1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/range_tree.h> 40 #include <sys/trace_zfs.h> 41 #include <sys/zfs_project.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 59 { "dnode_allocate", KSTAT_DATA_UINT64 }, 60 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 61 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 65 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 68 { "dnode_move_special", KSTAT_DATA_UINT64 }, 69 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 71 { "dnode_move_active", KSTAT_DATA_UINT64 }, 72 }; 73 74 static kstat_t *dnode_ksp; 75 static kmem_cache_t *dnode_cache; 76 77 static dnode_phys_t dnode_phys_zero __maybe_unused; 78 79 int zfs_default_bs = SPA_MINBLOCKSHIFT; 80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 81 82 #ifdef _KERNEL 83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 84 #endif /* _KERNEL */ 85 86 static int 87 dbuf_compare(const void *x1, const void *x2) 88 { 89 const dmu_buf_impl_t *d1 = x1; 90 const dmu_buf_impl_t *d2 = x2; 91 92 int cmp = TREE_CMP(d1->db_level, d2->db_level); 93 if (likely(cmp)) 94 return (cmp); 95 96 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 97 if (likely(cmp)) 98 return (cmp); 99 100 if (d1->db_state == DB_SEARCH) { 101 ASSERT3S(d2->db_state, !=, DB_SEARCH); 102 return (-1); 103 } else if (d2->db_state == DB_SEARCH) { 104 ASSERT3S(d1->db_state, !=, DB_SEARCH); 105 return (1); 106 } 107 108 return (TREE_PCMP(d1, d2)); 109 } 110 111 /* ARGSUSED */ 112 static int 113 dnode_cons(void *arg, void *unused, int kmflag) 114 { 115 dnode_t *dn = arg; 116 int i; 117 118 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL); 119 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 120 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 121 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 122 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 123 124 /* 125 * Every dbuf has a reference, and dropping a tracked reference is 126 * O(number of references), so don't track dn_holds. 127 */ 128 zfs_refcount_create_untracked(&dn->dn_holds); 129 zfs_refcount_create(&dn->dn_tx_holds); 130 list_link_init(&dn->dn_link); 131 132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 140 141 for (i = 0; i < TXG_SIZE; i++) { 142 multilist_link_init(&dn->dn_dirty_link[i]); 143 dn->dn_free_ranges[i] = NULL; 144 list_create(&dn->dn_dirty_records[i], 145 sizeof (dbuf_dirty_record_t), 146 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 147 } 148 149 dn->dn_allocated_txg = 0; 150 dn->dn_free_txg = 0; 151 dn->dn_assigned_txg = 0; 152 dn->dn_dirty_txg = 0; 153 dn->dn_dirtyctx = 0; 154 dn->dn_dirtyctx_firstset = NULL; 155 dn->dn_bonus = NULL; 156 dn->dn_have_spill = B_FALSE; 157 dn->dn_zio = NULL; 158 dn->dn_oldused = 0; 159 dn->dn_oldflags = 0; 160 dn->dn_olduid = 0; 161 dn->dn_oldgid = 0; 162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 163 dn->dn_newuid = 0; 164 dn->dn_newgid = 0; 165 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 166 dn->dn_id_flags = 0; 167 168 dn->dn_dbufs_count = 0; 169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 170 offsetof(dmu_buf_impl_t, db_link)); 171 172 dn->dn_moved = 0; 173 return (0); 174 } 175 176 /* ARGSUSED */ 177 static void 178 dnode_dest(void *arg, void *unused) 179 { 180 int i; 181 dnode_t *dn = arg; 182 183 rw_destroy(&dn->dn_struct_rwlock); 184 mutex_destroy(&dn->dn_mtx); 185 mutex_destroy(&dn->dn_dbufs_mtx); 186 cv_destroy(&dn->dn_notxholds); 187 cv_destroy(&dn->dn_nodnholds); 188 zfs_refcount_destroy(&dn->dn_holds); 189 zfs_refcount_destroy(&dn->dn_tx_holds); 190 ASSERT(!list_link_active(&dn->dn_link)); 191 192 for (i = 0; i < TXG_SIZE; i++) { 193 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 194 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 195 list_destroy(&dn->dn_dirty_records[i]); 196 ASSERT0(dn->dn_next_nblkptr[i]); 197 ASSERT0(dn->dn_next_nlevels[i]); 198 ASSERT0(dn->dn_next_indblkshift[i]); 199 ASSERT0(dn->dn_next_bonustype[i]); 200 ASSERT0(dn->dn_rm_spillblk[i]); 201 ASSERT0(dn->dn_next_bonuslen[i]); 202 ASSERT0(dn->dn_next_blksz[i]); 203 ASSERT0(dn->dn_next_maxblkid[i]); 204 } 205 206 ASSERT0(dn->dn_allocated_txg); 207 ASSERT0(dn->dn_free_txg); 208 ASSERT0(dn->dn_assigned_txg); 209 ASSERT0(dn->dn_dirty_txg); 210 ASSERT0(dn->dn_dirtyctx); 211 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 212 ASSERT3P(dn->dn_bonus, ==, NULL); 213 ASSERT(!dn->dn_have_spill); 214 ASSERT3P(dn->dn_zio, ==, NULL); 215 ASSERT0(dn->dn_oldused); 216 ASSERT0(dn->dn_oldflags); 217 ASSERT0(dn->dn_olduid); 218 ASSERT0(dn->dn_oldgid); 219 ASSERT0(dn->dn_oldprojid); 220 ASSERT0(dn->dn_newuid); 221 ASSERT0(dn->dn_newgid); 222 ASSERT0(dn->dn_newprojid); 223 ASSERT0(dn->dn_id_flags); 224 225 ASSERT0(dn->dn_dbufs_count); 226 avl_destroy(&dn->dn_dbufs); 227 } 228 229 void 230 dnode_init(void) 231 { 232 ASSERT(dnode_cache == NULL); 233 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 234 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 235 kmem_cache_set_move(dnode_cache, dnode_move); 236 237 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 238 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 239 KSTAT_FLAG_VIRTUAL); 240 if (dnode_ksp != NULL) { 241 dnode_ksp->ks_data = &dnode_stats; 242 kstat_install(dnode_ksp); 243 } 244 } 245 246 void 247 dnode_fini(void) 248 { 249 if (dnode_ksp != NULL) { 250 kstat_delete(dnode_ksp); 251 dnode_ksp = NULL; 252 } 253 254 kmem_cache_destroy(dnode_cache); 255 dnode_cache = NULL; 256 } 257 258 259 #ifdef ZFS_DEBUG 260 void 261 dnode_verify(dnode_t *dn) 262 { 263 int drop_struct_lock = FALSE; 264 265 ASSERT(dn->dn_phys); 266 ASSERT(dn->dn_objset); 267 ASSERT(dn->dn_handle->dnh_dnode == dn); 268 269 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 270 271 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 272 return; 273 274 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 drop_struct_lock = TRUE; 277 } 278 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 279 int i; 280 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 281 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 282 if (dn->dn_datablkshift) { 283 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 284 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 285 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 286 } 287 ASSERT3U(dn->dn_nlevels, <=, 30); 288 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 289 ASSERT3U(dn->dn_nblkptr, >=, 1); 290 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 291 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 292 ASSERT3U(dn->dn_datablksz, ==, 293 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 294 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 295 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 296 dn->dn_bonuslen, <=, max_bonuslen); 297 for (i = 0; i < TXG_SIZE; i++) { 298 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 299 } 300 } 301 if (dn->dn_phys->dn_type != DMU_OT_NONE) 302 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 303 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 304 if (dn->dn_dbuf != NULL) { 305 ASSERT3P(dn->dn_phys, ==, 306 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 307 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 308 } 309 if (drop_struct_lock) 310 rw_exit(&dn->dn_struct_rwlock); 311 } 312 #endif 313 314 void 315 dnode_byteswap(dnode_phys_t *dnp) 316 { 317 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 318 int i; 319 320 if (dnp->dn_type == DMU_OT_NONE) { 321 bzero(dnp, sizeof (dnode_phys_t)); 322 return; 323 } 324 325 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 326 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 327 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 328 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 329 dnp->dn_used = BSWAP_64(dnp->dn_used); 330 331 /* 332 * dn_nblkptr is only one byte, so it's OK to read it in either 333 * byte order. We can't read dn_bouslen. 334 */ 335 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 336 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 337 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 338 buf64[i] = BSWAP_64(buf64[i]); 339 340 /* 341 * OK to check dn_bonuslen for zero, because it won't matter if 342 * we have the wrong byte order. This is necessary because the 343 * dnode dnode is smaller than a regular dnode. 344 */ 345 if (dnp->dn_bonuslen != 0) { 346 /* 347 * Note that the bonus length calculated here may be 348 * longer than the actual bonus buffer. This is because 349 * we always put the bonus buffer after the last block 350 * pointer (instead of packing it against the end of the 351 * dnode buffer). 