1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 static taskq_t *dbu_evict_taskq; 186 187 static kthread_t *dbuf_cache_evict_thread; 188 static kmutex_t dbuf_evict_lock; 189 static kcondvar_t dbuf_evict_cv; 190 static boolean_t dbuf_evict_thread_exit; 191 192 /* 193 * There are two dbuf caches; each dbuf can only be in one of them at a time. 194 * 195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 197 * that represent the metadata that describes filesystems/snapshots/ 198 * bookmarks/properties/etc. We only evict from this cache when we export a 199 * pool, to short-circuit as much I/O as possible for all administrative 200 * commands that need the metadata. There is no eviction policy for this 201 * cache, because we try to only include types in it which would occupy a 202 * very small amount of space per object but create a large impact on the 203 * performance of these commands. Instead, after it reaches a maximum size 204 * (which should only happen on very small memory systems with a very large 205 * number of filesystem objects), we stop taking new dbufs into the 206 * metadata cache, instead putting them in the normal dbuf cache. 207 * 208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 209 * are not currently held but have been recently released. These dbufs 210 * are not eligible for arc eviction until they are aged out of the cache. 211 * Dbufs that are aged out of the cache will be immediately destroyed and 212 * become eligible for arc eviction. 213 * 214 * Dbufs are added to these caches once the last hold is released. If a dbuf is 215 * later accessed and still exists in the dbuf cache, then it will be removed 216 * from the cache and later re-added to the head of the cache. 217 * 218 * If a given dbuf meets the requirements for the metadata cache, it will go 219 * there, otherwise it will be considered for the generic LRU dbuf cache. The 220 * caches and the refcounts tracking their sizes are stored in an array indexed 221 * by those caches' matching enum values (from dbuf_cached_state_t). 222 */ 223 typedef struct dbuf_cache { 224 multilist_t cache; 225 zfs_refcount_t size ____cacheline_aligned; 226 } dbuf_cache_t; 227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 228 229 /* Size limits for the caches */ 230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 232 233 /* Set the default sizes of the caches to log2 fraction of arc size */ 234 static uint_t dbuf_cache_shift = 5; 235 static uint_t dbuf_metadata_cache_shift = 6; 236 237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 238 static uint_t dbuf_mutex_cache_shift = 0; 239 240 static unsigned long dbuf_cache_target_bytes(void); 241 static unsigned long dbuf_metadata_cache_target_bytes(void); 242 243 /* 244 * The LRU dbuf cache uses a three-stage eviction policy: 245 * - A low water marker designates when the dbuf eviction thread 246 * should stop evicting from the dbuf cache. 247 * - When we reach the maximum size (aka mid water mark), we 248 * signal the eviction thread to run. 249 * - The high water mark indicates when the eviction thread 250 * is unable to keep up with the incoming load and eviction must 251 * happen in the context of the calling thread. 252 * 253 * The dbuf cache: 254 * (max size) 255 * low water mid water hi water 256 * +----------------------------------------+----------+----------+ 257 * | | | | 258 * | | | | 259 * | | | | 260 * | | | | 261 * +----------------------------------------+----------+----------+ 262 * stop signal evict 263 * evicting eviction directly 264 * thread 265 * 266 * The high and low water marks indicate the operating range for the eviction 267 * thread. The low water mark is, by default, 90% of the total size of the 268 * cache and the high water mark is at 110% (both of these percentages can be 269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 270 * respectively). The eviction thread will try to ensure that the cache remains 271 * within this range by waking up every second and checking if the cache is 272 * above the low water mark. The thread can also be woken up by callers adding 273 * elements into the cache if the cache is larger than the mid water (i.e max 274 * cache size). Once the eviction thread is woken up and eviction is required, 275 * it will continue evicting buffers until it's able to reduce the cache size 276 * to the low water mark. If the cache size continues to grow and hits the high 277 * water mark, then callers adding elements to the cache will begin to evict 278 * directly from the cache until the cache is no longer above the high water 279 * mark. 280 */ 281 282 /* 283 * The percentage above and below the maximum cache size. 284 */ 285 static uint_t dbuf_cache_hiwater_pct = 10; 286 static uint_t dbuf_cache_lowater_pct = 10; 287 288 static int 289 dbuf_cons(void *vdb, void *unused, int kmflag) 290 { 291 (void) unused, (void) kmflag; 292 dmu_buf_impl_t *db = vdb; 293 memset(db, 0, sizeof (dmu_buf_impl_t)); 294 295 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 296 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL); 297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 298 multilist_link_init(&db->db_cache_link); 299 zfs_refcount_create(&db->db_holds); 300 301 return (0); 302 } 303 304 static void 305 dbuf_dest(void *vdb, void *unused) 306 { 307 (void) unused; 308 dmu_buf_impl_t *db = vdb; 309 mutex_destroy(&db->db_mtx); 310 rw_destroy(&db->db_rwlock); 311 cv_destroy(&db->db_changed); 312 ASSERT(!multilist_link_active(&db->db_cache_link)); 313 zfs_refcount_destroy(&db->db_holds); 314 } 315 316 /* 317 * dbuf hash table routines 318 */ 319 static dbuf_hash_table_t dbuf_hash_table; 320 321 /* 322 * We use Cityhash for this. It's fast, and has good hash properties without 323 * requiring any large static buffers. 324 */ 325 static uint64_t 326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 327 { 328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 329 } 330 331 #define DTRACE_SET_STATE(db, why) \ 332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 333 const char *, why) 334 335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 336 ((dbuf)->db.db_object == (obj) && \ 337 (dbuf)->db_objset == (os) && \ 338 (dbuf)->db_level == (level) && \ 339 (dbuf)->db_blkid == (blkid)) 340 341 dmu_buf_impl_t * 342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 343 uint64_t *hash_out) 344 { 345 dbuf_hash_table_t *h = &dbuf_hash_table; 346 uint64_t hv; 347 uint64_t idx; 348 dmu_buf_impl_t *db; 349 350 hv = dbuf_hash(os, obj, level, blkid); 351 idx = hv & h->hash_table_mask; 352 353 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 355 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 356 mutex_enter(&db->db_mtx); 357 if (db->db_state != DB_EVICTING) { 358 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 359 return (db); 360 } 361 mutex_exit(&db->db_mtx); 362 } 363 } 364 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 365 if (hash_out != NULL) 366 *hash_out = hv; 367 return (NULL); 368 } 369 370 static dmu_buf_impl_t * 371 dbuf_find_bonus(objset_t *os, uint64_t object) 372 { 373 dnode_t *dn; 374 dmu_buf_impl_t *db = NULL; 375 376 if (dnode_hold(os, object, FTAG, &dn) == 0) { 377 rw_enter(&dn->dn_struct_rwlock, RW_READER); 378 if (dn->dn_bonus != NULL) { 379 db = dn->dn_bonus; 380 mutex_enter(&db->db_mtx); 381 } 382 rw_exit(&dn->dn_struct_rwlock); 383 dnode_rele(dn, FTAG); 384 } 385 return (db); 386 } 387 388 /* 389 * Insert an entry into the hash table. If there is already an element 390 * equal to elem in the hash table, then the already existing element 391 * will be returned and the new element will not be inserted. 392 * Otherwise returns NULL. 393 */ 394 static dmu_buf_impl_t * 395 dbuf_hash_insert(dmu_buf_impl_t *db) 396 { 397 dbuf_hash_table_t *h = &dbuf_hash_table; 398 objset_t *os = db->db_objset; 399 uint64_t obj = db->db.db_object; 400 int level = db->db_level; 401 uint64_t blkid, idx; 402 dmu_buf_impl_t *dbf; 403 uint32_t i; 404 405 blkid = db->db_blkid; 406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 407 idx = db->db_hash & h->hash_table_mask; 408 409 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 411 dbf = dbf->db_hash_next, i++) { 412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 413 mutex_enter(&dbf->db_mtx); 414 if (dbf->db_state != DB_EVICTING) { 415 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 416 return (dbf); 417 } 418 mutex_exit(&dbf->db_mtx); 419 } 420 } 421 422 if (i > 0) { 423 DBUF_STAT_BUMP(hash_collisions); 424 if (i == 1) 425 DBUF_STAT_BUMP(hash_chains); 426 427 DBUF_STAT_MAX(hash_chain_max, i); 428 } 429 430 mutex_enter(&db->db_mtx); 431 db->db_hash_next = h->hash_table[idx]; 432 h->hash_table[idx] = db; 433 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 435 DBUF_STAT_MAX(hash_elements_max, he); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT(db->db_level == 0); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, dbu); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 blkptr_t *bp = db->db_blkptr; 640 if (bp == NULL || BP_IS_HOLE(bp)) 641 return (B_FALSE); 642 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 643 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 644 vdev_t *vd = NULL; 645 646 if (vdev < rvd->vdev_children) 647 vd = rvd->vdev_child[vdev]; 648 649 if (vd == NULL) 650 return (B_TRUE); 651 652 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 653 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 654 return (B_TRUE); 655 } 656 return (B_FALSE); 657 } 658 659 static inline boolean_t 660 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 661 { 662 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 663 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 664 (level > 0 || 665 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 666 if (l2arc_exclude_special == 0) 667 return (B_TRUE); 668 669 if (bp == NULL || BP_IS_HOLE(bp)) 670 return (B_FALSE); 671 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 672 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 673 vdev_t *vd = NULL; 674 675 if (vdev < rvd->vdev_children) 676 vd = rvd->vdev_child[vdev]; 677 678 if (vd == NULL) 679 return (B_TRUE); 680 681 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 682 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 683 return (B_TRUE); 684 } 685 return (B_FALSE); 686 } 687 688 689 /* 690 * This function *must* return indices evenly distributed between all 691 * sublists of the multilist. This is needed due to how the dbuf eviction 692 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 693 * distributed between all sublists and uses this assumption when 694 * deciding which sublist to evict from and how much to evict from it. 695 */ 696 static unsigned int 697 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 698 { 699 dmu_buf_impl_t *db = obj; 700 701 /* 702 * The assumption here, is the hash value for a given 703 * dmu_buf_impl_t will remain constant throughout it's lifetime 704 * (i.e. it's objset, object, level and blkid fields don't change). 705 * Thus, we don't need to store the dbuf's sublist index 706 * on insertion, as this index can be recalculated on removal. 707 * 708 * Also, the low order bits of the hash value are thought to be 709 * distributed evenly. Otherwise, in the case that the multilist 710 * has a power of two number of sublists, each sublists' usage 711 * would not be evenly distributed. In this context full 64bit 712 * division would be a waste of time, so limit it to 32 bits. 713 */ 714 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 715 db->db_level, db->db_blkid) % 716 multilist_get_num_sublists(ml)); 717 } 718 719 /* 720 * The target size of the dbuf cache can grow with the ARC target, 721 * unless limited by the tunable dbuf_cache_max_bytes. 722 */ 723 static inline unsigned long 724 dbuf_cache_target_bytes(void) 725 { 726 return (MIN(dbuf_cache_max_bytes, 727 arc_target_bytes() >> dbuf_cache_shift)); 728 } 729 730 /* 731 * The target size of the dbuf metadata cache can grow with the ARC target, 732 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 733 */ 734 static inline unsigned long 735 dbuf_metadata_cache_target_bytes(void) 736 { 737 return (MIN(dbuf_metadata_cache_max_bytes, 738 arc_target_bytes() >> dbuf_metadata_cache_shift)); 739 } 740 741 static inline uint64_t 742 dbuf_cache_hiwater_bytes(void) 743 { 744 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 745 return (dbuf_cache_target + 746 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 747 } 748 749 static inline uint64_t 750 dbuf_cache_lowater_bytes(void) 751 { 752 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 753 return (dbuf_cache_target - 754 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 755 } 756 757 static inline boolean_t 758 dbuf_cache_above_lowater(void) 759 { 760 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 761 dbuf_cache_lowater_bytes()); 762 } 763 764 /* 765 * Evict the oldest eligible dbuf from the dbuf cache. 766 */ 767 static void 768 dbuf_evict_one(void) 769 { 770 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 771 multilist_sublist_t *mls = multilist_sublist_lock_idx( 772 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 773 774 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 775 776 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 777 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 778 db = multilist_sublist_prev(mls, db); 779 } 780 781 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 782 multilist_sublist_t *, mls); 783 784 if (db != NULL) { 785 multilist_sublist_remove(mls, db); 786 multilist_sublist_unlock(mls); 787 uint64_t size = db->db.db_size; 788 uint64_t usize = dmu_buf_user_size(&db->db); 789 (void) zfs_refcount_remove_many( 790 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 791 (void) zfs_refcount_remove_many( 792 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user); 793 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 794 DBUF_STAT_BUMPDOWN(cache_count); 795 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize); 796 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 797 db->db_caching_status = DB_NO_CACHE; 798 dbuf_destroy(db); 799 DBUF_STAT_BUMP(cache_total_evicts); 800 } else { 801 multilist_sublist_unlock(mls); 802 } 803 } 804 805 /* 806 * The dbuf evict thread is responsible for aging out dbufs from the 807 * cache. Once the cache has reached it's maximum size, dbufs are removed 808 * and destroyed. The eviction thread will continue running until the size 809 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 810 * out of the cache it is destroyed and becomes eligible for arc eviction. 811 */ 812 static __attribute__((noreturn)) void 813 dbuf_evict_thread(void *unused) 814 { 815 (void) unused; 816 callb_cpr_t cpr; 817 818 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 819 820 mutex_enter(&dbuf_evict_lock); 821 while (!dbuf_evict_thread_exit) { 822 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 823 CALLB_CPR_SAFE_BEGIN(&cpr); 824 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 825 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 826 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 827 } 828 mutex_exit(&dbuf_evict_lock); 829 830 /* 831 * Keep evicting as long as we're above the low water mark 832 * for the cache. We do this without holding the locks to 833 * minimize lock contention. 834 */ 835 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 836 dbuf_evict_one(); 837 } 838 839 mutex_enter(&dbuf_evict_lock); 840 } 841 842 dbuf_evict_thread_exit = B_FALSE; 843 cv_broadcast(&dbuf_evict_cv); 844 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 845 thread_exit(); 846 } 847 848 /* 849 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 850 * If the dbuf cache is at its high water mark, then evict a dbuf from the 851 * dbuf cache using the caller's context. 852 */ 853 static void 854 dbuf_evict_notify(uint64_t size) 855 { 856 /* 857 * We check if we should evict without holding the dbuf_evict_lock, 858 * because it's OK to occasionally make the wrong decision here, 859 * and grabbing the lock results in massive lock contention. 860 */ 861 if (size > dbuf_cache_target_bytes()) { 862 if (size > dbuf_cache_hiwater_bytes()) 863 dbuf_evict_one(); 864 cv_signal(&dbuf_evict_cv); 865 } 866 } 867 868 static int 869 dbuf_kstat_update(kstat_t *ksp, int rw) 870 { 871 dbuf_stats_t *ds = ksp->ks_data; 872 dbuf_hash_table_t *h = &dbuf_hash_table; 873 874 if (rw == KSTAT_WRITE) 875 return (SET_ERROR(EACCES)); 876 877 ds->cache_count.value.ui64 = 878 wmsum_value(&dbuf_sums.cache_count); 879 ds->cache_size_bytes.value.ui64 = 880 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 881 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 882 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 883 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 884 ds->cache_total_evicts.value.ui64 = 885 wmsum_value(&dbuf_sums.cache_total_evicts); 886 for (int i = 0; i < DN_MAX_LEVELS; i++) { 887 ds->cache_levels[i].value.ui64 = 888 wmsum_value(&dbuf_sums.cache_levels[i]); 889 ds->cache_levels_bytes[i].value.ui64 = 890 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 891 } 892 ds->hash_hits.value.ui64 = 893 wmsum_value(&dbuf_sums.hash_hits); 894 ds->hash_misses.value.ui64 = 895 wmsum_value(&dbuf_sums.hash_misses); 896 ds->hash_collisions.value.ui64 = 897 wmsum_value(&dbuf_sums.hash_collisions); 898 ds->hash_chains.value.ui64 = 899 wmsum_value(&dbuf_sums.hash_chains); 900 ds->hash_insert_race.value.ui64 = 901 wmsum_value(&dbuf_sums.hash_insert_race); 902 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 903 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 904 ds->metadata_cache_count.value.ui64 = 905 wmsum_value(&dbuf_sums.metadata_cache_count); 906 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 907 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 908 ds->metadata_cache_overflow.value.ui64 = 909 wmsum_value(&dbuf_sums.metadata_cache_overflow); 910 return (0); 911 } 912 913 void 914 dbuf_init(void) 915 { 916 uint64_t hmsize, hsize = 1ULL << 16; 917 dbuf_hash_table_t *h = &dbuf_hash_table; 918 919 /* 920 * The hash table is big enough to fill one eighth of physical memory 921 * with an average block size of zfs_arc_average_blocksize (default 8K). 922 * By default, the table will take up 923 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 924 */ 925 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 926 hsize <<= 1; 927 928 h->hash_table = NULL; 929 while (h->hash_table == NULL) { 930 h->hash_table_mask = hsize - 1; 931 932 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 933 if (h->hash_table == NULL) 934 hsize >>= 1; 935 936 ASSERT3U(hsize, >=, 1ULL << 10); 937 } 938 939 /* 940 * The hash table buckets are protected by an array of mutexes where 941 * each mutex is reponsible for protecting 128 buckets. A minimum 942 * array size of 8192 is targeted to avoid contention. 943 */ 944 if (dbuf_mutex_cache_shift == 0) 945 hmsize = MAX(hsize >> 7, 1ULL << 13); 946 else 947 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 948 949 h->hash_mutexes = NULL; 950 while (h->hash_mutexes == NULL) { 951 h->hash_mutex_mask = hmsize - 1; 952 953 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 954 KM_SLEEP); 955 if (h->hash_mutexes == NULL) 956 hmsize >>= 1; 957 } 958 959 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 960 sizeof (dmu_buf_impl_t), 961 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 962 963 for (int i = 0; i < hmsize; i++) 964 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL); 965 966 dbuf_stats_init(h); 967 968 /* 969 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 970 * configuration is not required. 