1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dmu_objset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_dataset.h> 36 #include <sys/spa.h> 37 #include <sys/zio.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/range_tree.h> 40 #include <sys/trace_zfs.h> 41 #include <sys/zfs_project.h> 42 43 dnode_stats_t dnode_stats = { 44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 59 { "dnode_allocate", KSTAT_DATA_UINT64 }, 60 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 61 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 63 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 65 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 66 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 67 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 68 { "dnode_move_special", KSTAT_DATA_UINT64 }, 69 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 70 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 71 { "dnode_move_active", KSTAT_DATA_UINT64 }, 72 }; 73 74 static kstat_t *dnode_ksp; 75 static kmem_cache_t *dnode_cache; 76 77 static dnode_phys_t dnode_phys_zero __maybe_unused; 78 79 int zfs_default_bs = SPA_MINBLOCKSHIFT; 80 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 81 82 #ifdef _KERNEL 83 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 84 #endif /* _KERNEL */ 85 86 static int 87 dbuf_compare(const void *x1, const void *x2) 88 { 89 const dmu_buf_impl_t *d1 = x1; 90 const dmu_buf_impl_t *d2 = x2; 91 92 int cmp = TREE_CMP(d1->db_level, d2->db_level); 93 if (likely(cmp)) 94 return (cmp); 95 96 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 97 if (likely(cmp)) 98 return (cmp); 99 100 if (d1->db_state == DB_SEARCH) { 101 ASSERT3S(d2->db_state, !=, DB_SEARCH); 102 return (-1); 103 } else if (d2->db_state == DB_SEARCH) { 104 ASSERT3S(d1->db_state, !=, DB_SEARCH); 105 return (1); 106 } 107 108 return (TREE_PCMP(d1, d2)); 109 } 110 111 /* ARGSUSED */ 112 static int 113 dnode_cons(void *arg, void *unused, int kmflag) 114 { 115 dnode_t *dn = arg; 116 int i; 117 118 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL); 119 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 120 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 121 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 122 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 123 124 /* 125 * Every dbuf has a reference, and dropping a tracked reference is 126 * O(number of references), so don't track dn_holds. 127 */ 128 zfs_refcount_create_untracked(&dn->dn_holds); 129 zfs_refcount_create(&dn->dn_tx_holds); 130 list_link_init(&dn->dn_link); 131 132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 140 141 for (i = 0; i < TXG_SIZE; i++) { 142 multilist_link_init(&dn->dn_dirty_link[i]); 143 dn->dn_free_ranges[i] = NULL; 144 list_create(&dn->dn_dirty_records[i], 145 sizeof (dbuf_dirty_record_t), 146 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 147 } 148 149 dn->dn_allocated_txg = 0; 150 dn->dn_free_txg = 0; 151 dn->dn_assigned_txg = 0; 152 dn->dn_dirty_txg = 0; 153 dn->dn_dirtyctx = 0; 154 dn->dn_dirtyctx_firstset = NULL; 155 dn->dn_bonus = NULL; 156 dn->dn_have_spill = B_FALSE; 157 dn->dn_zio = NULL; 158 dn->dn_oldused = 0; 159 dn->dn_oldflags = 0; 160 dn->dn_olduid = 0; 161 dn->dn_oldgid = 0; 162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 163 dn->dn_newuid = 0; 164 dn->dn_newgid = 0; 165 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 166 dn->dn_id_flags = 0; 167 168 dn->dn_dbufs_count = 0; 169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 170 offsetof(dmu_buf_impl_t, db_link)); 171 172 dn->dn_moved = 0; 173 return (0); 174 } 175 176 /* ARGSUSED */ 177 static void 178 dnode_dest(void *arg, void *unused) 179 { 180 int i; 181 dnode_t *dn = arg; 182 183 rw_destroy(&dn->dn_struct_rwlock); 184 mutex_destroy(&dn->dn_mtx); 185 mutex_destroy(&dn->dn_dbufs_mtx); 186 cv_destroy(&dn->dn_notxholds); 187 cv_destroy(&dn->dn_nodnholds); 188 zfs_refcount_destroy(&dn->dn_holds); 189 zfs_refcount_destroy(&dn->dn_tx_holds); 190 ASSERT(!list_link_active(&dn->dn_link)); 191 192 for (i = 0; i < TXG_SIZE; i++) { 193 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 194 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 195 list_destroy(&dn->dn_dirty_records[i]); 196 ASSERT0(dn->dn_next_nblkptr[i]); 197 ASSERT0(dn->dn_next_nlevels[i]); 198 ASSERT0(dn->dn_next_indblkshift[i]); 199 ASSERT0(dn->dn_next_bonustype[i]); 200 ASSERT0(dn->dn_rm_spillblk[i]); 201 ASSERT0(dn->dn_next_bonuslen[i]); 202 ASSERT0(dn->dn_next_blksz[i]); 203 ASSERT0(dn->dn_next_maxblkid[i]); 204 } 205 206 ASSERT0(dn->dn_allocated_txg); 207 ASSERT0(dn->dn_free_txg); 208 ASSERT0(dn->dn_assigned_txg); 209 ASSERT0(dn->dn_dirty_txg); 210 ASSERT0(dn->dn_dirtyctx); 211 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 212 ASSERT3P(dn->dn_bonus, ==, NULL); 213 ASSERT(!dn->dn_have_spill); 214 ASSERT3P(dn->dn_zio, ==, NULL); 215 ASSERT0(dn->dn_oldused); 216 ASSERT0(dn->dn_oldflags); 217 ASSERT0(dn->dn_olduid); 218 ASSERT0(dn->dn_oldgid); 219 ASSERT0(dn->dn_oldprojid); 220 ASSERT0(dn->dn_newuid); 221 ASSERT0(dn->dn_newgid); 222 ASSERT0(dn->dn_newprojid); 223 ASSERT0(dn->dn_id_flags); 224 225 ASSERT0(dn->dn_dbufs_count); 226 avl_destroy(&dn->dn_dbufs); 227 } 228 229 void 230 dnode_init(void) 231 { 232 ASSERT(dnode_cache == NULL); 233 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t), 234 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 235 kmem_cache_set_move(dnode_cache, dnode_move); 236 237 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 238 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 239 KSTAT_FLAG_VIRTUAL); 240 if (dnode_ksp != NULL) { 241 dnode_ksp->ks_data = &dnode_stats; 242 kstat_install(dnode_ksp); 243 } 244 } 245 246 void 247 dnode_fini(void) 248 { 249 if (dnode_ksp != NULL) { 250 kstat_delete(dnode_ksp); 251 dnode_ksp = NULL; 252 } 253 254 kmem_cache_destroy(dnode_cache); 255 dnode_cache = NULL; 256 } 257 258 259 #ifdef ZFS_DEBUG 260 void 261 dnode_verify(dnode_t *dn) 262 { 263 int drop_struct_lock = FALSE; 264 265 ASSERT(dn->dn_phys); 266 ASSERT(dn->dn_objset); 267 ASSERT(dn->dn_handle->dnh_dnode == dn); 268 269 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 270 271 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 272 return; 273 274 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 276 drop_struct_lock = TRUE; 277 } 278 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 279 int i; 280 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 281 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 282 if (dn->dn_datablkshift) { 283 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 284 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 285 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 286 } 287 ASSERT3U(dn->dn_nlevels, <=, 30); 288 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 289 ASSERT3U(dn->dn_nblkptr, >=, 1); 290 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 291 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 292 ASSERT3U(dn->dn_datablksz, ==, 293 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 294 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 295 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 296 dn->dn_bonuslen, <=, max_bonuslen); 297 for (i = 0; i < TXG_SIZE; i++) { 298 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 299 } 300 } 301 if (dn->dn_phys->dn_type != DMU_OT_NONE) 302 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 303 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 304 if (dn->dn_dbuf != NULL) { 305 ASSERT3P(dn->dn_phys, ==, 306 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 307 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 308 } 309 if (drop_struct_lock) 310 rw_exit(&dn->dn_struct_rwlock); 311 } 312 #endif 313 314 void 315 dnode_byteswap(dnode_phys_t *dnp) 316 { 317 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 318 int i; 319 320 if (dnp->dn_type == DMU_OT_NONE) { 321 bzero(dnp, sizeof (dnode_phys_t)); 322 return; 323 } 324 325 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 326 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 327 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 328 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 329 dnp->dn_used = BSWAP_64(dnp->dn_used); 330 331 /* 332 * dn_nblkptr is only one byte, so it's OK to read it in either 333 * byte order. We can't read dn_bouslen. 334 */ 335 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 336 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 337 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 338 buf64[i] = BSWAP_64(buf64[i]); 339 340 /* 341 * OK to check dn_bonuslen for zero, because it won't matter if 342 * we have the wrong byte order. This is necessary because the 343 * dnode dnode is smaller than a regular dnode. 344 */ 345 if (dnp->dn_bonuslen != 0) { 346 /* 347 * Note that the bonus length calculated here may be 348 * longer than the actual bonus buffer. This is because 349 * we always put the bonus buffer after the last block 350 * pointer (instead of packing it against the end of the 351 * dnode buffer). 