, 1791 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1792 1793 /* 1794 * The taskq to upgrade datasets in this pool. Currently used by 1795 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1796 */ 1797 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100, 1798 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT); 1799 } 1800 1801 /* 1802 * Opposite of spa_activate(). 1803 */ 1804 static void 1805 spa_deactivate(spa_t *spa) 1806 { 1807 ASSERT(spa->spa_sync_on == B_FALSE); 1808 ASSERT(spa->spa_dsl_pool == NULL); 1809 ASSERT(spa->spa_root_vdev == NULL); 1810 ASSERT(spa->spa_async_zio_root == NULL); 1811 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1812 1813 spa_evicting_os_wait(spa); 1814 1815 if (spa->spa_zvol_taskq) { 1816 taskq_destroy(spa->spa_zvol_taskq); 1817 spa->spa_zvol_taskq = NULL; 1818 } 1819 1820 if (spa->spa_metaslab_taskq) { 1821 taskq_destroy(spa->spa_metaslab_taskq); 1822 spa->spa_metaslab_taskq = NULL; 1823 } 1824 1825 if (spa->spa_prefetch_taskq) { 1826 taskq_destroy(spa->spa_prefetch_taskq); 1827 spa->spa_prefetch_taskq = NULL; 1828 } 1829 1830 if (spa->spa_upgrade_taskq) { 1831 taskq_destroy(spa->spa_upgrade_taskq); 1832 spa->spa_upgrade_taskq = NULL; 1833 } 1834 1835 txg_list_destroy(&spa->spa_vdev_txg_list); 1836 1837 list_destroy(&spa->spa_config_dirty_list); 1838 list_destroy(&spa->spa_evicting_os_list); 1839 list_destroy(&spa->spa_state_dirty_list); 1840 1841 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1842 1843 for (int t = 0; t < ZIO_TYPES; t++) { 1844 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1845 spa_taskqs_fini(spa, t, q); 1846 } 1847 } 1848 1849 for (size_t i = 0; i < TXG_SIZE; i++) { 1850 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1851 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1852 spa->spa_txg_zio[i] = NULL; 1853 } 1854 1855 metaslab_class_destroy(spa->spa_normal_class); 1856 spa->spa_normal_class = NULL; 1857 1858 metaslab_class_destroy(spa->spa_log_class); 1859 spa->spa_log_class = NULL; 1860 1861 metaslab_class_destroy(spa->spa_embedded_log_class); 1862 spa->spa_embedded_log_class = NULL; 1863 1864 metaslab_class_destroy(spa->spa_special_class); 1865 spa->spa_special_class = NULL; 1866 1867 metaslab_class_destroy(spa->spa_dedup_class); 1868 spa->spa_dedup_class = NULL; 1869 1870 /* 1871 * If this was part of an import or the open otherwise failed, we may 1872 * still have errors left in the queues. Empty them just in case. 1873 */ 1874 spa_errlog_drain(spa); 1875 avl_destroy(&spa->spa_errlist_scrub); 1876 avl_destroy(&spa->spa_errlist_last); 1877 avl_destroy(&spa->spa_errlist_healed); 1878 1879 spa_keystore_fini(&spa->spa_keystore); 1880 1881 spa->spa_state = POOL_STATE_UNINITIALIZED; 1882 1883 mutex_enter(&spa->spa_proc_lock); 1884 if (spa->spa_proc_state != SPA_PROC_NONE) { 1885 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1886 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1887 cv_broadcast(&spa->spa_proc_cv); 1888 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1889 ASSERT(spa->spa_proc != &p0); 1890 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1891 } 1892 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1893 spa->spa_proc_state = SPA_PROC_NONE; 1894 } 1895 ASSERT(spa->spa_proc == &p0); 1896 mutex_exit(&spa->spa_proc_lock); 1897 1898 /* 1899 * We want to make sure spa_thread() has actually exited the ZFS 1900 * module, so that the module can't be unloaded out from underneath 1901 * it. 1902 */ 1903 if (spa->spa_did != 0) { 1904 thread_join(spa->spa_did); 1905 spa->spa_did = 0; 1906 } 1907 1908 spa_deactivate_os(spa); 1909 1910 } 1911 1912 /* 1913 * Verify a pool configuration, and construct the vdev tree appropriately. This 1914 * will create all the necessary vdevs in the appropriate layout, with each vdev 1915 * in the CLOSED state. This will prep the pool before open/creation/import. 1916 * All vdev validation is done by the vdev_alloc() routine. 1917 */ 1918 int 1919 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1920 uint_t id, int atype) 1921 { 1922 nvlist_t **child; 1923 uint_t children; 1924 int error; 1925 1926 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1927 return (error); 1928 1929 if ((*vdp)->vdev_ops->vdev_op_leaf) 1930 return (0); 1931 1932 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1933 &child, &children); 1934 1935 if (error == ENOENT) 1936 return (0); 1937 1938 if (error) { 1939 vdev_free(*vdp); 1940 *vdp = NULL; 1941 return (SET_ERROR(EINVAL)); 1942 } 1943 1944 for (int c = 0; c < children; c++) { 1945 vdev_t *vd; 1946 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1947 atype)) != 0) { 1948 vdev_free(*vdp); 1949 *vdp = NULL; 1950 return (error); 1951 } 1952 } 1953 1954 ASSERT(*vdp != NULL); 1955 1956 return (0); 1957 } 1958 1959 static boolean_t 1960 spa_should_flush_logs_on_unload(spa_t *spa) 1961 { 1962 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1963 return (B_FALSE); 1964 1965 if (!spa_writeable(spa)) 1966 return (B_FALSE); 1967 1968 if (!spa->spa_sync_on) 1969 return (B_FALSE); 1970 1971 if (spa_state(spa) != POOL_STATE_EXPORTED) 1972 return (B_FALSE); 1973 1974 if (zfs_keep_log_spacemaps_at_export) 1975 return (B_FALSE); 1976 1977 return (B_TRUE); 1978 } 1979 1980 /* 1981 * Opens a transaction that will set the flag that will instruct 1982 * spa_sync to attempt to flush all the metaslabs for that txg. 1983 */ 1984 static void 1985 spa_unload_log_sm_flush_all(spa_t *spa) 1986 { 1987 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1988 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND)); 1989 1990 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1991 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1992 1993 dmu_tx_commit(tx); 1994 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1995 } 1996 1997 static void 1998 spa_unload_log_sm_metadata(spa_t *spa) 1999 { 2000 void *cookie = NULL; 2001 spa_log_sm_t *sls; 2002 log_summary_entry_t *e; 2003 2004 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 2005 &cookie)) != NULL) { 2006 VERIFY0(sls->sls_mscount); 2007 kmem_free(sls, sizeof (spa_log_sm_t)); 2008 } 2009 2010 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) { 2011 VERIFY0(e->lse_mscount); 2012 kmem_free(e, sizeof (log_summary_entry_t)); 2013 } 2014 2015 spa->spa_unflushed_stats.sus_nblocks = 0; 2016 spa->spa_unflushed_stats.sus_memused = 0; 2017 spa->spa_unflushed_stats.sus_blocklimit = 0; 2018 } 2019 2020 static void 2021 spa_destroy_aux_threads(spa_t *spa) 2022 { 2023 if (spa->spa_condense_zthr != NULL) { 2024 zthr_destroy(spa->spa_condense_zthr); 2025 spa->spa_condense_zthr = NULL; 2026 } 2027 if (spa->spa_checkpoint_discard_zthr != NULL) { 2028 zthr_destroy(spa->spa_checkpoint_discard_zthr); 2029 spa->spa_checkpoint_discard_zthr = NULL; 2030 } 2031 if (spa->spa_livelist_delete_zthr != NULL) { 2032 zthr_destroy(spa->spa_livelist_delete_zthr); 2033 spa->spa_livelist_delete_zthr = NULL; 2034 } 2035 if (spa->spa_livelist_condense_zthr != NULL) { 2036 zthr_destroy(spa->spa_livelist_condense_zthr); 2037 spa->spa_livelist_condense_zthr = NULL; 2038 } 2039 if (spa->spa_raidz_expand_zthr != NULL) { 2040 zthr_destroy(spa->spa_raidz_expand_zthr); 2041 spa->spa_raidz_expand_zthr = NULL; 2042 } 2043 } 2044 2045 /* 2046 * Opposite of spa_load(). 2047 */ 2048 static void 2049 spa_unload(spa_t *spa) 2050 { 2051 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 2052 spa->spa_export_thread == curthread); 2053 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 2054 2055 spa_import_progress_remove(spa_guid(spa)); 2056 spa_load_note(spa, "UNLOADING"); 2057 2058 spa_wake_waiters(spa); 2059 2060 /* 2061 * If we have set the spa_final_txg, we have already performed the 2062 * tasks below in spa_export_common(). We should not redo it here since 2063 * we delay the final TXGs beyond what spa_final_txg is set at. 2064 */ 2065 if (spa->spa_final_txg == UINT64_MAX) { 2066 /* 2067 * If the log space map feature is enabled and the pool is 2068 * getting exported (but not destroyed), we want to spend some 2069 * time flushing as many metaslabs as we can in an attempt to 2070 * destroy log space maps and save import time. 2071 */ 2072 if (spa_should_flush_logs_on_unload(spa)) 2073 spa_unload_log_sm_flush_all(spa); 2074 2075 /* 2076 * Stop async tasks. 2077 */ 2078 spa_async_suspend(spa); 2079 2080 if (spa->spa_root_vdev) { 2081 vdev_t *root_vdev = spa->spa_root_vdev; 2082 vdev_initialize_stop_all(root_vdev, 2083 VDEV_INITIALIZE_ACTIVE); 2084 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 2085 vdev_autotrim_stop_all(spa); 2086 vdev_rebuild_stop_all(spa); 2087 l2arc_spa_rebuild_stop(spa); 2088 } 2089 2090 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2091 spa->spa_final_txg = spa_last_synced_txg(spa) + 2092 TXG_DEFER_SIZE + 1; 2093 spa_config_exit(spa, SCL_ALL, FTAG); 2094 } 2095 2096 /* 2097 * Stop syncing. 2098 */ 2099 if (spa->spa_sync_on) { 2100 txg_sync_stop(spa->spa_dsl_pool); 2101 spa->spa_sync_on = B_FALSE; 2102 } 2103 2104 /* 2105 * This ensures that there is no async metaslab prefetching 2106 * while we attempt to unload the spa. 2107 */ 2108 taskq_wait(spa->spa_metaslab_taskq); 2109 2110 if (spa->spa_mmp.mmp_thread) 2111 mmp_thread_stop(spa); 2112 2113 /* 2114 * Wait for any outstanding async I/O to complete. 2115 */ 2116 if (spa->spa_async_zio_root != NULL) { 2117 for (int i = 0; i < max_ncpus; i++) 2118 (void) zio_wait(spa->spa_async_zio_root[i]); 2119 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 2120 spa->spa_async_zio_root = NULL; 2121 } 2122 2123 if (spa->spa_vdev_removal != NULL) { 2124 spa_vdev_removal_destroy(spa->spa_vdev_removal); 2125 spa->spa_vdev_removal = NULL; 2126 } 2127 2128 spa_destroy_aux_threads(spa); 2129 2130 spa_condense_fini(spa); 2131 2132 bpobj_close(&spa->spa_deferred_bpobj); 2133 2134 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 2135 2136 /* 2137 * Close all vdevs. 2138 */ 2139 if (spa->spa_root_vdev) 2140 vdev_free(spa->spa_root_vdev); 2141 ASSERT(spa->spa_root_vdev == NULL); 2142 2143 /* 2144 * Close the dsl pool. 2145 */ 2146 if (spa->spa_dsl_pool) { 2147 dsl_pool_close(spa->spa_dsl_pool); 2148 spa->spa_dsl_pool = NULL; 2149 spa->spa_meta_objset = NULL; 2150 } 2151 2152 ddt_unload(spa); 2153 brt_unload(spa); 2154 spa_unload_log_sm_metadata(spa); 2155 2156 /* 2157 * Drop and purge level 2 cache 2158 */ 2159 spa_l2cache_drop(spa); 2160 2161 if (spa->spa_spares.sav_vdevs) { 2162 for (int i = 0; i < spa->spa_spares.sav_count; i++) 2163 vdev_free(spa->spa_spares.sav_vdevs[i]); 2164 kmem_free(spa->spa_spares.sav_vdevs, 2165 spa->spa_spares.sav_count * sizeof (void *)); 2166 spa->spa_spares.sav_vdevs = NULL; 2167 } 2168 if (spa->spa_spares.sav_config) { 2169 nvlist_free(spa->spa_spares.sav_config); 2170 spa->spa_spares.sav_config = NULL; 2171 } 2172 spa->spa_spares.sav_count = 0; 2173 2174 if (spa->spa_l2cache.sav_vdevs) { 2175 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 2176 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 2177 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 2178 } 2179 kmem_free(spa->spa_l2cache.sav_vdevs, 2180 spa->spa_l2cache.sav_count * sizeof (void *)); 2181 spa->spa_l2cache.sav_vdevs = NULL; 2182 } 2183 if (spa->spa_l2cache.sav_config) { 2184 nvlist_free(spa->spa_l2cache.sav_config); 2185 spa->spa_l2cache.sav_config = NULL; 2186 } 2187 spa->spa_l2cache.sav_count = 0; 2188 2189 spa->spa_async_suspended = 0; 2190 2191 spa->spa_indirect_vdevs_loaded = B_FALSE; 2192 2193 if (spa->spa_comment != NULL) { 2194 spa_strfree(spa->spa_comment); 2195 spa->spa_comment = NULL; 2196 } 2197 if (spa->spa_compatibility != NULL) { 2198 spa_strfree(spa->spa_compatibility); 2199 spa->spa_compatibility = NULL; 2200 } 2201 2202 spa->spa_raidz_expand = NULL; 2203 spa->spa_checkpoint_txg = 0; 2204 2205 spa_config_exit(spa, SCL_ALL, spa); 2206 } 2207 2208 /* 2209 * Load (or re-load) the current list of vdevs describing the active spares for 2210 * this pool. When this is called, we have some form of basic information in 2211 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 2212 * then re-generate a more complete list including status information. 2213 */ 2214 void 2215 spa_load_spares(spa_t *spa) 2216 { 2217 nvlist_t **spares; 2218 uint_t nspares; 2219 int i; 2220 vdev_t *vd, *tvd; 2221 2222 #ifndef _KERNEL 2223 /* 2224 * zdb opens both the current state of the pool and the 2225 * checkpointed state (if present), with a different spa_t. 2226 * 2227 * As spare vdevs are shared among open pools, we skip loading 2228 * them when we load the checkpointed state of the pool. 2229 */ 2230 if (!spa_writeable(spa)) 2231 return; 2232 #endif 2233 2234 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2235 2236 /* 2237 * First, close and free any existing spare vdevs. 2238 */ 2239 if (spa->spa_spares.sav_vdevs) { 2240 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2241 vd = spa->spa_spares.sav_vdevs[i]; 2242 2243 /* Undo the call to spa_activate() below */ 2244 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2245 B_FALSE)) != NULL && tvd->vdev_isspare) 2246 spa_spare_remove(tvd); 2247 vdev_close(vd); 2248 vdev_free(vd); 2249 } 2250 2251 kmem_free(spa->spa_spares.sav_vdevs, 2252 spa->spa_spares.sav_count * sizeof (void *)); 2253 } 2254 2255 if (spa->spa_spares.sav_config == NULL) 2256 nspares = 0; 2257 else 2258 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2259 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 2260 2261 spa->spa_spares.sav_count = (int)nspares; 2262 spa->spa_spares.sav_vdevs = NULL; 2263 2264 if (nspares == 0) 2265 return; 2266 2267 /* 2268 * Construct the array of vdevs, opening them to get status in the 2269 * process. For each spare, there is potentially two different vdev_t 2270 * structures associated with it: one in the list of spares (used only 2271 * for basic validation purposes) and one in the active vdev 2272 * configuration (if it's spared in). During this phase we open and 2273 * validate each vdev on the spare list. If the vdev also exists in the 2274 * active configuration, then we also mark this vdev as an active spare. 2275 */ 2276 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 2277 KM_SLEEP); 2278 for (i = 0; i < spa->spa_spares.sav_count; i++) { 2279 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 2280 VDEV_ALLOC_SPARE) == 0); 2281 ASSERT(vd != NULL); 2282 2283 spa->spa_spares.sav_vdevs[i] = vd; 2284 2285 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 2286 B_FALSE)) != NULL) { 2287 if (!tvd->vdev_isspare) 2288 spa_spare_add(tvd); 2289 2290 /* 2291 * We only mark the spare active if we were successfully 2292 * able to load the vdev. Otherwise, importing a pool 2293 * with a bad active spare would result in strange 2294 * behavior, because multiple pool would think the spare 2295 * is actively in use. 2296 * 2297 * There is a vulnerability here to an equally bizarre 2298 * circumstance, where a dead active spare is later 2299 * brought back to life (onlined or otherwise). Given 2300 * the rarity of this scenario, and the extra complexity 2301 * it adds, we ignore the possibility. 2302 */ 2303 if (!vdev_is_dead(tvd)) 2304 spa_spare_activate(tvd); 2305 } 2306 2307 vd->vdev_top = vd; 2308 vd->vdev_aux = &spa->spa_spares; 2309 2310 if (vdev_open(vd) != 0) 2311 continue; 2312 2313 if (vdev_validate_aux(vd) == 0) 2314 spa_spare_add(vd); 2315 } 2316 2317 /* 2318 * Recompute the stashed list of spares, with status information 2319 * this time. 2320 */ 2321 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES); 2322 2323 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 2324 KM_SLEEP); 2325 for (i = 0; i < spa->spa_spares.sav_count; i++) 2326 spares[i] = vdev_config_generate(spa, 2327 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 2328 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 2329 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 2330 spa->spa_spares.sav_count); 2331 for (i = 0; i < spa->spa_spares.sav_count; i++) 2332 nvlist_free(spares[i]); 2333 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 2334 } 2335 2336 /* 2337 * Load (or re-load) the current list of vdevs describing the active l2cache for 2338 * this pool. When this is called, we have some form of basic information in 2339 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 2340 * then re-generate a more complete list including status information. 2341 * Devices which are already active have their details maintained, and are 2342 * not re-opened. 2343 */ 2344 void 2345 spa_load_l2cache(spa_t *spa) 2346 { 2347 nvlist_t **l2cache = NULL; 2348 uint_t nl2cache; 2349 int i, j, oldnvdevs; 2350 uint64_t guid; 2351 vdev_t *vd, **oldvdevs, **newvdevs; 2352 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2353 2354 #ifndef _KERNEL 2355 /* 2356 * zdb opens both the current state of the pool and the 2357 * checkpointed state (if present), with a different spa_t. 2358 * 2359 * As L2 caches are part of the ARC which is shared among open 2360 * pools, we skip loading them when we load the checkpointed 2361 * state of the pool. 2362 */ 2363 if (!spa_writeable(spa)) 2364 return; 2365 #endif 2366 2367 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2368 2369 oldvdevs = sav->sav_vdevs; 2370 oldnvdevs = sav->sav_count; 2371 sav->sav_vdevs = NULL; 2372 sav->sav_count = 0; 2373 2374 if (sav->sav_config == NULL) { 2375 nl2cache = 0; 2376 newvdevs = NULL; 2377 goto out; 2378 } 2379 2380 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, 2381 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 2382 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 2383 2384 /* 2385 * Process new nvlist of vdevs. 2386 */ 2387 for (i = 0; i < nl2cache; i++) { 2388 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID); 2389 2390 newvdevs[i] = NULL; 2391 for (j = 0; j < oldnvdevs; j++) { 2392 vd = oldvdevs[j]; 2393 if (vd != NULL && guid == vd->vdev_guid) { 2394 /* 2395 * Retain previous vdev for add/remove ops. 2396 */ 2397 newvdevs[i] = vd; 2398 oldvdevs[j] = NULL; 2399 break; 2400 } 2401 } 2402 2403 if (newvdevs[i] == NULL) { 2404 /* 2405 * Create new vdev 2406 */ 2407 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 2408 VDEV_ALLOC_L2CACHE) == 0); 2409 ASSERT(vd != NULL); 2410 newvdevs[i] = vd; 2411 2412 /* 2413 * Commit this vdev as an l2cache device, 2414 * even if it fails to open. 2415 */ 2416 spa_l2cache_add(vd); 2417 2418 vd->vdev_top = vd; 2419 vd->vdev_aux = sav; 2420 2421 spa_l2cache_activate(vd); 2422 2423 if (vdev_open(vd) != 0) 2424 continue; 2425 2426 (void) vdev_validate_aux(vd); 2427 2428 if (!vdev_is_dead(vd)) 2429 l2arc_add_vdev(spa, vd); 2430 2431 /* 2432 * Upon cache device addition to a pool or pool 2433 * creation with a cache device or if the header 2434 * of the device is invalid we issue an async 2435 * TRIM command for the whole device which will 2436 * execute if l2arc_trim_ahead > 0. 2437 */ 2438 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 2439 } 2440 } 2441 2442 sav->sav_vdevs = newvdevs; 2443 sav->sav_count = (int)nl2cache; 2444 2445 /* 2446 * Recompute the stashed list of l2cache devices, with status 2447 * information this time. 2448 */ 2449 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE); 2450 2451 if (sav->sav_count > 0) 2452 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 2453 KM_SLEEP); 2454 for (i = 0; i < sav->sav_count; i++) 2455 l2cache[i] = vdev_config_generate(spa, 2456 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 2457 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 2458 (const nvlist_t * const *)l2cache, sav->sav_count); 2459 2460 out: 2461 /* 2462 * Purge vdevs that were dropped 2463 */ 2464 if (oldvdevs) { 2465 for (i = 0; i < oldnvdevs; i++) { 2466 uint64_t pool; 2467 2468 vd = oldvdevs[i]; 2469 if (vd != NULL) { 2470 ASSERT(vd->vdev_isl2cache); 2471 2472 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2473 pool != 0ULL && l2arc_vdev_present(vd)) 2474 l2arc_remove_vdev(vd); 2475 vdev_clear_stats(vd); 2476 vdev_free(vd); 2477 } 2478 } 2479 2480 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 2481 } 2482 2483 for (i = 0; i < sav->sav_count; i++) 2484 nvlist_free(l2cache[i]); 2485 if (sav->sav_count) 2486 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 2487 } 2488 2489 static int 2490 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 2491 { 2492 dmu_buf_t *db; 2493 char *packed = NULL; 2494 size_t nvsize = 0; 2495 int error; 2496 *value = NULL; 2497 2498 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 2499 if (error) 2500 return (error); 2501 2502 nvsize = *(uint64_t *)db->db_data; 2503 dmu_buf_rele(db, FTAG); 2504 2505 packed = vmem_alloc(nvsize, KM_SLEEP); 2506 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 2507 DMU_READ_PREFETCH); 2508 if (error == 0) 2509 error = nvlist_unpack(packed, nvsize, value, 0); 2510 vmem_free(packed, nvsize); 2511 2512 return (error); 2513 } 2514 2515 /* 2516 * Concrete top-level vdevs that are not missing and are not logs. At every 2517 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 2518 */ 2519 static uint64_t 2520 spa_healthy_core_tvds(spa_t *spa) 2521 { 2522 vdev_t *rvd = spa->spa_root_vdev; 2523 uint64_t tvds = 0; 2524 2525 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 2526 vdev_t *vd = rvd->vdev_child[i]; 2527 if (vd->vdev_islog) 2528 continue; 2529 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 2530 tvds++; 2531 } 2532 2533 return (tvds); 2534 } 2535 2536 /* 2537 * Checks to see if the given vdev could not be opened, in which case we post a 2538 * sysevent to notify the autoreplace code that the device has been removed. 2539 */ 2540 static void 2541 spa_check_removed(vdev_t *vd) 2542 { 2543 for (uint64_t c = 0; c < vd->vdev_children; c++) 2544 spa_check_removed(vd->vdev_child[c]); 2545 2546 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 2547 vdev_is_concrete(vd)) { 2548 zfs_post_autoreplace(vd->vdev_spa, vd); 2549 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 2550 } 2551 } 2552 2553 static int 2554 spa_check_for_missing_logs(spa_t *spa) 2555 { 2556 vdev_t *rvd = spa->spa_root_vdev; 2557 2558 /* 2559 * If we're doing a normal import, then build up any additional 2560 * diagnostic information about missing log devices. 2561 * We'll pass this up to the user for further processing. 2562 */ 2563 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2564 nvlist_t **child, *nv; 2565 uint64_t idx = 0; 2566 2567 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2568 KM_SLEEP); 2569 nv = fnvlist_alloc(); 2570 2571 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2572 vdev_t *tvd = rvd->vdev_child[c]; 2573 2574 /* 2575 * We consider a device as missing only if it failed 2576 * to open (i.e. offline or faulted is not considered 2577 * as missing). 2578 */ 2579 if (tvd->vdev_islog && 2580 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2581 child[idx++] = vdev_config_generate(spa, tvd, 2582 B_FALSE, VDEV_CONFIG_MISSING); 2583 } 2584 } 2585 2586 if (idx > 0) { 2587 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2588 (const nvlist_t * const *)child, idx); 2589 fnvlist_add_nvlist(spa->spa_load_info, 2590 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2591 2592 for (uint64_t i = 0; i < idx; i++) 2593 nvlist_free(child[i]); 2594 } 2595 nvlist_free(nv); 2596 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2597 2598 if (idx > 0) { 2599 spa_load_failed(spa, "some log devices are missing"); 2600 vdev_dbgmsg_print_tree(rvd, 2); 2601 return (SET_ERROR(ENXIO)); 2602 } 2603 } else { 2604 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2605 vdev_t *tvd = rvd->vdev_child[c]; 2606 2607 if (tvd->vdev_islog && 2608 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2609 spa_set_log_state(spa, SPA_LOG_CLEAR); 2610 spa_load_note(spa, "some log devices are " 2611 "missing, ZIL is dropped."); 2612 vdev_dbgmsg_print_tree(rvd, 2); 2613 break; 2614 } 2615 } 2616 } 2617 2618 return (0); 2619 } 2620 2621 /* 2622 * Check for missing log devices 2623 */ 2624 static boolean_t 2625 spa_check_logs(spa_t *spa) 2626 { 2627 boolean_t rv = B_FALSE; 2628 dsl_pool_t *dp = spa_get_dsl(spa); 2629 2630 switch (spa->spa_log_state) { 2631 default: 2632 break; 2633 case SPA_LOG_MISSING: 2634 /* need to recheck in case slog has been restored */ 2635 case SPA_LOG_UNKNOWN: 2636 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2637 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2638 if (rv) 2639 spa_set_log_state(spa, SPA_LOG_MISSING); 2640 break; 2641 } 2642 return (rv); 2643 } 2644 2645 /* 2646 * Passivate any log vdevs (note, does not apply to embedded log metaslabs). 2647 */ 2648 static boolean_t 2649 spa_passivate_log(spa_t *spa) 2650 { 2651 vdev_t *rvd = spa->spa_root_vdev; 2652 boolean_t slog_found = B_FALSE; 2653 2654 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2655 2656 for (int c = 0; c < rvd->vdev_children; c++) { 2657 vdev_t *tvd = rvd->vdev_child[c]; 2658 2659 if (tvd->vdev_islog) { 2660 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2661 metaslab_group_passivate(tvd->vdev_mg); 2662 slog_found = B_TRUE; 2663 } 2664 } 2665 2666 return (slog_found); 2667 } 2668 2669 /* 2670 * Activate any log vdevs (note, does not apply to embedded log metaslabs). 2671 */ 2672 static void 2673 spa_activate_log(spa_t *spa) 2674 { 2675 vdev_t *rvd = spa->spa_root_vdev; 2676 2677 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2678 2679 for (int c = 0; c < rvd->vdev_children; c++) { 2680 vdev_t *tvd = rvd->vdev_child[c]; 2681 2682 if (tvd->vdev_islog) { 2683 ASSERT3P(tvd->vdev_log_mg, ==, NULL); 2684 metaslab_group_activate(tvd->vdev_mg); 2685 } 2686 } 2687 } 2688 2689 int 2690 spa_reset_logs(spa_t *spa) 2691 { 2692 int error; 2693 2694 error = dmu_objset_find(spa_name(spa), zil_reset, 2695 NULL, DS_FIND_CHILDREN); 2696 if (error == 0) { 2697 /* 2698 * We successfully offlined the log device, sync out the 2699 * current txg so that the "stubby" block can be removed 2700 * by zil_sync(). 2701 */ 2702 txg_wait_synced(spa->spa_dsl_pool, 0); 2703 } 2704 return (error); 2705 } 2706 2707 static void 2708 spa_aux_check_removed(spa_aux_vdev_t *sav) 2709 { 2710 for (int i = 0; i < sav->sav_count; i++) 2711 spa_check_removed(sav->sav_vdevs[i]); 2712 } 2713 2714 void 2715 spa_claim_notify(zio_t *zio) 2716 { 2717 spa_t *spa = zio->io_spa; 2718 2719 if (zio->io_error) 2720 return; 2721 2722 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2723 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp)) 2724 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp); 2725 mutex_exit(&spa->spa_props_lock); 2726 } 2727 2728 typedef struct spa_load_error { 2729 boolean_t sle_verify_data; 2730 uint64_t sle_meta_count; 2731 uint64_t sle_data_count; 2732 } spa_load_error_t; 2733 2734 static void 2735 spa_load_verify_done(zio_t *zio) 2736 { 2737 blkptr_t *bp = zio->io_bp; 2738 spa_load_error_t *sle = zio->io_private; 2739 dmu_object_type_t type = BP_GET_TYPE(bp); 2740 int error = zio->io_error; 2741 spa_t *spa = zio->io_spa; 2742 2743 abd_free(zio->io_abd); 2744 if (error) { 2745 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2746 type != DMU_OT_INTENT_LOG) 2747 atomic_inc_64(&sle->sle_meta_count); 2748 else 2749 atomic_inc_64(&sle->sle_data_count); 2750 } 2751 2752 mutex_enter(&spa->spa_scrub_lock); 2753 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2754 cv_broadcast(&spa->spa_scrub_io_cv); 2755 mutex_exit(&spa->spa_scrub_lock); 2756 } 2757 2758 /* 2759 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2760 * By default, we set it to 1/16th of the arc. 2761 */ 2762 static uint_t spa_load_verify_shift = 4; 2763 static int spa_load_verify_metadata = B_TRUE; 2764 static int spa_load_verify_data = B_TRUE; 2765 2766 static int 2767 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2768 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2769 { 2770 zio_t *rio = arg; 2771 spa_load_error_t *sle = rio->io_private; 2772 2773 (void) zilog, (void) dnp; 2774 2775 /* 2776 * Note: normally this routine will not be called if 2777 * spa_load_verify_metadata is not set. However, it may be useful 2778 * to manually set the flag after the traversal has begun. 2779 */ 2780 if (!spa_load_verify_metadata) 2781 return (0); 2782 2783 /* 2784 * Sanity check the block pointer in order to detect obvious damage 2785 * before using the contents in subsequent checks or in zio_read(). 2786 * When damaged consider it to be a metadata error since we cannot 2787 * trust the BP_GET_TYPE and BP_GET_LEVEL values. 2788 */ 2789 if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 2790 atomic_inc_64(&sle->sle_meta_count); 2791 return (0); 2792 } 2793 2794 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2795 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2796 return (0); 2797 2798 if (!BP_IS_METADATA(bp) && 2799 (!spa_load_verify_data || !sle->sle_verify_data)) 2800 return (0); 2801 2802 uint64_t maxinflight_bytes = 2803 arc_target_bytes() >> spa_load_verify_shift; 2804 size_t size = BP_GET_PSIZE(bp); 2805 2806 mutex_enter(&spa->spa_scrub_lock); 2807 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2808 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2809 spa->spa_load_verify_bytes += size; 2810 mutex_exit(&spa->spa_scrub_lock); 2811 2812 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2813 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2814 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2815 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2816 return (0); 2817 } 2818 2819 static int 2820 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2821 { 2822 (void) dp, (void) arg; 2823 2824 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2825 return (SET_ERROR(ENAMETOOLONG)); 2826 2827 return (0); 2828 } 2829 2830 static int 2831 spa_load_verify(spa_t *spa) 2832 { 2833 zio_t *rio; 2834 spa_load_error_t sle = { 0 }; 2835 zpool_load_policy_t policy; 2836 boolean_t verify_ok = B_FALSE; 2837 int error = 0; 2838 2839 zpool_get_load_policy(spa->spa_config, &policy); 2840 2841 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND || 2842 policy.zlp_maxmeta == UINT64_MAX) 2843 return (0); 2844 2845 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2846 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2847 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2848 DS_FIND_CHILDREN); 2849 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2850 if (error != 0) 2851 return (error); 2852 2853 /* 2854 * Verify data only if we are rewinding or error limit was set. 2855 * Otherwise nothing except dbgmsg care about it to waste time. 2856 */ 2857 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) || 2858 (policy.zlp_maxdata < UINT64_MAX); 2859 2860 rio = zio_root(spa, NULL, &sle, 2861 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2862 2863 if (spa_load_verify_metadata) { 2864 if (spa->spa_extreme_rewind) { 2865 spa_load_note(spa, "performing a complete scan of the " 2866 "pool since extreme rewind is on. This may take " 2867 "a very long time.\n (spa_load_verify_data=%u, " 2868 "spa_load_verify_metadata=%u)", 2869 spa_load_verify_data, spa_load_verify_metadata); 2870 } 2871 2872 error = traverse_pool(spa, spa->spa_verify_min_txg, 2873 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2874 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2875 } 2876 2877 (void) zio_wait(rio); 2878 ASSERT0(spa->spa_load_verify_bytes); 2879 2880 spa->spa_load_meta_errors = sle.sle_meta_count; 2881 spa->spa_load_data_errors = sle.sle_data_count; 2882 2883 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2884 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2885 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2886 (u_longlong_t)sle.sle_data_count); 2887 } 2888 2889 if (spa_load_verify_dryrun || 2890 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2891 sle.sle_data_count <= policy.zlp_maxdata)) { 2892 int64_t loss = 0; 2893 2894 verify_ok = B_TRUE; 2895 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2896 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2897 2898 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2899 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME, 2900 spa->spa_load_txg_ts); 2901 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME, 2902 loss); 2903 fnvlist_add_uint64(spa->spa_load_info, 2904 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count); 2905 fnvlist_add_uint64(spa->spa_load_info, 2906 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count); 2907 } else { 2908 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2909 } 2910 2911 if (spa_load_verify_dryrun) 2912 return (0); 2913 2914 if (error) { 2915 if (error != ENXIO && error != EIO) 2916 error = SET_ERROR(EIO); 2917 return (error); 2918 } 2919 2920 return (verify_ok ? 0 : EIO); 2921 } 2922 2923 /* 2924 * Find a value in the pool props object. 2925 */ 2926 static void 2927 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2928 { 2929 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2930 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2931 } 2932 2933 /* 2934 * Find a value in the pool directory object. 2935 */ 2936 static int 2937 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2938 { 2939 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2940 name, sizeof (uint64_t), 1, val); 2941 2942 if (error != 0 && (error != ENOENT || log_enoent)) { 2943 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2944 "[error=%d]", name, error); 2945 } 2946 2947 return (error); 2948 } 2949 2950 static int 2951 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2952 { 2953 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2954 return (SET_ERROR(err)); 2955 } 2956 2957 boolean_t 2958 spa_livelist_delete_check(spa_t *spa) 2959 { 2960 return (spa->spa_livelists_to_delete != 0); 2961 } 2962 2963 static boolean_t 2964 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2965 { 2966 (void) z; 2967 spa_t *spa = arg; 2968 return (spa_livelist_delete_check(spa)); 2969 } 2970 2971 static int 2972 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2973 { 2974 spa_t *spa = arg; 2975 zio_free(spa, tx->tx_txg, bp); 2976 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2977 -bp_get_dsize_sync(spa, bp), 2978 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2979 return (0); 2980 } 2981 2982 static int 2983 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2984 { 2985 int err; 2986 zap_cursor_t zc; 2987 zap_attribute_t *za = zap_attribute_alloc(); 2988 zap_cursor_init(&zc, os, zap_obj); 2989 err = zap_cursor_retrieve(&zc, za); 2990 zap_cursor_fini(&zc); 2991 if (err == 0) 2992 *llp = za->za_first_integer; 2993 zap_attribute_free(za); 2994 return (err); 2995 } 2996 2997 /* 2998 * Components of livelist deletion that must be performed in syncing 2999 * context: freeing block pointers and updating the pool-wide data 3000 * structures to indicate how much work is left to do 3001 */ 3002 typedef struct sublist_delete_arg { 3003 spa_t *spa; 3004 dsl_deadlist_t *ll; 3005 uint64_t key; 3006 bplist_t *to_free; 3007 } sublist_delete_arg_t; 3008 3009 static void 3010 sublist_delete_sync(void *arg, dmu_tx_t *tx) 3011 { 3012 sublist_delete_arg_t *sda = arg; 3013 spa_t *spa = sda->spa; 3014 dsl_deadlist_t *ll = sda->ll; 3015 uint64_t key = sda->key; 3016 bplist_t *to_free = sda->to_free; 3017 3018 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 3019 dsl_deadlist_remove_entry(ll, key, tx); 3020 } 3021 3022 typedef struct livelist_delete_arg { 3023 spa_t *spa; 3024 uint64_t ll_obj; 3025 uint64_t zap_obj; 3026 } livelist_delete_arg_t; 3027 3028 static void 3029 livelist_delete_sync(void *arg, dmu_tx_t *tx) 3030 { 3031 livelist_delete_arg_t *lda = arg; 3032 spa_t *spa = lda->spa; 3033 uint64_t ll_obj = lda->ll_obj; 3034 uint64_t zap_obj = lda->zap_obj; 3035 objset_t *mos = spa->spa_meta_objset; 3036 uint64_t count; 3037 3038 /* free the livelist and decrement the feature count */ 3039 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 3040 dsl_deadlist_free(mos, ll_obj, tx); 3041 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 3042 VERIFY0(zap_count(mos, zap_obj, &count)); 3043 if (count == 0) { 3044 /* no more livelists to delete */ 3045 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 3046 DMU_POOL_DELETED_CLONES, tx)); 3047 VERIFY0(zap_destroy(mos, zap_obj, tx)); 3048 spa->spa_livelists_to_delete = 0; 3049 spa_notify_waiters(spa); 3050 } 3051 } 3052 3053 /* 3054 * Load in the value for the livelist to be removed and open it. Then, 3055 * load its first sublist and determine which block pointers should actually 3056 * be freed. Then, call a synctask which performs the actual frees and updates 3057 * the pool-wide livelist data. 3058 */ 3059 static void 3060 spa_livelist_delete_cb(void *arg, zthr_t *z) 3061 { 3062 spa_t *spa = arg; 3063 uint64_t ll_obj = 0, count; 3064 objset_t *mos = spa->spa_meta_objset; 3065 uint64_t zap_obj = spa->spa_livelists_to_delete; 3066 /* 3067 * Determine the next livelist to delete. This function should only 3068 * be called if there is at least one deleted clone. 