1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 */ 30 31 #include <sys/zfs_context.h> 32 #include <sys/arc.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_send.h> 35 #include <sys/dmu_impl.h> 36 #include <sys/dbuf.h> 37 #include <sys/dmu_objset.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/spa.h> 42 #include <sys/zio.h> 43 #include <sys/dmu_zfetch.h> 44 #include <sys/sa.h> 45 #include <sys/sa_impl.h> 46 #include <sys/zfeature.h> 47 #include <sys/blkptr.h> 48 #include <sys/range_tree.h> 49 #include <sys/trace_zfs.h> 50 #include <sys/callb.h> 51 #include <sys/abd.h> 52 #include <sys/vdev.h> 53 #include <cityhash.h> 54 #include <sys/spa_impl.h> 55 #include <sys/wmsum.h> 56 #include <sys/vdev_impl.h> 57 58 static kstat_t *dbuf_ksp; 59 60 typedef struct dbuf_stats { 61 /* 62 * Various statistics about the size of the dbuf cache. 63 */ 64 kstat_named_t cache_count; 65 kstat_named_t cache_size_bytes; 66 kstat_named_t cache_size_bytes_max; 67 /* 68 * Statistics regarding the bounds on the dbuf cache size. 69 */ 70 kstat_named_t cache_target_bytes; 71 kstat_named_t cache_lowater_bytes; 72 kstat_named_t cache_hiwater_bytes; 73 /* 74 * Total number of dbuf cache evictions that have occurred. 75 */ 76 kstat_named_t cache_total_evicts; 77 /* 78 * The distribution of dbuf levels in the dbuf cache and 79 * the total size of all dbufs at each level. 80 */ 81 kstat_named_t cache_levels[DN_MAX_LEVELS]; 82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 83 /* 84 * Statistics about the dbuf hash table. 85 */ 86 kstat_named_t hash_hits; 87 kstat_named_t hash_misses; 88 kstat_named_t hash_collisions; 89 kstat_named_t hash_elements; 90 kstat_named_t hash_elements_max; 91 /* 92 * Number of sublists containing more than one dbuf in the dbuf 93 * hash table. Keep track of the longest hash chain. 94 */ 95 kstat_named_t hash_chains; 96 kstat_named_t hash_chain_max; 97 /* 98 * Number of times a dbuf_create() discovers that a dbuf was 99 * already created and in the dbuf hash table. 100 */ 101 kstat_named_t hash_insert_race; 102 /* 103 * Number of entries in the hash table dbuf and mutex arrays. 104 */ 105 kstat_named_t hash_table_count; 106 kstat_named_t hash_mutex_count; 107 /* 108 * Statistics about the size of the metadata dbuf cache. 109 */ 110 kstat_named_t metadata_cache_count; 111 kstat_named_t metadata_cache_size_bytes; 112 kstat_named_t metadata_cache_size_bytes_max; 113 /* 114 * For diagnostic purposes, this is incremented whenever we can't add 115 * something to the metadata cache because it's full, and instead put 116 * the data in the regular dbuf cache. 117 */ 118 kstat_named_t metadata_cache_overflow; 119 } dbuf_stats_t; 120 121 dbuf_stats_t dbuf_stats = { 122 { "cache_count", KSTAT_DATA_UINT64 }, 123 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 124 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 125 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 127 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 129 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 130 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 131 { "hash_hits", KSTAT_DATA_UINT64 }, 132 { "hash_misses", KSTAT_DATA_UINT64 }, 133 { "hash_collisions", KSTAT_DATA_UINT64 }, 134 { "hash_elements", KSTAT_DATA_UINT64 }, 135 { "hash_elements_max", KSTAT_DATA_UINT64 }, 136 { "hash_chains", KSTAT_DATA_UINT64 }, 137 { "hash_chain_max", KSTAT_DATA_UINT64 }, 138 { "hash_insert_race", KSTAT_DATA_UINT64 }, 139 { "hash_table_count", KSTAT_DATA_UINT64 }, 140 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 141 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 142 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 145 }; 146 147 struct { 148 wmsum_t cache_count; 149 wmsum_t cache_total_evicts; 150 wmsum_t cache_levels[DN_MAX_LEVELS]; 151 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 152 wmsum_t hash_hits; 153 wmsum_t hash_misses; 154 wmsum_t hash_collisions; 155 wmsum_t hash_chains; 156 wmsum_t hash_insert_race; 157 wmsum_t metadata_cache_count; 158 wmsum_t metadata_cache_overflow; 159 } dbuf_sums; 160 161 #define DBUF_STAT_INCR(stat, val) \ 162 wmsum_add(&dbuf_sums.stat, val); 163 #define DBUF_STAT_DECR(stat, val) \ 164 DBUF_STAT_INCR(stat, -(val)); 165 #define DBUF_STAT_BUMP(stat) \ 166 DBUF_STAT_INCR(stat, 1); 167 #define DBUF_STAT_BUMPDOWN(stat) \ 168 DBUF_STAT_INCR(stat, -1); 169 #define DBUF_STAT_MAX(stat, v) { \ 170 uint64_t _m; \ 171 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 172 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 173 continue; \ 174 } 175 176 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx); 177 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 178 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 179 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 static taskq_t *dbu_evict_taskq; 186 187 static kthread_t *dbuf_cache_evict_thread; 188 static kmutex_t dbuf_evict_lock; 189 static kcondvar_t dbuf_evict_cv; 190 static boolean_t dbuf_evict_thread_exit; 191 192 /* 193 * There are two dbuf caches; each dbuf can only be in one of them at a time. 194 * 195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 197 * that represent the metadata that describes filesystems/snapshots/ 198 * bookmarks/properties/etc. We only evict from this cache when we export a 199 * pool, to short-circuit as much I/O as possible for all administrative 200 * commands that need the metadata. There is no eviction policy for this 201 * cache, because we try to only include types in it which would occupy a 202 * very small amount of space per object but create a large impact on the 203 * performance of these commands. Instead, after it reaches a maximum size 204 * (which should only happen on very small memory systems with a very large 205 * number of filesystem objects), we stop taking new dbufs into the 206 * metadata cache, instead putting them in the normal dbuf cache. 207 * 208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 209 * are not currently held but have been recently released. These dbufs 210 * are not eligible for arc eviction until they are aged out of the cache. 211 * Dbufs that are aged out of the cache will be immediately destroyed and 212 * become eligible for arc eviction. 213 * 214 * Dbufs are added to these caches once the last hold is released. If a dbuf is 215 * later accessed and still exists in the dbuf cache, then it will be removed 216 * from the cache and later re-added to the head of the cache. 217 * 218 * If a given dbuf meets the requirements for the metadata cache, it will go 219 * there, otherwise it will be considered for the generic LRU dbuf cache. The 220 * caches and the refcounts tracking their sizes are stored in an array indexed 221 * by those caches' matching enum values (from dbuf_cached_state_t). 222 */ 223 typedef struct dbuf_cache { 224 multilist_t cache; 225 zfs_refcount_t size ____cacheline_aligned; 226 } dbuf_cache_t; 227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 228 229 /* Size limits for the caches */ 230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 232 233 /* Set the default sizes of the caches to log2 fraction of arc size */ 234 static uint_t dbuf_cache_shift = 5; 235 static uint_t dbuf_metadata_cache_shift = 6; 236 237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 238 static uint_t dbuf_mutex_cache_shift = 0; 239 240 static unsigned long dbuf_cache_target_bytes(void); 241 static unsigned long dbuf_metadata_cache_target_bytes(void); 242 243 /* 244 * The LRU dbuf cache uses a three-stage eviction policy: 245 * - A low water marker designates when the dbuf eviction thread 246 * should stop evicting from the dbuf cache. 247 * - When we reach the maximum size (aka mid water mark), we 248 * signal the eviction thread to run. 249 * - The high water mark indicates when the eviction thread 250 * is unable to keep up with the incoming load and eviction must 251 * happen in the context of the calling thread. 252 * 253 * The dbuf cache: 254 * (max size) 255 * low water mid water hi water 256 * +----------------------------------------+----------+----------+ 257 * | | | | 258 * | | | | 259 * | | | | 260 * | | | | 261 * +----------------------------------------+----------+----------+ 262 * stop signal evict 263 * evicting eviction directly 264 * thread 265 * 266 * The high and low water marks indicate the operating range for the eviction 267 * thread. The low water mark is, by default, 90% of the total size of the 268 * cache and the high water mark is at 110% (both of these percentages can be 269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 270 * respectively). The eviction thread will try to ensure that the cache remains 271 * within this range by waking up every second and checking if the cache is 272 * above the low water mark. The thread can also be woken up by callers adding 273 * elements into the cache if the cache is larger than the mid water (i.e max 274 * cache size). Once the eviction thread is woken up and eviction is required, 275 * it will continue evicting buffers until it's able to reduce the cache size 276 * to the low water mark. If the cache size continues to grow and hits the high 277 * water mark, then callers adding elements to the cache will begin to evict 278 * directly from the cache until the cache is no longer above the high water 279 * mark. 280 */ 281 282 /* 283 * The percentage above and below the maximum cache size. 284 */ 285 static uint_t dbuf_cache_hiwater_pct = 10; 286 static uint_t dbuf_cache_lowater_pct = 10; 287 288 static int 289 dbuf_cons(void *vdb, void *unused, int kmflag) 290 { 291 (void) unused, (void) kmflag; 292 dmu_buf_impl_t *db = vdb; 293 memset(db, 0, sizeof (dmu_buf_impl_t)); 294 295 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 296 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 298 multilist_link_init(&db->db_cache_link); 299 zfs_refcount_create(&db->db_holds); 300 301 return (0); 302 } 303 304 static void 305 dbuf_dest(void *vdb, void *unused) 306 { 307 (void) unused; 308 dmu_buf_impl_t *db = vdb; 309 mutex_destroy(&db->db_mtx); 310 rw_destroy(&db->db_rwlock); 311 cv_destroy(&db->db_changed); 312 ASSERT(!multilist_link_active(&db->db_cache_link)); 313 zfs_refcount_destroy(&db->db_holds); 314 } 315 316 /* 317 * dbuf hash table routines 318 */ 319 static dbuf_hash_table_t dbuf_hash_table; 320 321 /* 322 * We use Cityhash for this. It's fast, and has good hash properties without 323 * requiring any large static buffers. 324 */ 325 static uint64_t 326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 327 { 328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 329 } 330 331 #define DTRACE_SET_STATE(db, why) \ 332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 333 const char *, why) 334 335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 336 ((dbuf)->db.db_object == (obj) && \ 337 (dbuf)->db_objset == (os) && \ 338 (dbuf)->db_level == (level) && \ 339 (dbuf)->db_blkid == (blkid)) 340 341 dmu_buf_impl_t * 342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid) 343 { 344 dbuf_hash_table_t *h = &dbuf_hash_table; 345 uint64_t hv; 346 uint64_t idx; 347 dmu_buf_impl_t *db; 348 349 hv = dbuf_hash(os, obj, level, blkid); 350 idx = hv & h->hash_table_mask; 351 352 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 353 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 354 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 355 mutex_enter(&db->db_mtx); 356 if (db->db_state != DB_EVICTING) { 357 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 358 return (db); 359 } 360 mutex_exit(&db->db_mtx); 361 } 362 } 363 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 364 return (NULL); 365 } 366 367 static dmu_buf_impl_t * 368 dbuf_find_bonus(objset_t *os, uint64_t object) 369 { 370 dnode_t *dn; 371 dmu_buf_impl_t *db = NULL; 372 373 if (dnode_hold(os, object, FTAG, &dn) == 0) { 374 rw_enter(&dn->dn_struct_rwlock, RW_READER); 375 if (dn->dn_bonus != NULL) { 376 db = dn->dn_bonus; 377 mutex_enter(&db->db_mtx); 378 } 379 rw_exit(&dn->dn_struct_rwlock); 380 dnode_rele(dn, FTAG); 381 } 382 return (db); 383 } 384 385 /* 386 * Insert an entry into the hash table. If there is already an element 387 * equal to elem in the hash table, then the already existing element 388 * will be returned and the new element will not be inserted. 389 * Otherwise returns NULL. 390 */ 391 static dmu_buf_impl_t * 392 dbuf_hash_insert(dmu_buf_impl_t *db) 393 { 394 dbuf_hash_table_t *h = &dbuf_hash_table; 395 objset_t *os = db->db_objset; 396 uint64_t obj = db->db.db_object; 397 int level = db->db_level; 398 uint64_t blkid, hv, idx; 399 dmu_buf_impl_t *dbf; 400 uint32_t i; 401 402 blkid = db->db_blkid; 403 hv = dbuf_hash(os, obj, level, blkid); 404 idx = hv & h->hash_table_mask; 405 406 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 407 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 408 dbf = dbf->db_hash_next, i++) { 409 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 410 mutex_enter(&dbf->db_mtx); 411 if (dbf->db_state != DB_EVICTING) { 412 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 413 return (dbf); 414 } 415 mutex_exit(&dbf->db_mtx); 416 } 417 } 418 419 if (i > 0) { 420 DBUF_STAT_BUMP(hash_collisions); 421 if (i == 1) 422 DBUF_STAT_BUMP(hash_chains); 423 424 DBUF_STAT_MAX(hash_chain_max, i); 425 } 426 427 mutex_enter(&db->db_mtx); 428 db->db_hash_next = h->hash_table[idx]; 429 h->hash_table[idx] = db; 430 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 431 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 432 DBUF_STAT_MAX(hash_elements_max, he); 433 434 return (NULL); 435 } 436 437 /* 438 * This returns whether this dbuf should be stored in the metadata cache, which 439 * is based on whether it's from one of the dnode types that store data related 440 * to traversing dataset hierarchies. 441 */ 442 static boolean_t 443 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 444 { 445 DB_DNODE_ENTER(db); 446 dmu_object_type_t type = DB_DNODE(db)->dn_type; 447 DB_DNODE_EXIT(db); 448 449 /* Check if this dbuf is one of the types we care about */ 450 if (DMU_OT_IS_METADATA_CACHED(type)) { 451 /* If we hit this, then we set something up wrong in dmu_ot */ 452 ASSERT(DMU_OT_IS_METADATA(type)); 453 454 /* 455 * Sanity check for small-memory systems: don't allocate too 456 * much memory for this purpose. 457 */ 458 if (zfs_refcount_count( 459 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 460 dbuf_metadata_cache_target_bytes()) { 461 DBUF_STAT_BUMP(metadata_cache_overflow); 462 return (B_FALSE); 463 } 464 465 return (B_TRUE); 466 } 467 468 return (B_FALSE); 469 } 470 471 /* 472 * Remove an entry from the hash table. It must be in the EVICTING state. 473 */ 474 static void 475 dbuf_hash_remove(dmu_buf_impl_t *db) 476 { 477 dbuf_hash_table_t *h = &dbuf_hash_table; 478 uint64_t hv, idx; 479 dmu_buf_impl_t *dbf, **dbp; 480 481 hv = dbuf_hash(db->db_objset, db->db.db_object, 482 db->db_level, db->db_blkid); 483 idx = hv & h->hash_table_mask; 484 485 /* 486 * We mustn't hold db_mtx to maintain lock ordering: 487 * DBUF_HASH_MUTEX > db_mtx. 488 */ 489 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 490 ASSERT(db->db_state == DB_EVICTING); 491 ASSERT(!MUTEX_HELD(&db->db_mtx)); 492 493 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 494 dbp = &h->hash_table[idx]; 495 while ((dbf = *dbp) != db) { 496 dbp = &dbf->db_hash_next; 497 ASSERT(dbf != NULL); 498 } 499 *dbp = db->db_hash_next; 500 db->db_hash_next = NULL; 501 if (h->hash_table[idx] && 502 h->hash_table[idx]->db_hash_next == NULL) 503 DBUF_STAT_BUMPDOWN(hash_chains); 504 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 505 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 506 } 507 508 typedef enum { 509 DBVU_EVICTING, 510 DBVU_NOT_EVICTING 511 } dbvu_verify_type_t; 512 513 static void 514 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 515 { 516 #ifdef ZFS_DEBUG 517 int64_t holds; 518 519 if (db->db_user == NULL) 520 return; 521 522 /* Only data blocks support the attachment of user data. */ 523 ASSERT(db->db_level == 0); 524 525 /* Clients must resolve a dbuf before attaching user data. */ 526 ASSERT(db->db.db_data != NULL); 527 ASSERT3U(db->db_state, ==, DB_CACHED); 528 529 holds = zfs_refcount_count(&db->db_holds); 530 if (verify_type == DBVU_EVICTING) { 531 /* 532 * Immediate eviction occurs when holds == dirtycnt. 533 * For normal eviction buffers, holds is zero on 534 * eviction, except when dbuf_fix_old_data() calls 535 * dbuf_clear_data(). However, the hold count can grow 536 * during eviction even though db_mtx is held (see 537 * dmu_bonus_hold() for an example), so we can only 538 * test the generic invariant that holds >= dirtycnt. 539 */ 540 ASSERT3U(holds, >=, db->db_dirtycnt); 541 } else { 542 if (db->db_user_immediate_evict == TRUE) 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 else 545 ASSERT3U(holds, >, 0); 546 } 547 #endif 548 } 549 550 static void 551 dbuf_evict_user(dmu_buf_impl_t *db) 552 { 553 dmu_buf_user_t *dbu = db->db_user; 554 555 ASSERT(MUTEX_HELD(&db->db_mtx)); 556 557 if (dbu == NULL) 558 return; 559 560 dbuf_verify_user(db, DBVU_EVICTING); 561 db->db_user = NULL; 562 563 #ifdef ZFS_DEBUG 564 if (dbu->dbu_clear_on_evict_dbufp != NULL) 565 *dbu->dbu_clear_on_evict_dbufp = NULL; 566 #endif 567 568 /* 569 * There are two eviction callbacks - one that we call synchronously 570 * and one that we invoke via a taskq. The async one is useful for 571 * avoiding lock order reversals and limiting stack depth. 572 * 573 * Note that if we have a sync callback but no async callback, 574 * it's likely that the sync callback will free the structure 575 * containing the dbu. In that case we need to take care to not 576 * dereference dbu after calling the sync evict func. 577 */ 578 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 579 580 if (dbu->dbu_evict_func_sync != NULL) 581 dbu->dbu_evict_func_sync(dbu); 582 583 if (has_async) { 584 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 585 dbu, 0, &dbu->dbu_tqent); 586 } 587 } 588 589 boolean_t 590 dbuf_is_metadata(dmu_buf_impl_t *db) 591 { 592 /* 593 * Consider indirect blocks and spill blocks to be meta data. 594 */ 595 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 596 return (B_TRUE); 597 } else { 598 boolean_t is_metadata; 599 600 DB_DNODE_ENTER(db); 601 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 602 DB_DNODE_EXIT(db); 603 604 return (is_metadata); 605 } 606 } 607 608 /* 609 * We want to exclude buffers that are on a special allocation class from 610 * L2ARC. 611 */ 612 boolean_t 613 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 614 { 615 vdev_t *vd = NULL; 616 zfs_cache_type_t cache = db->db_objset->os_secondary_cache; 617 blkptr_t *bp = db->db_blkptr; 618 619 if (bp != NULL && !BP_IS_HOLE(bp)) { 620 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 621 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 622 623 if (vdev < rvd->vdev_children) 624 vd = rvd->vdev_child[vdev]; 625 626 if (cache == ZFS_CACHE_ALL || 627 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) { 628 if (vd == NULL) 629 return (B_TRUE); 630 631 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 632 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) || 633 l2arc_exclude_special == 0) 634 return (B_TRUE); 635 } 636 } 637 638 return (B_FALSE); 639 } 640 641 static inline boolean_t 642 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 643 { 644 vdev_t *vd = NULL; 645 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache; 646 647 if (bp != NULL && !BP_IS_HOLE(bp)) { 648 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 649 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 650 651 if (vdev < rvd->vdev_children) 652 vd = rvd->vdev_child[vdev]; 653 654 if (cache == ZFS_CACHE_ALL || ((level > 0 || 655 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) && 656 cache == ZFS_CACHE_METADATA)) { 657 if (vd == NULL) 658 return (B_TRUE); 659 660 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 661 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) || 662 l2arc_exclude_special == 0) 663 return (B_TRUE); 664 } 665 } 666 667 return (B_FALSE); 668 } 669 670 671 /* 672 * This function *must* return indices evenly distributed between all 673 * sublists of the multilist. This is needed due to how the dbuf eviction 674 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 675 * distributed between all sublists and uses this assumption when 676 * deciding which sublist to evict from and how much to evict from it. 677 */ 678 static unsigned int 679 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 680 { 681 dmu_buf_impl_t *db = obj; 682 683 /* 684 * The assumption here, is the hash value for a given 685 * dmu_buf_impl_t will remain constant throughout it's lifetime 686 * (i.e. it's objset, object, level and blkid fields don't change). 