352 */ 353 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 354 int slots = dnp->dn_extra_slots + 1; 355 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off; 356 dmu_object_byteswap_t byteswap; 357 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 358 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); 359 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 360 } 361 362 /* Swap SPILL block if we have one */ 363 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 364 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 365 } 366 367 void 368 dnode_buf_byteswap(void *vbuf, size_t size) 369 { 370 int i = 0; 371 372 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 373 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 374 375 while (i < size) { 376 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 377 dnode_byteswap(dnp); 378 379 i += DNODE_MIN_SIZE; 380 if (dnp->dn_type != DMU_OT_NONE) 381 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 382 } 383 } 384 385 void 386 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 387 { 388 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 389 390 dnode_setdirty(dn, tx); 391 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 392 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 393 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 394 395 if (newsize < dn->dn_bonuslen) { 396 /* clear any data after the end of the new size */ 397 size_t diff = dn->dn_bonuslen - newsize; 398 char *data_end = ((char *)dn->dn_bonus->db.db_data) + newsize; 399 bzero(data_end, diff); 400 } 401 402 dn->dn_bonuslen = newsize; 403 if (newsize == 0) 404 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 405 else 406 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 407 rw_exit(&dn->dn_struct_rwlock); 408 } 409 410 void 411 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 412 { 413 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 414 dnode_setdirty(dn, tx); 415 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 416 dn->dn_bonustype = newtype; 417 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 418 rw_exit(&dn->dn_struct_rwlock); 419 } 420 421 void 422 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 423 { 424 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 425 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 426 dnode_setdirty(dn, tx); 427 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK; 428 dn->dn_have_spill = B_FALSE; 429 } 430 431 static void 432 dnode_setdblksz(dnode_t *dn, int size) 433 { 434 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 435 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 436 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 437 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 438 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 439 dn->dn_datablksz = size; 440 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 441 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 442 } 443 444 static dnode_t * 445 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 446 uint64_t object, dnode_handle_t *dnh) 447 { 448 dnode_t *dn; 449 450 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 451 dn->dn_moved = 0; 452 453 /* 454 * Defer setting dn_objset until the dnode is ready to be a candidate 455 * for the dnode_move() callback. 456 */ 457 dn->dn_object = object; 458 dn->dn_dbuf = db; 459 dn->dn_handle = dnh; 460 dn->dn_phys = dnp; 461 462 if (dnp->dn_datablkszsec) { 463 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 464 } else { 465 dn->dn_datablksz = 0; 466 dn->dn_datablkszsec = 0; 467 dn->dn_datablkshift = 0; 468 } 469 dn->dn_indblkshift = dnp->dn_indblkshift; 470 dn->dn_nlevels = dnp->dn_nlevels; 471 dn->dn_type = dnp->dn_type; 472 dn->dn_nblkptr = dnp->dn_nblkptr; 473 dn->dn_checksum = dnp->dn_checksum; 474 dn->dn_compress = dnp->dn_compress; 475 dn->dn_bonustype = dnp->dn_bonustype; 476 dn->dn_bonuslen = dnp->dn_bonuslen; 477 dn->dn_num_slots = dnp->dn_extra_slots + 1; 478 dn->dn_maxblkid = dnp->dn_maxblkid; 479 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 480 dn->dn_id_flags = 0; 481 482 dmu_zfetch_init(&dn->dn_zfetch, dn); 483 484 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 485 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 486 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 487 488 mutex_enter(&os->os_lock); 489 490 /* 491 * Exclude special dnodes from os_dnodes so an empty os_dnodes 492 * signifies that the special dnodes have no references from 493 * their children (the entries in os_dnodes). This allows 494 * dnode_destroy() to easily determine if the last child has 495 * been removed and then complete eviction of the objset. 496 */ 497 if (!DMU_OBJECT_IS_SPECIAL(object)) 498 list_insert_head(&os->os_dnodes, dn); 499 membar_producer(); 500 501 /* 502 * Everything else must be valid before assigning dn_objset 503 * makes the dnode eligible for dnode_move(). 504 */ 505 dn->dn_objset = os; 506 507 dnh->dnh_dnode = dn; 508 mutex_exit(&os->os_lock); 509 510 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE); 511 512 return (dn); 513 } 514 515 /* 516 * Caller must be holding the dnode handle, which is released upon return. 517 */ 518 static void 519 dnode_destroy(dnode_t *dn) 520 { 521 objset_t *os = dn->dn_objset; 522 boolean_t complete_os_eviction = B_FALSE; 523 524 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 525 526 mutex_enter(&os->os_lock); 527 POINTER_INVALIDATE(&dn->dn_objset); 528 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 529 list_remove(&os->os_dnodes, dn); 530 complete_os_eviction = 531 list_is_empty(&os->os_dnodes) && 532 list_link_active(&os->os_evicting_node); 533 } 534 mutex_exit(&os->os_lock); 535 536 /* the dnode can no longer move, so we can release the handle */ 537 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 538 zrl_remove(&dn->dn_handle->dnh_zrlock); 539 540 dn->dn_allocated_txg = 0; 541 dn->dn_free_txg = 0; 542 dn->dn_assigned_txg = 0; 543 dn->dn_dirty_txg = 0; 544 545 dn->dn_dirtyctx = 0; 546 dn->dn_dirtyctx_firstset = NULL; 547 if (dn->dn_bonus != NULL) { 548 mutex_enter(&dn->dn_bonus->db_mtx); 549 dbuf_destroy(dn->dn_bonus); 550 dn->dn_bonus = NULL; 551 } 552 dn->dn_zio = NULL; 553 554 dn->dn_have_spill = B_FALSE; 555 dn->dn_oldused = 0; 556 dn->dn_oldflags = 0; 557 dn->dn_olduid = 0; 558 dn->dn_oldgid = 0; 559 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 560 dn->dn_newuid = 0; 561 dn->dn_newgid = 0; 562 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 563 dn->dn_id_flags = 0; 564 565 dmu_zfetch_fini(&dn->dn_zfetch); 566 kmem_cache_free(dnode_cache, dn); 567 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE); 568 569 if (complete_os_eviction) 570 dmu_objset_evict_done(os); 571 } 572 573 void 574 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 575 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 576 { 577 int i; 578 579 ASSERT3U(dn_slots, >, 0); 580 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 581 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 582 ASSERT3U(blocksize, <=, 583 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 584 if (blocksize == 0) 585 blocksize = 1 << zfs_default_bs; 586 else 587 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 588 589 if (ibs == 0) 590 ibs = zfs_default_ibs; 591 592 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 593 594 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n", 595 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 596 DNODE_STAT_BUMP(dnode_allocate); 597 598 ASSERT(dn->dn_type == DMU_OT_NONE); 599 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 600 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 601 ASSERT(ot != DMU_OT_NONE); 602 ASSERT(DMU_OT_IS_VALID(ot)); 603 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 604 (bonustype == DMU_OT_SA && bonuslen == 0) || 605 (bonustype != DMU_OT_NONE && bonuslen != 0)); 606 ASSERT(DMU_OT_IS_VALID(bonustype)); 607 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 608 ASSERT(dn->dn_type == DMU_OT_NONE); 609 ASSERT0(dn->dn_maxblkid); 610 ASSERT0(dn->dn_allocated_txg); 611 ASSERT0(dn->dn_assigned_txg); 612 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 613 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 614 ASSERT(avl_is_empty(&dn->dn_dbufs)); 615 616 for (i = 0; i < TXG_SIZE; i++) { 617 ASSERT0(dn->dn_next_nblkptr[i]); 618 ASSERT0(dn->dn_next_nlevels[i]); 619 ASSERT0(dn->dn_next_indblkshift[i]); 620 ASSERT0(dn->dn_next_bonuslen[i]); 621 ASSERT0(dn->dn_next_bonustype[i]); 622 ASSERT0(dn->dn_rm_spillblk[i]); 623 ASSERT0(dn->dn_next_blksz[i]); 624 ASSERT0(dn->dn_next_maxblkid[i]); 625 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 626 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 627 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 628 } 629 630 dn->dn_type = ot; 631 dnode_setdblksz(dn, blocksize); 632 dn->dn_indblkshift = ibs; 633 dn->dn_nlevels = 1; 634 dn->dn_num_slots = dn_slots; 635 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 636 dn->dn_nblkptr = 1; 637 else { 638 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 639 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 640 SPA_BLKPTRSHIFT)); 641 } 642 643 dn->dn_bonustype = bonustype; 644 dn->dn_bonuslen = bonuslen; 645 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 646 dn->dn_compress = ZIO_COMPRESS_INHERIT; 647 dn->dn_dirtyctx = 0; 648 649 dn->dn_free_txg = 0; 650 dn->dn_dirtyctx_firstset = NULL; 651 dn->dn_dirty_txg = 0; 652 653 dn->dn_allocated_txg = tx->tx_txg; 654 dn->dn_id_flags = 0; 655 656 dnode_setdirty(dn, tx); 657 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 658 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 659 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 660 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 661 } 662 663 void 664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 665 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 666 boolean_t keep_spill, dmu_tx_t *tx) 667 { 668 int nblkptr; 669 670 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 671 ASSERT3U(blocksize, <=, 672 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 673 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 674 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 675 ASSERT(tx->tx_txg != 0); 676 