971 */ 972 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 973 974 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 975 multilist_create(&dbuf_caches[dcs].cache, 976 sizeof (dmu_buf_impl_t), 977 offsetof(dmu_buf_impl_t, db_cache_link), 978 dbuf_cache_multilist_index_func); 979 zfs_refcount_create(&dbuf_caches[dcs].size); 980 } 981 982 dbuf_evict_thread_exit = B_FALSE; 983 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 984 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 985 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 986 NULL, 0, &p0, TS_RUN, minclsyspri); 987 988 wmsum_init(&dbuf_sums.cache_count, 0); 989 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 990 for (int i = 0; i < DN_MAX_LEVELS; i++) { 991 wmsum_init(&dbuf_sums.cache_levels[i], 0); 992 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 993 } 994 wmsum_init(&dbuf_sums.hash_hits, 0); 995 wmsum_init(&dbuf_sums.hash_misses, 0); 996 wmsum_init(&dbuf_sums.hash_collisions, 0); 997 wmsum_init(&dbuf_sums.hash_chains, 0); 998 wmsum_init(&dbuf_sums.hash_insert_race, 0); 999 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 1000 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 1001 1002 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1003 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1004 KSTAT_FLAG_VIRTUAL); 1005 if (dbuf_ksp != NULL) { 1006 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1007 snprintf(dbuf_stats.cache_levels[i].name, 1008 KSTAT_STRLEN, "cache_level_%d", i); 1009 dbuf_stats.cache_levels[i].data_type = 1010 KSTAT_DATA_UINT64; 1011 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1012 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1013 dbuf_stats.cache_levels_bytes[i].data_type = 1014 KSTAT_DATA_UINT64; 1015 } 1016 dbuf_ksp->ks_data = &dbuf_stats; 1017 dbuf_ksp->ks_update = dbuf_kstat_update; 1018 kstat_install(dbuf_ksp); 1019 } 1020 } 1021 1022 void 1023 dbuf_fini(void) 1024 { 1025 dbuf_hash_table_t *h = &dbuf_hash_table; 1026 1027 dbuf_stats_destroy(); 1028 1029 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1030 mutex_destroy(&h->hash_mutexes[i]); 1031 1032 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1033 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1034 sizeof (kmutex_t)); 1035 1036 kmem_cache_destroy(dbuf_kmem_cache); 1037 taskq_destroy(dbu_evict_taskq); 1038 1039 mutex_enter(&dbuf_evict_lock); 1040 dbuf_evict_thread_exit = B_TRUE; 1041 while (dbuf_evict_thread_exit) { 1042 cv_signal(&dbuf_evict_cv); 1043 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1044 } 1045 mutex_exit(&dbuf_evict_lock); 1046 1047 mutex_destroy(&dbuf_evict_lock); 1048 cv_destroy(&dbuf_evict_cv); 1049 1050 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1051 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1052 multilist_destroy(&dbuf_caches[dcs].cache); 1053 } 1054 1055 if (dbuf_ksp != NULL) { 1056 kstat_delete(dbuf_ksp); 1057 dbuf_ksp = NULL; 1058 } 1059 1060 wmsum_fini(&dbuf_sums.cache_count); 1061 wmsum_fini(&dbuf_sums.cache_total_evicts); 1062 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1063 wmsum_fini(&dbuf_sums.cache_levels[i]); 1064 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1065 } 1066 wmsum_fini(&dbuf_sums.hash_hits); 1067 wmsum_fini(&dbuf_sums.hash_misses); 1068 wmsum_fini(&dbuf_sums.hash_collisions); 1069 wmsum_fini(&dbuf_sums.hash_chains); 1070 wmsum_fini(&dbuf_sums.hash_insert_race); 1071 wmsum_fini(&dbuf_sums.metadata_cache_count); 1072 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1073 } 1074 1075 /* 1076 * Other stuff. 1077 */ 1078 1079 #ifdef ZFS_DEBUG 1080 static void 1081 dbuf_verify(dmu_buf_impl_t *db) 1082 { 1083 dnode_t *dn; 1084 dbuf_dirty_record_t *dr; 1085 uint32_t txg_prev; 1086 1087 ASSERT(MUTEX_HELD(&db->db_mtx)); 1088 1089 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1090 return; 1091 1092 ASSERT(db->db_objset != NULL); 1093 DB_DNODE_ENTER(db); 1094 dn = DB_DNODE(db); 1095 if (dn == NULL) { 1096 ASSERT(db->db_parent == NULL); 1097 ASSERT(db->db_blkptr == NULL); 1098 } else { 1099 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1100 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1101 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1102 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1103 db->db_blkid == DMU_SPILL_BLKID || 1104 !avl_is_empty(&dn->dn_dbufs)); 1105 } 1106 if (db->db_blkid == DMU_BONUS_BLKID) { 1107 ASSERT(dn != NULL); 1108 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1109 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1110 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1111 ASSERT(dn != NULL); 1112 ASSERT0(db->db.db_offset); 1113 } else { 1114 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1115 } 1116 1117 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1118 ASSERT(dr->dr_dbuf == db); 1119 txg_prev = dr->dr_txg; 1120 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1121 dr = list_next(&db->db_dirty_records, dr)) { 1122 ASSERT(dr->dr_dbuf == db); 1123 ASSERT(txg_prev > dr->dr_txg); 1124 txg_prev = dr->dr_txg; 1125 } 1126 } 1127 1128 /* 1129 * We can't assert that db_size matches dn_datablksz because it 1130 * can be momentarily different when another thread is doing 1131 * dnode_set_blksz(). 1132 */ 1133 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1134 dr = db->db_data_pending; 1135 /* 1136 * It should only be modified in syncing context, so 1137 * make sure we only have one copy of the data. 1138 */ 1139 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1140 } 1141 1142 /* verify db->db_blkptr */ 1143 if (db->db_blkptr) { 1144 if (db->db_parent == dn->dn_dbuf) { 1145 /* db is pointed to by the dnode */ 1146 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1147 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1148 ASSERT(db->db_parent == NULL); 1149 else 1150 ASSERT(db->db_parent != NULL); 1151 if (db->db_blkid != DMU_SPILL_BLKID) 1152 ASSERT3P(db->db_blkptr, ==, 1153 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1154 } else { 1155 /* db is pointed to by an indirect block */ 1156 int epb __maybe_unused = db->db_parent->db.db_size >> 1157 SPA_BLKPTRSHIFT; 1158 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1159 ASSERT3U(db->db_parent->db.db_object, ==, 1160 db->db.db_object); 1161 /* 1162 * dnode_grow_indblksz() can make this fail if we don't 1163 * have the parent's rwlock. XXX indblksz no longer 1164 * grows. safe to do this now? 1165 */ 1166 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1167 ASSERT3P(db->db_blkptr, ==, 1168 ((blkptr_t *)db->db_parent->db.db_data + 1169 db->db_blkid % epb)); 1170 } 1171 } 1172 } 1173 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1174 (db->db_buf == NULL || db->db_buf->b_data) && 1175 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1176 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1177 /* 1178 * If the blkptr isn't set but they have nonzero data, 1179 * it had better be dirty, otherwise we'll lose that 1180 * data when we evict this buffer. 1181 * 1182 * There is an exception to this rule for indirect blocks; in 1183 * this case, if the indirect block is a hole, we fill in a few 1184 * fields on each of the child blocks (importantly, birth time) 1185 * to prevent hole birth times from being lost when you 1186 * partially fill in a hole. 1187 */ 1188 if (db->db_dirtycnt == 0) { 1189 if (db->db_level == 0) { 1190 uint64_t *buf = db->db.db_data; 1191 int i; 1192 1193 for (i = 0; i < db->db.db_size >> 3; i++) { 1194 ASSERT(buf[i] == 0); 1195 } 1196 } else { 1197 blkptr_t *bps = db->db.db_data; 1198 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1199 db->db.db_size); 1200 /* 1201 * We want to verify that all the blkptrs in the 1202 * indirect block are holes, but we may have 1203 * automatically set up a few fields for them. 1204 * We iterate through each blkptr and verify 1205 * they only have those fields set. 1206 */ 1207 for (int i = 0; 1208 i < db->db.db_size / sizeof (blkptr_t); 1209 i++) { 1210 blkptr_t *bp = &bps[i]; 1211 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1212 &bp->blk_cksum)); 1213 ASSERT( 1214 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1215 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1216 DVA_IS_EMPTY(&bp->blk_dva[2])); 1217 ASSERT0(bp->blk_fill); 1218 ASSERT0(bp->blk_pad[0]); 1219 ASSERT0(bp->blk_pad[1]); 1220 ASSERT(!BP_IS_EMBEDDED(bp)); 1221 ASSERT(BP_IS_HOLE(bp)); 1222 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1223 } 1224 } 1225 } 1226 } 1227 DB_DNODE_EXIT(db); 1228 } 1229 #endif 1230 1231 static void 1232 dbuf_clear_data(dmu_buf_impl_t *db) 1233 { 1234 ASSERT(MUTEX_HELD(&db->db_mtx)); 1235 dbuf_evict_user(db); 1236 ASSERT3P(db->db_buf, ==, NULL); 1237 db->db.db_data = NULL; 1238 if (db->db_state != DB_NOFILL) { 1239 db->db_state = DB_UNCACHED; 1240 DTRACE_SET_STATE(db, "clear data"); 1241 } 1242 } 1243 1244 static void 1245 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1246 { 1247 ASSERT(MUTEX_HELD(&db->db_mtx)); 1248 ASSERT(buf != NULL); 1249 1250 db->db_buf = buf; 1251 ASSERT(buf->b_data != NULL); 1252 db->db.db_data = buf->b_data; 1253 } 1254 1255 static arc_buf_t * 1256 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1257 { 1258 spa_t *spa = db->db_objset->os_spa; 1259 1260 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1261 } 1262 1263 /* 1264 * Loan out an arc_buf for read. Return the loaned arc_buf. 1265 */ 1266 arc_buf_t * 1267 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1268 { 1269 arc_buf_t *abuf; 1270 1271 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1272 mutex_enter(&db->db_mtx); 1273 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1274 int blksz = db->db.db_size; 1275 spa_t *spa = db->db_objset->os_spa; 1276 1277 mutex_exit(&db->db_mtx); 1278 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1279 memcpy(abuf->b_data, db->db.db_data, blksz); 1280 } else { 1281 abuf = db->db_buf; 1282 arc_loan_inuse_buf(abuf, db); 1283 db->db_buf = NULL; 1284 dbuf_clear_data(db); 1285 mutex_exit(&db->db_mtx); 1286 } 1287 return (abuf); 1288 } 1289 1290 /* 1291 * Calculate which level n block references the data at the level 0 offset 1292 * provided. 1293 */ 1294 uint64_t 1295 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1296 { 1297 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1298 /* 1299 * The level n blkid is equal to the level 0 blkid divided by 1300 * the number of level 0s in a level n block. 1301 * 1302 * The level 0 blkid is offset >> datablkshift = 1303 * offset / 2^datablkshift. 1304 * 1305 * The number of level 0s in a level n is the number of block 1306 * pointers in an indirect block, raised to the power of level. 1307 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1308 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1309 * 1310 * Thus, the level n blkid is: offset / 1311 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1312 * = offset / 2^(datablkshift + level * 1313 * (indblkshift - SPA_BLKPTRSHIFT)) 1314 * = offset >> (datablkshift + level * 1315 * (indblkshift - SPA_BLKPTRSHIFT)) 1316 */ 1317 1318 const unsigned exp = dn->dn_datablkshift + 1319 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1320 1321 if (exp >= 8 * sizeof (offset)) { 1322 /* This only happens on the highest indirection level */ 1323 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1324 return (0); 1325 } 1326 1327 ASSERT3U(exp, <, 8 * sizeof (offset)); 1328 1329 return (offset >> exp); 1330 } else { 1331 ASSERT3U(offset, <, dn->dn_datablksz); 1332 return (0); 1333 } 1334 } 1335 1336 /* 1337 * This function is used to lock the parent of the provided dbuf. This should be 1338 * used when modifying or reading db_blkptr. 1339 */ 1340 db_lock_type_t 1341 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1342 { 1343 enum db_lock_type ret = DLT_NONE; 1344 if (db->db_parent != NULL) { 1345 rw_enter(&db->db_parent->db_rwlock, rw); 1346 ret = DLT_PARENT; 1347 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1348 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1349 tag); 1350 ret = DLT_OBJSET; 1351 } 1352 /* 1353 * We only return a DLT_NONE lock when it's the top-most indirect block 1354 * of the meta-dnode of the MOS. 1355 */ 1356 return (ret); 1357 } 1358 1359 /* 1360 * We need to pass the lock type in because it's possible that the block will 1361 * move from being the topmost indirect block in a dnode (and thus, have no 1362 * parent) to not the top-most via an indirection increase. This would cause a 1363 * panic if we didn't pass the lock type in. 1364 */ 1365 void 1366 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1367 { 1368 if (type == DLT_PARENT) 1369 rw_exit(&db->db_parent->db_rwlock); 1370 else if (type == DLT_OBJSET) 1371 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1372 } 1373 1374 static void 1375 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1376 arc_buf_t *buf, void *vdb) 1377 { 1378 (void) zb, (void) bp; 1379 dmu_buf_impl_t *db = vdb; 1380 1381 mutex_enter(&db->db_mtx); 1382 ASSERT3U(db->db_state, ==, DB_READ); 1383 /* 1384 * All reads are synchronous, so we must have a hold on the dbuf 1385 */ 1386 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1387 ASSERT(db->db_buf == NULL); 1388 ASSERT(db->db.db_data == NULL); 1389 if (buf == NULL) { 1390 /* i/o error */ 1391 ASSERT(zio == NULL || zio->io_error != 0); 1392 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1393 ASSERT3P(db->db_buf, ==, NULL); 1394 db->db_state = DB_UNCACHED; 1395 DTRACE_SET_STATE(db, "i/o error"); 1396 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1397 /* freed in flight */ 1398 ASSERT(zio == NULL || zio->io_error == 0); 1399 arc_release(buf, db); 1400 memset(buf->b_data, 0, db->db.db_size); 1401 arc_buf_freeze(buf); 1402 db->db_freed_in_flight = FALSE; 1403 dbuf_set_data(db, buf); 1404 db->db_state = DB_CACHED; 1405 DTRACE_SET_STATE(db, "freed in flight"); 1406 } else { 1407 /* success */ 1408 ASSERT(zio == NULL || zio->io_error == 0); 1409 dbuf_set_data(db, buf); 1410 db->db_state = DB_CACHED; 1411 DTRACE_SET_STATE(db, "successful read"); 1412 } 1413 cv_broadcast(&db->db_changed); 1414 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1415 } 1416 1417 /* 1418 * Shortcut for performing reads on bonus dbufs. Returns 1419 * an error if we fail to verify the dnode associated with 1420 * a decrypted block. Otherwise success. 1421 */ 1422 static int 1423 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1424 { 1425 int bonuslen, max_bonuslen; 1426 1427 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1428 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1429 ASSERT(MUTEX_HELD(&db->db_mtx)); 1430 ASSERT(DB_DNODE_HELD(db)); 1431 ASSERT3U(bonuslen, <=, db->db.db_size); 1432 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1433 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1434 if (bonuslen < max_bonuslen) 1435 memset(db->db.db_data, 0, max_bonuslen); 1436 if (bonuslen) 1437 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1438 db->db_state = DB_CACHED; 1439 DTRACE_SET_STATE(db, "bonus buffer filled"); 1440 return (0); 1441 } 1442 1443 static void 1444 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1445 { 1446 blkptr_t *bps = db->db.db_data; 1447 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1448 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1449 1450 for (int i = 0; i < n_bps; i++) { 1451 blkptr_t *bp = &bps[i]; 1452 1453 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1454 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1455 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1456 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1457 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1458 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1459 } 1460 } 1461 1462 /* 1463 * Handle reads on dbufs that are holes, if necessary. This function 1464 * requires that the dbuf's mutex is held. Returns success (0) if action 1465 * was taken, ENOENT if no action was taken. 1466 */ 1467 static int 1468 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1469 { 1470 ASSERT(MUTEX_HELD(&db->db_mtx)); 1471 1472 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1473 /* 1474 * For level 0 blocks only, if the above check fails: 1475 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1476 * processes the delete record and clears the bp while we are waiting 1477 * for the dn_mtx (resulting in a "no" from block_freed). 1478 */ 1479 if (!is_hole && db->db_level == 0) 1480 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1481 1482 if (is_hole) { 1483 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1484 memset(db->db.db_data, 0, db->db.db_size); 1485 1486 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1487 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1488 dbuf_handle_indirect_hole(db, dn, bp); 1489 } 1490 db->db_state = DB_CACHED; 1491 DTRACE_SET_STATE(db, "hole read satisfied"); 1492 return (0); 1493 } 1494 return (ENOENT); 1495 } 1496 1497 /* 1498 * This function ensures that, when doing a decrypting read of a block, 1499 * we make sure we have decrypted the dnode associated with it. We must do 1500 * this so that we ensure we are fully authenticating the checksum-of-MACs 1501 * tree from the root of the objset down to this block. Indirect blocks are 1502 * always verified against their secure checksum-of-MACs assuming that the 1503 * dnode containing them is correct. Now that we are doing a decrypting read, 1504 * we can be sure that the key is loaded and verify that assumption. This is 1505 * especially important considering that we always read encrypted dnode 1506 * blocks as raw data (without verifying their MACs) to start, and 1507 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1508 */ 1509 static int 1510 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1511 { 1512 objset_t *os = db->db_objset; 1513 dmu_buf_impl_t *dndb; 1514 arc_buf_t *dnbuf; 1515 zbookmark_phys_t zb; 1516 int err; 1517 1518 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1519 !os->os_encrypted || os->os_raw_receive || 1520 (dndb = dn->dn_dbuf) == NULL) 1521 return (0); 1522 1523 dnbuf = dndb->db_buf; 1524 if (!arc_is_encrypted(dnbuf)) 1525 return (0); 1526 1527 mutex_enter(&dndb->db_mtx); 1528 1529 /* 1530 * Since dnode buffer is modified by sync process, there can be only 1531 * one copy of it. It means we can not modify (decrypt) it while it 1532 * is being written. I don't see how this may happen now, since 1533 * encrypted dnode writes by receive should be completed before any 1534 * plain-text reads due to txg wait, but better be safe than sorry. 1535 */ 1536 while (1) { 1537 if (!arc_is_encrypted(dnbuf)) { 1538 mutex_exit(&dndb->db_mtx); 1539 return (0); 1540 } 1541 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1542 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1543 break; 1544 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1545 }; 1546 1547 SET_BOOKMARK(&zb, dmu_objset_id(os), 1548 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1549 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1550 1551 /* 1552 * An error code of EACCES tells us that the key is still not 1553 * available. This is ok if we are only reading authenticated 1554 * (and therefore non-encrypted) blocks. 1555 */ 1556 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1557 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1558 (db->db_blkid == DMU_BONUS_BLKID && 1559 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1560 err = 0; 1561 1562 mutex_exit(&dndb->db_mtx); 1563 1564 return (err); 1565 } 1566 1567 /* 1568 * Drops db_mtx and the parent lock specified by dblt and tag before 1569 * returning. 