3069 */ 3070 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 3071 VERIFY0(zap_count(mos, ll_obj, &count)); 3072 if (count > 0) { 3073 dsl_deadlist_t *ll; 3074 dsl_deadlist_entry_t *dle; 3075 bplist_t to_free; 3076 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP); 3077 VERIFY0(dsl_deadlist_open(ll, mos, ll_obj)); 3078 dle = dsl_deadlist_first(ll); 3079 ASSERT3P(dle, !=, NULL); 3080 bplist_create(&to_free); 3081 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 3082 z, NULL); 3083 if (err == 0) { 3084 sublist_delete_arg_t sync_arg = { 3085 .spa = spa, 3086 .ll = ll, 3087 .key = dle->dle_mintxg, 3088 .to_free = &to_free 3089 }; 3090 zfs_dbgmsg("deleting sublist (id %llu) from" 3091 " livelist %llu, %lld remaining", 3092 (u_longlong_t)dle->dle_bpobj.bpo_object, 3093 (u_longlong_t)ll_obj, (longlong_t)count - 1); 3094 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 3095 sublist_delete_sync, &sync_arg, 0, 3096 ZFS_SPACE_CHECK_DESTROY)); 3097 } else { 3098 VERIFY3U(err, ==, EINTR); 3099 } 3100 bplist_clear(&to_free); 3101 bplist_destroy(&to_free); 3102 dsl_deadlist_close(ll); 3103 kmem_free(ll, sizeof (dsl_deadlist_t)); 3104 } else { 3105 livelist_delete_arg_t sync_arg = { 3106 .spa = spa, 3107 .ll_obj = ll_obj, 3108 .zap_obj = zap_obj 3109 }; 3110 zfs_dbgmsg("deletion of livelist %llu completed", 3111 (u_longlong_t)ll_obj); 3112 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 3113 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 3114 } 3115 } 3116 3117 static void 3118 spa_start_livelist_destroy_thread(spa_t *spa) 3119 { 3120 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 3121 spa->spa_livelist_delete_zthr = 3122 zthr_create("z_livelist_destroy", 3123 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa, 3124 minclsyspri); 3125 } 3126 3127 typedef struct livelist_new_arg { 3128 bplist_t *allocs; 3129 bplist_t *frees; 3130 } livelist_new_arg_t; 3131 3132 static int 3133 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 3134 dmu_tx_t *tx) 3135 { 3136 ASSERT(tx == NULL); 3137 livelist_new_arg_t *lna = arg; 3138 if (bp_freed) { 3139 bplist_append(lna->frees, bp); 3140 } else { 3141 bplist_append(lna->allocs, bp); 3142 zfs_livelist_condense_new_alloc++; 3143 } 3144 return (0); 3145 } 3146 3147 typedef struct livelist_condense_arg { 3148 spa_t *spa; 3149 bplist_t to_keep; 3150 uint64_t first_size; 3151 uint64_t next_size; 3152 } livelist_condense_arg_t; 3153 3154 static void 3155 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 3156 { 3157 livelist_condense_arg_t *lca = arg; 3158 spa_t *spa = lca->spa; 3159 bplist_t new_frees; 3160 dsl_dataset_t *ds = spa->spa_to_condense.ds; 3161 3162 /* Have we been cancelled? */ 3163 if (spa->spa_to_condense.cancelled) { 3164 zfs_livelist_condense_sync_cancel++; 3165 goto out; 3166 } 3167 3168 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3169 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3170 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 3171 3172 /* 3173 * It's possible that the livelist was changed while the zthr was 3174 * running. Therefore, we need to check for new blkptrs in the two 3175 * entries being condensed and continue to track them in the livelist. 3176 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 3177 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 3178 * we need to sort them into two different bplists. 3179 */ 3180 uint64_t first_obj = first->dle_bpobj.bpo_object; 3181 uint64_t next_obj = next->dle_bpobj.bpo_object; 3182 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3183 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 3184 3185 bplist_create(&new_frees); 3186 livelist_new_arg_t new_bps = { 3187 .allocs = &lca->to_keep, 3188 .frees = &new_frees, 3189 }; 3190 3191 if (cur_first_size > lca->first_size) { 3192 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 3193 livelist_track_new_cb, &new_bps, lca->first_size)); 3194 } 3195 if (cur_next_size > lca->next_size) { 3196 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 3197 livelist_track_new_cb, &new_bps, lca->next_size)); 3198 } 3199 3200 dsl_deadlist_clear_entry(first, ll, tx); 3201 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 3202 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 3203 3204 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 3205 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 3206 bplist_destroy(&new_frees); 3207 3208 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 3209 dsl_dataset_name(ds, dsname); 3210 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 3211 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 3212 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname, 3213 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj, 3214 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj, 3215 (u_longlong_t)cur_next_size, 3216 (u_longlong_t)first->dle_bpobj.bpo_object, 3217 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 3218 out: 3219 dmu_buf_rele(ds->ds_dbuf, spa); 3220 spa->spa_to_condense.ds = NULL; 3221 bplist_clear(&lca->to_keep); 3222 bplist_destroy(&lca->to_keep); 3223 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3224 spa->spa_to_condense.syncing = B_FALSE; 3225 } 3226 3227 static void 3228 spa_livelist_condense_cb(void *arg, zthr_t *t) 3229 { 3230 while (zfs_livelist_condense_zthr_pause && 3231 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3232 delay(1); 3233 3234 spa_t *spa = arg; 3235 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 3236 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 3237 uint64_t first_size, next_size; 3238 3239 livelist_condense_arg_t *lca = 3240 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 3241 bplist_create(&lca->to_keep); 3242 3243 /* 3244 * Process the livelists (matching FREEs and ALLOCs) in open context 3245 * so we have minimal work in syncing context to condense. 3246 * 3247 * We save bpobj sizes (first_size and next_size) to use later in 3248 * syncing context to determine if entries were added to these sublists 3249 * while in open context. This is possible because the clone is still 3250 * active and open for normal writes and we want to make sure the new, 3251 * unprocessed blockpointers are inserted into the livelist normally. 3252 * 3253 * Note that dsl_process_sub_livelist() both stores the size number of 3254 * blockpointers and iterates over them while the bpobj's lock held, so 3255 * the sizes returned to us are consistent which what was actually 3256 * processed. 3257 */ 3258 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 3259 &first_size); 3260 if (err == 0) 3261 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 3262 t, &next_size); 3263 3264 if (err == 0) { 3265 while (zfs_livelist_condense_sync_pause && 3266 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 3267 delay(1); 3268 3269 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 3270 dmu_tx_mark_netfree(tx); 3271 dmu_tx_hold_space(tx, 1); 3272 err = dmu_tx_assign(tx, DMU_TX_NOWAIT | DMU_TX_NOTHROTTLE); 3273 if (err == 0) { 3274 /* 3275 * Prevent the condense zthr restarting before 3276 * the synctask completes. 3277 */ 3278 spa->spa_to_condense.syncing = B_TRUE; 3279 lca->spa = spa; 3280 lca->first_size = first_size; 3281 lca->next_size = next_size; 3282 dsl_sync_task_nowait(spa_get_dsl(spa), 3283 spa_livelist_condense_sync, lca, tx); 3284 dmu_tx_commit(tx); 3285 return; 3286 } 3287 } 3288 /* 3289 * Condensing can not continue: either it was externally stopped or 3290 * we were unable to assign to a tx because the pool has run out of 3291 * space. In the second case, we'll just end up trying to condense 3292 * again in a later txg. 3293 */ 3294 ASSERT(err != 0); 3295 bplist_clear(&lca->to_keep); 3296 bplist_destroy(&lca->to_keep); 3297 kmem_free(lca, sizeof (livelist_condense_arg_t)); 3298 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 3299 spa->spa_to_condense.ds = NULL; 3300 if (err == EINTR) 3301 zfs_livelist_condense_zthr_cancel++; 3302 } 3303 3304 /* 3305 * Check that there is something to condense but that a condense is not 3306 * already in progress and that condensing has not been cancelled. 3307 */ 3308 static boolean_t 3309 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 3310 { 3311 (void) z; 3312 spa_t *spa = arg; 3313 if ((spa->spa_to_condense.ds != NULL) && 3314 (spa->spa_to_condense.syncing == B_FALSE) && 3315 (spa->spa_to_condense.cancelled == B_FALSE)) { 3316 return (B_TRUE); 3317 } 3318 return (B_FALSE); 3319 } 3320 3321 static void 3322 spa_start_livelist_condensing_thread(spa_t *spa) 3323 { 3324 spa->spa_to_condense.ds = NULL; 3325 spa->spa_to_condense.first = NULL; 3326 spa->spa_to_condense.next = NULL; 3327 spa->spa_to_condense.syncing = B_FALSE; 3328 spa->spa_to_condense.cancelled = B_FALSE; 3329 3330 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 3331 spa->spa_livelist_condense_zthr = 3332 zthr_create("z_livelist_condense", 3333 spa_livelist_condense_cb_check, 3334 spa_livelist_condense_cb, spa, minclsyspri); 3335 } 3336 3337 static void 3338 spa_spawn_aux_threads(spa_t *spa) 3339 { 3340 ASSERT(spa_writeable(spa)); 3341 3342 spa_start_raidz_expansion_thread(spa); 3343 spa_start_indirect_condensing_thread(spa); 3344 spa_start_livelist_destroy_thread(spa); 3345 spa_start_livelist_condensing_thread(spa); 3346 3347 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 3348 spa->spa_checkpoint_discard_zthr = 3349 zthr_create("z_checkpoint_discard", 3350 spa_checkpoint_discard_thread_check, 3351 spa_checkpoint_discard_thread, spa, minclsyspri); 3352 } 3353 3354 /* 3355 * Fix up config after a partly-completed split. This is done with the 3356 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 3357 * pool have that entry in their config, but only the splitting one contains 3358 * a list of all the guids of the vdevs that are being split off. 3359 * 3360 * This function determines what to do with that list: either rejoin 3361 * all the disks to the pool, or complete the splitting process. To attempt 3362 * the rejoin, each disk that is offlined is marked online again, and 3363 * we do a reopen() call. If the vdev label for every disk that was 3364 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 3365 * then we call vdev_split() on each disk, and complete the split. 3366 * 3367 * Otherwise we leave the config alone, with all the vdevs in place in 3368 * the original pool. 3369 */ 3370 static void 3371 spa_try_repair(spa_t *spa, nvlist_t *config) 3372 { 3373 uint_t extracted; 3374 uint64_t *glist; 3375 uint_t i, gcount; 3376 nvlist_t *nvl; 3377 vdev_t **vd; 3378 boolean_t attempt_reopen; 3379 3380 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 3381 return; 3382 3383 /* check that the config is complete */ 3384 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 3385 &glist, &gcount) != 0) 3386 return; 3387 3388 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 3389 3390 /* attempt to online all the vdevs & validate */ 3391 attempt_reopen = B_TRUE; 3392 for (i = 0; i < gcount; i++) { 3393 if (glist[i] == 0) /* vdev is hole */ 3394 continue; 3395 3396 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 3397 if (vd[i] == NULL) { 3398 /* 3399 * Don't bother attempting to reopen the disks; 3400 * just do the split. 3401 */ 3402 attempt_reopen = B_FALSE; 3403 } else { 3404 /* attempt to re-online it */ 3405 vd[i]->vdev_offline = B_FALSE; 3406 } 3407 } 3408 3409 if (attempt_reopen) { 3410 vdev_reopen(spa->spa_root_vdev); 3411 3412 /* check each device to see what state it's in */ 3413 for (extracted = 0, i = 0; i < gcount; i++) { 3414 if (vd[i] != NULL && 3415 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 3416 break; 3417 ++extracted; 3418 } 3419 } 3420 3421 /* 3422 * If every disk has been moved to the new pool, or if we never 3423 * even attempted to look at them, then we split them off for 3424 * good. 3425 */ 3426 if (!attempt_reopen || gcount == extracted) { 3427 for (i = 0; i < gcount; i++) 3428 if (vd[i] != NULL) 3429 vdev_split(vd[i]); 3430 vdev_reopen(spa->spa_root_vdev); 3431 } 3432 3433 kmem_free(vd, gcount * sizeof (vdev_t *)); 3434 } 3435 3436 static int 3437 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 3438 { 3439 const char *ereport = FM_EREPORT_ZFS_POOL; 3440 int error; 3441 3442 spa->spa_load_state = state; 3443 (void) spa_import_progress_set_state(spa_guid(spa), 3444 spa_load_state(spa)); 3445 spa_import_progress_set_notes(spa, "spa_load()"); 3446 3447 gethrestime(&spa->spa_loaded_ts); 3448 error = spa_load_impl(spa, type, &ereport); 3449 3450 /* 3451 * Don't count references from objsets that are already closed 3452 * and are making their way through the eviction process. 3453 */ 3454 spa_evicting_os_wait(spa); 3455 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 3456 if (error) { 3457 if (error != EEXIST) { 3458 spa->spa_loaded_ts.tv_sec = 0; 3459 spa->spa_loaded_ts.tv_nsec = 0; 3460 } 3461 if (error != EBADF) { 3462 (void) zfs_ereport_post(ereport, spa, 3463 NULL, NULL, NULL, 0); 3464 } 3465 } 3466 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 3467 spa->spa_ena = 0; 3468 3469 (void) spa_import_progress_set_state(spa_guid(spa), 3470 spa_load_state(spa)); 3471 3472 return (error); 3473 } 3474 3475 #ifdef ZFS_DEBUG 3476 /* 3477 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 3478 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 3479 * spa's per-vdev ZAP list. 3480 */ 3481 static uint64_t 3482 vdev_count_verify_zaps(vdev_t *vd) 3483 { 3484 spa_t *spa = vd->vdev_spa; 3485 uint64_t total = 0; 3486 3487 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) && 3488 vd->vdev_root_zap != 0) { 3489 total++; 3490 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3491 spa->spa_all_vdev_zaps, vd->vdev_root_zap)); 3492 } 3493 if (vd->vdev_top_zap != 0) { 3494 total++; 3495 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3496 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 3497 } 3498 if (vd->vdev_leaf_zap != 0) { 3499 total++; 3500 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 3501 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 3502 } 3503 3504 for (uint64_t i = 0; i < vd->vdev_children; i++) { 3505 total += vdev_count_verify_zaps(vd->vdev_child[i]); 3506 } 3507 3508 return (total); 3509 } 3510 #else 3511 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0) 3512 #endif 3513 3514 /* 3515 * Determine whether the activity check is required. 3516 */ 3517 static boolean_t 3518 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 3519 nvlist_t *config) 3520 { 3521 uint64_t state = 0; 3522 uint64_t hostid = 0; 3523 uint64_t tryconfig_txg = 0; 3524 uint64_t tryconfig_timestamp = 0; 3525 uint16_t tryconfig_mmp_seq = 0; 3526 nvlist_t *nvinfo; 3527 3528 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3529 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 3530 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 3531 &tryconfig_txg); 3532 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3533 &tryconfig_timestamp); 3534 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 3535 &tryconfig_mmp_seq); 3536 } 3537 3538 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 3539 3540 /* 3541 * Disable the MMP activity check - This is used by zdb which 3542 * is intended to be used on potentially active pools. 3543 */ 3544 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 3545 return (B_FALSE); 3546 3547 /* 3548 * Skip the activity check when the MMP feature is disabled. 3549 */ 3550 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 3551 return (B_FALSE); 3552 3553 /* 3554 * If the tryconfig_ values are nonzero, they are the results of an 3555 * earlier tryimport. If they all match the uberblock we just found, 3556 * then the pool has not changed and we return false so we do not test 3557 * a second time. 3558 */ 3559 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 3560 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 3561 tryconfig_mmp_seq && tryconfig_mmp_seq == 3562 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 3563 return (B_FALSE); 3564 3565 /* 3566 * Allow the activity check to be skipped when importing the pool 3567 * on the same host which last imported it. Since the hostid from 3568 * configuration may be stale use the one read from the label. 3569 */ 3570 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 3571 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 3572 3573 if (hostid == spa_get_hostid(spa)) 3574 return (B_FALSE); 3575 3576 /* 3577 * Skip the activity test when the pool was cleanly exported. 3578 */ 3579 if (state != POOL_STATE_ACTIVE) 3580 return (B_FALSE); 3581 3582 return (B_TRUE); 3583 } 3584 3585 /* 3586 * Nanoseconds the activity check must watch for changes on-disk. 3587 */ 3588 static uint64_t 3589 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 3590 { 3591 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 3592 uint64_t multihost_interval = MSEC2NSEC( 3593 MMP_INTERVAL_OK(zfs_multihost_interval)); 3594 uint64_t import_delay = MAX(NANOSEC, import_intervals * 3595 multihost_interval); 3596 3597 /* 3598 * Local tunables determine a minimum duration except for the case 3599 * where we know when the remote host will suspend the pool if MMP 3600 * writes do not land. 3601 * 3602 * See Big Theory comment at the top of mmp.c for the reasoning behind 3603 * these cases and times. 3604 */ 3605 3606 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3607 3608 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3609 MMP_FAIL_INT(ub) > 0) { 3610 3611 /* MMP on remote host will suspend pool after failed writes */ 3612 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3613 MMP_IMPORT_SAFETY_FACTOR / 100; 3614 3615 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3616 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3617 "import_intervals=%llu", (u_longlong_t)import_delay, 3618 (u_longlong_t)MMP_FAIL_INT(ub), 3619 (u_longlong_t)MMP_INTERVAL(ub), 3620 (u_longlong_t)import_intervals); 3621 3622 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3623 MMP_FAIL_INT(ub) == 0) { 3624 3625 /* MMP on remote host will never suspend pool */ 3626 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3627 ub->ub_mmp_delay) * import_intervals); 3628 3629 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3630 "mmp_interval=%llu ub_mmp_delay=%llu " 3631 "import_intervals=%llu", (u_longlong_t)import_delay, 3632 (u_longlong_t)MMP_INTERVAL(ub), 3633 (u_longlong_t)ub->ub_mmp_delay, 3634 (u_longlong_t)import_intervals); 3635 3636 } else if (MMP_VALID(ub)) { 3637 /* 3638 * zfs-0.7 compatibility case 3639 */ 3640 3641 import_delay = MAX(import_delay, (multihost_interval + 3642 ub->ub_mmp_delay) * import_intervals); 3643 3644 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3645 "import_intervals=%llu leaves=%u", 3646 (u_longlong_t)import_delay, 3647 (u_longlong_t)ub->ub_mmp_delay, 3648 (u_longlong_t)import_intervals, 3649 vdev_count_leaves(spa)); 3650 } else { 3651 /* Using local tunings is the only reasonable option */ 3652 zfs_dbgmsg("pool last imported on non-MMP aware " 3653 "host using import_delay=%llu multihost_interval=%llu " 3654 "import_intervals=%llu", (u_longlong_t)import_delay, 3655 (u_longlong_t)multihost_interval, 3656 (u_longlong_t)import_intervals); 3657 } 3658 3659 return (import_delay); 3660 } 3661 3662 /* 3663 * Remote host activity check. 3664 * 3665 * error results: 3666 * 0 - no activity detected 3667 * EREMOTEIO - remote activity detected 3668 * EINTR - user canceled the operation 3669 */ 3670 static int 3671 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config, 3672 boolean_t importing) 3673 { 3674 uint64_t txg = ub->ub_txg; 3675 uint64_t timestamp = ub->ub_timestamp; 3676 uint64_t mmp_config = ub->ub_mmp_config; 3677 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3678 uint64_t import_delay; 3679 hrtime_t import_expire, now; 3680 nvlist_t *mmp_label = NULL; 3681 vdev_t *rvd = spa->spa_root_vdev; 3682 kcondvar_t cv; 3683 kmutex_t mtx; 3684 int error = 0; 3685 3686 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3687 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3688 mutex_enter(&mtx); 3689 3690 /* 3691 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3692 * during the earlier tryimport. If the txg recorded there is 0 then 3693 * the pool is known to be active on another host. 3694 * 3695 * Otherwise, the pool might be in use on another host. Check for 3696 * changes in the uberblocks on disk if necessary. 3697 */ 3698 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3699 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3700 ZPOOL_CONFIG_LOAD_INFO); 3701 3702 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3703 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3704 vdev_uberblock_load(rvd, ub, &mmp_label); 3705 error = SET_ERROR(EREMOTEIO); 3706 goto out; 3707 } 3708 } 3709 3710 import_delay = spa_activity_check_duration(spa, ub); 3711 3712 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3713 import_delay += import_delay * random_in_range(250) / 1000; 3714 3715 import_expire = gethrtime() + import_delay; 3716 3717 if (importing) { 3718 spa_import_progress_set_notes(spa, "Checking MMP activity, " 3719 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay)); 3720 } 3721 3722 int iterations = 0; 3723 while ((now = gethrtime()) < import_expire) { 3724 if (importing && iterations++ % 30 == 0) { 3725 spa_import_progress_set_notes(spa, "Checking MMP " 3726 "activity, %llu ms remaining", 3727 (u_longlong_t)NSEC2MSEC(import_expire - now)); 3728 } 3729 3730 if (importing) { 3731 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3732 NSEC2SEC(import_expire - gethrtime())); 3733 } 3734 3735 vdev_uberblock_load(rvd, ub, &mmp_label); 3736 3737 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3738 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3739 zfs_dbgmsg("multihost activity detected " 3740 "txg %llu ub_txg %llu " 3741 "timestamp %llu ub_timestamp %llu " 3742 "mmp_config %#llx ub_mmp_config %#llx", 3743 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg, 3744 (u_longlong_t)timestamp, 3745 (u_longlong_t)ub->ub_timestamp, 3746 (u_longlong_t)mmp_config, 3747 (u_longlong_t)ub->ub_mmp_config); 3748 3749 error = SET_ERROR(EREMOTEIO); 3750 break; 3751 } 3752 3753 if (mmp_label) { 3754 nvlist_free(mmp_label); 3755 mmp_label = NULL; 3756 } 3757 3758 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3759 if (error != -1) { 3760 error = SET_ERROR(EINTR); 3761 break; 3762 } 3763 error = 0; 3764 } 3765 3766 out: 3767 mutex_exit(&mtx); 3768 mutex_destroy(&mtx); 3769 cv_destroy(&cv); 3770 3771 /* 3772 * If the pool is determined to be active store the status in the 3773 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3774 * available from configuration read from disk store them as well. 3775 * This allows 'zpool import' to generate a more useful message. 3776 * 3777 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3778 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3779 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3780 */ 3781 if (error == EREMOTEIO) { 3782 const char *hostname = "<unknown>"; 3783 uint64_t hostid = 0; 3784 3785 if (mmp_label) { 3786 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3787 hostname = fnvlist_lookup_string(mmp_label, 3788 ZPOOL_CONFIG_HOSTNAME); 3789 fnvlist_add_string(spa->spa_load_info, 3790 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3791 } 3792 3793 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3794 hostid = fnvlist_lookup_uint64(mmp_label, 3795 ZPOOL_CONFIG_HOSTID); 3796 fnvlist_add_uint64(spa->spa_load_info, 3797 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3798 } 3799 } 3800 3801 fnvlist_add_uint64(spa->spa_load_info, 3802 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3803 fnvlist_add_uint64(spa->spa_load_info, 3804 ZPOOL_CONFIG_MMP_TXG, 0); 3805 3806 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3807 } 3808 3809 if (mmp_label) 3810 nvlist_free(mmp_label); 3811 3812 return (error); 3813 } 3814 3815 /* 3816 * Called from zfs_ioc_clear for a pool that was suspended 3817 * after failing mmp write checks. 3818 */ 3819 boolean_t 3820 spa_mmp_remote_host_activity(spa_t *spa) 3821 { 3822 ASSERT(spa_multihost(spa) && spa_suspended(spa)); 3823 3824 nvlist_t *best_label; 3825 uberblock_t best_ub; 3826 3827 /* 3828 * Locate the best uberblock on disk 3829 */ 3830 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label); 3831 if (best_label) { 3832 /* 3833 * confirm that the best hostid matches our hostid 3834 */ 3835 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) && 3836 spa_get_hostid(spa) != 3837 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) { 3838 nvlist_free(best_label); 3839 return (B_TRUE); 3840 } 3841 nvlist_free(best_label); 3842 } else { 3843 return (B_TRUE); 3844 } 3845 3846 if (!MMP_VALID(&best_ub) || 3847 !MMP_FAIL_INT_VALID(&best_ub) || 3848 MMP_FAIL_INT(&best_ub) == 0) { 3849 return (B_TRUE); 3850 } 3851 3852 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg || 3853 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) { 3854 zfs_dbgmsg("txg mismatch detected during pool clear " 3855 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu", 3856 (u_longlong_t)spa->spa_uberblock.ub_txg, 3857 (u_longlong_t)best_ub.ub_txg, 3858 (u_longlong_t)spa->spa_uberblock.ub_timestamp, 3859 (u_longlong_t)best_ub.ub_timestamp); 3860 return (B_TRUE); 3861 } 3862 3863 /* 3864 * Perform an activity check looking for any remote writer 3865 */ 3866 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config, 3867 B_FALSE) != 0); 3868 } 3869 3870 static int 3871 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3872 { 3873 uint64_t hostid; 3874 const char *hostname; 3875 uint64_t myhostid = 0; 3876 3877 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3878 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3879 hostname = fnvlist_lookup_string(mos_config, 3880 ZPOOL_CONFIG_HOSTNAME); 3881 3882 myhostid = zone_get_hostid(NULL); 3883 3884 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3885 cmn_err(CE_WARN, "pool '%s' could not be " 3886 "loaded as it was last accessed by " 3887 "another system (host: %s hostid: 0x%llx). " 3888 "See: https://openzfs.github.io/openzfs-docs/msg/" 3889 "ZFS-8000-EY", 3890 spa_name(spa), hostname, (u_longlong_t)hostid); 3891 spa_load_failed(spa, "hostid verification failed: pool " 3892 "last accessed by host: %s (hostid: 0x%llx)", 3893 hostname, (u_longlong_t)hostid); 3894 return (SET_ERROR(EBADF)); 3895 } 3896 } 3897 3898 return (0); 3899 } 3900 3901 static int 3902 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3903 { 3904 int error = 0; 3905 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3906 int parse; 3907 vdev_t *rvd; 3908 uint64_t pool_guid; 3909 const char *comment; 3910 const char *compatibility; 3911 3912 /* 3913 * Versioning wasn't explicitly added to the label until later, so if 3914 * it's not present treat it as the initial version. 3915 */ 3916 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3917 &spa->spa_ubsync.ub_version) != 0) 3918 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3919 3920 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3921 spa_load_failed(spa, "invalid config provided: '%s' missing", 3922 ZPOOL_CONFIG_POOL_GUID); 3923 return (SET_ERROR(EINVAL)); 3924 } 3925 3926 /* 3927 * If we are doing an import, ensure that the pool is not already 3928 * imported by checking if its pool guid already exists in the 3929 * spa namespace. 3930 * 3931 * The only case that we allow an already imported pool to be 3932 * imported again, is when the pool is checkpointed and we want to 3933 * look at its checkpointed state from userland tools like zdb. 3934 */ 3935 #ifdef _KERNEL 3936 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3937 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3938 spa_guid_exists(pool_guid, 0)) { 3939 #else 3940 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3941 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3942 spa_guid_exists(pool_guid, 0) && 3943 !spa_importing_readonly_checkpoint(spa)) { 3944 #endif 3945 spa_load_failed(spa, "a pool with guid %llu is already open", 3946 (u_longlong_t)pool_guid); 3947 return (SET_ERROR(EEXIST)); 3948 } 3949 3950 spa->spa_config_guid = pool_guid; 3951 3952 nvlist_free(spa->spa_load_info); 3953 spa->spa_load_info = fnvlist_alloc(); 3954 3955 ASSERT(spa->spa_comment == NULL); 3956 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3957 spa->spa_comment = spa_strdup(comment); 3958 3959 ASSERT(spa->spa_compatibility == NULL); 3960 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY, 3961 &compatibility) == 0) 3962 spa->spa_compatibility = spa_strdup(compatibility); 3963 3964 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3965 &spa->spa_config_txg); 3966 3967 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3968 spa->spa_config_splitting = fnvlist_dup(nvl); 3969 3970 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3971 spa_load_failed(spa, "invalid config provided: '%s' missing", 3972 ZPOOL_CONFIG_VDEV_TREE); 3973 return (SET_ERROR(EINVAL)); 3974 } 3975 3976 /* 3977 * Create "The Godfather" zio to hold all async IOs 3978 */ 3979 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3980 KM_SLEEP); 3981 for (int i = 0; i < max_ncpus; i++) { 3982 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3983 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3984 ZIO_FLAG_GODFATHER); 3985 } 3986 3987 /* 3988 * Parse the configuration into a vdev tree. We explicitly set the 3989 * value that will be returned by spa_version() since parsing the 3990 * configuration requires knowing the version number. 3991 */ 3992 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3993 parse = (type == SPA_IMPORT_EXISTING ? 3994 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3995 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3996 spa_config_exit(spa, SCL_ALL, FTAG); 3997 3998 if (error != 0) { 3999 spa_load_failed(spa, "unable to parse config [error=%d]", 4000 error); 4001 return (error); 4002 } 4003 4004 ASSERT(spa->spa_root_vdev == rvd); 4005 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 4006 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 4007 4008 if (type != SPA_IMPORT_ASSEMBLE) { 4009 ASSERT(spa_guid(spa) == pool_guid); 4010 } 4011 4012 return (0); 4013 } 4014 4015 /* 4016 * Recursively open all vdevs in the vdev tree. This function is called twice: 4017 * first with the untrusted config, then with the trusted config. 4018 */ 4019 static int 4020 spa_ld_open_vdevs(spa_t *spa) 4021 { 4022 int error = 0; 4023 4024 /* 4025 * spa_missing_tvds_allowed defines how many top-level vdevs can be 4026 * missing/unopenable for the root vdev to be still considered openable. 4027 */ 4028 if (spa->spa_trust_config) { 4029 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 4030 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 4031 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 4032 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 4033 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 4034 } else { 4035 spa->spa_missing_tvds_allowed = 0; 4036 } 4037 4038 spa->spa_missing_tvds_allowed = 4039 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 4040 4041 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4042 error = vdev_open(spa->spa_root_vdev); 4043 spa_config_exit(spa, SCL_ALL, FTAG); 4044 4045 if (spa->spa_missing_tvds != 0) { 4046 spa_load_note(spa, "vdev tree has %lld missing top-level " 4047 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 4048 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 4049 /* 4050 * Although theoretically we could allow users to open 4051 * incomplete pools in RW mode, we'd need to add a lot 4052 * of extra logic (e.g. adjust pool space to account 4053 * for missing vdevs). 4054 * This limitation also prevents users from accidentally 4055 * opening the pool in RW mode during data recovery and 4056 * damaging it further. 4057 */ 4058 spa_load_note(spa, "pools with missing top-level " 4059 "vdevs can only be opened in read-only mode."); 4060 error = SET_ERROR(ENXIO); 4061 } else { 4062 spa_load_note(spa, "current settings allow for maximum " 4063 "%lld missing top-level vdevs at this stage.", 4064 (u_longlong_t)spa->spa_missing_tvds_allowed); 4065 } 4066 } 4067 if (error != 0) { 4068 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 4069 error); 4070 } 4071 if (spa->spa_missing_tvds != 0 || error != 0) 4072 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 4073 4074 return (error); 4075 } 4076 4077 /* 4078 * We need to validate the vdev labels against the configuration that 4079 * we have in hand. This function is called twice: first with an untrusted 4080 * config, then with a trusted config. The validation is more strict when the 4081 * config is trusted. 4082 */ 4083 static int 4084 spa_ld_validate_vdevs(spa_t *spa) 4085 { 4086 int error = 0; 4087 vdev_t *rvd = spa->spa_root_vdev; 4088 4089 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4090 error = vdev_validate(rvd); 4091 spa_config_exit(spa, SCL_ALL, FTAG); 4092 4093 if (error != 0) { 4094 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 4095 return (error); 4096 } 4097 4098 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 4099 spa_load_failed(spa, "cannot open vdev tree after invalidating " 4100 "some vdevs"); 4101 vdev_dbgmsg_print_tree(rvd, 2); 4102 return (SET_ERROR(ENXIO)); 4103 } 4104 4105 return (0); 4106 } 4107 4108 static void 4109 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 4110 { 4111 spa->spa_state = POOL_STATE_ACTIVE; 4112 spa->spa_ubsync = spa->spa_uberblock; 4113 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 4114 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 4115 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 4116 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 4117 spa->spa_claim_max_txg = spa->spa_first_txg; 4118 spa->spa_prev_software_version = ub->ub_software_version; 4119 } 4120 4121 static int 4122 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 4123 { 4124 vdev_t *rvd = spa->spa_root_vdev; 4125 nvlist_t *label; 4126 uberblock_t *ub = &spa->spa_uberblock; 4127 boolean_t activity_check = B_FALSE; 4128 4129 /* 4130 * If we are opening the checkpointed state of the pool by 4131 * rewinding to it, at this point we will have written the 4132 * checkpointed uberblock to the vdev labels, so searching 4133 * the labels will find the right uberblock. However, if 4134 * we are opening the checkpointed state read-only, we have 4135 * not modified the labels. Therefore, we must ignore the 4136 * labels and continue using the spa_uberblock that was set 4137 * by spa_ld_checkpoint_rewind. 4138 * 4139 * Note that it would be fine to ignore the labels when 4140 * rewinding (opening writeable) as well. However, if we 4141 * crash just after writing the labels, we will end up 4142 * searching the labels. Doing so in the common case means 4143 * that this code path gets exercised normally, rather than 4144 * just in the edge case. 4145 */ 4146 if (ub->ub_checkpoint_txg != 0 && 4147 spa_importing_readonly_checkpoint(spa)) { 4148 spa_ld_select_uberblock_done(spa, ub); 4149 return (0); 4150 } 4151 4152 /* 4153 * Find the best uberblock. 4154 */ 4155 vdev_uberblock_load(rvd, ub, &label); 4156 4157 /* 4158 * If we weren't able to find a single valid uberblock, return failure. 