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 677 (bonustype != DMU_OT_NONE && bonuslen != 0) || 678 (bonustype == DMU_OT_SA && bonuslen == 0)); 679 ASSERT(DMU_OT_IS_VALID(bonustype)); 680 ASSERT3U(bonuslen, <=, 681 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 682 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 683 684 dnode_free_interior_slots(dn); 685 DNODE_STAT_BUMP(dnode_reallocate); 686 687 /* clean up any unreferenced dbufs */ 688 dnode_evict_dbufs(dn); 689 690 dn->dn_id_flags = 0; 691 692 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 693 dnode_setdirty(dn, tx); 694 if (dn->dn_datablksz != blocksize) { 695 /* change blocksize */ 696 ASSERT0(dn->dn_maxblkid); 697 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 698 dnode_block_freed(dn, 0)); 699 700 dnode_setdblksz(dn, blocksize); 701 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize; 702 } 703 if (dn->dn_bonuslen != bonuslen) 704 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen; 705 706 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 707 nblkptr = 1; 708 else 709 nblkptr = MIN(DN_MAX_NBLKPTR, 710 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 711 SPA_BLKPTRSHIFT)); 712 if (dn->dn_bonustype != bonustype) 713 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype; 714 if (dn->dn_nblkptr != nblkptr) 715 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr; 716 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 717 dbuf_rm_spill(dn, tx); 718 dnode_rm_spill(dn, tx); 719 } 720 721 rw_exit(&dn->dn_struct_rwlock); 722 723 /* change type */ 724 dn->dn_type = ot; 725 726 /* change bonus size and type */ 727 mutex_enter(&dn->dn_mtx); 728 dn->dn_bonustype = bonustype; 729 dn->dn_bonuslen = bonuslen; 730 dn->dn_num_slots = dn_slots; 731 dn->dn_nblkptr = nblkptr; 732 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 733 dn->dn_compress = ZIO_COMPRESS_INHERIT; 734 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 735 736 /* fix up the bonus db_size */ 737 if (dn->dn_bonus) { 738 dn->dn_bonus->db.db_size = 739 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 740 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 741 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 742 } 743 744 dn->dn_allocated_txg = tx->tx_txg; 745 mutex_exit(&dn->dn_mtx); 746 } 747 748 #ifdef _KERNEL 749 static void 750 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 751 { 752 int i; 753 754 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 755 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 756 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 757 758 /* Copy fields. */ 759 ndn->dn_objset = odn->dn_objset; 760 ndn->dn_object = odn->dn_object; 761 ndn->dn_dbuf = odn->dn_dbuf; 762 ndn->dn_handle = odn->dn_handle; 763 ndn->dn_phys = odn->dn_phys; 764 ndn->dn_type = odn->dn_type; 765 ndn->dn_bonuslen = odn->dn_bonuslen; 766 ndn->dn_bonustype = odn->dn_bonustype; 767 ndn->dn_nblkptr = odn->dn_nblkptr; 768 ndn->dn_checksum = odn->dn_checksum; 769 ndn->dn_compress = odn->dn_compress; 770 ndn->dn_nlevels = odn->dn_nlevels; 771 ndn->dn_indblkshift = odn->dn_indblkshift; 772 ndn->dn_datablkshift = odn->dn_datablkshift; 773 ndn->dn_datablkszsec = odn->dn_datablkszsec; 774 ndn->dn_datablksz = odn->dn_datablksz; 775 ndn->dn_maxblkid = odn->dn_maxblkid; 776 ndn->dn_num_slots = odn->dn_num_slots; 777 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 778 sizeof (odn->dn_next_type)); 779 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 780 sizeof (odn->dn_next_nblkptr)); 781 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 782 sizeof (odn->dn_next_nlevels)); 783 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 784 sizeof (odn->dn_next_indblkshift)); 785 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 786 sizeof (odn->dn_next_bonustype)); 787 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 788 sizeof (odn->dn_rm_spillblk)); 789 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 790 sizeof (odn->dn_next_bonuslen)); 791 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 792 sizeof (odn->dn_next_blksz)); 793 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 794 sizeof (odn->dn_next_maxblkid)); 795 for (i = 0; i < TXG_SIZE; i++) { 796 list_move_tail(&ndn->dn_dirty_records[i], 797 &odn->dn_dirty_records[i]); 798 } 799 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 800 sizeof (odn->dn_free_ranges)); 801 ndn->dn_allocated_txg = odn->dn_allocated_txg; 802 ndn->dn_free_txg = odn->dn_free_txg; 803 ndn->dn_assigned_txg = odn->dn_assigned_txg; 804 ndn->dn_dirty_txg = odn->dn_dirty_txg; 805 ndn->dn_dirtyctx = odn->dn_dirtyctx; 806 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 807 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 808 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 809 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 810 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 811 ndn->dn_dbufs_count = odn->dn_dbufs_count; 812 ndn->dn_bonus = odn->dn_bonus; 813 ndn->dn_have_spill = odn->dn_have_spill; 814 ndn->dn_zio = odn->dn_zio; 815 ndn->dn_oldused = odn->dn_oldused; 816 ndn->dn_oldflags = odn->dn_oldflags; 817 ndn->dn_olduid = odn->dn_olduid; 818 ndn->dn_oldgid = odn->dn_oldgid; 819 ndn->dn_oldprojid = odn->dn_oldprojid; 820 ndn->dn_newuid = odn->dn_newuid; 821 ndn->dn_newgid = odn->dn_newgid; 822 ndn->dn_newprojid = odn->dn_newprojid; 823 ndn->dn_id_flags = odn->dn_id_flags; 824 dmu_zfetch_init(&ndn->dn_zfetch, ndn); 825 826 /* 827 * Update back pointers. Updating the handle fixes the back pointer of 828 * every descendant dbuf as well as the bonus dbuf. 829 */ 830 ASSERT(ndn->dn_handle->dnh_dnode == odn); 831 ndn->dn_handle->dnh_dnode = ndn; 832 833 /* 834 * Invalidate the original dnode by clearing all of its back pointers. 835 */ 836 odn->dn_dbuf = NULL; 837 odn->dn_handle = NULL; 838 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 839 offsetof(dmu_buf_impl_t, db_link)); 840 odn->dn_dbufs_count = 0; 841 odn->dn_bonus = NULL; 842 dmu_zfetch_fini(&odn->dn_zfetch); 843 844 /* 845 * Set the low bit of the objset pointer to ensure that dnode_move() 846 * recognizes the dnode as invalid in any subsequent callback. 847 */ 848 POINTER_INVALIDATE(&odn->dn_objset); 849 850 /* 851 * Satisfy the destructor. 852 */ 853 for (i = 0; i < TXG_SIZE; i++) { 854 list_create(&odn->dn_dirty_records[i], 855 sizeof (dbuf_dirty_record_t), 856 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 857 odn->dn_free_ranges[i] = NULL; 858 odn->dn_next_nlevels[i] = 0; 859 odn->dn_next_indblkshift[i] = 0; 860 odn->dn_next_bonustype[i] = 0; 861 odn->dn_rm_spillblk[i] = 0; 862 odn->dn_next_bonuslen[i] = 0; 863 odn->dn_next_blksz[i] = 0; 864 } 865 odn->dn_allocated_txg = 0; 866 odn->dn_free_txg = 0; 867 odn->dn_assigned_txg = 0; 868 odn->dn_dirty_txg = 0; 869 odn->dn_dirtyctx = 0; 870 odn->dn_dirtyctx_firstset = NULL; 871 odn->dn_have_spill = B_FALSE; 872 odn->dn_zio = NULL; 873 odn->dn_oldused = 0; 874 odn->dn_oldflags = 0; 875 odn->dn_olduid = 0; 876 odn->dn_oldgid = 0; 877 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 878 odn->dn_newuid = 0; 879 odn->dn_newgid = 0; 880 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 881 odn->dn_id_flags = 0; 882 883 /* 884 * Mark the dnode. 885 */ 886 ndn->dn_moved = 1; 887 odn->dn_moved = (uint8_t)-1; 888 } 889 890 /*ARGSUSED*/ 891 static kmem_cbrc_t 892 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 893 { 894 dnode_t *odn = buf, *ndn = newbuf; 895 objset_t *os; 896 int64_t refcount; 897 uint32_t dbufs; 898 899 /* 900 * The dnode is on the objset's list of known dnodes if the objset 901 * pointer is valid. We set the low bit of the objset pointer when 902 * freeing the dnode to invalidate it, and the memory patterns written 903 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 904 * A newly created dnode sets the objset pointer last of all to indicate 905 * that the dnode is known and in a valid state to be moved by this 906 * function. 907 */ 908 os = odn->dn_objset; 909 if (!POINTER_IS_VALID(os)) { 910 DNODE_STAT_BUMP(dnode_move_invalid); 911 return (KMEM_CBRC_DONT_KNOW); 912 } 913 914 /* 915 * Ensure that the objset does not go away during the move. 916 */ 917 rw_enter(&os_lock, RW_WRITER); 918 if (os != odn->dn_objset) { 919 rw_exit(&os_lock); 920 DNODE_STAT_BUMP(dnode_move_recheck1); 921 return (KMEM_CBRC_DONT_KNOW); 922 } 923 924 /* 925 * If the dnode is still valid, then so is the objset. We know that no 926 * valid objset can be freed while we hold os_lock, so we can safely 927 * ensure that the objset remains in use. 928 */ 929 mutex_enter(&os->os_lock); 930 931 /* 932 * Recheck the objset pointer in case the dnode was removed just before 933 * acquiring the lock. 934 */ 935 if (os != odn->dn_objset) { 936 mutex_exit(&os->os_lock); 937 rw_exit(&os_lock); 938 DNODE_STAT_BUMP(dnode_move_recheck2); 939 return (KMEM_CBRC_DONT_KNOW); 940 } 941 942 /* 943 * At this point we know that as long as we hold os->os_lock, the dnode 944 * cannot be freed and fields within the dnode can be safely accessed. 945 * The objset listing this dnode cannot go away as long as this dnode is 946 * on its list. 947 */ 948 rw_exit(&os_lock); 949 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 950 mutex_exit(&os->os_lock); 951 DNODE_STAT_BUMP(dnode_move_special); 952 return (KMEM_CBRC_NO); 953 } 954 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 955 956 /* 957 * Lock the dnode handle to prevent the dnode from obtaining any new 958 * holds. This also prevents the descendant dbufs and the bonus dbuf 959 * from accessing the dnode, so that we can discount their holds. The 960 * handle is safe to access because we know that while the dnode cannot 961 * go away, neither can its handle. Once we hold dnh_zrlock, we can 962 * safely move any dnode referenced only by dbufs. 