1570 */ 1571 static int 1572 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, 1573 db_lock_type_t dblt, const void *tag) 1574 { 1575 zbookmark_phys_t zb; 1576 uint32_t aflags = ARC_FLAG_NOWAIT; 1577 int err, zio_flags; 1578 blkptr_t bp, *bpp = NULL; 1579 1580 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1581 ASSERT(MUTEX_HELD(&db->db_mtx)); 1582 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1583 ASSERT(db->db_buf == NULL); 1584 ASSERT(db->db_parent == NULL || 1585 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1586 1587 if (db->db_blkid == DMU_BONUS_BLKID) { 1588 err = dbuf_read_bonus(db, dn); 1589 goto early_unlock; 1590 } 1591 1592 /* 1593 * If we have a pending block clone, we don't want to read the 1594 * underlying block, but the content of the block being cloned, 1595 * pointed by the dirty record, so we have the most recent data. 1596 * If there is no dirty record, then we hit a race in a sync 1597 * process when the dirty record is already removed, while the 1598 * dbuf is not yet destroyed. Such case is equivalent to uncached. 1599 */ 1600 if (db->db_state == DB_NOFILL) { 1601 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1602 if (dr != NULL) { 1603 if (!dr->dt.dl.dr_brtwrite) { 1604 err = EIO; 1605 goto early_unlock; 1606 } 1607 bp = dr->dt.dl.dr_overridden_by; 1608 bpp = &bp; 1609 } 1610 } 1611 1612 if (bpp == NULL && db->db_blkptr != NULL) { 1613 bp = *db->db_blkptr; 1614 bpp = &bp; 1615 } 1616 1617 err = dbuf_read_hole(db, dn, bpp); 1618 if (err == 0) 1619 goto early_unlock; 1620 1621 ASSERT(bpp != NULL); 1622 1623 /* 1624 * Any attempt to read a redacted block should result in an error. This 1625 * will never happen under normal conditions, but can be useful for 1626 * debugging purposes. 1627 */ 1628 if (BP_IS_REDACTED(bpp)) { 1629 ASSERT(dsl_dataset_feature_is_active( 1630 db->db_objset->os_dsl_dataset, 1631 SPA_FEATURE_REDACTED_DATASETS)); 1632 err = SET_ERROR(EIO); 1633 goto early_unlock; 1634 } 1635 1636 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1637 db->db.db_object, db->db_level, db->db_blkid); 1638 1639 /* 1640 * All bps of an encrypted os should have the encryption bit set. 1641 * If this is not true it indicates tampering and we report an error. 1642 */ 1643 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { 1644 spa_log_error(db->db_objset->os_spa, &zb, 1645 BP_GET_LOGICAL_BIRTH(bpp)); 1646 err = SET_ERROR(EIO); 1647 goto early_unlock; 1648 } 1649 1650 db->db_state = DB_READ; 1651 DTRACE_SET_STATE(db, "read issued"); 1652 mutex_exit(&db->db_mtx); 1653 1654 if (!DBUF_IS_CACHEABLE(db)) 1655 aflags |= ARC_FLAG_UNCACHED; 1656 else if (dbuf_is_l2cacheable(db)) 1657 aflags |= ARC_FLAG_L2CACHE; 1658 1659 dbuf_add_ref(db, NULL); 1660 1661 zio_flags = (flags & DB_RF_CANFAIL) ? 1662 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1663 1664 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1665 zio_flags |= ZIO_FLAG_RAW; 1666 /* 1667 * The zio layer will copy the provided blkptr later, but we have our 1668 * own copy so that we can release the parent's rwlock. We have to 1669 * do that so that if dbuf_read_done is called synchronously (on 1670 * an l1 cache hit) we don't acquire the db_mtx while holding the 1671 * parent's rwlock, which would be a lock ordering violation. 1672 */ 1673 dmu_buf_unlock_parent(db, dblt, tag); 1674 return (arc_read(zio, db->db_objset->os_spa, bpp, 1675 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1676 &aflags, &zb)); 1677 1678 early_unlock: 1679 mutex_exit(&db->db_mtx); 1680 dmu_buf_unlock_parent(db, dblt, tag); 1681 return (err); 1682 } 1683 1684 /* 1685 * This is our just-in-time copy function. It makes a copy of buffers that 1686 * have been modified in a previous transaction group before we access them in 1687 * the current active group. 1688 * 1689 * This function is used in three places: when we are dirtying a buffer for the 1690 * first time in a txg, when we are freeing a range in a dnode that includes 1691 * this buffer, and when we are accessing a buffer which was received compressed 1692 * and later referenced in a WRITE_BYREF record. 1693 * 1694 * Note that when we are called from dbuf_free_range() we do not put a hold on 1695 * the buffer, we just traverse the active dbuf list for the dnode. 1696 */ 1697 static void 1698 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1699 { 1700 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1701 1702 ASSERT(MUTEX_HELD(&db->db_mtx)); 1703 ASSERT(db->db.db_data != NULL); 1704 ASSERT(db->db_level == 0); 1705 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1706 1707 if (dr == NULL || 1708 (dr->dt.dl.dr_data != 1709 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1710 return; 1711 1712 /* 1713 * If the last dirty record for this dbuf has not yet synced 1714 * and its referencing the dbuf data, either: 1715 * reset the reference to point to a new copy, 1716 * or (if there a no active holders) 1717 * just null out the current db_data pointer. 1718 */ 1719 ASSERT3U(dr->dr_txg, >=, txg - 2); 1720 if (db->db_blkid == DMU_BONUS_BLKID) { 1721 dnode_t *dn = DB_DNODE(db); 1722 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1723 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1724 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1725 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1726 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1727 dnode_t *dn = DB_DNODE(db); 1728 int size = arc_buf_size(db->db_buf); 1729 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1730 spa_t *spa = db->db_objset->os_spa; 1731 enum zio_compress compress_type = 1732 arc_get_compression(db->db_buf); 1733 uint8_t complevel = arc_get_complevel(db->db_buf); 1734 1735 if (arc_is_encrypted(db->db_buf)) { 1736 boolean_t byteorder; 1737 uint8_t salt[ZIO_DATA_SALT_LEN]; 1738 uint8_t iv[ZIO_DATA_IV_LEN]; 1739 uint8_t mac[ZIO_DATA_MAC_LEN]; 1740 1741 arc_get_raw_params(db->db_buf, &byteorder, salt, 1742 iv, mac); 1743 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1744 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1745 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1746 compress_type, complevel); 1747 } else if (compress_type != ZIO_COMPRESS_OFF) { 1748 ASSERT3U(type, ==, ARC_BUFC_DATA); 1749 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1750 size, arc_buf_lsize(db->db_buf), compress_type, 1751 complevel); 1752 } else { 1753 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1754 } 1755 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1756 } else { 1757 db->db_buf = NULL; 1758 dbuf_clear_data(db); 1759 } 1760 } 1761 1762 int 1763 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) 1764 { 1765 dnode_t *dn; 1766 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1767 int err; 1768 1769 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1770 1771 DB_DNODE_ENTER(db); 1772 dn = DB_DNODE(db); 1773 1774 /* 1775 * Ensure that this block's dnode has been decrypted if the caller 1776 * has requested decrypted data. 1777 */ 1778 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1779 if (err != 0) 1780 goto done; 1781 1782 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1783 (flags & DB_RF_NOPREFETCH) == 0; 1784 1785 mutex_enter(&db->db_mtx); 1786 if (flags & DB_RF_PARTIAL_FIRST) 1787 db->db_partial_read = B_TRUE; 1788 else if (!(flags & DB_RF_PARTIAL_MORE)) 1789 db->db_partial_read = B_FALSE; 1790 miss = (db->db_state != DB_CACHED); 1791 1792 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1793 /* 1794 * Another reader came in while the dbuf was in flight between 1795 * UNCACHED and CACHED. Either a writer will finish filling 1796 * the buffer, sending the dbuf to CACHED, or the first reader's 1797 * request will reach the read_done callback and send the dbuf 1798 * to CACHED. Otherwise, a failure occurred and the dbuf will 1799 * be sent to UNCACHED. 1800 */ 1801 if (flags & DB_RF_NEVERWAIT) { 1802 mutex_exit(&db->db_mtx); 1803 DB_DNODE_EXIT(db); 1804 goto done; 1805 } 1806 do { 1807 ASSERT(db->db_state == DB_READ || 1808 (flags & DB_RF_HAVESTRUCT) == 0); 1809 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1810 zio_t *, pio); 1811 cv_wait(&db->db_changed, &db->db_mtx); 1812 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1813 if (db->db_state == DB_UNCACHED) { 1814 err = SET_ERROR(EIO); 1815 mutex_exit(&db->db_mtx); 1816 DB_DNODE_EXIT(db); 1817 goto done; 1818 } 1819 } 1820 1821 if (db->db_state == DB_CACHED) { 1822 /* 1823 * If the arc buf is compressed or encrypted and the caller 1824 * requested uncompressed data, we need to untransform it 1825 * before returning. We also call arc_untransform() on any 1826 * unauthenticated blocks, which will verify their MAC if 1827 * the key is now available. 1828 */ 1829 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL && 1830 (arc_is_encrypted(db->db_buf) || 1831 arc_is_unauthenticated(db->db_buf) || 1832 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1833 spa_t *spa = dn->dn_objset->os_spa; 1834 zbookmark_phys_t zb; 1835 1836 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1837 db->db.db_object, db->db_level, db->db_blkid); 1838 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1839 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1840 dbuf_set_data(db, db->db_buf); 1841 } 1842 mutex_exit(&db->db_mtx); 1843 } else { 1844 ASSERT(db->db_state == DB_UNCACHED || 1845 db->db_state == DB_NOFILL); 1846 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1847 if (pio == NULL && (db->db_state == DB_NOFILL || 1848 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { 1849 spa_t *spa = dn->dn_objset->os_spa; 1850 pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1851 need_wait = B_TRUE; 1852 } 1853 err = dbuf_read_impl(db, dn, pio, flags, dblt, FTAG); 1854 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1855 miss = (db->db_state != DB_CACHED); 1856 } 1857 1858 if (err == 0 && prefetch) { 1859 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1860 flags & DB_RF_HAVESTRUCT); 1861 } 1862 DB_DNODE_EXIT(db); 1863 1864 /* 1865 * If we created a zio we must execute it to avoid leaking it, even if 1866 * it isn't attached to any work due to an error in dbuf_read_impl(). 1867 */ 1868 if (need_wait) { 1869 if (err == 0) 1870 err = zio_wait(pio); 1871 else 1872 (void) zio_wait(pio); 1873 pio = NULL; 1874 } 1875 1876 done: 1877 if (miss) 1878 DBUF_STAT_BUMP(hash_misses); 1879 else 1880 DBUF_STAT_BUMP(hash_hits); 1881 if (pio && err != 0) { 1882 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1883 ZIO_FLAG_CANFAIL); 1884 zio->io_error = err; 1885 zio_nowait(zio); 1886 } 1887 1888 return (err); 1889 } 1890 1891 static void 1892 dbuf_noread(dmu_buf_impl_t *db) 1893 { 1894 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1895 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1896 mutex_enter(&db->db_mtx); 1897 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1898 cv_wait(&db->db_changed, &db->db_mtx); 1899 if (db->db_state == DB_UNCACHED) { 1900 ASSERT(db->db_buf == NULL); 1901 ASSERT(db->db.db_data == NULL); 1902 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1903 db->db_state = DB_FILL; 1904 DTRACE_SET_STATE(db, "assigning filled buffer"); 1905 } else if (db->db_state == DB_NOFILL) { 1906 dbuf_clear_data(db); 1907 } else { 1908 ASSERT3U(db->db_state, ==, DB_CACHED); 1909 } 1910 mutex_exit(&db->db_mtx); 1911 } 1912 1913 void 1914 dbuf_unoverride(dbuf_dirty_record_t *dr) 1915 { 1916 dmu_buf_impl_t *db = dr->dr_dbuf; 1917 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1918 uint64_t txg = dr->dr_txg; 1919 1920 ASSERT(MUTEX_HELD(&db->db_mtx)); 1921 /* 1922 * This assert is valid because dmu_sync() expects to be called by 1923 * a zilog's get_data while holding a range lock. This call only 1924 * comes from dbuf_dirty() callers who must also hold a range lock. 1925 */ 1926 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1927 ASSERT(db->db_level == 0); 1928 1929 if (db->db_blkid == DMU_BONUS_BLKID || 1930 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1931 return; 1932 1933 ASSERT(db->db_data_pending != dr); 1934 1935 /* free this block */ 1936 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1937 zio_free(db->db_objset->os_spa, txg, bp); 1938 1939 if (dr->dt.dl.dr_brtwrite) { 1940 ASSERT0P(dr->dt.dl.dr_data); 1941 dr->dt.dl.dr_data = db->db_buf; 1942 } 1943 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1944 dr->dt.dl.dr_nopwrite = B_FALSE; 1945 dr->dt.dl.dr_brtwrite = B_FALSE; 1946 dr->dt.dl.dr_has_raw_params = B_FALSE; 1947 1948 /* 1949 * Release the already-written buffer, so we leave it in 1950 * a consistent dirty state. Note that all callers are 1951 * modifying the buffer, so they will immediately do 1952 * another (redundant) arc_release(). Therefore, leave 1953 * the buf thawed to save the effort of freezing & 1954 * immediately re-thawing it. 1955 */ 1956 if (dr->dt.dl.dr_data) 1957 arc_release(dr->dt.dl.dr_data, db); 1958 } 1959 1960 /* 1961 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1962 * data blocks in the free range, so that any future readers will find 1963 * empty blocks. 1964 */ 1965 void 1966 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1967 dmu_tx_t *tx) 1968 { 1969 dmu_buf_impl_t *db_search; 1970 dmu_buf_impl_t *db, *db_next; 1971 uint64_t txg = tx->tx_txg; 1972 avl_index_t where; 1973 dbuf_dirty_record_t *dr; 1974 1975 if (end_blkid > dn->dn_maxblkid && 1976 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1977 end_blkid = dn->dn_maxblkid; 1978 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1979 (u_longlong_t)end_blkid); 1980 1981 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1982 db_search->db_level = 0; 1983 db_search->db_blkid = start_blkid; 1984 db_search->db_state = DB_SEARCH; 1985 1986 mutex_enter(&dn->dn_dbufs_mtx); 1987 db = avl_find(&dn->dn_dbufs, db_search, &where); 1988 ASSERT3P(db, ==, NULL); 1989 1990 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1991 1992 for (; db != NULL; db = db_next) { 1993 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1994 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1995 1996 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1997 break; 1998 } 1999 ASSERT3U(db->db_blkid, >=, start_blkid); 2000 2001 /* found a level 0 buffer in the range */ 2002 mutex_enter(&db->db_mtx); 2003 if (dbuf_undirty(db, tx)) { 2004 /* mutex has been dropped and dbuf destroyed */ 2005 continue; 2006 } 2007 2008 if (db->db_state == DB_UNCACHED || 2009 db->db_state == DB_NOFILL || 2010 db->db_state == DB_EVICTING) { 2011 ASSERT(db->db.db_data == NULL); 2012 mutex_exit(&db->db_mtx); 2013 continue; 2014 } 2015 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2016 /* will be handled in dbuf_read_done or dbuf_rele */ 2017 db->db_freed_in_flight = TRUE; 2018 mutex_exit(&db->db_mtx); 2019 continue; 2020 } 2021 if (zfs_refcount_count(&db->db_holds) == 0) { 2022 ASSERT(db->db_buf); 2023 dbuf_destroy(db); 2024 continue; 2025 } 2026 /* The dbuf is referenced */ 2027 2028 dr = list_head(&db->db_dirty_records); 2029 if (dr != NULL) { 2030 if (dr->dr_txg == txg) { 2031 /* 2032 * This buffer is "in-use", re-adjust the file 2033 * size to reflect that this buffer may 2034 * contain new data when we sync. 2035 */ 2036 if (db->db_blkid != DMU_SPILL_BLKID && 2037 db->db_blkid > dn->dn_maxblkid) 2038 dn->dn_maxblkid = db->db_blkid; 2039 dbuf_unoverride(dr); 2040 } else { 2041 /* 2042 * This dbuf is not dirty in the open context. 2043 * Either uncache it (if its not referenced in 2044 * the open context) or reset its contents to 2045 * empty. 2046 */ 2047 dbuf_fix_old_data(db, txg); 2048 } 2049 } 2050 /* clear the contents if its cached */ 2051 if (db->db_state == DB_CACHED) { 2052 ASSERT(db->db.db_data != NULL); 2053 arc_release(db->db_buf, db); 2054 rw_enter(&db->db_rwlock, RW_WRITER); 2055 memset(db->db.db_data, 0, db->db.db_size); 2056 rw_exit(&db->db_rwlock); 2057 arc_buf_freeze(db->db_buf); 2058 } 2059 2060 mutex_exit(&db->db_mtx); 2061 } 2062 2063 mutex_exit(&dn->dn_dbufs_mtx); 2064 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2065 } 2066 2067 void 2068 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2069 { 2070 arc_buf_t *buf, *old_buf; 2071 dbuf_dirty_record_t *dr; 2072 int osize = db->db.db_size; 2073 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2074 dnode_t *dn; 2075 2076 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2077 2078 DB_DNODE_ENTER(db); 2079 dn = DB_DNODE(db); 2080 2081 /* 2082 * XXX we should be doing a dbuf_read, checking the return 2083 * value and returning that up to our callers 2084 */ 2085 dmu_buf_will_dirty(&db->db, tx); 2086 2087 /* create the data buffer for the new block */ 2088 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2089 2090 /* copy old block data to the new block */ 2091 old_buf = db->db_buf; 2092 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2093 /* zero the remainder */ 2094 if (size > osize) 2095 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2096 2097 mutex_enter(&db->db_mtx); 2098 dbuf_set_data(db, buf); 2099 arc_buf_destroy(old_buf, db); 2100 db->db.db_size = size; 2101 2102 dr = list_head(&db->db_dirty_records); 2103 /* dirty record added by dmu_buf_will_dirty() */ 2104 VERIFY(dr != NULL); 2105 if (db->db_level == 0) 2106 dr->dt.dl.dr_data = buf; 2107 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2108 ASSERT3U(dr->dr_accounted, ==, osize); 2109 dr->dr_accounted = size; 2110 mutex_exit(&db->db_mtx); 2111 2112 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2113 DB_DNODE_EXIT(db); 2114 } 2115 2116 void 2117 dbuf_release_bp(dmu_buf_impl_t *db) 2118 { 2119 objset_t *os __maybe_unused = db->db_objset; 2120 2121 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2122 ASSERT(arc_released(os->os_phys_buf) || 2123 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2124 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2125 2126 (void) arc_release(db->db_buf, db); 2127 } 2128 2129 /* 2130 * We already have a dirty record for this TXG, and we are being 2131 * dirtied again. 2132 */ 2133 static void 2134 dbuf_redirty(dbuf_dirty_record_t *dr) 2135 { 2136 dmu_buf_impl_t *db = dr->dr_dbuf; 2137 2138 ASSERT(MUTEX_HELD(&db->db_mtx)); 2139 2140 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2141 /* 2142 * If this buffer has already been written out, 2143 * we now need to reset its state. 2144 */ 2145 dbuf_unoverride(dr); 2146 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2147 db->db_state != DB_NOFILL) { 2148 /* Already released on initial dirty, so just thaw. */ 2149 ASSERT(arc_released(db->db_buf)); 2150 arc_buf_thaw(db->db_buf); 2151 } 2152 } 2153 } 2154 2155 dbuf_dirty_record_t * 2156 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2157 { 2158 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2159 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2160 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2161 ASSERT(dn->dn_maxblkid >= blkid); 2162 2163 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2164 list_link_init(&dr->dr_dirty_node); 2165 list_link_init(&dr->dr_dbuf_node); 2166 dr->dr_dnode = dn; 2167 dr->dr_txg = tx->tx_txg; 2168 dr->dt.dll.dr_blkid = blkid; 2169 dr->dr_accounted = dn->dn_datablksz; 2170 2171 /* 2172 * There should not be any dbuf for the block that we're dirtying. 2173 * Otherwise the buffer contents could be inconsistent between the 2174 * dbuf and the lightweight dirty record. 