4159 */ 4160 if (ub->ub_txg == 0) { 4161 nvlist_free(label); 4162 spa_load_failed(spa, "no valid uberblock found"); 4163 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 4164 } 4165 4166 if (spa->spa_load_max_txg != UINT64_MAX) { 4167 (void) spa_import_progress_set_max_txg(spa_guid(spa), 4168 (u_longlong_t)spa->spa_load_max_txg); 4169 } 4170 spa_load_note(spa, "using uberblock with txg=%llu", 4171 (u_longlong_t)ub->ub_txg); 4172 if (ub->ub_raidz_reflow_info != 0) { 4173 spa_load_note(spa, "uberblock raidz_reflow_info: " 4174 "state=%u offset=%llu", 4175 (int)RRSS_GET_STATE(ub), 4176 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4177 } 4178 4179 4180 /* 4181 * For pools which have the multihost property on determine if the 4182 * pool is truly inactive and can be safely imported. Prevent 4183 * hosts which don't have a hostid set from importing the pool. 4184 */ 4185 activity_check = spa_activity_check_required(spa, ub, label, 4186 spa->spa_config); 4187 if (activity_check) { 4188 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 4189 spa_get_hostid(spa) == 0) { 4190 nvlist_free(label); 4191 fnvlist_add_uint64(spa->spa_load_info, 4192 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4193 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4194 } 4195 4196 int error = 4197 spa_activity_check(spa, ub, spa->spa_config, B_TRUE); 4198 if (error) { 4199 nvlist_free(label); 4200 return (error); 4201 } 4202 4203 fnvlist_add_uint64(spa->spa_load_info, 4204 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 4205 fnvlist_add_uint64(spa->spa_load_info, 4206 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 4207 fnvlist_add_uint16(spa->spa_load_info, 4208 ZPOOL_CONFIG_MMP_SEQ, 4209 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 4210 } 4211 4212 /* 4213 * If the pool has an unsupported version we can't open it. 4214 */ 4215 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 4216 nvlist_free(label); 4217 spa_load_failed(spa, "version %llu is not supported", 4218 (u_longlong_t)ub->ub_version); 4219 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 4220 } 4221 4222 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4223 nvlist_t *features; 4224 4225 /* 4226 * If we weren't able to find what's necessary for reading the 4227 * MOS in the label, return failure. 4228 */ 4229 if (label == NULL) { 4230 spa_load_failed(spa, "label config unavailable"); 4231 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4232 ENXIO)); 4233 } 4234 4235 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 4236 &features) != 0) { 4237 nvlist_free(label); 4238 spa_load_failed(spa, "invalid label: '%s' missing", 4239 ZPOOL_CONFIG_FEATURES_FOR_READ); 4240 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4241 ENXIO)); 4242 } 4243 4244 /* 4245 * Update our in-core representation with the definitive values 4246 * from the label. 4247 */ 4248 nvlist_free(spa->spa_label_features); 4249 spa->spa_label_features = fnvlist_dup(features); 4250 } 4251 4252 nvlist_free(label); 4253 4254 /* 4255 * Look through entries in the label nvlist's features_for_read. If 4256 * there is a feature listed there which we don't understand then we 4257 * cannot open a pool. 4258 */ 4259 if (ub->ub_version >= SPA_VERSION_FEATURES) { 4260 nvlist_t *unsup_feat; 4261 4262 unsup_feat = fnvlist_alloc(); 4263 4264 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 4265 NULL); nvp != NULL; 4266 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 4267 if (!zfeature_is_supported(nvpair_name(nvp))) { 4268 fnvlist_add_string(unsup_feat, 4269 nvpair_name(nvp), ""); 4270 } 4271 } 4272 4273 if (!nvlist_empty(unsup_feat)) { 4274 fnvlist_add_nvlist(spa->spa_load_info, 4275 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4276 nvlist_free(unsup_feat); 4277 spa_load_failed(spa, "some features are unsupported"); 4278 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4279 ENOTSUP)); 4280 } 4281 4282 nvlist_free(unsup_feat); 4283 } 4284 4285 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 4286 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4287 spa_try_repair(spa, spa->spa_config); 4288 spa_config_exit(spa, SCL_ALL, FTAG); 4289 nvlist_free(spa->spa_config_splitting); 4290 spa->spa_config_splitting = NULL; 4291 } 4292 4293 /* 4294 * Initialize internal SPA structures. 4295 */ 4296 spa_ld_select_uberblock_done(spa, ub); 4297 4298 return (0); 4299 } 4300 4301 static int 4302 spa_ld_open_rootbp(spa_t *spa) 4303 { 4304 int error = 0; 4305 vdev_t *rvd = spa->spa_root_vdev; 4306 4307 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 4308 if (error != 0) { 4309 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 4310 "[error=%d]", error); 4311 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4312 } 4313 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 4314 4315 return (0); 4316 } 4317 4318 static int 4319 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 4320 boolean_t reloading) 4321 { 4322 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 4323 nvlist_t *nv, *mos_config, *policy; 4324 int error = 0, copy_error; 4325 uint64_t healthy_tvds, healthy_tvds_mos; 4326 uint64_t mos_config_txg; 4327 4328 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 4329 != 0) 4330 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4331 4332 /* 4333 * If we're assembling a pool from a split, the config provided is 4334 * already trusted so there is nothing to do. 4335 */ 4336 if (type == SPA_IMPORT_ASSEMBLE) 4337 return (0); 4338 4339 healthy_tvds = spa_healthy_core_tvds(spa); 4340 4341 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 4342 != 0) { 4343 spa_load_failed(spa, "unable to retrieve MOS config"); 4344 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4345 } 4346 4347 /* 4348 * If we are doing an open, pool owner wasn't verified yet, thus do 4349 * the verification here. 4350 */ 4351 if (spa->spa_load_state == SPA_LOAD_OPEN) { 4352 error = spa_verify_host(spa, mos_config); 4353 if (error != 0) { 4354 nvlist_free(mos_config); 4355 return (error); 4356 } 4357 } 4358 4359 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 4360 4361 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4362 4363 /* 4364 * Build a new vdev tree from the trusted config 4365 */ 4366 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD); 4367 if (error != 0) { 4368 nvlist_free(mos_config); 4369 spa_config_exit(spa, SCL_ALL, FTAG); 4370 spa_load_failed(spa, "spa_config_parse failed [error=%d]", 4371 error); 4372 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4373 } 4374 4375 /* 4376 * Vdev paths in the MOS may be obsolete. If the untrusted config was 4377 * obtained by scanning /dev/dsk, then it will have the right vdev 4378 * paths. We update the trusted MOS config with this information. 4379 * We first try to copy the paths with vdev_copy_path_strict, which 4380 * succeeds only when both configs have exactly the same vdev tree. 4381 * If that fails, we fall back to a more flexible method that has a 4382 * best effort policy. 4383 */ 4384 copy_error = vdev_copy_path_strict(rvd, mrvd); 4385 if (copy_error != 0 || spa_load_print_vdev_tree) { 4386 spa_load_note(spa, "provided vdev tree:"); 4387 vdev_dbgmsg_print_tree(rvd, 2); 4388 spa_load_note(spa, "MOS vdev tree:"); 4389 vdev_dbgmsg_print_tree(mrvd, 2); 4390 } 4391 if (copy_error != 0) { 4392 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 4393 "back to vdev_copy_path_relaxed"); 4394 vdev_copy_path_relaxed(rvd, mrvd); 4395 } 4396 4397 vdev_close(rvd); 4398 vdev_free(rvd); 4399 spa->spa_root_vdev = mrvd; 4400 rvd = mrvd; 4401 spa_config_exit(spa, SCL_ALL, FTAG); 4402 4403 /* 4404 * If 'zpool import' used a cached config, then the on-disk hostid and 4405 * hostname may be different to the cached config in ways that should 4406 * prevent import. Userspace can't discover this without a scan, but 4407 * we know, so we add these values to LOAD_INFO so the caller can know 4408 * the difference. 4409 * 4410 * Note that we have to do this before the config is regenerated, 4411 * because the new config will have the hostid and hostname for this 4412 * host, in readiness for import. 4413 */ 4414 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID)) 4415 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID, 4416 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID)); 4417 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME)) 4418 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME, 4419 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME)); 4420 4421 /* 4422 * We will use spa_config if we decide to reload the spa or if spa_load 4423 * fails and we rewind. We must thus regenerate the config using the 4424 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 4425 * pass settings on how to load the pool and is not stored in the MOS. 4426 * We copy it over to our new, trusted config. 4427 */ 4428 mos_config_txg = fnvlist_lookup_uint64(mos_config, 4429 ZPOOL_CONFIG_POOL_TXG); 4430 nvlist_free(mos_config); 4431 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 4432 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 4433 &policy) == 0) 4434 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 4435 spa_config_set(spa, mos_config); 4436 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 4437 4438 /* 4439 * Now that we got the config from the MOS, we should be more strict 4440 * in checking blkptrs and can make assumptions about the consistency 4441 * of the vdev tree. spa_trust_config must be set to true before opening 4442 * vdevs in order for them to be writeable. 4443 */ 4444 spa->spa_trust_config = B_TRUE; 4445 4446 /* 4447 * Open and validate the new vdev tree 4448 */ 4449 error = spa_ld_open_vdevs(spa); 4450 if (error != 0) 4451 return (error); 4452 4453 error = spa_ld_validate_vdevs(spa); 4454 if (error != 0) 4455 return (error); 4456 4457 if (copy_error != 0 || spa_load_print_vdev_tree) { 4458 spa_load_note(spa, "final vdev tree:"); 4459 vdev_dbgmsg_print_tree(rvd, 2); 4460 } 4461 4462 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 4463 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 4464 /* 4465 * Sanity check to make sure that we are indeed loading the 4466 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 4467 * in the config provided and they happened to be the only ones 4468 * to have the latest uberblock, we could involuntarily perform 4469 * an extreme rewind. 4470 */ 4471 healthy_tvds_mos = spa_healthy_core_tvds(spa); 4472 if (healthy_tvds_mos - healthy_tvds >= 4473 SPA_SYNC_MIN_VDEVS) { 4474 spa_load_note(spa, "config provided misses too many " 4475 "top-level vdevs compared to MOS (%lld vs %lld). ", 4476 (u_longlong_t)healthy_tvds, 4477 (u_longlong_t)healthy_tvds_mos); 4478 spa_load_note(spa, "vdev tree:"); 4479 vdev_dbgmsg_print_tree(rvd, 2); 4480 if (reloading) { 4481 spa_load_failed(spa, "config was already " 4482 "provided from MOS. Aborting."); 4483 return (spa_vdev_err(rvd, 4484 VDEV_AUX_CORRUPT_DATA, EIO)); 4485 } 4486 spa_load_note(spa, "spa must be reloaded using MOS " 4487 "config"); 4488 return (SET_ERROR(EAGAIN)); 4489 } 4490 } 4491 4492 error = spa_check_for_missing_logs(spa); 4493 if (error != 0) 4494 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 4495 4496 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 4497 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 4498 "guid sum (%llu != %llu)", 4499 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 4500 (u_longlong_t)rvd->vdev_guid_sum); 4501 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 4502 ENXIO)); 4503 } 4504 4505 return (0); 4506 } 4507 4508 static int 4509 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 4510 { 4511 int error = 0; 4512 vdev_t *rvd = spa->spa_root_vdev; 4513 4514 /* 4515 * Everything that we read before spa_remove_init() must be stored 4516 * on concreted vdevs. Therefore we do this as early as possible. 4517 */ 4518 error = spa_remove_init(spa); 4519 if (error != 0) { 4520 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 4521 error); 4522 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4523 } 4524 4525 /* 4526 * Retrieve information needed to condense indirect vdev mappings. 4527 */ 4528 error = spa_condense_init(spa); 4529 if (error != 0) { 4530 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 4531 error); 4532 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4533 } 4534 4535 return (0); 4536 } 4537 4538 static int 4539 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 4540 { 4541 int error = 0; 4542 vdev_t *rvd = spa->spa_root_vdev; 4543 4544 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 4545 boolean_t missing_feat_read = B_FALSE; 4546 nvlist_t *unsup_feat, *enabled_feat; 4547 4548 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 4549 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 4550 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4551 } 4552 4553 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 4554 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 4555 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4556 } 4557 4558 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 4559 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 4560 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4561 } 4562 4563 enabled_feat = fnvlist_alloc(); 4564 unsup_feat = fnvlist_alloc(); 4565 4566 if (!spa_features_check(spa, B_FALSE, 4567 unsup_feat, enabled_feat)) 4568 missing_feat_read = B_TRUE; 4569 4570 if (spa_writeable(spa) || 4571 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 4572 if (!spa_features_check(spa, B_TRUE, 4573 unsup_feat, enabled_feat)) { 4574 *missing_feat_writep = B_TRUE; 4575 } 4576 } 4577 4578 fnvlist_add_nvlist(spa->spa_load_info, 4579 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 4580 4581 if (!nvlist_empty(unsup_feat)) { 4582 fnvlist_add_nvlist(spa->spa_load_info, 4583 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 4584 } 4585 4586 fnvlist_free(enabled_feat); 4587 fnvlist_free(unsup_feat); 4588 4589 if (!missing_feat_read) { 4590 fnvlist_add_boolean(spa->spa_load_info, 4591 ZPOOL_CONFIG_CAN_RDONLY); 4592 } 4593 4594 /* 4595 * If the state is SPA_LOAD_TRYIMPORT, our objective is 4596 * twofold: to determine whether the pool is available for 4597 * import in read-write mode and (if it is not) whether the 4598 * pool is available for import in read-only mode. If the pool 4599 * is available for import in read-write mode, it is displayed 4600 * as available in userland; if it is not available for import 4601 * in read-only mode, it is displayed as unavailable in 4602 * userland. If the pool is available for import in read-only 4603 * mode but not read-write mode, it is displayed as unavailable 4604 * in userland with a special note that the pool is actually 4605 * available for open in read-only mode. 4606 * 4607 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 4608 * missing a feature for write, we must first determine whether 4609 * the pool can be opened read-only before returning to 4610 * userland in order to know whether to display the 4611 * abovementioned note. 4612 */ 4613 if (missing_feat_read || (*missing_feat_writep && 4614 spa_writeable(spa))) { 4615 spa_load_failed(spa, "pool uses unsupported features"); 4616 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 4617 ENOTSUP)); 4618 } 4619 4620 /* 4621 * Load refcounts for ZFS features from disk into an in-memory 4622 * cache during SPA initialization. 4623 */ 4624 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 4625 uint64_t refcount; 4626 4627 error = feature_get_refcount_from_disk(spa, 4628 &spa_feature_table[i], &refcount); 4629 if (error == 0) { 4630 spa->spa_feat_refcount_cache[i] = refcount; 4631 } else if (error == ENOTSUP) { 4632 spa->spa_feat_refcount_cache[i] = 4633 SPA_FEATURE_DISABLED; 4634 } else { 4635 spa_load_failed(spa, "error getting refcount " 4636 "for feature %s [error=%d]", 4637 spa_feature_table[i].fi_guid, error); 4638 return (spa_vdev_err(rvd, 4639 VDEV_AUX_CORRUPT_DATA, EIO)); 4640 } 4641 } 4642 } 4643 4644 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 4645 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 4646 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 4647 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4648 } 4649 4650 /* 4651 * Encryption was added before bookmark_v2, even though bookmark_v2 4652 * is now a dependency. If this pool has encryption enabled without 4653 * bookmark_v2, trigger an errata message. 4654 */ 4655 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 4656 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 4657 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 4658 } 4659 4660 return (0); 4661 } 4662 4663 static int 4664 spa_ld_load_special_directories(spa_t *spa) 4665 { 4666 int error = 0; 4667 vdev_t *rvd = spa->spa_root_vdev; 4668 4669 spa->spa_is_initializing = B_TRUE; 4670 error = dsl_pool_open(spa->spa_dsl_pool); 4671 spa->spa_is_initializing = B_FALSE; 4672 if (error != 0) { 4673 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 4674 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4675 } 4676 4677 return (0); 4678 } 4679 4680 static int 4681 spa_ld_get_props(spa_t *spa) 4682 { 4683 int error = 0; 4684 uint64_t obj; 4685 vdev_t *rvd = spa->spa_root_vdev; 4686 4687 /* Grab the checksum salt from the MOS. */ 4688 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4689 DMU_POOL_CHECKSUM_SALT, 1, 4690 sizeof (spa->spa_cksum_salt.zcs_bytes), 4691 spa->spa_cksum_salt.zcs_bytes); 4692 if (error == ENOENT) { 4693 /* Generate a new salt for subsequent use */ 4694 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 4695 sizeof (spa->spa_cksum_salt.zcs_bytes)); 4696 } else if (error != 0) { 4697 spa_load_failed(spa, "unable to retrieve checksum salt from " 4698 "MOS [error=%d]", error); 4699 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4700 } 4701 4702 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 4703 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4704 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 4705 if (error != 0) { 4706 spa_load_failed(spa, "error opening deferred-frees bpobj " 4707 "[error=%d]", error); 4708 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4709 } 4710 4711 /* 4712 * Load the bit that tells us to use the new accounting function 4713 * (raid-z deflation). If we have an older pool, this will not 4714 * be present. 4715 */ 4716 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 4717 if (error != 0 && error != ENOENT) 4718 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4719 4720 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4721 &spa->spa_creation_version, B_FALSE); 4722 if (error != 0 && error != ENOENT) 4723 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4724 4725 /* 4726 * Load the persistent error log. If we have an older pool, this will 4727 * not be present. 4728 */ 4729 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4730 B_FALSE); 4731 if (error != 0 && error != ENOENT) 4732 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4733 4734 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4735 &spa->spa_errlog_scrub, B_FALSE); 4736 if (error != 0 && error != ENOENT) 4737 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4738 4739 /* Load the last scrubbed txg. */ 4740 error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG, 4741 &spa->spa_scrubbed_last_txg, B_FALSE); 4742 if (error != 0 && error != ENOENT) 4743 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4744 4745 /* 4746 * Load the livelist deletion field. If a livelist is queued for 4747 * deletion, indicate that in the spa 4748 */ 4749 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4750 &spa->spa_livelists_to_delete, B_FALSE); 4751 if (error != 0 && error != ENOENT) 4752 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4753 4754 /* 4755 * Load the history object. If we have an older pool, this 4756 * will not be present. 4757 */ 4758 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4759 if (error != 0 && error != ENOENT) 4760 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4761 4762 /* 4763 * Load the per-vdev ZAP map. If we have an older pool, this will not 4764 * be present; in this case, defer its creation to a later time to 4765 * avoid dirtying the MOS this early / out of sync context. See 4766 * spa_sync_config_object. 4767 */ 4768 4769 /* The sentinel is only available in the MOS config. */ 4770 nvlist_t *mos_config; 4771 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4772 spa_load_failed(spa, "unable to retrieve MOS config"); 4773 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4774 } 4775 4776 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4777 &spa->spa_all_vdev_zaps, B_FALSE); 4778 4779 if (error == ENOENT) { 4780 VERIFY(!nvlist_exists(mos_config, 4781 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4782 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4783 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4784 } else if (error != 0) { 4785 nvlist_free(mos_config); 4786 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4787 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4788 /* 4789 * An older version of ZFS overwrote the sentinel value, so 4790 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4791 * destruction to later; see spa_sync_config_object. 4792 */ 4793 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4794 /* 4795 * We're assuming that no vdevs have had their ZAPs created 4796 * before this. Better be sure of it. 4797 */ 4798 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4799 } 4800 nvlist_free(mos_config); 4801 4802 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4803 4804 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4805 B_FALSE); 4806 if (error && error != ENOENT) 4807 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4808 4809 if (error == 0) { 4810 uint64_t autoreplace = 0; 4811 4812 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4813 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4814 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4815 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4816 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4817 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA, 4818 &spa->spa_dedup_table_quota); 4819 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4820 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4821 spa->spa_autoreplace = (autoreplace != 0); 4822 } 4823 4824 /* 4825 * If we are importing a pool with missing top-level vdevs, 4826 * we enforce that the pool doesn't panic or get suspended on 4827 * error since the likelihood of missing data is extremely high. 4828 */ 4829 if (spa->spa_missing_tvds > 0 && 4830 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4831 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4832 spa_load_note(spa, "forcing failmode to 'continue' " 4833 "as some top level vdevs are missing"); 4834 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4835 } 4836 4837 return (0); 4838 } 4839 4840 static int 4841 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4842 { 4843 int error = 0; 4844 vdev_t *rvd = spa->spa_root_vdev; 4845 4846 /* 4847 * If we're assembling the pool from the split-off vdevs of 4848 * an existing pool, we don't want to attach the spares & cache 4849 * devices. 4850 */ 4851 4852 /* 4853 * Load any hot spares for this pool. 4854 */ 4855 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4856 B_FALSE); 4857 if (error != 0 && error != ENOENT) 4858 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4859 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4860 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4861 if (load_nvlist(spa, spa->spa_spares.sav_object, 4862 &spa->spa_spares.sav_config) != 0) { 4863 spa_load_failed(spa, "error loading spares nvlist"); 4864 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4865 } 4866 4867 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4868 spa_load_spares(spa); 4869 spa_config_exit(spa, SCL_ALL, FTAG); 4870 } else if (error == 0) { 4871 spa->spa_spares.sav_sync = B_TRUE; 4872 } 4873 4874 /* 4875 * Load any level 2 ARC devices for this pool. 4876 */ 4877 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4878 &spa->spa_l2cache.sav_object, B_FALSE); 4879 if (error != 0 && error != ENOENT) 4880 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4881 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4882 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4883 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4884 &spa->spa_l2cache.sav_config) != 0) { 4885 spa_load_failed(spa, "error loading l2cache nvlist"); 4886 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4887 } 4888 4889 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4890 spa_load_l2cache(spa); 4891 spa_config_exit(spa, SCL_ALL, FTAG); 4892 } else if (error == 0) { 4893 spa->spa_l2cache.sav_sync = B_TRUE; 4894 } 4895 4896 return (0); 4897 } 4898 4899 static int 4900 spa_ld_load_vdev_metadata(spa_t *spa) 4901 { 4902 int error = 0; 4903 vdev_t *rvd = spa->spa_root_vdev; 4904 4905 /* 4906 * If the 'multihost' property is set, then never allow a pool to 4907 * be imported when the system hostid is zero. The exception to 4908 * this rule is zdb which is always allowed to access pools. 4909 */ 4910 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4911 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4912 fnvlist_add_uint64(spa->spa_load_info, 4913 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4914 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4915 } 4916 4917 /* 4918 * If the 'autoreplace' property is set, then post a resource notifying 4919 * the ZFS DE that it should not issue any faults for unopenable 4920 * devices. We also iterate over the vdevs, and post a sysevent for any 4921 * unopenable vdevs so that the normal autoreplace handler can take 4922 * over. 4923 */ 4924 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4925 spa_check_removed(spa->spa_root_vdev); 4926 /* 4927 * For the import case, this is done in spa_import(), because 4928 * at this point we're using the spare definitions from 4929 * the MOS config, not necessarily from the userland config. 4930 */ 4931 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4932 spa_aux_check_removed(&spa->spa_spares); 4933 spa_aux_check_removed(&spa->spa_l2cache); 4934 } 4935 } 4936 4937 /* 4938 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4939 */ 4940 error = vdev_load(rvd); 4941 if (error != 0) { 4942 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4943 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4944 } 4945 4946 error = spa_ld_log_spacemaps(spa); 4947 if (error != 0) { 4948 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]", 4949 error); 4950 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4951 } 4952 4953 /* 4954 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4955 */ 4956 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4957 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4958 spa_config_exit(spa, SCL_ALL, FTAG); 4959 4960 return (0); 4961 } 4962 4963 static int 4964 spa_ld_load_dedup_tables(spa_t *spa) 4965 { 4966 int error = 0; 4967 vdev_t *rvd = spa->spa_root_vdev; 4968 4969 error = ddt_load(spa); 4970 if (error != 0) { 4971 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4972 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4973 } 4974 4975 return (0); 4976 } 4977 4978 static int 4979 spa_ld_load_brt(spa_t *spa) 4980 { 4981 int error = 0; 4982 vdev_t *rvd = spa->spa_root_vdev; 4983 4984 error = brt_load(spa); 4985 if (error != 0) { 4986 spa_load_failed(spa, "brt_load failed [error=%d]", error); 4987 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4988 } 4989 4990 return (0); 4991 } 4992 4993 static int 4994 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport) 4995 { 4996 vdev_t *rvd = spa->spa_root_vdev; 4997 4998 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4999 boolean_t missing = spa_check_logs(spa); 5000 if (missing) { 5001 if (spa->spa_missing_tvds != 0) { 5002 spa_load_note(spa, "spa_check_logs failed " 5003 "so dropping the logs"); 5004 } else { 5005 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 5006 spa_load_failed(spa, "spa_check_logs failed"); 5007 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 5008 ENXIO)); 5009 } 5010 } 5011 } 5012 5013 return (0); 5014 } 5015 5016 static int 5017 spa_ld_verify_pool_data(spa_t *spa) 5018 { 5019 int error = 0; 5020 vdev_t *rvd = spa->spa_root_vdev; 5021 5022 /* 5023 * We've successfully opened the pool, verify that we're ready 5024 * to start pushing transactions. 5025 */ 5026 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 5027 error = spa_load_verify(spa); 5028 if (error != 0) { 5029 spa_load_failed(spa, "spa_load_verify failed " 5030 "[error=%d]", error); 5031 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 5032 error)); 5033 } 5034 } 5035 5036 return (0); 5037 } 5038 5039 static void 5040 spa_ld_claim_log_blocks(spa_t *spa) 5041 { 5042 dmu_tx_t *tx; 5043 dsl_pool_t *dp = spa_get_dsl(spa); 5044 5045 /* 5046 * Claim log blocks that haven't been committed yet. 5047 * This must all happen in a single txg. 5048 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 5049 * invoked from zil_claim_log_block()'s i/o done callback. 5050 * Price of rollback is that we abandon the log. 5051 */ 5052 spa->spa_claiming = B_TRUE; 5053 5054 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 5055 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 5056 zil_claim, tx, DS_FIND_CHILDREN); 5057 dmu_tx_commit(tx); 5058 5059 spa->spa_claiming = B_FALSE; 5060 5061 spa_set_log_state(spa, SPA_LOG_GOOD); 5062 } 5063 5064 static void 5065 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 5066 boolean_t update_config_cache) 5067 { 5068 vdev_t *rvd = spa->spa_root_vdev; 5069 int need_update = B_FALSE; 5070 5071 /* 5072 * If the config cache is stale, or we have uninitialized 5073 * metaslabs (see spa_vdev_add()), then update the config. 5074 * 5075 * If this is a verbatim import, trust the current 5076 * in-core spa_config and update the disk labels. 5077 */ 5078 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 5079 spa->spa_load_state == SPA_LOAD_IMPORT || 5080 spa->spa_load_state == SPA_LOAD_RECOVER || 5081 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 5082 need_update = B_TRUE; 5083 5084 for (int c = 0; c < rvd->vdev_children; c++) 5085 if (rvd->vdev_child[c]->vdev_ms_array == 0) 5086 need_update = B_TRUE; 5087 5088 /* 5089 * Update the config cache asynchronously in case we're the 5090 * root pool, in which case the config cache isn't writable yet. 5091 */ 5092 if (need_update) 5093 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 5094 } 5095 5096 static void 5097 spa_ld_prepare_for_reload(spa_t *spa) 5098 { 5099 spa_mode_t mode = spa->spa_mode; 5100 int async_suspended = spa->spa_async_suspended; 5101 5102 spa_unload(spa); 5103 spa_deactivate(spa); 5104 spa_activate(spa, mode); 5105 5106 /* 5107 * We save the value of spa_async_suspended as it gets reset to 0 by 5108 * spa_unload(). We want to restore it back to the original value before 5109 * returning as we might be calling spa_async_resume() later. 5110 */ 5111 spa->spa_async_suspended = async_suspended; 5112 } 5113 5114 static int 5115 spa_ld_read_checkpoint_txg(spa_t *spa) 5116 { 5117 uberblock_t checkpoint; 5118 int error = 0; 5119 5120 ASSERT0(spa->spa_checkpoint_txg); 5121 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 5122 spa->spa_load_thread == curthread); 5123 5124 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5125 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5126 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5127 5128 if (error == ENOENT) 5129 return (0); 5130 5131 if (error != 0) 5132 return (error); 5133 5134 ASSERT3U(checkpoint.ub_txg, !=, 0); 5135 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 5136 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 5137 spa->spa_checkpoint_txg = checkpoint.ub_txg; 5138 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 5139 5140 return (0); 5141 } 5142 5143 static int 5144 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 5145 { 5146 int error = 0; 5147 5148 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5149 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5150 5151 /* 5152 * Never trust the config that is provided unless we are assembling 5153 * a pool following a split. 5154 * This means don't trust blkptrs and the vdev tree in general. This 5155 * also effectively puts the spa in read-only mode since 5156 * spa_writeable() checks for spa_trust_config to be true. 5157 * We will later load a trusted config from the MOS. 5158 */ 5159 if (type != SPA_IMPORT_ASSEMBLE) 5160 spa->spa_trust_config = B_FALSE; 5161 5162 /* 5163 * Parse the config provided to create a vdev tree. 5164 */ 5165 error = spa_ld_parse_config(spa, type); 5166 if (error != 0) 5167 return (error); 5168 5169 spa_import_progress_add(spa); 5170 5171 /* 5172 * Now that we have the vdev tree, try to open each vdev. This involves 5173 * opening the underlying physical device, retrieving its geometry and 5174 * probing the vdev with a dummy I/O. The state of each vdev will be set 5175 * based on the success of those operations. After this we'll be ready 5176 * to read from the vdevs. 5177 */ 5178 error = spa_ld_open_vdevs(spa); 5179 if (error != 0) 5180 return (error); 5181 5182 /* 5183 * Read the label of each vdev and make sure that the GUIDs stored 5184 * there match the GUIDs in the config provided. 5185 * If we're assembling a new pool that's been split off from an 5186 * existing pool, the labels haven't yet been updated so we skip 5187 * validation for now. 5188 */ 5189 if (type != SPA_IMPORT_ASSEMBLE) { 5190 error = spa_ld_validate_vdevs(spa); 5191 if (error != 0) 5192 return (error); 5193 } 5194 5195 /* 5196 * Read all vdev labels to find the best uberblock (i.e. latest, 5197 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 5198 * get the list of features required to read blkptrs in the MOS from 5199 * the vdev label with the best uberblock and verify that our version 5200 * of zfs supports them all. 5201 */ 5202 error = spa_ld_select_uberblock(spa, type); 5203 if (error != 0) 5204 return (error); 5205 5206 /* 5207 * Pass that uberblock to the dsl_pool layer which will open the root 5208 * blkptr. This blkptr points to the latest version of the MOS and will 5209 * allow us to read its contents. 5210 */ 5211 error = spa_ld_open_rootbp(spa); 5212 if (error != 0) 5213 return (error); 5214 5215 return (0); 5216 } 5217 5218 static int 5219 spa_ld_checkpoint_rewind(spa_t *spa) 5220 { 5221 uberblock_t checkpoint; 5222 int error = 0; 5223 5224 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5225 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5226 5227 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 5228 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 5229 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 5230 5231 if (error != 0) { 5232 spa_load_failed(spa, "unable to retrieve checkpointed " 5233 "uberblock from the MOS config [error=%d]", error); 5234 5235 if (error == ENOENT) 5236 error = ZFS_ERR_NO_CHECKPOINT; 5237 5238 return (error); 5239 } 5240 5241 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 5242 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 5243 5244 /* 5245 * We need to update the txg and timestamp of the checkpointed 5246 * uberblock to be higher than the latest one. This ensures that 5247 * the checkpointed uberblock is selected if we were to close and 5248 * reopen the pool right after we've written it in the vdev labels. 5249 * (also see block comment in vdev_uberblock_compare) 5250 */ 5251 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 5252 checkpoint.ub_timestamp = gethrestime_sec(); 5253 5254 /* 5255 * Set current uberblock to be the checkpointed uberblock. 5256 */ 5257 spa->spa_uberblock = checkpoint; 5258 5259 /* 5260 * If we are doing a normal rewind, then the pool is open for 5261 * writing and we sync the "updated" checkpointed uberblock to 5262 * disk. Once this is done, we've basically rewound the whole 5263 * pool and there is no way back. 5264 * 5265 * There are cases when we don't want to attempt and sync the 5266 * checkpointed uberblock to disk because we are opening a 5267 * pool as read-only. Specifically, verifying the checkpointed 5268 * state with zdb, and importing the checkpointed state to get 5269 * a "preview" of its content. 5270 */ 5271 if (spa_writeable(spa)) { 5272 vdev_t *rvd = spa->spa_root_vdev; 5273 5274 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5275 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 5276 int svdcount = 0; 5277 int children = rvd->vdev_children; 5278 int c0 = random_in_range(children); 5279 5280 for (int c = 0; c < children; c++) { 5281 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 5282 5283 /* Stop when revisiting the first vdev */ 5284 if (c > 0 && svd[0] == vd) 5285 break; 5286 5287 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 5288 !vdev_is_concrete(vd)) 5289 continue; 5290 5291 svd[svdcount++] = vd; 5292 if (svdcount == SPA_SYNC_MIN_VDEVS) 5293 break; 5294 } 5295 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 5296 if (error == 0) 5297 spa->spa_last_synced_guid = rvd->vdev_guid; 5298 spa_config_exit(spa, SCL_ALL, FTAG); 5299 5300 if (error != 0) { 5301 spa_load_failed(spa, "failed to write checkpointed " 5302 "uberblock to the vdev labels [error=%d]", error); 5303 return (error); 5304 } 5305 } 5306 5307 return (0); 5308 } 5309 5310 static int 5311 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 5312 boolean_t *update_config_cache) 5313 { 5314 int error; 5315 5316 /* 5317 * Parse the config for pool, open and validate vdevs, 5318 * select an uberblock, and use that uberblock to open 5319 * the MOS. 5320 */ 5321 error = spa_ld_mos_init(spa, type); 5322 if (error != 0) 5323 return (error); 5324 5325 /* 5326 * Retrieve the trusted config stored in the MOS and use it to create 5327 * a new, exact version of the vdev tree, then reopen all vdevs. 