687 * Thus, we don't need to store the dbuf's sublist index 688 * on insertion, as this index can be recalculated on removal. 689 * 690 * Also, the low order bits of the hash value are thought to be 691 * distributed evenly. Otherwise, in the case that the multilist 692 * has a power of two number of sublists, each sublists' usage 693 * would not be evenly distributed. In this context full 64bit 694 * division would be a waste of time, so limit it to 32 bits. 695 */ 696 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 697 db->db_level, db->db_blkid) % 698 multilist_get_num_sublists(ml)); 699 } 700 701 /* 702 * The target size of the dbuf cache can grow with the ARC target, 703 * unless limited by the tunable dbuf_cache_max_bytes. 704 */ 705 static inline unsigned long 706 dbuf_cache_target_bytes(void) 707 { 708 return (MIN(dbuf_cache_max_bytes, 709 arc_target_bytes() >> dbuf_cache_shift)); 710 } 711 712 /* 713 * The target size of the dbuf metadata cache can grow with the ARC target, 714 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 715 */ 716 static inline unsigned long 717 dbuf_metadata_cache_target_bytes(void) 718 { 719 return (MIN(dbuf_metadata_cache_max_bytes, 720 arc_target_bytes() >> dbuf_metadata_cache_shift)); 721 } 722 723 static inline uint64_t 724 dbuf_cache_hiwater_bytes(void) 725 { 726 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 727 return (dbuf_cache_target + 728 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 729 } 730 731 static inline uint64_t 732 dbuf_cache_lowater_bytes(void) 733 { 734 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 735 return (dbuf_cache_target - 736 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 737 } 738 739 static inline boolean_t 740 dbuf_cache_above_lowater(void) 741 { 742 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 743 dbuf_cache_lowater_bytes()); 744 } 745 746 /* 747 * Evict the oldest eligible dbuf from the dbuf cache. 748 */ 749 static void 750 dbuf_evict_one(void) 751 { 752 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 753 multilist_sublist_t *mls = multilist_sublist_lock( 754 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 755 756 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 757 758 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 759 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 760 db = multilist_sublist_prev(mls, db); 761 } 762 763 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 764 multilist_sublist_t *, mls); 765 766 if (db != NULL) { 767 multilist_sublist_remove(mls, db); 768 multilist_sublist_unlock(mls); 769 (void) zfs_refcount_remove_many( 770 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db); 771 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 772 DBUF_STAT_BUMPDOWN(cache_count); 773 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 774 db->db.db_size); 775 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 776 db->db_caching_status = DB_NO_CACHE; 777 dbuf_destroy(db); 778 DBUF_STAT_BUMP(cache_total_evicts); 779 } else { 780 multilist_sublist_unlock(mls); 781 } 782 } 783 784 /* 785 * The dbuf evict thread is responsible for aging out dbufs from the 786 * cache. Once the cache has reached it's maximum size, dbufs are removed 787 * and destroyed. The eviction thread will continue running until the size 788 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 789 * out of the cache it is destroyed and becomes eligible for arc eviction. 790 */ 791 static __attribute__((noreturn)) void 792 dbuf_evict_thread(void *unused) 793 { 794 (void) unused; 795 callb_cpr_t cpr; 796 797 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 798 799 mutex_enter(&dbuf_evict_lock); 800 while (!dbuf_evict_thread_exit) { 801 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 802 CALLB_CPR_SAFE_BEGIN(&cpr); 803 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 804 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 805 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 806 } 807 mutex_exit(&dbuf_evict_lock); 808 809 /* 810 * Keep evicting as long as we're above the low water mark 811 * for the cache. We do this without holding the locks to 812 * minimize lock contention. 813 */ 814 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 815 dbuf_evict_one(); 816 } 817 818 mutex_enter(&dbuf_evict_lock); 819 } 820 821 dbuf_evict_thread_exit = B_FALSE; 822 cv_broadcast(&dbuf_evict_cv); 823 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 824 thread_exit(); 825 } 826 827 /* 828 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 829 * If the dbuf cache is at its high water mark, then evict a dbuf from the 830 * dbuf cache using the caller's context. 831 */ 832 static void 833 dbuf_evict_notify(uint64_t size) 834 { 835 /* 836 * We check if we should evict without holding the dbuf_evict_lock, 837 * because it's OK to occasionally make the wrong decision here, 838 * and grabbing the lock results in massive lock contention. 839 */ 840 if (size > dbuf_cache_target_bytes()) { 841 if (size > dbuf_cache_hiwater_bytes()) 842 dbuf_evict_one(); 843 cv_signal(&dbuf_evict_cv); 844 } 845 } 846 847 static int 848 dbuf_kstat_update(kstat_t *ksp, int rw) 849 { 850 dbuf_stats_t *ds = ksp->ks_data; 851 dbuf_hash_table_t *h = &dbuf_hash_table; 852 853 if (rw == KSTAT_WRITE) 854 return (SET_ERROR(EACCES)); 855 856 ds->cache_count.value.ui64 = 857 wmsum_value(&dbuf_sums.cache_count); 858 ds->cache_size_bytes.value.ui64 = 859 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 860 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 861 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 862 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 863 ds->cache_total_evicts.value.ui64 = 864 wmsum_value(&dbuf_sums.cache_total_evicts); 865 for (int i = 0; i < DN_MAX_LEVELS; i++) { 866 ds->cache_levels[i].value.ui64 = 867 wmsum_value(&dbuf_sums.cache_levels[i]); 868 ds->cache_levels_bytes[i].value.ui64 = 869 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 870 } 871 ds->hash_hits.value.ui64 = 872 wmsum_value(&dbuf_sums.hash_hits); 873 ds->hash_misses.value.ui64 = 874 wmsum_value(&dbuf_sums.hash_misses); 875 ds->hash_collisions.value.ui64 = 876 wmsum_value(&dbuf_sums.hash_collisions); 877 ds->hash_chains.value.ui64 = 878 wmsum_value(&dbuf_sums.hash_chains); 879 ds->hash_insert_race.value.ui64 = 880 wmsum_value(&dbuf_sums.hash_insert_race); 881 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 882 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 883 ds->metadata_cache_count.value.ui64 = 884 wmsum_value(&dbuf_sums.metadata_cache_count); 885 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 886 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 887 ds->metadata_cache_overflow.value.ui64 = 888 wmsum_value(&dbuf_sums.metadata_cache_overflow); 889 return (0); 890 } 891 892 void 893 dbuf_init(void) 894 { 895 uint64_t hmsize, hsize = 1ULL << 16; 896 dbuf_hash_table_t *h = &dbuf_hash_table; 897 898 /* 899 * The hash table is big enough to fill one eighth of physical memory 900 * with an average block size of zfs_arc_average_blocksize (default 8K). 901 * By default, the table will take up 902 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 903 */ 904 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 905 hsize <<= 1; 906 907 h->hash_table = NULL; 908 while (h->hash_table == NULL) { 909 h->hash_table_mask = hsize - 1; 910 911 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 912 if (h->hash_table == NULL) 913 hsize >>= 1; 914 915 ASSERT3U(hsize, >=, 1ULL << 10); 916 } 917 918 /* 919 * The hash table buckets are protected by an array of mutexes where 920 * each mutex is reponsible for protecting 128 buckets. A minimum 921 * array size of 8192 is targeted to avoid contention. 922 */ 923 if (dbuf_mutex_cache_shift == 0) 924 hmsize = MAX(hsize >> 7, 1ULL << 13); 925 else 926 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 927 928 h->hash_mutexes = NULL; 929 while (h->hash_mutexes == NULL) { 930 h->hash_mutex_mask = hmsize - 1; 931 932 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 933 KM_SLEEP); 934 if (h->hash_mutexes == NULL) 935 hmsize >>= 1; 936 } 937 938 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 939 sizeof (dmu_buf_impl_t), 940 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 941 942 for (int i = 0; i < hmsize; i++) 943 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 944 945 dbuf_stats_init(h); 946 947 /* 948 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 949 * configuration is not required. 950 */ 951 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 952 953 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 954 multilist_create(&dbuf_caches[dcs].cache, 955 sizeof (dmu_buf_impl_t), 956 offsetof(dmu_buf_impl_t, db_cache_link), 957 dbuf_cache_multilist_index_func); 958 zfs_refcount_create(&dbuf_caches[dcs].size); 959 } 960 961 dbuf_evict_thread_exit = B_FALSE; 962 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 963 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 964 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 965 NULL, 0, &p0, TS_RUN, minclsyspri); 966 967 wmsum_init(&dbuf_sums.cache_count, 0); 968 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 969 for (int i = 0; i < DN_MAX_LEVELS; i++) { 970 wmsum_init(&dbuf_sums.cache_levels[i], 0); 971 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 972 } 973 wmsum_init(&dbuf_sums.hash_hits, 0); 974 wmsum_init(&dbuf_sums.hash_misses, 0); 975 wmsum_init(&dbuf_sums.hash_collisions, 0); 976 wmsum_init(&dbuf_sums.hash_chains, 0); 977 wmsum_init(&dbuf_sums.hash_insert_race, 0); 978 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 979 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 980 981 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 982 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 983 KSTAT_FLAG_VIRTUAL); 984 if (dbuf_ksp != NULL) { 985 for (int i = 0; i < DN_MAX_LEVELS; i++) { 986 snprintf(dbuf_stats.cache_levels[i].name, 987 KSTAT_STRLEN, "cache_level_%d", i); 988 dbuf_stats.cache_levels[i].data_type = 989 KSTAT_DATA_UINT64; 990 snprintf(dbuf_stats.cache_levels_bytes[i].name, 991 KSTAT_STRLEN, "cache_level_%d_bytes", i); 992 dbuf_stats.cache_levels_bytes[i].data_type = 993 KSTAT_DATA_UINT64; 994 } 995 dbuf_ksp->ks_data = &dbuf_stats; 996 dbuf_ksp->ks_update = dbuf_kstat_update; 997 kstat_install(dbuf_ksp); 998 } 999 } 1000 1001 void 1002 dbuf_fini(void) 1003 { 1004 dbuf_hash_table_t *h = &dbuf_hash_table; 1005 1006 dbuf_stats_destroy(); 1007 1008 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1009 mutex_destroy(&h->hash_mutexes[i]); 1010 1011 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1012 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1013 sizeof (kmutex_t)); 1014 1015 kmem_cache_destroy(dbuf_kmem_cache); 1016 taskq_destroy(dbu_evict_taskq); 1017 1018 mutex_enter(&dbuf_evict_lock); 1019 dbuf_evict_thread_exit = B_TRUE; 1020 while (dbuf_evict_thread_exit) { 1021 cv_signal(&dbuf_evict_cv); 1022 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1023 } 1024 mutex_exit(&dbuf_evict_lock); 1025 1026 mutex_destroy(&dbuf_evict_lock); 1027 cv_destroy(&dbuf_evict_cv); 1028 1029 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1030 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1031 multilist_destroy(&dbuf_caches[dcs].cache); 1032 } 1033 1034 if (dbuf_ksp != NULL) { 1035 kstat_delete(dbuf_ksp); 1036 dbuf_ksp = NULL; 1037 } 1038 1039 wmsum_fini(&dbuf_sums.cache_count); 1040 wmsum_fini(&dbuf_sums.cache_total_evicts); 1041 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1042 wmsum_fini(&dbuf_sums.cache_levels[i]); 1043 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1044 } 1045 wmsum_fini(&dbuf_sums.hash_hits); 1046 wmsum_fini(&dbuf_sums.hash_misses); 1047 wmsum_fini(&dbuf_sums.hash_collisions); 1048 wmsum_fini(&dbuf_sums.hash_chains); 1049 wmsum_fini(&dbuf_sums.hash_insert_race); 1050 wmsum_fini(&dbuf_sums.metadata_cache_count); 1051 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1052 } 1053 1054 /* 1055 * Other stuff. 1056 */ 1057 1058 #ifdef ZFS_DEBUG 1059 static void 1060 dbuf_verify(dmu_buf_impl_t *db) 1061 { 1062 dnode_t *dn; 1063 dbuf_dirty_record_t *dr; 1064 uint32_t txg_prev; 1065 1066 ASSERT(MUTEX_HELD(&db->db_mtx)); 1067 1068 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1069 return; 1070 1071 ASSERT(db->db_objset != NULL); 1072 DB_DNODE_ENTER(db); 1073 dn = DB_DNODE(db); 1074 if (dn == NULL) { 1075 ASSERT(db->db_parent == NULL); 1076 ASSERT(db->db_blkptr == NULL); 1077 } else { 1078 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1079 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1080 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1081 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1082 db->db_blkid == DMU_SPILL_BLKID || 1083 !avl_is_empty(&dn->dn_dbufs)); 1084 } 1085 if (db->db_blkid == DMU_BONUS_BLKID) { 1086 ASSERT(dn != NULL); 1087 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1088 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1089 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1090 ASSERT(dn != NULL); 1091 ASSERT0(db->db.db_offset); 1092 } else { 1093 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1094 } 1095 1096 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1097 ASSERT(dr->dr_dbuf == db); 1098 txg_prev = dr->dr_txg; 1099 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1100 dr = list_next(&db->db_dirty_records, dr)) { 1101 ASSERT(dr->dr_dbuf == db); 1102 ASSERT(txg_prev > dr->dr_txg); 1103 txg_prev = dr->dr_txg; 1104 } 1105 } 1106 1107 /* 1108 * We can't assert that db_size matches dn_datablksz because it 1109 * can be momentarily different when another thread is doing 1110 * dnode_set_blksz(). 1111 */ 1112 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1113 dr = db->db_data_pending; 1114 /* 1115 * It should only be modified in syncing context, so 1116 * make sure we only have one copy of the data. 1117 */ 1118 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1119 } 1120 1121 /* verify db->db_blkptr */ 1122 if (db->db_blkptr) { 1123 if (db->db_parent == dn->dn_dbuf) { 1124 /* db is pointed to by the dnode */ 1125 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1126 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1127 ASSERT(db->db_parent == NULL); 1128 else 1129 ASSERT(db->db_parent != NULL); 1130 if (db->db_blkid != DMU_SPILL_BLKID) 1131 ASSERT3P(db->db_blkptr, ==, 1132 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1133 } else { 1134 /* db is pointed to by an indirect block */ 1135 int epb __maybe_unused = db->db_parent->db.db_size >> 1136 SPA_BLKPTRSHIFT; 1137 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1138 ASSERT3U(db->db_parent->db.db_object, ==, 1139 db->db.db_object); 1140 /* 1141 * dnode_grow_indblksz() can make this fail if we don't 1142 * have the parent's rwlock. XXX indblksz no longer 1143 * grows. safe to do this now? 1144 */ 1145 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1146 ASSERT3P(db->db_blkptr, ==, 1147 ((blkptr_t *)db->db_parent->db.db_data + 1148 db->db_blkid % epb)); 1149 } 1150 } 1151 } 1152 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1153 (db->db_buf == NULL || db->db_buf->b_data) && 1154 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1155 db->db_state != DB_FILL && !dn->dn_free_txg) { 1156 /* 1157 * If the blkptr isn't set but they have nonzero data, 1158 * it had better be dirty, otherwise we'll lose that 1159 * data when we evict this buffer. 1160 * 1161 * There is an exception to this rule for indirect blocks; in 1162 * this case, if the indirect block is a hole, we fill in a few 1163 * fields on each of the child blocks (importantly, birth time) 1164 * to prevent hole birth times from being lost when you 1165 * partially fill in a hole. 1166 */ 1167 if (db->db_dirtycnt == 0) { 1168 if (db->db_level == 0) { 1169 uint64_t *buf = db->db.db_data; 1170 int i; 1171 1172 for (i = 0; i < db->db.db_size >> 3; i++) { 1173 ASSERT(buf[i] == 0); 1174 } 1175 } else { 1176 blkptr_t *bps = db->db.db_data; 1177 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1178 db->db.db_size); 1179 /* 1180 * We want to verify that all the blkptrs in the 1181 * indirect block are holes, but we may have 1182 * automatically set up a few fields for them. 1183 * We iterate through each blkptr and verify 1184 * they only have those fields set. 1185 */ 1186 for (int i = 0; 1187 i < db->db.db_size / sizeof (blkptr_t); 1188 i++) { 1189 blkptr_t *bp = &bps[i]; 1190 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1191 &bp->blk_cksum)); 1192 ASSERT( 1193 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1194 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1195 DVA_IS_EMPTY(&bp->blk_dva[2])); 1196 ASSERT0(bp->blk_fill); 1197 ASSERT0(bp->blk_pad[0]); 1198 ASSERT0(bp->blk_pad[1]); 1199 ASSERT(!BP_IS_EMBEDDED(bp)); 1200 ASSERT(BP_IS_HOLE(bp)); 1201 ASSERT0(bp->blk_phys_birth); 1202 } 1203 } 1204 } 1205 } 1206 DB_DNODE_EXIT(db); 1207 } 1208 #endif 1209 1210 static void 1211 dbuf_clear_data(dmu_buf_impl_t *db) 1212 { 1213 ASSERT(MUTEX_HELD(&db->db_mtx)); 1214 dbuf_evict_user(db); 1215 ASSERT3P(db->db_buf, ==, NULL); 1216 db->db.db_data = NULL; 1217 if (db->db_state != DB_NOFILL) { 1218 db->db_state = DB_UNCACHED; 1219 DTRACE_SET_STATE(db, "clear data"); 1220 } 1221 } 1222 1223 static void 1224 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1225 { 1226 ASSERT(MUTEX_HELD(&db->db_mtx)); 1227 ASSERT(buf != NULL); 1228 1229 db->db_buf = buf; 1230 ASSERT(buf->b_data != NULL); 1231 db->db.db_data = buf->b_data; 1232 } 1233 1234 static arc_buf_t * 1235 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1236 { 1237 spa_t *spa = db->db_objset->os_spa; 1238 1239 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1240 } 1241 1242 /* 1243 * Loan out an arc_buf for read. Return the loaned arc_buf. 1244 */ 1245 arc_buf_t * 1246 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1247 { 1248 arc_buf_t *abuf; 1249 1250 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1251 mutex_enter(&db->db_mtx); 1252 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1253 int blksz = db->db.db_size; 1254 spa_t *spa = db->db_objset->os_spa; 1255 1256 mutex_exit(&db->db_mtx); 1257 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1258 memcpy(abuf->b_data, db->db.db_data, blksz); 1259 } else { 1260 abuf = db->db_buf; 1261 arc_loan_inuse_buf(abuf, db); 1262 db->db_buf = NULL; 1263 dbuf_clear_data(db); 1264 mutex_exit(&db->db_mtx); 1265 } 1266 return (abuf); 1267 } 1268 1269 /* 1270 * Calculate which level n block references the data at the level 0 offset 1271 * provided. 1272 */ 1273 uint64_t 1274 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1275 { 1276 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1277 /* 1278 * The level n blkid is equal to the level 0 blkid divided by 1279 * the number of level 0s in a level n block. 1280 * 1281 * The level 0 blkid is offset >> datablkshift = 1282 * offset / 2^datablkshift. 1283 * 1284 * The number of level 0s in a level n is the number of block 1285 * pointers in an indirect block, raised to the power of level. 1286 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1287 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1288 * 1289 * Thus, the level n blkid is: offset / 1290 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1291 * = offset / 2^(datablkshift + level * 1292 * (indblkshift - SPA_BLKPTRSHIFT)) 1293 * = offset >> (datablkshift + level * 1294 * (indblkshift - SPA_BLKPTRSHIFT)) 1295 */ 1296 1297 const unsigned exp = dn->dn_datablkshift + 1298 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1299 1300 if (exp >= 8 * sizeof (offset)) { 1301 /* This only happens on the highest indirection level */ 1302 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1303 return (0); 1304 } 1305 1306 ASSERT3U(exp, <, 8 * sizeof (offset)); 1307 1308 return (offset >> exp); 1309 } else { 1310 ASSERT3U(offset, <, dn->dn_datablksz); 1311 return (0); 1312 } 1313 } 1314 1315 /* 1316 * This function is used to lock the parent of the provided dbuf. This should be 1317 * used when modifying or reading db_blkptr. 