2175 */ 2176 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2177 NULL)); 2178 2179 mutex_enter(&dn->dn_mtx); 2180 int txgoff = tx->tx_txg & TXG_MASK; 2181 if (dn->dn_free_ranges[txgoff] != NULL) { 2182 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2183 } 2184 2185 if (dn->dn_nlevels == 1) { 2186 ASSERT3U(blkid, <, dn->dn_nblkptr); 2187 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2188 mutex_exit(&dn->dn_mtx); 2189 rw_exit(&dn->dn_struct_rwlock); 2190 dnode_setdirty(dn, tx); 2191 } else { 2192 mutex_exit(&dn->dn_mtx); 2193 2194 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2195 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2196 1, blkid >> epbs, FTAG); 2197 rw_exit(&dn->dn_struct_rwlock); 2198 if (parent_db == NULL) { 2199 kmem_free(dr, sizeof (*dr)); 2200 return (NULL); 2201 } 2202 int err = dbuf_read(parent_db, NULL, 2203 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2204 if (err != 0) { 2205 dbuf_rele(parent_db, FTAG); 2206 kmem_free(dr, sizeof (*dr)); 2207 return (NULL); 2208 } 2209 2210 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2211 dbuf_rele(parent_db, FTAG); 2212 mutex_enter(&parent_dr->dt.di.dr_mtx); 2213 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2214 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2215 mutex_exit(&parent_dr->dt.di.dr_mtx); 2216 dr->dr_parent = parent_dr; 2217 } 2218 2219 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2220 2221 return (dr); 2222 } 2223 2224 dbuf_dirty_record_t * 2225 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2226 { 2227 dnode_t *dn; 2228 objset_t *os; 2229 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2230 int txgoff = tx->tx_txg & TXG_MASK; 2231 boolean_t drop_struct_rwlock = B_FALSE; 2232 2233 ASSERT(tx->tx_txg != 0); 2234 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2235 DMU_TX_DIRTY_BUF(tx, db); 2236 2237 DB_DNODE_ENTER(db); 2238 dn = DB_DNODE(db); 2239 /* 2240 * Shouldn't dirty a regular buffer in syncing context. Private 2241 * objects may be dirtied in syncing context, but only if they 2242 * were already pre-dirtied in open context. 2243 */ 2244 #ifdef ZFS_DEBUG 2245 if (dn->dn_objset->os_dsl_dataset != NULL) { 2246 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2247 RW_READER, FTAG); 2248 } 2249 ASSERT(!dmu_tx_is_syncing(tx) || 2250 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2251 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2252 dn->dn_objset->os_dsl_dataset == NULL); 2253 if (dn->dn_objset->os_dsl_dataset != NULL) 2254 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2255 #endif 2256 /* 2257 * We make this assert for private objects as well, but after we 2258 * check if we're already dirty. They are allowed to re-dirty 2259 * in syncing context. 2260 */ 2261 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2262 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2263 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2264 2265 mutex_enter(&db->db_mtx); 2266 /* 2267 * XXX make this true for indirects too? The problem is that 2268 * transactions created with dmu_tx_create_assigned() from 2269 * syncing context don't bother holding ahead. 2270 */ 2271 ASSERT(db->db_level != 0 || 2272 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2273 db->db_state == DB_NOFILL); 2274 2275 mutex_enter(&dn->dn_mtx); 2276 dnode_set_dirtyctx(dn, tx, db); 2277 if (tx->tx_txg > dn->dn_dirty_txg) 2278 dn->dn_dirty_txg = tx->tx_txg; 2279 mutex_exit(&dn->dn_mtx); 2280 2281 if (db->db_blkid == DMU_SPILL_BLKID) 2282 dn->dn_have_spill = B_TRUE; 2283 2284 /* 2285 * If this buffer is already dirty, we're done. 2286 */ 2287 dr_head = list_head(&db->db_dirty_records); 2288 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2289 db->db.db_object == DMU_META_DNODE_OBJECT); 2290 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2291 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2292 DB_DNODE_EXIT(db); 2293 2294 dbuf_redirty(dr_next); 2295 mutex_exit(&db->db_mtx); 2296 return (dr_next); 2297 } 2298 2299 /* 2300 * Only valid if not already dirty. 2301 */ 2302 ASSERT(dn->dn_object == 0 || 2303 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2304 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2305 2306 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2307 2308 /* 2309 * We should only be dirtying in syncing context if it's the 2310 * mos or we're initializing the os or it's a special object. 2311 * However, we are allowed to dirty in syncing context provided 2312 * we already dirtied it in open context. Hence we must make 2313 * this assertion only if we're not already dirty. 2314 */ 2315 os = dn->dn_objset; 2316 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2317 #ifdef ZFS_DEBUG 2318 if (dn->dn_objset->os_dsl_dataset != NULL) 2319 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2320 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2321 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2322 if (dn->dn_objset->os_dsl_dataset != NULL) 2323 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2324 #endif 2325 ASSERT(db->db.db_size != 0); 2326 2327 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2328 2329 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2330 dmu_objset_willuse_space(os, db->db.db_size, tx); 2331 } 2332 2333 /* 2334 * If this buffer is dirty in an old transaction group we need 2335 * to make a copy of it so that the changes we make in this 2336 * transaction group won't leak out when we sync the older txg. 2337 */ 2338 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2339 list_link_init(&dr->dr_dirty_node); 2340 list_link_init(&dr->dr_dbuf_node); 2341 dr->dr_dnode = dn; 2342 if (db->db_level == 0) { 2343 void *data_old = db->db_buf; 2344 2345 if (db->db_state != DB_NOFILL) { 2346 if (db->db_blkid == DMU_BONUS_BLKID) { 2347 dbuf_fix_old_data(db, tx->tx_txg); 2348 data_old = db->db.db_data; 2349 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2350 /* 2351 * Release the data buffer from the cache so 2352 * that we can modify it without impacting 2353 * possible other users of this cached data 2354 * block. Note that indirect blocks and 2355 * private objects are not released until the 2356 * syncing state (since they are only modified 2357 * then). 2358 */ 2359 arc_release(db->db_buf, db); 2360 dbuf_fix_old_data(db, tx->tx_txg); 2361 data_old = db->db_buf; 2362 } 2363 ASSERT(data_old != NULL); 2364 } 2365 dr->dt.dl.dr_data = data_old; 2366 } else { 2367 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2368 list_create(&dr->dt.di.dr_children, 2369 sizeof (dbuf_dirty_record_t), 2370 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2371 } 2372 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2373 dr->dr_accounted = db->db.db_size; 2374 } 2375 dr->dr_dbuf = db; 2376 dr->dr_txg = tx->tx_txg; 2377 list_insert_before(&db->db_dirty_records, dr_next, dr); 2378 2379 /* 2380 * We could have been freed_in_flight between the dbuf_noread 2381 * and dbuf_dirty. We win, as though the dbuf_noread() had 2382 * happened after the free. 2383 */ 2384 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2385 db->db_blkid != DMU_SPILL_BLKID) { 2386 mutex_enter(&dn->dn_mtx); 2387 if (dn->dn_free_ranges[txgoff] != NULL) { 2388 range_tree_clear(dn->dn_free_ranges[txgoff], 2389 db->db_blkid, 1); 2390 } 2391 mutex_exit(&dn->dn_mtx); 2392 db->db_freed_in_flight = FALSE; 2393 } 2394 2395 /* 2396 * This buffer is now part of this txg 2397 */ 2398 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2399 db->db_dirtycnt += 1; 2400 ASSERT3U(db->db_dirtycnt, <=, 3); 2401 2402 mutex_exit(&db->db_mtx); 2403 2404 if (db->db_blkid == DMU_BONUS_BLKID || 2405 db->db_blkid == DMU_SPILL_BLKID) { 2406 mutex_enter(&dn->dn_mtx); 2407 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2408 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2409 mutex_exit(&dn->dn_mtx); 2410 dnode_setdirty(dn, tx); 2411 DB_DNODE_EXIT(db); 2412 return (dr); 2413 } 2414 2415 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2416 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2417 drop_struct_rwlock = B_TRUE; 2418 } 2419 2420 /* 2421 * If we are overwriting a dedup BP, then unless it is snapshotted, 2422 * when we get to syncing context we will need to decrement its 2423 * refcount in the DDT. Prefetch the relevant DDT block so that 2424 * syncing context won't have to wait for the i/o. 2425 */ 2426 if (db->db_blkptr != NULL) { 2427 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2428 ddt_prefetch(os->os_spa, db->db_blkptr); 2429 dmu_buf_unlock_parent(db, dblt, FTAG); 2430 } 2431 2432 /* 2433 * We need to hold the dn_struct_rwlock to make this assertion, 2434 * because it protects dn_phys / dn_next_nlevels from changing. 2435 */ 2436 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2437 dn->dn_phys->dn_nlevels > db->db_level || 2438 dn->dn_next_nlevels[txgoff] > db->db_level || 2439 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2440 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2441 2442 2443 if (db->db_level == 0) { 2444 ASSERT(!db->db_objset->os_raw_receive || 2445 dn->dn_maxblkid >= db->db_blkid); 2446 dnode_new_blkid(dn, db->db_blkid, tx, 2447 drop_struct_rwlock, B_FALSE); 2448 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2449 } 2450 2451 if (db->db_level+1 < dn->dn_nlevels) { 2452 dmu_buf_impl_t *parent = db->db_parent; 2453 dbuf_dirty_record_t *di; 2454 int parent_held = FALSE; 2455 2456 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2457 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2458 parent = dbuf_hold_level(dn, db->db_level + 1, 2459 db->db_blkid >> epbs, FTAG); 2460 ASSERT(parent != NULL); 2461 parent_held = TRUE; 2462 } 2463 if (drop_struct_rwlock) 2464 rw_exit(&dn->dn_struct_rwlock); 2465 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2466 di = dbuf_dirty(parent, tx); 2467 if (parent_held) 2468 dbuf_rele(parent, FTAG); 2469 2470 mutex_enter(&db->db_mtx); 2471 /* 2472 * Since we've dropped the mutex, it's possible that 2473 * dbuf_undirty() might have changed this out from under us. 2474 */ 2475 if (list_head(&db->db_dirty_records) == dr || 2476 dn->dn_object == DMU_META_DNODE_OBJECT) { 2477 mutex_enter(&di->dt.di.dr_mtx); 2478 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2479 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2480 list_insert_tail(&di->dt.di.dr_children, dr); 2481 mutex_exit(&di->dt.di.dr_mtx); 2482 dr->dr_parent = di; 2483 } 2484 mutex_exit(&db->db_mtx); 2485 } else { 2486 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2487 ASSERT(db->db_blkid < dn->dn_nblkptr); 2488 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2489 mutex_enter(&dn->dn_mtx); 2490 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2491 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2492 mutex_exit(&dn->dn_mtx); 2493 if (drop_struct_rwlock) 2494 rw_exit(&dn->dn_struct_rwlock); 2495 } 2496 2497 dnode_setdirty(dn, tx); 2498 DB_DNODE_EXIT(db); 2499 return (dr); 2500 } 2501 2502 static void 2503 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2504 { 2505 dmu_buf_impl_t *db = dr->dr_dbuf; 2506 2507 if (dr->dt.dl.dr_data != db->db.db_data) { 2508 struct dnode *dn = dr->dr_dnode; 2509 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2510 2511 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2512 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2513 } 2514 db->db_data_pending = NULL; 2515 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2516 list_remove(&db->db_dirty_records, dr); 2517 if (dr->dr_dbuf->db_level != 0) { 2518 mutex_destroy(&dr->dt.di.dr_mtx); 2519 list_destroy(&dr->dt.di.dr_children); 2520 } 2521 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2522 ASSERT3U(db->db_dirtycnt, >, 0); 2523 db->db_dirtycnt -= 1; 2524 } 2525 2526 /* 2527 * Undirty a buffer in the transaction group referenced by the given 2528 * transaction. Return whether this evicted the dbuf. 2529 */ 2530 boolean_t 2531 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2532 { 2533 uint64_t txg = tx->tx_txg; 2534 boolean_t brtwrite; 2535 2536 ASSERT(txg != 0); 2537 2538 /* 2539 * Due to our use of dn_nlevels below, this can only be called 2540 * in open context, unless we are operating on the MOS. 2541 * From syncing context, dn_nlevels may be different from the 2542 * dn_nlevels used when dbuf was dirtied. 2543 */ 2544 ASSERT(db->db_objset == 2545 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2546 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2547 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2548 ASSERT0(db->db_level); 2549 ASSERT(MUTEX_HELD(&db->db_mtx)); 2550 2551 /* 2552 * If this buffer is not dirty, we're done. 2553 */ 2554 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2555 if (dr == NULL) 2556 return (B_FALSE); 2557 ASSERT(dr->dr_dbuf == db); 2558 2559 brtwrite = dr->dt.dl.dr_brtwrite; 2560 if (brtwrite) { 2561 /* 2562 * We are freeing a block that we cloned in the same 2563 * transaction group. 2564 */ 2565 brt_pending_remove(dmu_objset_spa(db->db_objset), 2566 &dr->dt.dl.dr_overridden_by, tx); 2567 } 2568 2569 dnode_t *dn = dr->dr_dnode; 2570 2571 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2572 2573 ASSERT(db->db.db_size != 0); 2574 2575 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2576 dr->dr_accounted, txg); 2577 2578 list_remove(&db->db_dirty_records, dr); 2579 2580 /* 2581 * Note that there are three places in dbuf_dirty() 2582 * where this dirty record may be put on a list. 2583 * Make sure to do a list_remove corresponding to 2584 * every one of those list_insert calls. 2585 */ 2586 if (dr->dr_parent) { 2587 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2588 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2589 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2590 } else if (db->db_blkid == DMU_SPILL_BLKID || 2591 db->db_level + 1 == dn->dn_nlevels) { 2592 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2593 mutex_enter(&dn->dn_mtx); 2594 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2595 mutex_exit(&dn->dn_mtx); 2596 } 2597 2598 if (db->db_state != DB_NOFILL && !brtwrite) { 2599 dbuf_unoverride(dr); 2600 2601 ASSERT(db->db_buf != NULL); 2602 ASSERT(dr->dt.dl.dr_data != NULL); 2603 if (dr->dt.dl.dr_data != db->db_buf) 2604 arc_buf_destroy(dr->dt.dl.dr_data, db); 2605 } 2606 2607 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2608 2609 ASSERT(db->db_dirtycnt > 0); 2610 db->db_dirtycnt -= 1; 2611 2612 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2613 ASSERT(db->db_state == DB_NOFILL || brtwrite || 2614 arc_released(db->db_buf)); 2615 dbuf_destroy(db); 2616 return (B_TRUE); 2617 } 2618 2619 return (B_FALSE); 2620 } 2621 2622 static void 2623 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2624 { 2625 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2626 boolean_t undirty = B_FALSE; 2627 2628 ASSERT(tx->tx_txg != 0); 2629 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2630 2631 /* 2632 * Quick check for dirtiness to improve performance for some workloads 2633 * (e.g. file deletion with indirect blocks cached). 2634 */ 2635 mutex_enter(&db->db_mtx); 2636 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2637 /* 2638 * It's possible that the dbuf is already dirty but not cached, 2639 * because there are some calls to dbuf_dirty() that don't 2640 * go through dmu_buf_will_dirty(). 2641 */ 2642 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2643 if (dr != NULL) { 2644 if (db->db_level == 0 && 2645 dr->dt.dl.dr_brtwrite) { 2646 /* 2647 * Block cloning: If we are dirtying a cloned 2648 * level 0 block, we cannot simply redirty it, 2649 * because this dr has no associated data. 2650 * We will go through a full undirtying below, 2651 * before dirtying it again. 2652 */ 2653 undirty = B_TRUE; 2654 } else { 2655 /* This dbuf is already dirty and cached. */ 2656 dbuf_redirty(dr); 2657 mutex_exit(&db->db_mtx); 2658 return; 2659 } 2660 } 2661 } 2662 mutex_exit(&db->db_mtx); 2663 2664 DB_DNODE_ENTER(db); 2665 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2666 flags |= DB_RF_HAVESTRUCT; 2667 DB_DNODE_EXIT(db); 2668 2669 /* 2670 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2671 * want to make sure dbuf_read() will read the pending cloned block and 2672 * not the uderlying block that is being replaced. dbuf_undirty() will 2673 * do dbuf_unoverride(), so we will end up with cloned block content, 2674 * without overridden BP. 2675 */ 2676 (void) dbuf_read(db, NULL, flags); 2677 if (undirty) { 2678 mutex_enter(&db->db_mtx); 2679 VERIFY(!dbuf_undirty(db, tx)); 2680 mutex_exit(&db->db_mtx); 2681 } 2682 (void) dbuf_dirty(db, tx); 2683 } 2684 2685 void 2686 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2687 { 2688 dmu_buf_will_dirty_impl(db_fake, 2689 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2690 } 2691 2692 boolean_t 2693 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2694 { 2695 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2696 dbuf_dirty_record_t *dr; 2697 2698 mutex_enter(&db->db_mtx); 2699 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2700 mutex_exit(&db->db_mtx); 2701 return (dr != NULL); 2702 } 2703 2704 void 2705 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx) 2706 { 2707 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2708 2709 /* 2710 * Block cloning: We are going to clone into this block, so undirty 2711 * modifications done to this block so far in this txg. This includes 2712 * writes and clones into this block. 2713 */ 2714 mutex_enter(&db->db_mtx); 2715 DBUF_VERIFY(db); 2716 VERIFY(!dbuf_undirty(db, tx)); 2717 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2718 if (db->db_buf != NULL) { 2719 arc_buf_destroy(db->db_buf, db); 2720 db->db_buf = NULL; 2721 dbuf_clear_data(db); 2722 } 2723 2724 db->db_state = DB_NOFILL; 2725 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone"); 2726 2727 DBUF_VERIFY(db); 2728 mutex_exit(&db->db_mtx); 2729 2730 dbuf_noread(db); 2731 (void) dbuf_dirty(db, tx); 2732 } 2733 2734 void 2735 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2736 { 2737 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2738 2739 mutex_enter(&db->db_mtx); 2740 db->db_state = DB_NOFILL; 2741 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2742 mutex_exit(&db->db_mtx); 2743 2744 dbuf_noread(db); 2745 (void) dbuf_dirty(db, tx); 2746 } 2747 2748 void 2749 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2750 { 2751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2752 2753 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2754 ASSERT(tx->tx_txg != 0); 2755 ASSERT(db->db_level == 0); 2756 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2757 2758 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2759 dmu_tx_private_ok(tx)); 2760 2761 mutex_enter(&db->db_mtx); 2762 if (db->db_state == DB_NOFILL) { 2763 /* 2764 * Block cloning: We will be completely overwriting a block 2765 * cloned in this transaction group, so let's undirty the 2766 * pending clone and mark the block as uncached. This will be 2767 * as if the clone was never done. But if the fill can fail 2768 * we should have a way to return back to the cloned data. 2769 */ 2770 if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) { 2771 mutex_exit(&db->db_mtx); 2772 dmu_buf_will_dirty(db_fake, tx); 2773 return; 2774 } 2775 VERIFY(!dbuf_undirty(db, tx)); 2776 db->db_state = DB_UNCACHED; 2777 } 2778 mutex_exit(&db->db_mtx); 2779 2780 dbuf_noread(db); 2781 (void) dbuf_dirty(db, tx); 2782 } 2783 2784 /* 2785 * This function is effectively the same as dmu_buf_will_dirty(), but 2786 * indicates the caller expects raw encrypted data in the db, and provides 2787 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2788 * blkptr_t when this dbuf is written. This is only used for blocks of 2789 * dnodes, during raw receive. 2790 */ 2791 void 2792 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2793 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2794 { 2795 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2796 dbuf_dirty_record_t *dr; 2797 2798 /* 2799 * dr_has_raw_params is only processed for blocks of dnodes 2800 * (see dbuf_sync_dnode_leaf_crypt()). 