352 */ 353 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 354 int slots = dnp->dn_extra_slots + 1; 355 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 356 dmu_object_byteswap_t byteswap; 357 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 358 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); 359 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 360 } 361 362 /* Swap SPILL block if we have one */ 363 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 364 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 365 } 366 367 void 368 dnode_buf_byteswap(void *vbuf, size_t size) 369 { 370 int i = 0; 371 372 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 373 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 374 375 while (i < size) { 376 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 377 dnode_byteswap(dnp); 378 379 i += DNODE_MIN_SIZE; 380 if (dnp->dn_type != DMU_OT_NONE) 381 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 382 } 383 } 384 385 void 386 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 387 { 388 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 389 390 dnode_setdirty(dn, tx); 391 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 392 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 393 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 394 395 if (newsize < dn->dn_bonuslen) { 396 /* clear any data after the end of the new size */ 397 size_t diff = dn->dn_bonuslen - newsize; 398 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize; 399 bzero(data_end, diff); 400 } 401 402 dn->dn_bonuslen = newsize; 403 if (newsize == 0) 404 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 405 else 406 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 407 rw_exit(&dn->dn_struct_rwlock); 408 } 409 410 void 411 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 412 { 413 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 414 dnode_setdirty(dn, tx); 415 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 416 dn->dn_bonustype = newtype; 417 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 418 rw_exit(&dn->dn_struct_rwlock); 419 } 420 421 void 422 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 423 { 424 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 425 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 426 dnode_setdirty(dn, tx); 427 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK; 428 dn->dn_have_spill = B_FALSE; 429 } 430 431 static void 432 dnode_setdblksz(dnode_t *dn, int size) 433 { 434 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 435 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 436 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 437 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 438 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 439 dn->dn_datablksz = size; 440 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 441 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 442 } 443 444 static dnode_t * 445 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 446 uint64_t object, dnode_handle_t *dnh) 447 { 448 dnode_t *dn; 449 450 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 451 dn->dn_moved = 0; 452 453 /* 454 * Defer setting dn_objset until the dnode is ready to be a candidate 455 * for the dnode_move() callback. 456 */ 457 dn->dn_object = object; 458 dn->dn_dbuf = db; 459 dn->dn_handle = dnh; 460 dn->dn_phys = dnp; 461 462 if (dnp->dn_datablkszsec) { 463 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 464 } else { 465 dn->dn_datablksz = 0; 466 dn->dn_datablkszsec = 0; 467 dn->dn_datablkshift = 0; 468 } 469 dn->dn_indblkshift = dnp->dn_indblkshift; 470 dn->dn_nlevels = dnp->dn_nlevels; 471 dn->dn_type = dnp->dn_type; 472 dn->dn_nblkptr = dnp->dn_nblkptr; 473 dn->dn_checksum = dnp->dn_checksum; 474 dn->dn_compress = dnp->dn_compress; 475 dn->dn_bonustype = dnp->dn_bonustype; 476 dn->dn_bonuslen = dnp->dn_bonuslen; 477 dn->dn_num_slots = dnp->dn_extra_slots + 1; 478 dn->dn_maxblkid = dnp->dn_maxblkid; 479 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 480 dn->dn_id_flags = 0; 481 482 dmu_zfetch_init(&dn->dn_zfetch, dn); 483 484 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 485 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 486 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 487 488 mutex_enter(&os->os_lock); 489 490 /* 491 * Exclude special dnodes from os_dnodes so an empty os_dnodes 492 * signifies that the special dnodes have no references from 493 * their children (the entries in os_dnodes). This allows 494 * dnode_destroy() to easily determine if the last child has 495 * been removed and then complete eviction of the objset. 496 */ 497 if (!DMU_OBJECT_IS_SPECIAL(object)) 498 list_insert_head(&os->os_dnodes, dn); 499 membar_producer(); 500 501 /* 502 * Everything else must be valid before assigning dn_objset 503 * makes the dnode eligible for dnode_move(). 504 */ 505 dn->dn_objset = os; 506 507 dnh->dnh_dnode = dn; 508 mutex_exit(&os->os_lock); 509 510 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE); 511 512 return (dn); 513 } 514 515 /* 516 * Caller must be holding the dnode handle, which is released upon return. 517 */ 518 static void 519 dnode_destroy(dnode_t *dn) 520 { 521 objset_t *os = dn->dn_objset; 522 boolean_t complete_os_eviction = B_FALSE; 523 524 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 525 526 mutex_enter(&os->os_lock); 527 POINTER_INVALIDATE(&dn->dn_objset); 528 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 529 list_remove(&os->os_dnodes, dn); 530 complete_os_eviction = 531 list_is_empty(&os->os_dnodes) && 532 list_link_active(&os->os_evicting_node); 533 } 534 mutex_exit(&os->os_lock); 535 536 /* the dnode can no longer move, so we can release the handle */ 537 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 538 zrl_remove(&dn->dn_handle->dnh_zrlock); 539 540 dn->dn_allocated_txg = 0; 541 dn->dn_free_txg = 0; 542 dn->dn_assigned_txg = 0; 543 dn->dn_dirty_txg = 0; 544 545 dn->dn_dirtyctx = 0; 546 dn->dn_dirtyctx_firstset = NULL; 547 if (dn->dn_bonus != NULL) { 548 mutex_enter(&dn->dn_bonus->db_mtx); 549 dbuf_destroy(dn->dn_bonus); 550 dn->dn_bonus = NULL; 551 } 552 dn->dn_zio = NULL; 553 554 dn->dn_have_spill = B_FALSE; 555 dn->dn_oldused = 0; 556 dn->dn_oldflags = 0; 557 dn->dn_olduid = 0; 558 dn->dn_oldgid = 0; 559 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 560 dn->dn_newuid = 0; 561 dn->dn_newgid = 0; 562 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 563 dn->dn_id_flags = 0; 564 565 dmu_zfetch_fini(&dn->dn_zfetch); 566 kmem_cache_free(dnode_cache, dn); 567 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE); 568 569 if (complete_os_eviction) 570 dmu_objset_evict_done(os); 571 } 572 573 void 574 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 575 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 576 { 577 int i; 578 579 ASSERT3U(dn_slots, >, 0); 580 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 581 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 582 ASSERT3U(blocksize, <=, 583 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 584 if (blocksize == 0) 585 blocksize = 1 << zfs_default_bs; 586 else 587 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 588 589 if (ibs == 0) 590 ibs = zfs_default_ibs; 591 592 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 593 594 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n", 595 dn->dn_objset, (u_longlong_t)dn->dn_object, 596 (u_longlong_t)tx->tx_txg, blocksize, ibs, dn_slots); 597 DNODE_STAT_BUMP(dnode_allocate); 598 599 ASSERT(dn->dn_type == DMU_OT_NONE); 600 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 601 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 602 ASSERT(ot != DMU_OT_NONE); 603 ASSERT(DMU_OT_IS_VALID(ot)); 604 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 605 (bonustype == DMU_OT_SA && bonuslen == 0) || 606 (bonustype != DMU_OT_NONE && bonuslen != 0)); 607 ASSERT(DMU_OT_IS_VALID(bonustype)); 608 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 609 ASSERT(dn->dn_type == DMU_OT_NONE); 610 ASSERT0(dn->dn_maxblkid); 611 ASSERT0(dn->dn_allocated_txg); 612 ASSERT0(dn->dn_assigned_txg); 613 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 614 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 615 ASSERT(avl_is_empty(&dn->dn_dbufs)); 616 617 for (i = 0; i < TXG_SIZE; i++) { 618 ASSERT0(dn->dn_next_nblkptr[i]); 619 ASSERT0(dn->dn_next_nlevels[i]); 620 ASSERT0(dn->dn_next_indblkshift[i]); 621 ASSERT0(dn->dn_next_bonuslen[i]); 622 ASSERT0(dn->dn_next_bonustype[i]); 623 ASSERT0(dn->dn_rm_spillblk[i]); 624 ASSERT0(dn->dn_next_blksz[i]); 625 ASSERT0(dn->dn_next_maxblkid[i]); 626 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 627 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 628 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 629 } 630 631 dn->dn_type = ot; 632 dnode_setdblksz(dn, blocksize); 633 dn->dn_indblkshift = ibs; 634 dn->dn_nlevels = 1; 635 dn->dn_num_slots = dn_slots; 636 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 637 dn->dn_nblkptr = 1; 638 else { 639 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 640 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 641 SPA_BLKPTRSHIFT)); 642 } 643 644 dn->dn_bonustype = bonustype; 645 dn->dn_bonuslen = bonuslen; 646 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 647 dn->dn_compress = ZIO_COMPRESS_INHERIT; 648 dn->dn_dirtyctx = 0; 649 650 dn->dn_free_txg = 0; 651 dn->dn_dirtyctx_firstset = NULL; 652 dn->dn_dirty_txg = 0; 653 654 dn->dn_allocated_txg = tx->tx_txg; 655 dn->dn_id_flags = 0; 656 657 dnode_setdirty(dn, tx); 658 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 659 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 660 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 661 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 662 } 663 664 void 665 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 666 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 667 boolean_t keep_spill, dmu_tx_t *tx) 668 { 669 int nblkptr; 670 671 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 672 ASSERT3U(blocksize, <=, 673 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 674 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 675 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 676 ASSERT(tx->tx_txg != 0); 677 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 678 (bonustype != DMU_OT_NONE && bonuslen != 0) || 679 (bonustype == DMU_OT_SA && bonuslen == 0)); 680 ASSERT(DMU_OT_IS_VALID(bonustype)); 681 ASSERT3U(bonuslen, <=, 682 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 683 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 684 685 dnode_free_interior_slots(dn); 