5328 */ 5329 error = spa_ld_trusted_config(spa, type, B_FALSE); 5330 if (error == EAGAIN) { 5331 if (update_config_cache != NULL) 5332 *update_config_cache = B_TRUE; 5333 5334 /* 5335 * Redo the loading process with the trusted config if it is 5336 * too different from the untrusted config. 5337 */ 5338 spa_ld_prepare_for_reload(spa); 5339 spa_load_note(spa, "RELOADING"); 5340 error = spa_ld_mos_init(spa, type); 5341 if (error != 0) 5342 return (error); 5343 5344 error = spa_ld_trusted_config(spa, type, B_TRUE); 5345 if (error != 0) 5346 return (error); 5347 5348 } else if (error != 0) { 5349 return (error); 5350 } 5351 5352 return (0); 5353 } 5354 5355 /* 5356 * Load an existing storage pool, using the config provided. This config 5357 * describes which vdevs are part of the pool and is later validated against 5358 * partial configs present in each vdev's label and an entire copy of the 5359 * config stored in the MOS. 5360 */ 5361 static int 5362 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport) 5363 { 5364 int error = 0; 5365 boolean_t missing_feat_write = B_FALSE; 5366 boolean_t checkpoint_rewind = 5367 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5368 boolean_t update_config_cache = B_FALSE; 5369 hrtime_t load_start = gethrtime(); 5370 5371 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5372 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 5373 5374 spa_load_note(spa, "LOADING"); 5375 5376 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 5377 if (error != 0) 5378 return (error); 5379 5380 /* 5381 * If we are rewinding to the checkpoint then we need to repeat 5382 * everything we've done so far in this function but this time 5383 * selecting the checkpointed uberblock and using that to open 5384 * the MOS. 5385 */ 5386 if (checkpoint_rewind) { 5387 /* 5388 * If we are rewinding to the checkpoint update config cache 5389 * anyway. 5390 */ 5391 update_config_cache = B_TRUE; 5392 5393 /* 5394 * Extract the checkpointed uberblock from the current MOS 5395 * and use this as the pool's uberblock from now on. If the 5396 * pool is imported as writeable we also write the checkpoint 5397 * uberblock to the labels, making the rewind permanent. 5398 */ 5399 error = spa_ld_checkpoint_rewind(spa); 5400 if (error != 0) 5401 return (error); 5402 5403 /* 5404 * Redo the loading process again with the 5405 * checkpointed uberblock. 5406 */ 5407 spa_ld_prepare_for_reload(spa); 5408 spa_load_note(spa, "LOADING checkpointed uberblock"); 5409 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 5410 if (error != 0) 5411 return (error); 5412 } 5413 5414 /* 5415 * Drop the namespace lock for the rest of the function. 5416 */ 5417 spa->spa_load_thread = curthread; 5418 mutex_exit(&spa_namespace_lock); 5419 5420 /* 5421 * Retrieve the checkpoint txg if the pool has a checkpoint. 5422 */ 5423 spa_import_progress_set_notes(spa, "Loading checkpoint txg"); 5424 error = spa_ld_read_checkpoint_txg(spa); 5425 if (error != 0) 5426 goto fail; 5427 5428 /* 5429 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 5430 * from the pool and their contents were re-mapped to other vdevs. Note 5431 * that everything that we read before this step must have been 5432 * rewritten on concrete vdevs after the last device removal was 5433 * initiated. Otherwise we could be reading from indirect vdevs before 5434 * we have loaded their mappings. 5435 */ 5436 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata"); 5437 error = spa_ld_open_indirect_vdev_metadata(spa); 5438 if (error != 0) 5439 goto fail; 5440 5441 /* 5442 * Retrieve the full list of active features from the MOS and check if 5443 * they are all supported. 5444 */ 5445 spa_import_progress_set_notes(spa, "Checking feature flags"); 5446 error = spa_ld_check_features(spa, &missing_feat_write); 5447 if (error != 0) 5448 goto fail; 5449 5450 /* 5451 * Load several special directories from the MOS needed by the dsl_pool 5452 * layer. 5453 */ 5454 spa_import_progress_set_notes(spa, "Loading special MOS directories"); 5455 error = spa_ld_load_special_directories(spa); 5456 if (error != 0) 5457 goto fail; 5458 5459 /* 5460 * Retrieve pool properties from the MOS. 5461 */ 5462 spa_import_progress_set_notes(spa, "Loading properties"); 5463 error = spa_ld_get_props(spa); 5464 if (error != 0) 5465 goto fail; 5466 5467 /* 5468 * Retrieve the list of auxiliary devices - cache devices and spares - 5469 * and open them. 5470 */ 5471 spa_import_progress_set_notes(spa, "Loading AUX vdevs"); 5472 error = spa_ld_open_aux_vdevs(spa, type); 5473 if (error != 0) 5474 goto fail; 5475 5476 /* 5477 * Load the metadata for all vdevs. Also check if unopenable devices 5478 * should be autoreplaced. 5479 */ 5480 spa_import_progress_set_notes(spa, "Loading vdev metadata"); 5481 error = spa_ld_load_vdev_metadata(spa); 5482 if (error != 0) 5483 goto fail; 5484 5485 spa_import_progress_set_notes(spa, "Loading dedup tables"); 5486 error = spa_ld_load_dedup_tables(spa); 5487 if (error != 0) 5488 goto fail; 5489 5490 spa_import_progress_set_notes(spa, "Loading BRT"); 5491 error = spa_ld_load_brt(spa); 5492 if (error != 0) 5493 goto fail; 5494 5495 /* 5496 * Verify the logs now to make sure we don't have any unexpected errors 5497 * when we claim log blocks later. 5498 */ 5499 spa_import_progress_set_notes(spa, "Verifying Log Devices"); 5500 error = spa_ld_verify_logs(spa, type, ereport); 5501 if (error != 0) 5502 goto fail; 5503 5504 if (missing_feat_write) { 5505 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 5506 5507 /* 5508 * At this point, we know that we can open the pool in 5509 * read-only mode but not read-write mode. We now have enough 5510 * information and can return to userland. 5511 */ 5512 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 5513 ENOTSUP); 5514 goto fail; 5515 } 5516 5517 /* 5518 * Traverse the last txgs to make sure the pool was left off in a safe 5519 * state. When performing an extreme rewind, we verify the whole pool, 5520 * which can take a very long time. 5521 */ 5522 spa_import_progress_set_notes(spa, "Verifying pool data"); 5523 error = spa_ld_verify_pool_data(spa); 5524 if (error != 0) 5525 goto fail; 5526 5527 /* 5528 * Calculate the deflated space for the pool. This must be done before 5529 * we write anything to the pool because we'd need to update the space 5530 * accounting using the deflated sizes. 5531 */ 5532 spa_import_progress_set_notes(spa, "Calculating deflated space"); 5533 spa_update_dspace(spa); 5534 5535 /* 5536 * We have now retrieved all the information we needed to open the 5537 * pool. If we are importing the pool in read-write mode, a few 5538 * additional steps must be performed to finish the import. 5539 */ 5540 spa_import_progress_set_notes(spa, "Starting import"); 5541 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 5542 spa->spa_load_max_txg == UINT64_MAX)) { 5543 uint64_t config_cache_txg = spa->spa_config_txg; 5544 5545 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 5546 5547 /* 5548 * Before we do any zio_write's, complete the raidz expansion 5549 * scratch space copying, if necessary. 5550 */ 5551 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID) 5552 vdev_raidz_reflow_copy_scratch(spa); 5553 5554 /* 5555 * In case of a checkpoint rewind, log the original txg 5556 * of the checkpointed uberblock. 5557 */ 5558 if (checkpoint_rewind) { 5559 spa_history_log_internal(spa, "checkpoint rewind", 5560 NULL, "rewound state to txg=%llu", 5561 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 5562 } 5563 5564 spa_import_progress_set_notes(spa, "Claiming ZIL blocks"); 5565 /* 5566 * Traverse the ZIL and claim all blocks. 5567 */ 5568 spa_ld_claim_log_blocks(spa); 5569 5570 /* 5571 * Kick-off the syncing thread. 5572 */ 5573 spa->spa_sync_on = B_TRUE; 5574 txg_sync_start(spa->spa_dsl_pool); 5575 mmp_thread_start(spa); 5576 5577 /* 5578 * Wait for all claims to sync. We sync up to the highest 5579 * claimed log block birth time so that claimed log blocks 5580 * don't appear to be from the future. spa_claim_max_txg 5581 * will have been set for us by ZIL traversal operations 5582 * performed above. 5583 */ 5584 spa_import_progress_set_notes(spa, "Syncing ZIL claims"); 5585 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 5586 5587 /* 5588 * Check if we need to request an update of the config. On the 5589 * next sync, we would update the config stored in vdev labels 5590 * and the cachefile (by default /etc/zfs/zpool.cache). 5591 */ 5592 spa_import_progress_set_notes(spa, "Updating configs"); 5593 spa_ld_check_for_config_update(spa, config_cache_txg, 5594 update_config_cache); 5595 5596 /* 5597 * Check if a rebuild was in progress and if so resume it. 5598 * Then check all DTLs to see if anything needs resilvering. 5599 * The resilver will be deferred if a rebuild was started. 5600 */ 5601 spa_import_progress_set_notes(spa, "Starting resilvers"); 5602 if (vdev_rebuild_active(spa->spa_root_vdev)) { 5603 vdev_rebuild_restart(spa); 5604 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 5605 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5606 spa_async_request(spa, SPA_ASYNC_RESILVER); 5607 } 5608 5609 /* 5610 * Log the fact that we booted up (so that we can detect if 5611 * we rebooted in the middle of an operation). 5612 */ 5613 spa_history_log_version(spa, "open", NULL); 5614 5615 spa_import_progress_set_notes(spa, 5616 "Restarting device removals"); 5617 spa_restart_removal(spa); 5618 spa_spawn_aux_threads(spa); 5619 5620 /* 5621 * Delete any inconsistent datasets. 5622 * 5623 * Note: 5624 * Since we may be issuing deletes for clones here, 5625 * we make sure to do so after we've spawned all the 5626 * auxiliary threads above (from which the livelist 5627 * deletion zthr is part of). 5628 */ 5629 spa_import_progress_set_notes(spa, 5630 "Cleaning up inconsistent objsets"); 5631 (void) dmu_objset_find(spa_name(spa), 5632 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 5633 5634 /* 5635 * Clean up any stale temporary dataset userrefs. 5636 */ 5637 spa_import_progress_set_notes(spa, 5638 "Cleaning up temporary userrefs"); 5639 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 5640 5641 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5642 spa_import_progress_set_notes(spa, "Restarting initialize"); 5643 vdev_initialize_restart(spa->spa_root_vdev); 5644 spa_import_progress_set_notes(spa, "Restarting TRIM"); 5645 vdev_trim_restart(spa->spa_root_vdev); 5646 vdev_autotrim_restart(spa); 5647 spa_config_exit(spa, SCL_CONFIG, FTAG); 5648 spa_import_progress_set_notes(spa, "Finished importing"); 5649 } 5650 zio_handle_import_delay(spa, gethrtime() - load_start); 5651 5652 spa_import_progress_remove(spa_guid(spa)); 5653 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 5654 5655 spa_load_note(spa, "LOADED"); 5656 fail: 5657 mutex_enter(&spa_namespace_lock); 5658 spa->spa_load_thread = NULL; 5659 cv_broadcast(&spa_namespace_cv); 5660 5661 return (error); 5662 5663 } 5664 5665 static int 5666 spa_load_retry(spa_t *spa, spa_load_state_t state) 5667 { 5668 spa_mode_t mode = spa->spa_mode; 5669 5670 spa_unload(spa); 5671 spa_deactivate(spa); 5672 5673 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 5674 5675 spa_activate(spa, mode); 5676 spa_async_suspend(spa); 5677 5678 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 5679 (u_longlong_t)spa->spa_load_max_txg); 5680 5681 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 5682 } 5683 5684 /* 5685 * If spa_load() fails this function will try loading prior txg's. If 5686 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 5687 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 5688 * function will not rewind the pool and will return the same error as 5689 * spa_load(). 5690 */ 5691 static int 5692 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 5693 int rewind_flags) 5694 { 5695 nvlist_t *loadinfo = NULL; 5696 nvlist_t *config = NULL; 5697 int load_error, rewind_error; 5698 uint64_t safe_rewind_txg; 5699 uint64_t min_txg; 5700 5701 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 5702 spa->spa_load_max_txg = spa->spa_load_txg; 5703 spa_set_log_state(spa, SPA_LOG_CLEAR); 5704 } else { 5705 spa->spa_load_max_txg = max_request; 5706 if (max_request != UINT64_MAX) 5707 spa->spa_extreme_rewind = B_TRUE; 5708 } 5709 5710 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 5711 if (load_error == 0) 5712 return (0); 5713 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 5714 /* 5715 * When attempting checkpoint-rewind on a pool with no 5716 * checkpoint, we should not attempt to load uberblocks 5717 * from previous txgs when spa_load fails. 5718 */ 5719 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 5720 spa_import_progress_remove(spa_guid(spa)); 5721 return (load_error); 5722 } 5723 5724 if (spa->spa_root_vdev != NULL) 5725 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5726 5727 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 5728 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 5729 5730 if (rewind_flags & ZPOOL_NEVER_REWIND) { 5731 nvlist_free(config); 5732 spa_import_progress_remove(spa_guid(spa)); 5733 return (load_error); 5734 } 5735 5736 if (state == SPA_LOAD_RECOVER) { 5737 /* Price of rolling back is discarding txgs, including log */ 5738 spa_set_log_state(spa, SPA_LOG_CLEAR); 5739 } else { 5740 /* 5741 * If we aren't rolling back save the load info from our first 5742 * import attempt so that we can restore it after attempting 5743 * to rewind. 5744 */ 5745 loadinfo = spa->spa_load_info; 5746 spa->spa_load_info = fnvlist_alloc(); 5747 } 5748 5749 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 5750 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 5751 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 5752 TXG_INITIAL : safe_rewind_txg; 5753 5754 /* 5755 * Continue as long as we're finding errors, we're still within 5756 * the acceptable rewind range, and we're still finding uberblocks 5757 */ 5758 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 5759 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 5760 if (spa->spa_load_max_txg < safe_rewind_txg) 5761 spa->spa_extreme_rewind = B_TRUE; 5762 rewind_error = spa_load_retry(spa, state); 5763 } 5764 5765 spa->spa_extreme_rewind = B_FALSE; 5766 spa->spa_load_max_txg = UINT64_MAX; 5767 5768 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 5769 spa_config_set(spa, config); 5770 else 5771 nvlist_free(config); 5772 5773 if (state == SPA_LOAD_RECOVER) { 5774 ASSERT3P(loadinfo, ==, NULL); 5775 spa_import_progress_remove(spa_guid(spa)); 5776 return (rewind_error); 5777 } else { 5778 /* Store the rewind info as part of the initial load info */ 5779 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 5780 spa->spa_load_info); 5781 5782 /* Restore the initial load info */ 5783 fnvlist_free(spa->spa_load_info); 5784 spa->spa_load_info = loadinfo; 5785 5786 spa_import_progress_remove(spa_guid(spa)); 5787 return (load_error); 5788 } 5789 } 5790 5791 /* 5792 * Pool Open/Import 5793 * 5794 * The import case is identical to an open except that the configuration is sent 5795 * down from userland, instead of grabbed from the configuration cache. For the 5796 * case of an open, the pool configuration will exist in the 5797 * POOL_STATE_UNINITIALIZED state. 5798 * 5799 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5800 * the same time open the pool, without having to keep around the spa_t in some 5801 * ambiguous state. 5802 */ 5803 static int 5804 spa_open_common(const char *pool, spa_t **spapp, const void *tag, 5805 nvlist_t *nvpolicy, nvlist_t **config) 5806 { 5807 spa_t *spa; 5808 spa_load_state_t state = SPA_LOAD_OPEN; 5809 int error; 5810 int locked = B_FALSE; 5811 int firstopen = B_FALSE; 5812 5813 *spapp = NULL; 5814 5815 /* 5816 * As disgusting as this is, we need to support recursive calls to this 5817 * function because dsl_dir_open() is called during spa_load(), and ends 5818 * up calling spa_open() again. The real fix is to figure out how to 5819 * avoid dsl_dir_open() calling this in the first place. 5820 */ 5821 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5822 mutex_enter(&spa_namespace_lock); 5823 locked = B_TRUE; 5824 } 5825 5826 if ((spa = spa_lookup(pool)) == NULL) { 5827 if (locked) 5828 mutex_exit(&spa_namespace_lock); 5829 return (SET_ERROR(ENOENT)); 5830 } 5831 5832 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5833 zpool_load_policy_t policy; 5834 5835 firstopen = B_TRUE; 5836 5837 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5838 &policy); 5839 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5840 state = SPA_LOAD_RECOVER; 5841 5842 spa_activate(spa, spa_mode_global); 5843 5844 if (state != SPA_LOAD_RECOVER) 5845 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5846 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5847 5848 zfs_dbgmsg("spa_open_common: opening %s", pool); 5849 error = spa_load_best(spa, state, policy.zlp_txg, 5850 policy.zlp_rewind); 5851 5852 if (error == EBADF) { 5853 /* 5854 * If vdev_validate() returns failure (indicated by 5855 * EBADF), it indicates that one of the vdevs indicates 5856 * that the pool has been exported or destroyed. If 5857 * this is the case, the config cache is out of sync and 5858 * we should remove the pool from the namespace. 5859 */ 5860 spa_unload(spa); 5861 spa_deactivate(spa); 5862 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 5863 spa_remove(spa); 5864 if (locked) 5865 mutex_exit(&spa_namespace_lock); 5866 return (SET_ERROR(ENOENT)); 5867 } 5868 5869 if (error) { 5870 /* 5871 * We can't open the pool, but we still have useful 5872 * information: the state of each vdev after the 5873 * attempted vdev_open(). Return this to the user. 5874 */ 5875 if (config != NULL && spa->spa_config) { 5876 *config = fnvlist_dup(spa->spa_config); 5877 fnvlist_add_nvlist(*config, 5878 ZPOOL_CONFIG_LOAD_INFO, 5879 spa->spa_load_info); 5880 } 5881 spa_unload(spa); 5882 spa_deactivate(spa); 5883 spa->spa_last_open_failed = error; 5884 if (locked) 5885 mutex_exit(&spa_namespace_lock); 5886 *spapp = NULL; 5887 return (error); 5888 } 5889 } 5890 5891 spa_open_ref(spa, tag); 5892 5893 if (config != NULL) 5894 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5895 5896 /* 5897 * If we've recovered the pool, pass back any information we 5898 * gathered while doing the load. 5899 */ 5900 if (state == SPA_LOAD_RECOVER && config != NULL) { 5901 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5902 spa->spa_load_info); 5903 } 5904 5905 if (locked) { 5906 spa->spa_last_open_failed = 0; 5907 spa->spa_last_ubsync_txg = 0; 5908 spa->spa_load_txg = 0; 5909 mutex_exit(&spa_namespace_lock); 5910 } 5911 5912 if (firstopen) 5913 zvol_create_minors_recursive(spa_name(spa)); 5914 5915 *spapp = spa; 5916 5917 return (0); 5918 } 5919 5920 int 5921 spa_open_rewind(const char *name, spa_t **spapp, const void *tag, 5922 nvlist_t *policy, nvlist_t **config) 5923 { 5924 return (spa_open_common(name, spapp, tag, policy, config)); 5925 } 5926 5927 int 5928 spa_open(const char *name, spa_t **spapp, const void *tag) 5929 { 5930 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5931 } 5932 5933 /* 5934 * Lookup the given spa_t, incrementing the inject count in the process, 5935 * preventing it from being exported or destroyed. 5936 */ 5937 spa_t * 5938 spa_inject_addref(char *name) 5939 { 5940 spa_t *spa; 5941 5942 mutex_enter(&spa_namespace_lock); 5943 if ((spa = spa_lookup(name)) == NULL) { 5944 mutex_exit(&spa_namespace_lock); 5945 return (NULL); 5946 } 5947 spa->spa_inject_ref++; 5948 mutex_exit(&spa_namespace_lock); 5949 5950 return (spa); 5951 } 5952 5953 void 5954 spa_inject_delref(spa_t *spa) 5955 { 5956 mutex_enter(&spa_namespace_lock); 5957 spa->spa_inject_ref--; 5958 mutex_exit(&spa_namespace_lock); 5959 } 5960 5961 /* 5962 * Add spares device information to the nvlist. 5963 */ 5964 static void 5965 spa_add_spares(spa_t *spa, nvlist_t *config) 5966 { 5967 nvlist_t **spares; 5968 uint_t i, nspares; 5969 nvlist_t *nvroot; 5970 uint64_t guid; 5971 vdev_stat_t *vs; 5972 uint_t vsc; 5973 uint64_t pool; 5974 5975 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5976 5977 if (spa->spa_spares.sav_count == 0) 5978 return; 5979 5980 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 5981 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5982 ZPOOL_CONFIG_SPARES, &spares, &nspares)); 5983 if (nspares != 0) { 5984 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5985 (const nvlist_t * const *)spares, nspares); 5986 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5987 &spares, &nspares)); 5988 5989 /* 5990 * Go through and find any spares which have since been 5991 * repurposed as an active spare. If this is the case, update 5992 * their status appropriately. 5993 */ 5994 for (i = 0; i < nspares; i++) { 5995 guid = fnvlist_lookup_uint64(spares[i], 5996 ZPOOL_CONFIG_GUID); 5997 VERIFY0(nvlist_lookup_uint64_array(spares[i], 5998 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 5999 if (spa_spare_exists(guid, &pool, NULL) && 6000 pool != 0ULL) { 6001 vs->vs_state = VDEV_STATE_CANT_OPEN; 6002 vs->vs_aux = VDEV_AUX_SPARED; 6003 } else { 6004 vs->vs_state = 6005 spa->spa_spares.sav_vdevs[i]->vdev_state; 6006 } 6007 } 6008 } 6009 } 6010 6011 /* 6012 * Add l2cache device information to the nvlist, including vdev stats. 6013 */ 6014 static void 6015 spa_add_l2cache(spa_t *spa, nvlist_t *config) 6016 { 6017 nvlist_t **l2cache; 6018 uint_t i, j, nl2cache; 6019 nvlist_t *nvroot; 6020 uint64_t guid; 6021 vdev_t *vd; 6022 vdev_stat_t *vs; 6023 uint_t vsc; 6024 6025 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 6026 6027 if (spa->spa_l2cache.sav_count == 0) 6028 return; 6029 6030 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6031 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 6032 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache)); 6033 if (nl2cache != 0) { 6034 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6035 (const nvlist_t * const *)l2cache, nl2cache); 6036 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6037 &l2cache, &nl2cache)); 6038 6039 /* 6040 * Update level 2 cache device stats. 6041 */ 6042 6043 for (i = 0; i < nl2cache; i++) { 6044 guid = fnvlist_lookup_uint64(l2cache[i], 6045 ZPOOL_CONFIG_GUID); 6046 6047 vd = NULL; 6048 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 6049 if (guid == 6050 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 6051 vd = spa->spa_l2cache.sav_vdevs[j]; 6052 break; 6053 } 6054 } 6055 ASSERT(vd != NULL); 6056 6057 VERIFY0(nvlist_lookup_uint64_array(l2cache[i], 6058 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)); 6059 vdev_get_stats(vd, vs); 6060 vdev_config_generate_stats(vd, l2cache[i]); 6061 6062 } 6063 } 6064 } 6065 6066 static void 6067 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 6068 { 6069 zap_cursor_t zc; 6070 zap_attribute_t *za = zap_attribute_alloc(); 6071 6072 if (spa->spa_feat_for_read_obj != 0) { 6073 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6074 spa->spa_feat_for_read_obj); 6075 zap_cursor_retrieve(&zc, za) == 0; 6076 zap_cursor_advance(&zc)) { 6077 ASSERT(za->za_integer_length == sizeof (uint64_t) && 6078 za->za_num_integers == 1); 6079 VERIFY0(nvlist_add_uint64(features, za->za_name, 6080 za->za_first_integer)); 6081 } 6082 zap_cursor_fini(&zc); 6083 } 6084 6085 if (spa->spa_feat_for_write_obj != 0) { 6086 for (zap_cursor_init(&zc, spa->spa_meta_objset, 6087 spa->spa_feat_for_write_obj); 6088 zap_cursor_retrieve(&zc, za) == 0; 6089 zap_cursor_advance(&zc)) { 6090 ASSERT(za->za_integer_length == sizeof (uint64_t) && 6091 za->za_num_integers == 1); 6092 VERIFY0(nvlist_add_uint64(features, za->za_name, 6093 za->za_first_integer)); 6094 } 6095 zap_cursor_fini(&zc); 6096 } 6097 zap_attribute_free(za); 6098 } 6099 6100 static void 6101 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 6102 { 6103 int i; 6104 6105 for (i = 0; i < SPA_FEATURES; i++) { 6106 zfeature_info_t feature = spa_feature_table[i]; 6107 uint64_t refcount; 6108 6109 if (feature_get_refcount(spa, &feature, &refcount) != 0) 6110 continue; 6111 6112 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 6113 } 6114 } 6115 6116 /* 6117 * Store a list of pool features and their reference counts in the 6118 * config. 6119 * 6120 * The first time this is called on a spa, allocate a new nvlist, fetch 6121 * the pool features and reference counts from disk, then save the list 6122 * in the spa. In subsequent calls on the same spa use the saved nvlist 6123 * and refresh its values from the cached reference counts. This 6124 * ensures we don't block here on I/O on a suspended pool so 'zpool 6125 * clear' can resume the pool. 6126 */ 6127 static void 6128 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 6129 { 6130 nvlist_t *features; 6131 6132 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 6133 6134 mutex_enter(&spa->spa_feat_stats_lock); 6135 features = spa->spa_feat_stats; 6136 6137 if (features != NULL) { 6138 spa_feature_stats_from_cache(spa, features); 6139 } else { 6140 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 6141 spa->spa_feat_stats = features; 6142 spa_feature_stats_from_disk(spa, features); 6143 } 6144 6145 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 6146 features)); 6147 6148 mutex_exit(&spa->spa_feat_stats_lock); 6149 } 6150 6151 int 6152 spa_get_stats(const char *name, nvlist_t **config, 6153 char *altroot, size_t buflen) 6154 { 6155 int error; 6156 spa_t *spa; 6157 6158 *config = NULL; 6159 error = spa_open_common(name, &spa, FTAG, NULL, config); 6160 6161 if (spa != NULL) { 6162 /* 6163 * This still leaves a window of inconsistency where the spares 6164 * or l2cache devices could change and the config would be 6165 * self-inconsistent. 6166 */ 6167 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6168 6169 if (*config != NULL) { 6170 uint64_t loadtimes[2]; 6171 6172 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 6173 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 6174 fnvlist_add_uint64_array(*config, 6175 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2); 6176 6177 fnvlist_add_uint64(*config, 6178 ZPOOL_CONFIG_ERRCOUNT, 6179 spa_approx_errlog_size(spa)); 6180 6181 if (spa_suspended(spa)) { 6182 fnvlist_add_uint64(*config, 6183 ZPOOL_CONFIG_SUSPENDED, 6184 spa->spa_failmode); 6185 fnvlist_add_uint64(*config, 6186 ZPOOL_CONFIG_SUSPENDED_REASON, 6187 spa->spa_suspended); 6188 } 6189 6190 spa_add_spares(spa, *config); 6191 spa_add_l2cache(spa, *config); 6192 spa_add_feature_stats(spa, *config); 6193 } 6194 } 6195 6196 /* 6197 * We want to get the alternate root even for faulted pools, so we cheat 6198 * and call spa_lookup() directly. 6199 */ 6200 if (altroot) { 6201 if (spa == NULL) { 6202 mutex_enter(&spa_namespace_lock); 6203 spa = spa_lookup(name); 6204 if (spa) 6205 spa_altroot(spa, altroot, buflen); 6206 else 6207 altroot[0] = '\0'; 6208 spa = NULL; 6209 mutex_exit(&spa_namespace_lock); 6210 } else { 6211 spa_altroot(spa, altroot, buflen); 6212 } 6213 } 6214 6215 if (spa != NULL) { 6216 spa_config_exit(spa, SCL_CONFIG, FTAG); 6217 spa_close(spa, FTAG); 6218 } 6219 6220 return (error); 6221 } 6222 6223 /* 6224 * Validate that the auxiliary device array is well formed. We must have an 6225 * array of nvlists, each which describes a valid leaf vdev. If this is an 6226 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 6227 * specified, as long as they are well-formed. 6228 */ 6229 static int 6230 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 6231 spa_aux_vdev_t *sav, const char *config, uint64_t version, 6232 vdev_labeltype_t label) 6233 { 6234 nvlist_t **dev; 6235 uint_t i, ndev; 6236 vdev_t *vd; 6237 int error; 6238 6239 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6240 6241 /* 6242 * It's acceptable to have no devs specified. 6243 */ 6244 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 6245 return (0); 6246 6247 if (ndev == 0) 6248 return (SET_ERROR(EINVAL)); 6249 6250 /* 6251 * Make sure the pool is formatted with a version that supports this 6252 * device type. 6253 */ 6254 if (spa_version(spa) < version) 6255 return (SET_ERROR(ENOTSUP)); 6256 6257 /* 6258 * Set the pending device list so we correctly handle device in-use 6259 * checking. 6260 */ 6261 sav->sav_pending = dev; 6262 sav->sav_npending = ndev; 6263 6264 for (i = 0; i < ndev; i++) { 6265 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 6266 mode)) != 0) 6267 goto out; 6268 6269 if (!vd->vdev_ops->vdev_op_leaf) { 6270 vdev_free(vd); 6271 error = SET_ERROR(EINVAL); 6272 goto out; 6273 } 6274 6275 vd->vdev_top = vd; 6276 6277 if ((error = vdev_open(vd)) == 0 && 6278 (error = vdev_label_init(vd, crtxg, label)) == 0) { 6279 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 6280 vd->vdev_guid); 6281 } 6282 6283 vdev_free(vd); 6284 6285 if (error && 6286 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 6287 goto out; 6288 else 6289 error = 0; 6290 } 6291 6292 out: 6293 sav->sav_pending = NULL; 6294 sav->sav_npending = 0; 6295 return (error); 6296 } 6297 6298 static int 6299 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 6300 { 6301 int error; 6302 6303 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 6304 6305 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6306 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 6307 VDEV_LABEL_SPARE)) != 0) { 6308 return (error); 6309 } 6310 6311 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 6312 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 6313 VDEV_LABEL_L2CACHE)); 6314 } 6315 6316 static void 6317 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 6318 const char *config) 6319 { 6320 int i; 6321 6322 if (sav->sav_config != NULL) { 6323 nvlist_t **olddevs; 6324 uint_t oldndevs; 6325 nvlist_t **newdevs; 6326 6327 /* 6328 * Generate new dev list by concatenating with the 6329 * current dev list. 6330 */ 6331 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config, 6332 &olddevs, &oldndevs)); 6333 6334 newdevs = kmem_alloc(sizeof (void *) * 6335 (ndevs + oldndevs), KM_SLEEP); 6336 for (i = 0; i < oldndevs; i++) 6337 newdevs[i] = fnvlist_dup(olddevs[i]); 6338 for (i = 0; i < ndevs; i++) 6339 newdevs[i + oldndevs] = fnvlist_dup(devs[i]); 6340 6341 fnvlist_remove(sav->sav_config, config); 6342 6343 fnvlist_add_nvlist_array(sav->sav_config, config, 6344 (const nvlist_t * const *)newdevs, ndevs + oldndevs); 6345 for (i = 0; i < oldndevs + ndevs; i++) 6346 nvlist_free(newdevs[i]); 6347 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 6348 } else { 6349 /* 6350 * Generate a new dev list. 6351 */ 6352 sav->sav_config = fnvlist_alloc(); 6353 fnvlist_add_nvlist_array(sav->sav_config, config, 6354 (const nvlist_t * const *)devs, ndevs); 6355 } 6356 } 6357 6358 /* 6359 * Stop and drop level 2 ARC devices 6360 */ 6361 void 6362 spa_l2cache_drop(spa_t *spa) 6363 { 6364 vdev_t *vd; 6365 int i; 6366 spa_aux_vdev_t *sav = &spa->spa_l2cache; 6367 6368 for (i = 0; i < sav->sav_count; i++) { 6369 uint64_t pool; 6370 6371 vd = sav->sav_vdevs[i]; 6372 ASSERT(vd != NULL); 6373 6374 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 6375 pool != 0ULL && l2arc_vdev_present(vd)) 6376 l2arc_remove_vdev(vd); 6377 } 6378 } 6379 6380 /* 6381 * Verify encryption parameters for spa creation. If we are encrypting, we must 6382 * have the encryption feature flag enabled. 6383 */ 6384 static int 6385 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 6386 boolean_t has_encryption) 6387 { 6388 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 6389 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 6390 !has_encryption) 6391 return (SET_ERROR(ENOTSUP)); 6392 6393 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 6394 } 6395 6396 /* 6397 * Pool Creation 6398 */ 6399 int 6400 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 6401 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 6402 { 6403 spa_t *spa; 6404 const char *altroot = NULL; 6405 vdev_t *rvd; 6406 dsl_pool_t *dp; 6407 dmu_tx_t *tx; 6408 int error = 0; 6409 uint64_t txg = TXG_INITIAL; 6410 nvlist_t **spares, **l2cache; 6411 uint_t nspares, nl2cache; 6412 uint64_t version, obj, ndraid = 0; 6413 boolean_t has_features; 6414 boolean_t has_encryption; 6415 boolean_t has_allocclass; 6416 spa_feature_t feat; 6417 const char *feat_name; 6418 const char *poolname; 6419 nvlist_t *nvl; 6420 6421 if (props == NULL || 6422 nvlist_lookup_string(props, 6423 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0) 6424 poolname = (char *)pool; 6425 6426 /* 6427 * If this pool already exists, return failure. 6428 */ 6429 mutex_enter(&spa_namespace_lock); 6430 if (spa_lookup(poolname) != NULL) { 6431 mutex_exit(&spa_namespace_lock); 6432 return (SET_ERROR(EEXIST)); 6433 } 6434 6435 /* 6436 * Allocate a new spa_t structure. 6437 */ 6438 nvl = fnvlist_alloc(); 6439 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 6440 (void) nvlist_lookup_string(props, 6441 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6442 spa = spa_add(poolname, nvl, altroot); 6443 fnvlist_free(nvl); 6444 spa_activate(spa, spa_mode_global); 6445 6446 if (props && (error = spa_prop_validate(spa, props))) { 6447 spa_deactivate(spa); 6448 spa_remove(spa); 6449 mutex_exit(&spa_namespace_lock); 6450 return (error); 6451 } 6452 6453 /* 6454 * Temporary pool names should never be written to disk. 6455 */ 6456 if (poolname != pool) 6457 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 6458 6459 has_features = B_FALSE; 6460 has_encryption = B_FALSE; 6461 has_allocclass = B_FALSE; 6462 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 6463 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 6464 if (zpool_prop_feature(nvpair_name(elem))) { 6465 has_features = B_TRUE; 6466 6467 feat_name = strchr(nvpair_name(elem), '@') + 1; 6468 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 6469 if (feat == SPA_FEATURE_ENCRYPTION) 6470 has_encryption = B_TRUE; 6471 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 6472 has_allocclass = B_TRUE; 6473 } 6474 } 6475 6476 /* verify encryption params, if they were provided */ 6477 if (dcp != NULL) { 6478 error = spa_create_check_encryption_params(dcp, has_encryption); 6479 if (error != 0) { 6480 spa_deactivate(spa); 6481 spa_remove(spa); 6482 mutex_exit(&spa_namespace_lock); 6483 return (error); 6484 } 6485 } 6486 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 6487 spa_deactivate(spa); 6488 spa_remove(spa); 6489 mutex_exit(&spa_namespace_lock); 6490 return (ENOTSUP); 6491 } 6492 6493 if (has_features || nvlist_lookup_uint64(props, 6494 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 6495 version = SPA_VERSION; 6496 } 6497 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 6498 6499 spa->spa_first_txg = txg; 6500 spa->spa_uberblock.ub_txg = txg - 1; 6501 spa->spa_uberblock.ub_version = version; 6502 spa->spa_ubsync = spa->spa_uberblock; 6503 spa->spa_load_state = SPA_LOAD_CREATE; 6504 spa->spa_removing_phys.sr_state = DSS_NONE; 6505 spa->spa_removing_phys.sr_removing_vdev = -1; 6506 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 6507 spa->spa_indirect_vdevs_loaded = B_TRUE; 6508 6509 /* 6510 * Create "The Godfather" zio to hold all async IOs 6511 */ 6512 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 6513 KM_SLEEP); 6514 for (int i = 0; i < max_ncpus; i++) { 6515 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 6516 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6517 ZIO_FLAG_GODFATHER); 6518 } 6519 6520 /* 6521 * Create the root vdev. 6522 */ 6523 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6524 6525 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 6526 6527 ASSERT(error != 0 || rvd != NULL); 6528 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 6529 6530 if (error == 0 && !zfs_allocatable_devs(nvroot)) 6531 error = SET_ERROR(EINVAL); 6532 6533 if (error == 0 && 6534 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 6535 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 && 6536 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) { 6537 /* 6538 * instantiate the metaslab groups (this will dirty the vdevs) 6539 * we can no longer error exit past this point 6540 */ 6541 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 6542 vdev_t *vd = rvd->vdev_child[c]; 6543 6544 vdev_metaslab_set_size(vd); 6545 vdev_expand(vd, txg); 6546 } 6547 } 6548 6549 spa_config_exit(spa, SCL_ALL, FTAG); 6550 6551 if (error != 0) { 6552 spa_unload(spa); 6553 spa_deactivate(spa); 6554 spa_remove(spa); 6555 mutex_exit(&spa_namespace_lock); 6556 return (error); 6557 } 6558 6559 /* 6560 * Get the list of spares, if specified. 