2801 */ 2802 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2803 ASSERT3U(db->db_level, ==, 0); 2804 ASSERT(db->db_objset->os_raw_receive); 2805 2806 dmu_buf_will_dirty_impl(db_fake, 2807 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2808 2809 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2810 2811 ASSERT3P(dr, !=, NULL); 2812 2813 dr->dt.dl.dr_has_raw_params = B_TRUE; 2814 dr->dt.dl.dr_byteorder = byteorder; 2815 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2816 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2817 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2818 } 2819 2820 static void 2821 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2822 { 2823 struct dirty_leaf *dl; 2824 dbuf_dirty_record_t *dr; 2825 2826 dr = list_head(&db->db_dirty_records); 2827 ASSERT3P(dr, !=, NULL); 2828 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2829 dl = &dr->dt.dl; 2830 dl->dr_overridden_by = *bp; 2831 dl->dr_override_state = DR_OVERRIDDEN; 2832 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2833 } 2834 2835 boolean_t 2836 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2837 { 2838 (void) tx; 2839 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2840 mutex_enter(&db->db_mtx); 2841 DBUF_VERIFY(db); 2842 2843 if (db->db_state == DB_FILL) { 2844 if (db->db_level == 0 && db->db_freed_in_flight) { 2845 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2846 /* we were freed while filling */ 2847 /* XXX dbuf_undirty? */ 2848 memset(db->db.db_data, 0, db->db.db_size); 2849 db->db_freed_in_flight = FALSE; 2850 db->db_state = DB_CACHED; 2851 DTRACE_SET_STATE(db, 2852 "fill done handling freed in flight"); 2853 failed = B_FALSE; 2854 } else if (failed) { 2855 VERIFY(!dbuf_undirty(db, tx)); 2856 arc_buf_destroy(db->db_buf, db); 2857 db->db_buf = NULL; 2858 dbuf_clear_data(db); 2859 DTRACE_SET_STATE(db, "fill failed"); 2860 } else { 2861 db->db_state = DB_CACHED; 2862 DTRACE_SET_STATE(db, "fill done"); 2863 } 2864 cv_broadcast(&db->db_changed); 2865 } else { 2866 db->db_state = DB_CACHED; 2867 failed = B_FALSE; 2868 } 2869 mutex_exit(&db->db_mtx); 2870 return (failed); 2871 } 2872 2873 void 2874 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2875 bp_embedded_type_t etype, enum zio_compress comp, 2876 int uncompressed_size, int compressed_size, int byteorder, 2877 dmu_tx_t *tx) 2878 { 2879 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2880 struct dirty_leaf *dl; 2881 dmu_object_type_t type; 2882 dbuf_dirty_record_t *dr; 2883 2884 if (etype == BP_EMBEDDED_TYPE_DATA) { 2885 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2886 SPA_FEATURE_EMBEDDED_DATA)); 2887 } 2888 2889 DB_DNODE_ENTER(db); 2890 type = DB_DNODE(db)->dn_type; 2891 DB_DNODE_EXIT(db); 2892 2893 ASSERT0(db->db_level); 2894 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2895 2896 dmu_buf_will_not_fill(dbuf, tx); 2897 2898 dr = list_head(&db->db_dirty_records); 2899 ASSERT3P(dr, !=, NULL); 2900 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2901 dl = &dr->dt.dl; 2902 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2903 data, comp, uncompressed_size, compressed_size); 2904 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2905 BP_SET_TYPE(&dl->dr_overridden_by, type); 2906 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2907 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2908 2909 dl->dr_override_state = DR_OVERRIDDEN; 2910 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2911 } 2912 2913 void 2914 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2915 { 2916 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2917 dmu_object_type_t type; 2918 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2919 SPA_FEATURE_REDACTED_DATASETS)); 2920 2921 DB_DNODE_ENTER(db); 2922 type = DB_DNODE(db)->dn_type; 2923 DB_DNODE_EXIT(db); 2924 2925 ASSERT0(db->db_level); 2926 dmu_buf_will_not_fill(dbuf, tx); 2927 2928 blkptr_t bp = { { { {0} } } }; 2929 BP_SET_TYPE(&bp, type); 2930 BP_SET_LEVEL(&bp, 0); 2931 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2932 BP_SET_REDACTED(&bp); 2933 BPE_SET_LSIZE(&bp, dbuf->db_size); 2934 2935 dbuf_override_impl(db, &bp, tx); 2936 } 2937 2938 /* 2939 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2940 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2941 */ 2942 void 2943 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2944 { 2945 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2946 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2947 ASSERT(db->db_level == 0); 2948 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2949 ASSERT(buf != NULL); 2950 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2951 ASSERT(tx->tx_txg != 0); 2952 2953 arc_return_buf(buf, db); 2954 ASSERT(arc_released(buf)); 2955 2956 mutex_enter(&db->db_mtx); 2957 2958 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2959 cv_wait(&db->db_changed, &db->db_mtx); 2960 2961 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 2962 db->db_state == DB_NOFILL); 2963 2964 if (db->db_state == DB_CACHED && 2965 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2966 /* 2967 * In practice, we will never have a case where we have an 2968 * encrypted arc buffer while additional holds exist on the 2969 * dbuf. We don't handle this here so we simply assert that 2970 * fact instead. 2971 */ 2972 ASSERT(!arc_is_encrypted(buf)); 2973 mutex_exit(&db->db_mtx); 2974 (void) dbuf_dirty(db, tx); 2975 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2976 arc_buf_destroy(buf, db); 2977 return; 2978 } 2979 2980 if (db->db_state == DB_CACHED) { 2981 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2982 2983 ASSERT(db->db_buf != NULL); 2984 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2985 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2986 2987 if (!arc_released(db->db_buf)) { 2988 ASSERT(dr->dt.dl.dr_override_state == 2989 DR_OVERRIDDEN); 2990 arc_release(db->db_buf, db); 2991 } 2992 dr->dt.dl.dr_data = buf; 2993 arc_buf_destroy(db->db_buf, db); 2994 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2995 arc_release(db->db_buf, db); 2996 arc_buf_destroy(db->db_buf, db); 2997 } 2998 db->db_buf = NULL; 2999 } else if (db->db_state == DB_NOFILL) { 3000 /* 3001 * We will be completely replacing the cloned block. In case 3002 * it was cloned in this transaction group, let's undirty the 3003 * pending clone and mark the block as uncached. This will be 3004 * as if the clone was never done. 3005 */ 3006 VERIFY(!dbuf_undirty(db, tx)); 3007 db->db_state = DB_UNCACHED; 3008 } 3009 ASSERT(db->db_buf == NULL); 3010 dbuf_set_data(db, buf); 3011 db->db_state = DB_FILL; 3012 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3013 mutex_exit(&db->db_mtx); 3014 (void) dbuf_dirty(db, tx); 3015 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3016 } 3017 3018 void 3019 dbuf_destroy(dmu_buf_impl_t *db) 3020 { 3021 dnode_t *dn; 3022 dmu_buf_impl_t *parent = db->db_parent; 3023 dmu_buf_impl_t *dndb; 3024 3025 ASSERT(MUTEX_HELD(&db->db_mtx)); 3026 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3027 3028 if (db->db_buf != NULL) { 3029 arc_buf_destroy(db->db_buf, db); 3030 db->db_buf = NULL; 3031 } 3032 3033 if (db->db_blkid == DMU_BONUS_BLKID) { 3034 int slots = DB_DNODE(db)->dn_num_slots; 3035 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3036 if (db->db.db_data != NULL) { 3037 kmem_free(db->db.db_data, bonuslen); 3038 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3039 db->db_state = DB_UNCACHED; 3040 DTRACE_SET_STATE(db, "buffer cleared"); 3041 } 3042 } 3043 3044 dbuf_clear_data(db); 3045 3046 if (multilist_link_active(&db->db_cache_link)) { 3047 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3048 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3049 3050 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3051 3052 ASSERT0(dmu_buf_user_size(&db->db)); 3053 (void) zfs_refcount_remove_many( 3054 &dbuf_caches[db->db_caching_status].size, 3055 db->db.db_size, db); 3056 3057 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3058 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3059 } else { 3060 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3061 DBUF_STAT_BUMPDOWN(cache_count); 3062 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3063 db->db.db_size); 3064 } 3065 db->db_caching_status = DB_NO_CACHE; 3066 } 3067 3068 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3069 ASSERT(db->db_data_pending == NULL); 3070 ASSERT(list_is_empty(&db->db_dirty_records)); 3071 3072 db->db_state = DB_EVICTING; 3073 DTRACE_SET_STATE(db, "buffer eviction started"); 3074 db->db_blkptr = NULL; 3075 3076 /* 3077 * Now that db_state is DB_EVICTING, nobody else can find this via 3078 * the hash table. We can now drop db_mtx, which allows us to 3079 * acquire the dn_dbufs_mtx. 3080 */ 3081 mutex_exit(&db->db_mtx); 3082 3083 DB_DNODE_ENTER(db); 3084 dn = DB_DNODE(db); 3085 dndb = dn->dn_dbuf; 3086 if (db->db_blkid != DMU_BONUS_BLKID) { 3087 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3088 if (needlock) 3089 mutex_enter_nested(&dn->dn_dbufs_mtx, 3090 NESTED_SINGLE); 3091 avl_remove(&dn->dn_dbufs, db); 3092 membar_producer(); 3093 DB_DNODE_EXIT(db); 3094 if (needlock) 3095 mutex_exit(&dn->dn_dbufs_mtx); 3096 /* 3097 * Decrementing the dbuf count means that the hold corresponding 3098 * to the removed dbuf is no longer discounted in dnode_move(), 3099 * so the dnode cannot be moved until after we release the hold. 3100 * The membar_producer() ensures visibility of the decremented 3101 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3102 * release any lock. 3103 */ 3104 mutex_enter(&dn->dn_mtx); 3105 dnode_rele_and_unlock(dn, db, B_TRUE); 3106 db->db_dnode_handle = NULL; 3107 3108 dbuf_hash_remove(db); 3109 } else { 3110 DB_DNODE_EXIT(db); 3111 } 3112 3113 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3114 3115 db->db_parent = NULL; 3116 3117 ASSERT(db->db_buf == NULL); 3118 ASSERT(db->db.db_data == NULL); 3119 ASSERT(db->db_hash_next == NULL); 3120 ASSERT(db->db_blkptr == NULL); 3121 ASSERT(db->db_data_pending == NULL); 3122 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3123 ASSERT(!multilist_link_active(&db->db_cache_link)); 3124 3125 /* 3126 * If this dbuf is referenced from an indirect dbuf, 3127 * decrement the ref count on the indirect dbuf. 3128 */ 3129 if (parent && parent != dndb) { 3130 mutex_enter(&parent->db_mtx); 3131 dbuf_rele_and_unlock(parent, db, B_TRUE); 3132 } 3133 3134 kmem_cache_free(dbuf_kmem_cache, db); 3135 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3136 } 3137 3138 /* 3139 * Note: While bpp will always be updated if the function returns success, 3140 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3141 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3142 * object. 3143 */ 3144 __attribute__((always_inline)) 3145 static inline int 3146 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3147 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3148 { 3149 *parentp = NULL; 3150 *bpp = NULL; 3151 3152 ASSERT(blkid != DMU_BONUS_BLKID); 3153 3154 if (blkid == DMU_SPILL_BLKID) { 3155 mutex_enter(&dn->dn_mtx); 3156 if (dn->dn_have_spill && 3157 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3158 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3159 else 3160 *bpp = NULL; 3161 dbuf_add_ref(dn->dn_dbuf, NULL); 3162 *parentp = dn->dn_dbuf; 3163 mutex_exit(&dn->dn_mtx); 3164 return (0); 3165 } 3166 3167 int nlevels = 3168 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3169 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3170 3171 ASSERT3U(level * epbs, <, 64); 3172 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3173 /* 3174 * This assertion shouldn't trip as long as the max indirect block size 3175 * is less than 1M. The reason for this is that up to that point, 3176 * the number of levels required to address an entire object with blocks 3177 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3178 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3179 * (i.e. we can address the entire object), objects will all use at most 3180 * N-1 levels and the assertion won't overflow. However, once epbs is 3181 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3182 * enough to address an entire object, so objects will have 5 levels, 3183 * but then this assertion will overflow. 3184 * 3185 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3186 * need to redo this logic to handle overflows. 3187 */ 3188 ASSERT(level >= nlevels || 3189 ((nlevels - level - 1) * epbs) + 3190 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3191 if (level >= nlevels || 3192 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3193 ((nlevels - level - 1) * epbs)) || 3194 (fail_sparse && 3195 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3196 /* the buffer has no parent yet */ 3197 return (SET_ERROR(ENOENT)); 3198 } else if (level < nlevels-1) { 3199 /* this block is referenced from an indirect block */ 3200 int err; 3201 3202 err = dbuf_hold_impl(dn, level + 1, 3203 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3204 3205 if (err) 3206 return (err); 3207 err = dbuf_read(*parentp, NULL, 3208 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3209 if (err) { 3210 dbuf_rele(*parentp, NULL); 3211 *parentp = NULL; 3212 return (err); 3213 } 3214 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3215 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3216 (blkid & ((1ULL << epbs) - 1)); 3217 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3218 ASSERT(BP_IS_HOLE(*bpp)); 3219 rw_exit(&(*parentp)->db_rwlock); 3220 return (0); 3221 } else { 3222 /* the block is referenced from the dnode */ 3223 ASSERT3U(level, ==, nlevels-1); 3224 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3225 blkid < dn->dn_phys->dn_nblkptr); 3226 if (dn->dn_dbuf) { 3227 dbuf_add_ref(dn->dn_dbuf, NULL); 3228 *parentp = dn->dn_dbuf; 3229 } 3230 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3231 return (0); 3232 } 3233 } 3234 3235 static dmu_buf_impl_t * 3236 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3237 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3238 { 3239 objset_t *os = dn->dn_objset; 3240 dmu_buf_impl_t *db, *odb; 3241 3242 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3243 ASSERT(dn->dn_type != DMU_OT_NONE); 3244 3245 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3246 3247 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3248 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3249 3250 db->db_objset = os; 3251 db->db.db_object = dn->dn_object; 3252 db->db_level = level; 3253 db->db_blkid = blkid; 3254 db->db_dirtycnt = 0; 3255 db->db_dnode_handle = dn->dn_handle; 3256 db->db_parent = parent; 3257 db->db_blkptr = blkptr; 3258 db->db_hash = hash; 3259 3260 db->db_user = NULL; 3261 db->db_user_immediate_evict = FALSE; 3262 db->db_freed_in_flight = FALSE; 3263 db->db_pending_evict = FALSE; 3264 3265 if (blkid == DMU_BONUS_BLKID) { 3266 ASSERT3P(parent, ==, dn->dn_dbuf); 3267 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3268 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3269 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3270 db->db.db_offset = DMU_BONUS_BLKID; 3271 db->db_state = DB_UNCACHED; 3272 DTRACE_SET_STATE(db, "bonus buffer created"); 3273 db->db_caching_status = DB_NO_CACHE; 3274 /* the bonus dbuf is not placed in the hash table */ 3275 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3276 return (db); 3277 } else if (blkid == DMU_SPILL_BLKID) { 3278 db->db.db_size = (blkptr != NULL) ? 3279 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3280 db->db.db_offset = 0; 3281 } else { 3282 int blocksize = 3283 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3284 db->db.db_size = blocksize; 3285 db->db.db_offset = db->db_blkid * blocksize; 3286 } 3287 3288 /* 3289 * Hold the dn_dbufs_mtx while we get the new dbuf 3290 * in the hash table *and* added to the dbufs list. 3291 * This prevents a possible deadlock with someone 3292 * trying to look up this dbuf before it's added to the 3293 * dn_dbufs list. 3294 */ 3295 mutex_enter(&dn->dn_dbufs_mtx); 3296 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3297 if ((odb = dbuf_hash_insert(db)) != NULL) { 3298 /* someone else inserted it first */ 3299 mutex_exit(&dn->dn_dbufs_mtx); 3300 kmem_cache_free(dbuf_kmem_cache, db); 3301 DBUF_STAT_BUMP(hash_insert_race); 3302 return (odb); 3303 } 3304 avl_add(&dn->dn_dbufs, db); 3305 3306 db->db_state = DB_UNCACHED; 3307 DTRACE_SET_STATE(db, "regular buffer created"); 3308 db->db_caching_status = DB_NO_CACHE; 3309 mutex_exit(&dn->dn_dbufs_mtx); 3310 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3311 3312 if (parent && parent != dn->dn_dbuf) 3313 dbuf_add_ref(parent, db); 3314 3315 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3316 zfs_refcount_count(&dn->dn_holds) > 0); 3317 (void) zfs_refcount_add(&dn->dn_holds, db); 3318 3319 dprintf_dbuf(db, "db=%p\n", db); 3320 3321 return (db); 3322 } 3323 3324 /* 3325 * This function returns a block pointer and information about the object, 3326 * given a dnode and a block. This is a publicly accessible version of 3327 * dbuf_findbp that only returns some information, rather than the 3328 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3329 * should be locked as (at least) a reader. 3330 */ 3331 int 3332 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3333 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3334 { 3335 dmu_buf_impl_t *dbp = NULL; 3336 blkptr_t *bp2; 3337 int err = 0; 3338 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3339 3340 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3341 if (err == 0) { 3342 ASSERT3P(bp2, !=, NULL); 3343 *bp = *bp2; 3344 if (dbp != NULL) 3345 dbuf_rele(dbp, NULL); 3346 if (datablkszsec != NULL) 3347 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3348 if (indblkshift != NULL) 3349 *indblkshift = dn->dn_phys->dn_indblkshift; 3350 } 3351 3352 return (err); 3353 } 3354 3355 typedef struct dbuf_prefetch_arg { 3356 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3357 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3358 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3359 int dpa_curlevel; /* The current level that we're reading */ 3360 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3361 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3362 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3363 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3364 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3365 void *dpa_arg; /* prefetch completion arg */ 3366 } dbuf_prefetch_arg_t; 3367 3368 static void 3369 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3370 { 3371 if (dpa->dpa_cb != NULL) { 3372 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3373 dpa->dpa_zb.zb_blkid, io_done); 3374 } 3375 kmem_free(dpa, sizeof (*dpa)); 3376 } 3377 3378 static void 3379 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3380 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3381 { 3382 (void) zio, (void) zb, (void) iobp; 3383 dbuf_prefetch_arg_t *dpa = private; 3384 3385 if (abuf != NULL) 3386 arc_buf_destroy(abuf, private); 3387 3388 dbuf_prefetch_fini(dpa, B_TRUE); 3389 } 3390 3391 /* 3392 * Actually issue the prefetch read for the block given. 