1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright (c) 2019, Klara Inc. 28 * Copyright (c) 2019, Allan Jude 29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/arc.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_send.h> 36 #include <sys/dmu_impl.h> 37 #include <sys/dbuf.h> 38 #include <sys/dmu_objset.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/dsl_dir.h> 41 #include <sys/dmu_tx.h> 42 #include <sys/spa.h> 43 #include <sys/zio.h> 44 #include <sys/dmu_zfetch.h> 45 #include <sys/sa.h> 46 #include <sys/sa_impl.h> 47 #include <sys/zfeature.h> 48 #include <sys/blkptr.h> 49 #include <sys/range_tree.h> 50 #include <sys/trace_zfs.h> 51 #include <sys/callb.h> 52 #include <sys/abd.h> 53 #include <sys/brt.h> 54 #include <sys/vdev.h> 55 #include <cityhash.h> 56 #include <sys/spa_impl.h> 57 #include <sys/wmsum.h> 58 #include <sys/vdev_impl.h> 59 60 static kstat_t *dbuf_ksp; 61 62 typedef struct dbuf_stats { 63 /* 64 * Various statistics about the size of the dbuf cache. 65 */ 66 kstat_named_t cache_count; 67 kstat_named_t cache_size_bytes; 68 kstat_named_t cache_size_bytes_max; 69 /* 70 * Statistics regarding the bounds on the dbuf cache size. 71 */ 72 kstat_named_t cache_target_bytes; 73 kstat_named_t cache_lowater_bytes; 74 kstat_named_t cache_hiwater_bytes; 75 /* 76 * Total number of dbuf cache evictions that have occurred. 77 */ 78 kstat_named_t cache_total_evicts; 79 /* 80 * The distribution of dbuf levels in the dbuf cache and 81 * the total size of all dbufs at each level. 82 */ 83 kstat_named_t cache_levels[DN_MAX_LEVELS]; 84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS]; 85 /* 86 * Statistics about the dbuf hash table. 87 */ 88 kstat_named_t hash_hits; 89 kstat_named_t hash_misses; 90 kstat_named_t hash_collisions; 91 kstat_named_t hash_elements; 92 kstat_named_t hash_elements_max; 93 /* 94 * Number of sublists containing more than one dbuf in the dbuf 95 * hash table. Keep track of the longest hash chain. 96 */ 97 kstat_named_t hash_chains; 98 kstat_named_t hash_chain_max; 99 /* 100 * Number of times a dbuf_create() discovers that a dbuf was 101 * already created and in the dbuf hash table. 102 */ 103 kstat_named_t hash_insert_race; 104 /* 105 * Number of entries in the hash table dbuf and mutex arrays. 106 */ 107 kstat_named_t hash_table_count; 108 kstat_named_t hash_mutex_count; 109 /* 110 * Statistics about the size of the metadata dbuf cache. 111 */ 112 kstat_named_t metadata_cache_count; 113 kstat_named_t metadata_cache_size_bytes; 114 kstat_named_t metadata_cache_size_bytes_max; 115 /* 116 * For diagnostic purposes, this is incremented whenever we can't add 117 * something to the metadata cache because it's full, and instead put 118 * the data in the regular dbuf cache. 119 */ 120 kstat_named_t metadata_cache_overflow; 121 } dbuf_stats_t; 122 123 dbuf_stats_t dbuf_stats = { 124 { "cache_count", KSTAT_DATA_UINT64 }, 125 { "cache_size_bytes", KSTAT_DATA_UINT64 }, 126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 }, 127 { "cache_target_bytes", KSTAT_DATA_UINT64 }, 128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 }, 129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 }, 130 { "cache_total_evicts", KSTAT_DATA_UINT64 }, 131 { { "cache_levels_N", KSTAT_DATA_UINT64 } }, 132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } }, 133 { "hash_hits", KSTAT_DATA_UINT64 }, 134 { "hash_misses", KSTAT_DATA_UINT64 }, 135 { "hash_collisions", KSTAT_DATA_UINT64 }, 136 { "hash_elements", KSTAT_DATA_UINT64 }, 137 { "hash_elements_max", KSTAT_DATA_UINT64 }, 138 { "hash_chains", KSTAT_DATA_UINT64 }, 139 { "hash_chain_max", KSTAT_DATA_UINT64 }, 140 { "hash_insert_race", KSTAT_DATA_UINT64 }, 141 { "hash_table_count", KSTAT_DATA_UINT64 }, 142 { "hash_mutex_count", KSTAT_DATA_UINT64 }, 143 { "metadata_cache_count", KSTAT_DATA_UINT64 }, 144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 }, 145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 }, 146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 } 147 }; 148 149 struct { 150 wmsum_t cache_count; 151 wmsum_t cache_total_evicts; 152 wmsum_t cache_levels[DN_MAX_LEVELS]; 153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS]; 154 wmsum_t hash_hits; 155 wmsum_t hash_misses; 156 wmsum_t hash_collisions; 157 wmsum_t hash_chains; 158 wmsum_t hash_insert_race; 159 wmsum_t metadata_cache_count; 160 wmsum_t metadata_cache_overflow; 161 } dbuf_sums; 162 163 #define DBUF_STAT_INCR(stat, val) \ 164 wmsum_add(&dbuf_sums.stat, val) 165 #define DBUF_STAT_DECR(stat, val) \ 166 DBUF_STAT_INCR(stat, -(val)) 167 #define DBUF_STAT_BUMP(stat) \ 168 DBUF_STAT_INCR(stat, 1) 169 #define DBUF_STAT_BUMPDOWN(stat) \ 170 DBUF_STAT_INCR(stat, -1) 171 #define DBUF_STAT_MAX(stat, v) { \ 172 uint64_t _m; \ 173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \ 174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\ 175 continue; \ 176 } 177 178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx); 179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr); 180 181 /* 182 * Global data structures and functions for the dbuf cache. 