6561 */ 6562 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6563 &spares, &nspares) == 0) { 6564 spa->spa_spares.sav_config = fnvlist_alloc(); 6565 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6566 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6567 nspares); 6568 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6569 spa_load_spares(spa); 6570 spa_config_exit(spa, SCL_ALL, FTAG); 6571 spa->spa_spares.sav_sync = B_TRUE; 6572 } 6573 6574 /* 6575 * Get the list of level 2 cache devices, if specified. 6576 */ 6577 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6578 &l2cache, &nl2cache) == 0) { 6579 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config, 6580 NV_UNIQUE_NAME, KM_SLEEP)); 6581 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6582 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6583 nl2cache); 6584 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6585 spa_load_l2cache(spa); 6586 spa_config_exit(spa, SCL_ALL, FTAG); 6587 spa->spa_l2cache.sav_sync = B_TRUE; 6588 } 6589 6590 spa->spa_is_initializing = B_TRUE; 6591 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 6592 spa->spa_is_initializing = B_FALSE; 6593 6594 /* 6595 * Create DDTs (dedup tables). 6596 */ 6597 ddt_create(spa); 6598 /* 6599 * Create BRT table and BRT table object. 6600 */ 6601 brt_create(spa); 6602 6603 spa_update_dspace(spa); 6604 6605 tx = dmu_tx_create_assigned(dp, txg); 6606 6607 /* 6608 * Create the pool's history object. 6609 */ 6610 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 6611 spa_history_create_obj(spa, tx); 6612 6613 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 6614 spa_history_log_version(spa, "create", tx); 6615 6616 /* 6617 * Create the pool config object. 6618 */ 6619 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 6620 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 6621 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 6622 6623 if (zap_add(spa->spa_meta_objset, 6624 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 6625 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 6626 cmn_err(CE_PANIC, "failed to add pool config"); 6627 } 6628 6629 if (zap_add(spa->spa_meta_objset, 6630 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 6631 sizeof (uint64_t), 1, &version, tx) != 0) { 6632 cmn_err(CE_PANIC, "failed to add pool version"); 6633 } 6634 6635 /* Newly created pools with the right version are always deflated. */ 6636 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 6637 spa->spa_deflate = TRUE; 6638 if (zap_add(spa->spa_meta_objset, 6639 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6640 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 6641 cmn_err(CE_PANIC, "failed to add deflate"); 6642 } 6643 } 6644 6645 /* 6646 * Create the deferred-free bpobj. Turn off compression 6647 * because sync-to-convergence takes longer if the blocksize 6648 * keeps changing. 6649 */ 6650 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 6651 dmu_object_set_compress(spa->spa_meta_objset, obj, 6652 ZIO_COMPRESS_OFF, tx); 6653 if (zap_add(spa->spa_meta_objset, 6654 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 6655 sizeof (uint64_t), 1, &obj, tx) != 0) { 6656 cmn_err(CE_PANIC, "failed to add bpobj"); 6657 } 6658 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 6659 spa->spa_meta_objset, obj)); 6660 6661 /* 6662 * Generate some random noise for salted checksums to operate on. 6663 */ 6664 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 6665 sizeof (spa->spa_cksum_salt.zcs_bytes)); 6666 6667 /* 6668 * Set pool properties. 6669 */ 6670 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 6671 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 6672 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 6673 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 6674 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 6675 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 6676 spa->spa_dedup_table_quota = 6677 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA); 6678 6679 if (props != NULL) { 6680 spa_configfile_set(spa, props, B_FALSE); 6681 spa_sync_props(props, tx); 6682 } 6683 6684 for (int i = 0; i < ndraid; i++) 6685 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 6686 6687 dmu_tx_commit(tx); 6688 6689 spa->spa_sync_on = B_TRUE; 6690 txg_sync_start(dp); 6691 mmp_thread_start(spa); 6692 txg_wait_synced(dp, txg); 6693 6694 spa_spawn_aux_threads(spa); 6695 6696 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE); 6697 6698 /* 6699 * Don't count references from objsets that are already closed 6700 * and are making their way through the eviction process. 6701 */ 6702 spa_evicting_os_wait(spa); 6703 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 6704 spa->spa_load_state = SPA_LOAD_NONE; 6705 6706 spa_import_os(spa); 6707 6708 mutex_exit(&spa_namespace_lock); 6709 6710 return (0); 6711 } 6712 6713 /* 6714 * Import a non-root pool into the system. 6715 */ 6716 int 6717 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 6718 { 6719 spa_t *spa; 6720 const char *altroot = NULL; 6721 spa_load_state_t state = SPA_LOAD_IMPORT; 6722 zpool_load_policy_t policy; 6723 spa_mode_t mode = spa_mode_global; 6724 uint64_t readonly = B_FALSE; 6725 int error; 6726 nvlist_t *nvroot; 6727 nvlist_t **spares, **l2cache; 6728 uint_t nspares, nl2cache; 6729 6730 /* 6731 * If a pool with this name exists, return failure. 6732 */ 6733 mutex_enter(&spa_namespace_lock); 6734 if (spa_lookup(pool) != NULL) { 6735 mutex_exit(&spa_namespace_lock); 6736 return (SET_ERROR(EEXIST)); 6737 } 6738 6739 /* 6740 * Create and initialize the spa structure. 6741 */ 6742 (void) nvlist_lookup_string(props, 6743 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 6744 (void) nvlist_lookup_uint64(props, 6745 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 6746 if (readonly) 6747 mode = SPA_MODE_READ; 6748 spa = spa_add(pool, config, altroot); 6749 spa->spa_import_flags = flags; 6750 6751 /* 6752 * Verbatim import - Take a pool and insert it into the namespace 6753 * as if it had been loaded at boot. 6754 */ 6755 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 6756 if (props != NULL) 6757 spa_configfile_set(spa, props, B_FALSE); 6758 6759 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); 6760 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6761 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 6762 mutex_exit(&spa_namespace_lock); 6763 return (0); 6764 } 6765 6766 spa_activate(spa, mode); 6767 6768 /* 6769 * Don't start async tasks until we know everything is healthy. 6770 */ 6771 spa_async_suspend(spa); 6772 6773 zpool_get_load_policy(config, &policy); 6774 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 6775 state = SPA_LOAD_RECOVER; 6776 6777 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 6778 6779 if (state != SPA_LOAD_RECOVER) { 6780 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 6781 zfs_dbgmsg("spa_import: importing %s", pool); 6782 } else { 6783 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 6784 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 6785 } 6786 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 6787 6788 /* 6789 * Propagate anything learned while loading the pool and pass it 6790 * back to caller (i.e. rewind info, missing devices, etc). 6791 */ 6792 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info); 6793 6794 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6795 /* 6796 * Toss any existing sparelist, as it doesn't have any validity 6797 * anymore, and conflicts with spa_has_spare(). 6798 */ 6799 if (spa->spa_spares.sav_config) { 6800 nvlist_free(spa->spa_spares.sav_config); 6801 spa->spa_spares.sav_config = NULL; 6802 spa_load_spares(spa); 6803 } 6804 if (spa->spa_l2cache.sav_config) { 6805 nvlist_free(spa->spa_l2cache.sav_config); 6806 spa->spa_l2cache.sav_config = NULL; 6807 spa_load_l2cache(spa); 6808 } 6809 6810 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE); 6811 spa_config_exit(spa, SCL_ALL, FTAG); 6812 6813 if (props != NULL) 6814 spa_configfile_set(spa, props, B_FALSE); 6815 6816 if (error != 0 || (props && spa_writeable(spa) && 6817 (error = spa_prop_set(spa, props)))) { 6818 spa_unload(spa); 6819 spa_deactivate(spa); 6820 spa_remove(spa); 6821 mutex_exit(&spa_namespace_lock); 6822 return (error); 6823 } 6824 6825 spa_async_resume(spa); 6826 6827 /* 6828 * Override any spares and level 2 cache devices as specified by 6829 * the user, as these may have correct device names/devids, etc. 6830 */ 6831 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6832 &spares, &nspares) == 0) { 6833 if (spa->spa_spares.sav_config) 6834 fnvlist_remove(spa->spa_spares.sav_config, 6835 ZPOOL_CONFIG_SPARES); 6836 else 6837 spa->spa_spares.sav_config = fnvlist_alloc(); 6838 fnvlist_add_nvlist_array(spa->spa_spares.sav_config, 6839 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares, 6840 nspares); 6841 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6842 spa_load_spares(spa); 6843 spa_config_exit(spa, SCL_ALL, FTAG); 6844 spa->spa_spares.sav_sync = B_TRUE; 6845 spa->spa_spares.sav_label_sync = B_TRUE; 6846 } 6847 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6848 &l2cache, &nl2cache) == 0) { 6849 if (spa->spa_l2cache.sav_config) 6850 fnvlist_remove(spa->spa_l2cache.sav_config, 6851 ZPOOL_CONFIG_L2CACHE); 6852 else 6853 spa->spa_l2cache.sav_config = fnvlist_alloc(); 6854 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6855 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache, 6856 nl2cache); 6857 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6858 spa_load_l2cache(spa); 6859 spa_config_exit(spa, SCL_ALL, FTAG); 6860 spa->spa_l2cache.sav_sync = B_TRUE; 6861 spa->spa_l2cache.sav_label_sync = B_TRUE; 6862 } 6863 6864 /* 6865 * Check for any removed devices. 6866 */ 6867 if (spa->spa_autoreplace) { 6868 spa_aux_check_removed(&spa->spa_spares); 6869 spa_aux_check_removed(&spa->spa_l2cache); 6870 } 6871 6872 if (spa_writeable(spa)) { 6873 /* 6874 * Update the config cache to include the newly-imported pool. 6875 */ 6876 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6877 } 6878 6879 /* 6880 * It's possible that the pool was expanded while it was exported. 6881 * We kick off an async task to handle this for us. 6882 */ 6883 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6884 6885 spa_history_log_version(spa, "import", NULL); 6886 6887 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6888 6889 mutex_exit(&spa_namespace_lock); 6890 6891 zvol_create_minors_recursive(pool); 6892 6893 spa_import_os(spa); 6894 6895 return (0); 6896 } 6897 6898 nvlist_t * 6899 spa_tryimport(nvlist_t *tryconfig) 6900 { 6901 nvlist_t *config = NULL; 6902 const char *poolname, *cachefile; 6903 spa_t *spa; 6904 uint64_t state; 6905 int error; 6906 zpool_load_policy_t policy; 6907 6908 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6909 return (NULL); 6910 6911 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6912 return (NULL); 6913 6914 /* 6915 * Create and initialize the spa structure. 6916 */ 6917 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6918 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s", 6919 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname); 6920 6921 mutex_enter(&spa_namespace_lock); 6922 spa = spa_add(name, tryconfig, NULL); 6923 spa_activate(spa, SPA_MODE_READ); 6924 kmem_free(name, MAXPATHLEN); 6925 6926 /* 6927 * Rewind pool if a max txg was provided. 6928 */ 6929 zpool_get_load_policy(spa->spa_config, &policy); 6930 if (policy.zlp_txg != UINT64_MAX) { 6931 spa->spa_load_max_txg = policy.zlp_txg; 6932 spa->spa_extreme_rewind = B_TRUE; 6933 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6934 poolname, (longlong_t)policy.zlp_txg); 6935 } else { 6936 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6937 } 6938 6939 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6940 == 0) { 6941 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6942 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6943 } else { 6944 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6945 } 6946 6947 /* 6948 * spa_import() relies on a pool config fetched by spa_try_import() 6949 * for spare/cache devices. Import flags are not passed to 6950 * spa_tryimport(), which makes it return early due to a missing log 6951 * device and missing retrieving the cache device and spare eventually. 6952 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch 6953 * the correct configuration regardless of the missing log device. 6954 */ 6955 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG; 6956 6957 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6958 6959 /* 6960 * If 'tryconfig' was at least parsable, return the current config. 6961 */ 6962 if (spa->spa_root_vdev != NULL) { 6963 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6964 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname); 6965 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); 6966 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6967 spa->spa_uberblock.ub_timestamp); 6968 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6969 spa->spa_load_info); 6970 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6971 spa->spa_errata); 6972 6973 /* 6974 * If the bootfs property exists on this pool then we 6975 * copy it out so that external consumers can tell which 6976 * pools are bootable. 6977 */ 6978 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6979 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6980 6981 /* 6982 * We have to play games with the name since the 6983 * pool was opened as TRYIMPORT_NAME. 6984 */ 6985 if (dsl_dsobj_to_dsname(spa_name(spa), 6986 spa->spa_bootfs, tmpname) == 0) { 6987 char *cp; 6988 char *dsname; 6989 6990 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6991 6992 cp = strchr(tmpname, '/'); 6993 if (cp == NULL) { 6994 (void) strlcpy(dsname, tmpname, 6995 MAXPATHLEN); 6996 } else { 6997 (void) snprintf(dsname, MAXPATHLEN, 6998 "%s/%s", poolname, ++cp); 6999 } 7000 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS, 7001 dsname); 7002 kmem_free(dsname, MAXPATHLEN); 7003 } 7004 kmem_free(tmpname, MAXPATHLEN); 7005 } 7006 7007 /* 7008 * Add the list of hot spares and level 2 cache devices. 7009 */ 7010 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7011 spa_add_spares(spa, config); 7012 spa_add_l2cache(spa, config); 7013 spa_config_exit(spa, SCL_CONFIG, FTAG); 7014 } 7015 7016 spa_unload(spa); 7017 spa_deactivate(spa); 7018 spa_remove(spa); 7019 mutex_exit(&spa_namespace_lock); 7020 7021 return (config); 7022 } 7023 7024 /* 7025 * Pool export/destroy 7026 * 7027 * The act of destroying or exporting a pool is very simple. We make sure there 7028 * is no more pending I/O and any references to the pool are gone. Then, we 7029 * update the pool state and sync all the labels to disk, removing the 7030 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 7031 * we don't sync the labels or remove the configuration cache. 7032 */ 7033 static int 7034 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig, 7035 boolean_t force, boolean_t hardforce) 7036 { 7037 int error = 0; 7038 spa_t *spa; 7039 hrtime_t export_start = gethrtime(); 7040 7041 if (oldconfig) 7042 *oldconfig = NULL; 7043 7044 if (!(spa_mode_global & SPA_MODE_WRITE)) 7045 return (SET_ERROR(EROFS)); 7046 7047 mutex_enter(&spa_namespace_lock); 7048 if ((spa = spa_lookup(pool)) == NULL) { 7049 mutex_exit(&spa_namespace_lock); 7050 return (SET_ERROR(ENOENT)); 7051 } 7052 7053 if (spa->spa_is_exporting) { 7054 /* the pool is being exported by another thread */ 7055 mutex_exit(&spa_namespace_lock); 7056 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 7057 } 7058 spa->spa_is_exporting = B_TRUE; 7059 7060 /* 7061 * Put a hold on the pool, drop the namespace lock, stop async tasks 7062 * and see if we can export. 7063 */ 7064 spa_open_ref(spa, FTAG); 7065 mutex_exit(&spa_namespace_lock); 7066 spa_async_suspend(spa); 7067 if (spa->spa_zvol_taskq) { 7068 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 7069 taskq_wait(spa->spa_zvol_taskq); 7070 } 7071 mutex_enter(&spa_namespace_lock); 7072 spa->spa_export_thread = curthread; 7073 spa_close(spa, FTAG); 7074 7075 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 7076 mutex_exit(&spa_namespace_lock); 7077 goto export_spa; 7078 } 7079 7080 /* 7081 * The pool will be in core if it's openable, in which case we can 7082 * modify its state. Objsets may be open only because they're dirty, 7083 * so we have to force it to sync before checking spa_refcnt. 7084 */ 7085 if (spa->spa_sync_on) { 7086 txg_wait_synced(spa->spa_dsl_pool, 0); 7087 spa_evicting_os_wait(spa); 7088 } 7089 7090 /* 7091 * A pool cannot be exported or destroyed if there are active 7092 * references. If we are resetting a pool, allow references by 7093 * fault injection handlers. 7094 */ 7095 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) { 7096 error = SET_ERROR(EBUSY); 7097 goto fail; 7098 } 7099 7100 mutex_exit(&spa_namespace_lock); 7101 /* 7102 * At this point we no longer hold the spa_namespace_lock and 7103 * there were no references on the spa. Future spa_lookups will 7104 * notice the spa->spa_export_thread and wait until we signal 7105 * that we are finshed. 7106 */ 7107 7108 if (spa->spa_sync_on) { 7109 vdev_t *rvd = spa->spa_root_vdev; 7110 /* 7111 * A pool cannot be exported if it has an active shared spare. 7112 * This is to prevent other pools stealing the active spare 7113 * from an exported pool. At user's own will, such pool can 7114 * be forcedly exported. 7115 */ 7116 if (!force && new_state == POOL_STATE_EXPORTED && 7117 spa_has_active_shared_spare(spa)) { 7118 error = SET_ERROR(EXDEV); 7119 mutex_enter(&spa_namespace_lock); 7120 goto fail; 7121 } 7122 7123 /* 7124 * We're about to export or destroy this pool. Make sure 7125 * we stop all initialization and trim activity here before 7126 * we set the spa_final_txg. This will ensure that all 7127 * dirty data resulting from the initialization is 7128 * committed to disk before we unload the pool. 7129 */ 7130 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 7131 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 7132 vdev_autotrim_stop_all(spa); 7133 vdev_rebuild_stop_all(spa); 7134 l2arc_spa_rebuild_stop(spa); 7135 7136 /* 7137 * We want this to be reflected on every label, 7138 * so mark them all dirty. spa_unload() will do the 7139 * final sync that pushes these changes out. 7140 */ 7141 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7142 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7143 spa->spa_state = new_state; 7144 vdev_config_dirty(rvd); 7145 spa_config_exit(spa, SCL_ALL, FTAG); 7146 } 7147 7148 /* 7149 * If the log space map feature is enabled and the pool is 7150 * getting exported (but not destroyed), we want to spend some 7151 * time flushing as many metaslabs as we can in an attempt to 7152 * destroy log space maps and save import time. This has to be 7153 * done before we set the spa_final_txg, otherwise 7154 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs. 7155 * spa_should_flush_logs_on_unload() should be called after 7156 * spa_state has been set to the new_state. 7157 */ 7158 if (spa_should_flush_logs_on_unload(spa)) 7159 spa_unload_log_sm_flush_all(spa); 7160 7161 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 7162 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7163 spa->spa_final_txg = spa_last_synced_txg(spa) + 7164 TXG_DEFER_SIZE + 1; 7165 spa_config_exit(spa, SCL_ALL, FTAG); 7166 } 7167 } 7168 7169 export_spa: 7170 spa_export_os(spa); 7171 7172 if (new_state == POOL_STATE_DESTROYED) 7173 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 7174 else if (new_state == POOL_STATE_EXPORTED) 7175 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 7176 7177 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 7178 spa_unload(spa); 7179 spa_deactivate(spa); 7180 } 7181 7182 if (oldconfig && spa->spa_config) 7183 *oldconfig = fnvlist_dup(spa->spa_config); 7184 7185 if (new_state == POOL_STATE_EXPORTED) 7186 zio_handle_export_delay(spa, gethrtime() - export_start); 7187 7188 /* 7189 * Take the namespace lock for the actual spa_t removal 7190 */ 7191 mutex_enter(&spa_namespace_lock); 7192 if (new_state != POOL_STATE_UNINITIALIZED) { 7193 if (!hardforce) 7194 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE); 7195 spa_remove(spa); 7196 } else { 7197 /* 7198 * If spa_remove() is not called for this spa_t and 7199 * there is any possibility that it can be reused, 7200 * we make sure to reset the exporting flag. 7201 */ 7202 spa->spa_is_exporting = B_FALSE; 7203 spa->spa_export_thread = NULL; 7204 } 7205 7206 /* 7207 * Wake up any waiters in spa_lookup() 7208 */ 7209 cv_broadcast(&spa_namespace_cv); 7210 mutex_exit(&spa_namespace_lock); 7211 return (0); 7212 7213 fail: 7214 spa->spa_is_exporting = B_FALSE; 7215 spa->spa_export_thread = NULL; 7216 7217 spa_async_resume(spa); 7218 /* 7219 * Wake up any waiters in spa_lookup() 7220 */ 7221 cv_broadcast(&spa_namespace_cv); 7222 mutex_exit(&spa_namespace_lock); 7223 return (error); 7224 } 7225 7226 /* 7227 * Destroy a storage pool. 7228 */ 7229 int 7230 spa_destroy(const char *pool) 7231 { 7232 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 7233 B_FALSE, B_FALSE)); 7234 } 7235 7236 /* 7237 * Export a storage pool. 7238 */ 7239 int 7240 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force, 7241 boolean_t hardforce) 7242 { 7243 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 7244 force, hardforce)); 7245 } 7246 7247 /* 7248 * Similar to spa_export(), this unloads the spa_t without actually removing it 7249 * from the namespace in any way. 7250 */ 7251 int 7252 spa_reset(const char *pool) 7253 { 7254 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 7255 B_FALSE, B_FALSE)); 7256 } 7257 7258 /* 7259 * ========================================================================== 7260 * Device manipulation 7261 * ========================================================================== 7262 */ 7263 7264 /* 7265 * This is called as a synctask to increment the draid feature flag 7266 */ 7267 static void 7268 spa_draid_feature_incr(void *arg, dmu_tx_t *tx) 7269 { 7270 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 7271 int draid = (int)(uintptr_t)arg; 7272 7273 for (int c = 0; c < draid; c++) 7274 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx); 7275 } 7276 7277 /* 7278 * Add a device to a storage pool. 7279 */ 7280 int 7281 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift) 7282 { 7283 uint64_t txg, ndraid = 0; 7284 int error; 7285 vdev_t *rvd = spa->spa_root_vdev; 7286 vdev_t *vd, *tvd; 7287 nvlist_t **spares, **l2cache; 7288 uint_t nspares, nl2cache; 7289 7290 ASSERT(spa_writeable(spa)); 7291 7292 txg = spa_vdev_enter(spa); 7293 7294 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 7295 VDEV_ALLOC_ADD)) != 0) 7296 return (spa_vdev_exit(spa, NULL, txg, error)); 7297 7298 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 7299 7300 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 7301 &nspares) != 0) 7302 nspares = 0; 7303 7304 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 7305 &nl2cache) != 0) 7306 nl2cache = 0; 7307 7308 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 7309 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7310 7311 if (vd->vdev_children != 0 && 7312 (error = vdev_create(vd, txg, B_FALSE)) != 0) { 7313 return (spa_vdev_exit(spa, vd, txg, error)); 7314 } 7315 7316 /* 7317 * The virtual dRAID spares must be added after vdev tree is created 7318 * and the vdev guids are generated. The guid of their associated 7319 * dRAID is stored in the config and used when opening the spare. 7320 */ 7321 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid, 7322 rvd->vdev_children)) == 0) { 7323 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot, 7324 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) 7325 nspares = 0; 7326 } else { 7327 return (spa_vdev_exit(spa, vd, txg, error)); 7328 } 7329 7330 /* 7331 * We must validate the spares and l2cache devices after checking the 7332 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 7333 */ 7334 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 7335 return (spa_vdev_exit(spa, vd, txg, error)); 7336 7337 /* 7338 * If we are in the middle of a device removal, we can only add 7339 * devices which match the existing devices in the pool. 7340 * If we are in the middle of a removal, or have some indirect 7341 * vdevs, we can not add raidz or dRAID top levels. 7342 */ 7343 if (spa->spa_vdev_removal != NULL || 7344 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 7345 for (int c = 0; c < vd->vdev_children; c++) { 7346 tvd = vd->vdev_child[c]; 7347 if (spa->spa_vdev_removal != NULL && 7348 tvd->vdev_ashift != spa->spa_max_ashift) { 7349 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7350 } 7351 /* Fail if top level vdev is raidz or a dRAID */ 7352 if (vdev_get_nparity(tvd) != 0) 7353 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 7354 7355 /* 7356 * Need the top level mirror to be 7357 * a mirror of leaf vdevs only 7358 */ 7359 if (tvd->vdev_ops == &vdev_mirror_ops) { 7360 for (uint64_t cid = 0; 7361 cid < tvd->vdev_children; cid++) { 7362 vdev_t *cvd = tvd->vdev_child[cid]; 7363 if (!cvd->vdev_ops->vdev_op_leaf) { 7364 return (spa_vdev_exit(spa, vd, 7365 txg, EINVAL)); 7366 } 7367 } 7368 } 7369 } 7370 } 7371 7372 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) { 7373 for (int c = 0; c < vd->vdev_children; c++) { 7374 tvd = vd->vdev_child[c]; 7375 if (tvd->vdev_ashift != spa->spa_max_ashift) { 7376 return (spa_vdev_exit(spa, vd, txg, 7377 ZFS_ERR_ASHIFT_MISMATCH)); 7378 } 7379 } 7380 } 7381 7382 for (int c = 0; c < vd->vdev_children; c++) { 7383 tvd = vd->vdev_child[c]; 7384 vdev_remove_child(vd, tvd); 7385 tvd->vdev_id = rvd->vdev_children; 7386 vdev_add_child(rvd, tvd); 7387 vdev_config_dirty(tvd); 7388 } 7389 7390 if (nspares != 0) { 7391 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 7392 ZPOOL_CONFIG_SPARES); 7393 spa_load_spares(spa); 7394 spa->spa_spares.sav_sync = B_TRUE; 7395 } 7396 7397 if (nl2cache != 0) { 7398 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 7399 ZPOOL_CONFIG_L2CACHE); 7400 spa_load_l2cache(spa); 7401 spa->spa_l2cache.sav_sync = B_TRUE; 7402 } 7403 7404 /* 7405 * We can't increment a feature while holding spa_vdev so we 7406 * have to do it in a synctask. 7407 */ 7408 if (ndraid != 0) { 7409 dmu_tx_t *tx; 7410 7411 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 7412 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr, 7413 (void *)(uintptr_t)ndraid, tx); 7414 dmu_tx_commit(tx); 7415 } 7416 7417 /* 7418 * We have to be careful when adding new vdevs to an existing pool. 7419 * If other threads start allocating from these vdevs before we 7420 * sync the config cache, and we lose power, then upon reboot we may 7421 * fail to open the pool because there are DVAs that the config cache 7422 * can't translate. Therefore, we first add the vdevs without 7423 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 7424 * and then let spa_config_update() initialize the new metaslabs. 7425 * 7426 * spa_load() checks for added-but-not-initialized vdevs, so that 7427 * if we lose power at any point in this sequence, the remaining 7428 * steps will be completed the next time we load the pool. 7429 */ 7430 (void) spa_vdev_exit(spa, vd, txg, 0); 7431 7432 mutex_enter(&spa_namespace_lock); 7433 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7434 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 7435 mutex_exit(&spa_namespace_lock); 7436 7437 return (0); 7438 } 7439 7440 /* 7441 * Given a vdev to be replaced and its parent, check for a possible 7442 * "double spare" condition if a vdev is to be replaced by a spare. When this 7443 * happens, you can get two spares assigned to one failed vdev. 7444 * 7445 * To trigger a double spare condition: 7446 * 7447 * 1. disk1 fails 7448 * 2. 1st spare is kicked in for disk1 and it resilvers 7449 * 3. Someone replaces disk1 with a new blank disk 7450 * 4. New blank disk starts resilvering 7451 * 5. While resilvering, new blank disk has IO errors and faults 7452 * 6. 2nd spare is kicked in for new blank disk 7453 * 7. At this point two spares are kicked in for the original disk1. 7454 * 7455 * It looks like this: 7456 * 7457 * NAME STATE READ WRITE CKSUM 7458 * tank2 DEGRADED 0 0 0 7459 * draid2:6d:10c:2s-0 DEGRADED 0 0 0 7460 * scsi-0QEMU_QEMU_HARDDISK_d1 ONLINE 0 0 0 7461 * scsi-0QEMU_QEMU_HARDDISK_d2 ONLINE 0 0 0 7462 * scsi-0QEMU_QEMU_HARDDISK_d3 ONLINE 0 0 0 7463 * scsi-0QEMU_QEMU_HARDDISK_d4 ONLINE 0 0 0 7464 * scsi-0QEMU_QEMU_HARDDISK_d5 ONLINE 0 0 0 7465 * scsi-0QEMU_QEMU_HARDDISK_d6 ONLINE 0 0 0 7466 * scsi-0QEMU_QEMU_HARDDISK_d7 ONLINE 0 0 0 7467 * scsi-0QEMU_QEMU_HARDDISK_d8 ONLINE 0 0 0 7468 * scsi-0QEMU_QEMU_HARDDISK_d9 ONLINE 0 0 0 7469 * spare-9 DEGRADED 0 0 0 7470 * replacing-0 DEGRADED 0 93 0 7471 * scsi-0QEMU_QEMU_HARDDISK_d10-part1/old UNAVAIL 0 0 0 7472 * spare-1 DEGRADED 0 0 0 7473 * scsi-0QEMU_QEMU_HARDDISK_d10 REMOVED 0 0 0 7474 * draid2-0-0 ONLINE 0 0 0 7475 * draid2-0-1 ONLINE 0 0 0 7476 * spares 7477 * draid2-0-0 INUSE currently in use 7478 * draid2-0-1 INUSE currently in use 7479 * 7480 * ARGS: 7481 * 7482 * newvd: New spare disk 7483 * pvd: Parent vdev_t the spare should attach to 7484 * 7485 * This function returns B_TRUE if adding the new vdev would create a double 7486 * spare condition, B_FALSE otherwise. 7487 */ 7488 static boolean_t 7489 spa_vdev_new_spare_would_cause_double_spares(vdev_t *newvd, vdev_t *pvd) 7490 { 7491 vdev_t *ppvd; 7492 7493 ppvd = pvd->vdev_parent; 7494 if (ppvd == NULL) 7495 return (B_FALSE); 7496 7497 /* 7498 * To determine if this configuration would cause a double spare, we 7499 * look at the vdev_op of the parent vdev, and of the parent's parent 7500 * vdev. We also look at vdev_isspare on the new disk. A double spare 7501 * condition looks like this: 7502 * 7503 * 1. parent of parent's op is a spare or draid spare 7504 * 2. parent's op is replacing 7505 * 3. new disk is a spare 7506 */ 7507 if ((ppvd->vdev_ops == &vdev_spare_ops) || 7508 (ppvd->vdev_ops == &vdev_draid_spare_ops)) 7509 if (pvd->vdev_ops == &vdev_replacing_ops) 7510 if (newvd->vdev_isspare) 7511 return (B_TRUE); 7512 7513 return (B_FALSE); 7514 } 7515 7516 /* 7517 * Attach a device to a vdev specified by its guid. The vdev type can be 7518 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a 7519 * single device). When the vdev is a single device, a mirror vdev will be 7520 * automatically inserted. 7521 * 7522 * If 'replacing' is specified, the new device is intended to replace the 7523 * existing device; in this case the two devices are made into their own 7524 * mirror using the 'replacing' vdev, which is functionally identical to 7525 * the mirror vdev (it actually reuses all the same ops) but has a few 7526 * extra rules: you can't attach to it after it's been created, and upon 7527 * completion of resilvering, the first disk (the one being replaced) 7528 * is automatically detached. 7529 * 7530 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 7531 * should be performed instead of traditional healing reconstruction. From 7532 * an administrators perspective these are both resilver operations. 7533 */ 7534 int 7535 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 7536 int rebuild) 7537 { 7538 uint64_t txg, dtl_max_txg; 7539 vdev_t *rvd = spa->spa_root_vdev; 7540 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 7541 vdev_ops_t *pvops; 7542 char *oldvdpath, *newvdpath; 7543 int newvd_isspare = B_FALSE; 7544 int error; 7545 7546 ASSERT(spa_writeable(spa)); 7547 7548 txg = spa_vdev_enter(spa); 7549 7550 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 7551 7552 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7553 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7554 error = (spa_has_checkpoint(spa)) ? 7555 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7556 return (spa_vdev_exit(spa, NULL, txg, error)); 7557 } 7558 7559 if (rebuild) { 7560 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 7561 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7562 7563 if (dsl_scan_resilvering(spa_get_dsl(spa)) || 7564 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) { 7565 return (spa_vdev_exit(spa, NULL, txg, 7566 ZFS_ERR_RESILVER_IN_PROGRESS)); 7567 } 7568 } else { 7569 if (vdev_rebuild_active(rvd)) 7570 return (spa_vdev_exit(spa, NULL, txg, 7571 ZFS_ERR_REBUILD_IN_PROGRESS)); 7572 } 7573 7574 if (spa->spa_vdev_removal != NULL) { 7575 return (spa_vdev_exit(spa, NULL, txg, 7576 ZFS_ERR_DEVRM_IN_PROGRESS)); 7577 } 7578 7579 if (oldvd == NULL) 7580 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7581 7582 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops; 7583 7584 if (raidz) { 7585 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION)) 7586 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7587 7588 /* 7589 * Can't expand a raidz while prior expand is in progress. 7590 */ 7591 if (spa->spa_raidz_expand != NULL) { 7592 return (spa_vdev_exit(spa, NULL, txg, 7593 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS)); 7594 } 7595 } else if (!oldvd->vdev_ops->vdev_op_leaf) { 7596 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7597 } 7598 7599 if (raidz) 7600 pvd = oldvd; 7601 else 7602 pvd = oldvd->vdev_parent; 7603 7604 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 7605 VDEV_ALLOC_ATTACH) != 0) 7606 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7607 7608 if (newrootvd->vdev_children != 1) 7609 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7610 7611 newvd = newrootvd->vdev_child[0]; 7612 7613 if (!newvd->vdev_ops->vdev_op_leaf) 7614 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 7615 7616 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 7617 return (spa_vdev_exit(spa, newrootvd, txg, error)); 7618 7619 /* 7620 * log, dedup and special vdevs should not be replaced by spares. 7621 */ 7622 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE || 7623 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) { 7624 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7625 } 7626 7627 /* 7628 * A dRAID spare can only replace a child of its parent dRAID vdev. 7629 */ 7630 if (newvd->vdev_ops == &vdev_draid_spare_ops && 7631 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) { 7632 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7633 } 7634 7635 if (rebuild) { 7636 /* 7637 * For rebuilds, the top vdev must support reconstruction 7638 * using only space maps. This means the only allowable 7639 * vdevs types are the root vdev, a mirror, or dRAID. 7640 */ 7641 tvd = pvd; 7642 if (pvd->vdev_top != NULL) 7643 tvd = pvd->vdev_top; 7644 7645 if (tvd->vdev_ops != &vdev_mirror_ops && 7646 tvd->vdev_ops != &vdev_root_ops && 7647 tvd->vdev_ops != &vdev_draid_ops) { 7648 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7649 } 7650 } 7651 7652 if (!replacing) { 7653 /* 7654 * For attach, the only allowable parent is a mirror or 7655 * the root vdev. A raidz vdev can be attached to, but 7656 * you cannot attach to a raidz child. 7657 */ 7658 if (pvd->vdev_ops != &vdev_mirror_ops && 7659 pvd->vdev_ops != &vdev_root_ops && 7660 !raidz) 7661 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7662 7663 pvops = &vdev_mirror_ops; 7664 } else { 7665 /* 7666 * Active hot spares can only be replaced by inactive hot 7667 * spares. 7668 */ 7669 if (pvd->vdev_ops == &vdev_spare_ops && 7670 oldvd->vdev_isspare && 7671 !spa_has_spare(spa, newvd->vdev_guid)) 7672 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7673 7674 /* 7675 * If the source is a hot spare, and the parent isn't already a 7676 * spare, then we want to create a new hot spare. Otherwise, we 7677 * want to create a replacing vdev. The user is not allowed to 7678 * attach to a spared vdev child unless the 'isspare' state is 7679 * the same (spare replaces spare, non-spare replaces 7680 * non-spare). 