3393 */ 3394 static void 3395 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3396 { 3397 ASSERT(!BP_IS_REDACTED(bp) || 3398 dsl_dataset_feature_is_active( 3399 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3400 SPA_FEATURE_REDACTED_DATASETS)); 3401 3402 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3403 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3404 3405 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3406 arc_flags_t aflags = 3407 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3408 ARC_FLAG_NO_BUF; 3409 3410 /* dnodes are always read as raw and then converted later */ 3411 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3412 dpa->dpa_curlevel == 0) 3413 zio_flags |= ZIO_FLAG_RAW; 3414 3415 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3416 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3417 ASSERT(dpa->dpa_zio != NULL); 3418 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3419 dbuf_issue_final_prefetch_done, dpa, 3420 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3421 } 3422 3423 /* 3424 * Called when an indirect block above our prefetch target is read in. This 3425 * will either read in the next indirect block down the tree or issue the actual 3426 * prefetch if the next block down is our target. 3427 */ 3428 static void 3429 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3430 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3431 { 3432 (void) zb, (void) iobp; 3433 dbuf_prefetch_arg_t *dpa = private; 3434 3435 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3436 ASSERT3S(dpa->dpa_curlevel, >, 0); 3437 3438 if (abuf == NULL) { 3439 ASSERT(zio == NULL || zio->io_error != 0); 3440 dbuf_prefetch_fini(dpa, B_TRUE); 3441 return; 3442 } 3443 ASSERT(zio == NULL || zio->io_error == 0); 3444 3445 /* 3446 * The dpa_dnode is only valid if we are called with a NULL 3447 * zio. This indicates that the arc_read() returned without 3448 * first calling zio_read() to issue a physical read. Once 3449 * a physical read is made the dpa_dnode must be invalidated 3450 * as the locks guarding it may have been dropped. If the 3451 * dpa_dnode is still valid, then we want to add it to the dbuf 3452 * cache. To do so, we must hold the dbuf associated with the block 3453 * we just prefetched, read its contents so that we associate it 3454 * with an arc_buf_t, and then release it. 3455 */ 3456 if (zio != NULL) { 3457 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3458 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3459 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3460 } else { 3461 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3462 } 3463 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3464 3465 dpa->dpa_dnode = NULL; 3466 } else if (dpa->dpa_dnode != NULL) { 3467 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3468 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3469 dpa->dpa_zb.zb_level)); 3470 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3471 dpa->dpa_curlevel, curblkid, FTAG); 3472 if (db == NULL) { 3473 arc_buf_destroy(abuf, private); 3474 dbuf_prefetch_fini(dpa, B_TRUE); 3475 return; 3476 } 3477 (void) dbuf_read(db, NULL, 3478 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3479 dbuf_rele(db, FTAG); 3480 } 3481 3482 dpa->dpa_curlevel--; 3483 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3484 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3485 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3486 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3487 3488 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3489 dsl_dataset_feature_is_active( 3490 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3491 SPA_FEATURE_REDACTED_DATASETS))); 3492 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3493 arc_buf_destroy(abuf, private); 3494 dbuf_prefetch_fini(dpa, B_TRUE); 3495 return; 3496 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3497 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3498 dbuf_issue_final_prefetch(dpa, bp); 3499 } else { 3500 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3501 zbookmark_phys_t zb; 3502 3503 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3504 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3505 iter_aflags |= ARC_FLAG_L2CACHE; 3506 3507 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3508 3509 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3510 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3511 3512 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3513 bp, dbuf_prefetch_indirect_done, dpa, 3514 ZIO_PRIORITY_SYNC_READ, 3515 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3516 &iter_aflags, &zb); 3517 } 3518 3519 arc_buf_destroy(abuf, private); 3520 } 3521 3522 /* 3523 * Issue prefetch reads for the given block on the given level. If the indirect 3524 * blocks above that block are not in memory, we will read them in 3525 * asynchronously. As a result, this call never blocks waiting for a read to 3526 * complete. Note that the prefetch might fail if the dataset is encrypted and 3527 * the encryption key is unmapped before the IO completes. 3528 */ 3529 int 3530 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3531 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3532 void *arg) 3533 { 3534 blkptr_t bp; 3535 int epbs, nlevels, curlevel; 3536 uint64_t curblkid; 3537 3538 ASSERT(blkid != DMU_BONUS_BLKID); 3539 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3540 3541 if (blkid > dn->dn_maxblkid) 3542 goto no_issue; 3543 3544 if (level == 0 && dnode_block_freed(dn, blkid)) 3545 goto no_issue; 3546 3547 /* 3548 * This dnode hasn't been written to disk yet, so there's nothing to 3549 * prefetch. 3550 */ 3551 nlevels = dn->dn_phys->dn_nlevels; 3552 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3553 goto no_issue; 3554 3555 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3556 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3557 goto no_issue; 3558 3559 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3560 level, blkid, NULL); 3561 if (db != NULL) { 3562 mutex_exit(&db->db_mtx); 3563 /* 3564 * This dbuf already exists. It is either CACHED, or 3565 * (we assume) about to be read or filled. 3566 */ 3567 goto no_issue; 3568 } 3569 3570 /* 3571 * Find the closest ancestor (indirect block) of the target block 3572 * that is present in the cache. In this indirect block, we will 3573 * find the bp that is at curlevel, curblkid. 3574 */ 3575 curlevel = level; 3576 curblkid = blkid; 3577 while (curlevel < nlevels - 1) { 3578 int parent_level = curlevel + 1; 3579 uint64_t parent_blkid = curblkid >> epbs; 3580 dmu_buf_impl_t *db; 3581 3582 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3583 FALSE, TRUE, FTAG, &db) == 0) { 3584 blkptr_t *bpp = db->db_buf->b_data; 3585 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3586 dbuf_rele(db, FTAG); 3587 break; 3588 } 3589 3590 curlevel = parent_level; 3591 curblkid = parent_blkid; 3592 } 3593 3594 if (curlevel == nlevels - 1) { 3595 /* No cached indirect blocks found. */ 3596 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3597 bp = dn->dn_phys->dn_blkptr[curblkid]; 3598 } 3599 ASSERT(!BP_IS_REDACTED(&bp) || 3600 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3601 SPA_FEATURE_REDACTED_DATASETS)); 3602 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3603 goto no_issue; 3604 3605 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3606 3607 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3608 ZIO_FLAG_CANFAIL); 3609 3610 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3611 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3612 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3613 dn->dn_object, level, blkid); 3614 dpa->dpa_curlevel = curlevel; 3615 dpa->dpa_prio = prio; 3616 dpa->dpa_aflags = aflags; 3617 dpa->dpa_spa = dn->dn_objset->os_spa; 3618 dpa->dpa_dnode = dn; 3619 dpa->dpa_epbs = epbs; 3620 dpa->dpa_zio = pio; 3621 dpa->dpa_cb = cb; 3622 dpa->dpa_arg = arg; 3623 3624 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3625 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3626 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3627 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3628 3629 /* 3630 * If we have the indirect just above us, no need to do the asynchronous 3631 * prefetch chain; we'll just run the last step ourselves. If we're at 3632 * a higher level, though, we want to issue the prefetches for all the 3633 * indirect blocks asynchronously, so we can go on with whatever we were 3634 * doing. 3635 */ 3636 if (curlevel == level) { 3637 ASSERT3U(curblkid, ==, blkid); 3638 dbuf_issue_final_prefetch(dpa, &bp); 3639 } else { 3640 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3641 zbookmark_phys_t zb; 3642 3643 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3644 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3645 iter_aflags |= ARC_FLAG_L2CACHE; 3646 3647 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3648 dn->dn_object, curlevel, curblkid); 3649 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3650 &bp, dbuf_prefetch_indirect_done, dpa, 3651 ZIO_PRIORITY_SYNC_READ, 3652 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3653 &iter_aflags, &zb); 3654 } 3655 /* 3656 * We use pio here instead of dpa_zio since it's possible that 3657 * dpa may have already been freed. 3658 */ 3659 zio_nowait(pio); 3660 return (1); 3661 no_issue: 3662 if (cb != NULL) 3663 cb(arg, level, blkid, B_FALSE); 3664 return (0); 3665 } 3666 3667 int 3668 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3669 arc_flags_t aflags) 3670 { 3671 3672 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3673 } 3674 3675 /* 3676 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3677 * the case of encrypted, compressed and uncompressed buffers by 3678 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3679 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3680 * 3681 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3682 */ 3683 noinline static void 3684 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3685 { 3686 dbuf_dirty_record_t *dr = db->db_data_pending; 3687 arc_buf_t *data = dr->dt.dl.dr_data; 3688 enum zio_compress compress_type = arc_get_compression(data); 3689 uint8_t complevel = arc_get_complevel(data); 3690 3691 if (arc_is_encrypted(data)) { 3692 boolean_t byteorder; 3693 uint8_t salt[ZIO_DATA_SALT_LEN]; 3694 uint8_t iv[ZIO_DATA_IV_LEN]; 3695 uint8_t mac[ZIO_DATA_MAC_LEN]; 3696 3697 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3698 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3699 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3700 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3701 compress_type, complevel)); 3702 } else if (compress_type != ZIO_COMPRESS_OFF) { 3703 dbuf_set_data(db, arc_alloc_compressed_buf( 3704 dn->dn_objset->os_spa, db, arc_buf_size(data), 3705 arc_buf_lsize(data), compress_type, complevel)); 3706 } else { 3707 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3708 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3709 } 3710 3711 rw_enter(&db->db_rwlock, RW_WRITER); 3712 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3713 rw_exit(&db->db_rwlock); 3714 } 3715 3716 /* 3717 * Returns with db_holds incremented, and db_mtx not held. 3718 * Note: dn_struct_rwlock must be held. 3719 */ 3720 int 3721 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3722 boolean_t fail_sparse, boolean_t fail_uncached, 3723 const void *tag, dmu_buf_impl_t **dbp) 3724 { 3725 dmu_buf_impl_t *db, *parent = NULL; 3726 uint64_t hv; 3727 3728 /* If the pool has been created, verify the tx_sync_lock is not held */ 3729 spa_t *spa = dn->dn_objset->os_spa; 3730 dsl_pool_t *dp = spa->spa_dsl_pool; 3731 if (dp != NULL) { 3732 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3733 } 3734 3735 ASSERT(blkid != DMU_BONUS_BLKID); 3736 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3737 ASSERT3U(dn->dn_nlevels, >, level); 3738 3739 *dbp = NULL; 3740 3741 /* dbuf_find() returns with db_mtx held */ 3742 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3743 3744 if (db == NULL) { 3745 blkptr_t *bp = NULL; 3746 int err; 3747 3748 if (fail_uncached) 3749 return (SET_ERROR(ENOENT)); 3750 3751 ASSERT3P(parent, ==, NULL); 3752 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3753 if (fail_sparse) { 3754 if (err == 0 && bp && BP_IS_HOLE(bp)) 3755 err = SET_ERROR(ENOENT); 3756 if (err) { 3757 if (parent) 3758 dbuf_rele(parent, NULL); 3759 return (err); 3760 } 3761 } 3762 if (err && err != ENOENT) 3763 return (err); 3764 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3765 } 3766 3767 if (fail_uncached && db->db_state != DB_CACHED) { 3768 mutex_exit(&db->db_mtx); 3769 return (SET_ERROR(ENOENT)); 3770 } 3771 3772 if (db->db_buf != NULL) { 3773 arc_buf_access(db->db_buf); 3774 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3775 } 3776 3777 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3778 3779 /* 3780 * If this buffer is currently syncing out, and we are 3781 * still referencing it from db_data, we need to make a copy 3782 * of it in case we decide we want to dirty it again in this txg. 3783 */ 3784 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3785 dn->dn_object != DMU_META_DNODE_OBJECT && 3786 db->db_state == DB_CACHED && db->db_data_pending) { 3787 dbuf_dirty_record_t *dr = db->db_data_pending; 3788 if (dr->dt.dl.dr_data == db->db_buf) { 3789 ASSERT3P(db->db_buf, !=, NULL); 3790 dbuf_hold_copy(dn, db); 3791 } 3792 } 3793 3794 if (multilist_link_active(&db->db_cache_link)) { 3795 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3796 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3797 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3798 3799 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3800 3801 uint64_t size = db->db.db_size; 3802 uint64_t usize = dmu_buf_user_size(&db->db); 3803 (void) zfs_refcount_remove_many( 3804 &dbuf_caches[db->db_caching_status].size, size, db); 3805 (void) zfs_refcount_remove_many( 3806 &dbuf_caches[db->db_caching_status].size, usize, 3807 db->db_user); 3808 3809 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3810 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3811 } else { 3812 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3813 DBUF_STAT_BUMPDOWN(cache_count); 3814 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3815 size + usize); 3816 } 3817 db->db_caching_status = DB_NO_CACHE; 3818 } 3819 (void) zfs_refcount_add(&db->db_holds, tag); 3820 DBUF_VERIFY(db); 3821 mutex_exit(&db->db_mtx); 3822 3823 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3824 if (parent) 3825 dbuf_rele(parent, NULL); 3826 3827 ASSERT3P(DB_DNODE(db), ==, dn); 3828 ASSERT3U(db->db_blkid, ==, blkid); 3829 ASSERT3U(db->db_level, ==, level); 3830 *dbp = db; 3831 3832 return (0); 3833 } 3834 3835 dmu_buf_impl_t * 3836 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3837 { 3838 return (dbuf_hold_level(dn, 0, blkid, tag)); 3839 } 3840 3841 dmu_buf_impl_t * 3842 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3843 { 3844 dmu_buf_impl_t *db; 3845 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3846 return (err ? NULL : db); 3847 } 3848 3849 void 3850 dbuf_create_bonus(dnode_t *dn) 3851 { 3852 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3853 3854 ASSERT(dn->dn_bonus == NULL); 3855 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 3856 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 3857 } 3858 3859 int 3860 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3861 { 3862 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3863 3864 if (db->db_blkid != DMU_SPILL_BLKID) 3865 return (SET_ERROR(ENOTSUP)); 3866 if (blksz == 0) 3867 blksz = SPA_MINBLOCKSIZE; 3868 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3869 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3870 3871 dbuf_new_size(db, blksz, tx); 3872 3873 return (0); 3874 } 3875 3876 void 3877 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3878 { 3879 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3880 } 3881 3882 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3883 void 3884 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3885 { 3886 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3887 VERIFY3S(holds, >, 1); 3888 } 3889 3890 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3891 boolean_t 3892 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3893 const void *tag) 3894 { 3895 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3896 dmu_buf_impl_t *found_db; 3897 boolean_t result = B_FALSE; 3898 3899 if (blkid == DMU_BONUS_BLKID) 3900 found_db = dbuf_find_bonus(os, obj); 3901 else 3902 found_db = dbuf_find(os, obj, 0, blkid, NULL); 3903 3904 if (found_db != NULL) { 3905 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3906 (void) zfs_refcount_add(&db->db_holds, tag); 3907 result = B_TRUE; 3908 } 3909 mutex_exit(&found_db->db_mtx); 3910 } 3911 return (result); 3912 } 3913 3914 /* 3915 * If you call dbuf_rele() you had better not be referencing the dnode handle 3916 * unless you have some other direct or indirect hold on the dnode. (An indirect 3917 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3918 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3919 * dnode's parent dbuf evicting its dnode handles. 3920 */ 3921 void 3922 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3923 { 3924 mutex_enter(&db->db_mtx); 3925 dbuf_rele_and_unlock(db, tag, B_FALSE); 3926 } 3927 3928 void 3929 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3930 { 3931 dbuf_rele((dmu_buf_impl_t *)db, tag); 3932 } 3933 3934 /* 3935 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3936 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3937 * argument should be set if we are already in the dbuf-evicting code 3938 * path, in which case we don't want to recursively evict. This allows us to 3939 * avoid deeply nested stacks that would have a call flow similar to this: 3940 * 3941 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3942 * ^ | 3943 * | | 3944 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3945 * 3946 */ 3947 void 3948 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3949 { 3950 int64_t holds; 3951 uint64_t size; 3952 3953 ASSERT(MUTEX_HELD(&db->db_mtx)); 3954 DBUF_VERIFY(db); 3955 3956 /* 3957 * Remove the reference to the dbuf before removing its hold on the 3958 * dnode so we can guarantee in dnode_move() that a referenced bonus 3959 * buffer has a corresponding dnode hold. 3960 */ 3961 holds = zfs_refcount_remove(&db->db_holds, tag); 3962 ASSERT(holds >= 0); 3963 3964 /* 3965 * We can't freeze indirects if there is a possibility that they 3966 * may be modified in the current syncing context. 3967 */ 3968 if (db->db_buf != NULL && 3969 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3970 arc_buf_freeze(db->db_buf); 3971 } 3972 3973 if (holds == db->db_dirtycnt && 3974 db->db_level == 0 && db->db_user_immediate_evict) 3975 dbuf_evict_user(db); 3976 3977 if (holds == 0) { 3978 if (db->db_blkid == DMU_BONUS_BLKID) { 3979 dnode_t *dn; 3980 boolean_t evict_dbuf = db->db_pending_evict; 3981 3982 /* 3983 * If the dnode moves here, we cannot cross this 3984 * barrier until the move completes. 3985 */ 3986 DB_DNODE_ENTER(db); 3987 3988 dn = DB_DNODE(db); 3989 atomic_dec_32(&dn->dn_dbufs_count); 3990 3991 /* 3992 * Decrementing the dbuf count means that the bonus 3993 * buffer's dnode hold is no longer discounted in 3994 * dnode_move(). The dnode cannot move until after 3995 * the dnode_rele() below. 3996 */ 3997 DB_DNODE_EXIT(db); 3998 3999 /* 4000 * Do not reference db after its lock is dropped. 4001 * Another thread may evict it. 4002 */ 4003 mutex_exit(&db->db_mtx); 4004 4005 if (evict_dbuf) 4006 dnode_evict_bonus(dn); 4007 4008 dnode_rele(dn, db); 4009 } else if (db->db_buf == NULL) { 4010 /* 4011 * This is a special case: we never associated this 4012 * dbuf with any data allocated from the ARC. 4013 */ 4014 ASSERT(db->db_state == DB_UNCACHED || 4015 db->db_state == DB_NOFILL); 4016 dbuf_destroy(db); 4017 } else if (arc_released(db->db_buf)) { 4018 /* 4019 * This dbuf has anonymous data associated with it. 4020 */ 4021 dbuf_destroy(db); 4022 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4023 db->db_pending_evict) { 4024 dbuf_destroy(db); 4025 } else if (!multilist_link_active(&db->db_cache_link)) { 4026 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4027 4028 dbuf_cached_state_t dcs = 4029 dbuf_include_in_metadata_cache(db) ? 