183 */ 184 static kmem_cache_t *dbuf_kmem_cache; 185 static taskq_t *dbu_evict_taskq; 186 187 static kthread_t *dbuf_cache_evict_thread; 188 static kmutex_t dbuf_evict_lock; 189 static kcondvar_t dbuf_evict_cv; 190 static boolean_t dbuf_evict_thread_exit; 191 192 /* 193 * There are two dbuf caches; each dbuf can only be in one of them at a time. 194 * 195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands 196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs 197 * that represent the metadata that describes filesystems/snapshots/ 198 * bookmarks/properties/etc. We only evict from this cache when we export a 199 * pool, to short-circuit as much I/O as possible for all administrative 200 * commands that need the metadata. There is no eviction policy for this 201 * cache, because we try to only include types in it which would occupy a 202 * very small amount of space per object but create a large impact on the 203 * performance of these commands. Instead, after it reaches a maximum size 204 * (which should only happen on very small memory systems with a very large 205 * number of filesystem objects), we stop taking new dbufs into the 206 * metadata cache, instead putting them in the normal dbuf cache. 207 * 208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that 209 * are not currently held but have been recently released. These dbufs 210 * are not eligible for arc eviction until they are aged out of the cache. 211 * Dbufs that are aged out of the cache will be immediately destroyed and 212 * become eligible for arc eviction. 213 * 214 * Dbufs are added to these caches once the last hold is released. If a dbuf is 215 * later accessed and still exists in the dbuf cache, then it will be removed 216 * from the cache and later re-added to the head of the cache. 217 * 218 * If a given dbuf meets the requirements for the metadata cache, it will go 219 * there, otherwise it will be considered for the generic LRU dbuf cache. The 220 * caches and the refcounts tracking their sizes are stored in an array indexed 221 * by those caches' matching enum values (from dbuf_cached_state_t). 222 */ 223 typedef struct dbuf_cache { 224 multilist_t cache; 225 zfs_refcount_t size ____cacheline_aligned; 226 } dbuf_cache_t; 227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX]; 228 229 /* Size limits for the caches */ 230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX; 231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX; 232 233 /* Set the default sizes of the caches to log2 fraction of arc size */ 234 static uint_t dbuf_cache_shift = 5; 235 static uint_t dbuf_metadata_cache_shift = 6; 236 237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */ 238 static uint_t dbuf_mutex_cache_shift = 0; 239 240 static unsigned long dbuf_cache_target_bytes(void); 241 static unsigned long dbuf_metadata_cache_target_bytes(void); 242 243 /* 244 * The LRU dbuf cache uses a three-stage eviction policy: 245 * - A low water marker designates when the dbuf eviction thread 246 * should stop evicting from the dbuf cache. 247 * - When we reach the maximum size (aka mid water mark), we 248 * signal the eviction thread to run. 249 * - The high water mark indicates when the eviction thread 250 * is unable to keep up with the incoming load and eviction must 251 * happen in the context of the calling thread. 252 * 253 * The dbuf cache: 254 * (max size) 255 * low water mid water hi water 256 * +----------------------------------------+----------+----------+ 257 * | | | | 258 * | | | | 259 * | | | | 260 * | | | | 261 * +----------------------------------------+----------+----------+ 262 * stop signal evict 263 * evicting eviction directly 264 * thread 265 * 266 * The high and low water marks indicate the operating range for the eviction 267 * thread. The low water mark is, by default, 90% of the total size of the 268 * cache and the high water mark is at 110% (both of these percentages can be 269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct, 270 * respectively). The eviction thread will try to ensure that the cache remains 271 * within this range by waking up every second and checking if the cache is 272 * above the low water mark. The thread can also be woken up by callers adding 273 * elements into the cache if the cache is larger than the mid water (i.e max 274 * cache size). Once the eviction thread is woken up and eviction is required, 275 * it will continue evicting buffers until it's able to reduce the cache size 276 * to the low water mark. If the cache size continues to grow and hits the high 277 * water mark, then callers adding elements to the cache will begin to evict 278 * directly from the cache until the cache is no longer above the high water 279 * mark. 280 */ 281 282 /* 283 * The percentage above and below the maximum cache size. 284 */ 285 static uint_t dbuf_cache_hiwater_pct = 10; 286 static uint_t dbuf_cache_lowater_pct = 10; 287 288 static int 289 dbuf_cons(void *vdb, void *unused, int kmflag) 290 { 291 (void) unused, (void) kmflag; 292 dmu_buf_impl_t *db = vdb; 293 memset(db, 0, sizeof (dmu_buf_impl_t)); 294 295 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL); 296 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL); 297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL); 298 multilist_link_init(&db->db_cache_link); 299 zfs_refcount_create(&db->db_holds); 300 301 return (0); 302 } 303 304 static void 305 dbuf_dest(void *vdb, void *unused) 306 { 307 (void) unused; 308 dmu_buf_impl_t *db = vdb; 309 mutex_destroy(&db->db_mtx); 310 rw_destroy(&db->db_rwlock); 311 cv_destroy(&db->db_changed); 312 ASSERT(!multilist_link_active(&db->db_cache_link)); 313 zfs_refcount_destroy(&db->db_holds); 314 } 315 316 /* 317 * dbuf hash table routines 318 */ 319 static dbuf_hash_table_t dbuf_hash_table; 320 321 /* 322 * We use Cityhash for this. It's fast, and has good hash properties without 323 * requiring any large static buffers. 