963 */ 964 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 965 mutex_exit(&os->os_lock); 966 DNODE_STAT_BUMP(dnode_move_handle); 967 return (KMEM_CBRC_LATER); 968 } 969 970 /* 971 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 972 * We need to guarantee that there is a hold for every dbuf in order to 973 * determine whether the dnode is actively referenced. Falsely matching 974 * a dbuf to an active hold would lead to an unsafe move. It's possible 975 * that a thread already having an active dnode hold is about to add a 976 * dbuf, and we can't compare hold and dbuf counts while the add is in 977 * progress. 978 */ 979 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 980 zrl_exit(&odn->dn_handle->dnh_zrlock); 981 mutex_exit(&os->os_lock); 982 DNODE_STAT_BUMP(dnode_move_rwlock); 983 return (KMEM_CBRC_LATER); 984 } 985 986 /* 987 * A dbuf may be removed (evicted) without an active dnode hold. In that 988 * case, the dbuf count is decremented under the handle lock before the 989 * dbuf's hold is released. This order ensures that if we count the hold 990 * after the dbuf is removed but before its hold is released, we will 991 * treat the unmatched hold as active and exit safely. If we count the 992 * hold before the dbuf is removed, the hold is discounted, and the 993 * removal is blocked until the move completes. 994 */ 995 refcount = zfs_refcount_count(&odn->dn_holds); 996 ASSERT(refcount >= 0); 997 dbufs = DN_DBUFS_COUNT(odn); 998 999 /* We can't have more dbufs than dnode holds. */ 1000 ASSERT3U(dbufs, <=, refcount); 1001 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1002 uint32_t, dbufs); 1003 1004 if (refcount > dbufs) { 1005 rw_exit(&odn->dn_struct_rwlock); 1006 zrl_exit(&odn->dn_handle->dnh_zrlock); 1007 mutex_exit(&os->os_lock); 1008 DNODE_STAT_BUMP(dnode_move_active); 1009 return (KMEM_CBRC_LATER); 1010 } 1011 1012 rw_exit(&odn->dn_struct_rwlock); 1013 1014 /* 1015 * At this point we know that anyone with a hold on the dnode is not 1016 * actively referencing it. The dnode is known and in a valid state to 1017 * move. We're holding the locks needed to execute the critical section. 1018 */ 1019 dnode_move_impl(odn, ndn); 1020 1021 list_link_replace(&odn->dn_link, &ndn->dn_link); 1022 /* If the dnode was safe to move, the refcount cannot have changed. */ 1023 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1024 ASSERT(dbufs == DN_DBUFS_COUNT(ndn)); 1025 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1026 mutex_exit(&os->os_lock); 1027 1028 return (KMEM_CBRC_YES); 1029 } 1030 #endif /* _KERNEL */ 1031 1032 static void 1033 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1034 { 1035 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1036 1037 for (int i = idx; i < idx + slots; i++) { 1038 dnode_handle_t *dnh = &children->dnc_children[i]; 1039 zrl_add(&dnh->dnh_zrlock); 1040 } 1041 } 1042 1043 static void 1044 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1045 { 1046 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1047 1048 for (int i = idx; i < idx + slots; i++) { 1049 dnode_handle_t *dnh = &children->dnc_children[i]; 1050 1051 if (zrl_is_locked(&dnh->dnh_zrlock)) 1052 zrl_exit(&dnh->dnh_zrlock); 1053 else 1054 zrl_remove(&dnh->dnh_zrlock); 1055 } 1056 } 1057 1058 static int 1059 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots) 1060 { 1061 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1062 1063 for (int i = idx; i < idx + slots; i++) { 1064 dnode_handle_t *dnh = &children->dnc_children[i]; 1065 1066 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1067 for (int j = idx; j < i; j++) { 1068 dnh = &children->dnc_children[j]; 1069 zrl_exit(&dnh->dnh_zrlock); 1070 } 1071 1072 return (0); 1073 } 1074 } 1075 1076 return (1); 1077 } 1078 1079 static void 1080 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1081 { 1082 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1083 1084 for (int i = idx; i < idx + slots; i++) { 1085 dnode_handle_t *dnh = &children->dnc_children[i]; 1086 dnh->dnh_dnode = ptr; 1087 } 1088 } 1089 1090 static boolean_t 1091 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1092 { 1093 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1094 1095 /* 1096 * If all dnode slots are either already free or 1097 * evictable return B_TRUE. 1098 */ 1099 for (int i = idx; i < idx + slots; i++) { 1100 dnode_handle_t *dnh = &children->dnc_children[i]; 1101 dnode_t *dn = dnh->dnh_dnode; 1102 1103 if (dn == DN_SLOT_FREE) { 1104 continue; 1105 } else if (DN_SLOT_IS_PTR(dn)) { 1106 mutex_enter(&dn->dn_mtx); 1107 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1108 zfs_refcount_is_zero(&dn->dn_holds) && 1109 !DNODE_IS_DIRTY(dn)); 1110 mutex_exit(&dn->dn_mtx); 1111 1112 if (!can_free) 1113 return (B_FALSE); 1114 else 1115 continue; 1116 } else { 1117 return (B_FALSE); 1118 } 1119 } 1120 1121 return (B_TRUE); 1122 } 1123 1124 static void 1125 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1126 { 1127 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1128 1129 for (int i = idx; i < idx + slots; i++) { 1130 dnode_handle_t *dnh = &children->dnc_children[i]; 1131 1132 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1133 1134 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1135 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1136 dnode_destroy(dnh->dnh_dnode); 1137 dnh->dnh_dnode = DN_SLOT_FREE; 1138 } 1139 } 1140 } 1141 1142 void 1143 dnode_free_interior_slots(dnode_t *dn) 1144 { 1145 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1146 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1147 int idx = (dn->dn_object & (epb - 1)) + 1; 1148 int slots = dn->dn_num_slots - 1; 1149 1150 if (slots == 0) 1151 return; 1152 1153 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1154 1155 while (!dnode_slots_tryenter(children, idx, slots)) { 1156 DNODE_STAT_BUMP(dnode_free_interior_lock_retry); 1157 cond_resched(); 1158 } 1159 1160 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1161 dnode_slots_rele(children, idx, slots); 1162 } 1163 1164 void 1165 dnode_special_close(dnode_handle_t *dnh) 1166 { 1167 dnode_t *dn = dnh->dnh_dnode; 1168 1169 /* 1170 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1171 * zfs_refcount_remove() 1172 */ 1173 mutex_enter(&dn->dn_mtx); 1174 if (zfs_refcount_count(&dn->dn_holds) > 0) 1175 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1176 mutex_exit(&dn->dn_mtx); 1177 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1178 1179 ASSERT(dn->dn_dbuf == NULL || 1180 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1181 zrl_add(&dnh->dnh_zrlock); 1182 dnode_destroy(dn); /* implicit zrl_remove() */ 1183 zrl_destroy(&dnh->dnh_zrlock); 1184 dnh->dnh_dnode = NULL; 1185 } 1186 1187 void 1188 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1189 dnode_handle_t *dnh) 1190 { 1191 dnode_t *dn; 1192 1193 zrl_init(&dnh->dnh_zrlock); 1194 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); 1195 1196 dn = dnode_create(os, dnp, NULL, object, dnh); 1197 DNODE_VERIFY(dn); 1198 1199 zrl_exit(&dnh->dnh_zrlock); 1200 } 1201 1202 static void 1203 dnode_buf_evict_async(void *dbu) 1204 { 1205 dnode_children_t *dnc = dbu; 1206 1207 DNODE_STAT_BUMP(dnode_buf_evict); 1208 1209 for (int i = 0; i < dnc->dnc_count; i++) { 1210 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1211 dnode_t *dn; 1212 1213 /* 1214 * The dnode handle lock guards against the dnode moving to 1215 * another valid address, so there is no need here to guard 1216 * against changes to or from NULL. 1217 */ 1218 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1219 zrl_destroy(&dnh->dnh_zrlock); 1220 dnh->dnh_dnode = DN_SLOT_UNINIT; 1221 continue; 1222 } 1223 1224 zrl_add(&dnh->dnh_zrlock); 1225 dn = dnh->dnh_dnode; 1226 /* 1227 * If there are holds on this dnode, then there should 1228 * be holds on the dnode's containing dbuf as well; thus 1229 * it wouldn't be eligible for eviction and this function 1230 * would not have been called. 1231 */ 1232 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1233 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1234 1235 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1236 zrl_destroy(&dnh->dnh_zrlock); 1237 dnh->dnh_dnode = DN_SLOT_UNINIT; 1238 } 1239 kmem_free(dnc, sizeof (dnode_children_t) + 1240 dnc->dnc_count * sizeof (dnode_handle_t)); 1241 } 1242 1243 /* 1244 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1245 * to ensure the hole at the specified object offset is large enough to 1246 * hold the dnode being created. The slots parameter is also used to ensure 1247 * a dnode does not span multiple dnode blocks. In both of these cases, if 1248 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1249 * are only possible when using DNODE_MUST_BE_FREE. 1250 * 1251 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1252 * dnode_hold_impl() will check if the requested dnode is already consumed 1253 * as an extra dnode slot by an large dnode, in which case it returns 1254 * ENOENT. 1255 * 1256 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1257 * return whether the hold would succeed or not. tag and dnp should set to 1258 * NULL in this case. 1259 * 1260 * errors: 1261 * EINVAL - Invalid object number or flags. 1262 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1263 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1264 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1265 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1266 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1267 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1268 * EIO - I/O error when reading the meta dnode dbuf. 1269 * 1270 * succeeds even for free dnodes. 