1318 */ 1319 db_lock_type_t 1320 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1321 { 1322 enum db_lock_type ret = DLT_NONE; 1323 if (db->db_parent != NULL) { 1324 rw_enter(&db->db_parent->db_rwlock, rw); 1325 ret = DLT_PARENT; 1326 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1327 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1328 tag); 1329 ret = DLT_OBJSET; 1330 } 1331 /* 1332 * We only return a DLT_NONE lock when it's the top-most indirect block 1333 * of the meta-dnode of the MOS. 1334 */ 1335 return (ret); 1336 } 1337 1338 /* 1339 * We need to pass the lock type in because it's possible that the block will 1340 * move from being the topmost indirect block in a dnode (and thus, have no 1341 * parent) to not the top-most via an indirection increase. This would cause a 1342 * panic if we didn't pass the lock type in. 1343 */ 1344 void 1345 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1346 { 1347 if (type == DLT_PARENT) 1348 rw_exit(&db->db_parent->db_rwlock); 1349 else if (type == DLT_OBJSET) 1350 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1351 } 1352 1353 static void 1354 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1355 arc_buf_t *buf, void *vdb) 1356 { 1357 (void) zb, (void) bp; 1358 dmu_buf_impl_t *db = vdb; 1359 1360 mutex_enter(&db->db_mtx); 1361 ASSERT3U(db->db_state, ==, DB_READ); 1362 /* 1363 * All reads are synchronous, so we must have a hold on the dbuf 1364 */ 1365 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1366 ASSERT(db->db_buf == NULL); 1367 ASSERT(db->db.db_data == NULL); 1368 if (buf == NULL) { 1369 /* i/o error */ 1370 ASSERT(zio == NULL || zio->io_error != 0); 1371 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1372 ASSERT3P(db->db_buf, ==, NULL); 1373 db->db_state = DB_UNCACHED; 1374 DTRACE_SET_STATE(db, "i/o error"); 1375 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1376 /* freed in flight */ 1377 ASSERT(zio == NULL || zio->io_error == 0); 1378 arc_release(buf, db); 1379 memset(buf->b_data, 0, db->db.db_size); 1380 arc_buf_freeze(buf); 1381 db->db_freed_in_flight = FALSE; 1382 dbuf_set_data(db, buf); 1383 db->db_state = DB_CACHED; 1384 DTRACE_SET_STATE(db, "freed in flight"); 1385 } else { 1386 /* success */ 1387 ASSERT(zio == NULL || zio->io_error == 0); 1388 dbuf_set_data(db, buf); 1389 db->db_state = DB_CACHED; 1390 DTRACE_SET_STATE(db, "successful read"); 1391 } 1392 cv_broadcast(&db->db_changed); 1393 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1394 } 1395 1396 /* 1397 * Shortcut for performing reads on bonus dbufs. Returns 1398 * an error if we fail to verify the dnode associated with 1399 * a decrypted block. Otherwise success. 1400 */ 1401 static int 1402 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1403 { 1404 int bonuslen, max_bonuslen, err; 1405 1406 err = dbuf_read_verify_dnode_crypt(db, flags); 1407 if (err) 1408 return (err); 1409 1410 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1411 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1412 ASSERT(MUTEX_HELD(&db->db_mtx)); 1413 ASSERT(DB_DNODE_HELD(db)); 1414 ASSERT3U(bonuslen, <=, db->db.db_size); 1415 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1416 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1417 if (bonuslen < max_bonuslen) 1418 memset(db->db.db_data, 0, max_bonuslen); 1419 if (bonuslen) 1420 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1421 db->db_state = DB_CACHED; 1422 DTRACE_SET_STATE(db, "bonus buffer filled"); 1423 return (0); 1424 } 1425 1426 static void 1427 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn) 1428 { 1429 blkptr_t *bps = db->db.db_data; 1430 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1431 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1432 1433 for (int i = 0; i < n_bps; i++) { 1434 blkptr_t *bp = &bps[i]; 1435 1436 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs); 1437 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ? 1438 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr)); 1439 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr)); 1440 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1); 1441 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0); 1442 } 1443 } 1444 1445 /* 1446 * Handle reads on dbufs that are holes, if necessary. This function 1447 * requires that the dbuf's mutex is held. Returns success (0) if action 1448 * was taken, ENOENT if no action was taken. 1449 */ 1450 static int 1451 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn) 1452 { 1453 ASSERT(MUTEX_HELD(&db->db_mtx)); 1454 1455 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr); 1456 /* 1457 * For level 0 blocks only, if the above check fails: 1458 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1459 * processes the delete record and clears the bp while we are waiting 1460 * for the dn_mtx (resulting in a "no" from block_freed). 1461 */ 1462 if (!is_hole && db->db_level == 0) { 1463 is_hole = dnode_block_freed(dn, db->db_blkid) || 1464 BP_IS_HOLE(db->db_blkptr); 1465 } 1466 1467 if (is_hole) { 1468 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1469 memset(db->db.db_data, 0, db->db.db_size); 1470 1471 if (db->db_blkptr != NULL && db->db_level > 0 && 1472 BP_IS_HOLE(db->db_blkptr) && 1473 db->db_blkptr->blk_birth != 0) { 1474 dbuf_handle_indirect_hole(db, dn); 1475 } 1476 db->db_state = DB_CACHED; 1477 DTRACE_SET_STATE(db, "hole read satisfied"); 1478 return (0); 1479 } 1480 return (ENOENT); 1481 } 1482 1483 /* 1484 * This function ensures that, when doing a decrypting read of a block, 1485 * we make sure we have decrypted the dnode associated with it. We must do 1486 * this so that we ensure we are fully authenticating the checksum-of-MACs 1487 * tree from the root of the objset down to this block. Indirect blocks are 1488 * always verified against their secure checksum-of-MACs assuming that the 1489 * dnode containing them is correct. Now that we are doing a decrypting read, 1490 * we can be sure that the key is loaded and verify that assumption. This is 1491 * especially important considering that we always read encrypted dnode 1492 * blocks as raw data (without verifying their MACs) to start, and 1493 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1494 */ 1495 static int 1496 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags) 1497 { 1498 int err = 0; 1499 objset_t *os = db->db_objset; 1500 arc_buf_t *dnode_abuf; 1501 dnode_t *dn; 1502 zbookmark_phys_t zb; 1503 1504 ASSERT(MUTEX_HELD(&db->db_mtx)); 1505 1506 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1507 !os->os_encrypted || os->os_raw_receive) 1508 return (0); 1509 1510 DB_DNODE_ENTER(db); 1511 dn = DB_DNODE(db); 1512 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL; 1513 1514 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) { 1515 DB_DNODE_EXIT(db); 1516 return (0); 1517 } 1518 1519 SET_BOOKMARK(&zb, dmu_objset_id(os), 1520 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid); 1521 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE); 1522 1523 /* 1524 * An error code of EACCES tells us that the key is still not 1525 * available. This is ok if we are only reading authenticated 1526 * (and therefore non-encrypted) blocks. 1527 */ 1528 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1529 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1530 (db->db_blkid == DMU_BONUS_BLKID && 1531 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1532 err = 0; 1533 1534 DB_DNODE_EXIT(db); 1535 1536 return (err); 1537 } 1538 1539 /* 1540 * Drops db_mtx and the parent lock specified by dblt and tag before 1541 * returning. 1542 */ 1543 static int 1544 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags, 1545 db_lock_type_t dblt, const void *tag) 1546 { 1547 dnode_t *dn; 1548 zbookmark_phys_t zb; 1549 uint32_t aflags = ARC_FLAG_NOWAIT; 1550 int err, zio_flags; 1551 1552 DB_DNODE_ENTER(db); 1553 dn = DB_DNODE(db); 1554 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1555 ASSERT(MUTEX_HELD(&db->db_mtx)); 1556 ASSERT(db->db_state == DB_UNCACHED); 1557 ASSERT(db->db_buf == NULL); 1558 ASSERT(db->db_parent == NULL || 1559 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1560 1561 if (db->db_blkid == DMU_BONUS_BLKID) { 1562 err = dbuf_read_bonus(db, dn, flags); 1563 goto early_unlock; 1564 } 1565 1566 err = dbuf_read_hole(db, dn); 1567 if (err == 0) 1568 goto early_unlock; 1569 1570 /* 1571 * Any attempt to read a redacted block should result in an error. This 1572 * will never happen under normal conditions, but can be useful for 1573 * debugging purposes. 1574 */ 1575 if (BP_IS_REDACTED(db->db_blkptr)) { 1576 ASSERT(dsl_dataset_feature_is_active( 1577 db->db_objset->os_dsl_dataset, 1578 SPA_FEATURE_REDACTED_DATASETS)); 1579 err = SET_ERROR(EIO); 1580 goto early_unlock; 1581 } 1582 1583 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1584 db->db.db_object, db->db_level, db->db_blkid); 1585 1586 /* 1587 * All bps of an encrypted os should have the encryption bit set. 1588 * If this is not true it indicates tampering and we report an error. 1589 */ 1590 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) { 1591 spa_log_error(db->db_objset->os_spa, &zb); 1592 zfs_panic_recover("unencrypted block in encrypted " 1593 "object set %llu", dmu_objset_id(db->db_objset)); 1594 err = SET_ERROR(EIO); 1595 goto early_unlock; 1596 } 1597 1598 err = dbuf_read_verify_dnode_crypt(db, flags); 1599 if (err != 0) 1600 goto early_unlock; 1601 1602 DB_DNODE_EXIT(db); 1603 1604 db->db_state = DB_READ; 1605 DTRACE_SET_STATE(db, "read issued"); 1606 mutex_exit(&db->db_mtx); 1607 1608 if (dbuf_is_l2cacheable(db)) 1609 aflags |= ARC_FLAG_L2CACHE; 1610 1611 dbuf_add_ref(db, NULL); 1612 1613 zio_flags = (flags & DB_RF_CANFAIL) ? 1614 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1615 1616 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1617 zio_flags |= ZIO_FLAG_RAW; 1618 /* 1619 * The zio layer will copy the provided blkptr later, but we need to 1620 * do this now so that we can release the parent's rwlock. We have to 1621 * do that now so that if dbuf_read_done is called synchronously (on 1622 * an l1 cache hit) we don't acquire the db_mtx while holding the 1623 * parent's rwlock, which would be a lock ordering violation. 1624 */ 1625 blkptr_t bp = *db->db_blkptr; 1626 dmu_buf_unlock_parent(db, dblt, tag); 1627 (void) arc_read(zio, db->db_objset->os_spa, &bp, 1628 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1629 &aflags, &zb); 1630 return (err); 1631 early_unlock: 1632 DB_DNODE_EXIT(db); 1633 mutex_exit(&db->db_mtx); 1634 dmu_buf_unlock_parent(db, dblt, tag); 1635 return (err); 1636 } 1637 1638 /* 1639 * This is our just-in-time copy function. It makes a copy of buffers that 1640 * have been modified in a previous transaction group before we access them in 1641 * the current active group. 1642 * 1643 * This function is used in three places: when we are dirtying a buffer for the 1644 * first time in a txg, when we are freeing a range in a dnode that includes 1645 * this buffer, and when we are accessing a buffer which was received compressed 1646 * and later referenced in a WRITE_BYREF record. 1647 * 1648 * Note that when we are called from dbuf_free_range() we do not put a hold on 1649 * the buffer, we just traverse the active dbuf list for the dnode. 1650 */ 1651 static void 1652 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1653 { 1654 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1655 1656 ASSERT(MUTEX_HELD(&db->db_mtx)); 1657 ASSERT(db->db.db_data != NULL); 1658 ASSERT(db->db_level == 0); 1659 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1660 1661 if (dr == NULL || 1662 (dr->dt.dl.dr_data != 1663 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1664 return; 1665 1666 /* 1667 * If the last dirty record for this dbuf has not yet synced 1668 * and its referencing the dbuf data, either: 1669 * reset the reference to point to a new copy, 1670 * or (if there a no active holders) 1671 * just null out the current db_data pointer. 1672 */ 1673 ASSERT3U(dr->dr_txg, >=, txg - 2); 1674 if (db->db_blkid == DMU_BONUS_BLKID) { 1675 dnode_t *dn = DB_DNODE(db); 1676 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1677 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1678 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1679 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1680 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1681 dnode_t *dn = DB_DNODE(db); 1682 int size = arc_buf_size(db->db_buf); 1683 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1684 spa_t *spa = db->db_objset->os_spa; 1685 enum zio_compress compress_type = 1686 arc_get_compression(db->db_buf); 1687 uint8_t complevel = arc_get_complevel(db->db_buf); 1688 1689 if (arc_is_encrypted(db->db_buf)) { 1690 boolean_t byteorder; 1691 uint8_t salt[ZIO_DATA_SALT_LEN]; 1692 uint8_t iv[ZIO_DATA_IV_LEN]; 1693 uint8_t mac[ZIO_DATA_MAC_LEN]; 1694 1695 arc_get_raw_params(db->db_buf, &byteorder, salt, 1696 iv, mac); 1697 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1698 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1699 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1700 compress_type, complevel); 1701 } else if (compress_type != ZIO_COMPRESS_OFF) { 1702 ASSERT3U(type, ==, ARC_BUFC_DATA); 1703 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1704 size, arc_buf_lsize(db->db_buf), compress_type, 1705 complevel); 1706 } else { 1707 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1708 } 1709 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1710 } else { 1711 db->db_buf = NULL; 1712 dbuf_clear_data(db); 1713 } 1714 } 1715 1716 int 1717 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags) 1718 { 1719 int err = 0; 1720 boolean_t prefetch; 1721 dnode_t *dn; 1722 1723 /* 1724 * We don't have to hold the mutex to check db_state because it 1725 * can't be freed while we have a hold on the buffer. 1726 */ 1727 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1728 1729 if (db->db_state == DB_NOFILL) 1730 return (SET_ERROR(EIO)); 1731 1732 DB_DNODE_ENTER(db); 1733 dn = DB_DNODE(db); 1734 1735 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1736 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL && 1737 DBUF_IS_CACHEABLE(db); 1738 1739 mutex_enter(&db->db_mtx); 1740 if (db->db_state == DB_CACHED) { 1741 /* 1742 * Ensure that this block's dnode has been decrypted if 1743 * the caller has requested decrypted data. 1744 */ 1745 err = dbuf_read_verify_dnode_crypt(db, flags); 1746 1747 /* 1748 * If the arc buf is compressed or encrypted and the caller 1749 * requested uncompressed data, we need to untransform it 1750 * before returning. We also call arc_untransform() on any 1751 * unauthenticated blocks, which will verify their MAC if 1752 * the key is now available. 1753 */ 1754 if (err == 0 && db->db_buf != NULL && 1755 (flags & DB_RF_NO_DECRYPT) == 0 && 1756 (arc_is_encrypted(db->db_buf) || 1757 arc_is_unauthenticated(db->db_buf) || 1758 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1759 spa_t *spa = dn->dn_objset->os_spa; 1760 zbookmark_phys_t zb; 1761 1762 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1763 db->db.db_object, db->db_level, db->db_blkid); 1764 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1765 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1766 dbuf_set_data(db, db->db_buf); 1767 } 1768 mutex_exit(&db->db_mtx); 1769 if (err == 0 && prefetch) { 1770 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1771 B_FALSE, flags & DB_RF_HAVESTRUCT); 1772 } 1773 DB_DNODE_EXIT(db); 1774 DBUF_STAT_BUMP(hash_hits); 1775 } else if (db->db_state == DB_UNCACHED) { 1776 boolean_t need_wait = B_FALSE; 1777 1778 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1779 1780 if (zio == NULL && 1781 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) { 1782 spa_t *spa = dn->dn_objset->os_spa; 1783 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1784 need_wait = B_TRUE; 1785 } 1786 err = dbuf_read_impl(db, zio, flags, dblt, FTAG); 1787 /* 1788 * dbuf_read_impl has dropped db_mtx and our parent's rwlock 1789 * for us 1790 */ 1791 if (!err && prefetch) { 1792 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1793 db->db_state != DB_CACHED, 1794 flags & DB_RF_HAVESTRUCT); 1795 } 1796 1797 DB_DNODE_EXIT(db); 1798 DBUF_STAT_BUMP(hash_misses); 1799 1800 /* 1801 * If we created a zio_root we must execute it to avoid 1802 * leaking it, even if it isn't attached to any work due 1803 * to an error in dbuf_read_impl(). 1804 */ 1805 if (need_wait) { 1806 if (err == 0) 1807 err = zio_wait(zio); 1808 else 1809 VERIFY0(zio_wait(zio)); 1810 } 1811 } else { 1812 /* 1813 * Another reader came in while the dbuf was in flight 1814 * between UNCACHED and CACHED. Either a writer will finish 1815 * writing the buffer (sending the dbuf to CACHED) or the 1816 * first reader's request will reach the read_done callback 1817 * and send the dbuf to CACHED. Otherwise, a failure 1818 * occurred and the dbuf went to UNCACHED. 1819 */ 1820 mutex_exit(&db->db_mtx); 1821 if (prefetch) { 1822 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, 1823 B_TRUE, flags & DB_RF_HAVESTRUCT); 1824 } 1825 DB_DNODE_EXIT(db); 1826 DBUF_STAT_BUMP(hash_misses); 1827 1828 /* Skip the wait per the caller's request. */ 1829 if ((flags & DB_RF_NEVERWAIT) == 0) { 1830 mutex_enter(&db->db_mtx); 1831 while (db->db_state == DB_READ || 1832 db->db_state == DB_FILL) { 1833 ASSERT(db->db_state == DB_READ || 1834 (flags & DB_RF_HAVESTRUCT) == 0); 1835 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, 1836 db, zio_t *, zio); 1837 cv_wait(&db->db_changed, &db->db_mtx); 1838 } 1839 if (db->db_state == DB_UNCACHED) 1840 err = SET_ERROR(EIO); 1841 mutex_exit(&db->db_mtx); 1842 } 1843 } 1844 1845 return (err); 1846 } 1847 1848 static void 1849 dbuf_noread(dmu_buf_impl_t *db) 1850 { 1851 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1852 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1853 mutex_enter(&db->db_mtx); 1854 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1855 cv_wait(&db->db_changed, &db->db_mtx); 1856 if (db->db_state == DB_UNCACHED) { 1857 ASSERT(db->db_buf == NULL); 1858 ASSERT(db->db.db_data == NULL); 1859 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1860 db->db_state = DB_FILL; 1861 DTRACE_SET_STATE(db, "assigning filled buffer"); 1862 } else if (db->db_state == DB_NOFILL) { 1863 dbuf_clear_data(db); 1864 } else { 1865 ASSERT3U(db->db_state, ==, DB_CACHED); 1866 } 1867 mutex_exit(&db->db_mtx); 1868 } 1869 1870 void 1871 dbuf_unoverride(dbuf_dirty_record_t *dr) 1872 { 1873 dmu_buf_impl_t *db = dr->dr_dbuf; 1874 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1875 uint64_t txg = dr->dr_txg; 1876 1877 ASSERT(MUTEX_HELD(&db->db_mtx)); 1878 /* 1879 * This assert is valid because dmu_sync() expects to be called by 1880 * a zilog's get_data while holding a range lock. This call only 1881 * comes from dbuf_dirty() callers who must also hold a range lock. 1882 */ 1883 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1884 ASSERT(db->db_level == 0); 1885 1886 if (db->db_blkid == DMU_BONUS_BLKID || 1887 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1888 return; 1889 1890 ASSERT(db->db_data_pending != dr); 1891 1892 /* free this block */ 1893 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1894 zio_free(db->db_objset->os_spa, txg, bp); 1895 1896 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1897 dr->dt.dl.dr_nopwrite = B_FALSE; 1898 dr->dt.dl.dr_has_raw_params = B_FALSE; 1899 1900 /* 1901 * Release the already-written buffer, so we leave it in 1902 * a consistent dirty state. Note that all callers are 1903 * modifying the buffer, so they will immediately do 1904 * another (redundant) arc_release(). Therefore, leave 1905 * the buf thawed to save the effort of freezing & 1906 * immediately re-thawing it. 1907 */ 1908 arc_release(dr->dt.dl.dr_data, db); 1909 } 1910 1911 /* 1912 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1913 * data blocks in the free range, so that any future readers will find 1914 * empty blocks. 