4030 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4031 db->db_caching_status = dcs; 4032 4033 multilist_insert(&dbuf_caches[dcs].cache, db); 4034 uint64_t db_size = db->db.db_size; 4035 uint64_t dbu_size = dmu_buf_user_size(&db->db); 4036 (void) zfs_refcount_add_many( 4037 &dbuf_caches[dcs].size, db_size, db); 4038 size = zfs_refcount_add_many( 4039 &dbuf_caches[dcs].size, dbu_size, db->db_user); 4040 uint8_t db_level = db->db_level; 4041 mutex_exit(&db->db_mtx); 4042 4043 if (dcs == DB_DBUF_METADATA_CACHE) { 4044 DBUF_STAT_BUMP(metadata_cache_count); 4045 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4046 size); 4047 } else { 4048 DBUF_STAT_BUMP(cache_count); 4049 DBUF_STAT_MAX(cache_size_bytes_max, size); 4050 DBUF_STAT_BUMP(cache_levels[db_level]); 4051 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4052 db_size + dbu_size); 4053 } 4054 4055 if (dcs == DB_DBUF_CACHE && !evicting) 4056 dbuf_evict_notify(size); 4057 } 4058 } else { 4059 mutex_exit(&db->db_mtx); 4060 } 4061 4062 } 4063 4064 #pragma weak dmu_buf_refcount = dbuf_refcount 4065 uint64_t 4066 dbuf_refcount(dmu_buf_impl_t *db) 4067 { 4068 return (zfs_refcount_count(&db->db_holds)); 4069 } 4070 4071 uint64_t 4072 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4073 { 4074 uint64_t holds; 4075 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4076 4077 mutex_enter(&db->db_mtx); 4078 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4079 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4080 mutex_exit(&db->db_mtx); 4081 4082 return (holds); 4083 } 4084 4085 void * 4086 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4087 dmu_buf_user_t *new_user) 4088 { 4089 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4090 4091 mutex_enter(&db->db_mtx); 4092 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4093 if (db->db_user == old_user) 4094 db->db_user = new_user; 4095 else 4096 old_user = db->db_user; 4097 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4098 mutex_exit(&db->db_mtx); 4099 4100 return (old_user); 4101 } 4102 4103 void * 4104 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4105 { 4106 return (dmu_buf_replace_user(db_fake, NULL, user)); 4107 } 4108 4109 void * 4110 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4111 { 4112 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4113 4114 db->db_user_immediate_evict = TRUE; 4115 return (dmu_buf_set_user(db_fake, user)); 4116 } 4117 4118 void * 4119 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4120 { 4121 return (dmu_buf_replace_user(db_fake, user, NULL)); 4122 } 4123 4124 void * 4125 dmu_buf_get_user(dmu_buf_t *db_fake) 4126 { 4127 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4128 4129 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4130 return (db->db_user); 4131 } 4132 4133 uint64_t 4134 dmu_buf_user_size(dmu_buf_t *db_fake) 4135 { 4136 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4137 if (db->db_user == NULL) 4138 return (0); 4139 return (atomic_load_64(&db->db_user->dbu_size)); 4140 } 4141 4142 void 4143 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4144 { 4145 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4146 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4147 ASSERT3P(db->db_user, !=, NULL); 4148 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4149 atomic_add_64(&db->db_user->dbu_size, nadd); 4150 } 4151 4152 void 4153 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4154 { 4155 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4156 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4157 ASSERT3P(db->db_user, !=, NULL); 4158 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4159 atomic_sub_64(&db->db_user->dbu_size, nsub); 4160 } 4161 4162 void 4163 dmu_buf_user_evict_wait(void) 4164 { 4165 taskq_wait(dbu_evict_taskq); 4166 } 4167 4168 blkptr_t * 4169 dmu_buf_get_blkptr(dmu_buf_t *db) 4170 { 4171 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4172 return (dbi->db_blkptr); 4173 } 4174 4175 objset_t * 4176 dmu_buf_get_objset(dmu_buf_t *db) 4177 { 4178 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4179 return (dbi->db_objset); 4180 } 4181 4182 static void 4183 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4184 { 4185 /* ASSERT(dmu_tx_is_syncing(tx) */ 4186 ASSERT(MUTEX_HELD(&db->db_mtx)); 4187 4188 if (db->db_blkptr != NULL) 4189 return; 4190 4191 if (db->db_blkid == DMU_SPILL_BLKID) { 4192 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4193 BP_ZERO(db->db_blkptr); 4194 return; 4195 } 4196 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4197 /* 4198 * This buffer was allocated at a time when there was 4199 * no available blkptrs from the dnode, or it was 4200 * inappropriate to hook it in (i.e., nlevels mismatch). 4201 */ 4202 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4203 ASSERT(db->db_parent == NULL); 4204 db->db_parent = dn->dn_dbuf; 4205 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4206 DBUF_VERIFY(db); 4207 } else { 4208 dmu_buf_impl_t *parent = db->db_parent; 4209 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4210 4211 ASSERT(dn->dn_phys->dn_nlevels > 1); 4212 if (parent == NULL) { 4213 mutex_exit(&db->db_mtx); 4214 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4215 parent = dbuf_hold_level(dn, db->db_level + 1, 4216 db->db_blkid >> epbs, db); 4217 rw_exit(&dn->dn_struct_rwlock); 4218 mutex_enter(&db->db_mtx); 4219 db->db_parent = parent; 4220 } 4221 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4222 (db->db_blkid & ((1ULL << epbs) - 1)); 4223 DBUF_VERIFY(db); 4224 } 4225 } 4226 4227 static void 4228 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4229 { 4230 dmu_buf_impl_t *db = dr->dr_dbuf; 4231 void *data = dr->dt.dl.dr_data; 4232 4233 ASSERT0(db->db_level); 4234 ASSERT(MUTEX_HELD(&db->db_mtx)); 4235 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4236 ASSERT(data != NULL); 4237 4238 dnode_t *dn = dr->dr_dnode; 4239 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4240 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4241 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4242 4243 dbuf_sync_leaf_verify_bonus_dnode(dr); 4244 4245 dbuf_undirty_bonus(dr); 4246 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4247 } 4248 4249 /* 4250 * When syncing out a blocks of dnodes, adjust the block to deal with 4251 * encryption. Normally, we make sure the block is decrypted before writing 4252 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4253 * from a raw receive. In this case, set the ARC buf's crypt params so 4254 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4255 */ 4256 static void 4257 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4258 { 4259 int err; 4260 dmu_buf_impl_t *db = dr->dr_dbuf; 4261 4262 ASSERT(MUTEX_HELD(&db->db_mtx)); 4263 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4264 ASSERT3U(db->db_level, ==, 0); 4265 4266 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4267 zbookmark_phys_t zb; 4268 4269 /* 4270 * Unfortunately, there is currently no mechanism for 4271 * syncing context to handle decryption errors. An error 4272 * here is only possible if an attacker maliciously 4273 * changed a dnode block and updated the associated 4274 * checksums going up the block tree. 4275 */ 4276 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4277 db->db.db_object, db->db_level, db->db_blkid); 4278 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4279 &zb, B_TRUE); 4280 if (err) 4281 panic("Invalid dnode block MAC"); 4282 } else if (dr->dt.dl.dr_has_raw_params) { 4283 (void) arc_release(dr->dt.dl.dr_data, db); 4284 arc_convert_to_raw(dr->dt.dl.dr_data, 4285 dmu_objset_id(db->db_objset), 4286 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4287 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4288 } 4289 } 4290 4291 /* 4292 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4293 * is critical the we not allow the compiler to inline this function in to 4294 * dbuf_sync_list() thereby drastically bloating the stack usage. 4295 */ 4296 noinline static void 4297 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4298 { 4299 dmu_buf_impl_t *db = dr->dr_dbuf; 4300 dnode_t *dn = dr->dr_dnode; 4301 4302 ASSERT(dmu_tx_is_syncing(tx)); 4303 4304 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4305 4306 mutex_enter(&db->db_mtx); 4307 4308 ASSERT(db->db_level > 0); 4309 DBUF_VERIFY(db); 4310 4311 /* Read the block if it hasn't been read yet. */ 4312 if (db->db_buf == NULL) { 4313 mutex_exit(&db->db_mtx); 4314 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4315 mutex_enter(&db->db_mtx); 4316 } 4317 ASSERT3U(db->db_state, ==, DB_CACHED); 4318 ASSERT(db->db_buf != NULL); 4319 4320 /* Indirect block size must match what the dnode thinks it is. */ 4321 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4322 dbuf_check_blkptr(dn, db); 4323 4324 /* Provide the pending dirty record to child dbufs */ 4325 db->db_data_pending = dr; 4326 4327 mutex_exit(&db->db_mtx); 4328 4329 dbuf_write(dr, db->db_buf, tx); 4330 4331 zio_t *zio = dr->dr_zio; 4332 mutex_enter(&dr->dt.di.dr_mtx); 4333 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4334 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4335 mutex_exit(&dr->dt.di.dr_mtx); 4336 zio_nowait(zio); 4337 } 4338 4339 /* 4340 * Verify that the size of the data in our bonus buffer does not exceed 4341 * its recorded size. 4342 * 4343 * The purpose of this verification is to catch any cases in development 4344 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4345 * due to incorrect feature management, older pools expect to read more 4346 * data even though they didn't actually write it to begin with. 4347 * 4348 * For a example, this would catch an error in the feature logic where we 4349 * open an older pool and we expect to write the space map histogram of 4350 * a space map with size SPACE_MAP_SIZE_V0. 4351 */ 4352 static void 4353 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4354 { 4355 #ifdef ZFS_DEBUG 4356 dnode_t *dn = dr->dr_dnode; 4357 4358 /* 4359 * Encrypted bonus buffers can have data past their bonuslen. 4360 * Skip the verification of these blocks. 4361 */ 4362 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4363 return; 4364 4365 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4366 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4367 ASSERT3U(bonuslen, <=, maxbonuslen); 4368 4369 arc_buf_t *datap = dr->dt.dl.dr_data; 4370 char *datap_end = ((char *)datap) + bonuslen; 4371 char *datap_max = ((char *)datap) + maxbonuslen; 4372 4373 /* ensure that everything is zero after our data */ 4374 for (; datap_end < datap_max; datap_end++) 4375 ASSERT(*datap_end == 0); 4376 #endif 4377 } 4378 4379 static blkptr_t * 4380 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4381 { 4382 /* This must be a lightweight dirty record. */ 4383 ASSERT3P(dr->dr_dbuf, ==, NULL); 4384 dnode_t *dn = dr->dr_dnode; 4385 4386 if (dn->dn_phys->dn_nlevels == 1) { 4387 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4388 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4389 } else { 4390 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4391 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4392 VERIFY3U(parent_db->db_level, ==, 1); 4393 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4394 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4395 blkptr_t *bp = parent_db->db.db_data; 4396 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4397 } 4398 } 4399 4400 static void 4401 dbuf_lightweight_ready(zio_t *zio) 4402 { 4403 dbuf_dirty_record_t *dr = zio->io_private; 4404 blkptr_t *bp = zio->io_bp; 4405 4406 if (zio->io_error != 0) 4407 return; 4408 4409 dnode_t *dn = dr->dr_dnode; 4410 4411 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4412 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4413 int64_t delta = bp_get_dsize_sync(spa, bp) - 4414 bp_get_dsize_sync(spa, bp_orig); 4415 dnode_diduse_space(dn, delta); 4416 4417 uint64_t blkid = dr->dt.dll.dr_blkid; 4418 mutex_enter(&dn->dn_mtx); 4419 if (blkid > dn->dn_phys->dn_maxblkid) { 4420 ASSERT0(dn->dn_objset->os_raw_receive); 4421 dn->dn_phys->dn_maxblkid = blkid; 4422 } 4423 mutex_exit(&dn->dn_mtx); 4424 4425 if (!BP_IS_EMBEDDED(bp)) { 4426 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4427 BP_SET_FILL(bp, fill); 4428 } 4429 4430 dmu_buf_impl_t *parent_db; 4431 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4432 if (dr->dr_parent == NULL) { 4433 parent_db = dn->dn_dbuf; 4434 } else { 4435 parent_db = dr->dr_parent->dr_dbuf; 4436 } 4437 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4438 *bp_orig = *bp; 4439 rw_exit(&parent_db->db_rwlock); 4440 } 4441 4442 static void 4443 dbuf_lightweight_done(zio_t *zio) 4444 { 4445 dbuf_dirty_record_t *dr = zio->io_private; 4446 4447 VERIFY0(zio->io_error); 4448 4449 objset_t *os = dr->dr_dnode->dn_objset; 4450 dmu_tx_t *tx = os->os_synctx; 4451 4452 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4453 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4454 } else { 4455 dsl_dataset_t *ds = os->os_dsl_dataset; 4456 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4457 dsl_dataset_block_born(ds, zio->io_bp, tx); 4458 } 4459 4460 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4461 zio->io_txg); 4462 4463 abd_free(dr->dt.dll.dr_abd); 4464 kmem_free(dr, sizeof (*dr)); 4465 } 4466 4467 noinline static void 4468 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4469 { 4470 dnode_t *dn = dr->dr_dnode; 4471 zio_t *pio; 4472 if (dn->dn_phys->dn_nlevels == 1) { 4473 pio = dn->dn_zio; 4474 } else { 4475 pio = dr->dr_parent->dr_zio; 4476 } 4477 4478 zbookmark_phys_t zb = { 4479 .zb_objset = dmu_objset_id(dn->dn_objset), 4480 .zb_object = dn->dn_object, 4481 .zb_level = 0, 4482 .zb_blkid = dr->dt.dll.dr_blkid, 4483 }; 4484 4485 /* 4486 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4487 * will have the old BP in dbuf_lightweight_done(). 4488 */ 4489 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4490 4491 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4492 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4493 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4494 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4495 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4496 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4497 4498 zio_nowait(dr->dr_zio); 4499 } 4500 4501 /* 4502 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4503 * critical the we not allow the compiler to inline this function in to 4504 * dbuf_sync_list() thereby drastically bloating the stack usage. 4505 */ 4506 noinline static void 4507 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4508 { 4509 arc_buf_t **datap = &dr->dt.dl.dr_data; 4510 dmu_buf_impl_t *db = dr->dr_dbuf; 4511 dnode_t *dn = dr->dr_dnode; 4512 objset_t *os; 4513 uint64_t txg = tx->tx_txg; 4514 4515 ASSERT(dmu_tx_is_syncing(tx)); 4516 4517 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4518 4519 mutex_enter(&db->db_mtx); 4520 /* 4521 * To be synced, we must be dirtied. But we 4522 * might have been freed after the dirty. 4523 */ 4524 if (db->db_state == DB_UNCACHED) { 4525 /* This buffer has been freed since it was dirtied */ 4526 ASSERT(db->db.db_data == NULL); 4527 } else if (db->db_state == DB_FILL) { 4528 /* This buffer was freed and is now being re-filled */ 4529 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4530 } else if (db->db_state == DB_READ) { 4531 /* 4532 * This buffer has a clone we need to write, and an in-flight 4533 * read on the BP we're about to clone. Its safe to issue the 4534 * write here because the read has already been issued and the 4535 * contents won't change. 4536 */ 4537 ASSERT(dr->dt.dl.dr_brtwrite && 4538 dr->dt.dl.dr_override_state == DR_OVERRIDDEN); 4539 } else { 4540 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4541 } 4542 DBUF_VERIFY(db); 4543 4544 if (db->db_blkid == DMU_SPILL_BLKID) { 4545 mutex_enter(&dn->dn_mtx); 4546 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4547 /* 4548 * In the previous transaction group, the bonus buffer 4549 * was entirely used to store the attributes for the 4550 * dnode which overrode the dn_spill field. However, 4551 * when adding more attributes to the file a spill 4552 * block was required to hold the extra attributes. 4553 * 4554 * Make sure to clear the garbage left in the dn_spill 4555 * field from the previous attributes in the bonus 4556 * buffer. Otherwise, after writing out the spill 4557 * block to the new allocated dva, it will free 4558 * the old block pointed to by the invalid dn_spill. 4559 */ 4560 db->db_blkptr = NULL; 4561 } 4562 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4563 mutex_exit(&dn->dn_mtx); 4564 } 4565 4566 /* 4567 * If this is a bonus buffer, simply copy the bonus data into the 4568 * dnode. It will be written out when the dnode is synced (and it 4569 * will be synced, since it must have been dirty for dbuf_sync to 4570 * be called). 4571 */ 4572 if (db->db_blkid == DMU_BONUS_BLKID) { 4573 ASSERT(dr->dr_dbuf == db); 4574 dbuf_sync_bonus(dr, tx); 4575 return; 4576 } 4577 4578 os = dn->dn_objset; 4579 4580 /* 4581 * This function may have dropped the db_mtx lock allowing a dmu_sync 4582 * operation to sneak in. As a result, we need to ensure that we 4583 * don't check the dr_override_state until we have returned from 4584 * dbuf_check_blkptr. 4585 */ 4586 dbuf_check_blkptr(dn, db); 4587 4588 /* 4589 * If this buffer is in the middle of an immediate write, 4590 * wait for the synchronous IO to complete. 4591 */ 4592 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4593 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4594 cv_wait(&db->db_changed, &db->db_mtx); 4595 } 4596 4597 /* 4598 * If this is a dnode block, ensure it is appropriately encrypted 4599 * or decrypted, depending on what we are writing to it this txg. 4600 */ 4601 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4602 dbuf_prepare_encrypted_dnode_leaf(dr); 4603 4604 if (*datap != NULL && *datap == db->db_buf && 4605 dn->dn_object != DMU_META_DNODE_OBJECT && 4606 zfs_refcount_count(&db->db_holds) > 1 && 4607 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) { 4608 /* 4609 * If this buffer is currently "in use" (i.e., there 4610 * are active holds and db_data still references it), 4611 * then make a copy before we start the write so that 4612 * any modifications from the open txg will not leak 4613 * into this write. 4614 * 4615 * NOTE: this copy does not need to be made for 4616 * objects only modified in the syncing context (e.g. 4617 * DNONE_DNODE blocks). 4618 */ 4619 int psize = arc_buf_size(*datap); 4620 int lsize = arc_buf_lsize(*datap); 4621 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4622 enum zio_compress compress_type = arc_get_compression(*datap); 4623 uint8_t complevel = arc_get_complevel(*datap); 4624 4625 if (arc_is_encrypted(*datap)) { 4626 boolean_t byteorder; 4627 uint8_t salt[ZIO_DATA_SALT_LEN]; 4628 uint8_t iv[ZIO_DATA_IV_LEN]; 4629 uint8_t mac[ZIO_DATA_MAC_LEN]; 4630 4631 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4632 *datap = arc_alloc_raw_buf(os->os_spa, db, 4633 dmu_objset_id(os), byteorder, salt, iv, mac, 4634 dn->dn_type, psize, lsize, compress_type, 4635 complevel); 4636 } else if (compress_type != ZIO_COMPRESS_OFF) { 4637 ASSERT3U(type, ==, ARC_BUFC_DATA); 4638 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4639 psize, lsize, compress_type, complevel); 4640 } else { 4641 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4642 } 4643 memcpy((*datap)->b_data, db->db.db_data, psize); 4644 } 4645 db->db_data_pending = dr; 4646 4647 mutex_exit(&db->db_mtx); 4648 4649 dbuf_write(dr, *datap, tx); 4650 4651 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4652 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4653 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4654 } else { 4655 zio_nowait(dr->dr_zio); 4656 } 4657 } 4658 4659 /* 4660 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4661 * called recursively from dbuf_sync_indirect(). 