1271 */ 1272 int 1273 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1274 void *tag, dnode_t **dnp) 1275 { 1276 int epb, idx, err; 1277 int drop_struct_lock = FALSE; 1278 int type; 1279 uint64_t blk; 1280 dnode_t *mdn, *dn; 1281 dmu_buf_impl_t *db; 1282 dnode_children_t *dnc; 1283 dnode_phys_t *dn_block; 1284 dnode_handle_t *dnh; 1285 1286 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1287 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1288 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1289 1290 /* 1291 * If you are holding the spa config lock as writer, you shouldn't 1292 * be asking the DMU to do *anything* unless it's the root pool 1293 * which may require us to read from the root filesystem while 1294 * holding some (not all) of the locks as writer. 1295 */ 1296 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1297 (spa_is_root(os->os_spa) && 1298 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1299 1300 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1301 1302 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1303 object == DMU_PROJECTUSED_OBJECT) { 1304 if (object == DMU_USERUSED_OBJECT) 1305 dn = DMU_USERUSED_DNODE(os); 1306 else if (object == DMU_GROUPUSED_OBJECT) 1307 dn = DMU_GROUPUSED_DNODE(os); 1308 else 1309 dn = DMU_PROJECTUSED_DNODE(os); 1310 if (dn == NULL) 1311 return (SET_ERROR(ENOENT)); 1312 type = dn->dn_type; 1313 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1314 return (SET_ERROR(ENOENT)); 1315 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1316 return (SET_ERROR(EEXIST)); 1317 DNODE_VERIFY(dn); 1318 /* Don't actually hold if dry run, just return 0 */ 1319 if (!(flag & DNODE_DRY_RUN)) { 1320 (void) zfs_refcount_add(&dn->dn_holds, tag); 1321 *dnp = dn; 1322 } 1323 return (0); 1324 } 1325 1326 if (object == 0 || object >= DN_MAX_OBJECT) 1327 return (SET_ERROR(EINVAL)); 1328 1329 mdn = DMU_META_DNODE(os); 1330 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1331 1332 DNODE_VERIFY(mdn); 1333 1334 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1335 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1336 drop_struct_lock = TRUE; 1337 } 1338 1339 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1340 db = dbuf_hold(mdn, blk, FTAG); 1341 if (drop_struct_lock) 1342 rw_exit(&mdn->dn_struct_rwlock); 1343 if (db == NULL) { 1344 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1345 return (SET_ERROR(EIO)); 1346 } 1347 1348 /* 1349 * We do not need to decrypt to read the dnode so it doesn't matter 1350 * if we get the encrypted or decrypted version. 1351 */ 1352 err = dbuf_read(db, NULL, DB_RF_CANFAIL | 1353 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 1354 if (err) { 1355 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1356 dbuf_rele(db, FTAG); 1357 return (err); 1358 } 1359 1360 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1361 epb = db->db.db_size >> DNODE_SHIFT; 1362 1363 idx = object & (epb - 1); 1364 dn_block = (dnode_phys_t *)db->db.db_data; 1365 1366 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1367 dnc = dmu_buf_get_user(&db->db); 1368 dnh = NULL; 1369 if (dnc == NULL) { 1370 dnode_children_t *winner; 1371 int skip = 0; 1372 1373 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1374 epb * sizeof (dnode_handle_t), KM_SLEEP); 1375 dnc->dnc_count = epb; 1376 dnh = &dnc->dnc_children[0]; 1377 1378 /* Initialize dnode slot status from dnode_phys_t */ 1379 for (int i = 0; i < epb; i++) { 1380 zrl_init(&dnh[i].dnh_zrlock); 1381 1382 if (skip) { 1383 skip--; 1384 continue; 1385 } 1386 1387 if (dn_block[i].dn_type != DMU_OT_NONE) { 1388 int interior = dn_block[i].dn_extra_slots; 1389 1390 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1391 dnode_set_slots(dnc, i + 1, interior, 1392 DN_SLOT_INTERIOR); 1393 skip = interior; 1394 } else { 1395 dnh[i].dnh_dnode = DN_SLOT_FREE; 1396 skip = 0; 1397 } 1398 } 1399 1400 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1401 dnode_buf_evict_async, NULL); 1402 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1403 if (winner != NULL) { 1404 1405 for (int i = 0; i < epb; i++) 1406 zrl_destroy(&dnh[i].dnh_zrlock); 1407 1408 kmem_free(dnc, sizeof (dnode_children_t) + 1409 epb * sizeof (dnode_handle_t)); 1410 dnc = winner; 1411 } 1412 } 1413 1414 ASSERT(dnc->dnc_count == epb); 1415 1416 if (flag & DNODE_MUST_BE_ALLOCATED) { 1417 slots = 1; 1418 1419 dnode_slots_hold(dnc, idx, slots); 1420 dnh = &dnc->dnc_children[idx]; 1421 1422 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1423 dn = dnh->dnh_dnode; 1424 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1425 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1426 dnode_slots_rele(dnc, idx, slots); 1427 dbuf_rele(db, FTAG); 1428 return (SET_ERROR(EEXIST)); 1429 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1430 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1431 dnode_slots_rele(dnc, idx, slots); 1432 dbuf_rele(db, FTAG); 1433 return (SET_ERROR(ENOENT)); 1434 } else { 1435 dnode_slots_rele(dnc, idx, slots); 1436 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1437 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry); 1438 cond_resched(); 1439 } 1440 1441 /* 1442 * Someone else won the race and called dnode_create() 1443 * after we checked DN_SLOT_IS_PTR() above but before 1444 * we acquired the lock. 1445 */ 1446 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1447 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1448 dn = dnh->dnh_dnode; 1449 } else { 1450 dn = dnode_create(os, dn_block + idx, db, 1451 object, dnh); 1452 } 1453 } 1454 1455 mutex_enter(&dn->dn_mtx); 1456 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1457 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1458 mutex_exit(&dn->dn_mtx); 1459 dnode_slots_rele(dnc, idx, slots); 1460 dbuf_rele(db, FTAG); 1461 return (SET_ERROR(ENOENT)); 1462 } 1463 1464 /* Don't actually hold if dry run, just return 0 */ 1465 if (flag & DNODE_DRY_RUN) { 1466 mutex_exit(&dn->dn_mtx); 1467 dnode_slots_rele(dnc, idx, slots); 1468 dbuf_rele(db, FTAG); 1469 return (0); 1470 } 1471 1472 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1473 } else if (flag & DNODE_MUST_BE_FREE) { 1474 1475 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1476 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1477 dbuf_rele(db, FTAG); 1478 return (SET_ERROR(ENOSPC)); 1479 } 1480 1481 dnode_slots_hold(dnc, idx, slots); 1482 1483 if (!dnode_check_slots_free(dnc, idx, slots)) { 1484 DNODE_STAT_BUMP(dnode_hold_free_misses); 1485 dnode_slots_rele(dnc, idx, slots); 1486 dbuf_rele(db, FTAG); 1487 return (SET_ERROR(ENOSPC)); 1488 } 1489 1490 dnode_slots_rele(dnc, idx, slots); 1491 while (!dnode_slots_tryenter(dnc, idx, slots)) { 1492 DNODE_STAT_BUMP(dnode_hold_free_lock_retry); 1493 cond_resched(); 1494 } 1495 1496 if (!dnode_check_slots_free(dnc, idx, slots)) { 1497 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1498 dnode_slots_rele(dnc, idx, slots); 1499 dbuf_rele(db, FTAG); 1500 return (SET_ERROR(ENOSPC)); 1501 } 1502 1503 /* 1504 * Allocated but otherwise free dnodes which would 1505 * be in the interior of a multi-slot dnodes need 1506 * to be freed. Single slot dnodes can be safely 1507 * re-purposed as a performance optimization. 1508 */ 1509 if (slots > 1) 1510 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1511 1512 dnh = &dnc->dnc_children[idx]; 1513 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1514 dn = dnh->dnh_dnode; 1515 } else { 1516 dn = dnode_create(os, dn_block + idx, db, 1517 object, dnh); 1518 } 1519 1520 mutex_enter(&dn->dn_mtx); 1521 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1522 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1523 mutex_exit(&dn->dn_mtx); 1524 dnode_slots_rele(dnc, idx, slots); 1525 dbuf_rele(db, FTAG); 1526 return (SET_ERROR(EEXIST)); 1527 } 1528 1529 /* Don't actually hold if dry run, just return 0 */ 1530 if (flag & DNODE_DRY_RUN) { 1531 mutex_exit(&dn->dn_mtx); 1532 dnode_slots_rele(dnc, idx, slots); 1533 dbuf_rele(db, FTAG); 1534 return (0); 1535 } 1536 1537 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1538 DNODE_STAT_BUMP(dnode_hold_free_hits); 1539 } else { 1540 dbuf_rele(db, FTAG); 1541 return (SET_ERROR(EINVAL)); 1542 } 1543 1544 ASSERT0(dn->dn_free_txg); 1545 1546 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1547 dbuf_add_ref(db, dnh); 1548 1549 mutex_exit(&dn->dn_mtx); 1550 1551 /* Now we can rely on the hold to prevent the dnode from moving. */ 1552 dnode_slots_rele(dnc, idx, slots); 1553 1554 DNODE_VERIFY(dn); 1555 ASSERT3P(dnp, !=, NULL); 1556 ASSERT3P(dn->dn_dbuf, ==, db); 1557 ASSERT3U(dn->dn_object, ==, object); 1558 dbuf_rele(db, FTAG); 1559 1560 *dnp = dn; 1561 return (0); 1562 } 1563 1564 /* 1565 * Return held dnode if the object is allocated, NULL if not. 1566 */ 1567 int 1568 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1569 { 1570 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1571 dnp)); 1572 } 1573 1574 /* 1575 * Can only add a reference if there is already at least one 1576 * reference on the dnode. Returns FALSE if unable to add a 1577 * new reference. 