1915 */ 1916 void 1917 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1918 dmu_tx_t *tx) 1919 { 1920 dmu_buf_impl_t *db_search; 1921 dmu_buf_impl_t *db, *db_next; 1922 uint64_t txg = tx->tx_txg; 1923 avl_index_t where; 1924 dbuf_dirty_record_t *dr; 1925 1926 if (end_blkid > dn->dn_maxblkid && 1927 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1928 end_blkid = dn->dn_maxblkid; 1929 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1930 (u_longlong_t)end_blkid); 1931 1932 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1933 db_search->db_level = 0; 1934 db_search->db_blkid = start_blkid; 1935 db_search->db_state = DB_SEARCH; 1936 1937 mutex_enter(&dn->dn_dbufs_mtx); 1938 db = avl_find(&dn->dn_dbufs, db_search, &where); 1939 ASSERT3P(db, ==, NULL); 1940 1941 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1942 1943 for (; db != NULL; db = db_next) { 1944 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1945 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1946 1947 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1948 break; 1949 } 1950 ASSERT3U(db->db_blkid, >=, start_blkid); 1951 1952 /* found a level 0 buffer in the range */ 1953 mutex_enter(&db->db_mtx); 1954 if (dbuf_undirty(db, tx)) { 1955 /* mutex has been dropped and dbuf destroyed */ 1956 continue; 1957 } 1958 1959 if (db->db_state == DB_UNCACHED || 1960 db->db_state == DB_NOFILL || 1961 db->db_state == DB_EVICTING) { 1962 ASSERT(db->db.db_data == NULL); 1963 mutex_exit(&db->db_mtx); 1964 continue; 1965 } 1966 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1967 /* will be handled in dbuf_read_done or dbuf_rele */ 1968 db->db_freed_in_flight = TRUE; 1969 mutex_exit(&db->db_mtx); 1970 continue; 1971 } 1972 if (zfs_refcount_count(&db->db_holds) == 0) { 1973 ASSERT(db->db_buf); 1974 dbuf_destroy(db); 1975 continue; 1976 } 1977 /* The dbuf is referenced */ 1978 1979 dr = list_head(&db->db_dirty_records); 1980 if (dr != NULL) { 1981 if (dr->dr_txg == txg) { 1982 /* 1983 * This buffer is "in-use", re-adjust the file 1984 * size to reflect that this buffer may 1985 * contain new data when we sync. 1986 */ 1987 if (db->db_blkid != DMU_SPILL_BLKID && 1988 db->db_blkid > dn->dn_maxblkid) 1989 dn->dn_maxblkid = db->db_blkid; 1990 dbuf_unoverride(dr); 1991 } else { 1992 /* 1993 * This dbuf is not dirty in the open context. 1994 * Either uncache it (if its not referenced in 1995 * the open context) or reset its contents to 1996 * empty. 1997 */ 1998 dbuf_fix_old_data(db, txg); 1999 } 2000 } 2001 /* clear the contents if its cached */ 2002 if (db->db_state == DB_CACHED) { 2003 ASSERT(db->db.db_data != NULL); 2004 arc_release(db->db_buf, db); 2005 rw_enter(&db->db_rwlock, RW_WRITER); 2006 memset(db->db.db_data, 0, db->db.db_size); 2007 rw_exit(&db->db_rwlock); 2008 arc_buf_freeze(db->db_buf); 2009 } 2010 2011 mutex_exit(&db->db_mtx); 2012 } 2013 2014 mutex_exit(&dn->dn_dbufs_mtx); 2015 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2016 } 2017 2018 void 2019 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2020 { 2021 arc_buf_t *buf, *old_buf; 2022 dbuf_dirty_record_t *dr; 2023 int osize = db->db.db_size; 2024 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2025 dnode_t *dn; 2026 2027 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2028 2029 DB_DNODE_ENTER(db); 2030 dn = DB_DNODE(db); 2031 2032 /* 2033 * XXX we should be doing a dbuf_read, checking the return 2034 * value and returning that up to our callers 2035 */ 2036 dmu_buf_will_dirty(&db->db, tx); 2037 2038 /* create the data buffer for the new block */ 2039 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2040 2041 /* copy old block data to the new block */ 2042 old_buf = db->db_buf; 2043 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2044 /* zero the remainder */ 2045 if (size > osize) 2046 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2047 2048 mutex_enter(&db->db_mtx); 2049 dbuf_set_data(db, buf); 2050 arc_buf_destroy(old_buf, db); 2051 db->db.db_size = size; 2052 2053 dr = list_head(&db->db_dirty_records); 2054 /* dirty record added by dmu_buf_will_dirty() */ 2055 VERIFY(dr != NULL); 2056 if (db->db_level == 0) 2057 dr->dt.dl.dr_data = buf; 2058 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2059 ASSERT3U(dr->dr_accounted, ==, osize); 2060 dr->dr_accounted = size; 2061 mutex_exit(&db->db_mtx); 2062 2063 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2064 DB_DNODE_EXIT(db); 2065 } 2066 2067 void 2068 dbuf_release_bp(dmu_buf_impl_t *db) 2069 { 2070 objset_t *os __maybe_unused = db->db_objset; 2071 2072 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2073 ASSERT(arc_released(os->os_phys_buf) || 2074 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2075 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2076 2077 (void) arc_release(db->db_buf, db); 2078 } 2079 2080 /* 2081 * We already have a dirty record for this TXG, and we are being 2082 * dirtied again. 2083 */ 2084 static void 2085 dbuf_redirty(dbuf_dirty_record_t *dr) 2086 { 2087 dmu_buf_impl_t *db = dr->dr_dbuf; 2088 2089 ASSERT(MUTEX_HELD(&db->db_mtx)); 2090 2091 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2092 /* 2093 * If this buffer has already been written out, 2094 * we now need to reset its state. 2095 */ 2096 dbuf_unoverride(dr); 2097 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2098 db->db_state != DB_NOFILL) { 2099 /* Already released on initial dirty, so just thaw. */ 2100 ASSERT(arc_released(db->db_buf)); 2101 arc_buf_thaw(db->db_buf); 2102 } 2103 } 2104 } 2105 2106 dbuf_dirty_record_t * 2107 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2108 { 2109 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2110 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2111 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2112 ASSERT(dn->dn_maxblkid >= blkid); 2113 2114 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2115 list_link_init(&dr->dr_dirty_node); 2116 list_link_init(&dr->dr_dbuf_node); 2117 dr->dr_dnode = dn; 2118 dr->dr_txg = tx->tx_txg; 2119 dr->dt.dll.dr_blkid = blkid; 2120 dr->dr_accounted = dn->dn_datablksz; 2121 2122 /* 2123 * There should not be any dbuf for the block that we're dirtying. 2124 * Otherwise the buffer contents could be inconsistent between the 2125 * dbuf and the lightweight dirty record. 2126 */ 2127 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid)); 2128 2129 mutex_enter(&dn->dn_mtx); 2130 int txgoff = tx->tx_txg & TXG_MASK; 2131 if (dn->dn_free_ranges[txgoff] != NULL) { 2132 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2133 } 2134 2135 if (dn->dn_nlevels == 1) { 2136 ASSERT3U(blkid, <, dn->dn_nblkptr); 2137 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2138 mutex_exit(&dn->dn_mtx); 2139 rw_exit(&dn->dn_struct_rwlock); 2140 dnode_setdirty(dn, tx); 2141 } else { 2142 mutex_exit(&dn->dn_mtx); 2143 2144 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2145 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2146 1, blkid >> epbs, FTAG); 2147 rw_exit(&dn->dn_struct_rwlock); 2148 if (parent_db == NULL) { 2149 kmem_free(dr, sizeof (*dr)); 2150 return (NULL); 2151 } 2152 int err = dbuf_read(parent_db, NULL, 2153 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2154 if (err != 0) { 2155 dbuf_rele(parent_db, FTAG); 2156 kmem_free(dr, sizeof (*dr)); 2157 return (NULL); 2158 } 2159 2160 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2161 dbuf_rele(parent_db, FTAG); 2162 mutex_enter(&parent_dr->dt.di.dr_mtx); 2163 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2164 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2165 mutex_exit(&parent_dr->dt.di.dr_mtx); 2166 dr->dr_parent = parent_dr; 2167 } 2168 2169 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2170 2171 return (dr); 2172 } 2173 2174 dbuf_dirty_record_t * 2175 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2176 { 2177 dnode_t *dn; 2178 objset_t *os; 2179 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2180 int txgoff = tx->tx_txg & TXG_MASK; 2181 boolean_t drop_struct_rwlock = B_FALSE; 2182 2183 ASSERT(tx->tx_txg != 0); 2184 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2185 DMU_TX_DIRTY_BUF(tx, db); 2186 2187 DB_DNODE_ENTER(db); 2188 dn = DB_DNODE(db); 2189 /* 2190 * Shouldn't dirty a regular buffer in syncing context. Private 2191 * objects may be dirtied in syncing context, but only if they 2192 * were already pre-dirtied in open context. 2193 */ 2194 #ifdef ZFS_DEBUG 2195 if (dn->dn_objset->os_dsl_dataset != NULL) { 2196 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2197 RW_READER, FTAG); 2198 } 2199 ASSERT(!dmu_tx_is_syncing(tx) || 2200 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2201 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2202 dn->dn_objset->os_dsl_dataset == NULL); 2203 if (dn->dn_objset->os_dsl_dataset != NULL) 2204 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2205 #endif 2206 /* 2207 * We make this assert for private objects as well, but after we 2208 * check if we're already dirty. They are allowed to re-dirty 2209 * in syncing context. 2210 */ 2211 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2212 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2213 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2214 2215 mutex_enter(&db->db_mtx); 2216 /* 2217 * XXX make this true for indirects too? The problem is that 2218 * transactions created with dmu_tx_create_assigned() from 2219 * syncing context don't bother holding ahead. 2220 */ 2221 ASSERT(db->db_level != 0 || 2222 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2223 db->db_state == DB_NOFILL); 2224 2225 mutex_enter(&dn->dn_mtx); 2226 dnode_set_dirtyctx(dn, tx, db); 2227 if (tx->tx_txg > dn->dn_dirty_txg) 2228 dn->dn_dirty_txg = tx->tx_txg; 2229 mutex_exit(&dn->dn_mtx); 2230 2231 if (db->db_blkid == DMU_SPILL_BLKID) 2232 dn->dn_have_spill = B_TRUE; 2233 2234 /* 2235 * If this buffer is already dirty, we're done. 2236 */ 2237 dr_head = list_head(&db->db_dirty_records); 2238 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2239 db->db.db_object == DMU_META_DNODE_OBJECT); 2240 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2241 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2242 DB_DNODE_EXIT(db); 2243 2244 dbuf_redirty(dr_next); 2245 mutex_exit(&db->db_mtx); 2246 return (dr_next); 2247 } 2248 2249 /* 2250 * Only valid if not already dirty. 2251 */ 2252 ASSERT(dn->dn_object == 0 || 2253 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2254 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2255 2256 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2257 2258 /* 2259 * We should only be dirtying in syncing context if it's the 2260 * mos or we're initializing the os or it's a special object. 2261 * However, we are allowed to dirty in syncing context provided 2262 * we already dirtied it in open context. Hence we must make 2263 * this assertion only if we're not already dirty. 2264 */ 2265 os = dn->dn_objset; 2266 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2267 #ifdef ZFS_DEBUG 2268 if (dn->dn_objset->os_dsl_dataset != NULL) 2269 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2270 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2271 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2272 if (dn->dn_objset->os_dsl_dataset != NULL) 2273 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2274 #endif 2275 ASSERT(db->db.db_size != 0); 2276 2277 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2278 2279 if (db->db_blkid != DMU_BONUS_BLKID) { 2280 dmu_objset_willuse_space(os, db->db.db_size, tx); 2281 } 2282 2283 /* 2284 * If this buffer is dirty in an old transaction group we need 2285 * to make a copy of it so that the changes we make in this 2286 * transaction group won't leak out when we sync the older txg. 2287 */ 2288 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2289 list_link_init(&dr->dr_dirty_node); 2290 list_link_init(&dr->dr_dbuf_node); 2291 dr->dr_dnode = dn; 2292 if (db->db_level == 0) { 2293 void *data_old = db->db_buf; 2294 2295 if (db->db_state != DB_NOFILL) { 2296 if (db->db_blkid == DMU_BONUS_BLKID) { 2297 dbuf_fix_old_data(db, tx->tx_txg); 2298 data_old = db->db.db_data; 2299 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2300 /* 2301 * Release the data buffer from the cache so 2302 * that we can modify it without impacting 2303 * possible other users of this cached data 2304 * block. Note that indirect blocks and 2305 * private objects are not released until the 2306 * syncing state (since they are only modified 2307 * then). 2308 */ 2309 arc_release(db->db_buf, db); 2310 dbuf_fix_old_data(db, tx->tx_txg); 2311 data_old = db->db_buf; 2312 } 2313 ASSERT(data_old != NULL); 2314 } 2315 dr->dt.dl.dr_data = data_old; 2316 } else { 2317 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2318 list_create(&dr->dt.di.dr_children, 2319 sizeof (dbuf_dirty_record_t), 2320 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2321 } 2322 if (db->db_blkid != DMU_BONUS_BLKID) 2323 dr->dr_accounted = db->db.db_size; 2324 dr->dr_dbuf = db; 2325 dr->dr_txg = tx->tx_txg; 2326 list_insert_before(&db->db_dirty_records, dr_next, dr); 2327 2328 /* 2329 * We could have been freed_in_flight between the dbuf_noread 2330 * and dbuf_dirty. We win, as though the dbuf_noread() had 2331 * happened after the free. 2332 */ 2333 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2334 db->db_blkid != DMU_SPILL_BLKID) { 2335 mutex_enter(&dn->dn_mtx); 2336 if (dn->dn_free_ranges[txgoff] != NULL) { 2337 range_tree_clear(dn->dn_free_ranges[txgoff], 2338 db->db_blkid, 1); 2339 } 2340 mutex_exit(&dn->dn_mtx); 2341 db->db_freed_in_flight = FALSE; 2342 } 2343 2344 /* 2345 * This buffer is now part of this txg 2346 */ 2347 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2348 db->db_dirtycnt += 1; 2349 ASSERT3U(db->db_dirtycnt, <=, 3); 2350 2351 mutex_exit(&db->db_mtx); 2352 2353 if (db->db_blkid == DMU_BONUS_BLKID || 2354 db->db_blkid == DMU_SPILL_BLKID) { 2355 mutex_enter(&dn->dn_mtx); 2356 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2357 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2358 mutex_exit(&dn->dn_mtx); 2359 dnode_setdirty(dn, tx); 2360 DB_DNODE_EXIT(db); 2361 return (dr); 2362 } 2363 2364 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2365 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2366 drop_struct_rwlock = B_TRUE; 2367 } 2368 2369 /* 2370 * If we are overwriting a dedup BP, then unless it is snapshotted, 2371 * when we get to syncing context we will need to decrement its 2372 * refcount in the DDT. Prefetch the relevant DDT block so that 2373 * syncing context won't have to wait for the i/o. 2374 */ 2375 if (db->db_blkptr != NULL) { 2376 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2377 ddt_prefetch(os->os_spa, db->db_blkptr); 2378 dmu_buf_unlock_parent(db, dblt, FTAG); 2379 } 2380 2381 /* 2382 * We need to hold the dn_struct_rwlock to make this assertion, 2383 * because it protects dn_phys / dn_next_nlevels from changing. 2384 */ 2385 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2386 dn->dn_phys->dn_nlevels > db->db_level || 2387 dn->dn_next_nlevels[txgoff] > db->db_level || 2388 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2389 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2390 2391 2392 if (db->db_level == 0) { 2393 ASSERT(!db->db_objset->os_raw_receive || 2394 dn->dn_maxblkid >= db->db_blkid); 2395 dnode_new_blkid(dn, db->db_blkid, tx, 2396 drop_struct_rwlock, B_FALSE); 2397 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2398 } 2399 2400 if (db->db_level+1 < dn->dn_nlevels) { 2401 dmu_buf_impl_t *parent = db->db_parent; 2402 dbuf_dirty_record_t *di; 2403 int parent_held = FALSE; 2404 2405 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2406 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2407 parent = dbuf_hold_level(dn, db->db_level + 1, 2408 db->db_blkid >> epbs, FTAG); 2409 ASSERT(parent != NULL); 2410 parent_held = TRUE; 2411 } 2412 if (drop_struct_rwlock) 2413 rw_exit(&dn->dn_struct_rwlock); 2414 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2415 di = dbuf_dirty(parent, tx); 2416 if (parent_held) 2417 dbuf_rele(parent, FTAG); 2418 2419 mutex_enter(&db->db_mtx); 2420 /* 2421 * Since we've dropped the mutex, it's possible that 2422 * dbuf_undirty() might have changed this out from under us. 2423 */ 2424 if (list_head(&db->db_dirty_records) == dr || 2425 dn->dn_object == DMU_META_DNODE_OBJECT) { 2426 mutex_enter(&di->dt.di.dr_mtx); 2427 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2428 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2429 list_insert_tail(&di->dt.di.dr_children, dr); 2430 mutex_exit(&di->dt.di.dr_mtx); 2431 dr->dr_parent = di; 2432 } 2433 mutex_exit(&db->db_mtx); 2434 } else { 2435 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2436 ASSERT(db->db_blkid < dn->dn_nblkptr); 2437 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2438 mutex_enter(&dn->dn_mtx); 2439 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2440 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2441 mutex_exit(&dn->dn_mtx); 2442 if (drop_struct_rwlock) 2443 rw_exit(&dn->dn_struct_rwlock); 2444 } 2445 2446 dnode_setdirty(dn, tx); 2447 DB_DNODE_EXIT(db); 2448 return (dr); 2449 } 2450 2451 static void 2452 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2453 { 2454 dmu_buf_impl_t *db = dr->dr_dbuf; 2455 2456 if (dr->dt.dl.dr_data != db->db.db_data) { 2457 struct dnode *dn = dr->dr_dnode; 2458 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2459 2460 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2461 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2462 } 2463 db->db_data_pending = NULL; 2464 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2465 list_remove(&db->db_dirty_records, dr); 2466 if (dr->dr_dbuf->db_level != 0) { 2467 mutex_destroy(&dr->dt.di.dr_mtx); 2468 list_destroy(&dr->dt.di.dr_children); 2469 } 2470 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2471 ASSERT3U(db->db_dirtycnt, >, 0); 2472 db->db_dirtycnt -= 1; 2473 } 2474 2475 /* 2476 * Undirty a buffer in the transaction group referenced by the given 2477 * transaction. Return whether this evicted the dbuf. 2478 */ 2479 static boolean_t 2480 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2481 { 2482 uint64_t txg = tx->tx_txg; 2483 2484 ASSERT(txg != 0); 2485 2486 /* 2487 * Due to our use of dn_nlevels below, this can only be called 2488 * in open context, unless we are operating on the MOS. 2489 * From syncing context, dn_nlevels may be different from the 2490 * dn_nlevels used when dbuf was dirtied. 2491 */ 2492 ASSERT(db->db_objset == 2493 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2494 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2495 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2496 ASSERT0(db->db_level); 2497 ASSERT(MUTEX_HELD(&db->db_mtx)); 2498 2499 /* 2500 * If this buffer is not dirty, we're done. 2501 */ 2502 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2503 if (dr == NULL) 2504 return (B_FALSE); 2505 ASSERT(dr->dr_dbuf == db); 2506 2507 dnode_t *dn = dr->dr_dnode; 2508 2509 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2510 2511 ASSERT(db->db.db_size != 0); 2512 2513 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2514 dr->dr_accounted, txg); 2515 2516 list_remove(&db->db_dirty_records, dr); 2517 2518 /* 2519 * Note that there are three places in dbuf_dirty() 2520 * where this dirty record may be put on a list. 2521 * Make sure to do a list_remove corresponding to 2522 * every one of those list_insert calls. 2523 */ 2524 if (dr->dr_parent) { 2525 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2526 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2527 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2528 } else if (db->db_blkid == DMU_SPILL_BLKID || 2529 db->db_level + 1 == dn->dn_nlevels) { 2530 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2531 mutex_enter(&dn->dn_mtx); 2532 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2533 mutex_exit(&dn->dn_mtx); 2534 } 2535 2536 if (db->db_state != DB_NOFILL) { 2537 dbuf_unoverride(dr); 2538 2539 ASSERT(db->db_buf != NULL); 2540 ASSERT(dr->dt.dl.dr_data != NULL); 2541 if (dr->dt.dl.dr_data != db->db_buf) 2542 arc_buf_destroy(dr->dt.dl.dr_data, db); 2543 } 2544 2545 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2546 2547 ASSERT(db->db_dirtycnt > 0); 2548 db->db_dirtycnt -= 1; 2549 2550 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2551 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf)); 2552 dbuf_destroy(db); 2553 return (B_TRUE); 2554 } 2555 2556 return (B_FALSE); 2557 } 2558 2559 static void 2560 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2561 { 2562 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2563 2564 ASSERT(tx->tx_txg != 0); 2565 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2566 2567 /* 2568 * Quick check for dirtiness. For already dirty blocks, this 2569 * reduces runtime of this function by >90%, and overall performance 2570 * by 50% for some workloads (e.g. file deletion with indirect blocks 2571 * cached). 