686 DNODE_STAT_BUMP(dnode_reallocate); 687 688 /* clean up any unreferenced dbufs */ 689 dnode_evict_dbufs(dn); 690 691 dn->dn_id_flags = 0; 692 693 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 694 dnode_setdirty(dn, tx); 695 if (dn->dn_datablksz != blocksize) { 696 /* change blocksize */ 697 ASSERT0(dn->dn_maxblkid); 698 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 699 dnode_block_freed(dn, 0)); 700 701 dnode_setdblksz(dn, blocksize); 702 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize; 703 } 704 if (dn->dn_bonuslen != bonuslen) 705 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen; 706 707 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 708 nblkptr = 1; 709 else 710 nblkptr = MIN(DN_MAX_NBLKPTR, 711 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 712 SPA_BLKPTRSHIFT)); 713 if (dn->dn_bonustype != bonustype) 714 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype; 715 if (dn->dn_nblkptr != nblkptr) 716 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr; 717 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 718 dbuf_rm_spill(dn, tx); 719 dnode_rm_spill(dn, tx); 720 } 721 722 rw_exit(&dn->dn_struct_rwlock); 723 724 /* change type */ 725 dn->dn_type = ot; 726 727 /* change bonus size and type */ 728 mutex_enter(&dn->dn_mtx); 729 dn->dn_bonustype = bonustype; 730 dn->dn_bonuslen = bonuslen; 731 dn->dn_num_slots = dn_slots; 732 dn->dn_nblkptr = nblkptr; 733 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 734 dn->dn_compress = ZIO_COMPRESS_INHERIT; 735 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 736 737 /* fix up the bonus db_size */ 738 if (dn->dn_bonus) { 739 dn->dn_bonus->db.db_size = 740 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 741 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 742 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 743 } 744 745 dn->dn_allocated_txg = tx->tx_txg; 746 mutex_exit(&dn->dn_mtx); 747 } 748 749 #ifdef _KERNEL 750 static void 751 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 752 { 753 int i; 754 755 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 756 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 757 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 758 759 /* Copy fields. */ 760 ndn->dn_objset = odn->dn_objset; 761 ndn->dn_object = odn->dn_object; 762 ndn->dn_dbuf = odn->dn_dbuf; 763 ndn->dn_handle = odn->dn_handle; 764 ndn->dn_phys = odn->dn_phys; 765 ndn->dn_type = odn->dn_type; 766 ndn->dn_bonuslen = odn->dn_bonuslen; 767 ndn->dn_bonustype = odn->dn_bonustype; 768 ndn->dn_nblkptr = odn->dn_nblkptr; 769 ndn->dn_checksum = odn->dn_checksum; 770 ndn->dn_compress = odn->dn_compress; 771 ndn->dn_nlevels = odn->dn_nlevels; 772 ndn->dn_indblkshift = odn->dn_indblkshift; 773 ndn->dn_datablkshift = odn->dn_datablkshift; 774 ndn->dn_datablkszsec = odn->dn_datablkszsec; 775 ndn->dn_datablksz = odn->dn_datablksz; 776 ndn->dn_maxblkid = odn->dn_maxblkid; 777 ndn->dn_num_slots = odn->dn_num_slots; 778 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 779 sizeof (odn->dn_next_type)); 780 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 781 sizeof (odn->dn_next_nblkptr)); 782 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 783 sizeof (odn->dn_next_nlevels)); 784 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 785 sizeof (odn->dn_next_indblkshift)); 786 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 787 sizeof (odn->dn_next_bonustype)); 788 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 789 sizeof (odn->dn_rm_spillblk)); 790 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 791 sizeof (odn->dn_next_bonuslen)); 792 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 793 sizeof (odn->dn_next_blksz)); 794 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 795 sizeof (odn->dn_next_maxblkid)); 796 for (i = 0; i < TXG_SIZE; i++) { 797 list_move_tail(&ndn->dn_dirty_records[i], 798 &odn->dn_dirty_records[i]); 799 } 800 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 801 sizeof (odn->dn_free_ranges)); 802 ndn->dn_allocated_txg = odn->dn_allocated_txg; 803 ndn->dn_free_txg = odn->dn_free_txg; 804 ndn->dn_assigned_txg = odn->dn_assigned_txg; 805 ndn->dn_dirty_txg = odn->dn_dirty_txg; 806 ndn->dn_dirtyctx = odn->dn_dirtyctx; 807 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 808 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 809 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 810 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 811 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 812 ndn->dn_dbufs_count = odn->dn_dbufs_count; 813 ndn->dn_bonus = odn->dn_bonus; 814 ndn->dn_have_spill = odn->dn_have_spill; 815 ndn->dn_zio = odn->dn_zio; 816 ndn->dn_oldused = odn->dn_oldused; 817 ndn->dn_oldflags = odn->dn_oldflags; 818 ndn->dn_olduid = odn->dn_olduid; 819 ndn->dn_oldgid = odn->dn_oldgid; 820 ndn->dn_oldprojid = odn->dn_oldprojid; 821 ndn->dn_newuid = odn->dn_newuid; 822 ndn->dn_newgid = odn->dn_newgid; 823 ndn->dn_newprojid = odn->dn_newprojid; 824 ndn->dn_id_flags = odn->dn_id_flags; 825 dmu_zfetch_init(&ndn->dn_zfetch, ndn); 826 827 /* 828 * Update back pointers. Updating the handle fixes the back pointer of 829 * every descendant dbuf as well as the bonus dbuf. 830 */ 831 ASSERT(ndn->dn_handle->dnh_dnode == odn); 832 ndn->dn_handle->dnh_dnode = ndn; 833 834 /* 835 * Invalidate the original dnode by clearing all of its back pointers. 836 */ 837 odn->dn_dbuf = NULL; 838 odn->dn_handle = NULL; 839 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 840 offsetof(dmu_buf_impl_t, db_link)); 841 odn->dn_dbufs_count = 0; 842 odn->dn_bonus = NULL; 843 dmu_zfetch_fini(&odn->dn_zfetch); 844 845 /* 846 * Set the low bit of the objset pointer to ensure that dnode_move() 847 * recognizes the dnode as invalid in any subsequent callback. 848 */ 849 POINTER_INVALIDATE(&odn->dn_objset); 850 851 /* 852 * Satisfy the destructor. 853 */ 854 for (i = 0; i < TXG_SIZE; i++) { 855 list_create(&odn->dn_dirty_records[i], 856 sizeof (dbuf_dirty_record_t), 857 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 858 odn->dn_free_ranges[i] = NULL; 859 odn->dn_next_nlevels[i] = 0; 860 odn->dn_next_indblkshift[i] = 0; 861 odn->dn_next_bonustype[i] = 0; 862 odn->dn_rm_spillblk[i] = 0; 863 odn->dn_next_bonuslen[i] = 0; 864 odn->dn_next_blksz[i] = 0; 865 } 866 odn->dn_allocated_txg = 0; 867 odn->dn_free_txg = 0; 868 odn->dn_assigned_txg = 0; 869 odn->dn_dirty_txg = 0; 870 odn->dn_dirtyctx = 0; 871 odn->dn_dirtyctx_firstset = NULL; 872 odn->dn_have_spill = B_FALSE; 873 odn->dn_zio = NULL; 874 odn->dn_oldused = 0; 875 odn->dn_oldflags = 0; 876 odn->dn_olduid = 0; 877 odn->dn_oldgid = 0; 878 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 879 odn->dn_newuid = 0; 880 odn->dn_newgid = 0; 881 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 882 odn->dn_id_flags = 0; 883 884 /* 885 * Mark the dnode. 886 */ 887 ndn->dn_moved = 1; 888 odn->dn_moved = (uint8_t)-1; 889 } 890 891 /*ARGSUSED*/ 892 static kmem_cbrc_t 893 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 894 { 895 dnode_t *odn = buf, *ndn = newbuf; 896 objset_t *os; 897 int64_t refcount; 898 uint32_t dbufs; 899 900 /* 901 * The dnode is on the objset's list of known dnodes if the objset 902 * pointer is valid. We set the low bit of the objset pointer when 903 * freeing the dnode to invalidate it, and the memory patterns written 904 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 905 * A newly created dnode sets the objset pointer last of all to indicate 906 * that the dnode is known and in a valid state to be moved by this 907 * function. 908 */ 909 os = odn->dn_objset; 910 if (!POINTER_IS_VALID(os)) { 911 DNODE_STAT_BUMP(dnode_move_invalid); 912 return (KMEM_CBRC_DONT_KNOW); 913 } 914 915 /* 916 * Ensure that the objset does not go away during the move. 917 */ 918 rw_enter(&os_lock, RW_WRITER); 919 if (os != odn->dn_objset) { 920 rw_exit(&os_lock); 921 DNODE_STAT_BUMP(dnode_move_recheck1); 922 return (KMEM_CBRC_DONT_KNOW); 923 } 924 925 /* 926 * If the dnode is still valid, then so is the objset. We know that no 927 * valid objset can be freed while we hold os_lock, so we can safely 928 * ensure that the objset remains in use. 929 */ 930 mutex_enter(&os->os_lock); 931 932 /* 933 * Recheck the objset pointer in case the dnode was removed just before 934 * acquiring the lock. 935 */ 936 if (os != odn->dn_objset) { 937 mutex_exit(&os->os_lock); 938 rw_exit(&os_lock); 939 DNODE_STAT_BUMP(dnode_move_recheck2); 940 return (KMEM_CBRC_DONT_KNOW); 941 } 942 943 /* 944 * At this point we know that as long as we hold os->os_lock, the dnode 945 * cannot be freed and fields within the dnode can be safely accessed. 946 * The objset listing this dnode cannot go away as long as this dnode is 947 * on its list. 948 */ 949 rw_exit(&os_lock); 950 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 951 mutex_exit(&os->os_lock); 952 DNODE_STAT_BUMP(dnode_move_special); 953 return (KMEM_CBRC_NO); 954 } 955 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 956 957 /* 958 * Lock the dnode handle to prevent the dnode from obtaining any new 959 * holds. This also prevents the descendant dbufs and the bonus dbuf 960 * from accessing the dnode, so that we can discount their holds. The 961 * handle is safe to access because we know that while the dnode cannot 962 * go away, neither can its handle. Once we hold dnh_zrlock, we can 963 * safely move any dnode referenced only by dbufs. 