1578 */ 1579 boolean_t 1580 dnode_add_ref(dnode_t *dn, void *tag) 1581 { 1582 mutex_enter(&dn->dn_mtx); 1583 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1584 mutex_exit(&dn->dn_mtx); 1585 return (FALSE); 1586 } 1587 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1588 mutex_exit(&dn->dn_mtx); 1589 return (TRUE); 1590 } 1591 1592 void 1593 dnode_rele(dnode_t *dn, void *tag) 1594 { 1595 mutex_enter(&dn->dn_mtx); 1596 dnode_rele_and_unlock(dn, tag, B_FALSE); 1597 } 1598 1599 void 1600 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1601 { 1602 uint64_t refs; 1603 /* Get while the hold prevents the dnode from moving. */ 1604 dmu_buf_impl_t *db = dn->dn_dbuf; 1605 dnode_handle_t *dnh = dn->dn_handle; 1606 1607 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1608 if (refs == 0) 1609 cv_broadcast(&dn->dn_nodnholds); 1610 mutex_exit(&dn->dn_mtx); 1611 /* dnode could get destroyed at this point, so don't use it anymore */ 1612 1613 /* 1614 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1615 * indirectly by dbuf_rele() while relying on the dnode handle to 1616 * prevent the dnode from moving, since releasing the last hold could 1617 * result in the dnode's parent dbuf evicting its dnode handles. For 1618 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1619 * other direct or indirect hold on the dnode must first drop the dnode 1620 * handle. 1621 */ 1622 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1623 1624 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1625 if (refs == 0 && db != NULL) { 1626 /* 1627 * Another thread could add a hold to the dnode handle in 1628 * dnode_hold_impl() while holding the parent dbuf. Since the 1629 * hold on the parent dbuf prevents the handle from being 1630 * destroyed, the hold on the handle is OK. We can't yet assert 1631 * that the handle has zero references, but that will be 1632 * asserted anyway when the handle gets destroyed. 1633 */ 1634 mutex_enter(&db->db_mtx); 1635 dbuf_rele_and_unlock(db, dnh, evicting); 1636 } 1637 } 1638 1639 /* 1640 * Test whether we can create a dnode at the specified location. 1641 */ 1642 int 1643 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1644 { 1645 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1646 slots, NULL, NULL)); 1647 } 1648 1649 void 1650 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1651 { 1652 objset_t *os = dn->dn_objset; 1653 uint64_t txg = tx->tx_txg; 1654 1655 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1656 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1657 return; 1658 } 1659 1660 DNODE_VERIFY(dn); 1661 1662 #ifdef ZFS_DEBUG 1663 mutex_enter(&dn->dn_mtx); 1664 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1665 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1666 mutex_exit(&dn->dn_mtx); 1667 #endif 1668 1669 /* 1670 * Determine old uid/gid when necessary 1671 */ 1672 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1673 1674 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1675 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1676 1677 /* 1678 * If we are already marked dirty, we're done. 1679 */ 1680 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1681 multilist_sublist_unlock(mls); 1682 return; 1683 } 1684 1685 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1686 !avl_is_empty(&dn->dn_dbufs)); 1687 ASSERT(dn->dn_datablksz != 0); 1688 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]); 1689 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]); 1690 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]); 1691 1692 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1693 dn->dn_object, txg); 1694 1695 multilist_sublist_insert_head(mls, dn); 1696 1697 multilist_sublist_unlock(mls); 1698 1699 /* 1700 * The dnode maintains a hold on its containing dbuf as 1701 * long as there are holds on it. Each instantiated child 1702 * dbuf maintains a hold on the dnode. When the last child 1703 * drops its hold, the dnode will drop its hold on the 1704 * containing dbuf. We add a "dirty hold" here so that the 1705 * dnode will hang around after we finish processing its 1706 * children. 1707 */ 1708 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1709 1710 (void) dbuf_dirty(dn->dn_dbuf, tx); 1711 1712 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1713 } 1714 1715 void 1716 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1717 { 1718 mutex_enter(&dn->dn_mtx); 1719 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1720 mutex_exit(&dn->dn_mtx); 1721 return; 1722 } 1723 dn->dn_free_txg = tx->tx_txg; 1724 mutex_exit(&dn->dn_mtx); 1725 1726 dnode_setdirty(dn, tx); 1727 } 1728 1729 /* 1730 * Try to change the block size for the indicated dnode. This can only 1731 * succeed if there are no blocks allocated or dirty beyond first block 1732 */ 1733 int 1734 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1735 { 1736 dmu_buf_impl_t *db; 1737 int err; 1738 1739 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1740 if (size == 0) 1741 size = SPA_MINBLOCKSIZE; 1742 else 1743 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1744 1745 if (ibs == dn->dn_indblkshift) 1746 ibs = 0; 1747 1748 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1749 return (0); 1750 1751 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1752 1753 /* Check for any allocated blocks beyond the first */ 1754 if (dn->dn_maxblkid != 0) 1755 goto fail; 1756 1757 mutex_enter(&dn->dn_dbufs_mtx); 1758 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1759 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1760 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1761 db->db_blkid != DMU_SPILL_BLKID) { 1762 mutex_exit(&dn->dn_dbufs_mtx); 1763 goto fail; 1764 } 1765 } 1766 mutex_exit(&dn->dn_dbufs_mtx); 1767 1768 if (ibs && dn->dn_nlevels != 1) 1769 goto fail; 1770 1771 /* resize the old block */ 1772 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1773 if (err == 0) { 1774 dbuf_new_size(db, size, tx); 1775 } else if (err != ENOENT) { 1776 goto fail; 1777 } 1778 1779 dnode_setdblksz(dn, size); 1780 dnode_setdirty(dn, tx); 1781 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1782 if (ibs) { 1783 dn->dn_indblkshift = ibs; 1784 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1785 } 1786 /* release after we have fixed the blocksize in the dnode */ 1787 if (db) 1788 dbuf_rele(db, FTAG); 1789 1790 rw_exit(&dn->dn_struct_rwlock); 1791 return (0); 1792 1793 fail: 1794 rw_exit(&dn->dn_struct_rwlock); 1795 return (SET_ERROR(ENOTSUP)); 1796 } 1797 1798 static void 1799 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1800 { 1801 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1802 int old_nlevels = dn->dn_nlevels; 1803 dmu_buf_impl_t *db; 1804 list_t *list; 1805 dbuf_dirty_record_t *new, *dr, *dr_next; 1806 1807 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1808 1809 ASSERT3U(new_nlevels, >, dn->dn_nlevels); 1810 dn->dn_nlevels = new_nlevels; 1811 1812 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1813 dn->dn_next_nlevels[txgoff] = new_nlevels; 1814 1815 /* dirty the left indirects */ 1816 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1817 ASSERT(db != NULL); 1818 new = dbuf_dirty(db, tx); 1819 dbuf_rele(db, FTAG); 1820 1821 /* transfer the dirty records to the new indirect */ 1822 mutex_enter(&dn->dn_mtx); 1823 mutex_enter(&new->dt.di.dr_mtx); 1824 list = &dn->dn_dirty_records[txgoff]; 1825 for (dr = list_head(list); dr; dr = dr_next) { 1826 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1827 1828 IMPLY(dr->dr_dbuf == NULL, old_nlevels == 1); 1829 if (dr->dr_dbuf == NULL || 1830 (dr->dr_dbuf->db_level == old_nlevels - 1 && 1831 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1832 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID)) { 1833 list_remove(&dn->dn_dirty_records[txgoff], dr); 1834 list_insert_tail(&new->dt.di.dr_children, dr); 1835 dr->dr_parent = new; 1836 } 1837 } 1838 mutex_exit(&new->dt.di.dr_mtx); 1839 mutex_exit(&dn->dn_mtx); 1840 } 1841 1842 int 1843 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1844 { 1845 int ret = 0; 1846 1847 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1848 1849 if (dn->dn_nlevels == nlevels) { 1850 ret = 0; 1851 goto out; 1852 } else if (nlevels < dn->dn_nlevels) { 1853 ret = SET_ERROR(EINVAL); 1854 goto out; 1855 } 1856 1857 dnode_set_nlevels_impl(dn, nlevels, tx); 1858 1859 out: 1860 rw_exit(&dn->dn_struct_rwlock); 1861 return (ret); 1862 } 1863 1864 /* read-holding callers must not rely on the lock being continuously held */ 1865 void 1866 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1867 boolean_t force) 1868 { 1869 int epbs, new_nlevels; 1870 uint64_t sz; 1871 1872 ASSERT(blkid != DMU_BONUS_BLKID); 1873 1874 ASSERT(have_read ? 1875 RW_READ_HELD(&dn->dn_struct_rwlock) : 1876 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1877 1878 /* 1879 * if we have a read-lock, check to see if we need to do any work 1880 * before upgrading to a write-lock. 1881 */ 1882 if (have_read) { 1883 if (blkid <= dn->dn_maxblkid) 1884 return; 1885 1886 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1887 rw_exit(&dn->dn_struct_rwlock); 1888 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1889 } 1890 } 1891 1892 /* 1893 * Raw sends (indicated by the force flag) require that we take the 1894 * given blkid even if the value is lower than the current value. 1895 */ 1896 if (!force && blkid <= dn->dn_maxblkid) 1897 goto out; 1898 1899 /* 1900 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1901 * to indicate that this field is set. This allows us to set the 1902 * maxblkid to 0 on an existing object in dnode_sync(). 1903 */ 1904 dn->dn_maxblkid = blkid; 1905 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1906 blkid | DMU_NEXT_MAXBLKID_SET; 1907 1908 /* 1909 * Compute the number of levels necessary to support the new maxblkid. 1910 * Raw sends will ensure nlevels is set correctly for us. 1911 */ 1912 new_nlevels = 1; 1913 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1914 for (sz = dn->dn_nblkptr; 1915 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1916 new_nlevels++; 1917 1918 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS); 1919 1920 if (!force) { 1921 if (new_nlevels > dn->dn_nlevels) 1922 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1923 } else { 1924 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1925 } 1926 1927 out: 1928 if (have_read) 1929 rw_downgrade(&dn->dn_struct_rwlock); 1930 } 1931 1932 static void 1933 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1934 { 1935 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1936 if (db != NULL) { 1937 dmu_buf_will_dirty(&db->db, tx); 1938 dbuf_rele(db, FTAG); 1939 } 1940 } 1941 1942 /* 1943 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1944 * and end_blkid. 