2572 */ 2573 mutex_enter(&db->db_mtx); 2574 2575 if (db->db_state == DB_CACHED) { 2576 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2577 /* 2578 * It's possible that it is already dirty but not cached, 2579 * because there are some calls to dbuf_dirty() that don't 2580 * go through dmu_buf_will_dirty(). 2581 */ 2582 if (dr != NULL) { 2583 /* This dbuf is already dirty and cached. */ 2584 dbuf_redirty(dr); 2585 mutex_exit(&db->db_mtx); 2586 return; 2587 } 2588 } 2589 mutex_exit(&db->db_mtx); 2590 2591 DB_DNODE_ENTER(db); 2592 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2593 flags |= DB_RF_HAVESTRUCT; 2594 DB_DNODE_EXIT(db); 2595 (void) dbuf_read(db, NULL, flags); 2596 (void) dbuf_dirty(db, tx); 2597 } 2598 2599 void 2600 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2601 { 2602 dmu_buf_will_dirty_impl(db_fake, 2603 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2604 } 2605 2606 boolean_t 2607 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2608 { 2609 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2610 dbuf_dirty_record_t *dr; 2611 2612 mutex_enter(&db->db_mtx); 2613 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2614 mutex_exit(&db->db_mtx); 2615 return (dr != NULL); 2616 } 2617 2618 void 2619 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2620 { 2621 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2622 2623 db->db_state = DB_NOFILL; 2624 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2625 dmu_buf_will_fill(db_fake, tx); 2626 } 2627 2628 void 2629 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2630 { 2631 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2632 2633 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2634 ASSERT(tx->tx_txg != 0); 2635 ASSERT(db->db_level == 0); 2636 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2637 2638 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2639 dmu_tx_private_ok(tx)); 2640 2641 dbuf_noread(db); 2642 (void) dbuf_dirty(db, tx); 2643 } 2644 2645 /* 2646 * This function is effectively the same as dmu_buf_will_dirty(), but 2647 * indicates the caller expects raw encrypted data in the db, and provides 2648 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2649 * blkptr_t when this dbuf is written. This is only used for blocks of 2650 * dnodes, during raw receive. 2651 */ 2652 void 2653 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2654 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2655 { 2656 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2657 dbuf_dirty_record_t *dr; 2658 2659 /* 2660 * dr_has_raw_params is only processed for blocks of dnodes 2661 * (see dbuf_sync_dnode_leaf_crypt()). 2662 */ 2663 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2664 ASSERT3U(db->db_level, ==, 0); 2665 ASSERT(db->db_objset->os_raw_receive); 2666 2667 dmu_buf_will_dirty_impl(db_fake, 2668 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2669 2670 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2671 2672 ASSERT3P(dr, !=, NULL); 2673 2674 dr->dt.dl.dr_has_raw_params = B_TRUE; 2675 dr->dt.dl.dr_byteorder = byteorder; 2676 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2677 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2678 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2679 } 2680 2681 static void 2682 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2683 { 2684 struct dirty_leaf *dl; 2685 dbuf_dirty_record_t *dr; 2686 2687 dr = list_head(&db->db_dirty_records); 2688 ASSERT3P(dr, !=, NULL); 2689 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2690 dl = &dr->dt.dl; 2691 dl->dr_overridden_by = *bp; 2692 dl->dr_override_state = DR_OVERRIDDEN; 2693 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2694 } 2695 2696 void 2697 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx) 2698 { 2699 (void) tx; 2700 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2701 dbuf_states_t old_state; 2702 mutex_enter(&db->db_mtx); 2703 DBUF_VERIFY(db); 2704 2705 old_state = db->db_state; 2706 db->db_state = DB_CACHED; 2707 if (old_state == DB_FILL) { 2708 if (db->db_level == 0 && db->db_freed_in_flight) { 2709 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2710 /* we were freed while filling */ 2711 /* XXX dbuf_undirty? */ 2712 memset(db->db.db_data, 0, db->db.db_size); 2713 db->db_freed_in_flight = FALSE; 2714 DTRACE_SET_STATE(db, 2715 "fill done handling freed in flight"); 2716 } else { 2717 DTRACE_SET_STATE(db, "fill done"); 2718 } 2719 cv_broadcast(&db->db_changed); 2720 } 2721 mutex_exit(&db->db_mtx); 2722 } 2723 2724 void 2725 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2726 bp_embedded_type_t etype, enum zio_compress comp, 2727 int uncompressed_size, int compressed_size, int byteorder, 2728 dmu_tx_t *tx) 2729 { 2730 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2731 struct dirty_leaf *dl; 2732 dmu_object_type_t type; 2733 dbuf_dirty_record_t *dr; 2734 2735 if (etype == BP_EMBEDDED_TYPE_DATA) { 2736 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2737 SPA_FEATURE_EMBEDDED_DATA)); 2738 } 2739 2740 DB_DNODE_ENTER(db); 2741 type = DB_DNODE(db)->dn_type; 2742 DB_DNODE_EXIT(db); 2743 2744 ASSERT0(db->db_level); 2745 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2746 2747 dmu_buf_will_not_fill(dbuf, tx); 2748 2749 dr = list_head(&db->db_dirty_records); 2750 ASSERT3P(dr, !=, NULL); 2751 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2752 dl = &dr->dt.dl; 2753 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2754 data, comp, uncompressed_size, compressed_size); 2755 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2756 BP_SET_TYPE(&dl->dr_overridden_by, type); 2757 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2758 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2759 2760 dl->dr_override_state = DR_OVERRIDDEN; 2761 dl->dr_overridden_by.blk_birth = dr->dr_txg; 2762 } 2763 2764 void 2765 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2766 { 2767 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2768 dmu_object_type_t type; 2769 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2770 SPA_FEATURE_REDACTED_DATASETS)); 2771 2772 DB_DNODE_ENTER(db); 2773 type = DB_DNODE(db)->dn_type; 2774 DB_DNODE_EXIT(db); 2775 2776 ASSERT0(db->db_level); 2777 dmu_buf_will_not_fill(dbuf, tx); 2778 2779 blkptr_t bp = { { { {0} } } }; 2780 BP_SET_TYPE(&bp, type); 2781 BP_SET_LEVEL(&bp, 0); 2782 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2783 BP_SET_REDACTED(&bp); 2784 BPE_SET_LSIZE(&bp, dbuf->db_size); 2785 2786 dbuf_override_impl(db, &bp, tx); 2787 } 2788 2789 /* 2790 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2791 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2792 */ 2793 void 2794 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2795 { 2796 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2797 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2798 ASSERT(db->db_level == 0); 2799 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2800 ASSERT(buf != NULL); 2801 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2802 ASSERT(tx->tx_txg != 0); 2803 2804 arc_return_buf(buf, db); 2805 ASSERT(arc_released(buf)); 2806 2807 mutex_enter(&db->db_mtx); 2808 2809 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2810 cv_wait(&db->db_changed, &db->db_mtx); 2811 2812 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED); 2813 2814 if (db->db_state == DB_CACHED && 2815 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2816 /* 2817 * In practice, we will never have a case where we have an 2818 * encrypted arc buffer while additional holds exist on the 2819 * dbuf. We don't handle this here so we simply assert that 2820 * fact instead. 2821 */ 2822 ASSERT(!arc_is_encrypted(buf)); 2823 mutex_exit(&db->db_mtx); 2824 (void) dbuf_dirty(db, tx); 2825 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2826 arc_buf_destroy(buf, db); 2827 return; 2828 } 2829 2830 if (db->db_state == DB_CACHED) { 2831 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2832 2833 ASSERT(db->db_buf != NULL); 2834 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2835 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2836 2837 if (!arc_released(db->db_buf)) { 2838 ASSERT(dr->dt.dl.dr_override_state == 2839 DR_OVERRIDDEN); 2840 arc_release(db->db_buf, db); 2841 } 2842 dr->dt.dl.dr_data = buf; 2843 arc_buf_destroy(db->db_buf, db); 2844 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2845 arc_release(db->db_buf, db); 2846 arc_buf_destroy(db->db_buf, db); 2847 } 2848 db->db_buf = NULL; 2849 } 2850 ASSERT(db->db_buf == NULL); 2851 dbuf_set_data(db, buf); 2852 db->db_state = DB_FILL; 2853 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 2854 mutex_exit(&db->db_mtx); 2855 (void) dbuf_dirty(db, tx); 2856 dmu_buf_fill_done(&db->db, tx); 2857 } 2858 2859 void 2860 dbuf_destroy(dmu_buf_impl_t *db) 2861 { 2862 dnode_t *dn; 2863 dmu_buf_impl_t *parent = db->db_parent; 2864 dmu_buf_impl_t *dndb; 2865 2866 ASSERT(MUTEX_HELD(&db->db_mtx)); 2867 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2868 2869 if (db->db_buf != NULL) { 2870 arc_buf_destroy(db->db_buf, db); 2871 db->db_buf = NULL; 2872 } 2873 2874 if (db->db_blkid == DMU_BONUS_BLKID) { 2875 int slots = DB_DNODE(db)->dn_num_slots; 2876 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 2877 if (db->db.db_data != NULL) { 2878 kmem_free(db->db.db_data, bonuslen); 2879 arc_space_return(bonuslen, ARC_SPACE_BONUS); 2880 db->db_state = DB_UNCACHED; 2881 DTRACE_SET_STATE(db, "buffer cleared"); 2882 } 2883 } 2884 2885 dbuf_clear_data(db); 2886 2887 if (multilist_link_active(&db->db_cache_link)) { 2888 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 2889 db->db_caching_status == DB_DBUF_METADATA_CACHE); 2890 2891 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 2892 (void) zfs_refcount_remove_many( 2893 &dbuf_caches[db->db_caching_status].size, 2894 db->db.db_size, db); 2895 2896 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 2897 DBUF_STAT_BUMPDOWN(metadata_cache_count); 2898 } else { 2899 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 2900 DBUF_STAT_BUMPDOWN(cache_count); 2901 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 2902 db->db.db_size); 2903 } 2904 db->db_caching_status = DB_NO_CACHE; 2905 } 2906 2907 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 2908 ASSERT(db->db_data_pending == NULL); 2909 ASSERT(list_is_empty(&db->db_dirty_records)); 2910 2911 db->db_state = DB_EVICTING; 2912 DTRACE_SET_STATE(db, "buffer eviction started"); 2913 db->db_blkptr = NULL; 2914 2915 /* 2916 * Now that db_state is DB_EVICTING, nobody else can find this via 2917 * the hash table. We can now drop db_mtx, which allows us to 2918 * acquire the dn_dbufs_mtx. 2919 */ 2920 mutex_exit(&db->db_mtx); 2921 2922 DB_DNODE_ENTER(db); 2923 dn = DB_DNODE(db); 2924 dndb = dn->dn_dbuf; 2925 if (db->db_blkid != DMU_BONUS_BLKID) { 2926 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 2927 if (needlock) 2928 mutex_enter_nested(&dn->dn_dbufs_mtx, 2929 NESTED_SINGLE); 2930 avl_remove(&dn->dn_dbufs, db); 2931 membar_producer(); 2932 DB_DNODE_EXIT(db); 2933 if (needlock) 2934 mutex_exit(&dn->dn_dbufs_mtx); 2935 /* 2936 * Decrementing the dbuf count means that the hold corresponding 2937 * to the removed dbuf is no longer discounted in dnode_move(), 2938 * so the dnode cannot be moved until after we release the hold. 2939 * The membar_producer() ensures visibility of the decremented 2940 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 2941 * release any lock. 2942 */ 2943 mutex_enter(&dn->dn_mtx); 2944 dnode_rele_and_unlock(dn, db, B_TRUE); 2945 db->db_dnode_handle = NULL; 2946 2947 dbuf_hash_remove(db); 2948 } else { 2949 DB_DNODE_EXIT(db); 2950 } 2951 2952 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 2953 2954 db->db_parent = NULL; 2955 2956 ASSERT(db->db_buf == NULL); 2957 ASSERT(db->db.db_data == NULL); 2958 ASSERT(db->db_hash_next == NULL); 2959 ASSERT(db->db_blkptr == NULL); 2960 ASSERT(db->db_data_pending == NULL); 2961 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 2962 ASSERT(!multilist_link_active(&db->db_cache_link)); 2963 2964 /* 2965 * If this dbuf is referenced from an indirect dbuf, 2966 * decrement the ref count on the indirect dbuf. 2967 */ 2968 if (parent && parent != dndb) { 2969 mutex_enter(&parent->db_mtx); 2970 dbuf_rele_and_unlock(parent, db, B_TRUE); 2971 } 2972 2973 kmem_cache_free(dbuf_kmem_cache, db); 2974 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 2975 } 2976 2977 /* 2978 * Note: While bpp will always be updated if the function returns success, 2979 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 2980 * this happens when the dnode is the meta-dnode, or {user|group|project}used 2981 * object. 2982 */ 2983 __attribute__((always_inline)) 2984 static inline int 2985 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 2986 dmu_buf_impl_t **parentp, blkptr_t **bpp) 2987 { 2988 *parentp = NULL; 2989 *bpp = NULL; 2990 2991 ASSERT(blkid != DMU_BONUS_BLKID); 2992 2993 if (blkid == DMU_SPILL_BLKID) { 2994 mutex_enter(&dn->dn_mtx); 2995 if (dn->dn_have_spill && 2996 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 2997 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 2998 else 2999 *bpp = NULL; 3000 dbuf_add_ref(dn->dn_dbuf, NULL); 3001 *parentp = dn->dn_dbuf; 3002 mutex_exit(&dn->dn_mtx); 3003 return (0); 3004 } 3005 3006 int nlevels = 3007 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3008 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3009 3010 ASSERT3U(level * epbs, <, 64); 3011 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3012 /* 3013 * This assertion shouldn't trip as long as the max indirect block size 3014 * is less than 1M. The reason for this is that up to that point, 3015 * the number of levels required to address an entire object with blocks 3016 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3017 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3018 * (i.e. we can address the entire object), objects will all use at most 3019 * N-1 levels and the assertion won't overflow. However, once epbs is 3020 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3021 * enough to address an entire object, so objects will have 5 levels, 3022 * but then this assertion will overflow. 3023 * 3024 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3025 * need to redo this logic to handle overflows. 3026 */ 3027 ASSERT(level >= nlevels || 3028 ((nlevels - level - 1) * epbs) + 3029 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3030 if (level >= nlevels || 3031 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3032 ((nlevels - level - 1) * epbs)) || 3033 (fail_sparse && 3034 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3035 /* the buffer has no parent yet */ 3036 return (SET_ERROR(ENOENT)); 3037 } else if (level < nlevels-1) { 3038 /* this block is referenced from an indirect block */ 3039 int err; 3040 3041 err = dbuf_hold_impl(dn, level + 1, 3042 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3043 3044 if (err) 3045 return (err); 3046 err = dbuf_read(*parentp, NULL, 3047 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3048 if (err) { 3049 dbuf_rele(*parentp, NULL); 3050 *parentp = NULL; 3051 return (err); 3052 } 3053 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3054 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3055 (blkid & ((1ULL << epbs) - 1)); 3056 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3057 ASSERT(BP_IS_HOLE(*bpp)); 3058 rw_exit(&(*parentp)->db_rwlock); 3059 return (0); 3060 } else { 3061 /* the block is referenced from the dnode */ 3062 ASSERT3U(level, ==, nlevels-1); 3063 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3064 blkid < dn->dn_phys->dn_nblkptr); 3065 if (dn->dn_dbuf) { 3066 dbuf_add_ref(dn->dn_dbuf, NULL); 3067 *parentp = dn->dn_dbuf; 3068 } 3069 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3070 return (0); 3071 } 3072 } 3073 3074 static dmu_buf_impl_t * 3075 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3076 dmu_buf_impl_t *parent, blkptr_t *blkptr) 3077 { 3078 objset_t *os = dn->dn_objset; 3079 dmu_buf_impl_t *db, *odb; 3080 3081 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3082 ASSERT(dn->dn_type != DMU_OT_NONE); 3083 3084 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3085 3086 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3087 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3088 3089 db->db_objset = os; 3090 db->db.db_object = dn->dn_object; 3091 db->db_level = level; 3092 db->db_blkid = blkid; 3093 db->db_dirtycnt = 0; 3094 db->db_dnode_handle = dn->dn_handle; 3095 db->db_parent = parent; 3096 db->db_blkptr = blkptr; 3097 3098 db->db_user = NULL; 3099 db->db_user_immediate_evict = FALSE; 3100 db->db_freed_in_flight = FALSE; 3101 db->db_pending_evict = FALSE; 3102 3103 if (blkid == DMU_BONUS_BLKID) { 3104 ASSERT3P(parent, ==, dn->dn_dbuf); 3105 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3106 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3107 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3108 db->db.db_offset = DMU_BONUS_BLKID; 3109 db->db_state = DB_UNCACHED; 3110 DTRACE_SET_STATE(db, "bonus buffer created"); 3111 db->db_caching_status = DB_NO_CACHE; 3112 /* the bonus dbuf is not placed in the hash table */ 3113 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3114 return (db); 3115 } else if (blkid == DMU_SPILL_BLKID) { 3116 db->db.db_size = (blkptr != NULL) ? 3117 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3118 db->db.db_offset = 0; 3119 } else { 3120 int blocksize = 3121 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3122 db->db.db_size = blocksize; 3123 db->db.db_offset = db->db_blkid * blocksize; 3124 } 3125 3126 /* 3127 * Hold the dn_dbufs_mtx while we get the new dbuf 3128 * in the hash table *and* added to the dbufs list. 3129 * This prevents a possible deadlock with someone 3130 * trying to look up this dbuf before it's added to the 3131 * dn_dbufs list. 3132 */ 3133 mutex_enter(&dn->dn_dbufs_mtx); 3134 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3135 if ((odb = dbuf_hash_insert(db)) != NULL) { 3136 /* someone else inserted it first */ 3137 mutex_exit(&dn->dn_dbufs_mtx); 3138 kmem_cache_free(dbuf_kmem_cache, db); 3139 DBUF_STAT_BUMP(hash_insert_race); 3140 return (odb); 3141 } 3142 avl_add(&dn->dn_dbufs, db); 3143 3144 db->db_state = DB_UNCACHED; 3145 DTRACE_SET_STATE(db, "regular buffer created"); 3146 db->db_caching_status = DB_NO_CACHE; 3147 mutex_exit(&dn->dn_dbufs_mtx); 3148 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3149 3150 if (parent && parent != dn->dn_dbuf) 3151 dbuf_add_ref(parent, db); 3152 3153 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3154 zfs_refcount_count(&dn->dn_holds) > 0); 3155 (void) zfs_refcount_add(&dn->dn_holds, db); 3156 3157 dprintf_dbuf(db, "db=%p\n", db); 3158 3159 return (db); 3160 } 3161 3162 /* 3163 * This function returns a block pointer and information about the object, 3164 * given a dnode and a block. This is a publicly accessible version of 3165 * dbuf_findbp that only returns some information, rather than the 3166 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3167 * should be locked as (at least) a reader. 3168 */ 3169 int 3170 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3171 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3172 { 3173 dmu_buf_impl_t *dbp = NULL; 3174 blkptr_t *bp2; 3175 int err = 0; 3176 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3177 3178 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3179 if (err == 0) { 3180 *bp = *bp2; 3181 if (dbp != NULL) 3182 dbuf_rele(dbp, NULL); 3183 if (datablkszsec != NULL) 3184 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3185 if (indblkshift != NULL) 3186 *indblkshift = dn->dn_phys->dn_indblkshift; 3187 } 3188 3189 return (err); 3190 } 3191 3192 typedef struct dbuf_prefetch_arg { 3193 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3194 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3195 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3196 int dpa_curlevel; /* The current level that we're reading */ 3197 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3198 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3199 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3200 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3201 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3202 void *dpa_arg; /* prefetch completion arg */ 3203 } dbuf_prefetch_arg_t; 3204 3205 static void 3206 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3207 { 3208 if (dpa->dpa_cb != NULL) { 3209 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3210 dpa->dpa_zb.zb_blkid, io_done); 3211 } 3212 kmem_free(dpa, sizeof (*dpa)); 3213 } 3214 3215 static void 3216 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3217 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3218 { 3219 (void) zio, (void) zb, (void) iobp; 3220 dbuf_prefetch_arg_t *dpa = private; 3221 3222 if (abuf != NULL) 3223 arc_buf_destroy(abuf, private); 3224 3225 dbuf_prefetch_fini(dpa, B_TRUE); 3226 } 3227 3228 /* 3229 * Actually issue the prefetch read for the block given. 