324 */ 325 static uint64_t 326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid) 327 { 328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid)); 329 } 330 331 #define DTRACE_SET_STATE(db, why) \ 332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \ 333 const char *, why) 334 335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \ 336 ((dbuf)->db.db_object == (obj) && \ 337 (dbuf)->db_objset == (os) && \ 338 (dbuf)->db_level == (level) && \ 339 (dbuf)->db_blkid == (blkid)) 340 341 dmu_buf_impl_t * 342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid, 343 uint64_t *hash_out) 344 { 345 dbuf_hash_table_t *h = &dbuf_hash_table; 346 uint64_t hv; 347 uint64_t idx; 348 dmu_buf_impl_t *db; 349 350 hv = dbuf_hash(os, obj, level, blkid); 351 idx = hv & h->hash_table_mask; 352 353 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) { 355 if (DBUF_EQUAL(db, os, obj, level, blkid)) { 356 mutex_enter(&db->db_mtx); 357 if (db->db_state != DB_EVICTING) { 358 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 359 return (db); 360 } 361 mutex_exit(&db->db_mtx); 362 } 363 } 364 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 365 if (hash_out != NULL) 366 *hash_out = hv; 367 return (NULL); 368 } 369 370 static dmu_buf_impl_t * 371 dbuf_find_bonus(objset_t *os, uint64_t object) 372 { 373 dnode_t *dn; 374 dmu_buf_impl_t *db = NULL; 375 376 if (dnode_hold(os, object, FTAG, &dn) == 0) { 377 rw_enter(&dn->dn_struct_rwlock, RW_READER); 378 if (dn->dn_bonus != NULL) { 379 db = dn->dn_bonus; 380 mutex_enter(&db->db_mtx); 381 } 382 rw_exit(&dn->dn_struct_rwlock); 383 dnode_rele(dn, FTAG); 384 } 385 return (db); 386 } 387 388 /* 389 * Insert an entry into the hash table. If there is already an element 390 * equal to elem in the hash table, then the already existing element 391 * will be returned and the new element will not be inserted. 392 * Otherwise returns NULL. 393 */ 394 static dmu_buf_impl_t * 395 dbuf_hash_insert(dmu_buf_impl_t *db) 396 { 397 dbuf_hash_table_t *h = &dbuf_hash_table; 398 objset_t *os = db->db_objset; 399 uint64_t obj = db->db.db_object; 400 int level = db->db_level; 401 uint64_t blkid, idx; 402 dmu_buf_impl_t *dbf; 403 uint32_t i; 404 405 blkid = db->db_blkid; 406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash); 407 idx = db->db_hash & h->hash_table_mask; 408 409 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL; 411 dbf = dbf->db_hash_next, i++) { 412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) { 413 mutex_enter(&dbf->db_mtx); 414 if (dbf->db_state != DB_EVICTING) { 415 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 416 return (dbf); 417 } 418 mutex_exit(&dbf->db_mtx); 419 } 420 } 421 422 if (i > 0) { 423 DBUF_STAT_BUMP(hash_collisions); 424 if (i == 1) 425 DBUF_STAT_BUMP(hash_chains); 426 427 DBUF_STAT_MAX(hash_chain_max, i); 428 } 429 430 mutex_enter(&db->db_mtx); 431 db->db_hash_next = h->hash_table[idx]; 432 h->hash_table[idx] = db; 433 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64); 435 DBUF_STAT_MAX(hash_elements_max, he); 436 437 return (NULL); 438 } 439 440 /* 441 * This returns whether this dbuf should be stored in the metadata cache, which 442 * is based on whether it's from one of the dnode types that store data related 443 * to traversing dataset hierarchies. 444 */ 445 static boolean_t 446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db) 447 { 448 DB_DNODE_ENTER(db); 449 dmu_object_type_t type = DB_DNODE(db)->dn_type; 450 DB_DNODE_EXIT(db); 451 452 /* Check if this dbuf is one of the types we care about */ 453 if (DMU_OT_IS_METADATA_CACHED(type)) { 454 /* If we hit this, then we set something up wrong in dmu_ot */ 455 ASSERT(DMU_OT_IS_METADATA(type)); 456 457 /* 458 * Sanity check for small-memory systems: don't allocate too 459 * much memory for this purpose. 460 */ 461 if (zfs_refcount_count( 462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) > 463 dbuf_metadata_cache_target_bytes()) { 464 DBUF_STAT_BUMP(metadata_cache_overflow); 465 return (B_FALSE); 466 } 467 468 return (B_TRUE); 469 } 470 471 return (B_FALSE); 472 } 473 474 /* 475 * Remove an entry from the hash table. It must be in the EVICTING state. 476 */ 477 static void 478 dbuf_hash_remove(dmu_buf_impl_t *db) 479 { 480 dbuf_hash_table_t *h = &dbuf_hash_table; 481 uint64_t idx; 482 dmu_buf_impl_t *dbf, **dbp; 483 484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level, 485 db->db_blkid), ==, db->db_hash); 486 idx = db->db_hash & h->hash_table_mask; 487 488 /* 489 * We mustn't hold db_mtx to maintain lock ordering: 490 * DBUF_HASH_MUTEX > db_mtx. 491 */ 492 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 493 ASSERT(db->db_state == DB_EVICTING); 494 ASSERT(!MUTEX_HELD(&db->db_mtx)); 495 496 mutex_enter(DBUF_HASH_MUTEX(h, idx)); 497 dbp = &h->hash_table[idx]; 498 while ((dbf = *dbp) != db) { 499 dbp = &dbf->db_hash_next; 500 ASSERT(dbf != NULL); 501 } 502 *dbp = db->db_hash_next; 503 db->db_hash_next = NULL; 504 if (h->hash_table[idx] && 505 h->hash_table[idx]->db_hash_next == NULL) 506 DBUF_STAT_BUMPDOWN(hash_chains); 507 mutex_exit(DBUF_HASH_MUTEX(h, idx)); 508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64); 509 } 510 511 typedef enum { 512 DBVU_EVICTING, 513 DBVU_NOT_EVICTING 514 } dbvu_verify_type_t; 515 516 static void 517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type) 518 { 519 #ifdef ZFS_DEBUG 520 int64_t holds; 521 522 if (db->db_user == NULL) 523 return; 524 525 /* Only data blocks support the attachment of user data. */ 526 ASSERT(db->db_level == 0); 527 528 /* Clients must resolve a dbuf before attaching user data. */ 529 ASSERT(db->db.db_data != NULL); 530 ASSERT3U(db->db_state, ==, DB_CACHED); 531 532 holds = zfs_refcount_count(&db->db_holds); 533 if (verify_type == DBVU_EVICTING) { 534 /* 535 * Immediate eviction occurs when holds == dirtycnt. 