7681 */ 7682 if (pvd->vdev_ops == &vdev_replacing_ops && 7683 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 7684 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7685 } else if (pvd->vdev_ops == &vdev_spare_ops && 7686 newvd->vdev_isspare != oldvd->vdev_isspare) { 7687 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7688 } 7689 7690 if (spa_vdev_new_spare_would_cause_double_spares(newvd, pvd)) { 7691 vdev_dbgmsg(newvd, 7692 "disk would create double spares, ignore."); 7693 return (spa_vdev_exit(spa, newrootvd, txg, EEXIST)); 7694 } 7695 7696 if (newvd->vdev_isspare) 7697 pvops = &vdev_spare_ops; 7698 else 7699 pvops = &vdev_replacing_ops; 7700 } 7701 7702 /* 7703 * Make sure the new device is big enough. 7704 */ 7705 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd; 7706 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev)) 7707 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 7708 7709 /* 7710 * The new device cannot have a higher alignment requirement 7711 * than the top-level vdev. 7712 */ 7713 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) { 7714 return (spa_vdev_exit(spa, newrootvd, txg, 7715 ZFS_ERR_ASHIFT_MISMATCH)); 7716 } 7717 7718 /* 7719 * RAIDZ-expansion-specific checks. 7720 */ 7721 if (raidz) { 7722 if (vdev_raidz_attach_check(newvd) != 0) 7723 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 7724 7725 /* 7726 * Fail early if a child is not healthy or being replaced 7727 */ 7728 for (int i = 0; i < oldvd->vdev_children; i++) { 7729 if (vdev_is_dead(oldvd->vdev_child[i]) || 7730 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) { 7731 return (spa_vdev_exit(spa, newrootvd, txg, 7732 ENXIO)); 7733 } 7734 /* Also fail if reserved boot area is in-use */ 7735 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i]) 7736 != 0) { 7737 return (spa_vdev_exit(spa, newrootvd, txg, 7738 EADDRINUSE)); 7739 } 7740 } 7741 } 7742 7743 if (raidz) { 7744 /* 7745 * Note: oldvdpath is freed by spa_strfree(), but 7746 * kmem_asprintf() is freed by kmem_strfree(), so we have to 7747 * move it to a spa_strdup-ed string. 7748 */ 7749 char *tmp = kmem_asprintf("raidz%u-%u", 7750 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id); 7751 oldvdpath = spa_strdup(tmp); 7752 kmem_strfree(tmp); 7753 } else { 7754 oldvdpath = spa_strdup(oldvd->vdev_path); 7755 } 7756 newvdpath = spa_strdup(newvd->vdev_path); 7757 7758 /* 7759 * If this is an in-place replacement, update oldvd's path and devid 7760 * to make it distinguishable from newvd, and unopenable from now on. 7761 */ 7762 if (strcmp(oldvdpath, newvdpath) == 0) { 7763 spa_strfree(oldvd->vdev_path); 7764 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5, 7765 KM_SLEEP); 7766 (void) sprintf(oldvd->vdev_path, "%s/old", 7767 newvdpath); 7768 if (oldvd->vdev_devid != NULL) { 7769 spa_strfree(oldvd->vdev_devid); 7770 oldvd->vdev_devid = NULL; 7771 } 7772 spa_strfree(oldvdpath); 7773 oldvdpath = spa_strdup(oldvd->vdev_path); 7774 } 7775 7776 /* 7777 * If the parent is not a mirror, or if we're replacing, insert the new 7778 * mirror/replacing/spare vdev above oldvd. 7779 */ 7780 if (!raidz && pvd->vdev_ops != pvops) { 7781 pvd = vdev_add_parent(oldvd, pvops); 7782 ASSERT(pvd->vdev_ops == pvops); 7783 ASSERT(oldvd->vdev_parent == pvd); 7784 } 7785 7786 ASSERT(pvd->vdev_top->vdev_parent == rvd); 7787 7788 /* 7789 * Extract the new device from its root and add it to pvd. 7790 */ 7791 vdev_remove_child(newrootvd, newvd); 7792 newvd->vdev_id = pvd->vdev_children; 7793 newvd->vdev_crtxg = oldvd->vdev_crtxg; 7794 vdev_add_child(pvd, newvd); 7795 7796 /* 7797 * Reevaluate the parent vdev state. 7798 */ 7799 vdev_propagate_state(pvd); 7800 7801 tvd = newvd->vdev_top; 7802 ASSERT(pvd->vdev_top == tvd); 7803 ASSERT(tvd->vdev_parent == rvd); 7804 7805 vdev_config_dirty(tvd); 7806 7807 /* 7808 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 7809 * for any dmu_sync-ed blocks. It will propagate upward when 7810 * spa_vdev_exit() calls vdev_dtl_reassess(). 7811 */ 7812 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 7813 7814 if (raidz) { 7815 /* 7816 * Wait for the youngest allocations and frees to sync, 7817 * and then wait for the deferral of those frees to finish. 7818 */ 7819 spa_vdev_config_exit(spa, NULL, 7820 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 7821 7822 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE); 7823 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE); 7824 vdev_autotrim_stop_wait(tvd); 7825 7826 dtl_max_txg = spa_vdev_config_enter(spa); 7827 7828 tvd->vdev_rz_expanding = B_TRUE; 7829 7830 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg); 7831 vdev_config_dirty(tvd); 7832 7833 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, 7834 dtl_max_txg); 7835 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync, 7836 newvd, tx); 7837 dmu_tx_commit(tx); 7838 } else { 7839 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 7840 dtl_max_txg - TXG_INITIAL); 7841 7842 if (newvd->vdev_isspare) { 7843 spa_spare_activate(newvd); 7844 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 7845 } 7846 7847 newvd_isspare = newvd->vdev_isspare; 7848 7849 /* 7850 * Mark newvd's DTL dirty in this txg. 7851 */ 7852 vdev_dirty(tvd, VDD_DTL, newvd, txg); 7853 7854 /* 7855 * Schedule the resilver or rebuild to restart in the future. 7856 * We do this to ensure that dmu_sync-ed blocks have been 7857 * stitched into the respective datasets. 7858 */ 7859 if (rebuild) { 7860 newvd->vdev_rebuild_txg = txg; 7861 7862 vdev_rebuild(tvd); 7863 } else { 7864 newvd->vdev_resilver_txg = txg; 7865 7866 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 7867 spa_feature_is_enabled(spa, 7868 SPA_FEATURE_RESILVER_DEFER)) { 7869 vdev_defer_resilver(newvd); 7870 } else { 7871 dsl_scan_restart_resilver(spa->spa_dsl_pool, 7872 dtl_max_txg); 7873 } 7874 } 7875 } 7876 7877 if (spa->spa_bootfs) 7878 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 7879 7880 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 7881 7882 /* 7883 * Commit the config 7884 */ 7885 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 7886 7887 spa_history_log_internal(spa, "vdev attach", NULL, 7888 "%s vdev=%s %s vdev=%s", 7889 replacing && newvd_isspare ? "spare in" : 7890 replacing ? "replace" : "attach", newvdpath, 7891 replacing ? "for" : "to", oldvdpath); 7892 7893 spa_strfree(oldvdpath); 7894 spa_strfree(newvdpath); 7895 7896 return (0); 7897 } 7898 7899 /* 7900 * Detach a device from a mirror or replacing vdev. 7901 * 7902 * If 'replace_done' is specified, only detach if the parent 7903 * is a replacing or a spare vdev. 7904 */ 7905 int 7906 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 7907 { 7908 uint64_t txg; 7909 int error; 7910 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 7911 vdev_t *vd, *pvd, *cvd, *tvd; 7912 boolean_t unspare = B_FALSE; 7913 uint64_t unspare_guid = 0; 7914 char *vdpath; 7915 7916 ASSERT(spa_writeable(spa)); 7917 7918 txg = spa_vdev_detach_enter(spa, guid); 7919 7920 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7921 7922 /* 7923 * Besides being called directly from the userland through the 7924 * ioctl interface, spa_vdev_detach() can be potentially called 7925 * at the end of spa_vdev_resilver_done(). 7926 * 7927 * In the regular case, when we have a checkpoint this shouldn't 7928 * happen as we never empty the DTLs of a vdev during the scrub 7929 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 7930 * should never get here when we have a checkpoint. 7931 * 7932 * That said, even in a case when we checkpoint the pool exactly 7933 * as spa_vdev_resilver_done() calls this function everything 7934 * should be fine as the resilver will return right away. 7935 */ 7936 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7937 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7938 error = (spa_has_checkpoint(spa)) ? 7939 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7940 return (spa_vdev_exit(spa, NULL, txg, error)); 7941 } 7942 7943 if (vd == NULL) 7944 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 7945 7946 if (!vd->vdev_ops->vdev_op_leaf) 7947 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7948 7949 pvd = vd->vdev_parent; 7950 7951 /* 7952 * If the parent/child relationship is not as expected, don't do it. 7953 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 7954 * vdev that's replacing B with C. The user's intent in replacing 7955 * is to go from M(A,B) to M(A,C). If the user decides to cancel 7956 * the replace by detaching C, the expected behavior is to end up 7957 * M(A,B). But suppose that right after deciding to detach C, 7958 * the replacement of B completes. We would have M(A,C), and then 7959 * ask to detach C, which would leave us with just A -- not what 7960 * the user wanted. To prevent this, we make sure that the 7961 * parent/child relationship hasn't changed -- in this example, 7962 * that C's parent is still the replacing vdev R. 7963 */ 7964 if (pvd->vdev_guid != pguid && pguid != 0) 7965 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7966 7967 /* 7968 * Only 'replacing' or 'spare' vdevs can be replaced. 7969 */ 7970 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 7971 pvd->vdev_ops != &vdev_spare_ops) 7972 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7973 7974 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 7975 spa_version(spa) >= SPA_VERSION_SPARES); 7976 7977 /* 7978 * Only mirror, replacing, and spare vdevs support detach. 7979 */ 7980 if (pvd->vdev_ops != &vdev_replacing_ops && 7981 pvd->vdev_ops != &vdev_mirror_ops && 7982 pvd->vdev_ops != &vdev_spare_ops) 7983 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 7984 7985 /* 7986 * If this device has the only valid copy of some data, 7987 * we cannot safely detach it. 7988 */ 7989 if (vdev_dtl_required(vd)) 7990 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 7991 7992 ASSERT(pvd->vdev_children >= 2); 7993 7994 /* 7995 * If we are detaching the second disk from a replacing vdev, then 7996 * check to see if we changed the original vdev's path to have "/old" 7997 * at the end in spa_vdev_attach(). If so, undo that change now. 7998 */ 7999 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 8000 vd->vdev_path != NULL) { 8001 size_t len = strlen(vd->vdev_path); 8002 8003 for (int c = 0; c < pvd->vdev_children; c++) { 8004 cvd = pvd->vdev_child[c]; 8005 8006 if (cvd == vd || cvd->vdev_path == NULL) 8007 continue; 8008 8009 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 8010 strcmp(cvd->vdev_path + len, "/old") == 0) { 8011 spa_strfree(cvd->vdev_path); 8012 cvd->vdev_path = spa_strdup(vd->vdev_path); 8013 break; 8014 } 8015 } 8016 } 8017 8018 /* 8019 * If we are detaching the original disk from a normal spare, then it 8020 * implies that the spare should become a real disk, and be removed 8021 * from the active spare list for the pool. dRAID spares on the 8022 * other hand are coupled to the pool and thus should never be removed 8023 * from the spares list. 8024 */ 8025 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) { 8026 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1]; 8027 8028 if (last_cvd->vdev_isspare && 8029 last_cvd->vdev_ops != &vdev_draid_spare_ops) { 8030 unspare = B_TRUE; 8031 } 8032 } 8033 8034 /* 8035 * Erase the disk labels so the disk can be used for other things. 8036 * This must be done after all other error cases are handled, 8037 * but before we disembowel vd (so we can still do I/O to it). 8038 * But if we can't do it, don't treat the error as fatal -- 8039 * it may be that the unwritability of the disk is the reason 8040 * it's being detached! 8041 */ 8042 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 8043 8044 /* 8045 * Remove vd from its parent and compact the parent's children. 8046 */ 8047 vdev_remove_child(pvd, vd); 8048 vdev_compact_children(pvd); 8049 8050 /* 8051 * Remember one of the remaining children so we can get tvd below. 8052 */ 8053 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 8054 8055 /* 8056 * If we need to remove the remaining child from the list of hot spares, 8057 * do it now, marking the vdev as no longer a spare in the process. 8058 * We must do this before vdev_remove_parent(), because that can 8059 * change the GUID if it creates a new toplevel GUID. For a similar 8060 * reason, we must remove the spare now, in the same txg as the detach; 8061 * otherwise someone could attach a new sibling, change the GUID, and 8062 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 8063 */ 8064 if (unspare) { 8065 ASSERT(cvd->vdev_isspare); 8066 spa_spare_remove(cvd); 8067 unspare_guid = cvd->vdev_guid; 8068 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 8069 cvd->vdev_unspare = B_TRUE; 8070 } 8071 8072 /* 8073 * If the parent mirror/replacing vdev only has one child, 8074 * the parent is no longer needed. Remove it from the tree. 8075 */ 8076 if (pvd->vdev_children == 1) { 8077 if (pvd->vdev_ops == &vdev_spare_ops) 8078 cvd->vdev_unspare = B_FALSE; 8079 vdev_remove_parent(cvd); 8080 } 8081 8082 /* 8083 * We don't set tvd until now because the parent we just removed 8084 * may have been the previous top-level vdev. 8085 */ 8086 tvd = cvd->vdev_top; 8087 ASSERT(tvd->vdev_parent == rvd); 8088 8089 /* 8090 * Reevaluate the parent vdev state. 8091 */ 8092 vdev_propagate_state(cvd); 8093 8094 /* 8095 * If the 'autoexpand' property is set on the pool then automatically 8096 * try to expand the size of the pool. For example if the device we 8097 * just detached was smaller than the others, it may be possible to 8098 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 8099 * first so that we can obtain the updated sizes of the leaf vdevs. 8100 */ 8101 if (spa->spa_autoexpand) { 8102 vdev_reopen(tvd); 8103 vdev_expand(tvd, txg); 8104 } 8105 8106 vdev_config_dirty(tvd); 8107 8108 /* 8109 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 8110 * vd->vdev_detached is set and free vd's DTL object in syncing context. 8111 * But first make sure we're not on any *other* txg's DTL list, to 8112 * prevent vd from being accessed after it's freed. 8113 */ 8114 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 8115 for (int t = 0; t < TXG_SIZE; t++) 8116 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 8117 vd->vdev_detached = B_TRUE; 8118 vdev_dirty(tvd, VDD_DTL, vd, txg); 8119 8120 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 8121 spa_notify_waiters(spa); 8122 8123 /* hang on to the spa before we release the lock */ 8124 spa_open_ref(spa, FTAG); 8125 8126 error = spa_vdev_exit(spa, vd, txg, 0); 8127 8128 spa_history_log_internal(spa, "detach", NULL, 8129 "vdev=%s", vdpath); 8130 spa_strfree(vdpath); 8131 8132 /* 8133 * If this was the removal of the original device in a hot spare vdev, 8134 * then we want to go through and remove the device from the hot spare 8135 * list of every other pool. 8136 */ 8137 if (unspare) { 8138 spa_t *altspa = NULL; 8139 8140 mutex_enter(&spa_namespace_lock); 8141 while ((altspa = spa_next(altspa)) != NULL) { 8142 if (altspa->spa_state != POOL_STATE_ACTIVE || 8143 altspa == spa) 8144 continue; 8145 8146 spa_open_ref(altspa, FTAG); 8147 mutex_exit(&spa_namespace_lock); 8148 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 8149 mutex_enter(&spa_namespace_lock); 8150 spa_close(altspa, FTAG); 8151 } 8152 mutex_exit(&spa_namespace_lock); 8153 8154 /* search the rest of the vdevs for spares to remove */ 8155 spa_vdev_resilver_done(spa); 8156 } 8157 8158 /* all done with the spa; OK to release */ 8159 mutex_enter(&spa_namespace_lock); 8160 spa_close(spa, FTAG); 8161 mutex_exit(&spa_namespace_lock); 8162 8163 return (error); 8164 } 8165 8166 static int 8167 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 8168 list_t *vd_list) 8169 { 8170 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8171 8172 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8173 8174 /* Look up vdev and ensure it's a leaf. */ 8175 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8176 if (vd == NULL || vd->vdev_detached) { 8177 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8178 return (SET_ERROR(ENODEV)); 8179 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8180 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8181 return (SET_ERROR(EINVAL)); 8182 } else if (!vdev_writeable(vd)) { 8183 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8184 return (SET_ERROR(EROFS)); 8185 } 8186 mutex_enter(&vd->vdev_initialize_lock); 8187 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8188 8189 /* 8190 * When we activate an initialize action we check to see 8191 * if the vdev_initialize_thread is NULL. We do this instead 8192 * of using the vdev_initialize_state since there might be 8193 * a previous initialization process which has completed but 8194 * the thread is not exited. 8195 */ 8196 if (cmd_type == POOL_INITIALIZE_START && 8197 (vd->vdev_initialize_thread != NULL || 8198 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) { 8199 mutex_exit(&vd->vdev_initialize_lock); 8200 return (SET_ERROR(EBUSY)); 8201 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 8202 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 8203 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 8204 mutex_exit(&vd->vdev_initialize_lock); 8205 return (SET_ERROR(ESRCH)); 8206 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 8207 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 8208 mutex_exit(&vd->vdev_initialize_lock); 8209 return (SET_ERROR(ESRCH)); 8210 } else if (cmd_type == POOL_INITIALIZE_UNINIT && 8211 vd->vdev_initialize_thread != NULL) { 8212 mutex_exit(&vd->vdev_initialize_lock); 8213 return (SET_ERROR(EBUSY)); 8214 } 8215 8216 switch (cmd_type) { 8217 case POOL_INITIALIZE_START: 8218 vdev_initialize(vd); 8219 break; 8220 case POOL_INITIALIZE_CANCEL: 8221 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 8222 break; 8223 case POOL_INITIALIZE_SUSPEND: 8224 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 8225 break; 8226 case POOL_INITIALIZE_UNINIT: 8227 vdev_uninitialize(vd); 8228 break; 8229 default: 8230 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8231 } 8232 mutex_exit(&vd->vdev_initialize_lock); 8233 8234 return (0); 8235 } 8236 8237 int 8238 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 8239 nvlist_t *vdev_errlist) 8240 { 8241 int total_errors = 0; 8242 list_t vd_list; 8243 8244 list_create(&vd_list, sizeof (vdev_t), 8245 offsetof(vdev_t, vdev_initialize_node)); 8246 8247 /* 8248 * We hold the namespace lock through the whole function 8249 * to prevent any changes to the pool while we're starting or 8250 * stopping initialization. The config and state locks are held so that 8251 * we can properly assess the vdev state before we commit to 8252 * the initializing operation. 8253 */ 8254 mutex_enter(&spa_namespace_lock); 8255 8256 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8257 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8258 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8259 8260 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 8261 &vd_list); 8262 if (error != 0) { 8263 char guid_as_str[MAXNAMELEN]; 8264 8265 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8266 "%llu", (unsigned long long)vdev_guid); 8267 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8268 total_errors++; 8269 } 8270 } 8271 8272 /* Wait for all initialize threads to stop. */ 8273 vdev_initialize_stop_wait(spa, &vd_list); 8274 8275 /* Sync out the initializing state */ 8276 txg_wait_synced(spa->spa_dsl_pool, 0); 8277 mutex_exit(&spa_namespace_lock); 8278 8279 list_destroy(&vd_list); 8280 8281 return (total_errors); 8282 } 8283 8284 static int 8285 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 8286 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 8287 { 8288 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8289 8290 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 8291 8292 /* Look up vdev and ensure it's a leaf. */ 8293 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 8294 if (vd == NULL || vd->vdev_detached) { 8295 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8296 return (SET_ERROR(ENODEV)); 8297 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 8298 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8299 return (SET_ERROR(EINVAL)); 8300 } else if (!vdev_writeable(vd)) { 8301 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8302 return (SET_ERROR(EROFS)); 8303 } else if (!vd->vdev_has_trim) { 8304 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8305 return (SET_ERROR(EOPNOTSUPP)); 8306 } else if (secure && !vd->vdev_has_securetrim) { 8307 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8308 return (SET_ERROR(EOPNOTSUPP)); 8309 } 8310 mutex_enter(&vd->vdev_trim_lock); 8311 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 8312 8313 /* 8314 * When we activate a TRIM action we check to see if the 8315 * vdev_trim_thread is NULL. We do this instead of using the 8316 * vdev_trim_state since there might be a previous TRIM process 8317 * which has completed but the thread is not exited. 8318 */ 8319 if (cmd_type == POOL_TRIM_START && 8320 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing || 8321 vd->vdev_top->vdev_rz_expanding)) { 8322 mutex_exit(&vd->vdev_trim_lock); 8323 return (SET_ERROR(EBUSY)); 8324 } else if (cmd_type == POOL_TRIM_CANCEL && 8325 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 8326 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 8327 mutex_exit(&vd->vdev_trim_lock); 8328 return (SET_ERROR(ESRCH)); 8329 } else if (cmd_type == POOL_TRIM_SUSPEND && 8330 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 8331 mutex_exit(&vd->vdev_trim_lock); 8332 return (SET_ERROR(ESRCH)); 8333 } 8334 8335 switch (cmd_type) { 8336 case POOL_TRIM_START: 8337 vdev_trim(vd, rate, partial, secure); 8338 break; 8339 case POOL_TRIM_CANCEL: 8340 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 8341 break; 8342 case POOL_TRIM_SUSPEND: 8343 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 8344 break; 8345 default: 8346 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 8347 } 8348 mutex_exit(&vd->vdev_trim_lock); 8349 8350 return (0); 8351 } 8352 8353 /* 8354 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 8355 * TRIM threads for each child vdev. These threads pass over all of the free 8356 * space in the vdev's metaslabs and issues TRIM commands for that space. 8357 */ 8358 int 8359 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 8360 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 8361 { 8362 int total_errors = 0; 8363 list_t vd_list; 8364 8365 list_create(&vd_list, sizeof (vdev_t), 8366 offsetof(vdev_t, vdev_trim_node)); 8367 8368 /* 8369 * We hold the namespace lock through the whole function 8370 * to prevent any changes to the pool while we're starting or 8371 * stopping TRIM. The config and state locks are held so that 8372 * we can properly assess the vdev state before we commit to 8373 * the TRIM operation. 8374 */ 8375 mutex_enter(&spa_namespace_lock); 8376 8377 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 8378 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 8379 uint64_t vdev_guid = fnvpair_value_uint64(pair); 8380 8381 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 8382 rate, partial, secure, &vd_list); 8383 if (error != 0) { 8384 char guid_as_str[MAXNAMELEN]; 8385 8386 (void) snprintf(guid_as_str, sizeof (guid_as_str), 8387 "%llu", (unsigned long long)vdev_guid); 8388 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 8389 total_errors++; 8390 } 8391 } 8392 8393 /* Wait for all TRIM threads to stop. */ 8394 vdev_trim_stop_wait(spa, &vd_list); 8395 8396 /* Sync out the TRIM state */ 8397 txg_wait_synced(spa->spa_dsl_pool, 0); 8398 mutex_exit(&spa_namespace_lock); 8399 8400 list_destroy(&vd_list); 8401 8402 return (total_errors); 8403 } 8404 8405 /* 8406 * Split a set of devices from their mirrors, and create a new pool from them. 8407 */ 8408 int 8409 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config, 8410 nvlist_t *props, boolean_t exp) 8411 { 8412 int error = 0; 8413 uint64_t txg, *glist; 8414 spa_t *newspa; 8415 uint_t c, children, lastlog; 8416 nvlist_t **child, *nvl, *tmp; 8417 dmu_tx_t *tx; 8418 const char *altroot = NULL; 8419 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 8420 boolean_t activate_slog; 8421 8422 ASSERT(spa_writeable(spa)); 8423 8424 txg = spa_vdev_enter(spa); 8425 8426 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 8427 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 8428 error = (spa_has_checkpoint(spa)) ? 8429 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 8430 return (spa_vdev_exit(spa, NULL, txg, error)); 8431 } 8432 8433 /* clear the log and flush everything up to now */ 8434 activate_slog = spa_passivate_log(spa); 8435 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8436 error = spa_reset_logs(spa); 8437 txg = spa_vdev_config_enter(spa); 8438 8439 if (activate_slog) 8440 spa_activate_log(spa); 8441 8442 if (error != 0) 8443 return (spa_vdev_exit(spa, NULL, txg, error)); 8444 8445 /* check new spa name before going any further */ 8446 if (spa_lookup(newname) != NULL) 8447 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 8448 8449 /* 8450 * scan through all the children to ensure they're all mirrors 8451 */ 8452 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 8453 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 8454 &children) != 0) 8455 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8456 8457 /* first, check to ensure we've got the right child count */ 8458 rvd = spa->spa_root_vdev; 8459 lastlog = 0; 8460 for (c = 0; c < rvd->vdev_children; c++) { 8461 vdev_t *vd = rvd->vdev_child[c]; 8462 8463 /* don't count the holes & logs as children */ 8464 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 8465 !vdev_is_concrete(vd))) { 8466 if (lastlog == 0) 8467 lastlog = c; 8468 continue; 8469 } 8470 8471 lastlog = 0; 8472 } 8473 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 8474 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8475 8476 /* next, ensure no spare or cache devices are part of the split */ 8477 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 8478 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 8479 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 8480 8481 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 8482 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 8483 8484 /* then, loop over each vdev and validate it */ 8485 for (c = 0; c < children; c++) { 8486 uint64_t is_hole = 0; 8487 8488 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 8489 &is_hole); 8490 8491 if (is_hole != 0) { 8492 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 8493 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 8494 continue; 8495 } else { 8496 error = SET_ERROR(EINVAL); 8497 break; 8498 } 8499 } 8500 8501 /* deal with indirect vdevs */ 8502 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 8503 &vdev_indirect_ops) 8504 continue; 8505 8506 /* which disk is going to be split? */ 8507 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 8508 &glist[c]) != 0) { 8509 error = SET_ERROR(EINVAL); 8510 break; 8511 } 8512 8513 /* look it up in the spa */ 8514 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 8515 if (vml[c] == NULL) { 8516 error = SET_ERROR(ENODEV); 8517 break; 8518 } 8519 8520 /* make sure there's nothing stopping the split */ 8521 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 8522 vml[c]->vdev_islog || 8523 !vdev_is_concrete(vml[c]) || 8524 vml[c]->vdev_isspare || 8525 vml[c]->vdev_isl2cache || 8526 !vdev_writeable(vml[c]) || 8527 vml[c]->vdev_children != 0 || 8528 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 8529 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 8530 error = SET_ERROR(EINVAL); 8531 break; 8532 } 8533 8534 if (vdev_dtl_required(vml[c]) || 8535 vdev_resilver_needed(vml[c], NULL, NULL)) { 8536 error = SET_ERROR(EBUSY); 8537 break; 8538 } 8539 8540 /* we need certain info from the top level */ 8541 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 8542 vml[c]->vdev_top->vdev_ms_array); 8543 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 8544 vml[c]->vdev_top->vdev_ms_shift); 8545 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 8546 vml[c]->vdev_top->vdev_asize); 8547 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 8548 vml[c]->vdev_top->vdev_ashift); 8549 8550 /* transfer per-vdev ZAPs */ 8551 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 8552 VERIFY0(nvlist_add_uint64(child[c], 8553 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 8554 8555 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 8556 VERIFY0(nvlist_add_uint64(child[c], 8557 ZPOOL_CONFIG_VDEV_TOP_ZAP, 8558 vml[c]->vdev_parent->vdev_top_zap)); 8559 } 8560 8561 if (error != 0) { 8562 kmem_free(vml, children * sizeof (vdev_t *)); 8563 kmem_free(glist, children * sizeof (uint64_t)); 8564 return (spa_vdev_exit(spa, NULL, txg, error)); 8565 } 8566 8567 /* stop writers from using the disks */ 8568 for (c = 0; c < children; c++) { 8569 if (vml[c] != NULL) 8570 vml[c]->vdev_offline = B_TRUE; 8571 } 8572 vdev_reopen(spa->spa_root_vdev); 8573 8574 /* 8575 * Temporarily record the splitting vdevs in the spa config. This 8576 * will disappear once the config is regenerated. 8577 */ 8578 nvl = fnvlist_alloc(); 8579 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children); 8580 kmem_free(glist, children * sizeof (uint64_t)); 8581 8582 mutex_enter(&spa->spa_props_lock); 8583 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl); 8584 mutex_exit(&spa->spa_props_lock); 8585 spa->spa_config_splitting = nvl; 8586 vdev_config_dirty(spa->spa_root_vdev); 8587 8588 /* configure and create the new pool */ 8589 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname); 8590 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 8591 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE); 8592 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa)); 8593 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg); 8594 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 8595 spa_generate_guid(NULL)); 8596 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 8597 (void) nvlist_lookup_string(props, 8598 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 8599 8600 /* add the new pool to the namespace */ 8601 newspa = spa_add(newname, config, altroot); 8602 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 8603 newspa->spa_config_txg = spa->spa_config_txg; 8604 spa_set_log_state(newspa, SPA_LOG_CLEAR); 8605 8606 /* release the spa config lock, retaining the namespace lock */ 8607 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 8608 8609 if (zio_injection_enabled) 8610 zio_handle_panic_injection(spa, FTAG, 1); 8611 8612 spa_activate(newspa, spa_mode_global); 8613 spa_async_suspend(newspa); 8614 8615 /* 8616 * Temporarily stop the initializing and TRIM activity. We set the 8617 * state to ACTIVE so that we know to resume initializing or TRIM 8618 * once the split has completed. 8619 */ 8620 list_t vd_initialize_list; 8621 list_create(&vd_initialize_list, sizeof (vdev_t), 8622 offsetof(vdev_t, vdev_initialize_node)); 8623 8624 list_t vd_trim_list; 8625 list_create(&vd_trim_list, sizeof (vdev_t), 8626 offsetof(vdev_t, vdev_trim_node)); 8627 8628 for (c = 0; c < children; c++) { 8629 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8630 mutex_enter(&vml[c]->vdev_initialize_lock); 8631 vdev_initialize_stop(vml[c], 8632 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 8633 mutex_exit(&vml[c]->vdev_initialize_lock); 8634 8635 mutex_enter(&vml[c]->vdev_trim_lock); 8636 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 8637 mutex_exit(&vml[c]->vdev_trim_lock); 8638 } 8639 } 8640 8641 vdev_initialize_stop_wait(spa, &vd_initialize_list); 8642 vdev_trim_stop_wait(spa, &vd_trim_list); 8643 8644 list_destroy(&vd_initialize_list); 8645 list_destroy(&vd_trim_list); 8646 8647 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 8648 newspa->spa_is_splitting = B_TRUE; 8649 8650 /* create the new pool from the disks of the original pool */ 8651 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 8652 if (error) 8653 goto out; 8654 8655 /* if that worked, generate a real config for the new pool */ 8656 if (newspa->spa_root_vdev != NULL) { 8657 newspa->spa_config_splitting = fnvlist_alloc(); 8658 fnvlist_add_uint64(newspa->spa_config_splitting, 8659 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)); 8660 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 8661 B_TRUE)); 8662 } 8663 8664 /* set the props */ 8665 if (props != NULL) { 8666 spa_configfile_set(newspa, props, B_FALSE); 8667 error = spa_prop_set(newspa, props); 8668 if (error) 8669 goto out; 8670 } 8671 8672 /* flush everything */ 8673 txg = spa_vdev_config_enter(newspa); 8674 vdev_config_dirty(newspa->spa_root_vdev); 8675 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 8676 8677 if (zio_injection_enabled) 8678 zio_handle_panic_injection(spa, FTAG, 2); 8679 8680 spa_async_resume(newspa); 8681 8682 /* finally, update the original pool's config */ 8683 txg = spa_vdev_config_enter(spa); 8684 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 8685 error = dmu_tx_assign(tx, DMU_TX_WAIT); 8686 if (error != 0) 8687 dmu_tx_abort(tx); 8688 for (c = 0; c < children; c++) { 8689 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 8690 vdev_t *tvd = vml[c]->vdev_top; 8691 8692 /* 8693 * Need to be sure the detachable VDEV is not 8694 * on any *other* txg's DTL list to prevent it 8695 * from being accessed after it's freed. 8696 */ 8697 for (int t = 0; t < TXG_SIZE; t++) { 8698 (void) txg_list_remove_this( 8699 &tvd->vdev_dtl_list, vml[c], t); 8700 } 8701 8702 vdev_split(vml[c]); 8703 if (error == 0) 8704 spa_history_log_internal(spa, "detach", tx, 8705 "vdev=%s", vml[c]->vdev_path); 8706 8707 vdev_free(vml[c]); 8708 } 8709 } 8710 spa->spa_avz_action = AVZ_ACTION_REBUILD; 8711 vdev_config_dirty(spa->spa_root_vdev); 8712 spa->spa_config_splitting = NULL; 8713 nvlist_free(nvl); 8714 if (error == 0) 8715 dmu_tx_commit(tx); 8716 (void) spa_vdev_exit(spa, NULL, txg, 0); 8717 8718 if (zio_injection_enabled) 8719 zio_handle_panic_injection(spa, FTAG, 3); 8720 8721 /* split is complete; log a history record */ 8722 spa_history_log_internal(newspa, "split", NULL, 8723 "from pool %s", spa_name(spa)); 8724 8725 newspa->spa_is_splitting = B_FALSE; 8726 kmem_free(vml, children * sizeof (vdev_t *)); 8727 8728 /* if we're not going to mount the filesystems in userland, export */ 8729 if (exp) 8730 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 8731 B_FALSE, B_FALSE); 8732 8733 return (error); 8734 8735 out: 8736 spa_unload(newspa); 8737 spa_deactivate(newspa); 8738 spa_remove(newspa); 8739 8740 txg = spa_vdev_config_enter(spa); 8741 8742 /* re-online all offlined disks */ 8743 for (c = 0; c < children; c++) { 8744 if (vml[c] != NULL) 8745 vml[c]->vdev_offline = B_FALSE; 8746 } 8747 8748 /* restart initializing or trimming disks as necessary */ 8749 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 8750 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 8751 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 8752 8753 vdev_reopen(spa->spa_root_vdev); 8754 8755 nvlist_free(spa->spa_config_splitting); 8756 spa->spa_config_splitting = NULL; 8757 (void) spa_vdev_exit(spa, NULL, txg, error); 8758 8759 kmem_free(vml, children * sizeof (vdev_t *)); 8760 return (error); 8761 } 8762 8763 /* 8764 * Find any device that's done replacing, or a vdev marked 'unspare' that's 8765 * currently spared, so we can detach it. 8766 */ 8767 static vdev_t * 8768 spa_vdev_resilver_done_hunt(vdev_t *vd) 8769 { 8770 vdev_t *newvd, *oldvd; 8771 8772 for (int c = 0; c < vd->vdev_children; c++) { 8773 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 8774 if (oldvd != NULL) 8775 return (oldvd); 8776 } 8777 8778 /* 8779 * Check for a completed replacement. We always consider the first 8780 * vdev in the list to be the oldest vdev, and the last one to be 8781 * the newest (see spa_vdev_attach() for how that works). In 8782 * the case where the newest vdev is faulted, we will not automatically 8783 * remove it after a resilver completes. This is OK as it will require 8784 * user intervention to determine which disk the admin wishes to keep. 8785 */ 8786 if (vd->vdev_ops == &vdev_replacing_ops) { 8787 ASSERT(vd->vdev_children > 1); 8788 8789 newvd = vd->vdev_child[vd->vdev_children - 1]; 8790 oldvd = vd->vdev_child[0]; 8791 8792 if (vdev_dtl_empty(newvd, DTL_MISSING) && 8793 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8794 !vdev_dtl_required(oldvd)) 8795 return (oldvd); 8796 } 8797 8798 /* 8799 * Check for a completed resilver with the 'unspare' flag set. 8800 * Also potentially update faulted state. 