3230 */ 3231 static void 3232 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3233 { 3234 ASSERT(!BP_IS_REDACTED(bp) || 3235 dsl_dataset_feature_is_active( 3236 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3237 SPA_FEATURE_REDACTED_DATASETS)); 3238 3239 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3240 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3241 3242 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3243 arc_flags_t aflags = 3244 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3245 ARC_FLAG_NO_BUF; 3246 3247 /* dnodes are always read as raw and then converted later */ 3248 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3249 dpa->dpa_curlevel == 0) 3250 zio_flags |= ZIO_FLAG_RAW; 3251 3252 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3253 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3254 ASSERT(dpa->dpa_zio != NULL); 3255 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3256 dbuf_issue_final_prefetch_done, dpa, 3257 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3258 } 3259 3260 /* 3261 * Called when an indirect block above our prefetch target is read in. This 3262 * will either read in the next indirect block down the tree or issue the actual 3263 * prefetch if the next block down is our target. 3264 */ 3265 static void 3266 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3267 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3268 { 3269 (void) zb, (void) iobp; 3270 dbuf_prefetch_arg_t *dpa = private; 3271 3272 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3273 ASSERT3S(dpa->dpa_curlevel, >, 0); 3274 3275 if (abuf == NULL) { 3276 ASSERT(zio == NULL || zio->io_error != 0); 3277 dbuf_prefetch_fini(dpa, B_TRUE); 3278 return; 3279 } 3280 ASSERT(zio == NULL || zio->io_error == 0); 3281 3282 /* 3283 * The dpa_dnode is only valid if we are called with a NULL 3284 * zio. This indicates that the arc_read() returned without 3285 * first calling zio_read() to issue a physical read. Once 3286 * a physical read is made the dpa_dnode must be invalidated 3287 * as the locks guarding it may have been dropped. If the 3288 * dpa_dnode is still valid, then we want to add it to the dbuf 3289 * cache. To do so, we must hold the dbuf associated with the block 3290 * we just prefetched, read its contents so that we associate it 3291 * with an arc_buf_t, and then release it. 3292 */ 3293 if (zio != NULL) { 3294 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3295 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3296 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3297 } else { 3298 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3299 } 3300 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3301 3302 dpa->dpa_dnode = NULL; 3303 } else if (dpa->dpa_dnode != NULL) { 3304 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3305 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3306 dpa->dpa_zb.zb_level)); 3307 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3308 dpa->dpa_curlevel, curblkid, FTAG); 3309 if (db == NULL) { 3310 arc_buf_destroy(abuf, private); 3311 dbuf_prefetch_fini(dpa, B_TRUE); 3312 return; 3313 } 3314 (void) dbuf_read(db, NULL, 3315 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3316 dbuf_rele(db, FTAG); 3317 } 3318 3319 dpa->dpa_curlevel--; 3320 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3321 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3322 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3323 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3324 3325 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3326 dsl_dataset_feature_is_active( 3327 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3328 SPA_FEATURE_REDACTED_DATASETS))); 3329 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3330 arc_buf_destroy(abuf, private); 3331 dbuf_prefetch_fini(dpa, B_TRUE); 3332 return; 3333 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3334 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3335 dbuf_issue_final_prefetch(dpa, bp); 3336 } else { 3337 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3338 zbookmark_phys_t zb; 3339 3340 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3341 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3342 iter_aflags |= ARC_FLAG_L2CACHE; 3343 3344 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3345 3346 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3347 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3348 3349 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3350 bp, dbuf_prefetch_indirect_done, dpa, 3351 ZIO_PRIORITY_SYNC_READ, 3352 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3353 &iter_aflags, &zb); 3354 } 3355 3356 arc_buf_destroy(abuf, private); 3357 } 3358 3359 /* 3360 * Issue prefetch reads for the given block on the given level. If the indirect 3361 * blocks above that block are not in memory, we will read them in 3362 * asynchronously. As a result, this call never blocks waiting for a read to 3363 * complete. Note that the prefetch might fail if the dataset is encrypted and 3364 * the encryption key is unmapped before the IO completes. 3365 */ 3366 int 3367 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3368 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3369 void *arg) 3370 { 3371 blkptr_t bp; 3372 int epbs, nlevels, curlevel; 3373 uint64_t curblkid; 3374 3375 ASSERT(blkid != DMU_BONUS_BLKID); 3376 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3377 3378 if (blkid > dn->dn_maxblkid) 3379 goto no_issue; 3380 3381 if (level == 0 && dnode_block_freed(dn, blkid)) 3382 goto no_issue; 3383 3384 /* 3385 * This dnode hasn't been written to disk yet, so there's nothing to 3386 * prefetch. 3387 */ 3388 nlevels = dn->dn_phys->dn_nlevels; 3389 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3390 goto no_issue; 3391 3392 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3393 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3394 goto no_issue; 3395 3396 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3397 level, blkid); 3398 if (db != NULL) { 3399 mutex_exit(&db->db_mtx); 3400 /* 3401 * This dbuf already exists. It is either CACHED, or 3402 * (we assume) about to be read or filled. 3403 */ 3404 goto no_issue; 3405 } 3406 3407 /* 3408 * Find the closest ancestor (indirect block) of the target block 3409 * that is present in the cache. In this indirect block, we will 3410 * find the bp that is at curlevel, curblkid. 3411 */ 3412 curlevel = level; 3413 curblkid = blkid; 3414 while (curlevel < nlevels - 1) { 3415 int parent_level = curlevel + 1; 3416 uint64_t parent_blkid = curblkid >> epbs; 3417 dmu_buf_impl_t *db; 3418 3419 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3420 FALSE, TRUE, FTAG, &db) == 0) { 3421 blkptr_t *bpp = db->db_buf->b_data; 3422 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3423 dbuf_rele(db, FTAG); 3424 break; 3425 } 3426 3427 curlevel = parent_level; 3428 curblkid = parent_blkid; 3429 } 3430 3431 if (curlevel == nlevels - 1) { 3432 /* No cached indirect blocks found. */ 3433 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3434 bp = dn->dn_phys->dn_blkptr[curblkid]; 3435 } 3436 ASSERT(!BP_IS_REDACTED(&bp) || 3437 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3438 SPA_FEATURE_REDACTED_DATASETS)); 3439 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3440 goto no_issue; 3441 3442 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3443 3444 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3445 ZIO_FLAG_CANFAIL); 3446 3447 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3448 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3449 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3450 dn->dn_object, level, blkid); 3451 dpa->dpa_curlevel = curlevel; 3452 dpa->dpa_prio = prio; 3453 dpa->dpa_aflags = aflags; 3454 dpa->dpa_spa = dn->dn_objset->os_spa; 3455 dpa->dpa_dnode = dn; 3456 dpa->dpa_epbs = epbs; 3457 dpa->dpa_zio = pio; 3458 dpa->dpa_cb = cb; 3459 dpa->dpa_arg = arg; 3460 3461 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3462 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3463 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3464 3465 /* 3466 * If we have the indirect just above us, no need to do the asynchronous 3467 * prefetch chain; we'll just run the last step ourselves. If we're at 3468 * a higher level, though, we want to issue the prefetches for all the 3469 * indirect blocks asynchronously, so we can go on with whatever we were 3470 * doing. 3471 */ 3472 if (curlevel == level) { 3473 ASSERT3U(curblkid, ==, blkid); 3474 dbuf_issue_final_prefetch(dpa, &bp); 3475 } else { 3476 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3477 zbookmark_phys_t zb; 3478 3479 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3480 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3481 iter_aflags |= ARC_FLAG_L2CACHE; 3482 3483 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3484 dn->dn_object, curlevel, curblkid); 3485 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3486 &bp, dbuf_prefetch_indirect_done, dpa, 3487 ZIO_PRIORITY_SYNC_READ, 3488 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3489 &iter_aflags, &zb); 3490 } 3491 /* 3492 * We use pio here instead of dpa_zio since it's possible that 3493 * dpa may have already been freed. 3494 */ 3495 zio_nowait(pio); 3496 return (1); 3497 no_issue: 3498 if (cb != NULL) 3499 cb(arg, level, blkid, B_FALSE); 3500 return (0); 3501 } 3502 3503 int 3504 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3505 arc_flags_t aflags) 3506 { 3507 3508 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3509 } 3510 3511 /* 3512 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3513 * the case of encrypted, compressed and uncompressed buffers by 3514 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3515 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3516 * 3517 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3518 */ 3519 noinline static void 3520 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3521 { 3522 dbuf_dirty_record_t *dr = db->db_data_pending; 3523 arc_buf_t *data = dr->dt.dl.dr_data; 3524 enum zio_compress compress_type = arc_get_compression(data); 3525 uint8_t complevel = arc_get_complevel(data); 3526 3527 if (arc_is_encrypted(data)) { 3528 boolean_t byteorder; 3529 uint8_t salt[ZIO_DATA_SALT_LEN]; 3530 uint8_t iv[ZIO_DATA_IV_LEN]; 3531 uint8_t mac[ZIO_DATA_MAC_LEN]; 3532 3533 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3534 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3535 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3536 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3537 compress_type, complevel)); 3538 } else if (compress_type != ZIO_COMPRESS_OFF) { 3539 dbuf_set_data(db, arc_alloc_compressed_buf( 3540 dn->dn_objset->os_spa, db, arc_buf_size(data), 3541 arc_buf_lsize(data), compress_type, complevel)); 3542 } else { 3543 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3544 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3545 } 3546 3547 rw_enter(&db->db_rwlock, RW_WRITER); 3548 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3549 rw_exit(&db->db_rwlock); 3550 } 3551 3552 /* 3553 * Returns with db_holds incremented, and db_mtx not held. 3554 * Note: dn_struct_rwlock must be held. 3555 */ 3556 int 3557 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3558 boolean_t fail_sparse, boolean_t fail_uncached, 3559 const void *tag, dmu_buf_impl_t **dbp) 3560 { 3561 dmu_buf_impl_t *db, *parent = NULL; 3562 3563 /* If the pool has been created, verify the tx_sync_lock is not held */ 3564 spa_t *spa = dn->dn_objset->os_spa; 3565 dsl_pool_t *dp = spa->spa_dsl_pool; 3566 if (dp != NULL) { 3567 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3568 } 3569 3570 ASSERT(blkid != DMU_BONUS_BLKID); 3571 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3572 ASSERT3U(dn->dn_nlevels, >, level); 3573 3574 *dbp = NULL; 3575 3576 /* dbuf_find() returns with db_mtx held */ 3577 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid); 3578 3579 if (db == NULL) { 3580 blkptr_t *bp = NULL; 3581 int err; 3582 3583 if (fail_uncached) 3584 return (SET_ERROR(ENOENT)); 3585 3586 ASSERT3P(parent, ==, NULL); 3587 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3588 if (fail_sparse) { 3589 if (err == 0 && bp && BP_IS_HOLE(bp)) 3590 err = SET_ERROR(ENOENT); 3591 if (err) { 3592 if (parent) 3593 dbuf_rele(parent, NULL); 3594 return (err); 3595 } 3596 } 3597 if (err && err != ENOENT) 3598 return (err); 3599 db = dbuf_create(dn, level, blkid, parent, bp); 3600 } 3601 3602 if (fail_uncached && db->db_state != DB_CACHED) { 3603 mutex_exit(&db->db_mtx); 3604 return (SET_ERROR(ENOENT)); 3605 } 3606 3607 if (db->db_buf != NULL) { 3608 arc_buf_access(db->db_buf); 3609 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3610 } 3611 3612 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3613 3614 /* 3615 * If this buffer is currently syncing out, and we are 3616 * still referencing it from db_data, we need to make a copy 3617 * of it in case we decide we want to dirty it again in this txg. 3618 */ 3619 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3620 dn->dn_object != DMU_META_DNODE_OBJECT && 3621 db->db_state == DB_CACHED && db->db_data_pending) { 3622 dbuf_dirty_record_t *dr = db->db_data_pending; 3623 if (dr->dt.dl.dr_data == db->db_buf) 3624 dbuf_hold_copy(dn, db); 3625 } 3626 3627 if (multilist_link_active(&db->db_cache_link)) { 3628 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3629 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3630 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3631 3632 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3633 (void) zfs_refcount_remove_many( 3634 &dbuf_caches[db->db_caching_status].size, 3635 db->db.db_size, db); 3636 3637 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3638 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3639 } else { 3640 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3641 DBUF_STAT_BUMPDOWN(cache_count); 3642 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3643 db->db.db_size); 3644 } 3645 db->db_caching_status = DB_NO_CACHE; 3646 } 3647 (void) zfs_refcount_add(&db->db_holds, tag); 3648 DBUF_VERIFY(db); 3649 mutex_exit(&db->db_mtx); 3650 3651 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3652 if (parent) 3653 dbuf_rele(parent, NULL); 3654 3655 ASSERT3P(DB_DNODE(db), ==, dn); 3656 ASSERT3U(db->db_blkid, ==, blkid); 3657 ASSERT3U(db->db_level, ==, level); 3658 *dbp = db; 3659 3660 return (0); 3661 } 3662 3663 dmu_buf_impl_t * 3664 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3665 { 3666 return (dbuf_hold_level(dn, 0, blkid, tag)); 3667 } 3668 3669 dmu_buf_impl_t * 3670 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3671 { 3672 dmu_buf_impl_t *db; 3673 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3674 return (err ? NULL : db); 3675 } 3676 3677 void 3678 dbuf_create_bonus(dnode_t *dn) 3679 { 3680 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3681 3682 ASSERT(dn->dn_bonus == NULL); 3683 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL); 3684 } 3685 3686 int 3687 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3688 { 3689 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3690 3691 if (db->db_blkid != DMU_SPILL_BLKID) 3692 return (SET_ERROR(ENOTSUP)); 3693 if (blksz == 0) 3694 blksz = SPA_MINBLOCKSIZE; 3695 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3696 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3697 3698 dbuf_new_size(db, blksz, tx); 3699 3700 return (0); 3701 } 3702 3703 void 3704 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3705 { 3706 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3707 } 3708 3709 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3710 void 3711 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3712 { 3713 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3714 VERIFY3S(holds, >, 1); 3715 } 3716 3717 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3718 boolean_t 3719 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3720 const void *tag) 3721 { 3722 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3723 dmu_buf_impl_t *found_db; 3724 boolean_t result = B_FALSE; 3725 3726 if (blkid == DMU_BONUS_BLKID) 3727 found_db = dbuf_find_bonus(os, obj); 3728 else 3729 found_db = dbuf_find(os, obj, 0, blkid); 3730 3731 if (found_db != NULL) { 3732 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3733 (void) zfs_refcount_add(&db->db_holds, tag); 3734 result = B_TRUE; 3735 } 3736 mutex_exit(&found_db->db_mtx); 3737 } 3738 return (result); 3739 } 3740 3741 /* 3742 * If you call dbuf_rele() you had better not be referencing the dnode handle 3743 * unless you have some other direct or indirect hold on the dnode. (An indirect 3744 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3745 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3746 * dnode's parent dbuf evicting its dnode handles. 3747 */ 3748 void 3749 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3750 { 3751 mutex_enter(&db->db_mtx); 3752 dbuf_rele_and_unlock(db, tag, B_FALSE); 3753 } 3754 3755 void 3756 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3757 { 3758 dbuf_rele((dmu_buf_impl_t *)db, tag); 3759 } 3760 3761 /* 3762 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3763 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3764 * argument should be set if we are already in the dbuf-evicting code 3765 * path, in which case we don't want to recursively evict. This allows us to 3766 * avoid deeply nested stacks that would have a call flow similar to this: 3767 * 3768 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3769 * ^ | 3770 * | | 3771 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3772 * 3773 */ 3774 void 3775 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3776 { 3777 int64_t holds; 3778 uint64_t size; 3779 3780 ASSERT(MUTEX_HELD(&db->db_mtx)); 3781 DBUF_VERIFY(db); 3782 3783 /* 3784 * Remove the reference to the dbuf before removing its hold on the 3785 * dnode so we can guarantee in dnode_move() that a referenced bonus 3786 * buffer has a corresponding dnode hold. 3787 */ 3788 holds = zfs_refcount_remove(&db->db_holds, tag); 3789 ASSERT(holds >= 0); 3790 3791 /* 3792 * We can't freeze indirects if there is a possibility that they 3793 * may be modified in the current syncing context. 3794 */ 3795 if (db->db_buf != NULL && 3796 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3797 arc_buf_freeze(db->db_buf); 3798 } 3799 3800 if (holds == db->db_dirtycnt && 3801 db->db_level == 0 && db->db_user_immediate_evict) 3802 dbuf_evict_user(db); 3803 3804 if (holds == 0) { 3805 if (db->db_blkid == DMU_BONUS_BLKID) { 3806 dnode_t *dn; 3807 boolean_t evict_dbuf = db->db_pending_evict; 3808 3809 /* 3810 * If the dnode moves here, we cannot cross this 3811 * barrier until the move completes. 3812 */ 3813 DB_DNODE_ENTER(db); 3814 3815 dn = DB_DNODE(db); 3816 atomic_dec_32(&dn->dn_dbufs_count); 3817 3818 /* 3819 * Decrementing the dbuf count means that the bonus 3820 * buffer's dnode hold is no longer discounted in 3821 * dnode_move(). The dnode cannot move until after 3822 * the dnode_rele() below. 3823 */ 3824 DB_DNODE_EXIT(db); 3825 3826 /* 3827 * Do not reference db after its lock is dropped. 