536 * For normal eviction buffers, holds is zero on 537 * eviction, except when dbuf_fix_old_data() calls 538 * dbuf_clear_data(). However, the hold count can grow 539 * during eviction even though db_mtx is held (see 540 * dmu_bonus_hold() for an example), so we can only 541 * test the generic invariant that holds >= dirtycnt. 542 */ 543 ASSERT3U(holds, >=, db->db_dirtycnt); 544 } else { 545 if (db->db_user_immediate_evict == TRUE) 546 ASSERT3U(holds, >=, db->db_dirtycnt); 547 else 548 ASSERT3U(holds, >, 0); 549 } 550 #endif 551 } 552 553 static void 554 dbuf_evict_user(dmu_buf_impl_t *db) 555 { 556 dmu_buf_user_t *dbu = db->db_user; 557 558 ASSERT(MUTEX_HELD(&db->db_mtx)); 559 560 if (dbu == NULL) 561 return; 562 563 dbuf_verify_user(db, DBVU_EVICTING); 564 db->db_user = NULL; 565 566 #ifdef ZFS_DEBUG 567 if (dbu->dbu_clear_on_evict_dbufp != NULL) 568 *dbu->dbu_clear_on_evict_dbufp = NULL; 569 #endif 570 571 if (db->db_caching_status != DB_NO_CACHE) { 572 /* 573 * This is a cached dbuf, so the size of the user data is 574 * included in its cached amount. We adjust it here because the 575 * user data has already been detached from the dbuf, and the 576 * sync functions are not supposed to touch it (the dbuf might 577 * not exist anymore by the time the sync functions run. 578 */ 579 uint64_t size = dbu->dbu_size; 580 (void) zfs_refcount_remove_many( 581 &dbuf_caches[db->db_caching_status].size, size, db); 582 if (db->db_caching_status == DB_DBUF_CACHE) 583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 584 } 585 586 /* 587 * There are two eviction callbacks - one that we call synchronously 588 * and one that we invoke via a taskq. The async one is useful for 589 * avoiding lock order reversals and limiting stack depth. 590 * 591 * Note that if we have a sync callback but no async callback, 592 * it's likely that the sync callback will free the structure 593 * containing the dbu. In that case we need to take care to not 594 * dereference dbu after calling the sync evict func. 595 */ 596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL); 597 598 if (dbu->dbu_evict_func_sync != NULL) 599 dbu->dbu_evict_func_sync(dbu); 600 601 if (has_async) { 602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async, 603 dbu, 0, &dbu->dbu_tqent); 604 } 605 } 606 607 boolean_t 608 dbuf_is_metadata(dmu_buf_impl_t *db) 609 { 610 /* 611 * Consider indirect blocks and spill blocks to be meta data. 612 */ 613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) { 614 return (B_TRUE); 615 } else { 616 boolean_t is_metadata; 617 618 DB_DNODE_ENTER(db); 619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type); 620 DB_DNODE_EXIT(db); 621 622 return (is_metadata); 623 } 624 } 625 626 /* 627 * We want to exclude buffers that are on a special allocation class from 628 * L2ARC. 629 */ 630 boolean_t 631 dbuf_is_l2cacheable(dmu_buf_impl_t *db) 632 { 633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL || 634 (db->db_objset->os_secondary_cache == 635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) { 636 if (l2arc_exclude_special == 0) 637 return (B_TRUE); 638 639 blkptr_t *bp = db->db_blkptr; 640 if (bp == NULL || BP_IS_HOLE(bp)) 641 return (B_FALSE); 642 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 643 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev; 644 vdev_t *vd = NULL; 645 646 if (vdev < rvd->vdev_children) 647 vd = rvd->vdev_child[vdev]; 648 649 if (vd == NULL) 650 return (B_TRUE); 651 652 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 653 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 654 return (B_TRUE); 655 } 656 return (B_FALSE); 657 } 658 659 static inline boolean_t 660 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level) 661 { 662 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL || 663 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA && 664 (level > 0 || 665 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) { 666 if (l2arc_exclude_special == 0) 667 return (B_TRUE); 668 669 if (bp == NULL || BP_IS_HOLE(bp)) 670 return (B_FALSE); 671 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva); 672 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev; 673 vdev_t *vd = NULL; 674 675 if (vdev < rvd->vdev_children) 676 vd = rvd->vdev_child[vdev]; 677 678 if (vd == NULL) 679 return (B_TRUE); 680 681 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL && 682 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) 683 return (B_TRUE); 684 } 685 return (B_FALSE); 686 } 687 688 689 /* 690 * This function *must* return indices evenly distributed between all 691 * sublists of the multilist. This is needed due to how the dbuf eviction 692 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly 693 * distributed between all sublists and uses this assumption when 694 * deciding which sublist to evict from and how much to evict from it. 695 */ 696 static unsigned int 697 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj) 698 { 699 dmu_buf_impl_t *db = obj; 700 701 /* 702 * The assumption here, is the hash value for a given 703 * dmu_buf_impl_t will remain constant throughout it's lifetime 704 * (i.e. it's objset, object, level and blkid fields don't change). 