964 */ 965 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 966 mutex_exit(&os->os_lock); 967 DNODE_STAT_BUMP(dnode_move_handle); 968 return (KMEM_CBRC_LATER); 969 } 970 971 /* 972 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 973 * We need to guarantee that there is a hold for every dbuf in order to 974 * determine whether the dnode is actively referenced. Falsely matching 975 * a dbuf to an active hold would lead to an unsafe move. It's possible 976 * that a thread already having an active dnode hold is about to add a 977 * dbuf, and we can't compare hold and dbuf counts while the add is in 978 * progress. 979 */ 980 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 981 zrl_exit(&odn->dn_handle->dnh_zrlock); 982 mutex_exit(&os->os_lock); 983 DNODE_STAT_BUMP(dnode_move_rwlock); 984 return (KMEM_CBRC_LATER); 985 } 986 987 /* 988 * A dbuf may be removed (evicted) without an active dnode hold. In that 989 * case, the dbuf count is decremented under the handle lock before the 990 * dbuf's hold is released. This order ensures that if we count the hold 991 * after the dbuf is removed but before its hold is released, we will 992 * treat the unmatched hold as active and exit safely. If we count the 993 * hold before the dbuf is removed, the hold is discounted, and the 994 * removal is blocked until the move completes. 995 */ 996 refcount = zfs_refcount_count(&odn->dn_holds); 997 ASSERT(refcount >= 0); 998 dbufs = DN_DBUFS_COUNT(odn); 999 1000 /* We can't have more dbufs than dnode holds. */ 1001 ASSERT3U(dbufs, <=, refcount); 1002 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1003 uint32_t, dbufs); 1004 1005 if (refcount > dbufs) { 1006 rw_exit(&odn->dn_struct_rwlock); 1007 zrl_exit(&odn->dn_handle->dnh_zrlock); 1008 mutex_exit(&os->os_lock); 1009 DNODE_STAT_BUMP(dnode_move_active); 1010 return (KMEM_CBRC_LATER); 1011 } 1012 1013 rw_exit(&odn->dn_struct_rwlock); 1014 1015 /* 1016 * At this point we know that anyone with a hold on the dnode is not 1017 * actively referencing it. The dnode is known and in a valid state to 1018 * move. We're holding the locks needed to execute the critical section. 1019 */ 1020 dnode_move_impl(odn, ndn); 1021 1022 list_link_replace(&odn->dn_link, &ndn->dn_link); 1023 /* If the dnode was safe to move, the refcount cannot have changed. */ 1024 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1025 ASSERT(dbufs == DN_DBUFS_COUNT(ndn)); 1026 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1027 mutex_exit(&os->os_lock); 1028 1029 return (KMEM_CBRC_YES); 1030 } 1031 #endif /* _KERNEL */ 1032 1033 static void 1034 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1035 { 1036 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1037 1038 for (int i = idx; i < idx + slots; i++) { 1039 dnode_handle_t *dnh = &children->dnc_children[i]; 1040 zrl_add(&dnh->dnh_zrlock); 1041 } 1042 } 1043 1044 static void 1045 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1046 { 1047 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1048 1049 for (int i = idx; i < idx + slots; i++) { 1050 dnode_handle_t *dnh = &children->dnc_children[i]; 1051 1052 if (zrl_is_locked(&dnh->dnh_zrlock)) 1053 zrl_exit(&dnh->dnh_zrlock); 1054 else 1055 zrl_remove(&dnh->dnh_zrlock); 1056 } 1057 } 1058 1059 static int 1060 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1061 { 1062 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1063 1064 for (int i = idx; i < idx + slots; i++) { 1065 dnode_handle_t *dnh = &children->dnc_children[i]; 1066 1067 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1068 for (int j = idx; j < i; j++) { 1069 dnh = &children->dnc_children[j]; 1070 zrl_exit(&dnh->dnh_zrlock); 1071 } 1072 1073 return (0); 1074 } 1075 } 1076 1077 return (1); 1078 } 1079 1080 static void 1081 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1082 { 1083 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1084 1085 for (int i = idx; i < idx + slots; i++) { 1086 dnode_handle_t *dnh = &children->dnc_children[i]; 1087 dnh->dnh_dnode = ptr; 1088 } 1089 } 1090 1091 static boolean_t 1092 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1093 { 1094 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1095 1096 /* 1097 * If all dnode slots are either already free or 1098 * evictable return B_TRUE. 1099 */ 1100 for (int i = idx; i < idx + slots; i++) { 1101 dnode_handle_t *dnh = &children->dnc_children[i]; 1102 dnode_t *dn = dnh->dnh_dnode; 1103 1104 if (dn == DN_SLOT_FREE) { 1105 continue; 1106 } else if (DN_SLOT_IS_PTR(dn)) { 1107 mutex_enter(&dn->dn_mtx); 1108 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1109 zfs_refcount_is_zero(&dn->dn_holds) && 1110 !DNODE_IS_DIRTY(dn)); 1111 mutex_exit(&dn->dn_mtx); 1112 1113 if (!can_free) 1114 return (B_FALSE); 1115 else 1116 continue; 1117 } else { 1118 return (B_FALSE); 1119 } 1120 } 1121 1122 return (B_TRUE); 1123 } 1124 1125 static void 1126 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1127 { 1128 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1129 1130 for (int i = idx; i < idx + slots; i++) { 1131 dnode_handle_t *dnh = &children->dnc_children[i]; 1132 1133 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1134 1135 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1136 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1137 dnode_destroy(dnh->dnh_dnode); 1138 dnh->dnh_dnode = DN_SLOT_FREE; 1139 } 1140 } 1141 } 1142 1143 void 1144 dnode_free_interior_slots(dnode_t *dn) 1145 { 1146 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1147 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1148 int idx = (dn->dn_object & (epb - 1)) + 1; 1149 int slots = dn->dn_num_slots - 1; 1150 1151 if (slots == 0) 1152 return; 1153 1154 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1155 1156 while (!dnode_slots_tryenter(children, idx, slots)) { 1157 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1158 cond_resched(); 1159 } 1160 1161 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1162 dnode_slots_rele(children, idx, slots); 1163 } 1164 1165 void 1166 dnode_special_close(dnode_handle_t *dnh) 1167 { 1168 dnode_t *dn = dnh->dnh_dnode; 1169 1170 /* 1171 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1172 * zfs_refcount_remove() 1173 */ 1174 mutex_enter(&dn->dn_mtx); 1175 if (zfs_refcount_count(&dn->dn_holds) > 0) 1176 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1177 mutex_exit(&dn->dn_mtx); 1178 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1179 1180 ASSERT(dn->dn_dbuf == NULL || 1181 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1182 zrl_add(&dnh->dnh_zrlock); 1183 dnode_destroy(dn); /* implicit zrl_remove() */ 1184 zrl_destroy(&dnh->dnh_zrlock); 1185 dnh->dnh_dnode = NULL; 1186 } 1187 1188 void 1189 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1190 dnode_handle_t *dnh) 1191 { 1192 dnode_t *dn; 1193 1194 zrl_init(&dnh->dnh_zrlock); 1195 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); 1196 1197 dn = dnode_create(os, dnp, NULL, object, dnh); 1198 DNODE_VERIFY(dn); 1199 1200 zrl_exit(&dnh->dnh_zrlock); 1201 } 1202 1203 static void 1204 dnode_buf_evict_async(void *dbu) 1205 { 1206 dnode_children_t *dnc = dbu; 1207 1208 DNODE_STAT_BUMP(dnode_buf_evict); 1209 1210 for (int i = 0; i < dnc->dnc_count; i++) { 1211 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1212 dnode_t *dn; 1213 1214 /* 1215 * The dnode handle lock guards against the dnode moving to 1216 * another valid address, so there is no need here to guard 1217 * against changes to or from NULL. 1218 */ 1219 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1220 zrl_destroy(&dnh->dnh_zrlock); 1221 dnh->dnh_dnode = DN_SLOT_UNINIT; 1222 continue; 1223 } 1224 1225 zrl_add(&dnh->dnh_zrlock); 1226 dn = dnh->dnh_dnode; 1227 /* 1228 * If there are holds on this dnode, then there should 1229 * be holds on the dnode's containing dbuf as well; thus 1230 * it wouldn't be eligible for eviction and this function 1231 * would not have been called. 1232 */ 1233 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1234 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1235 1236 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1237 zrl_destroy(&dnh->dnh_zrlock); 1238 dnh->dnh_dnode = DN_SLOT_UNINIT; 1239 } 1240 kmem_free(dnc, sizeof (dnode_children_t) + 1241 dnc->dnc_count * sizeof (dnode_handle_t)); 1242 } 1243 1244 /* 1245 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1246 * to ensure the hole at the specified object offset is large enough to 1247 * hold the dnode being created. The slots parameter is also used to ensure 1248 * a dnode does not span multiple dnode blocks. In both of these cases, if 1249 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1250 * are only possible when using DNODE_MUST_BE_FREE. 1251 * 1252 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1253 * dnode_hold_impl() will check if the requested dnode is already consumed 1254 * as an extra dnode slot by an large dnode, in which case it returns 1255 * ENOENT. 1256 * 1257 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1258 * return whether the hold would succeed or not. tag and dnp should set to 1259 * NULL in this case. 1260 * 1261 * errors: 1262 * EINVAL - Invalid object number or flags. 1263 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1264 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1265 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1266 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1267 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1268 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1269 * EIO - I/O error when reading the meta dnode dbuf. 1270 * 1271 * succeeds even for free dnodes. 