3828 * Another thread may evict it. 3829 */ 3830 mutex_exit(&db->db_mtx); 3831 3832 if (evict_dbuf) 3833 dnode_evict_bonus(dn); 3834 3835 dnode_rele(dn, db); 3836 } else if (db->db_buf == NULL) { 3837 /* 3838 * This is a special case: we never associated this 3839 * dbuf with any data allocated from the ARC. 3840 */ 3841 ASSERT(db->db_state == DB_UNCACHED || 3842 db->db_state == DB_NOFILL); 3843 dbuf_destroy(db); 3844 } else if (arc_released(db->db_buf)) { 3845 /* 3846 * This dbuf has anonymous data associated with it. 3847 */ 3848 dbuf_destroy(db); 3849 } else { 3850 boolean_t do_arc_evict = B_FALSE; 3851 blkptr_t bp; 3852 spa_t *spa = dmu_objset_spa(db->db_objset); 3853 3854 if (!DBUF_IS_CACHEABLE(db) && 3855 db->db_blkptr != NULL && 3856 !BP_IS_HOLE(db->db_blkptr) && 3857 !BP_IS_EMBEDDED(db->db_blkptr)) { 3858 do_arc_evict = B_TRUE; 3859 bp = *db->db_blkptr; 3860 } 3861 3862 if (!DBUF_IS_CACHEABLE(db) || 3863 db->db_pending_evict) { 3864 dbuf_destroy(db); 3865 } else if (!multilist_link_active(&db->db_cache_link)) { 3866 ASSERT3U(db->db_caching_status, ==, 3867 DB_NO_CACHE); 3868 3869 dbuf_cached_state_t dcs = 3870 dbuf_include_in_metadata_cache(db) ? 3871 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 3872 db->db_caching_status = dcs; 3873 3874 multilist_insert(&dbuf_caches[dcs].cache, db); 3875 uint64_t db_size = db->db.db_size; 3876 size = zfs_refcount_add_many( 3877 &dbuf_caches[dcs].size, db_size, db); 3878 uint8_t db_level = db->db_level; 3879 mutex_exit(&db->db_mtx); 3880 3881 if (dcs == DB_DBUF_METADATA_CACHE) { 3882 DBUF_STAT_BUMP(metadata_cache_count); 3883 DBUF_STAT_MAX( 3884 metadata_cache_size_bytes_max, 3885 size); 3886 } else { 3887 DBUF_STAT_BUMP(cache_count); 3888 DBUF_STAT_MAX(cache_size_bytes_max, 3889 size); 3890 DBUF_STAT_BUMP(cache_levels[db_level]); 3891 DBUF_STAT_INCR( 3892 cache_levels_bytes[db_level], 3893 db_size); 3894 } 3895 3896 if (dcs == DB_DBUF_CACHE && !evicting) 3897 dbuf_evict_notify(size); 3898 } 3899 3900 if (do_arc_evict) 3901 arc_freed(spa, &bp); 3902 } 3903 } else { 3904 mutex_exit(&db->db_mtx); 3905 } 3906 3907 } 3908 3909 #pragma weak dmu_buf_refcount = dbuf_refcount 3910 uint64_t 3911 dbuf_refcount(dmu_buf_impl_t *db) 3912 { 3913 return (zfs_refcount_count(&db->db_holds)); 3914 } 3915 3916 uint64_t 3917 dmu_buf_user_refcount(dmu_buf_t *db_fake) 3918 { 3919 uint64_t holds; 3920 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3921 3922 mutex_enter(&db->db_mtx); 3923 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 3924 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 3925 mutex_exit(&db->db_mtx); 3926 3927 return (holds); 3928 } 3929 3930 void * 3931 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 3932 dmu_buf_user_t *new_user) 3933 { 3934 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3935 3936 mutex_enter(&db->db_mtx); 3937 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3938 if (db->db_user == old_user) 3939 db->db_user = new_user; 3940 else 3941 old_user = db->db_user; 3942 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3943 mutex_exit(&db->db_mtx); 3944 3945 return (old_user); 3946 } 3947 3948 void * 3949 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3950 { 3951 return (dmu_buf_replace_user(db_fake, NULL, user)); 3952 } 3953 3954 void * 3955 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3956 { 3957 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3958 3959 db->db_user_immediate_evict = TRUE; 3960 return (dmu_buf_set_user(db_fake, user)); 3961 } 3962 3963 void * 3964 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 3965 { 3966 return (dmu_buf_replace_user(db_fake, user, NULL)); 3967 } 3968 3969 void * 3970 dmu_buf_get_user(dmu_buf_t *db_fake) 3971 { 3972 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3973 3974 dbuf_verify_user(db, DBVU_NOT_EVICTING); 3975 return (db->db_user); 3976 } 3977 3978 void 3979 dmu_buf_user_evict_wait(void) 3980 { 3981 taskq_wait(dbu_evict_taskq); 3982 } 3983 3984 blkptr_t * 3985 dmu_buf_get_blkptr(dmu_buf_t *db) 3986 { 3987 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3988 return (dbi->db_blkptr); 3989 } 3990 3991 objset_t * 3992 dmu_buf_get_objset(dmu_buf_t *db) 3993 { 3994 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 3995 return (dbi->db_objset); 3996 } 3997 3998 dnode_t * 3999 dmu_buf_dnode_enter(dmu_buf_t *db) 4000 { 4001 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4002 DB_DNODE_ENTER(dbi); 4003 return (DB_DNODE(dbi)); 4004 } 4005 4006 void 4007 dmu_buf_dnode_exit(dmu_buf_t *db) 4008 { 4009 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4010 DB_DNODE_EXIT(dbi); 4011 } 4012 4013 static void 4014 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4015 { 4016 /* ASSERT(dmu_tx_is_syncing(tx) */ 4017 ASSERT(MUTEX_HELD(&db->db_mtx)); 4018 4019 if (db->db_blkptr != NULL) 4020 return; 4021 4022 if (db->db_blkid == DMU_SPILL_BLKID) { 4023 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4024 BP_ZERO(db->db_blkptr); 4025 return; 4026 } 4027 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4028 /* 4029 * This buffer was allocated at a time when there was 4030 * no available blkptrs from the dnode, or it was 4031 * inappropriate to hook it in (i.e., nlevels mismatch). 4032 */ 4033 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4034 ASSERT(db->db_parent == NULL); 4035 db->db_parent = dn->dn_dbuf; 4036 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4037 DBUF_VERIFY(db); 4038 } else { 4039 dmu_buf_impl_t *parent = db->db_parent; 4040 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4041 4042 ASSERT(dn->dn_phys->dn_nlevels > 1); 4043 if (parent == NULL) { 4044 mutex_exit(&db->db_mtx); 4045 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4046 parent = dbuf_hold_level(dn, db->db_level + 1, 4047 db->db_blkid >> epbs, db); 4048 rw_exit(&dn->dn_struct_rwlock); 4049 mutex_enter(&db->db_mtx); 4050 db->db_parent = parent; 4051 } 4052 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4053 (db->db_blkid & ((1ULL << epbs) - 1)); 4054 DBUF_VERIFY(db); 4055 } 4056 } 4057 4058 static void 4059 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4060 { 4061 dmu_buf_impl_t *db = dr->dr_dbuf; 4062 void *data = dr->dt.dl.dr_data; 4063 4064 ASSERT0(db->db_level); 4065 ASSERT(MUTEX_HELD(&db->db_mtx)); 4066 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4067 ASSERT(data != NULL); 4068 4069 dnode_t *dn = dr->dr_dnode; 4070 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4071 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4072 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4073 4074 dbuf_sync_leaf_verify_bonus_dnode(dr); 4075 4076 dbuf_undirty_bonus(dr); 4077 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4078 } 4079 4080 /* 4081 * When syncing out a blocks of dnodes, adjust the block to deal with 4082 * encryption. Normally, we make sure the block is decrypted before writing 4083 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4084 * from a raw receive. In this case, set the ARC buf's crypt params so 4085 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4086 */ 4087 static void 4088 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4089 { 4090 int err; 4091 dmu_buf_impl_t *db = dr->dr_dbuf; 4092 4093 ASSERT(MUTEX_HELD(&db->db_mtx)); 4094 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4095 ASSERT3U(db->db_level, ==, 0); 4096 4097 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4098 zbookmark_phys_t zb; 4099 4100 /* 4101 * Unfortunately, there is currently no mechanism for 4102 * syncing context to handle decryption errors. An error 4103 * here is only possible if an attacker maliciously 4104 * changed a dnode block and updated the associated 4105 * checksums going up the block tree. 4106 */ 4107 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4108 db->db.db_object, db->db_level, db->db_blkid); 4109 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4110 &zb, B_TRUE); 4111 if (err) 4112 panic("Invalid dnode block MAC"); 4113 } else if (dr->dt.dl.dr_has_raw_params) { 4114 (void) arc_release(dr->dt.dl.dr_data, db); 4115 arc_convert_to_raw(dr->dt.dl.dr_data, 4116 dmu_objset_id(db->db_objset), 4117 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4118 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4119 } 4120 } 4121 4122 /* 4123 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4124 * is critical the we not allow the compiler to inline this function in to 4125 * dbuf_sync_list() thereby drastically bloating the stack usage. 4126 */ 4127 noinline static void 4128 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4129 { 4130 dmu_buf_impl_t *db = dr->dr_dbuf; 4131 dnode_t *dn = dr->dr_dnode; 4132 4133 ASSERT(dmu_tx_is_syncing(tx)); 4134 4135 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4136 4137 mutex_enter(&db->db_mtx); 4138 4139 ASSERT(db->db_level > 0); 4140 DBUF_VERIFY(db); 4141 4142 /* Read the block if it hasn't been read yet. */ 4143 if (db->db_buf == NULL) { 4144 mutex_exit(&db->db_mtx); 4145 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4146 mutex_enter(&db->db_mtx); 4147 } 4148 ASSERT3U(db->db_state, ==, DB_CACHED); 4149 ASSERT(db->db_buf != NULL); 4150 4151 /* Indirect block size must match what the dnode thinks it is. */ 4152 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4153 dbuf_check_blkptr(dn, db); 4154 4155 /* Provide the pending dirty record to child dbufs */ 4156 db->db_data_pending = dr; 4157 4158 mutex_exit(&db->db_mtx); 4159 4160 dbuf_write(dr, db->db_buf, tx); 4161 4162 zio_t *zio = dr->dr_zio; 4163 mutex_enter(&dr->dt.di.dr_mtx); 4164 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4165 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4166 mutex_exit(&dr->dt.di.dr_mtx); 4167 zio_nowait(zio); 4168 } 4169 4170 /* 4171 * Verify that the size of the data in our bonus buffer does not exceed 4172 * its recorded size. 4173 * 4174 * The purpose of this verification is to catch any cases in development 4175 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4176 * due to incorrect feature management, older pools expect to read more 4177 * data even though they didn't actually write it to begin with. 4178 * 4179 * For a example, this would catch an error in the feature logic where we 4180 * open an older pool and we expect to write the space map histogram of 4181 * a space map with size SPACE_MAP_SIZE_V0. 4182 */ 4183 static void 4184 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4185 { 4186 #ifdef ZFS_DEBUG 4187 dnode_t *dn = dr->dr_dnode; 4188 4189 /* 4190 * Encrypted bonus buffers can have data past their bonuslen. 4191 * Skip the verification of these blocks. 4192 */ 4193 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4194 return; 4195 4196 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4197 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4198 ASSERT3U(bonuslen, <=, maxbonuslen); 4199 4200 arc_buf_t *datap = dr->dt.dl.dr_data; 4201 char *datap_end = ((char *)datap) + bonuslen; 4202 char *datap_max = ((char *)datap) + maxbonuslen; 4203 4204 /* ensure that everything is zero after our data */ 4205 for (; datap_end < datap_max; datap_end++) 4206 ASSERT(*datap_end == 0); 4207 #endif 4208 } 4209 4210 static blkptr_t * 4211 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4212 { 4213 /* This must be a lightweight dirty record. */ 4214 ASSERT3P(dr->dr_dbuf, ==, NULL); 4215 dnode_t *dn = dr->dr_dnode; 4216 4217 if (dn->dn_phys->dn_nlevels == 1) { 4218 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4219 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4220 } else { 4221 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4222 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4223 VERIFY3U(parent_db->db_level, ==, 1); 4224 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4225 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4226 blkptr_t *bp = parent_db->db.db_data; 4227 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4228 } 4229 } 4230 4231 static void 4232 dbuf_lightweight_ready(zio_t *zio) 4233 { 4234 dbuf_dirty_record_t *dr = zio->io_private; 4235 blkptr_t *bp = zio->io_bp; 4236 4237 if (zio->io_error != 0) 4238 return; 4239 4240 dnode_t *dn = dr->dr_dnode; 4241 4242 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4243 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4244 int64_t delta = bp_get_dsize_sync(spa, bp) - 4245 bp_get_dsize_sync(spa, bp_orig); 4246 dnode_diduse_space(dn, delta); 4247 4248 uint64_t blkid = dr->dt.dll.dr_blkid; 4249 mutex_enter(&dn->dn_mtx); 4250 if (blkid > dn->dn_phys->dn_maxblkid) { 4251 ASSERT0(dn->dn_objset->os_raw_receive); 4252 dn->dn_phys->dn_maxblkid = blkid; 4253 } 4254 mutex_exit(&dn->dn_mtx); 4255 4256 if (!BP_IS_EMBEDDED(bp)) { 4257 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4258 BP_SET_FILL(bp, fill); 4259 } 4260 4261 dmu_buf_impl_t *parent_db; 4262 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4263 if (dr->dr_parent == NULL) { 4264 parent_db = dn->dn_dbuf; 4265 } else { 4266 parent_db = dr->dr_parent->dr_dbuf; 4267 } 4268 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4269 *bp_orig = *bp; 4270 rw_exit(&parent_db->db_rwlock); 4271 } 4272 4273 static void 4274 dbuf_lightweight_physdone(zio_t *zio) 4275 { 4276 dbuf_dirty_record_t *dr = zio->io_private; 4277 dsl_pool_t *dp = spa_get_dsl(zio->io_spa); 4278 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4279 4280 /* 4281 * The callback will be called io_phys_children times. Retire one 4282 * portion of our dirty space each time we are called. Any rounding 4283 * error will be cleaned up by dbuf_lightweight_done(). 4284 */ 4285 int delta = dr->dr_accounted / zio->io_phys_children; 4286 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4287 } 4288 4289 static void 4290 dbuf_lightweight_done(zio_t *zio) 4291 { 4292 dbuf_dirty_record_t *dr = zio->io_private; 4293 4294 VERIFY0(zio->io_error); 4295 4296 objset_t *os = dr->dr_dnode->dn_objset; 4297 dmu_tx_t *tx = os->os_synctx; 4298 4299 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4300 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4301 } else { 4302 dsl_dataset_t *ds = os->os_dsl_dataset; 4303 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4304 dsl_dataset_block_born(ds, zio->io_bp, tx); 4305 } 4306 4307 /* 4308 * See comment in dbuf_write_done(). 4309 */ 4310 if (zio->io_phys_children == 0) { 4311 dsl_pool_undirty_space(dmu_objset_pool(os), 4312 dr->dr_accounted, zio->io_txg); 4313 } else { 4314 dsl_pool_undirty_space(dmu_objset_pool(os), 4315 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4316 } 4317 4318 abd_free(dr->dt.dll.dr_abd); 4319 kmem_free(dr, sizeof (*dr)); 4320 } 4321 4322 noinline static void 4323 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4324 { 4325 dnode_t *dn = dr->dr_dnode; 4326 zio_t *pio; 4327 if (dn->dn_phys->dn_nlevels == 1) { 4328 pio = dn->dn_zio; 4329 } else { 4330 pio = dr->dr_parent->dr_zio; 4331 } 4332 4333 zbookmark_phys_t zb = { 4334 .zb_objset = dmu_objset_id(dn->dn_objset), 4335 .zb_object = dn->dn_object, 4336 .zb_level = 0, 4337 .zb_blkid = dr->dt.dll.dr_blkid, 4338 }; 4339 4340 /* 4341 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4342 * will have the old BP in dbuf_lightweight_done(). 4343 */ 4344 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4345 4346 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4347 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4348 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4349 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4350 dbuf_lightweight_physdone, dbuf_lightweight_done, dr, 4351 ZIO_PRIORITY_ASYNC_WRITE, 4352 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4353 4354 zio_nowait(dr->dr_zio); 4355 } 4356 4357 /* 4358 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4359 * critical the we not allow the compiler to inline this function in to 4360 * dbuf_sync_list() thereby drastically bloating the stack usage. 4361 */ 4362 noinline static void 4363 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4364 { 4365 arc_buf_t **datap = &dr->dt.dl.dr_data; 4366 dmu_buf_impl_t *db = dr->dr_dbuf; 4367 dnode_t *dn = dr->dr_dnode; 4368 objset_t *os; 4369 uint64_t txg = tx->tx_txg; 4370 4371 ASSERT(dmu_tx_is_syncing(tx)); 4372 4373 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4374 4375 mutex_enter(&db->db_mtx); 4376 /* 4377 * To be synced, we must be dirtied. But we 4378 * might have been freed after the dirty. 4379 */ 4380 if (db->db_state == DB_UNCACHED) { 4381 /* This buffer has been freed since it was dirtied */ 4382 ASSERT(db->db.db_data == NULL); 4383 } else if (db->db_state == DB_FILL) { 4384 /* This buffer was freed and is now being re-filled */ 4385 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4386 } else { 4387 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4388 } 4389 DBUF_VERIFY(db); 4390 4391 if (db->db_blkid == DMU_SPILL_BLKID) { 4392 mutex_enter(&dn->dn_mtx); 4393 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4394 /* 4395 * In the previous transaction group, the bonus buffer 4396 * was entirely used to store the attributes for the 4397 * dnode which overrode the dn_spill field. However, 4398 * when adding more attributes to the file a spill 4399 * block was required to hold the extra attributes. 4400 * 4401 * Make sure to clear the garbage left in the dn_spill 4402 * field from the previous attributes in the bonus 4403 * buffer. Otherwise, after writing out the spill 4404 * block to the new allocated dva, it will free 4405 * the old block pointed to by the invalid dn_spill. 4406 */ 4407 db->db_blkptr = NULL; 4408 } 4409 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4410 mutex_exit(&dn->dn_mtx); 4411 } 4412 4413 /* 4414 * If this is a bonus buffer, simply copy the bonus data into the 4415 * dnode. It will be written out when the dnode is synced (and it 4416 * will be synced, since it must have been dirty for dbuf_sync to 4417 * be called). 4418 */ 4419 if (db->db_blkid == DMU_BONUS_BLKID) { 4420 ASSERT(dr->dr_dbuf == db); 4421 dbuf_sync_bonus(dr, tx); 4422 return; 4423 } 4424 4425 os = dn->dn_objset; 4426 4427 /* 4428 * This function may have dropped the db_mtx lock allowing a dmu_sync 4429 * operation to sneak in. As a result, we need to ensure that we 4430 * don't check the dr_override_state until we have returned from 4431 * dbuf_check_blkptr. 4432 */ 4433 dbuf_check_blkptr(dn, db); 4434 4435 /* 4436 * If this buffer is in the middle of an immediate write, 4437 * wait for the synchronous IO to complete. 4438 */ 4439 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4440 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4441 cv_wait(&db->db_changed, &db->db_mtx); 4442 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN); 4443 } 4444 4445 /* 4446 * If this is a dnode block, ensure it is appropriately encrypted 4447 * or decrypted, depending on what we are writing to it this txg. 4448 */ 4449 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4450 dbuf_prepare_encrypted_dnode_leaf(dr); 4451 4452 if (db->db_state != DB_NOFILL && 4453 dn->dn_object != DMU_META_DNODE_OBJECT && 4454 zfs_refcount_count(&db->db_holds) > 1 && 4455 dr->dt.dl.dr_override_state != DR_OVERRIDDEN && 4456 *datap == db->db_buf) { 4457 /* 4458 * If this buffer is currently "in use" (i.e., there 4459 * are active holds and db_data still references it), 4460 * then make a copy before we start the write so that 4461 * any modifications from the open txg will not leak 4462 * into this write. 4463 * 4464 * NOTE: this copy does not need to be made for 4465 * objects only modified in the syncing context (e.g. 4466 * DNONE_DNODE blocks). 4467 */ 4468 int psize = arc_buf_size(*datap); 4469 int lsize = arc_buf_lsize(*datap); 4470 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4471 enum zio_compress compress_type = arc_get_compression(*datap); 4472 uint8_t complevel = arc_get_complevel(*datap); 4473 4474 if (arc_is_encrypted(*datap)) { 4475 boolean_t byteorder; 4476 uint8_t salt[ZIO_DATA_SALT_LEN]; 4477 uint8_t iv[ZIO_DATA_IV_LEN]; 4478 uint8_t mac[ZIO_DATA_MAC_LEN]; 4479 4480 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4481 *datap = arc_alloc_raw_buf(os->os_spa, db, 4482 dmu_objset_id(os), byteorder, salt, iv, mac, 4483 dn->dn_type, psize, lsize, compress_type, 4484 complevel); 4485 } else if (compress_type != ZIO_COMPRESS_OFF) { 4486 ASSERT3U(type, ==, ARC_BUFC_DATA); 4487 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4488 psize, lsize, compress_type, complevel); 4489 } else { 4490 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4491 } 4492 memcpy((*datap)->b_data, db->db.db_data, psize); 4493 } 4494 db->db_data_pending = dr; 4495 4496 mutex_exit(&db->db_mtx); 4497 4498 dbuf_write(dr, *datap, tx); 4499 4500 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4501 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4502 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4503 } else { 4504 zio_nowait(dr->dr_zio); 4505 } 4506 } 4507 4508 void 4509 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4510 { 4511 dbuf_dirty_record_t *dr; 4512 4513 while ((dr = list_head(list))) { 4514 if (dr->dr_zio != NULL) { 4515 /* 4516 * If we find an already initialized zio then we 4517 * are processing the meta-dnode, and we have finished. 