705 * Thus, we don't need to store the dbuf's sublist index 706 * on insertion, as this index can be recalculated on removal. 707 * 708 * Also, the low order bits of the hash value are thought to be 709 * distributed evenly. Otherwise, in the case that the multilist 710 * has a power of two number of sublists, each sublists' usage 711 * would not be evenly distributed. In this context full 64bit 712 * division would be a waste of time, so limit it to 32 bits. 713 */ 714 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object, 715 db->db_level, db->db_blkid) % 716 multilist_get_num_sublists(ml)); 717 } 718 719 /* 720 * The target size of the dbuf cache can grow with the ARC target, 721 * unless limited by the tunable dbuf_cache_max_bytes. 722 */ 723 static inline unsigned long 724 dbuf_cache_target_bytes(void) 725 { 726 return (MIN(dbuf_cache_max_bytes, 727 arc_target_bytes() >> dbuf_cache_shift)); 728 } 729 730 /* 731 * The target size of the dbuf metadata cache can grow with the ARC target, 732 * unless limited by the tunable dbuf_metadata_cache_max_bytes. 733 */ 734 static inline unsigned long 735 dbuf_metadata_cache_target_bytes(void) 736 { 737 return (MIN(dbuf_metadata_cache_max_bytes, 738 arc_target_bytes() >> dbuf_metadata_cache_shift)); 739 } 740 741 static inline uint64_t 742 dbuf_cache_hiwater_bytes(void) 743 { 744 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 745 return (dbuf_cache_target + 746 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100); 747 } 748 749 static inline uint64_t 750 dbuf_cache_lowater_bytes(void) 751 { 752 uint64_t dbuf_cache_target = dbuf_cache_target_bytes(); 753 return (dbuf_cache_target - 754 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100); 755 } 756 757 static inline boolean_t 758 dbuf_cache_above_lowater(void) 759 { 760 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) > 761 dbuf_cache_lowater_bytes()); 762 } 763 764 /* 765 * Evict the oldest eligible dbuf from the dbuf cache. 766 */ 767 static void 768 dbuf_evict_one(void) 769 { 770 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache); 771 multilist_sublist_t *mls = multilist_sublist_lock_idx( 772 &dbuf_caches[DB_DBUF_CACHE].cache, idx); 773 774 ASSERT(!MUTEX_HELD(&dbuf_evict_lock)); 775 776 dmu_buf_impl_t *db = multilist_sublist_tail(mls); 777 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) { 778 db = multilist_sublist_prev(mls, db); 779 } 780 781 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db, 782 multilist_sublist_t *, mls); 783 784 if (db != NULL) { 785 multilist_sublist_remove(mls, db); 786 multilist_sublist_unlock(mls); 787 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db); 788 (void) zfs_refcount_remove_many( 789 &dbuf_caches[DB_DBUF_CACHE].size, size, db); 790 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 791 DBUF_STAT_BUMPDOWN(cache_count); 792 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 793 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE); 794 db->db_caching_status = DB_NO_CACHE; 795 dbuf_destroy(db); 796 DBUF_STAT_BUMP(cache_total_evicts); 797 } else { 798 multilist_sublist_unlock(mls); 799 } 800 } 801 802 /* 803 * The dbuf evict thread is responsible for aging out dbufs from the 804 * cache. Once the cache has reached it's maximum size, dbufs are removed 805 * and destroyed. The eviction thread will continue running until the size 806 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged 807 * out of the cache it is destroyed and becomes eligible for arc eviction. 808 */ 809 static __attribute__((noreturn)) void 810 dbuf_evict_thread(void *unused) 811 { 812 (void) unused; 813 callb_cpr_t cpr; 814 815 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG); 816 817 mutex_enter(&dbuf_evict_lock); 818 while (!dbuf_evict_thread_exit) { 819 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 820 CALLB_CPR_SAFE_BEGIN(&cpr); 821 (void) cv_timedwait_idle_hires(&dbuf_evict_cv, 822 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 823 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock); 824 } 825 mutex_exit(&dbuf_evict_lock); 826 827 /* 828 * Keep evicting as long as we're above the low water mark 829 * for the cache. We do this without holding the locks to 830 * minimize lock contention. 831 */ 832 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) { 833 dbuf_evict_one(); 834 } 835 836 mutex_enter(&dbuf_evict_lock); 837 } 838 839 dbuf_evict_thread_exit = B_FALSE; 840 cv_broadcast(&dbuf_evict_cv); 841 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */ 842 thread_exit(); 843 } 844 845 /* 846 * Wake up the dbuf eviction thread if the dbuf cache is at its max size. 847 * If the dbuf cache is at its high water mark, then evict a dbuf from the 848 * dbuf cache using the caller's context. 849 */ 850 static void 851 dbuf_evict_notify(uint64_t size) 852 { 853 /* 854 * We check if we should evict without holding the dbuf_evict_lock, 855 * because it's OK to occasionally make the wrong decision here, 856 * and grabbing the lock results in massive lock contention. 