1272 */ 1273 int 1274 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1275 void *tag, dnode_t **dnp) 1276 { 1277 int epb, idx, err; 1278 int drop_struct_lock = FALSE; 1279 int type; 1280 uint64_t blk; 1281 dnode_t *mdn, *dn; 1282 dmu_buf_impl_t *db; 1283 dnode_children_t *dnc; 1284 dnode_phys_t *dn_block; 1285 dnode_handle_t *dnh; 1286 1287 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1288 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1289 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1290 1291 /* 1292 * If you are holding the spa config lock as writer, you shouldn't 1293 * be asking the DMU to do *anything* unless it's the root pool 1294 * which may require us to read from the root filesystem while 1295 * holding some (not all) of the locks as writer. 1296 */ 1297 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1298 (spa_is_root(os->os_spa) && 1299 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1300 1301 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1302 1303 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1304 object == DMU_PROJECTUSED_OBJECT) { 1305 if (object == DMU_USERUSED_OBJECT) 1306 dn = DMU_USERUSED_DNODE(os); 1307 else if (object == DMU_GROUPUSED_OBJECT) 1308 dn = DMU_GROUPUSED_DNODE(os); 1309 else 1310 dn = DMU_PROJECTUSED_DNODE(os); 1311 if (dn == NULL) 1312 return (SET_ERROR(ENOENT)); 1313 type = dn->dn_type; 1314 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1315 return (SET_ERROR(ENOENT)); 1316 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1317 return (SET_ERROR(EEXIST)); 1318 DNODE_VERIFY(dn); 1319 /* Don't actually hold if dry run, just return 0 */ 1320 if (!(flag & DNODE_DRY_RUN)) { 1321 (void) zfs_refcount_add(&dn->dn_holds, tag); 1322 *dnp = dn; 1323 } 1324 return (0); 1325 } 1326 1327 if (object == 0 || object >= DN_MAX_OBJECT) 1328 return (SET_ERROR(EINVAL)); 1329 1330 mdn = DMU_META_DNODE(os); 1331 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1332 1333 DNODE_VERIFY(mdn); 1334 1335 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1336 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1337 drop_struct_lock = TRUE; 1338 } 1339 1340 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1341 db = dbuf_hold(mdn, blk, FTAG); 1342 if (drop_struct_lock) 1343 rw_exit(&mdn->dn_struct_rwlock); 1344 if (db == NULL) { 1345 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1346 return (SET_ERROR(EIO)); 1347 } 1348 1349 /* 1350 * We do not need to decrypt to read the dnode so it doesn't matter 1351 * if we get the encrypted or decrypted version. 1352 */ 1353 err = dbuf_read(db, NULL, DB_RF_CANFAIL | 1354 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 1355 if (err) { 1356 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1357 dbuf_rele(db, FTAG); 1358 return (err); 1359 } 1360 1361 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1362 epb = db->db.db_size >> DNODE_SHIFT; 1363 1364 idx = object & (epb - 1); 1365 dn_block = (dnode_phys_t *)db->db.db_data; 1366 1367 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1368 dnc = dmu_buf_get_user(&db->db); 1369 dnh = NULL; 1370 if (dnc == NULL) { 1371 dnode_children_t *winner; 1372 int skip = 0; 1373 1374 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1375 epb * sizeof (dnode_handle_t), KM_SLEEP); 1376 dnc->dnc_count = epb; 1377 dnh = &dnc->dnc_children[0]; 1378 1379 /* Initialize dnode slot status from dnode_phys_t */ 1380 for (int i = 0; i < epb; i++) { 1381 zrl_init(&dnh[i].dnh_zrlock); 1382 1383 if (skip) { 1384 skip--; 1385 continue; 1386 } 1387 1388 if (dn_block[i].dn_type != DMU_OT_NONE) { 1389 int interior = dn_block[i].dn_extra_slots; 1390 1391 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1392 dnode_set_slots(dnc, i + 1, interior, 1393 DN_SLOT_INTERIOR); 1394 skip = interior; 1395 } else { 1396 dnh[i].dnh_dnode = DN_SLOT_FREE; 1397 skip = 0; 1398 } 1399 } 1400 1401 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1402 dnode_buf_evict_async, NULL); 1403 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1404 if (winner != NULL) { 1405 1406 for (int i = 0; i < epb; i++) 1407 zrl_destroy(&dnh[i].dnh_zrlock); 1408 1409 kmem_free(dnc, sizeof (dnode_children_t) + 1410 epb * sizeof (dnode_handle_t)); 1411 dnc = winner; 1412 } 1413 } 1414 1415 ASSERT(dnc->dnc_count == epb); 1416 1417 if (flag & DNODE_MUST_BE_ALLOCATED) { 1418 slots = 1; 1419 1420 dnode_slots_hold(dnc, idx, slots); 1421 dnh = &dnc->dnc_children[idx]; 1422 1423 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1424 dn = dnh->dnh_dnode; 1425 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1426 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1427 dnode_slots_rele(dnc, idx, slots); 1428 dbuf_rele(db, FTAG); 1429 return (SET_ERROR(EEXIST)); 1430 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1431 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1432 dnode_slots_rele(dnc, idx, slots); 1433 dbuf_rele(db, FTAG); 1434 return (SET_ERROR(ENOENT)); 1435 } else { 1436 dnode_slots_rele(dnc, idx, slots); 1437 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1438 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1439 cond_resched(); 1440 } 1441 1442 /* 1443 * Someone else won the race and called dnode_create() 1444 * after we checked DN_SLOT_IS_PTR() above but before 1445 * we acquired the lock. 1446 */ 1447 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1448 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1449 dn = dnh->dnh_dnode; 1450 } else { 1451 dn = dnode_create(os, dn_block + idx, db, 1452 object, dnh); 1453 } 1454 } 1455 1456 mutex_enter(&dn->dn_mtx); 1457 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1458 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1459 mutex_exit(&dn->dn_mtx); 1460 dnode_slots_rele(dnc, idx, slots); 1461 dbuf_rele(db, FTAG); 1462 return (SET_ERROR(ENOENT)); 1463 } 1464 1465 /* Don't actually hold if dry run, just return 0 */ 1466 if (flag & DNODE_DRY_RUN) { 1467 mutex_exit(&dn->dn_mtx); 1468 dnode_slots_rele(dnc, idx, slots); 1469 dbuf_rele(db, FTAG); 1470 return (0); 1471 } 1472 1473 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1474 } else if (flag & DNODE_MUST_BE_FREE) { 1475 1476 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1477 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1478 dbuf_rele(db, FTAG); 1479 return (SET_ERROR(ENOSPC)); 1480 } 1481 1482 dnode_slots_hold(dnc, idx, slots); 1483 1484 if (!dnode_check_slots_free(dnc, idx, slots)) { 1485 DNODE_STAT_BUMP(dnode_hold_free_misses); 1486 dnode_slots_rele(dnc, idx, slots); 1487 dbuf_rele(db, FTAG); 1488 return (SET_ERROR(ENOSPC)); 1489 } 1490 1491 dnode_slots_rele(dnc, idx, slots); 1492 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1493 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1494 cond_resched(); 1495 } 1496 1497 if (!dnode_check_slots_free(dnc, idx, slots)) { 1498 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1499 dnode_slots_rele(dnc, idx, slots); 1500 dbuf_rele(db, FTAG); 1501 return (SET_ERROR(ENOSPC)); 1502 } 1503 1504 /* 1505 * Allocated but otherwise free dnodes which would 1506 * be in the interior of a multi-slot dnodes need 1507 * to be freed. Single slot dnodes can be safely 1508 * re-purposed as a performance optimization. 1509 */ 1510 if (slots > 1) 1511 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1512 1513 dnh = &dnc->dnc_children[idx]; 1514 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1515 dn = dnh->dnh_dnode; 1516 } else { 1517 dn = dnode_create(os, dn_block + idx, db, 1518 object, dnh); 1519 } 1520 1521 mutex_enter(&dn->dn_mtx); 1522 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1523 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1524 mutex_exit(&dn->dn_mtx); 1525 dnode_slots_rele(dnc, idx, slots); 1526 dbuf_rele(db, FTAG); 1527 return (SET_ERROR(EEXIST)); 1528 } 1529 1530 /* Don't actually hold if dry run, just return 0 */ 1531 if (flag & DNODE_DRY_RUN) { 1532 mutex_exit(&dn->dn_mtx); 1533 dnode_slots_rele(dnc, idx, slots); 1534 dbuf_rele(db, FTAG); 1535 return (0); 1536 } 1537 1538 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1539 DNODE_STAT_BUMP(dnode_hold_free_hits); 1540 } else { 1541 dbuf_rele(db, FTAG); 1542 return (SET_ERROR(EINVAL)); 1543 } 1544 1545 ASSERT0(dn->dn_free_txg); 1546 1547 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1548 dbuf_add_ref(db, dnh); 1549 1550 mutex_exit(&dn->dn_mtx); 1551 1552 /* Now we can rely on the hold to prevent the dnode from moving. */ 1553 dnode_slots_rele(dnc, idx, slots); 1554 1555 DNODE_VERIFY(dn); 1556 ASSERT3P(dnp, !=, NULL); 1557 ASSERT3P(dn->dn_dbuf, ==, db); 1558 ASSERT3U(dn->dn_object, ==, object); 1559 dbuf_rele(db, FTAG); 1560 1561 *dnp = dn; 1562 return (0); 1563 } 1564 1565 /* 1566 * Return held dnode if the object is allocated, NULL if not. 1567 */ 1568 int 1569 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1570 { 1571 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1572 dnp)); 1573 } 1574 1575 /* 1576 * Can only add a reference if there is already at least one 1577 * reference on the dnode. Returns FALSE if unable to add a 1578 * new reference. 1579 */ 1580 boolean_t 1581 dnode_add_ref(dnode_t *dn, void *tag) 1582 { 1583 mutex_enter(&dn->dn_mtx); 1584 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1585 mutex_exit(&dn->dn_mtx); 1586 return (FALSE); 1587 } 1588 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1589 mutex_exit(&dn->dn_mtx); 1590 return (TRUE); 1591 } 1592 1593 void 1594 dnode_rele(dnode_t *dn, void *tag) 1595 { 1596 mutex_enter(&dn->dn_mtx); 1597 dnode_rele_and_unlock(dn, tag, B_FALSE); 1598 } 1599 1600 void 1601 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1602 { 1603 uint64_t refs; 1604 /* Get while the hold prevents the dnode from moving. */ 1605 dmu_buf_impl_t *db = dn->dn_dbuf; 1606 dnode_handle_t *dnh = dn->dn_handle; 1607 1608 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1609 if (refs == 0) 1610 cv_broadcast(&dn->dn_nodnholds); 1611 mutex_exit(&dn->dn_mtx); 1612 /* dnode could get destroyed at this point, so don't use it anymore */ 1613 1614 /* 1615 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1616 * indirectly by dbuf_rele() while relying on the dnode handle to 1617 * prevent the dnode from moving, since releasing the last hold could 1618 * result in the dnode's parent dbuf evicting its dnode handles. For 1619 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1620 * other direct or indirect hold on the dnode must first drop the dnode 1621 * handle. 