1945 */ 1946 static void 1947 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1948 dmu_tx_t *tx) 1949 { 1950 dmu_buf_impl_t *db_search; 1951 dmu_buf_impl_t *db; 1952 avl_index_t where; 1953 1954 db_search = kmem_zalloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1955 1956 mutex_enter(&dn->dn_dbufs_mtx); 1957 1958 db_search->db_level = 1; 1959 db_search->db_blkid = start_blkid + 1; 1960 db_search->db_state = DB_SEARCH; 1961 for (;;) { 1962 1963 db = avl_find(&dn->dn_dbufs, db_search, &where); 1964 if (db == NULL) 1965 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1966 1967 if (db == NULL || db->db_level != 1 || 1968 db->db_blkid >= end_blkid) { 1969 break; 1970 } 1971 1972 /* 1973 * Setup the next blkid we want to search for. 1974 */ 1975 db_search->db_blkid = db->db_blkid + 1; 1976 ASSERT3U(db->db_blkid, >=, start_blkid); 1977 1978 /* 1979 * If the dbuf transitions to DB_EVICTING while we're trying 1980 * to dirty it, then we will be unable to discover it in 1981 * the dbuf hash table. This will result in a call to 1982 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1983 * lock. To avoid a deadlock, we drop the lock before 1984 * dirtying the level-1 dbuf. 1985 */ 1986 mutex_exit(&dn->dn_dbufs_mtx); 1987 dnode_dirty_l1(dn, db->db_blkid, tx); 1988 mutex_enter(&dn->dn_dbufs_mtx); 1989 } 1990 1991 #ifdef ZFS_DEBUG 1992 /* 1993 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1994 */ 1995 db_search->db_level = 1; 1996 db_search->db_blkid = start_blkid + 1; 1997 db_search->db_state = DB_SEARCH; 1998 db = avl_find(&dn->dn_dbufs, db_search, &where); 1999 if (db == NULL) 2000 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 2001 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 2002 if (db->db_level != 1 || db->db_blkid >= end_blkid) 2003 break; 2004 if (db->db_state != DB_EVICTING) 2005 ASSERT(db->db_dirtycnt > 0); 2006 } 2007 #endif 2008 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2009 mutex_exit(&dn->dn_dbufs_mtx); 2010 } 2011 2012 void 2013 dnode_set_dirtyctx(dnode_t *dn, dmu_tx_t *tx, void *tag) 2014 { 2015 /* 2016 * Don't set dirtyctx to SYNC if we're just modifying this as we 2017 * initialize the objset. 2018 */ 2019 if (dn->dn_dirtyctx == DN_UNDIRTIED) { 2020 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 2021 2022 if (ds != NULL) { 2023 rrw_enter(&ds->ds_bp_rwlock, RW_READER, tag); 2024 } 2025 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) { 2026 if (dmu_tx_is_syncing(tx)) 2027 dn->dn_dirtyctx = DN_DIRTY_SYNC; 2028 else 2029 dn->dn_dirtyctx = DN_DIRTY_OPEN; 2030 dn->dn_dirtyctx_firstset = tag; 2031 } 2032 if (ds != NULL) { 2033 rrw_exit(&ds->ds_bp_rwlock, tag); 2034 } 2035 } 2036 } 2037 2038 void 2039 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2040 { 2041 dmu_buf_impl_t *db; 2042 uint64_t blkoff, blkid, nblks; 2043 int blksz, blkshift, head, tail; 2044 int trunc = FALSE; 2045 int epbs; 2046 2047 blksz = dn->dn_datablksz; 2048 blkshift = dn->dn_datablkshift; 2049 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2050 2051 if (len == DMU_OBJECT_END) { 2052 len = UINT64_MAX - off; 2053 trunc = TRUE; 2054 } 2055 2056 /* 2057 * First, block align the region to free: 2058 */ 2059 if (ISP2(blksz)) { 2060 head = P2NPHASE(off, blksz); 2061 blkoff = P2PHASE(off, blksz); 2062 if ((off >> blkshift) > dn->dn_maxblkid) 2063 return; 2064 } else { 2065 ASSERT(dn->dn_maxblkid == 0); 2066 if (off == 0 && len >= blksz) { 2067 /* 2068 * Freeing the whole block; fast-track this request. 2069 */ 2070 blkid = 0; 2071 nblks = 1; 2072 if (dn->dn_nlevels > 1) { 2073 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2074 dnode_dirty_l1(dn, 0, tx); 2075 rw_exit(&dn->dn_struct_rwlock); 2076 } 2077 goto done; 2078 } else if (off >= blksz) { 2079 /* Freeing past end-of-data */ 2080 return; 2081 } else { 2082 /* Freeing part of the block. */ 2083 head = blksz - off; 2084 ASSERT3U(head, >, 0); 2085 } 2086 blkoff = off; 2087 } 2088 /* zero out any partial block data at the start of the range */ 2089 if (head) { 2090 int res; 2091 ASSERT3U(blkoff + head, ==, blksz); 2092 if (len < head) 2093 head = len; 2094 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2095 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2096 TRUE, FALSE, FTAG, &db); 2097 rw_exit(&dn->dn_struct_rwlock); 2098 if (res == 0) { 2099 caddr_t data; 2100 boolean_t dirty; 2101 2102 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, 2103 FTAG); 2104 /* don't dirty if it isn't on disk and isn't dirty */ 2105 dirty = !list_is_empty(&db->db_dirty_records) || 2106 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2107 dmu_buf_unlock_parent(db, dblt, FTAG); 2108 if (dirty) { 2109 dmu_buf_will_dirty(&db->db, tx); 2110 data = db->db.db_data; 2111 bzero(data + blkoff, head); 2112 } 2113 dbuf_rele(db, FTAG); 2114 } 2115 off += head; 2116 len -= head; 2117 } 2118 2119 /* If the range was less than one block, we're done */ 2120 if (len == 0) 2121 return; 2122 2123 /* If the remaining range is past end of file, we're done */ 2124 if ((off >> blkshift) > dn->dn_maxblkid) 2125 return; 2126 2127 ASSERT(ISP2(blksz)); 2128 if (trunc) 2129 tail = 0; 2130 else 2131 tail = P2PHASE(len, blksz); 2132 2133 ASSERT0(P2PHASE(off, blksz)); 2134 /* zero out any partial block data at the end of the range */ 2135 if (tail) { 2136 int res; 2137 if (len < tail) 2138 tail = len; 2139 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2140 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2141 TRUE, FALSE, FTAG, &db); 2142 rw_exit(&dn->dn_struct_rwlock); 2143 if (res == 0) { 2144 boolean_t dirty; 2145 /* don't dirty if not on disk and not dirty */ 2146 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER, 2147 FTAG); 2148 dirty = !list_is_empty(&db->db_dirty_records) || 2149 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2150 dmu_buf_unlock_parent(db, type, FTAG); 2151 if (dirty) { 2152 dmu_buf_will_dirty(&db->db, tx); 2153 bzero(db->db.db_data, tail); 2154 } 2155 dbuf_rele(db, FTAG); 2156 } 2157 len -= tail; 2158 } 2159 2160 /* If the range did not include a full block, we are done */ 2161 if (len == 0) 2162 return; 2163 2164 ASSERT(IS_P2ALIGNED(off, blksz)); 2165 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2166 blkid = off >> blkshift; 2167 nblks = len >> blkshift; 2168 if (trunc) 2169 nblks += 1; 2170 2171 /* 2172 * Dirty all the indirect blocks in this range. Note that only 2173 * the first and last indirect blocks can actually be written 2174 * (if they were partially freed) -- they must be dirtied, even if 2175 * they do not exist on disk yet. The interior blocks will 2176 * be freed by free_children(), so they will not actually be written. 2177 * Even though these interior blocks will not be written, we 2178 * dirty them for two reasons: 2179 * 2180 * - It ensures that the indirect blocks remain in memory until 2181 * syncing context. (They have already been prefetched by 2182 * dmu_tx_hold_free(), so we don't have to worry about reading 2183 * them serially here.) 2184 * 2185 * - The dirty space accounting will put pressure on the txg sync 2186 * mechanism to begin syncing, and to delay transactions if there 2187 * is a large amount of freeing. Even though these indirect 2188 * blocks will not be written, we could need to write the same 2189 * amount of space if we copy the freed BPs into deadlists. 2190 */ 2191 if (dn->dn_nlevels > 1) { 2192 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2193 uint64_t first, last; 2194 2195 first = blkid >> epbs; 2196 dnode_dirty_l1(dn, first, tx); 2197 if (trunc) 2198 last = dn->dn_maxblkid >> epbs; 2199 else 2200 last = (blkid + nblks - 1) >> epbs; 2201 if (last != first) 2202 dnode_dirty_l1(dn, last, tx); 2203 2204 dnode_dirty_l1range(dn, first, last, tx); 2205 2206 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2207 SPA_BLKPTRSHIFT; 2208 for (uint64_t i = first + 1; i < last; i++) { 2209 /* 2210 * Set i to the blockid of the next non-hole 2211 * level-1 indirect block at or after i. Note 2212 * that dnode_next_offset() operates in terms of 2213 * level-0-equivalent bytes. 2214 */ 2215 uint64_t ibyte = i << shift; 2216 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2217 &ibyte, 2, 1, 0); 2218 i = ibyte >> shift; 2219 if (i >= last) 2220 break; 2221 2222 /* 2223 * Normally we should not see an error, either 2224 * from dnode_next_offset() or dbuf_hold_level() 2225 * (except for ESRCH from dnode_next_offset). 2226 * If there is an i/o error, then when we read 2227 * this block in syncing context, it will use 2228 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2229 * to the "failmode" property. dnode_next_offset() 2230 * doesn't have a flag to indicate MUSTSUCCEED. 2231 */ 2232 if (err != 0) 2233 break; 2234 2235 dnode_dirty_l1(dn, i, tx); 2236 } 2237 rw_exit(&dn->dn_struct_rwlock); 2238 } 2239 2240 done: 2241 /* 2242 * Add this range to the dnode range list. 2243 * We will finish up this free operation in the syncing phase. 