857 */ 858 if (size > dbuf_cache_target_bytes()) { 859 if (size > dbuf_cache_hiwater_bytes()) 860 dbuf_evict_one(); 861 cv_signal(&dbuf_evict_cv); 862 } 863 } 864 865 static int 866 dbuf_kstat_update(kstat_t *ksp, int rw) 867 { 868 dbuf_stats_t *ds = ksp->ks_data; 869 dbuf_hash_table_t *h = &dbuf_hash_table; 870 871 if (rw == KSTAT_WRITE) 872 return (SET_ERROR(EACCES)); 873 874 ds->cache_count.value.ui64 = 875 wmsum_value(&dbuf_sums.cache_count); 876 ds->cache_size_bytes.value.ui64 = 877 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size); 878 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes(); 879 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes(); 880 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes(); 881 ds->cache_total_evicts.value.ui64 = 882 wmsum_value(&dbuf_sums.cache_total_evicts); 883 for (int i = 0; i < DN_MAX_LEVELS; i++) { 884 ds->cache_levels[i].value.ui64 = 885 wmsum_value(&dbuf_sums.cache_levels[i]); 886 ds->cache_levels_bytes[i].value.ui64 = 887 wmsum_value(&dbuf_sums.cache_levels_bytes[i]); 888 } 889 ds->hash_hits.value.ui64 = 890 wmsum_value(&dbuf_sums.hash_hits); 891 ds->hash_misses.value.ui64 = 892 wmsum_value(&dbuf_sums.hash_misses); 893 ds->hash_collisions.value.ui64 = 894 wmsum_value(&dbuf_sums.hash_collisions); 895 ds->hash_chains.value.ui64 = 896 wmsum_value(&dbuf_sums.hash_chains); 897 ds->hash_insert_race.value.ui64 = 898 wmsum_value(&dbuf_sums.hash_insert_race); 899 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1; 900 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1; 901 ds->metadata_cache_count.value.ui64 = 902 wmsum_value(&dbuf_sums.metadata_cache_count); 903 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count( 904 &dbuf_caches[DB_DBUF_METADATA_CACHE].size); 905 ds->metadata_cache_overflow.value.ui64 = 906 wmsum_value(&dbuf_sums.metadata_cache_overflow); 907 return (0); 908 } 909 910 void 911 dbuf_init(void) 912 { 913 uint64_t hmsize, hsize = 1ULL << 16; 914 dbuf_hash_table_t *h = &dbuf_hash_table; 915 916 /* 917 * The hash table is big enough to fill one eighth of physical memory 918 * with an average block size of zfs_arc_average_blocksize (default 8K). 919 * By default, the table will take up 920 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 921 */ 922 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8) 923 hsize <<= 1; 924 925 h->hash_table = NULL; 926 while (h->hash_table == NULL) { 927 h->hash_table_mask = hsize - 1; 928 929 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP); 930 if (h->hash_table == NULL) 931 hsize >>= 1; 932 933 ASSERT3U(hsize, >=, 1ULL << 10); 934 } 935 936 /* 937 * The hash table buckets are protected by an array of mutexes where 938 * each mutex is reponsible for protecting 128 buckets. A minimum 939 * array size of 8192 is targeted to avoid contention. 940 */ 941 if (dbuf_mutex_cache_shift == 0) 942 hmsize = MAX(hsize >> 7, 1ULL << 13); 943 else 944 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24); 945 946 h->hash_mutexes = NULL; 947 while (h->hash_mutexes == NULL) { 948 h->hash_mutex_mask = hmsize - 1; 949 950 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t), 951 KM_SLEEP); 952 if (h->hash_mutexes == NULL) 953 hmsize >>= 1; 954 } 955 956 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t", 957 sizeof (dmu_buf_impl_t), 958 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0); 959 960 for (int i = 0; i < hmsize; i++) 961 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL); 962 963 dbuf_stats_init(h); 964 965 /* 966 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc 967 * configuration is not required. 968 */ 969 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0); 970 971 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 972 multilist_create(&dbuf_caches[dcs].cache, 973 sizeof (dmu_buf_impl_t), 974 offsetof(dmu_buf_impl_t, db_cache_link), 975 dbuf_cache_multilist_index_func); 976 zfs_refcount_create(&dbuf_caches[dcs].size); 977 } 978 979 dbuf_evict_thread_exit = B_FALSE; 980 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL); 981 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL); 982 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread, 983 NULL, 0, &p0, TS_RUN, minclsyspri); 984 985 wmsum_init(&dbuf_sums.cache_count, 0); 986 wmsum_init(&dbuf_sums.cache_total_evicts, 0); 987 for (int i = 0; i < DN_MAX_LEVELS; i++) { 988 wmsum_init(&dbuf_sums.cache_levels[i], 0); 989 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0); 990 } 991 wmsum_init(&dbuf_sums.hash_hits, 0); 992 wmsum_init(&dbuf_sums.hash_misses, 0); 993 wmsum_init(&dbuf_sums.hash_collisions, 0); 994 wmsum_init(&dbuf_sums.hash_chains, 0); 995 wmsum_init(&dbuf_sums.hash_insert_race, 0); 996 wmsum_init(&dbuf_sums.metadata_cache_count, 0); 997 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0); 998 999 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc", 1000 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t), 1001 KSTAT_FLAG_VIRTUAL); 1002 if (dbuf_ksp != NULL) { 1003 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1004 snprintf(dbuf_stats.cache_levels[i].name, 1005 KSTAT_STRLEN, "cache_level_%d", i); 1006 dbuf_stats.cache_levels[i].data_type = 1007 KSTAT_DATA_UINT64; 1008 snprintf(dbuf_stats.cache_levels_bytes[i].name, 1009 KSTAT_STRLEN, "cache_level_%d_bytes", i); 1010 dbuf_stats.cache_levels_bytes[i].data_type = 1011 KSTAT_DATA_UINT64; 1012 } 1013 dbuf_ksp->ks_data = &dbuf_stats; 1014 dbuf_ksp->ks_update = dbuf_kstat_update; 1015 kstat_install(dbuf_ksp); 1016 } 1017 } 1018 1019 void 1020 dbuf_fini(void) 1021 { 1022 dbuf_hash_table_t *h = &dbuf_hash_table; 1023 1024 dbuf_stats_destroy(); 1025 1026 for (int i = 0; i < (h->hash_mutex_mask + 1); i++) 1027 mutex_destroy(&h->hash_mutexes[i]); 1028 1029 