1622 */ 1623 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1624 1625 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1626 if (refs == 0 && db != NULL) { 1627 /* 1628 * Another thread could add a hold to the dnode handle in 1629 * dnode_hold_impl() while holding the parent dbuf. Since the 1630 * hold on the parent dbuf prevents the handle from being 1631 * destroyed, the hold on the handle is OK. We can't yet assert 1632 * that the handle has zero references, but that will be 1633 * asserted anyway when the handle gets destroyed. 1634 */ 1635 mutex_enter(&db->db_mtx); 1636 dbuf_rele_and_unlock(db, dnh, evicting); 1637 } 1638 } 1639 1640 /* 1641 * Test whether we can create a dnode at the specified location. 1642 */ 1643 int 1644 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1645 { 1646 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1647 slots, NULL, NULL)); 1648 } 1649 1650 void 1651 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1652 { 1653 objset_t *os = dn->dn_objset; 1654 uint64_t txg = tx->tx_txg; 1655 1656 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1657 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1658 return; 1659 } 1660 1661 DNODE_VERIFY(dn); 1662 1663 #ifdef ZFS_DEBUG 1664 mutex_enter(&dn->dn_mtx); 1665 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1666 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1667 mutex_exit(&dn->dn_mtx); 1668 #endif 1669 1670 /* 1671 * Determine old uid/gid when necessary 1672 */ 1673 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1674 1675 multilist_t *dirtylist = &os->os_dirty_dnodes[txg & TXG_MASK]; 1676 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1677 1678 /* 1679 * If we are already marked dirty, we're done. 1680 */ 1681 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1682 multilist_sublist_unlock(mls); 1683 return; 1684 } 1685 1686 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1687 !avl_is_empty(&dn->dn_dbufs)); 1688 ASSERT(dn->dn_datablksz != 0); 1689 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]); 1690 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]); 1691 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]); 1692 1693 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1694 (u_longlong_t)dn->dn_object, (u_longlong_t)txg); 1695 1696 multilist_sublist_insert_head(mls, dn); 1697 1698 multilist_sublist_unlock(mls); 1699 1700 /* 1701 * The dnode maintains a hold on its containing dbuf as 1702 * long as there are holds on it. Each instantiated child 1703 * dbuf maintains a hold on the dnode. When the last child 1704 * drops its hold, the dnode will drop its hold on the 1705 * containing dbuf. We add a "dirty hold" here so that the 1706 * dnode will hang around after we finish processing its 1707 * children. 1708 */ 1709 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1710 1711 (void) dbuf_dirty(dn->dn_dbuf, tx); 1712 1713 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1714 } 1715 1716 void 1717 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1718 { 1719 mutex_enter(&dn->dn_mtx); 1720 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1721 mutex_exit(&dn->dn_mtx); 1722 return; 1723 } 1724 dn->dn_free_txg = tx->tx_txg; 1725 mutex_exit(&dn->dn_mtx); 1726 1727 dnode_setdirty(dn, tx); 1728 } 1729 1730 /* 1731 * Try to change the block size for the indicated dnode. This can only 1732 * succeed if there are no blocks allocated or dirty beyond first block 1733 */ 1734 int 1735 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1736 { 1737 dmu_buf_impl_t *db; 1738 int err; 1739 1740 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1741 if (size == 0) 1742 size = SPA_MINBLOCKSIZE; 1743 else 1744 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1745 1746 if (ibs == dn->dn_indblkshift) 1747 ibs = 0; 1748 1749 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1750 return (0); 1751 1752 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1753 1754 /* Check for any allocated blocks beyond the first */ 1755 if (dn->dn_maxblkid != 0) 1756 goto fail; 1757 1758 mutex_enter(&dn->dn_dbufs_mtx); 1759 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1760 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1761 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1762 db->db_blkid != DMU_SPILL_BLKID) { 1763 mutex_exit(&dn->dn_dbufs_mtx); 1764 goto fail; 1765 } 1766 } 1767 mutex_exit(&dn->dn_dbufs_mtx); 1768 1769 if (ibs && dn->dn_nlevels != 1) 1770 goto fail; 1771 1772 /* resize the old block */ 1773 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1774 if (err == 0) { 1775 dbuf_new_size(db, size, tx); 1776 } else if (err != ENOENT) { 1777 goto fail; 1778 } 1779 1780 dnode_setdblksz(dn, size); 1781 dnode_setdirty(dn, tx); 1782 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1783 if (ibs) { 1784 dn->dn_indblkshift = ibs; 1785 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1786 } 1787 /* release after we have fixed the blocksize in the dnode */ 1788 if (db) 1789 dbuf_rele(db, FTAG); 1790 1791 rw_exit(&dn->dn_struct_rwlock); 1792 return (0); 1793 1794 fail: 1795 rw_exit(&dn->dn_struct_rwlock); 1796 return (SET_ERROR(ENOTSUP)); 1797 } 1798 1799 static void 1800 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1801 { 1802 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1803 int old_nlevels = dn->dn_nlevels; 1804 dmu_buf_impl_t *db; 1805 list_t *list; 1806 dbuf_dirty_record_t *new, *dr, *dr_next; 1807 1808 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1809 1810 ASSERT3U(new_nlevels, >, dn->dn_nlevels); 1811 dn->dn_nlevels = new_nlevels; 1812 1813 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1814 dn->dn_next_nlevels[txgoff] = new_nlevels; 1815 1816 /* dirty the left indirects */ 1817 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1818 ASSERT(db != NULL); 1819 new = dbuf_dirty(db, tx); 1820 dbuf_rele(db, FTAG); 1821 1822 /* transfer the dirty records to the new indirect */ 1823 mutex_enter(&dn->dn_mtx); 1824 mutex_enter(&new->dt.di.dr_mtx); 1825 list = &dn->dn_dirty_records[txgoff]; 1826 for (dr = list_head(list); dr; dr = dr_next) { 1827 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1828 1829 IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1); 1830 if (dr->dr_dbuf == NULL || 1831 (dr->dr_dbuf->db_level == old_nlevels - 1 && 1832 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1833 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) { 1834 list_remove(&dn->dn_dirty_records[txgoff], dr); 1835 list_insert_tail(&new->dt.di.dr_children, dr); 1836 dr->dr_parent = new; 1837 } 1838 } 1839 mutex_exit(&new->dt.di.dr_mtx); 1840 mutex_exit(&dn->dn_mtx); 1841 } 1842 1843 int 1844 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1845 { 1846 int ret = 0; 1847 1848 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1849 1850 if (dn->dn_nlevels == nlevels) { 1851 ret = 0; 1852 goto out; 1853 } else if (nlevels < dn->dn_nlevels) { 1854 ret = SET_ERROR(EINVAL); 1855 goto out; 1856 } 1857 1858 dnode_set_nlevels_impl(dn, nlevels, tx); 1859 1860 out: 1861 rw_exit(&dn->dn_struct_rwlock); 1862 return (ret); 1863 } 1864 1865 /* read-holding callers must not rely on the lock being continuously held */ 1866 void 1867 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1868 boolean_t force) 1869 { 1870 int epbs, new_nlevels; 1871 uint64_t sz; 1872 1873 ASSERT(blkid != DMU_BONUS_BLKID); 1874 1875 ASSERT(have_read ? 1876 RW_READ_HELD(&dn->dn_struct_rwlock) : 1877 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1878 1879 /* 1880 * if we have a read-lock, check to see if we need to do any work 1881 * before upgrading to a write-lock. 1882 */ 1883 if (have_read) { 1884 if (blkid <= dn->dn_maxblkid) 1885 return; 1886 1887 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1888 rw_exit(&dn->dn_struct_rwlock); 1889 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1890 } 1891 } 1892 1893 /* 1894 * Raw sends (indicated by the force flag) require that we take the 1895 * given blkid even if the value is lower than the current value. 1896 */ 1897 if (!force && blkid <= dn->dn_maxblkid) 1898 goto out; 1899 1900 /* 1901 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1902 * to indicate that this field is set. This allows us to set the 1903 * maxblkid to 0 on an existing object in dnode_sync(). 1904 */ 1905 dn->dn_maxblkid = blkid; 1906 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1907 blkid | DMU_NEXT_MAXBLKID_SET; 1908 1909 /* 1910 * Compute the number of levels necessary to support the new maxblkid. 1911 * Raw sends will ensure nlevels is set correctly for us. 1912 */ 1913 new_nlevels = 1; 1914 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1915 for (sz = dn->dn_nblkptr; 1916 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1917 new_nlevels++; 1918 1919 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS); 1920 1921 if (!force) { 1922 if (new_nlevels > dn->dn_nlevels) 1923 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1924 } else { 1925 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1926 } 1927 1928 out: 1929 if (have_read) 1930 rw_downgrade(&dn->dn_struct_rwlock); 1931 } 1932 1933 static void 1934 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1935 { 1936 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1937 if (db != NULL) { 1938 dmu_buf_will_dirty(&db->db, tx); 1939 dbuf_rele(db, FTAG); 1940 } 1941 } 1942 1943 /* 1944 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1945 * and end_blkid. 