4518 * The dbufs for all dnodes are put back on the list 4519 * during processing, so that we can zio_wait() 4520 * these IOs after initiating all child IOs. 4521 */ 4522 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4523 DMU_META_DNODE_OBJECT); 4524 break; 4525 } 4526 list_remove(list, dr); 4527 if (dr->dr_dbuf == NULL) { 4528 dbuf_sync_lightweight(dr, tx); 4529 } else { 4530 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4531 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4532 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4533 } 4534 if (dr->dr_dbuf->db_level > 0) 4535 dbuf_sync_indirect(dr, tx); 4536 else 4537 dbuf_sync_leaf(dr, tx); 4538 } 4539 } 4540 } 4541 4542 static void 4543 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4544 { 4545 (void) buf; 4546 dmu_buf_impl_t *db = vdb; 4547 dnode_t *dn; 4548 blkptr_t *bp = zio->io_bp; 4549 blkptr_t *bp_orig = &zio->io_bp_orig; 4550 spa_t *spa = zio->io_spa; 4551 int64_t delta; 4552 uint64_t fill = 0; 4553 int i; 4554 4555 ASSERT3P(db->db_blkptr, !=, NULL); 4556 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4557 4558 DB_DNODE_ENTER(db); 4559 dn = DB_DNODE(db); 4560 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4561 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4562 zio->io_prev_space_delta = delta; 4563 4564 if (bp->blk_birth != 0) { 4565 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4566 BP_GET_TYPE(bp) == dn->dn_type) || 4567 (db->db_blkid == DMU_SPILL_BLKID && 4568 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4569 BP_IS_EMBEDDED(bp)); 4570 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4571 } 4572 4573 mutex_enter(&db->db_mtx); 4574 4575 #ifdef ZFS_DEBUG 4576 if (db->db_blkid == DMU_SPILL_BLKID) { 4577 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4578 ASSERT(!(BP_IS_HOLE(bp)) && 4579 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4580 } 4581 #endif 4582 4583 if (db->db_level == 0) { 4584 mutex_enter(&dn->dn_mtx); 4585 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4586 db->db_blkid != DMU_SPILL_BLKID) { 4587 ASSERT0(db->db_objset->os_raw_receive); 4588 dn->dn_phys->dn_maxblkid = db->db_blkid; 4589 } 4590 mutex_exit(&dn->dn_mtx); 4591 4592 if (dn->dn_type == DMU_OT_DNODE) { 4593 i = 0; 4594 while (i < db->db.db_size) { 4595 dnode_phys_t *dnp = 4596 (void *)(((char *)db->db.db_data) + i); 4597 4598 i += DNODE_MIN_SIZE; 4599 if (dnp->dn_type != DMU_OT_NONE) { 4600 fill++; 4601 i += dnp->dn_extra_slots * 4602 DNODE_MIN_SIZE; 4603 } 4604 } 4605 } else { 4606 if (BP_IS_HOLE(bp)) { 4607 fill = 0; 4608 } else { 4609 fill = 1; 4610 } 4611 } 4612 } else { 4613 blkptr_t *ibp = db->db.db_data; 4614 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4615 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4616 if (BP_IS_HOLE(ibp)) 4617 continue; 4618 fill += BP_GET_FILL(ibp); 4619 } 4620 } 4621 DB_DNODE_EXIT(db); 4622 4623 if (!BP_IS_EMBEDDED(bp)) 4624 BP_SET_FILL(bp, fill); 4625 4626 mutex_exit(&db->db_mtx); 4627 4628 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4629 *db->db_blkptr = *bp; 4630 dmu_buf_unlock_parent(db, dblt, FTAG); 4631 } 4632 4633 /* 4634 * This function gets called just prior to running through the compression 4635 * stage of the zio pipeline. If we're an indirect block comprised of only 4636 * holes, then we want this indirect to be compressed away to a hole. In 4637 * order to do that we must zero out any information about the holes that 4638 * this indirect points to prior to before we try to compress it. 4639 */ 4640 static void 4641 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4642 { 4643 (void) zio, (void) buf; 4644 dmu_buf_impl_t *db = vdb; 4645 dnode_t *dn; 4646 blkptr_t *bp; 4647 unsigned int epbs, i; 4648 4649 ASSERT3U(db->db_level, >, 0); 4650 DB_DNODE_ENTER(db); 4651 dn = DB_DNODE(db); 4652 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4653 ASSERT3U(epbs, <, 31); 4654 4655 /* Determine if all our children are holes */ 4656 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4657 if (!BP_IS_HOLE(bp)) 4658 break; 4659 } 4660 4661 /* 4662 * If all the children are holes, then zero them all out so that 4663 * we may get compressed away. 4664 */ 4665 if (i == 1ULL << epbs) { 4666 /* 4667 * We only found holes. Grab the rwlock to prevent 4668 * anybody from reading the blocks we're about to 4669 * zero out. 4670 */ 4671 rw_enter(&db->db_rwlock, RW_WRITER); 4672 memset(db->db.db_data, 0, db->db.db_size); 4673 rw_exit(&db->db_rwlock); 4674 } 4675 DB_DNODE_EXIT(db); 4676 } 4677 4678 /* 4679 * The SPA will call this callback several times for each zio - once 4680 * for every physical child i/o (zio->io_phys_children times). This 4681 * allows the DMU to monitor the progress of each logical i/o. For example, 4682 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z 4683 * block. There may be a long delay before all copies/fragments are completed, 4684 * so this callback allows us to retire dirty space gradually, as the physical 4685 * i/os complete. 4686 */ 4687 static void 4688 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg) 4689 { 4690 (void) buf; 4691 dmu_buf_impl_t *db = arg; 4692 objset_t *os = db->db_objset; 4693 dsl_pool_t *dp = dmu_objset_pool(os); 4694 dbuf_dirty_record_t *dr; 4695 int delta = 0; 4696 4697 dr = db->db_data_pending; 4698 ASSERT3U(dr->dr_txg, ==, zio->io_txg); 4699 4700 /* 4701 * The callback will be called io_phys_children times. Retire one 4702 * portion of our dirty space each time we are called. Any rounding 4703 * error will be cleaned up by dbuf_write_done(). 4704 */ 4705 delta = dr->dr_accounted / zio->io_phys_children; 4706 dsl_pool_undirty_space(dp, delta, zio->io_txg); 4707 } 4708 4709 static void 4710 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4711 { 4712 (void) buf; 4713 dmu_buf_impl_t *db = vdb; 4714 blkptr_t *bp_orig = &zio->io_bp_orig; 4715 blkptr_t *bp = db->db_blkptr; 4716 objset_t *os = db->db_objset; 4717 dmu_tx_t *tx = os->os_synctx; 4718 4719 ASSERT0(zio->io_error); 4720 ASSERT(db->db_blkptr == bp); 4721 4722 /* 4723 * For nopwrites and rewrites we ensure that the bp matches our 4724 * original and bypass all the accounting. 4725 */ 4726 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4727 ASSERT(BP_EQUAL(bp, bp_orig)); 4728 } else { 4729 dsl_dataset_t *ds = os->os_dsl_dataset; 4730 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4731 dsl_dataset_block_born(ds, bp, tx); 4732 } 4733 4734 mutex_enter(&db->db_mtx); 4735 4736 DBUF_VERIFY(db); 4737 4738 dbuf_dirty_record_t *dr = db->db_data_pending; 4739 dnode_t *dn = dr->dr_dnode; 4740 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4741 ASSERT(dr->dr_dbuf == db); 4742 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4743 list_remove(&db->db_dirty_records, dr); 4744 4745 #ifdef ZFS_DEBUG 4746 if (db->db_blkid == DMU_SPILL_BLKID) { 4747 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4748 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4749 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4750 } 4751 #endif 4752 4753 if (db->db_level == 0) { 4754 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4755 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4756 if (db->db_state != DB_NOFILL) { 4757 if (dr->dt.dl.dr_data != db->db_buf) 4758 arc_buf_destroy(dr->dt.dl.dr_data, db); 4759 } 4760 } else { 4761 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4762 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4763 if (!BP_IS_HOLE(db->db_blkptr)) { 4764 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4765 SPA_BLKPTRSHIFT; 4766 ASSERT3U(db->db_blkid, <=, 4767 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4768 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4769 db->db.db_size); 4770 } 4771 mutex_destroy(&dr->dt.di.dr_mtx); 4772 list_destroy(&dr->dt.di.dr_children); 4773 } 4774 4775 cv_broadcast(&db->db_changed); 4776 ASSERT(db->db_dirtycnt > 0); 4777 db->db_dirtycnt -= 1; 4778 db->db_data_pending = NULL; 4779 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4780 4781 /* 4782 * If we didn't do a physical write in this ZIO and we 4783 * still ended up here, it means that the space of the 4784 * dbuf that we just released (and undirtied) above hasn't 4785 * been marked as undirtied in the pool's accounting. 4786 * 4787 * Thus, we undirty that space in the pool's view of the 4788 * world here. For physical writes this type of update 4789 * happens in dbuf_write_physdone(). 4790 * 4791 * If we did a physical write, cleanup any rounding errors 4792 * that came up due to writing multiple copies of a block 4793 * on disk [see dbuf_write_physdone()]. 4794 */ 4795 if (zio->io_phys_children == 0) { 4796 dsl_pool_undirty_space(dmu_objset_pool(os), 4797 dr->dr_accounted, zio->io_txg); 4798 } else { 4799 dsl_pool_undirty_space(dmu_objset_pool(os), 4800 dr->dr_accounted % zio->io_phys_children, zio->io_txg); 4801 } 4802 4803 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4804 } 4805 4806 static void 4807 dbuf_write_nofill_ready(zio_t *zio) 4808 { 4809 dbuf_write_ready(zio, NULL, zio->io_private); 4810 } 4811 4812 static void 4813 dbuf_write_nofill_done(zio_t *zio) 4814 { 4815 dbuf_write_done(zio, NULL, zio->io_private); 4816 } 4817 4818 static void 4819 dbuf_write_override_ready(zio_t *zio) 4820 { 4821 dbuf_dirty_record_t *dr = zio->io_private; 4822 dmu_buf_impl_t *db = dr->dr_dbuf; 4823 4824 dbuf_write_ready(zio, NULL, db); 4825 } 4826 4827 static void 4828 dbuf_write_override_done(zio_t *zio) 4829 { 4830 dbuf_dirty_record_t *dr = zio->io_private; 4831 dmu_buf_impl_t *db = dr->dr_dbuf; 4832 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4833 4834 mutex_enter(&db->db_mtx); 4835 if (!BP_EQUAL(zio->io_bp, obp)) { 4836 if (!BP_IS_HOLE(obp)) 4837 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4838 arc_release(dr->dt.dl.dr_data, db); 4839 } 4840 mutex_exit(&db->db_mtx); 4841 4842 dbuf_write_done(zio, NULL, db); 4843 4844 if (zio->io_abd != NULL) 4845 abd_free(zio->io_abd); 4846 } 4847 4848 typedef struct dbuf_remap_impl_callback_arg { 4849 objset_t *drica_os; 4850 uint64_t drica_blk_birth; 4851 dmu_tx_t *drica_tx; 4852 } dbuf_remap_impl_callback_arg_t; 4853 4854 static void 4855 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4856 void *arg) 4857 { 4858 dbuf_remap_impl_callback_arg_t *drica = arg; 4859 objset_t *os = drica->drica_os; 4860 spa_t *spa = dmu_objset_spa(os); 4861 dmu_tx_t *tx = drica->drica_tx; 4862 4863 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4864 4865 if (os == spa_meta_objset(spa)) { 4866 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4867 } else { 4868 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4869 size, drica->drica_blk_birth, tx); 4870 } 4871 } 4872 4873 static void 4874 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4875 { 4876 blkptr_t bp_copy = *bp; 4877 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4878 dbuf_remap_impl_callback_arg_t drica; 4879 4880 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4881 4882 drica.drica_os = dn->dn_objset; 4883 drica.drica_blk_birth = bp->blk_birth; 4884 drica.drica_tx = tx; 4885 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4886 &drica)) { 4887 /* 4888 * If the blkptr being remapped is tracked by a livelist, 4889 * then we need to make sure the livelist reflects the update. 4890 * First, cancel out the old blkptr by appending a 'FREE' 4891 * entry. Next, add an 'ALLOC' to track the new version. This 4892 * way we avoid trying to free an inaccurate blkptr at delete. 4893 * Note that embedded blkptrs are not tracked in livelists. 4894 */ 4895 if (dn->dn_objset != spa_meta_objset(spa)) { 4896 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 4897 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4898 bp->blk_birth > ds->ds_dir->dd_origin_txg) { 4899 ASSERT(!BP_IS_EMBEDDED(bp)); 4900 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 4901 ASSERT(spa_feature_is_enabled(spa, 4902 SPA_FEATURE_LIVELIST)); 4903 bplist_append(&ds->ds_dir->dd_pending_frees, 4904 bp); 4905 bplist_append(&ds->ds_dir->dd_pending_allocs, 4906 &bp_copy); 4907 } 4908 } 4909 4910 /* 4911 * The db_rwlock prevents dbuf_read_impl() from 4912 * dereferencing the BP while we are changing it. To 4913 * avoid lock contention, only grab it when we are actually 4914 * changing the BP. 4915 */ 4916 if (rw != NULL) 4917 rw_enter(rw, RW_WRITER); 4918 *bp = bp_copy; 4919 if (rw != NULL) 4920 rw_exit(rw); 4921 } 4922 } 4923 4924 /* 4925 * Remap any existing BP's to concrete vdevs, if possible. 4926 */ 4927 static void 4928 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 4929 { 4930 spa_t *spa = dmu_objset_spa(db->db_objset); 4931 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4932 4933 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 4934 return; 4935 4936 if (db->db_level > 0) { 4937 blkptr_t *bp = db->db.db_data; 4938 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 4939 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 4940 } 4941 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 4942 dnode_phys_t *dnp = db->db.db_data; 4943 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 4944 DMU_OT_DNODE); 4945 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 4946 i += dnp[i].dn_extra_slots + 1) { 4947 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 4948 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 4949 &dn->dn_dbuf->db_rwlock); 4950 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 4951 tx); 4952 } 4953 } 4954 } 4955 } 4956 4957 4958 /* Issue I/O to commit a dirty buffer to disk. */ 4959 static void 4960 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 4961 { 4962 dmu_buf_impl_t *db = dr->dr_dbuf; 4963 dnode_t *dn = dr->dr_dnode; 4964 objset_t *os; 4965 dmu_buf_impl_t *parent = db->db_parent; 4966 uint64_t txg = tx->tx_txg; 4967 zbookmark_phys_t zb; 4968 zio_prop_t zp; 4969 zio_t *pio; /* parent I/O */ 4970 int wp_flag = 0; 4971 4972 ASSERT(dmu_tx_is_syncing(tx)); 4973 4974 os = dn->dn_objset; 4975 4976 if (db->db_state != DB_NOFILL) { 4977 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 4978 /* 4979 * Private object buffers are released here rather 4980 * than in dbuf_dirty() since they are only modified 4981 * in the syncing context and we don't want the 4982 * overhead of making multiple copies of the data. 4983 */ 4984 if (BP_IS_HOLE(db->db_blkptr)) { 4985 arc_buf_thaw(data); 4986 } else { 4987 dbuf_release_bp(db); 4988 } 4989 dbuf_remap(dn, db, tx); 4990 } 4991 } 4992 4993 if (parent != dn->dn_dbuf) { 4994 /* Our parent is an indirect block. */ 4995 /* We have a dirty parent that has been scheduled for write. */ 4996 ASSERT(parent && parent->db_data_pending); 4997 /* Our parent's buffer is one level closer to the dnode. */ 4998 ASSERT(db->db_level == parent->db_level-1); 4999 /* 5000 * We're about to modify our parent's db_data by modifying 5001 * our block pointer, so the parent must be released. 5002 */ 5003 ASSERT(arc_released(parent->db_buf)); 5004 pio = parent->db_data_pending->dr_zio; 5005 } else { 5006 /* Our parent is the dnode itself. */ 5007 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5008 db->db_blkid != DMU_SPILL_BLKID) || 5009 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5010 if (db->db_blkid != DMU_SPILL_BLKID) 5011 ASSERT3P(db->db_blkptr, ==, 5012 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5013 pio = dn->dn_zio; 5014 } 5015 5016 ASSERT(db->db_level == 0 || data == db->db_buf); 5017 ASSERT3U(db->db_blkptr->blk_birth, <=, txg); 5018 ASSERT(pio); 5019 5020 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5021 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5022 db->db.db_object, db->db_level, db->db_blkid); 5023 5024 if (db->db_blkid == DMU_SPILL_BLKID) 5025 wp_flag = WP_SPILL; 5026 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0; 5027 5028 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5029 5030 /* 5031 * We copy the blkptr now (rather than when we instantiate the dirty 5032 * record), because its value can change between open context and 5033 * syncing context. We do not need to hold dn_struct_rwlock to read 5034 * db_blkptr because we are in syncing context. 5035 */ 5036 dr->dr_bp_copy = *db->db_blkptr; 5037 5038 if (db->db_level == 0 && 5039 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5040 /* 5041 * The BP for this block has been provided by open context 5042 * (by dmu_sync() or dmu_buf_write_embedded()). 5043 */ 5044 abd_t *contents = (data != NULL) ? 5045 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5046 5047 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5048 contents, db->db.db_size, db->db.db_size, &zp, 5049 dbuf_write_override_ready, NULL, NULL, 5050 dbuf_write_override_done, 5051 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5052 mutex_enter(&db->db_mtx); 5053 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5054 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5055 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite); 5056 mutex_exit(&db->db_mtx); 5057 } else if (db->db_state == DB_NOFILL) { 5058 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5059 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5060 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5061 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5062 dbuf_write_nofill_ready, NULL, NULL, 5063 dbuf_write_nofill_done, db, 5064 ZIO_PRIORITY_ASYNC_WRITE, 5065 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5066 } else { 5067 ASSERT(arc_released(data)); 5068 5069 /* 5070 * For indirect blocks, we want to setup the children 5071 * ready callback so that we can properly handle an indirect 5072 * block that only contains holes. 5073 */ 5074 arc_write_done_func_t *children_ready_cb = NULL; 5075 if (db->db_level != 0) 5076 children_ready_cb = dbuf_write_children_ready; 5077 5078 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5079 &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db), 5080 &zp, dbuf_write_ready, 5081 children_ready_cb, dbuf_write_physdone, 5082 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE, 5083 ZIO_FLAG_MUSTSUCCEED, &zb); 5084 } 5085 } 5086 5087 EXPORT_SYMBOL(dbuf_find); 5088 EXPORT_SYMBOL(dbuf_is_metadata); 5089 EXPORT_SYMBOL(dbuf_destroy); 5090 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5091 EXPORT_SYMBOL(dbuf_whichblock); 5092 EXPORT_SYMBOL(dbuf_read); 5093 EXPORT_SYMBOL(dbuf_unoverride); 5094 EXPORT_SYMBOL(dbuf_free_range); 5095 EXPORT_SYMBOL(dbuf_new_size); 5096 EXPORT_SYMBOL(dbuf_release_bp); 5097 EXPORT_SYMBOL(dbuf_dirty); 5098 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5099 EXPORT_SYMBOL(dmu_buf_will_dirty); 5100 EXPORT_SYMBOL(dmu_buf_is_dirty); 5101 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5102 EXPORT_SYMBOL(dmu_buf_will_fill); 5103 EXPORT_SYMBOL(dmu_buf_fill_done); 5104 EXPORT_SYMBOL(dmu_buf_rele); 5105 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5106 EXPORT_SYMBOL(dbuf_prefetch); 5107 EXPORT_SYMBOL(dbuf_hold_impl); 5108 EXPORT_SYMBOL(dbuf_hold); 5109 EXPORT_SYMBOL(dbuf_hold_level); 5110 EXPORT_SYMBOL(dbuf_create_bonus); 5111 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5112 EXPORT_SYMBOL(dbuf_rm_spill); 5113 EXPORT_SYMBOL(dbuf_add_ref); 5114 EXPORT_SYMBOL(dbuf_rele); 5115 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5116 EXPORT_SYMBOL(dbuf_refcount); 5117 EXPORT_SYMBOL(dbuf_sync_list); 5118 EXPORT_SYMBOL(dmu_buf_set_user); 5119 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5120 EXPORT_SYMBOL(dmu_buf_get_user); 5121 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5122 5123 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5124 "Maximum size in bytes of the dbuf cache."); 5125 5126 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5127 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5128 5129 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5130 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5131 5132 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5133 "Maximum size in bytes of dbuf metadata cache."); 5134 5135 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5136 "Set size of dbuf cache to log2 fraction of arc size."); 5137 5138 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5139 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5140 5141 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5142 "Set size of dbuf cache mutex array as log2 shift."); 5143