4662 */ 4663 void 4664 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4665 { 4666 dbuf_dirty_record_t *dr; 4667 4668 while ((dr = list_head(list))) { 4669 if (dr->dr_zio != NULL) { 4670 /* 4671 * If we find an already initialized zio then we 4672 * are processing the meta-dnode, and we have finished. 4673 * The dbufs for all dnodes are put back on the list 4674 * during processing, so that we can zio_wait() 4675 * these IOs after initiating all child IOs. 4676 */ 4677 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4678 DMU_META_DNODE_OBJECT); 4679 break; 4680 } 4681 list_remove(list, dr); 4682 if (dr->dr_dbuf == NULL) { 4683 dbuf_sync_lightweight(dr, tx); 4684 } else { 4685 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4686 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4687 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4688 } 4689 if (dr->dr_dbuf->db_level > 0) 4690 dbuf_sync_indirect(dr, tx); 4691 else 4692 dbuf_sync_leaf(dr, tx); 4693 } 4694 } 4695 } 4696 4697 static void 4698 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4699 { 4700 (void) buf; 4701 dmu_buf_impl_t *db = vdb; 4702 dnode_t *dn; 4703 blkptr_t *bp = zio->io_bp; 4704 blkptr_t *bp_orig = &zio->io_bp_orig; 4705 spa_t *spa = zio->io_spa; 4706 int64_t delta; 4707 uint64_t fill = 0; 4708 int i; 4709 4710 ASSERT3P(db->db_blkptr, !=, NULL); 4711 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4712 4713 DB_DNODE_ENTER(db); 4714 dn = DB_DNODE(db); 4715 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4716 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4717 zio->io_prev_space_delta = delta; 4718 4719 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4720 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4721 BP_GET_TYPE(bp) == dn->dn_type) || 4722 (db->db_blkid == DMU_SPILL_BLKID && 4723 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4724 BP_IS_EMBEDDED(bp)); 4725 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4726 } 4727 4728 mutex_enter(&db->db_mtx); 4729 4730 #ifdef ZFS_DEBUG 4731 if (db->db_blkid == DMU_SPILL_BLKID) { 4732 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4733 ASSERT(!(BP_IS_HOLE(bp)) && 4734 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4735 } 4736 #endif 4737 4738 if (db->db_level == 0) { 4739 mutex_enter(&dn->dn_mtx); 4740 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4741 db->db_blkid != DMU_SPILL_BLKID) { 4742 ASSERT0(db->db_objset->os_raw_receive); 4743 dn->dn_phys->dn_maxblkid = db->db_blkid; 4744 } 4745 mutex_exit(&dn->dn_mtx); 4746 4747 if (dn->dn_type == DMU_OT_DNODE) { 4748 i = 0; 4749 while (i < db->db.db_size) { 4750 dnode_phys_t *dnp = 4751 (void *)(((char *)db->db.db_data) + i); 4752 4753 i += DNODE_MIN_SIZE; 4754 if (dnp->dn_type != DMU_OT_NONE) { 4755 fill++; 4756 for (int j = 0; j < dnp->dn_nblkptr; 4757 j++) { 4758 (void) zfs_blkptr_verify(spa, 4759 &dnp->dn_blkptr[j], 4760 BLK_CONFIG_SKIP, 4761 BLK_VERIFY_HALT); 4762 } 4763 if (dnp->dn_flags & 4764 DNODE_FLAG_SPILL_BLKPTR) { 4765 (void) zfs_blkptr_verify(spa, 4766 DN_SPILL_BLKPTR(dnp), 4767 BLK_CONFIG_SKIP, 4768 BLK_VERIFY_HALT); 4769 } 4770 i += dnp->dn_extra_slots * 4771 DNODE_MIN_SIZE; 4772 } 4773 } 4774 } else { 4775 if (BP_IS_HOLE(bp)) { 4776 fill = 0; 4777 } else { 4778 fill = 1; 4779 } 4780 } 4781 } else { 4782 blkptr_t *ibp = db->db.db_data; 4783 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4784 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4785 if (BP_IS_HOLE(ibp)) 4786 continue; 4787 (void) zfs_blkptr_verify(spa, ibp, 4788 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4789 fill += BP_GET_FILL(ibp); 4790 } 4791 } 4792 DB_DNODE_EXIT(db); 4793 4794 if (!BP_IS_EMBEDDED(bp)) 4795 BP_SET_FILL(bp, fill); 4796 4797 mutex_exit(&db->db_mtx); 4798 4799 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4800 *db->db_blkptr = *bp; 4801 dmu_buf_unlock_parent(db, dblt, FTAG); 4802 } 4803 4804 /* 4805 * This function gets called just prior to running through the compression 4806 * stage of the zio pipeline. If we're an indirect block comprised of only 4807 * holes, then we want this indirect to be compressed away to a hole. In 4808 * order to do that we must zero out any information about the holes that 4809 * this indirect points to prior to before we try to compress it. 4810 */ 4811 static void 4812 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4813 { 4814 (void) zio, (void) buf; 4815 dmu_buf_impl_t *db = vdb; 4816 dnode_t *dn; 4817 blkptr_t *bp; 4818 unsigned int epbs, i; 4819 4820 ASSERT3U(db->db_level, >, 0); 4821 DB_DNODE_ENTER(db); 4822 dn = DB_DNODE(db); 4823 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4824 ASSERT3U(epbs, <, 31); 4825 4826 /* Determine if all our children are holes */ 4827 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4828 if (!BP_IS_HOLE(bp)) 4829 break; 4830 } 4831 4832 /* 4833 * If all the children are holes, then zero them all out so that 4834 * we may get compressed away. 4835 */ 4836 if (i == 1ULL << epbs) { 4837 /* 4838 * We only found holes. Grab the rwlock to prevent 4839 * anybody from reading the blocks we're about to 4840 * zero out. 4841 */ 4842 rw_enter(&db->db_rwlock, RW_WRITER); 4843 memset(db->db.db_data, 0, db->db.db_size); 4844 rw_exit(&db->db_rwlock); 4845 } 4846 DB_DNODE_EXIT(db); 4847 } 4848 4849 static void 4850 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4851 { 4852 (void) buf; 4853 dmu_buf_impl_t *db = vdb; 4854 blkptr_t *bp_orig = &zio->io_bp_orig; 4855 blkptr_t *bp = db->db_blkptr; 4856 objset_t *os = db->db_objset; 4857 dmu_tx_t *tx = os->os_synctx; 4858 4859 ASSERT0(zio->io_error); 4860 ASSERT(db->db_blkptr == bp); 4861 4862 /* 4863 * For nopwrites and rewrites we ensure that the bp matches our 4864 * original and bypass all the accounting. 4865 */ 4866 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4867 ASSERT(BP_EQUAL(bp, bp_orig)); 4868 } else { 4869 dsl_dataset_t *ds = os->os_dsl_dataset; 4870 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4871 dsl_dataset_block_born(ds, bp, tx); 4872 } 4873 4874 mutex_enter(&db->db_mtx); 4875 4876 DBUF_VERIFY(db); 4877 4878 dbuf_dirty_record_t *dr = db->db_data_pending; 4879 dnode_t *dn = dr->dr_dnode; 4880 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4881 ASSERT(dr->dr_dbuf == db); 4882 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4883 list_remove(&db->db_dirty_records, dr); 4884 4885 #ifdef ZFS_DEBUG 4886 if (db->db_blkid == DMU_SPILL_BLKID) { 4887 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4888 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4889 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4890 } 4891 #endif 4892 4893 if (db->db_level == 0) { 4894 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4895 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4896 if (dr->dt.dl.dr_data != NULL && 4897 dr->dt.dl.dr_data != db->db_buf) { 4898 arc_buf_destroy(dr->dt.dl.dr_data, db); 4899 } 4900 } else { 4901 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4902 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4903 if (!BP_IS_HOLE(db->db_blkptr)) { 4904 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4905 SPA_BLKPTRSHIFT; 4906 ASSERT3U(db->db_blkid, <=, 4907 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4908 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4909 db->db.db_size); 4910 } 4911 mutex_destroy(&dr->dt.di.dr_mtx); 4912 list_destroy(&dr->dt.di.dr_children); 4913 } 4914 4915 cv_broadcast(&db->db_changed); 4916 ASSERT(db->db_dirtycnt > 0); 4917 db->db_dirtycnt -= 1; 4918 db->db_data_pending = NULL; 4919 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4920 4921 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4922 zio->io_txg); 4923 4924 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4925 } 4926 4927 static void 4928 dbuf_write_nofill_ready(zio_t *zio) 4929 { 4930 dbuf_write_ready(zio, NULL, zio->io_private); 4931 } 4932 4933 static void 4934 dbuf_write_nofill_done(zio_t *zio) 4935 { 4936 dbuf_write_done(zio, NULL, zio->io_private); 4937 } 4938 4939 static void 4940 dbuf_write_override_ready(zio_t *zio) 4941 { 4942 dbuf_dirty_record_t *dr = zio->io_private; 4943 dmu_buf_impl_t *db = dr->dr_dbuf; 4944 4945 dbuf_write_ready(zio, NULL, db); 4946 } 4947 4948 static void 4949 dbuf_write_override_done(zio_t *zio) 4950 { 4951 dbuf_dirty_record_t *dr = zio->io_private; 4952 dmu_buf_impl_t *db = dr->dr_dbuf; 4953 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4954 4955 mutex_enter(&db->db_mtx); 4956 if (!BP_EQUAL(zio->io_bp, obp)) { 4957 if (!BP_IS_HOLE(obp)) 4958 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4959 arc_release(dr->dt.dl.dr_data, db); 4960 } 4961 mutex_exit(&db->db_mtx); 4962 4963 dbuf_write_done(zio, NULL, db); 4964 4965 if (zio->io_abd != NULL) 4966 abd_free(zio->io_abd); 4967 } 4968 4969 typedef struct dbuf_remap_impl_callback_arg { 4970 objset_t *drica_os; 4971 uint64_t drica_blk_birth; 4972 dmu_tx_t *drica_tx; 4973 } dbuf_remap_impl_callback_arg_t; 4974 4975 static void 4976 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4977 void *arg) 4978 { 4979 dbuf_remap_impl_callback_arg_t *drica = arg; 4980 objset_t *os = drica->drica_os; 4981 spa_t *spa = dmu_objset_spa(os); 4982 dmu_tx_t *tx = drica->drica_tx; 4983 4984 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4985 4986 if (os == spa_meta_objset(spa)) { 4987 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4988 } else { 4989 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4990 size, drica->drica_blk_birth, tx); 4991 } 4992 } 4993 4994 static void 4995 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4996 { 4997 blkptr_t bp_copy = *bp; 4998 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4999 dbuf_remap_impl_callback_arg_t drica; 5000 5001 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5002 5003 drica.drica_os = dn->dn_objset; 5004 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 5005 drica.drica_tx = tx; 5006 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 5007 &drica)) { 5008 /* 5009 * If the blkptr being remapped is tracked by a livelist, 5010 * then we need to make sure the livelist reflects the update. 5011 * First, cancel out the old blkptr by appending a 'FREE' 5012 * entry. Next, add an 'ALLOC' to track the new version. This 5013 * way we avoid trying to free an inaccurate blkptr at delete. 5014 * Note that embedded blkptrs are not tracked in livelists. 5015 */ 5016 if (dn->dn_objset != spa_meta_objset(spa)) { 5017 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5018 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5019 BP_GET_LOGICAL_BIRTH(bp) > 5020 ds->ds_dir->dd_origin_txg) { 5021 ASSERT(!BP_IS_EMBEDDED(bp)); 5022 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5023 ASSERT(spa_feature_is_enabled(spa, 5024 SPA_FEATURE_LIVELIST)); 5025 bplist_append(&ds->ds_dir->dd_pending_frees, 5026 bp); 5027 bplist_append(&ds->ds_dir->dd_pending_allocs, 5028 &bp_copy); 5029 } 5030 } 5031 5032 /* 5033 * The db_rwlock prevents dbuf_read_impl() from 5034 * dereferencing the BP while we are changing it. To 5035 * avoid lock contention, only grab it when we are actually 5036 * changing the BP. 5037 */ 5038 if (rw != NULL) 5039 rw_enter(rw, RW_WRITER); 5040 *bp = bp_copy; 5041 if (rw != NULL) 5042 rw_exit(rw); 5043 } 5044 } 5045 5046 /* 5047 * Remap any existing BP's to concrete vdevs, if possible. 5048 */ 5049 static void 5050 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5051 { 5052 spa_t *spa = dmu_objset_spa(db->db_objset); 5053 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5054 5055 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5056 return; 5057 5058 if (db->db_level > 0) { 5059 blkptr_t *bp = db->db.db_data; 5060 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5061 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5062 } 5063 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5064 dnode_phys_t *dnp = db->db.db_data; 5065 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 5066 DMU_OT_DNODE); 5067 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5068 i += dnp[i].dn_extra_slots + 1) { 5069 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5070 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5071 &dn->dn_dbuf->db_rwlock); 5072 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5073 tx); 5074 } 5075 } 5076 } 5077 } 5078 5079 5080 /* 5081 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5082 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5083 */ 5084 static void 5085 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5086 { 5087 dmu_buf_impl_t *db = dr->dr_dbuf; 5088 dnode_t *dn = dr->dr_dnode; 5089 objset_t *os; 5090 dmu_buf_impl_t *parent = db->db_parent; 5091 uint64_t txg = tx->tx_txg; 5092 zbookmark_phys_t zb; 5093 zio_prop_t zp; 5094 zio_t *pio; /* parent I/O */ 5095 int wp_flag = 0; 5096 5097 ASSERT(dmu_tx_is_syncing(tx)); 5098 5099 os = dn->dn_objset; 5100 5101 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5102 /* 5103 * Private object buffers are released here rather than in 5104 * dbuf_dirty() since they are only modified in the syncing 5105 * context and we don't want the overhead of making multiple 5106 * copies of the data. 5107 */ 5108 if (BP_IS_HOLE(db->db_blkptr)) 5109 arc_buf_thaw(data); 5110 else 5111 dbuf_release_bp(db); 5112 dbuf_remap(dn, db, tx); 5113 } 5114 5115 if (parent != dn->dn_dbuf) { 5116 /* Our parent is an indirect block. */ 5117 /* We have a dirty parent that has been scheduled for write. */ 5118 ASSERT(parent && parent->db_data_pending); 5119 /* Our parent's buffer is one level closer to the dnode. */ 5120 ASSERT(db->db_level == parent->db_level-1); 5121 /* 5122 * We're about to modify our parent's db_data by modifying 5123 * our block pointer, so the parent must be released. 5124 */ 5125 ASSERT(arc_released(parent->db_buf)); 5126 pio = parent->db_data_pending->dr_zio; 5127 } else { 5128 /* Our parent is the dnode itself. */ 5129 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5130 db->db_blkid != DMU_SPILL_BLKID) || 5131 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5132 if (db->db_blkid != DMU_SPILL_BLKID) 5133 ASSERT3P(db->db_blkptr, ==, 5134 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5135 pio = dn->dn_zio; 5136 } 5137 5138 ASSERT(db->db_level == 0 || data == db->db_buf); 5139 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5140 ASSERT(pio); 5141 5142 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5143 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5144 db->db.db_object, db->db_level, db->db_blkid); 5145 5146 if (db->db_blkid == DMU_SPILL_BLKID) 5147 wp_flag = WP_SPILL; 5148 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5149 5150 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5151 5152 /* 5153 * We copy the blkptr now (rather than when we instantiate the dirty 5154 * record), because its value can change between open context and 5155 * syncing context. We do not need to hold dn_struct_rwlock to read 5156 * db_blkptr because we are in syncing context. 5157 */ 5158 dr->dr_bp_copy = *db->db_blkptr; 5159 5160 if (db->db_level == 0 && 5161 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5162 /* 5163 * The BP for this block has been provided by open context 5164 * (by dmu_sync() or dmu_buf_write_embedded()). 5165 */ 5166 abd_t *contents = (data != NULL) ? 5167 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5168 5169 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5170 contents, db->db.db_size, db->db.db_size, &zp, 5171 dbuf_write_override_ready, NULL, 5172 dbuf_write_override_done, 5173 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5174 mutex_enter(&db->db_mtx); 5175 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5176 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5177 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5178 dr->dt.dl.dr_brtwrite); 5179 mutex_exit(&db->db_mtx); 5180 } else if (data == NULL) { 5181 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5182 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5183 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5184 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5185 dbuf_write_nofill_ready, NULL, 5186 dbuf_write_nofill_done, db, 5187 ZIO_PRIORITY_ASYNC_WRITE, 5188 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5189 } else { 5190 ASSERT(arc_released(data)); 5191 5192 /* 5193 * For indirect blocks, we want to setup the children 5194 * ready callback so that we can properly handle an indirect 5195 * block that only contains holes. 5196 */ 5197 arc_write_done_func_t *children_ready_cb = NULL; 5198 if (db->db_level != 0) 5199 children_ready_cb = dbuf_write_children_ready; 5200 5201 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5202 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5203 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, 5204 children_ready_cb, dbuf_write_done, db, 5205 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5206 } 5207 } 5208 5209 EXPORT_SYMBOL(dbuf_find); 5210 EXPORT_SYMBOL(dbuf_is_metadata); 5211 EXPORT_SYMBOL(dbuf_destroy); 5212 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5213 EXPORT_SYMBOL(dbuf_whichblock); 5214 EXPORT_SYMBOL(dbuf_read); 5215 EXPORT_SYMBOL(dbuf_unoverride); 5216 EXPORT_SYMBOL(dbuf_free_range); 5217 EXPORT_SYMBOL(dbuf_new_size); 5218 EXPORT_SYMBOL(dbuf_release_bp); 5219 EXPORT_SYMBOL(dbuf_dirty); 5220 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5221 EXPORT_SYMBOL(dmu_buf_will_dirty); 5222 EXPORT_SYMBOL(dmu_buf_is_dirty); 5223 EXPORT_SYMBOL(dmu_buf_will_clone); 5224 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5225 EXPORT_SYMBOL(dmu_buf_will_fill); 5226 EXPORT_SYMBOL(dmu_buf_fill_done); 5227 EXPORT_SYMBOL(dmu_buf_rele); 5228 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5229 EXPORT_SYMBOL(dbuf_prefetch); 5230 EXPORT_SYMBOL(dbuf_hold_impl); 5231 EXPORT_SYMBOL(dbuf_hold); 5232 EXPORT_SYMBOL(dbuf_hold_level); 5233 EXPORT_SYMBOL(dbuf_create_bonus); 5234 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5235 EXPORT_SYMBOL(dbuf_rm_spill); 5236 EXPORT_SYMBOL(dbuf_add_ref); 5237 EXPORT_SYMBOL(dbuf_rele); 5238 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5239 EXPORT_SYMBOL(dbuf_refcount); 5240 EXPORT_SYMBOL(dbuf_sync_list); 5241 EXPORT_SYMBOL(dmu_buf_set_user); 5242 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5243 EXPORT_SYMBOL(dmu_buf_get_user); 5244 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5245 5246 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5247 "Maximum size in bytes of the dbuf cache."); 5248 5249 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5250 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5251 5252 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5253 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5254 5255 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5256 "Maximum size in bytes of dbuf metadata cache."); 5257 5258 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5259 "Set size of dbuf cache to log2 fraction of arc size."); 5260 5261 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5262 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5263 5264 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5265 "Set size of dbuf cache mutex array as log2 shift."); 5266