1946 */ 1947 static void 1948 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1949 dmu_tx_t *tx) 1950 { 1951 dmu_buf_impl_t *db_search; 1952 dmu_buf_impl_t *db; 1953 avl_index_t where; 1954 1955 db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1956 1957 mutex_enter(&dn->dn_dbufs_mtx); 1958 1959 db_search->db_level = 1; 1960 db_search->db_blkid = start_blkid + 1; 1961 db_search->db_state = DB_SEARCH; 1962 for (;;) { 1963 1964 db = avl_find(&dn->dn_dbufs, db_search, &where); 1965 if (db == NULL) 1966 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1967 1968 if (db == NULL || db->db_level != 1 || 1969 db->db_blkid >= end_blkid) { 1970 break; 1971 } 1972 1973 /* 1974 * Setup the next blkid we want to search for. 1975 */ 1976 db_search->db_blkid = db->db_blkid + 1; 1977 ASSERT3U(db->db_blkid, >=, start_blkid); 1978 1979 /* 1980 * If the dbuf transitions to DB_EVICTING while we're trying 1981 * to dirty it, then we will be unable to discover it in 1982 * the dbuf hash table. This will result in a call to 1983 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1984 * lock. To avoid a deadlock, we drop the lock before 1985 * dirtying the level-1 dbuf. 1986 */ 1987 mutex_exit(&dn->dn_dbufs_mtx); 1988 dnode_dirty_l1(dn, db->db_blkid, tx); 1989 mutex_enter(&dn->dn_dbufs_mtx); 1990 } 1991 1992 #ifdef ZFS_DEBUG 1993 /* 1994 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1995 */ 1996 db_search->db_level = 1; 1997 db_search->db_blkid = start_blkid + 1; 1998 db_search->db_state = DB_SEARCH; 1999 db = avl_find(&dn->dn_dbufs, db_search, &where); 2000 if (db == NULL) 2001 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2002 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2003 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2004 break; 2005 if (db->db_state != DB_EVICTING) 2006 ASSERT(db->db_dirtycnt > 0); 2007 } 2008 #endif 2009 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2010 mutex_exit(&dn->dn_dbufs_mtx); 2011 } 2012 2013 void 2014 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag) 2015 { 2016 /* 2017 * Don't set dirtyctx to SYNC if we're just modifying this as we 2018 * initialize the objset. 2019 */ 2020 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 2021 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2022 2023 if (ds != NULL) { 2024 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag); 2025 } 2026 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 2027 if (dmu_tx_is_syncing(tx)) 2028 dn->dn_dirtyctx = DN_DIRTY_SYNC; 2029 else 2030 dn->dn_dirtyctx = DN_DIRTY_OPEN; 2031 dn->dn_dirtyctx_firstset = tag; 2032 } 2033 if (ds != NULL) { 2034 rrw_exit(&ds->ds_bp_rwlock, tag); 2035 } 2036 } 2037 } 2038 2039 void 2040 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2041 { 2042 dmu_buf_impl_t *db; 2043 uint64_t blkoff, blkid, nblks; 2044 int blksz, blkshift, head, tail; 2045 int trunc = FALSE; 2046 int epbs; 2047 2048 blksz = dn->dn_datablksz; 2049 blkshift = dn->dn_datablkshift; 2050 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2051 2052 if (len == DMU_OBJECT_END) { 2053 len = UINT64_MAX - off; 2054 trunc = TRUE; 2055 } 2056 2057 /* 2058 * First, block align the region to free: 2059 */ 2060 if (ISP2(blksz)) { 2061 head = P2NPHASE(off, blksz); 2062 blkoff = P2PHASE(off, blksz); 2063 if ((off >> blkshift) > dn->dn_maxblkid) 2064 return; 2065 } else { 2066 ASSERT(dn->dn_maxblkid == 0); 2067 if (off == 0 && len >= blksz) { 2068 /* 2069 * Freeing the whole block; fast-track this request. 2070 */ 2071 blkid = 0; 2072 nblks = 1; 2073 if (dn->dn_nlevels > 1) { 2074 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2075 dnode_dirty_l1(dn, 0, tx); 2076 rw_exit(&dn->dn_struct_rwlock); 2077 } 2078 goto done; 2079 } else if (off >= blksz) { 2080 /* Freeing past end-of-data */ 2081 return; 2082 } else { 2083 /* Freeing part of the block. */ 2084 head = blksz - off; 2085 ASSERT3U(head, >, 0); 2086 } 2087 blkoff = off; 2088 } 2089 /* zero out any partial block data at the start of the range */ 2090 if (head) { 2091 int res; 2092 ASSERT3U(blkoff + head, ==, blksz); 2093 if (len < head) 2094 head = len; 2095 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2096 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2097 TRUE, FALSE, FTAG, &db); 2098 rw_exit(&dn->dn_struct_rwlock); 2099 if (res == 0) { 2100 caddr_t data; 2101 boolean_t dirty; 2102 2103 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, 2104 FTAG); 2105 /* don't dirty if it isn't on disk and isn't dirty */ 2106 dirty = !list_is_empty(&db->db_dirty_records) || 2107 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2108 dmu_buf_unlock_parent(db, dblt, FTAG); 2109 if (dirty) { 2110 dmu_buf_will_dirty(&db->db, tx); 2111 data = db->db.db_data; 2112 bzero(data + blkoff, head); 2113 } 2114 dbuf_rele(db, FTAG); 2115 } 2116 off += head; 2117 len -= head; 2118 } 2119 2120 /* If the range was less than one block, we're done */ 2121 if (len == 0) 2122 return; 2123 2124 /* If the remaining range is past end of file, we're done */ 2125 if ((off >> blkshift) > dn->dn_maxblkid) 2126 return; 2127 2128 ASSERT(ISP2(blksz)); 2129 if (trunc) 2130 tail = 0; 2131 else 2132 tail = P2PHASE(len, blksz); 2133 2134 ASSERT0(P2PHASE(off, blksz)); 2135 /* zero out any partial block data at the end of the range */ 2136 if (tail) { 2137 int res; 2138 if (len < tail) 2139 tail = len; 2140 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2141 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2142 TRUE, FALSE, FTAG, &db); 2143 rw_exit(&dn->dn_struct_rwlock); 2144 if (res == 0) { 2145 boolean_t dirty; 2146 /* don't dirty if not on disk and not dirty */ 2147 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER, 2148 FTAG); 2149 dirty = !list_is_empty(&db->db_dirty_records) || 2150 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2151 dmu_buf_unlock_parent(db, type, FTAG); 2152 if (dirty) { 2153 dmu_buf_will_dirty(&db->db, tx); 2154 bzero(db->db.db_data, tail); 2155 } 2156 dbuf_rele(db, FTAG); 2157 } 2158 len -= tail; 2159 } 2160 2161 /* If the range did not include a full block, we are done */ 2162 if (len == 0) 2163 return; 2164 2165 ASSERT(IS_P2ALIGNED(off, blksz)); 2166 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2167 blkid = off >> blkshift; 2168 nblks = len >> blkshift; 2169 if (trunc) 2170 nblks += 1; 2171 2172 /* 2173 * Dirty all the indirect blocks in this range. Note that only 2174 * the first and last indirect blocks can actually be written 2175 * (if they were partially freed) -- they must be dirtied, even if 2176 * they do not exist on disk yet. The interior blocks will 2177 * be freed by free_children(), so they will not actually be written. 2178 * Even though these interior blocks will not be written, we 2179 * dirty them for two reasons: 2180 * 2181 * - It ensures that the indirect blocks remain in memory until 2182 * syncing context. (They have already been prefetched by 2183 * dmu_tx_hold_free(), so we don't have to worry about reading 2184 * them serially here.) 2185 * 2186 * - The dirty space accounting will put pressure on the txg sync 2187 * mechanism to begin syncing, and to delay transactions if there 2188 * is a large amount of freeing. Even though these indirect 2189 * blocks will not be written, we could need to write the same 2190 * amount of space if we copy the freed BPs into deadlists. 2191 */ 2192 if (dn->dn_nlevels > 1) { 2193 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2194 uint64_t first, last; 2195 2196 first = blkid >> epbs; 2197 dnode_dirty_l1(dn, first, tx); 2198 if (trunc) 2199 last = dn->dn_maxblkid >> epbs; 2200 else 2201 last = (blkid + nblks - 1) >> epbs; 2202 if (last != first) 2203 dnode_dirty_l1(dn, last, tx); 2204 2205 dnode_dirty_l1range(dn, first, last, tx); 2206 2207 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2208 SPA_BLKPTRSHIFT; 2209 for (uint64_t i = first + 1; i < last; i++) { 2210 /* 2211 * Set i to the blockid of the next non-hole 2212 * level-1 indirect block at or after i. Note 2213 * that dnode_next_offset() operates in terms of 2214 * level-0-equivalent bytes. 2215 */ 2216 uint64_t ibyte = i << shift; 2217 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2218 &ibyte, 2, 1, 0); 2219 i = ibyte >> shift; 2220 if (i >= last) 2221 break; 2222 2223 /* 2224 * Normally we should not see an error, either 2225 * from dnode_next_offset() or dbuf_hold_level() 2226 * (except for ESRCH from dnode_next_offset). 2227 * If there is an i/o error, then when we read 2228 * this block in syncing context, it will use 2229 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2230 * to the "failmode" property. dnode_next_offset() 2231 * doesn't have a flag to indicate MUSTSUCCEED. 2232 */ 2233 if (err != 0) 2234 break; 2235 2236 dnode_dirty_l1(dn, i, tx); 2237 } 2238 rw_exit(&dn->dn_struct_rwlock); 2239 } 2240 2241 done: 2242 /* 2243 * Add this range to the dnode range list. 2244 * We will finish up this free operation in the syncing phase. 