2244 */ 2245 mutex_enter(&dn->dn_mtx); 2246 { 2247 int txgoff = tx->tx_txg & TXG_MASK; 2248 if (dn->dn_free_ranges[txgoff] == NULL) { 2249 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2250 RANGE_SEG64, NULL, 0, 0); 2251 } 2252 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2253 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2254 } 2255 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2256 blkid, nblks, tx->tx_txg); 2257 mutex_exit(&dn->dn_mtx); 2258 2259 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2260 dnode_setdirty(dn, tx); 2261 } 2262 2263 static boolean_t 2264 dnode_spill_freed(dnode_t *dn) 2265 { 2266 int i; 2267 2268 mutex_enter(&dn->dn_mtx); 2269 for (i = 0; i < TXG_SIZE; i++) { 2270 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2271 break; 2272 } 2273 mutex_exit(&dn->dn_mtx); 2274 return (i < TXG_SIZE); 2275 } 2276 2277 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2278 uint64_t 2279 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2280 { 2281 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2282 int i; 2283 2284 if (blkid == DMU_BONUS_BLKID) 2285 return (FALSE); 2286 2287 /* 2288 * If we're in the process of opening the pool, dp will not be 2289 * set yet, but there shouldn't be anything dirty. 2290 */ 2291 if (dp == NULL) 2292 return (FALSE); 2293 2294 if (dn->dn_free_txg) 2295 return (TRUE); 2296 2297 if (blkid == DMU_SPILL_BLKID) 2298 return (dnode_spill_freed(dn)); 2299 2300 mutex_enter(&dn->dn_mtx); 2301 for (i = 0; i < TXG_SIZE; i++) { 2302 if (dn->dn_free_ranges[i] != NULL && 2303 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2304 break; 2305 } 2306 mutex_exit(&dn->dn_mtx); 2307 return (i < TXG_SIZE); 2308 } 2309 2310 /* call from syncing context when we actually write/free space for this dnode */ 2311 void 2312 dnode_diduse_space(dnode_t *dn, int64_t delta) 2313 { 2314 uint64_t space; 2315 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2316 dn, dn->dn_phys, 2317 (u_longlong_t)dn->dn_phys->dn_used, 2318 (longlong_t)delta); 2319 2320 mutex_enter(&dn->dn_mtx); 2321 space = DN_USED_BYTES(dn->dn_phys); 2322 if (delta > 0) { 2323 ASSERT3U(space + delta, >=, space); /* no overflow */ 2324 } else { 2325 ASSERT3U(space, >=, -delta); /* no underflow */ 2326 } 2327 space += delta; 2328 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2329 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2330 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2331 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2332 } else { 2333 dn->dn_phys->dn_used = space; 2334 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2335 } 2336 mutex_exit(&dn->dn_mtx); 2337 } 2338 2339 /* 2340 * Scans a block at the indicated "level" looking for a hole or data, 2341 * depending on 'flags'. 2342 * 2343 * If level > 0, then we are scanning an indirect block looking at its 2344 * pointers. If level == 0, then we are looking at a block of dnodes. 2345 * 2346 * If we don't find what we are looking for in the block, we return ESRCH. 2347 * Otherwise, return with *offset pointing to the beginning (if searching 2348 * forwards) or end (if searching backwards) of the range covered by the 2349 * block pointer we matched on (or dnode). 2350 * 2351 * The basic search algorithm used below by dnode_next_offset() is to 2352 * use this function to search up the block tree (widen the search) until 2353 * we find something (i.e., we don't return ESRCH) and then search back 2354 * down the tree (narrow the search) until we reach our original search 2355 * level. 2356 */ 2357 static int 2358 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2359 int lvl, uint64_t blkfill, uint64_t txg) 2360 { 2361 dmu_buf_impl_t *db = NULL; 2362 void *data = NULL; 2363 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2364 uint64_t epb = 1ULL << epbs; 2365 uint64_t minfill, maxfill; 2366 boolean_t hole; 2367 int i, inc, error, span; 2368 2369 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2370 2371 hole = ((flags & DNODE_FIND_HOLE) != 0); 2372 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2373 ASSERT(txg == 0 || !hole); 2374 2375 if (lvl == dn->dn_phys->dn_nlevels) { 2376 error = 0; 2377 epb = dn->dn_phys->dn_nblkptr; 2378 data = dn->dn_phys->dn_blkptr; 2379 } else { 2380 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2381 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2382 if (error) { 2383 if (error != ENOENT) 2384 return (error); 2385 if (hole) 2386 return (0); 2387 /* 2388 * This can only happen when we are searching up 2389 * the block tree for data. We don't really need to 2390 * adjust the offset, as we will just end up looking 2391 * at the pointer to this block in its parent, and its 2392 * going to be unallocated, so we will skip over it. 2393 */ 2394 return (SET_ERROR(ESRCH)); 2395 } 2396 error = dbuf_read(db, NULL, 2397 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | 2398 DB_RF_NO_DECRYPT | DB_RF_NOPREFETCH); 2399 if (error) { 2400 dbuf_rele(db, FTAG); 2401 return (error); 2402 } 2403 data = db->db.db_data; 2404 rw_enter(&db->db_rwlock, RW_READER); 2405 } 2406 2407 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2408 db->db_blkptr->blk_birth <= txg || 2409 BP_IS_HOLE(db->db_blkptr))) { 2410 /* 2411 * This can only happen when we are searching up the tree 2412 * and these conditions mean that we need to keep climbing. 2413 */ 2414 error = SET_ERROR(ESRCH); 2415 } else if (lvl == 0) { 2416 dnode_phys_t *dnp = data; 2417 2418 ASSERT(dn->dn_type == DMU_OT_DNODE); 2419 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2420 2421 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2422 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2423 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2424 break; 2425 } 2426 2427 if (i == blkfill) 2428 error = SET_ERROR(ESRCH); 2429 2430 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2431 (i << DNODE_SHIFT); 2432 } else { 2433 blkptr_t *bp = data; 2434 uint64_t start = *offset; 2435 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2436 minfill = 0; 2437 maxfill = blkfill << ((lvl - 1) * epbs); 2438 2439 if (hole) 2440 maxfill--; 2441 else 2442 minfill++; 2443 2444 if (span >= 8 * sizeof (*offset)) { 2445 /* This only happens on the highest indirection level */ 2446 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1); 2447 *offset = 0; 2448 } else { 2449 *offset = *offset >> span; 2450 } 2451 2452 for (i = BF64_GET(*offset, 0, epbs); 2453 i >= 0 && i < epb; i += inc) { 2454 if (BP_GET_FILL(&bp[i]) >= minfill && 2455 BP_GET_FILL(&bp[i]) <= maxfill && 2456 (hole || bp[i].blk_birth > txg)) 2457 break; 2458 if (inc > 0 || *offset > 0) 2459 *offset += inc; 2460 } 2461 2462 if (span >= 8 * sizeof (*offset)) { 2463 *offset = start; 2464 } else { 2465 *offset = *offset << span; 2466 } 2467 2468 if (inc < 0) { 2469 /* traversing backwards; position offset at the end */ 2470 ASSERT3U(*offset, <=, start); 2471 *offset = MIN(*offset + (1ULL << span) - 1, start); 2472 } else if (*offset < start) { 2473 *offset = start; 2474 } 2475 if (i < 0 || i >= epb) 2476 error = SET_ERROR(ESRCH); 2477 } 2478 2479 if (db != NULL) { 2480 rw_exit(&db->db_rwlock); 2481 dbuf_rele(db, FTAG); 2482 } 2483 2484 return (error); 2485 } 2486 2487 /* 2488 * Find the next hole, data, or sparse region at or after *offset. 2489 * The value 'blkfill' tells us how many items we expect to find 2490 * in an L0 data block; this value is 1 for normal objects, 2491 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2492 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2493 * 2494 * Examples: 2495 * 2496 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2497 * Finds the next/previous hole/data in a file. 2498 * Used in dmu_offset_next(). 2499 * 2500 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2501 * Finds the next free/allocated dnode an objset's meta-dnode. 2502 * Only finds objects that have new contents since txg (ie. 2503 * bonus buffer changes and content removal are ignored). 2504 * Used in dmu_object_next(). 2505 * 2506 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2507 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2508 * Used in dmu_object_alloc(). 2509 */ 2510 int 2511 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2512 int minlvl, uint64_t blkfill, uint64_t txg) 2513 { 2514 uint64_t initial_offset = *offset; 2515 int lvl, maxlvl; 2516 int error = 0; 2517 2518 if (!(flags & DNODE_FIND_HAVELOCK)) 2519 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2520 2521 if (dn->dn_phys->dn_nlevels == 0) { 2522 error = SET_ERROR(ESRCH); 2523 goto out; 2524 } 2525 2526 if (dn->dn_datablkshift == 0) { 2527 if (*offset < dn->dn_datablksz) { 2528 if (flags & DNODE_FIND_HOLE) 2529 *offset = dn->dn_datablksz; 2530 } else { 2531 error = SET_ERROR(ESRCH); 2532 } 2533 goto out; 2534 } 2535 2536 maxlvl = dn->dn_phys->dn_nlevels; 2537 2538 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2539 error = dnode_next_offset_level(dn, 2540 flags, offset, lvl, blkfill, txg); 2541 if (error != ESRCH) 2542 break; 2543 } 2544 2545 while (error == 0 && --lvl >= minlvl) { 2546 error = dnode_next_offset_level(dn, 2547 flags, offset, lvl, blkfill, txg); 2548 } 2549 2550 /* 2551 * There's always a "virtual hole" at the end of the object, even 2552 * if all BP's which physically exist are non-holes. 2553 */ 2554 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2555 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2556 error = 0; 2557 } 2558 2559 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2560 initial_offset < *offset : initial_offset > *offset)) 2561 error = SET_ERROR(ESRCH); 2562 out: 2563 if (!(flags & DNODE_FIND_HAVELOCK)) 2564 rw_exit(&dn->dn_struct_rwlock); 2565 2566 return (error); 2567 } 2568 2569 #if defined(_KERNEL) 2570 EXPORT_SYMBOL(dnode_hold); 2571 EXPORT_SYMBOL(dnode_rele); 2572 EXPORT_SYMBOL(dnode_set_nlevels); 2573 EXPORT_SYMBOL(dnode_set_blksz); 2574 EXPORT_SYMBOL(dnode_free_range); 2575 EXPORT_SYMBOL(dnode_evict_dbufs); 2576 EXPORT_SYMBOL(dnode_evict_bonus); 2577 #endif 2578