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *)); 1030 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) * 1031 sizeof (kmutex_t)); 1032 1033 kmem_cache_destroy(dbuf_kmem_cache); 1034 taskq_destroy(dbu_evict_taskq); 1035 1036 mutex_enter(&dbuf_evict_lock); 1037 dbuf_evict_thread_exit = B_TRUE; 1038 while (dbuf_evict_thread_exit) { 1039 cv_signal(&dbuf_evict_cv); 1040 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock); 1041 } 1042 mutex_exit(&dbuf_evict_lock); 1043 1044 mutex_destroy(&dbuf_evict_lock); 1045 cv_destroy(&dbuf_evict_cv); 1046 1047 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) { 1048 zfs_refcount_destroy(&dbuf_caches[dcs].size); 1049 multilist_destroy(&dbuf_caches[dcs].cache); 1050 } 1051 1052 if (dbuf_ksp != NULL) { 1053 kstat_delete(dbuf_ksp); 1054 dbuf_ksp = NULL; 1055 } 1056 1057 wmsum_fini(&dbuf_sums.cache_count); 1058 wmsum_fini(&dbuf_sums.cache_total_evicts); 1059 for (int i = 0; i < DN_MAX_LEVELS; i++) { 1060 wmsum_fini(&dbuf_sums.cache_levels[i]); 1061 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]); 1062 } 1063 wmsum_fini(&dbuf_sums.hash_hits); 1064 wmsum_fini(&dbuf_sums.hash_misses); 1065 wmsum_fini(&dbuf_sums.hash_collisions); 1066 wmsum_fini(&dbuf_sums.hash_chains); 1067 wmsum_fini(&dbuf_sums.hash_insert_race); 1068 wmsum_fini(&dbuf_sums.metadata_cache_count); 1069 wmsum_fini(&dbuf_sums.metadata_cache_overflow); 1070 } 1071 1072 /* 1073 * Other stuff. 1074 */ 1075 1076 #ifdef ZFS_DEBUG 1077 static void 1078 dbuf_verify(dmu_buf_impl_t *db) 1079 { 1080 dnode_t *dn; 1081 dbuf_dirty_record_t *dr; 1082 uint32_t txg_prev; 1083 1084 ASSERT(MUTEX_HELD(&db->db_mtx)); 1085 1086 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY)) 1087 return; 1088 1089 ASSERT(db->db_objset != NULL); 1090 DB_DNODE_ENTER(db); 1091 dn = DB_DNODE(db); 1092 if (dn == NULL) { 1093 ASSERT(db->db_parent == NULL); 1094 ASSERT(db->db_blkptr == NULL); 1095 } else { 1096 ASSERT3U(db->db.db_object, ==, dn->dn_object); 1097 ASSERT3P(db->db_objset, ==, dn->dn_objset); 1098 ASSERT3U(db->db_level, <, dn->dn_nlevels); 1099 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 1100 db->db_blkid == DMU_SPILL_BLKID || 1101 !avl_is_empty(&dn->dn_dbufs)); 1102 } 1103 if (db->db_blkid == DMU_BONUS_BLKID) { 1104 ASSERT(dn != NULL); 1105 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 1106 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID); 1107 } else if (db->db_blkid == DMU_SPILL_BLKID) { 1108 ASSERT(dn != NULL); 1109 ASSERT0(db->db.db_offset); 1110 } else { 1111 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size); 1112 } 1113 1114 if ((dr = list_head(&db->db_dirty_records)) != NULL) { 1115 ASSERT(dr->dr_dbuf == db); 1116 txg_prev = dr->dr_txg; 1117 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL; 1118 dr = list_next(&db->db_dirty_records, dr)) { 1119 ASSERT(dr->dr_dbuf == db); 1120 ASSERT(txg_prev > dr->dr_txg); 1121 txg_prev = dr->dr_txg; 1122 } 1123 } 1124 1125 /* 1126 * We can't assert that db_size matches dn_datablksz because it 1127 * can be momentarily different when another thread is doing 1128 * dnode_set_blksz(). 1129 */ 1130 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) { 1131 dr = db->db_data_pending; 1132 /* 1133 * It should only be modified in syncing context, so 1134 * make sure we only have one copy of the data. 1135 */ 1136 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf); 1137 } 1138 1139 /* verify db->db_blkptr */ 1140 if (db->db_blkptr) { 1141 if (db->db_parent == dn->dn_dbuf) { 1142 /* db is pointed to by the dnode */ 1143 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */ 1144 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object)) 1145 ASSERT(db->db_parent == NULL); 1146 else 1147 ASSERT(db->db_parent != NULL); 1148 if (db->db_blkid != DMU_SPILL_BLKID) 1149 ASSERT3P(db->db_blkptr, ==, 1150 &dn->dn_phys->dn_blkptr[db->db_blkid]); 1151 } else { 1152 /* db is pointed to by an indirect block */ 1153 int epb __maybe_unused = db->db_parent->db.db_size >> 1154 SPA_BLKPTRSHIFT; 1155 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1); 1156 ASSERT3U(db->db_parent->db.db_object, ==, 1157 db->db.db_object); 1158 /* 1159 * dnode_grow_indblksz() can make this fail if we don't 1160 * have the parent's rwlock. XXX indblksz no longer 1161 * grows. safe to do this now? 1162 */ 1163 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) { 1164 ASSERT3P(db->db_blkptr, ==, 1165 ((blkptr_t *)db->db_parent->db.db_data + 1166 db->db_blkid % epb)); 1167 } 1168 } 1169 } 1170 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) && 1171 (db->db_buf == NULL || db->db_buf->b_data) && 1172 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID && 1173 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) { 1174 /* 1175 * If the blkptr isn't set but they have nonzero data, 1176 * it had better be dirty, otherwise we'll lose that 1177 * data when we evict this buffer. 