8801 */ 8802 if (vd->vdev_ops == &vdev_spare_ops) { 8803 vdev_t *first = vd->vdev_child[0]; 8804 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 8805 8806 if (last->vdev_unspare) { 8807 oldvd = first; 8808 newvd = last; 8809 } else if (first->vdev_unspare) { 8810 oldvd = last; 8811 newvd = first; 8812 } else { 8813 oldvd = NULL; 8814 } 8815 8816 if (oldvd != NULL && 8817 vdev_dtl_empty(newvd, DTL_MISSING) && 8818 vdev_dtl_empty(newvd, DTL_OUTAGE) && 8819 !vdev_dtl_required(oldvd)) 8820 return (oldvd); 8821 8822 vdev_propagate_state(vd); 8823 8824 /* 8825 * If there are more than two spares attached to a disk, 8826 * and those spares are not required, then we want to 8827 * attempt to free them up now so that they can be used 8828 * by other pools. Once we're back down to a single 8829 * disk+spare, we stop removing them. 8830 */ 8831 if (vd->vdev_children > 2) { 8832 newvd = vd->vdev_child[1]; 8833 8834 if (newvd->vdev_isspare && last->vdev_isspare && 8835 vdev_dtl_empty(last, DTL_MISSING) && 8836 vdev_dtl_empty(last, DTL_OUTAGE) && 8837 !vdev_dtl_required(newvd)) 8838 return (newvd); 8839 } 8840 } 8841 8842 return (NULL); 8843 } 8844 8845 static void 8846 spa_vdev_resilver_done(spa_t *spa) 8847 { 8848 vdev_t *vd, *pvd, *ppvd; 8849 uint64_t guid, sguid, pguid, ppguid; 8850 8851 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8852 8853 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 8854 pvd = vd->vdev_parent; 8855 ppvd = pvd->vdev_parent; 8856 guid = vd->vdev_guid; 8857 pguid = pvd->vdev_guid; 8858 ppguid = ppvd->vdev_guid; 8859 sguid = 0; 8860 /* 8861 * If we have just finished replacing a hot spared device, then 8862 * we need to detach the parent's first child (the original hot 8863 * spare) as well. 8864 */ 8865 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 8866 ppvd->vdev_children == 2) { 8867 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 8868 sguid = ppvd->vdev_child[1]->vdev_guid; 8869 } 8870 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 8871 8872 spa_config_exit(spa, SCL_ALL, FTAG); 8873 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 8874 return; 8875 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 8876 return; 8877 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 8878 } 8879 8880 spa_config_exit(spa, SCL_ALL, FTAG); 8881 8882 /* 8883 * If a detach was not performed above replace waiters will not have 8884 * been notified. In which case we must do so now. 8885 */ 8886 spa_notify_waiters(spa); 8887 } 8888 8889 /* 8890 * Update the stored path or FRU for this vdev. 8891 */ 8892 static int 8893 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 8894 boolean_t ispath) 8895 { 8896 vdev_t *vd; 8897 boolean_t sync = B_FALSE; 8898 8899 ASSERT(spa_writeable(spa)); 8900 8901 spa_vdev_state_enter(spa, SCL_ALL); 8902 8903 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 8904 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 8905 8906 if (!vd->vdev_ops->vdev_op_leaf) 8907 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 8908 8909 if (ispath) { 8910 if (strcmp(value, vd->vdev_path) != 0) { 8911 spa_strfree(vd->vdev_path); 8912 vd->vdev_path = spa_strdup(value); 8913 sync = B_TRUE; 8914 } 8915 } else { 8916 if (vd->vdev_fru == NULL) { 8917 vd->vdev_fru = spa_strdup(value); 8918 sync = B_TRUE; 8919 } else if (strcmp(value, vd->vdev_fru) != 0) { 8920 spa_strfree(vd->vdev_fru); 8921 vd->vdev_fru = spa_strdup(value); 8922 sync = B_TRUE; 8923 } 8924 } 8925 8926 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 8927 } 8928 8929 int 8930 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 8931 { 8932 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 8933 } 8934 8935 int 8936 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 8937 { 8938 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 8939 } 8940 8941 /* 8942 * ========================================================================== 8943 * SPA Scanning 8944 * ========================================================================== 8945 */ 8946 int 8947 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 8948 { 8949 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8950 8951 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8952 return (SET_ERROR(EBUSY)); 8953 8954 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 8955 } 8956 8957 int 8958 spa_scan_stop(spa_t *spa) 8959 { 8960 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8961 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 8962 return (SET_ERROR(EBUSY)); 8963 8964 return (dsl_scan_cancel(spa->spa_dsl_pool)); 8965 } 8966 8967 int 8968 spa_scan(spa_t *spa, pool_scan_func_t func) 8969 { 8970 return (spa_scan_range(spa, func, 0, 0)); 8971 } 8972 8973 int 8974 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart, 8975 uint64_t txgend) 8976 { 8977 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 8978 8979 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 8980 return (SET_ERROR(ENOTSUP)); 8981 8982 if (func == POOL_SCAN_RESILVER && 8983 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 8984 return (SET_ERROR(ENOTSUP)); 8985 8986 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) 8987 return (SET_ERROR(ENOTSUP)); 8988 8989 /* 8990 * If a resilver was requested, but there is no DTL on a 8991 * writeable leaf device, we have nothing to do. 8992 */ 8993 if (func == POOL_SCAN_RESILVER && 8994 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 8995 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 8996 return (0); 8997 } 8998 8999 if (func == POOL_SCAN_ERRORSCRUB && 9000 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) 9001 return (SET_ERROR(ENOTSUP)); 9002 9003 return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend)); 9004 } 9005 9006 /* 9007 * ========================================================================== 9008 * SPA async task processing 9009 * ========================================================================== 9010 */ 9011 9012 static void 9013 spa_async_remove(spa_t *spa, vdev_t *vd, boolean_t by_kernel) 9014 { 9015 if (vd->vdev_remove_wanted) { 9016 vd->vdev_remove_wanted = B_FALSE; 9017 vd->vdev_delayed_close = B_FALSE; 9018 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 9019 9020 /* 9021 * We want to clear the stats, but we don't want to do a full 9022 * vdev_clear() as that will cause us to throw away 9023 * degraded/faulted state as well as attempt to reopen the 9024 * device, all of which is a waste. 9025 */ 9026 vd->vdev_stat.vs_read_errors = 0; 9027 vd->vdev_stat.vs_write_errors = 0; 9028 vd->vdev_stat.vs_checksum_errors = 0; 9029 9030 vdev_state_dirty(vd->vdev_top); 9031 9032 /* Tell userspace that the vdev is gone. */ 9033 zfs_post_remove(spa, vd, by_kernel); 9034 } 9035 9036 for (int c = 0; c < vd->vdev_children; c++) 9037 spa_async_remove(spa, vd->vdev_child[c], by_kernel); 9038 } 9039 9040 static void 9041 spa_async_fault_vdev(vdev_t *vd, boolean_t *suspend) 9042 { 9043 if (vd->vdev_fault_wanted) { 9044 vdev_state_t newstate = VDEV_STATE_FAULTED; 9045 vd->vdev_fault_wanted = B_FALSE; 9046 9047 /* 9048 * If this device has the only valid copy of the data, then 9049 * back off and simply mark the vdev as degraded instead. 9050 */ 9051 if (!vd->vdev_top->vdev_islog && vd->vdev_aux == NULL && 9052 vdev_dtl_required(vd)) { 9053 newstate = VDEV_STATE_DEGRADED; 9054 /* A required disk is missing so suspend the pool */ 9055 *suspend = B_TRUE; 9056 } 9057 vdev_set_state(vd, B_TRUE, newstate, VDEV_AUX_ERR_EXCEEDED); 9058 } 9059 for (int c = 0; c < vd->vdev_children; c++) 9060 spa_async_fault_vdev(vd->vdev_child[c], suspend); 9061 } 9062 9063 static void 9064 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 9065 { 9066 if (!spa->spa_autoexpand) 9067 return; 9068 9069 for (int c = 0; c < vd->vdev_children; c++) { 9070 vdev_t *cvd = vd->vdev_child[c]; 9071 spa_async_autoexpand(spa, cvd); 9072 } 9073 9074 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 9075 return; 9076 9077 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 9078 } 9079 9080 static __attribute__((noreturn)) void 9081 spa_async_thread(void *arg) 9082 { 9083 spa_t *spa = (spa_t *)arg; 9084 dsl_pool_t *dp = spa->spa_dsl_pool; 9085 int tasks; 9086 9087 ASSERT(spa->spa_sync_on); 9088 9089 mutex_enter(&spa->spa_async_lock); 9090 tasks = spa->spa_async_tasks; 9091 spa->spa_async_tasks = 0; 9092 mutex_exit(&spa->spa_async_lock); 9093 9094 /* 9095 * See if the config needs to be updated. 9096 */ 9097 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 9098 uint64_t old_space, new_space; 9099 9100 mutex_enter(&spa_namespace_lock); 9101 old_space = metaslab_class_get_space(spa_normal_class(spa)); 9102 old_space += metaslab_class_get_space(spa_special_class(spa)); 9103 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 9104 old_space += metaslab_class_get_space( 9105 spa_embedded_log_class(spa)); 9106 9107 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 9108 9109 new_space = metaslab_class_get_space(spa_normal_class(spa)); 9110 new_space += metaslab_class_get_space(spa_special_class(spa)); 9111 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 9112 new_space += metaslab_class_get_space( 9113 spa_embedded_log_class(spa)); 9114 mutex_exit(&spa_namespace_lock); 9115 9116 /* 9117 * If the pool grew as a result of the config update, 9118 * then log an internal history event. 9119 */ 9120 if (new_space != old_space) { 9121 spa_history_log_internal(spa, "vdev online", NULL, 9122 "pool '%s' size: %llu(+%llu)", 9123 spa_name(spa), (u_longlong_t)new_space, 9124 (u_longlong_t)(new_space - old_space)); 9125 } 9126 } 9127 9128 /* 9129 * See if any devices need to be marked REMOVED. 9130 */ 9131 if (tasks & (SPA_ASYNC_REMOVE | SPA_ASYNC_REMOVE_BY_USER)) { 9132 boolean_t by_kernel = B_TRUE; 9133 if (tasks & SPA_ASYNC_REMOVE_BY_USER) 9134 by_kernel = B_FALSE; 9135 spa_vdev_state_enter(spa, SCL_NONE); 9136 spa_async_remove(spa, spa->spa_root_vdev, by_kernel); 9137 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 9138 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i], 9139 by_kernel); 9140 for (int i = 0; i < spa->spa_spares.sav_count; i++) 9141 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i], 9142 by_kernel); 9143 (void) spa_vdev_state_exit(spa, NULL, 0); 9144 } 9145 9146 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 9147 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9148 spa_async_autoexpand(spa, spa->spa_root_vdev); 9149 spa_config_exit(spa, SCL_CONFIG, FTAG); 9150 } 9151 9152 /* 9153 * See if any devices need to be marked faulted. 9154 */ 9155 if (tasks & SPA_ASYNC_FAULT_VDEV) { 9156 spa_vdev_state_enter(spa, SCL_NONE); 9157 boolean_t suspend = B_FALSE; 9158 spa_async_fault_vdev(spa->spa_root_vdev, &suspend); 9159 (void) spa_vdev_state_exit(spa, NULL, 0); 9160 if (suspend) 9161 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 9162 } 9163 9164 /* 9165 * If any devices are done replacing, detach them. 9166 */ 9167 if (tasks & SPA_ASYNC_RESILVER_DONE || 9168 tasks & SPA_ASYNC_REBUILD_DONE || 9169 tasks & SPA_ASYNC_DETACH_SPARE) { 9170 spa_vdev_resilver_done(spa); 9171 } 9172 9173 /* 9174 * Kick off a resilver. 9175 */ 9176 if (tasks & SPA_ASYNC_RESILVER && 9177 !vdev_rebuild_active(spa->spa_root_vdev) && 9178 (!dsl_scan_resilvering(dp) || 9179 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 9180 dsl_scan_restart_resilver(dp, 0); 9181 9182 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 9183 mutex_enter(&spa_namespace_lock); 9184 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9185 vdev_initialize_restart(spa->spa_root_vdev); 9186 spa_config_exit(spa, SCL_CONFIG, FTAG); 9187 mutex_exit(&spa_namespace_lock); 9188 } 9189 9190 if (tasks & SPA_ASYNC_TRIM_RESTART) { 9191 mutex_enter(&spa_namespace_lock); 9192 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9193 vdev_trim_restart(spa->spa_root_vdev); 9194 spa_config_exit(spa, SCL_CONFIG, FTAG); 9195 mutex_exit(&spa_namespace_lock); 9196 } 9197 9198 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 9199 mutex_enter(&spa_namespace_lock); 9200 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9201 vdev_autotrim_restart(spa); 9202 spa_config_exit(spa, SCL_CONFIG, FTAG); 9203 mutex_exit(&spa_namespace_lock); 9204 } 9205 9206 /* 9207 * Kick off L2 cache whole device TRIM. 9208 */ 9209 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 9210 mutex_enter(&spa_namespace_lock); 9211 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9212 vdev_trim_l2arc(spa); 9213 spa_config_exit(spa, SCL_CONFIG, FTAG); 9214 mutex_exit(&spa_namespace_lock); 9215 } 9216 9217 /* 9218 * Kick off L2 cache rebuilding. 9219 */ 9220 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 9221 mutex_enter(&spa_namespace_lock); 9222 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 9223 l2arc_spa_rebuild_start(spa); 9224 spa_config_exit(spa, SCL_L2ARC, FTAG); 9225 mutex_exit(&spa_namespace_lock); 9226 } 9227 9228 /* 9229 * Let the world know that we're done. 9230 */ 9231 mutex_enter(&spa->spa_async_lock); 9232 spa->spa_async_thread = NULL; 9233 cv_broadcast(&spa->spa_async_cv); 9234 mutex_exit(&spa->spa_async_lock); 9235 thread_exit(); 9236 } 9237 9238 void 9239 spa_async_suspend(spa_t *spa) 9240 { 9241 mutex_enter(&spa->spa_async_lock); 9242 spa->spa_async_suspended++; 9243 while (spa->spa_async_thread != NULL) 9244 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 9245 mutex_exit(&spa->spa_async_lock); 9246 9247 spa_vdev_remove_suspend(spa); 9248 9249 zthr_t *condense_thread = spa->spa_condense_zthr; 9250 if (condense_thread != NULL) 9251 zthr_cancel(condense_thread); 9252 9253 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9254 if (raidz_expand_thread != NULL) 9255 zthr_cancel(raidz_expand_thread); 9256 9257 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9258 if (discard_thread != NULL) 9259 zthr_cancel(discard_thread); 9260 9261 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9262 if (ll_delete_thread != NULL) 9263 zthr_cancel(ll_delete_thread); 9264 9265 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9266 if (ll_condense_thread != NULL) 9267 zthr_cancel(ll_condense_thread); 9268 } 9269 9270 void 9271 spa_async_resume(spa_t *spa) 9272 { 9273 mutex_enter(&spa->spa_async_lock); 9274 ASSERT(spa->spa_async_suspended != 0); 9275 spa->spa_async_suspended--; 9276 mutex_exit(&spa->spa_async_lock); 9277 spa_restart_removal(spa); 9278 9279 zthr_t *condense_thread = spa->spa_condense_zthr; 9280 if (condense_thread != NULL) 9281 zthr_resume(condense_thread); 9282 9283 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr; 9284 if (raidz_expand_thread != NULL) 9285 zthr_resume(raidz_expand_thread); 9286 9287 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 9288 if (discard_thread != NULL) 9289 zthr_resume(discard_thread); 9290 9291 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 9292 if (ll_delete_thread != NULL) 9293 zthr_resume(ll_delete_thread); 9294 9295 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 9296 if (ll_condense_thread != NULL) 9297 zthr_resume(ll_condense_thread); 9298 } 9299 9300 static boolean_t 9301 spa_async_tasks_pending(spa_t *spa) 9302 { 9303 uint_t non_config_tasks; 9304 uint_t config_task; 9305 boolean_t config_task_suspended; 9306 9307 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 9308 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 9309 if (spa->spa_ccw_fail_time == 0) { 9310 config_task_suspended = B_FALSE; 9311 } else { 9312 config_task_suspended = 9313 (gethrtime() - spa->spa_ccw_fail_time) < 9314 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 9315 } 9316 9317 return (non_config_tasks || (config_task && !config_task_suspended)); 9318 } 9319 9320 static void 9321 spa_async_dispatch(spa_t *spa) 9322 { 9323 mutex_enter(&spa->spa_async_lock); 9324 if (spa_async_tasks_pending(spa) && 9325 !spa->spa_async_suspended && 9326 spa->spa_async_thread == NULL) 9327 spa->spa_async_thread = thread_create(NULL, 0, 9328 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 9329 mutex_exit(&spa->spa_async_lock); 9330 } 9331 9332 void 9333 spa_async_request(spa_t *spa, int task) 9334 { 9335 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 9336 mutex_enter(&spa->spa_async_lock); 9337 spa->spa_async_tasks |= task; 9338 mutex_exit(&spa->spa_async_lock); 9339 } 9340 9341 int 9342 spa_async_tasks(spa_t *spa) 9343 { 9344 return (spa->spa_async_tasks); 9345 } 9346 9347 /* 9348 * ========================================================================== 9349 * SPA syncing routines 9350 * ========================================================================== 9351 */ 9352 9353 9354 static int 9355 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9356 dmu_tx_t *tx) 9357 { 9358 bpobj_t *bpo = arg; 9359 bpobj_enqueue(bpo, bp, bp_freed, tx); 9360 return (0); 9361 } 9362 9363 int 9364 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9365 { 9366 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 9367 } 9368 9369 int 9370 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9371 { 9372 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 9373 } 9374 9375 static int 9376 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 9377 { 9378 zio_t *pio = arg; 9379 9380 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 9381 pio->io_flags)); 9382 return (0); 9383 } 9384 9385 static int 9386 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 9387 dmu_tx_t *tx) 9388 { 9389 ASSERT(!bp_freed); 9390 return (spa_free_sync_cb(arg, bp, tx)); 9391 } 9392 9393 /* 9394 * Note: this simple function is not inlined to make it easier to dtrace the 9395 * amount of time spent syncing frees. 9396 */ 9397 static void 9398 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 9399 { 9400 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9401 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 9402 VERIFY(zio_wait(zio) == 0); 9403 } 9404 9405 /* 9406 * Note: this simple function is not inlined to make it easier to dtrace the 9407 * amount of time spent syncing deferred frees. 9408 */ 9409 static void 9410 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 9411 { 9412 if (spa_sync_pass(spa) != 1) 9413 return; 9414 9415 /* 9416 * Note: 9417 * If the log space map feature is active, we stop deferring 9418 * frees to the next TXG and therefore running this function 9419 * would be considered a no-op as spa_deferred_bpobj should 9420 * not have any entries. 9421 * 9422 * That said we run this function anyway (instead of returning 9423 * immediately) for the edge-case scenario where we just 9424 * activated the log space map feature in this TXG but we have 9425 * deferred frees from the previous TXG. 9426 */ 9427 zio_t *zio = zio_root(spa, NULL, NULL, 0); 9428 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 9429 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 9430 VERIFY0(zio_wait(zio)); 9431 } 9432 9433 static void 9434 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 9435 { 9436 char *packed = NULL; 9437 size_t bufsize; 9438 size_t nvsize = 0; 9439 dmu_buf_t *db; 9440 9441 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 9442 9443 /* 9444 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 9445 * information. This avoids the dmu_buf_will_dirty() path and 9446 * saves us a pre-read to get data we don't actually care about. 9447 */ 9448 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 9449 packed = vmem_alloc(bufsize, KM_SLEEP); 9450 9451 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 9452 KM_SLEEP) == 0); 9453 memset(packed + nvsize, 0, bufsize - nvsize); 9454 9455 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 9456 9457 vmem_free(packed, bufsize); 9458 9459 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 9460 dmu_buf_will_dirty(db, tx); 9461 *(uint64_t *)db->db_data = nvsize; 9462 dmu_buf_rele(db, FTAG); 9463 } 9464 9465 static void 9466 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 9467 const char *config, const char *entry) 9468 { 9469 nvlist_t *nvroot; 9470 nvlist_t **list; 9471 int i; 9472 9473 if (!sav->sav_sync) 9474 return; 9475 9476 /* 9477 * Update the MOS nvlist describing the list of available devices. 9478 * spa_validate_aux() will have already made sure this nvlist is 9479 * valid and the vdevs are labeled appropriately. 9480 */ 9481 if (sav->sav_object == 0) { 9482 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 9483 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 9484 sizeof (uint64_t), tx); 9485 VERIFY(zap_update(spa->spa_meta_objset, 9486 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 9487 &sav->sav_object, tx) == 0); 9488 } 9489 9490 nvroot = fnvlist_alloc(); 9491 if (sav->sav_count == 0) { 9492 fnvlist_add_nvlist_array(nvroot, config, 9493 (const nvlist_t * const *)NULL, 0); 9494 } else { 9495 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 9496 for (i = 0; i < sav->sav_count; i++) 9497 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 9498 B_FALSE, VDEV_CONFIG_L2CACHE); 9499 fnvlist_add_nvlist_array(nvroot, config, 9500 (const nvlist_t * const *)list, sav->sav_count); 9501 for (i = 0; i < sav->sav_count; i++) 9502 nvlist_free(list[i]); 9503 kmem_free(list, sav->sav_count * sizeof (void *)); 9504 } 9505 9506 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 9507 nvlist_free(nvroot); 9508 9509 sav->sav_sync = B_FALSE; 9510 } 9511 9512 /* 9513 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 9514 * The all-vdev ZAP must be empty. 9515 */ 9516 static void 9517 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 9518 { 9519 spa_t *spa = vd->vdev_spa; 9520 9521 if (vd->vdev_root_zap != 0 && 9522 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) { 9523 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9524 vd->vdev_root_zap, tx)); 9525 } 9526 if (vd->vdev_top_zap != 0) { 9527 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9528 vd->vdev_top_zap, tx)); 9529 } 9530 if (vd->vdev_leaf_zap != 0) { 9531 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 9532 vd->vdev_leaf_zap, tx)); 9533 } 9534 for (uint64_t i = 0; i < vd->vdev_children; i++) { 9535 spa_avz_build(vd->vdev_child[i], avz, tx); 9536 } 9537 } 9538 9539 static void 9540 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 9541 { 9542 nvlist_t *config; 9543 9544 /* 9545 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 9546 * its config may not be dirty but we still need to build per-vdev ZAPs. 9547 * Similarly, if the pool is being assembled (e.g. after a split), we 9548 * need to rebuild the AVZ although the config may not be dirty. 9549 */ 9550 if (list_is_empty(&spa->spa_config_dirty_list) && 9551 spa->spa_avz_action == AVZ_ACTION_NONE) 9552 return; 9553 9554 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9555 9556 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 9557 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 9558 spa->spa_all_vdev_zaps != 0); 9559 9560 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 9561 /* Make and build the new AVZ */ 9562 uint64_t new_avz = zap_create(spa->spa_meta_objset, 9563 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 9564 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 9565 9566 /* Diff old AVZ with new one */ 9567 zap_cursor_t zc; 9568 zap_attribute_t *za = zap_attribute_alloc(); 9569 9570 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9571 spa->spa_all_vdev_zaps); 9572 zap_cursor_retrieve(&zc, za) == 0; 9573 zap_cursor_advance(&zc)) { 9574 uint64_t vdzap = za->za_first_integer; 9575 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 9576 vdzap) == ENOENT) { 9577 /* 9578 * ZAP is listed in old AVZ but not in new one; 9579 * destroy it 9580 */ 9581 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 9582 tx)); 9583 } 9584 } 9585 9586 zap_cursor_fini(&zc); 9587 zap_attribute_free(za); 9588 9589 /* Destroy the old AVZ */ 9590 VERIFY0(zap_destroy(spa->spa_meta_objset, 9591 spa->spa_all_vdev_zaps, tx)); 9592 9593 /* Replace the old AVZ in the dir obj with the new one */ 9594 VERIFY0(zap_update(spa->spa_meta_objset, 9595 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 9596 sizeof (new_avz), 1, &new_avz, tx)); 9597 9598 spa->spa_all_vdev_zaps = new_avz; 9599 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 9600 zap_cursor_t zc; 9601 zap_attribute_t *za = zap_attribute_alloc(); 9602 9603 /* Walk through the AVZ and destroy all listed ZAPs */ 9604 for (zap_cursor_init(&zc, spa->spa_meta_objset, 9605 spa->spa_all_vdev_zaps); 9606 zap_cursor_retrieve(&zc, za) == 0; 9607 zap_cursor_advance(&zc)) { 9608 uint64_t zap = za->za_first_integer; 9609 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 9610 } 9611 9612 zap_cursor_fini(&zc); 9613 zap_attribute_free(za); 9614 9615 /* Destroy and unlink the AVZ itself */ 9616 VERIFY0(zap_destroy(spa->spa_meta_objset, 9617 spa->spa_all_vdev_zaps, tx)); 9618 VERIFY0(zap_remove(spa->spa_meta_objset, 9619 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 9620 spa->spa_all_vdev_zaps = 0; 9621 } 9622 9623 if (spa->spa_all_vdev_zaps == 0) { 9624 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 9625 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 9626 DMU_POOL_VDEV_ZAP_MAP, tx); 9627 } 9628 spa->spa_avz_action = AVZ_ACTION_NONE; 9629 9630 /* Create ZAPs for vdevs that don't have them. */ 9631 vdev_construct_zaps(spa->spa_root_vdev, tx); 9632 9633 config = spa_config_generate(spa, spa->spa_root_vdev, 9634 dmu_tx_get_txg(tx), B_FALSE); 9635 9636 /* 9637 * If we're upgrading the spa version then make sure that 9638 * the config object gets updated with the correct version. 9639 */ 9640 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 9641 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 9642 spa->spa_uberblock.ub_version); 9643 9644 spa_config_exit(spa, SCL_STATE, FTAG); 9645 9646 nvlist_free(spa->spa_config_syncing); 9647 spa->spa_config_syncing = config; 9648 9649 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 9650 } 9651 9652 static void 9653 spa_sync_version(void *arg, dmu_tx_t *tx) 9654 { 9655 uint64_t *versionp = arg; 9656 uint64_t version = *versionp; 9657 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9658 9659 /* 9660 * Setting the version is special cased when first creating the pool. 9661 */ 9662 ASSERT(tx->tx_txg != TXG_INITIAL); 9663 9664 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 9665 ASSERT(version >= spa_version(spa)); 9666 9667 spa->spa_uberblock.ub_version = version; 9668 vdev_config_dirty(spa->spa_root_vdev); 9669 spa_history_log_internal(spa, "set", tx, "version=%lld", 9670 (longlong_t)version); 9671 } 9672 9673 /* 9674 * Set zpool properties. 9675 */ 9676 static void 9677 spa_sync_props(void *arg, dmu_tx_t *tx) 9678 { 9679 nvlist_t *nvp = arg; 9680 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 9681 objset_t *mos = spa->spa_meta_objset; 9682 nvpair_t *elem = NULL; 9683 9684 mutex_enter(&spa->spa_props_lock); 9685 9686 while ((elem = nvlist_next_nvpair(nvp, elem))) { 9687 uint64_t intval; 9688 const char *strval, *fname; 9689 zpool_prop_t prop; 9690 const char *propname; 9691 const char *elemname = nvpair_name(elem); 9692 zprop_type_t proptype; 9693 spa_feature_t fid; 9694 9695 switch (prop = zpool_name_to_prop(elemname)) { 9696 case ZPOOL_PROP_VERSION: 9697 intval = fnvpair_value_uint64(elem); 9698 /* 9699 * The version is synced separately before other 9700 * properties and should be correct by now. 9701 */ 9702 ASSERT3U(spa_version(spa), >=, intval); 9703 break; 9704 9705 case ZPOOL_PROP_ALTROOT: 9706 /* 9707 * 'altroot' is a non-persistent property. It should 9708 * have been set temporarily at creation or import time. 9709 */ 9710 ASSERT(spa->spa_root != NULL); 9711 break; 9712 9713 case ZPOOL_PROP_READONLY: 9714 case ZPOOL_PROP_CACHEFILE: 9715 /* 9716 * 'readonly' and 'cachefile' are also non-persistent 9717 * properties. 9718 */ 9719 break; 9720 case ZPOOL_PROP_COMMENT: 9721 strval = fnvpair_value_string(elem); 9722 if (spa->spa_comment != NULL) 9723 spa_strfree(spa->spa_comment); 9724 spa->spa_comment = spa_strdup(strval); 9725 /* 9726 * We need to dirty the configuration on all the vdevs 9727 * so that their labels get updated. We also need to 9728 * update the cache file to keep it in sync with the 9729 * MOS version. It's unnecessary to do this for pool 9730 * creation since the vdev's configuration has already 9731 * been dirtied. 9732 */ 9733 if (tx->tx_txg != TXG_INITIAL) { 9734 vdev_config_dirty(spa->spa_root_vdev); 9735 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9736 } 9737 spa_history_log_internal(spa, "set", tx, 9738 "%s=%s", elemname, strval); 9739 break; 9740 case ZPOOL_PROP_COMPATIBILITY: 9741 strval = fnvpair_value_string(elem); 9742 if (spa->spa_compatibility != NULL) 9743 spa_strfree(spa->spa_compatibility); 9744 spa->spa_compatibility = spa_strdup(strval); 9745 /* 9746 * Dirty the configuration on vdevs as above. 9747 */ 9748 if (tx->tx_txg != TXG_INITIAL) { 9749 vdev_config_dirty(spa->spa_root_vdev); 9750 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 9751 } 9752 9753 spa_history_log_internal(spa, "set", tx, 9754 "%s=%s", nvpair_name(elem), strval); 9755 break; 9756 9757 case ZPOOL_PROP_INVAL: 9758 if (zpool_prop_feature(elemname)) { 9759 fname = strchr(elemname, '@') + 1; 9760 VERIFY0(zfeature_lookup_name(fname, &fid)); 9761 9762 spa_feature_enable(spa, fid, tx); 9763 spa_history_log_internal(spa, "set", tx, 9764 "%s=enabled", elemname); 9765 break; 9766 } else if (!zfs_prop_user(elemname)) { 9767 ASSERT(zpool_prop_feature(elemname)); 9768 break; 9769 } 9770 zfs_fallthrough; 9771 default: 9772 /* 9773 * Set pool property values in the poolprops mos object. 9774 */ 9775 if (spa->spa_pool_props_object == 0) { 9776 spa->spa_pool_props_object = 9777 zap_create_link(mos, DMU_OT_POOL_PROPS, 9778 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 9779 tx); 9780 } 9781 9782 /* normalize the property name */ 9783 if (prop == ZPOOL_PROP_INVAL) { 9784 propname = elemname; 9785 proptype = PROP_TYPE_STRING; 9786 } else { 9787 propname = zpool_prop_to_name(prop); 9788 proptype = zpool_prop_get_type(prop); 9789 } 9790 9791 if (nvpair_type(elem) == DATA_TYPE_STRING) { 9792 ASSERT(proptype == PROP_TYPE_STRING); 9793 strval = fnvpair_value_string(elem); 9794 if (strlen(strval) == 0) { 9795 /* remove the property if value == "" */ 9796 (void) zap_remove(mos, 9797 spa->spa_pool_props_object, 9798 propname, tx); 9799 } else { 9800 VERIFY0(zap_update(mos, 9801 spa->spa_pool_props_object, 9802 propname, 1, strlen(strval) + 1, 9803 strval, tx)); 9804 } 9805 spa_history_log_internal(spa, "set", tx, 9806 "%s=%s", elemname, strval); 9807 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 9808 intval = fnvpair_value_uint64(elem); 9809 9810 if (proptype == PROP_TYPE_INDEX) { 9811 const char *unused; 9812 VERIFY0(zpool_prop_index_to_string( 9813 prop, intval, &unused)); 9814 } 9815 VERIFY0(zap_update(mos, 9816 spa->spa_pool_props_object, propname, 9817 8, 1, &intval, tx)); 9818 spa_history_log_internal(spa, "set", tx, 9819 "%s=%lld", elemname, 9820 (longlong_t)intval); 9821 9822 switch (prop) { 9823 case ZPOOL_PROP_DELEGATION: 9824 spa->spa_delegation = intval; 9825 break; 9826 case ZPOOL_PROP_BOOTFS: 9827 spa->spa_bootfs = intval; 9828 break; 9829 case ZPOOL_PROP_FAILUREMODE: 9830 spa->spa_failmode = intval; 9831 break; 9832 case ZPOOL_PROP_AUTOTRIM: 9833 spa->spa_autotrim = intval; 9834 spa_async_request(spa, 9835 SPA_ASYNC_AUTOTRIM_RESTART); 9836 break; 9837 case ZPOOL_PROP_AUTOEXPAND: 9838 spa->spa_autoexpand = intval; 9839 if (tx->tx_txg != TXG_INITIAL) 9840 spa_async_request(spa, 9841 SPA_ASYNC_AUTOEXPAND); 9842 break; 9843 case ZPOOL_PROP_MULTIHOST: 9844 spa->spa_multihost = intval; 9845 break; 9846 case ZPOOL_PROP_DEDUP_TABLE_QUOTA: 9847 spa->spa_dedup_table_quota = intval; 9848 break; 9849 default: 9850 break; 9851 } 9852 } else { 9853 ASSERT(0); /* not allowed */ 9854 } 9855 } 9856 9857 } 9858 9859 mutex_exit(&spa->spa_props_lock); 9860 } 9861 9862 /* 9863 * Perform one-time upgrade on-disk changes. spa_version() does not 9864 * reflect the new version this txg, so there must be no changes this 9865 * txg to anything that the upgrade code depends on after it executes. 9866 * Therefore this must be called after dsl_pool_sync() does the sync 9867 * tasks. 9868 */ 9869 static void 9870 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 9871 { 9872 if (spa_sync_pass(spa) != 1) 9873 return; 9874 9875 dsl_pool_t *dp = spa->spa_dsl_pool; 9876 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 9877 9878 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 9879 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 9880 dsl_pool_create_origin(dp, tx); 9881 9882 /* Keeping the origin open increases spa_minref */ 9883 spa->spa_minref += 3; 9884 } 9885 9886 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 9887 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 9888 dsl_pool_upgrade_clones(dp, tx); 9889 } 9890 9891 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 9892 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 9893 dsl_pool_upgrade_dir_clones(dp, tx); 9894 9895 /* Keeping the freedir open increases spa_minref */ 9896 spa->spa_minref += 3; 9897 } 9898 9899 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 9900 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9901 spa_feature_create_zap_objects(spa, tx); 9902 } 9903 9904 /* 9905 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 9906 * when possibility to use lz4 compression for metadata was added 9907 * Old pools that have this feature enabled must be upgraded to have 9908 * this feature active 9909 */ 9910 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 9911 boolean_t lz4_en = spa_feature_is_enabled(spa, 9912 SPA_FEATURE_LZ4_COMPRESS); 9913 boolean_t lz4_ac = spa_feature_is_active(spa, 9914 SPA_FEATURE_LZ4_COMPRESS); 9915 9916 if (lz4_en && !lz4_ac) 9917 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 9918 } 9919 9920 /* 9921 * If we haven't written the salt, do so now. Note that the 9922 * feature may not be activated yet, but that's fine since 9923 * the presence of this ZAP entry is backwards compatible. 9924 */ 9925 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 9926 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 9927 VERIFY0(zap_add(spa->spa_meta_objset, 9928 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 9929 sizeof (spa->spa_cksum_salt.zcs_bytes), 9930 spa->spa_cksum_salt.zcs_bytes, tx)); 9931 } 9932 9933 rrw_exit(&dp->dp_config_rwlock, FTAG); 9934 } 9935 9936 static void 9937 vdev_indirect_state_sync_verify(vdev_t *vd) 9938 { 9939 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 9940 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 9941 9942 if (vd->vdev_ops == &vdev_indirect_ops) { 9943 ASSERT(vim != NULL); 9944 ASSERT(vib != NULL); 9945 } 9946 9947 uint64_t obsolete_sm_object = 0; 9948 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 9949 if (obsolete_sm_object != 0) { 9950 ASSERT(vd->vdev_obsolete_sm != NULL); 9951 ASSERT(vd->vdev_removing || 9952 vd->vdev_ops == &vdev_indirect_ops); 9953 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 9954 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 9955 ASSERT3U(obsolete_sm_object, ==, 9956 space_map_object(vd->vdev_obsolete_sm)); 9957 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 9958 space_map_allocated(vd->vdev_obsolete_sm)); 9959 } 9960 ASSERT(vd->vdev_obsolete_segments != NULL); 9961 9962 /* 9963 * Since frees / remaps to an indirect vdev can only 9964 * happen in syncing context, the obsolete segments 9965 * tree must be empty when we start syncing. 9966 */ 9967 ASSERT0(zfs_range_tree_space(vd->vdev_obsolete_segments)); 9968 } 9969 9970 /* 9971 * Set the top-level vdev's max queue depth. Evaluate each top-level's 9972 * async write queue depth in case it changed. The max queue depth will 9973 * not change in the middle of syncing out this txg. 9974 */ 9975 static void 9976 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 9977 { 9978 ASSERT(spa_writeable(spa)); 9979 9980 metaslab_class_balance(spa_normal_class(spa), B_TRUE); 9981 metaslab_class_balance(spa_special_class(spa), B_TRUE); 9982 metaslab_class_balance(spa_dedup_class(spa), B_TRUE); 9983 } 9984 9985 static void 9986 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 9987 { 9988 ASSERT(spa_writeable(spa)); 9989 9990 vdev_t *rvd = spa->spa_root_vdev; 9991 for (int c = 0; c < rvd->vdev_children; c++) { 9992 vdev_t *vd = rvd->vdev_child[c]; 9993 vdev_indirect_state_sync_verify(vd); 9994 9995 if (vdev_indirect_should_condense(vd)) { 9996 spa_condense_indirect_start_sync(vd, tx); 9997 break; 9998 } 9999 } 10000 } 10001 10002 static void 10003 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 10004 { 10005 objset_t *mos = spa->spa_meta_objset; 10006 dsl_pool_t *dp = spa->spa_dsl_pool; 10007 uint64_t txg = tx->tx_txg; 10008 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 10009 10010 do { 10011 int pass = ++spa->spa_sync_pass; 10012 10013 spa_sync_config_object(spa, tx); 10014 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 10015 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 10016 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 10017 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 10018 spa_errlog_sync(spa, txg); 10019 dsl_pool_sync(dp, txg); 10020 10021 if (pass < zfs_sync_pass_deferred_free || 10022 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 10023 /* 10024 * If the log space map feature is active we don't 10025 * care about deferred frees and the deferred bpobj 10026 * as the log space map should effectively have the 10027 * same results (i.e. appending only to one object). 