2245 */ 2246 mutex_enter(&dn->dn_mtx); 2247 { 2248 int txgoff = tx->tx_txg & TXG_MASK; 2249 if (dn->dn_free_ranges[txgoff] == NULL) { 2250 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2251 RANGE_SEG64, NULL, 0, 0); 2252 } 2253 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2254 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2255 } 2256 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2257 (u_longlong_t)blkid, (u_longlong_t)nblks, 2258 (u_longlong_t)tx->tx_txg); 2259 mutex_exit(&dn->dn_mtx); 2260 2261 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2262 dnode_setdirty(dn, tx); 2263 } 2264 2265 static boolean_t 2266 dnode_spill_freed(dnode_t *dn) 2267 { 2268 int i; 2269 2270 mutex_enter(&dn->dn_mtx); 2271 for (i = 0; i < TXG_SIZE; i++) { 2272 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2273 break; 2274 } 2275 mutex_exit(&dn->dn_mtx); 2276 return (i < TXG_SIZE); 2277 } 2278 2279 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2280 uint64_t 2281 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2282 { 2283 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2284 int i; 2285 2286 if (blkid == DMU_BONUS_BLKID) 2287 return (FALSE); 2288 2289 /* 2290 * If we're in the process of opening the pool, dp will not be 2291 * set yet, but there shouldn't be anything dirty. 2292 */ 2293 if (dp == NULL) 2294 return (FALSE); 2295 2296 if (dn->dn_free_txg) 2297 return (TRUE); 2298 2299 if (blkid == DMU_SPILL_BLKID) 2300 return (dnode_spill_freed(dn)); 2301 2302 mutex_enter(&dn->dn_mtx); 2303 for (i = 0; i < TXG_SIZE; i++) { 2304 if (dn->dn_free_ranges[i] != NULL && 2305 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2306 break; 2307 } 2308 mutex_exit(&dn->dn_mtx); 2309 return (i < TXG_SIZE); 2310 } 2311 2312 /* call from syncing context when we actually write/free space for this dnode */ 2313 void 2314 dnode_diduse_space(dnode_t *dn, int64_t delta) 2315 { 2316 uint64_t space; 2317 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2318 dn, dn->dn_phys, 2319 (u_longlong_t)dn->dn_phys->dn_used, 2320 (longlong_t)delta); 2321 2322 mutex_enter(&dn->dn_mtx); 2323 space = DN_USED_BYTES(dn->dn_phys); 2324 if (delta > 0) { 2325 ASSERT3U(space + delta, >=, space); /* no overflow */ 2326 } else { 2327 ASSERT3U(space, >=, -delta); /* no underflow */ 2328 } 2329 space += delta; 2330 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2331 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2332 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2333 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2334 } else { 2335 dn->dn_phys->dn_used = space; 2336 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2337 } 2338 mutex_exit(&dn->dn_mtx); 2339 } 2340 2341 /* 2342 * Scans a block at the indicated "level" looking for a hole or data, 2343 * depending on 'flags'. 2344 * 2345 * If level > 0, then we are scanning an indirect block looking at its 2346 * pointers. If level == 0, then we are looking at a block of dnodes. 2347 * 2348 * If we don't find what we are looking for in the block, we return ESRCH. 2349 * Otherwise, return with *offset pointing to the beginning (if searching 2350 * forwards) or end (if searching backwards) of the range covered by the 2351 * block pointer we matched on (or dnode). 2352 * 2353 * The basic search algorithm used below by dnode_next_offset() is to 2354 * use this function to search up the block tree (widen the search) until 2355 * we find something (i.e., we don't return ESRCH) and then search back 2356 * down the tree (narrow the search) until we reach our original search 2357 * level. 2358 */ 2359 static int 2360 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2361 int lvl, uint64_t blkfill, uint64_t txg) 2362 { 2363 dmu_buf_impl_t *db = NULL; 2364 void *data = NULL; 2365 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2366 uint64_t epb = 1ULL << epbs; 2367 uint64_t minfill, maxfill; 2368 boolean_t hole; 2369 int i, inc, error, span; 2370 2371 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2372 2373 hole = ((flags & DNODE_FIND_HOLE) != 0); 2374 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2375 ASSERT(txg == 0 || !hole); 2376 2377 if (lvl == dn->dn_phys->dn_nlevels) { 2378 error = 0; 2379 epb = dn->dn_phys->dn_nblkptr; 2380 data = dn->dn_phys->dn_blkptr; 2381 } else { 2382 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2383 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2384 if (error) { 2385 if (error != ENOENT) 2386 return (error); 2387 if (hole) 2388 return (0); 2389 /* 2390 * This can only happen when we are searching up 2391 * the block tree for data. We don't really need to 2392 * adjust the offset, as we will just end up looking 2393 * at the pointer to this block in its parent, and its 2394 * going to be unallocated, so we will skip over it. 2395 */ 2396 return (SET_ERROR(ESRCH)); 2397 } 2398 error = dbuf_read(db, NULL, 2399 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 2400 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 2401 if (error) { 2402 dbuf_rele(db, FTAG); 2403 return (error); 2404 } 2405 data = db->db.db_data; 2406 rw_enter(&db->db_rwlock, RW_READER); 2407 } 2408 2409 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2410 db->db_blkptr->blk_birth <= txg || 2411 BP_IS_HOLE(db->db_blkptr))) { 2412 /* 2413 * This can only happen when we are searching up the tree 2414 * and these conditions mean that we need to keep climbing. 2415 */ 2416 error = SET_ERROR(ESRCH); 2417 } else if (lvl == 0) { 2418 dnode_phys_t *dnp = data; 2419 2420 ASSERT(dn->dn_type == DMU_OT_DNODE); 2421 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2422 2423 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2424 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2425 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2426 break; 2427 } 2428 2429 if (i == blkfill) 2430 error = SET_ERROR(ESRCH); 2431 2432 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2433 (i << DNODE_SHIFT); 2434 } else { 2435 blkptr_t *bp = data; 2436 uint64_t start = *offset; 2437 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2438 minfill = 0; 2439 maxfill = blkfill << ((lvl - 1) * epbs); 2440 2441 if (hole) 2442 maxfill--; 2443 else 2444 minfill++; 2445 2446 if (span >= 8 * sizeof (*offset)) { 2447 /* This only happens on the highest indirection level */ 2448 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1); 2449 *offset = 0; 2450 } else { 2451 *offset = *offset >> span; 2452 } 2453 2454 for (i = BF64_GET(*offset, 0, epbs); 2455 i >= 0 && i < epb; i += inc) { 2456 if (BP_GET_FILL(&bp[i]) >= minfill && 2457 BP_GET_FILL(&bp[i]) <= maxfill && 2458 (hole || bp[i].blk_birth > txg)) 2459 break; 2460 if (inc > 0 || *offset > 0) 2461 *offset += inc; 2462 } 2463 2464 if (span >= 8 * sizeof (*offset)) { 2465 *offset = start; 2466 } else { 2467 *offset = *offset << span; 2468 } 2469 2470 if (inc < 0) { 2471 /* traversing backwards; position offset at the end */ 2472 ASSERT3U(*offset, <=, start); 2473 *offset = MIN(*offset + (1ULL << span) - 1, start); 2474 } else if (*offset < start) { 2475 *offset = start; 2476 } 2477 if (i < 0 || i >= epb) 2478 error = SET_ERROR(ESRCH); 2479 } 2480 2481 if (db != NULL) { 2482 rw_exit(&db->db_rwlock); 2483 dbuf_rele(db, FTAG); 2484 } 2485 2486 return (error); 2487 } 2488 2489 /* 2490 * Find the next hole, data, or sparse region at or after *offset. 2491 * The value 'blkfill' tells us how many items we expect to find 2492 * in an L0 data block; this value is 1 for normal objects, 2493 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2494 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2495 * 2496 * Examples: 2497 * 2498 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2499 * Finds the next/previous hole/data in a file. 2500 * Used in dmu_offset_next(). 2501 * 2502 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2503 * Finds the next free/allocated dnode an objset's meta-dnode. 2504 * Only finds objects that have new contents since txg (ie. 2505 * bonus buffer changes and content removal are ignored). 2506 * Used in dmu_object_next(). 2507 * 2508 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2509 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2510 * Used in dmu_object_alloc(). 2511 */ 2512 int 2513 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2514 int minlvl, uint64_t blkfill, uint64_t txg) 2515 { 2516 uint64_t initial_offset = *offset; 2517 int lvl, maxlvl; 2518 int error = 0; 2519 2520 if (!(flags & DNODE_FIND_HAVELOCK)) 2521 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2522 2523 if (dn->dn_phys->dn_nlevels == 0) { 2524 error = SET_ERROR(ESRCH); 2525 goto out; 2526 } 2527 2528 if (dn->dn_datablkshift == 0) { 2529 if (*offset < dn->dn_datablksz) { 2530 if (flags & DNODE_FIND_HOLE) 2531 *offset = dn->dn_datablksz; 2532 } else { 2533 error = SET_ERROR(ESRCH); 2534 } 2535 goto out; 2536 } 2537 2538 maxlvl = dn->dn_phys->dn_nlevels; 2539 2540 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2541 error = dnode_next_offset_level(dn, 2542 flags, offset, lvl, blkfill, txg); 2543 if (error != ESRCH) 2544 break; 2545 } 2546 2547 while (error == 0 && --lvl >= minlvl) { 2548 error = dnode_next_offset_level(dn, 2549 flags, offset, lvl, blkfill, txg); 2550 } 2551 2552 /* 2553 * There's always a "virtual hole" at the end of the object, even 2554 * if all BP's which physically exist are non-holes. 2555 */ 2556 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2557 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2558 error = 0; 2559 } 2560 2561 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2562 initial_offset < *offset : initial_offset > *offset)) 2563 error = SET_ERROR(ESRCH); 2564 out: 2565 if (!(flags & DNODE_FIND_HAVELOCK)) 2566 rw_exit(&dn->dn_struct_rwlock); 2567 2568 return (error); 2569 } 2570 2571 #if defined(_KERNEL) 2572 EXPORT_SYMBOL(dnode_hold); 2573 EXPORT_SYMBOL(dnode_rele); 2574 EXPORT_SYMBOL(dnode_set_nlevels); 2575 EXPORT_SYMBOL(dnode_set_blksz); 2576 EXPORT_SYMBOL(dnode_free_range); 2577 EXPORT_SYMBOL(dnode_evict_dbufs); 2578 EXPORT_SYMBOL(dnode_evict_bonus); 2579 #endif 2580