10028 */ 10029 spa_sync_frees(spa, free_bpl, tx); 10030 } else { 10031 /* 10032 * We can not defer frees in pass 1, because 10033 * we sync the deferred frees later in pass 1. 10034 */ 10035 ASSERT3U(pass, >, 1); 10036 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 10037 &spa->spa_deferred_bpobj, tx); 10038 } 10039 10040 brt_sync(spa, txg); 10041 ddt_sync(spa, txg); 10042 dsl_scan_sync(dp, tx); 10043 dsl_errorscrub_sync(dp, tx); 10044 svr_sync(spa, tx); 10045 spa_sync_upgrades(spa, tx); 10046 10047 spa_flush_metaslabs(spa, tx); 10048 10049 vdev_t *vd = NULL; 10050 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 10051 != NULL) 10052 vdev_sync(vd, txg); 10053 10054 if (pass == 1) { 10055 /* 10056 * dsl_pool_sync() -> dp_sync_tasks may have dirtied 10057 * the config. If that happens, this txg should not 10058 * be a no-op. So we must sync the config to the MOS 10059 * before checking for no-op. 10060 * 10061 * Note that when the config is dirty, it will 10062 * be written to the MOS (i.e. the MOS will be 10063 * dirtied) every time we call spa_sync_config_object() 10064 * in this txg. Therefore we can't call this after 10065 * dsl_pool_sync() every pass, because it would 10066 * prevent us from converging, since we'd dirty 10067 * the MOS every pass. 10068 * 10069 * Sync tasks can only be processed in pass 1, so 10070 * there's no need to do this in later passes. 10071 */ 10072 spa_sync_config_object(spa, tx); 10073 } 10074 10075 /* 10076 * Note: We need to check if the MOS is dirty because we could 10077 * have marked the MOS dirty without updating the uberblock 10078 * (e.g. if we have sync tasks but no dirty user data). We need 10079 * to check the uberblock's rootbp because it is updated if we 10080 * have synced out dirty data (though in this case the MOS will 10081 * most likely also be dirty due to second order effects, we 10082 * don't want to rely on that here). 10083 */ 10084 if (pass == 1 && 10085 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg && 10086 !dmu_objset_is_dirty(mos, txg)) { 10087 /* 10088 * Nothing changed on the first pass, therefore this 10089 * TXG is a no-op. Avoid syncing deferred frees, so 10090 * that we can keep this TXG as a no-op. 10091 */ 10092 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10093 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10094 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 10095 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 10096 break; 10097 } 10098 10099 spa_sync_deferred_frees(spa, tx); 10100 } while (dmu_objset_is_dirty(mos, txg)); 10101 } 10102 10103 /* 10104 * Rewrite the vdev configuration (which includes the uberblock) to 10105 * commit the transaction group. 10106 * 10107 * If there are no dirty vdevs, we sync the uberblock to a few random 10108 * top-level vdevs that are known to be visible in the config cache 10109 * (see spa_vdev_add() for a complete description). If there *are* dirty 10110 * vdevs, sync the uberblock to all vdevs. 10111 */ 10112 static void 10113 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 10114 { 10115 vdev_t *rvd = spa->spa_root_vdev; 10116 uint64_t txg = tx->tx_txg; 10117 10118 for (;;) { 10119 int error = 0; 10120 10121 /* 10122 * We hold SCL_STATE to prevent vdev open/close/etc. 10123 * while we're attempting to write the vdev labels. 10124 */ 10125 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 10126 10127 if (list_is_empty(&spa->spa_config_dirty_list)) { 10128 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 10129 int svdcount = 0; 10130 int children = rvd->vdev_children; 10131 int c0 = random_in_range(children); 10132 10133 for (int c = 0; c < children; c++) { 10134 vdev_t *vd = 10135 rvd->vdev_child[(c0 + c) % children]; 10136 10137 /* Stop when revisiting the first vdev */ 10138 if (c > 0 && svd[0] == vd) 10139 break; 10140 10141 if (vd->vdev_ms_array == 0 || 10142 vd->vdev_islog || 10143 !vdev_is_concrete(vd)) 10144 continue; 10145 10146 svd[svdcount++] = vd; 10147 if (svdcount == SPA_SYNC_MIN_VDEVS) 10148 break; 10149 } 10150 error = vdev_config_sync(svd, svdcount, txg); 10151 } else { 10152 error = vdev_config_sync(rvd->vdev_child, 10153 rvd->vdev_children, txg); 10154 } 10155 10156 if (error == 0) 10157 spa->spa_last_synced_guid = rvd->vdev_guid; 10158 10159 spa_config_exit(spa, SCL_STATE, FTAG); 10160 10161 if (error == 0) 10162 break; 10163 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 10164 zio_resume_wait(spa); 10165 } 10166 } 10167 10168 /* 10169 * Sync the specified transaction group. New blocks may be dirtied as 10170 * part of the process, so we iterate until it converges. 10171 */ 10172 void 10173 spa_sync(spa_t *spa, uint64_t txg) 10174 { 10175 vdev_t *vd = NULL; 10176 10177 VERIFY(spa_writeable(spa)); 10178 10179 /* 10180 * Wait for i/os issued in open context that need to complete 10181 * before this txg syncs. 10182 */ 10183 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 10184 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 10185 ZIO_FLAG_CANFAIL); 10186 10187 /* 10188 * Now that there can be no more cloning in this transaction group, 10189 * but we are still before issuing frees, we can process pending BRT 10190 * updates. 10191 */ 10192 brt_pending_apply(spa, txg); 10193 10194 /* 10195 * Lock out configuration changes. 10196 */ 10197 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 10198 10199 spa->spa_syncing_txg = txg; 10200 spa->spa_sync_pass = 0; 10201 10202 /* 10203 * If there are any pending vdev state changes, convert them 10204 * into config changes that go out with this transaction group. 10205 */ 10206 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 10207 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10208 /* Avoid holding the write lock unless actually necessary */ 10209 if (vd->vdev_aux == NULL) { 10210 vdev_state_clean(vd); 10211 vdev_config_dirty(vd); 10212 continue; 10213 } 10214 /* 10215 * We need the write lock here because, for aux vdevs, 10216 * calling vdev_config_dirty() modifies sav_config. 10217 * This is ugly and will become unnecessary when we 10218 * eliminate the aux vdev wart by integrating all vdevs 10219 * into the root vdev tree. 10220 */ 10221 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10222 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 10223 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 10224 vdev_state_clean(vd); 10225 vdev_config_dirty(vd); 10226 } 10227 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10228 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10229 } 10230 spa_config_exit(spa, SCL_STATE, FTAG); 10231 10232 dsl_pool_t *dp = spa->spa_dsl_pool; 10233 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 10234 10235 spa->spa_sync_starttime = gethrtime(); 10236 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10237 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 10238 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 10239 NSEC_TO_TICK(spa->spa_deadman_synctime)); 10240 10241 /* 10242 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 10243 * set spa_deflate if we have no raid-z vdevs. 10244 */ 10245 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 10246 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 10247 vdev_t *rvd = spa->spa_root_vdev; 10248 10249 int i; 10250 for (i = 0; i < rvd->vdev_children; i++) { 10251 vd = rvd->vdev_child[i]; 10252 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 10253 break; 10254 } 10255 if (i == rvd->vdev_children) { 10256 spa->spa_deflate = TRUE; 10257 VERIFY0(zap_add(spa->spa_meta_objset, 10258 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 10259 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 10260 } 10261 } 10262 10263 spa_sync_adjust_vdev_max_queue_depth(spa); 10264 10265 spa_sync_condense_indirect(spa, tx); 10266 10267 spa_sync_iterate_to_convergence(spa, tx); 10268 10269 #ifdef ZFS_DEBUG 10270 if (!list_is_empty(&spa->spa_config_dirty_list)) { 10271 /* 10272 * Make sure that the number of ZAPs for all the vdevs matches 10273 * the number of ZAPs in the per-vdev ZAP list. This only gets 10274 * called if the config is dirty; otherwise there may be 10275 * outstanding AVZ operations that weren't completed in 10276 * spa_sync_config_object. 10277 */ 10278 uint64_t all_vdev_zap_entry_count; 10279 ASSERT0(zap_count(spa->spa_meta_objset, 10280 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 10281 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 10282 all_vdev_zap_entry_count); 10283 } 10284 #endif 10285 10286 if (spa->spa_vdev_removal != NULL) { 10287 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 10288 } 10289 10290 spa_sync_rewrite_vdev_config(spa, tx); 10291 dmu_tx_commit(tx); 10292 10293 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 10294 spa->spa_deadman_tqid = 0; 10295 10296 /* 10297 * Clear the dirty config list. 10298 */ 10299 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 10300 vdev_config_clean(vd); 10301 10302 /* 10303 * Now that the new config has synced transactionally, 10304 * let it become visible to the config cache. 10305 */ 10306 if (spa->spa_config_syncing != NULL) { 10307 spa_config_set(spa, spa->spa_config_syncing); 10308 spa->spa_config_txg = txg; 10309 spa->spa_config_syncing = NULL; 10310 } 10311 10312 dsl_pool_sync_done(dp, txg); 10313 10314 /* 10315 * Update usable space statistics. 10316 */ 10317 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 10318 != NULL) 10319 vdev_sync_done(vd, txg); 10320 10321 metaslab_class_evict_old(spa->spa_normal_class, txg); 10322 metaslab_class_evict_old(spa->spa_log_class, txg); 10323 /* spa_embedded_log_class has only one metaslab per vdev. */ 10324 metaslab_class_evict_old(spa->spa_special_class, txg); 10325 metaslab_class_evict_old(spa->spa_dedup_class, txg); 10326 10327 spa_sync_close_syncing_log_sm(spa); 10328 10329 spa_update_dspace(spa); 10330 10331 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) 10332 vdev_autotrim_kick(spa); 10333 10334 /* 10335 * It had better be the case that we didn't dirty anything 10336 * since vdev_config_sync(). 10337 */ 10338 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 10339 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 10340 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 10341 10342 while (zfs_pause_spa_sync) 10343 delay(1); 10344 10345 spa->spa_sync_pass = 0; 10346 10347 /* 10348 * Update the last synced uberblock here. We want to do this at 10349 * the end of spa_sync() so that consumers of spa_last_synced_txg() 10350 * will be guaranteed that all the processing associated with 10351 * that txg has been completed. 10352 */ 10353 spa->spa_ubsync = spa->spa_uberblock; 10354 spa_config_exit(spa, SCL_CONFIG, FTAG); 10355 10356 spa_handle_ignored_writes(spa); 10357 10358 /* 10359 * If any async tasks have been requested, kick them off. 10360 */ 10361 spa_async_dispatch(spa); 10362 } 10363 10364 /* 10365 * Sync all pools. We don't want to hold the namespace lock across these 10366 * operations, so we take a reference on the spa_t and drop the lock during the 10367 * sync. 10368 */ 10369 void 10370 spa_sync_allpools(void) 10371 { 10372 spa_t *spa = NULL; 10373 mutex_enter(&spa_namespace_lock); 10374 while ((spa = spa_next(spa)) != NULL) { 10375 if (spa_state(spa) != POOL_STATE_ACTIVE || 10376 !spa_writeable(spa) || spa_suspended(spa)) 10377 continue; 10378 spa_open_ref(spa, FTAG); 10379 mutex_exit(&spa_namespace_lock); 10380 txg_wait_synced(spa_get_dsl(spa), 0); 10381 mutex_enter(&spa_namespace_lock); 10382 spa_close(spa, FTAG); 10383 } 10384 mutex_exit(&spa_namespace_lock); 10385 } 10386 10387 taskq_t * 10388 spa_sync_tq_create(spa_t *spa, const char *name) 10389 { 10390 kthread_t **kthreads; 10391 10392 ASSERT(spa->spa_sync_tq == NULL); 10393 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus); 10394 10395 /* 10396 * - do not allow more allocators than cpus. 10397 * - there may be more cpus than allocators. 10398 * - do not allow more sync taskq threads than allocators or cpus. 10399 */ 10400 int nthreads = spa->spa_alloc_count; 10401 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) * 10402 nthreads, KM_SLEEP); 10403 10404 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri, 10405 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads); 10406 VERIFY(spa->spa_sync_tq != NULL); 10407 VERIFY(kthreads != NULL); 10408 10409 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10410 for (int i = 0; i < nthreads; i++, ti++) { 10411 ti->sti_thread = kthreads[i]; 10412 ti->sti_allocator = i; 10413 } 10414 10415 kmem_free(kthreads, sizeof (*kthreads) * nthreads); 10416 return (spa->spa_sync_tq); 10417 } 10418 10419 void 10420 spa_sync_tq_destroy(spa_t *spa) 10421 { 10422 ASSERT(spa->spa_sync_tq != NULL); 10423 10424 taskq_wait(spa->spa_sync_tq); 10425 taskq_destroy(spa->spa_sync_tq); 10426 kmem_free(spa->spa_syncthreads, 10427 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count); 10428 spa->spa_sync_tq = NULL; 10429 } 10430 10431 uint_t 10432 spa_acq_allocator(spa_t *spa) 10433 { 10434 int i; 10435 10436 if (spa->spa_alloc_count == 1) 10437 return (0); 10438 10439 mutex_enter(&spa->spa_allocs_use->sau_lock); 10440 uint_t r = spa->spa_allocs_use->sau_rotor; 10441 do { 10442 if (++r == spa->spa_alloc_count) 10443 r = 0; 10444 } while (spa->spa_allocs_use->sau_inuse[r]); 10445 spa->spa_allocs_use->sau_inuse[r] = B_TRUE; 10446 spa->spa_allocs_use->sau_rotor = r; 10447 mutex_exit(&spa->spa_allocs_use->sau_lock); 10448 10449 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10450 for (i = 0; i < spa->spa_alloc_count; i++, ti++) { 10451 if (ti->sti_thread == curthread) { 10452 ti->sti_allocator = r; 10453 break; 10454 } 10455 } 10456 ASSERT3S(i, <, spa->spa_alloc_count); 10457 return (r); 10458 } 10459 10460 void 10461 spa_rel_allocator(spa_t *spa, uint_t allocator) 10462 { 10463 if (spa->spa_alloc_count > 1) 10464 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE; 10465 } 10466 10467 void 10468 spa_select_allocator(zio_t *zio) 10469 { 10470 zbookmark_phys_t *bm = &zio->io_bookmark; 10471 spa_t *spa = zio->io_spa; 10472 10473 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 10474 10475 /* 10476 * A gang block (for example) may have inherited its parent's 10477 * allocator, in which case there is nothing further to do here. 10478 */ 10479 if (ZIO_HAS_ALLOCATOR(zio)) 10480 return; 10481 10482 ASSERT(spa != NULL); 10483 ASSERT(bm != NULL); 10484 10485 /* 10486 * First try to use an allocator assigned to the syncthread, and set 10487 * the corresponding write issue taskq for the allocator. 10488 * Note, we must have an open pool to do this. 10489 */ 10490 if (spa->spa_sync_tq != NULL) { 10491 spa_syncthread_info_t *ti = spa->spa_syncthreads; 10492 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) { 10493 if (ti->sti_thread == curthread) { 10494 zio->io_allocator = ti->sti_allocator; 10495 return; 10496 } 10497 } 10498 } 10499 10500 /* 10501 * We want to try to use as many allocators as possible to help improve 10502 * performance, but we also want logically adjacent IOs to be physically 10503 * adjacent to improve sequential read performance. We chunk each object 10504 * into 2^20 block regions, and then hash based on the objset, object, 10505 * level, and region to accomplish both of these goals. 10506 */ 10507 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level, 10508 bm->zb_blkid >> 20); 10509 10510 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count; 10511 } 10512 10513 /* 10514 * ========================================================================== 10515 * Miscellaneous routines 10516 * ========================================================================== 10517 */ 10518 10519 /* 10520 * Remove all pools in the system. 10521 */ 10522 void 10523 spa_evict_all(void) 10524 { 10525 spa_t *spa; 10526 10527 /* 10528 * Remove all cached state. All pools should be closed now, 10529 * so every spa in the AVL tree should be unreferenced. 10530 */ 10531 mutex_enter(&spa_namespace_lock); 10532 while ((spa = spa_next(NULL)) != NULL) { 10533 /* 10534 * Stop async tasks. The async thread may need to detach 10535 * a device that's been replaced, which requires grabbing 10536 * spa_namespace_lock, so we must drop it here. 10537 */ 10538 spa_open_ref(spa, FTAG); 10539 mutex_exit(&spa_namespace_lock); 10540 spa_async_suspend(spa); 10541 mutex_enter(&spa_namespace_lock); 10542 spa_close(spa, FTAG); 10543 10544 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 10545 spa_unload(spa); 10546 spa_deactivate(spa); 10547 } 10548 spa_remove(spa); 10549 } 10550 mutex_exit(&spa_namespace_lock); 10551 } 10552 10553 vdev_t * 10554 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 10555 { 10556 vdev_t *vd; 10557 int i; 10558 10559 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 10560 return (vd); 10561 10562 if (aux) { 10563 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 10564 vd = spa->spa_l2cache.sav_vdevs[i]; 10565 if (vd->vdev_guid == guid) 10566 return (vd); 10567 } 10568 10569 for (i = 0; i < spa->spa_spares.sav_count; i++) { 10570 vd = spa->spa_spares.sav_vdevs[i]; 10571 if (vd->vdev_guid == guid) 10572 return (vd); 10573 } 10574 } 10575 10576 return (NULL); 10577 } 10578 10579 void 10580 spa_upgrade(spa_t *spa, uint64_t version) 10581 { 10582 ASSERT(spa_writeable(spa)); 10583 10584 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 10585 10586 /* 10587 * This should only be called for a non-faulted pool, and since a 10588 * future version would result in an unopenable pool, this shouldn't be 10589 * possible. 10590 */ 10591 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 10592 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 10593 10594 spa->spa_uberblock.ub_version = version; 10595 vdev_config_dirty(spa->spa_root_vdev); 10596 10597 spa_config_exit(spa, SCL_ALL, FTAG); 10598 10599 txg_wait_synced(spa_get_dsl(spa), 0); 10600 } 10601 10602 static boolean_t 10603 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav) 10604 { 10605 (void) spa; 10606 int i; 10607 uint64_t vdev_guid; 10608 10609 for (i = 0; i < sav->sav_count; i++) 10610 if (sav->sav_vdevs[i]->vdev_guid == guid) 10611 return (B_TRUE); 10612 10613 for (i = 0; i < sav->sav_npending; i++) { 10614 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 10615 &vdev_guid) == 0 && vdev_guid == guid) 10616 return (B_TRUE); 10617 } 10618 10619 return (B_FALSE); 10620 } 10621 10622 boolean_t 10623 spa_has_l2cache(spa_t *spa, uint64_t guid) 10624 { 10625 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache)); 10626 } 10627 10628 boolean_t 10629 spa_has_spare(spa_t *spa, uint64_t guid) 10630 { 10631 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares)); 10632 } 10633 10634 /* 10635 * Check if a pool has an active shared spare device. 10636 * Note: reference count of an active spare is 2, as a spare and as a replace 10637 */ 10638 static boolean_t 10639 spa_has_active_shared_spare(spa_t *spa) 10640 { 10641 int i, refcnt; 10642 uint64_t pool; 10643 spa_aux_vdev_t *sav = &spa->spa_spares; 10644 10645 for (i = 0; i < sav->sav_count; i++) { 10646 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 10647 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 10648 refcnt > 2) 10649 return (B_TRUE); 10650 } 10651 10652 return (B_FALSE); 10653 } 10654 10655 uint64_t 10656 spa_total_metaslabs(spa_t *spa) 10657 { 10658 vdev_t *rvd = spa->spa_root_vdev; 10659 10660 uint64_t m = 0; 10661 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 10662 vdev_t *vd = rvd->vdev_child[c]; 10663 if (!vdev_is_concrete(vd)) 10664 continue; 10665 m += vd->vdev_ms_count; 10666 } 10667 return (m); 10668 } 10669 10670 /* 10671 * Notify any waiting threads that some activity has switched from being in- 10672 * progress to not-in-progress so that the thread can wake up and determine 10673 * whether it is finished waiting. 10674 */ 10675 void 10676 spa_notify_waiters(spa_t *spa) 10677 { 10678 /* 10679 * Acquiring spa_activities_lock here prevents the cv_broadcast from 10680 * happening between the waiting thread's check and cv_wait. 10681 */ 10682 mutex_enter(&spa->spa_activities_lock); 10683 cv_broadcast(&spa->spa_activities_cv); 10684 mutex_exit(&spa->spa_activities_lock); 10685 } 10686 10687 /* 10688 * Notify any waiting threads that the pool is exporting, and then block until 10689 * they are finished using the spa_t. 10690 */ 10691 void 10692 spa_wake_waiters(spa_t *spa) 10693 { 10694 mutex_enter(&spa->spa_activities_lock); 10695 spa->spa_waiters_cancel = B_TRUE; 10696 cv_broadcast(&spa->spa_activities_cv); 10697 while (spa->spa_waiters != 0) 10698 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 10699 spa->spa_waiters_cancel = B_FALSE; 10700 mutex_exit(&spa->spa_activities_lock); 10701 } 10702 10703 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 10704 static boolean_t 10705 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 10706 { 10707 spa_t *spa = vd->vdev_spa; 10708 10709 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 10710 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10711 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 10712 activity == ZPOOL_WAIT_TRIM); 10713 10714 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 10715 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 10716 10717 mutex_exit(&spa->spa_activities_lock); 10718 mutex_enter(lock); 10719 mutex_enter(&spa->spa_activities_lock); 10720 10721 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 10722 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 10723 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 10724 mutex_exit(lock); 10725 10726 if (in_progress) 10727 return (B_TRUE); 10728 10729 for (int i = 0; i < vd->vdev_children; i++) { 10730 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 10731 activity)) 10732 return (B_TRUE); 10733 } 10734 10735 return (B_FALSE); 10736 } 10737 10738 /* 10739 * If use_guid is true, this checks whether the vdev specified by guid is 10740 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 10741 * is being initialized/trimmed. The caller must hold the config lock and 10742 * spa_activities_lock. 10743 */ 10744 static int 10745 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 10746 zpool_wait_activity_t activity, boolean_t *in_progress) 10747 { 10748 mutex_exit(&spa->spa_activities_lock); 10749 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10750 mutex_enter(&spa->spa_activities_lock); 10751 10752 vdev_t *vd; 10753 if (use_guid) { 10754 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 10755 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 10756 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10757 return (EINVAL); 10758 } 10759 } else { 10760 vd = spa->spa_root_vdev; 10761 } 10762 10763 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 10764 10765 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10766 return (0); 10767 } 10768 10769 /* 10770 * Locking for waiting threads 10771 * --------------------------- 10772 * 10773 * Waiting threads need a way to check whether a given activity is in progress, 10774 * and then, if it is, wait for it to complete. Each activity will have some 10775 * in-memory representation of the relevant on-disk state which can be used to 10776 * determine whether or not the activity is in progress. The in-memory state and 10777 * the locking used to protect it will be different for each activity, and may 10778 * not be suitable for use with a cvar (e.g., some state is protected by the 10779 * config lock). To allow waiting threads to wait without any races, another 10780 * lock, spa_activities_lock, is used. 10781 * 10782 * When the state is checked, both the activity-specific lock (if there is one) 10783 * and spa_activities_lock are held. In some cases, the activity-specific lock 10784 * is acquired explicitly (e.g. the config lock). In others, the locking is 10785 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 10786 * thread releases the activity-specific lock and, if the activity is in 10787 * progress, then cv_waits using spa_activities_lock. 10788 * 10789 * The waiting thread is woken when another thread, one completing some 10790 * activity, updates the state of the activity and then calls 10791 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 10792 * needs to hold its activity-specific lock when updating the state, and this 10793 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 10794 * 10795 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 10796 * and because it is held when the waiting thread checks the state of the 10797 * activity, it can never be the case that the completing thread both updates 10798 * the activity state and cv_broadcasts in between the waiting thread's check 10799 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 10800 * 10801 * In order to prevent deadlock, when the waiting thread does its check, in some 10802 * cases it will temporarily drop spa_activities_lock in order to acquire the 10803 * activity-specific lock. The order in which spa_activities_lock and the 10804 * activity specific lock are acquired in the waiting thread is determined by 10805 * the order in which they are acquired in the completing thread; if the 10806 * completing thread calls spa_notify_waiters with the activity-specific lock 10807 * held, then the waiting thread must also acquire the activity-specific lock 10808 * first. 10809 */ 10810 10811 static int 10812 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 10813 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 10814 { 10815 int error = 0; 10816 10817 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 10818 10819 switch (activity) { 10820 case ZPOOL_WAIT_CKPT_DISCARD: 10821 *in_progress = 10822 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 10823 zap_contains(spa_meta_objset(spa), 10824 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 10825 ENOENT); 10826 break; 10827 case ZPOOL_WAIT_FREE: 10828 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 10829 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 10830 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 10831 spa_livelist_delete_check(spa)); 10832 break; 10833 case ZPOOL_WAIT_INITIALIZE: 10834 case ZPOOL_WAIT_TRIM: 10835 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 10836 activity, in_progress); 10837 break; 10838 case ZPOOL_WAIT_REPLACE: 10839 mutex_exit(&spa->spa_activities_lock); 10840 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 10841 mutex_enter(&spa->spa_activities_lock); 10842 10843 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 10844 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 10845 break; 10846 case ZPOOL_WAIT_REMOVE: 10847 *in_progress = (spa->spa_removing_phys.sr_state == 10848 DSS_SCANNING); 10849 break; 10850 case ZPOOL_WAIT_RESILVER: 10851 *in_progress = vdev_rebuild_active(spa->spa_root_vdev); 10852 if (*in_progress) 10853 break; 10854 zfs_fallthrough; 10855 case ZPOOL_WAIT_SCRUB: 10856 { 10857 boolean_t scanning, paused, is_scrub; 10858 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 10859 10860 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 10861 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 10862 paused = dsl_scan_is_paused_scrub(scn); 10863 *in_progress = (scanning && !paused && 10864 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 10865 break; 10866 } 10867 case ZPOOL_WAIT_RAIDZ_EXPAND: 10868 { 10869 vdev_raidz_expand_t *vre = spa->spa_raidz_expand; 10870 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING); 10871 break; 10872 } 10873 default: 10874 panic("unrecognized value for activity %d", activity); 10875 } 10876 10877 return (error); 10878 } 10879 10880 static int 10881 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 10882 boolean_t use_tag, uint64_t tag, boolean_t *waited) 10883 { 10884 /* 10885 * The tag is used to distinguish between instances of an activity. 10886 * 'initialize' and 'trim' are the only activities that we use this for. 10887 * The other activities can only have a single instance in progress in a 10888 * pool at one time, making the tag unnecessary. 10889 * 10890 * There can be multiple devices being replaced at once, but since they 10891 * all finish once resilvering finishes, we don't bother keeping track 10892 * of them individually, we just wait for them all to finish. 10893 */ 10894 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 10895 activity != ZPOOL_WAIT_TRIM) 10896 return (EINVAL); 10897 10898 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 10899 return (EINVAL); 10900 10901 spa_t *spa; 10902 int error = spa_open(pool, &spa, FTAG); 10903 if (error != 0) 10904 return (error); 10905 10906 /* 10907 * Increment the spa's waiter count so that we can call spa_close and 10908 * still ensure that the spa_t doesn't get freed before this thread is 10909 * finished with it when the pool is exported. We want to call spa_close 10910 * before we start waiting because otherwise the additional ref would 10911 * prevent the pool from being exported or destroyed throughout the 10912 * potentially long wait. 10913 */ 10914 mutex_enter(&spa->spa_activities_lock); 10915 spa->spa_waiters++; 10916 spa_close(spa, FTAG); 10917 10918 *waited = B_FALSE; 10919 for (;;) { 10920 boolean_t in_progress; 10921 error = spa_activity_in_progress(spa, activity, use_tag, tag, 10922 &in_progress); 10923 10924 if (error || !in_progress || spa->spa_waiters_cancel) 10925 break; 10926 10927 *waited = B_TRUE; 10928 10929 if (cv_wait_sig(&spa->spa_activities_cv, 10930 &spa->spa_activities_lock) == 0) { 10931 error = EINTR; 10932 break; 10933 } 10934 } 10935 10936 spa->spa_waiters--; 10937 cv_signal(&spa->spa_waiters_cv); 10938 mutex_exit(&spa->spa_activities_lock); 10939 10940 return (error); 10941 } 10942 10943 /* 10944 * Wait for a particular instance of the specified activity to complete, where 10945 * the instance is identified by 'tag' 10946 */ 10947 int 10948 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 10949 boolean_t *waited) 10950 { 10951 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 10952 } 10953 10954 /* 10955 * Wait for all instances of the specified activity complete 10956 */ 10957 int 10958 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 10959 { 10960 10961 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 10962 } 10963 10964 sysevent_t * 10965 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 10966 { 10967 sysevent_t *ev = NULL; 10968 #ifdef _KERNEL 10969 nvlist_t *resource; 10970 10971 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 10972 if (resource) { 10973 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 10974 ev->resource = resource; 10975 } 10976 #else 10977 (void) spa, (void) vd, (void) hist_nvl, (void) name; 10978 #endif 10979 return (ev); 10980 } 10981 10982 void 10983 spa_event_post(sysevent_t *ev) 10984 { 10985 #ifdef _KERNEL 10986 if (ev) { 10987 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 10988 kmem_free(ev, sizeof (*ev)); 10989 } 10990 #else 10991 (void) ev; 10992 #endif 10993 } 10994 10995 /* 10996 * Post a zevent corresponding to the given sysevent. The 'name' must be one 10997 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 10998 * filled in from the spa and (optionally) the vdev. This doesn't do anything 10999 * in the userland libzpool, as we don't want consumers to misinterpret ztest 11000 * or zdb as real changes. 11001 */ 11002 void 11003 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 11004 { 11005 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 11006 } 11007 11008 /* state manipulation functions */ 11009 EXPORT_SYMBOL(spa_open); 11010 EXPORT_SYMBOL(spa_open_rewind); 11011 EXPORT_SYMBOL(spa_get_stats); 11012 EXPORT_SYMBOL(spa_create); 11013 EXPORT_SYMBOL(spa_import); 11014 EXPORT_SYMBOL(spa_tryimport); 11015 EXPORT_SYMBOL(spa_destroy); 11016 EXPORT_SYMBOL(spa_export); 11017 EXPORT_SYMBOL(spa_reset); 11018 EXPORT_SYMBOL(spa_async_request); 11019 EXPORT_SYMBOL(spa_async_suspend); 11020 EXPORT_SYMBOL(spa_async_resume); 11021 EXPORT_SYMBOL(spa_inject_addref); 11022 EXPORT_SYMBOL(spa_inject_delref); 11023 EXPORT_SYMBOL(spa_scan_stat_init); 11024 EXPORT_SYMBOL(spa_scan_get_stats); 11025 11026 /* device manipulation */ 11027 EXPORT_SYMBOL(spa_vdev_add); 11028 EXPORT_SYMBOL(spa_vdev_attach); 11029 EXPORT_SYMBOL(spa_vdev_detach); 11030 EXPORT_SYMBOL(spa_vdev_setpath); 11031 EXPORT_SYMBOL(spa_vdev_setfru); 11032 EXPORT_SYMBOL(spa_vdev_split_mirror); 11033 11034 /* spare statech is global across all pools) */ 11035 EXPORT_SYMBOL(spa_spare_add); 11036 EXPORT_SYMBOL(spa_spare_remove); 11037 EXPORT_SYMBOL(spa_spare_exists); 11038 EXPORT_SYMBOL(spa_spare_activate); 11039 11040 /* L2ARC statech is global across all pools) */ 11041 EXPORT_SYMBOL(spa_l2cache_add); 11042 EXPORT_SYMBOL(spa_l2cache_remove); 11043 EXPORT_SYMBOL(spa_l2cache_exists); 11044 EXPORT_SYMBOL(spa_l2cache_activate); 11045 EXPORT_SYMBOL(spa_l2cache_drop); 11046 11047 /* scanning */ 11048 EXPORT_SYMBOL(spa_scan); 11049 EXPORT_SYMBOL(spa_scan_range); 11050 EXPORT_SYMBOL(spa_scan_stop); 11051 11052 /* spa syncing */ 11053 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 11054 EXPORT_SYMBOL(spa_sync_allpools); 11055 11056 /* properties */ 11057 EXPORT_SYMBOL(spa_prop_set); 11058 EXPORT_SYMBOL(spa_prop_get); 11059 EXPORT_SYMBOL(spa_prop_clear_bootfs); 11060 11061 /* asynchronous event notification */ 11062 EXPORT_SYMBOL(spa_event_notify); 11063 11064 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW, 11065 "Percentage of CPUs to run a metaslab preload taskq"); 11066 11067 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW, 11068 "log2 fraction of arc that can be used by inflight I/Os when " 11069 "verifying pool during import"); 11070 11071 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 11072 "Set to traverse metadata on pool import"); 11073 11074 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 11075 "Set to traverse data on pool import"); 11076 11077 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 11078 "Print vdev tree to zfs_dbgmsg during pool import"); 11079 11080 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW, 11081 "Percentage of CPUs to run an IO worker thread"); 11082 11083 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW, 11084 "Number of threads per IO worker taskqueue"); 11085 11086 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW, 11087 "Allow importing pool with up to this number of missing top-level " 11088 "vdevs (in read-only mode)"); 11089 11090 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, 11091 ZMOD_RW, "Set the livelist condense zthr to pause"); 11092 11093 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, 11094 ZMOD_RW, "Set the livelist condense synctask to pause"); 11095 11096 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, 11097 INT, ZMOD_RW, 11098 "Whether livelist condensing was canceled in the synctask"); 11099 11100 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, 11101 INT, ZMOD_RW, 11102 "Whether livelist condensing was canceled in the zthr function"); 11103 11104 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, 11105 ZMOD_RW, 11106 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 11107 "was being condensed"); 11108 11109 #ifdef _KERNEL 11110 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read, 11111 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW, 11112 "Configure IO queues for read IO"); 11113 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write, 11114 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW, 11115 "Configure IO queues for write IO"); 11116 #endif 11117 11118 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW, 11119 "Number of CPUs per write issue taskq"); 11120