1178 * 1179 * There is an exception to this rule for indirect blocks; in 1180 * this case, if the indirect block is a hole, we fill in a few 1181 * fields on each of the child blocks (importantly, birth time) 1182 * to prevent hole birth times from being lost when you 1183 * partially fill in a hole. 1184 */ 1185 if (db->db_dirtycnt == 0) { 1186 if (db->db_level == 0) { 1187 uint64_t *buf = db->db.db_data; 1188 int i; 1189 1190 for (i = 0; i < db->db.db_size >> 3; i++) { 1191 ASSERT(buf[i] == 0); 1192 } 1193 } else { 1194 blkptr_t *bps = db->db.db_data; 1195 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==, 1196 db->db.db_size); 1197 /* 1198 * We want to verify that all the blkptrs in the 1199 * indirect block are holes, but we may have 1200 * automatically set up a few fields for them. 1201 * We iterate through each blkptr and verify 1202 * they only have those fields set. 1203 */ 1204 for (int i = 0; 1205 i < db->db.db_size / sizeof (blkptr_t); 1206 i++) { 1207 blkptr_t *bp = &bps[i]; 1208 ASSERT(ZIO_CHECKSUM_IS_ZERO( 1209 &bp->blk_cksum)); 1210 ASSERT( 1211 DVA_IS_EMPTY(&bp->blk_dva[0]) && 1212 DVA_IS_EMPTY(&bp->blk_dva[1]) && 1213 DVA_IS_EMPTY(&bp->blk_dva[2])); 1214 ASSERT0(bp->blk_fill); 1215 ASSERT0(bp->blk_pad[0]); 1216 ASSERT0(bp->blk_pad[1]); 1217 ASSERT(!BP_IS_EMBEDDED(bp)); 1218 ASSERT(BP_IS_HOLE(bp)); 1219 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp)); 1220 } 1221 } 1222 } 1223 } 1224 DB_DNODE_EXIT(db); 1225 } 1226 #endif 1227 1228 static void 1229 dbuf_clear_data(dmu_buf_impl_t *db) 1230 { 1231 ASSERT(MUTEX_HELD(&db->db_mtx)); 1232 dbuf_evict_user(db); 1233 ASSERT3P(db->db_buf, ==, NULL); 1234 db->db.db_data = NULL; 1235 if (db->db_state != DB_NOFILL) { 1236 db->db_state = DB_UNCACHED; 1237 DTRACE_SET_STATE(db, "clear data"); 1238 } 1239 } 1240 1241 static void 1242 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf) 1243 { 1244 ASSERT(MUTEX_HELD(&db->db_mtx)); 1245 ASSERT(buf != NULL); 1246 1247 db->db_buf = buf; 1248 ASSERT(buf->b_data != NULL); 1249 db->db.db_data = buf->b_data; 1250 } 1251 1252 static arc_buf_t * 1253 dbuf_alloc_arcbuf(dmu_buf_impl_t *db) 1254 { 1255 spa_t *spa = db->db_objset->os_spa; 1256 1257 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 1258 } 1259 1260 /* 1261 * Loan out an arc_buf for read. Return the loaned arc_buf. 1262 */ 1263 arc_buf_t * 1264 dbuf_loan_arcbuf(dmu_buf_impl_t *db) 1265 { 1266 arc_buf_t *abuf; 1267 1268 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1269 mutex_enter(&db->db_mtx); 1270 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) { 1271 int blksz = db->db.db_size; 1272 spa_t *spa = db->db_objset->os_spa; 1273 1274 mutex_exit(&db->db_mtx); 1275 abuf = arc_loan_buf(spa, B_FALSE, blksz); 1276 memcpy(abuf->b_data, db->db.db_data, blksz); 1277 } else { 1278 abuf = db->db_buf; 1279 arc_loan_inuse_buf(abuf, db); 1280 db->db_buf = NULL; 1281 dbuf_clear_data(db); 1282 mutex_exit(&db->db_mtx); 1283 } 1284 return (abuf); 1285 } 1286 1287 /* 1288 * Calculate which level n block references the data at the level 0 offset 1289 * provided. 1290 */ 1291 uint64_t 1292 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset) 1293 { 1294 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) { 1295 /* 1296 * The level n blkid is equal to the level 0 blkid divided by 1297 * the number of level 0s in a level n block. 1298 * 1299 * The level 0 blkid is offset >> datablkshift = 1300 * offset / 2^datablkshift. 1301 * 1302 * The number of level 0s in a level n is the number of block 1303 * pointers in an indirect block, raised to the power of level. 1304 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level = 1305 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)). 1306 * 1307 * Thus, the level n blkid is: offset / 1308 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT)))) 1309 * = offset / 2^(datablkshift + level * 1310 * (indblkshift - SPA_BLKPTRSHIFT)) 1311 * = offset >> (datablkshift + level * 1312 * (indblkshift - SPA_BLKPTRSHIFT)) 1313 */ 1314 1315 const unsigned exp = dn->dn_datablkshift + 1316 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT); 1317 1318 if (exp >= 8 * sizeof (offset)) { 1319 /* This only happens on the highest indirection level */ 1320 ASSERT3U(level, ==, dn->dn_nlevels - 1); 1321 return (0); 1322 } 1323 1324 ASSERT3U(exp, <, 8 * sizeof (offset)); 1325 1326 return (offset >> exp); 1327 } else { 1328 ASSERT3U(offset, <, dn->dn_datablksz); 1329 return (0); 1330 } 1331 } 1332 1333 /* 1334 * This function is used to lock the parent of the provided dbuf. This should be 1335 * used when modifying or reading db_blkptr. 1336 */ 1337 db_lock_type_t 1338 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag) 1339 { 1340 enum db_lock_type ret = DLT_NONE; 1341 if (db->db_parent != NULL) { 1342 rw_enter(&db->db_parent->db_rwlock, rw); 1343 ret = DLT_PARENT; 1344 } else if (dmu_objset_ds(db->db_objset) != NULL) { 1345 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw, 1346 tag); 1347 ret = DLT_OBJSET; 1348 } 1349 /* 1350 * We only return a DLT_NONE lock when it's the top-most indirect block 1351 * of the meta-dnode of the MOS. 1352 */ 1353 return (ret); 1354 } 1355 1356 /* 1357 * We need to pass the lock type in because it's possible that the block will 1358 * move from being the topmost indirect block in a dnode (and thus, have no 1359 * parent) to not the top-most via an indirection increase. This would cause a 1360 * panic if we didn't pass the lock type in. 1361 */ 1362 void 1363 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag) 1364 { 1365 if (type == DLT_PARENT) 1366 rw_exit(&db->db_parent->db_rwlock); 1367 else if (type == DLT_OBJSET) 1368 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag); 1369 } 1370 1371 static void 1372 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 1373 arc_buf_t *buf, void *vdb) 1374 { 1375 (void) zb, (void) bp; 1376 dmu_buf_impl_t *db = vdb; 1377 1378 mutex_enter(&db->db_mtx); 1379 ASSERT3U(db->db_state, ==, DB_READ); 1380 /* 1381 * All reads are synchronous, so we must have a hold on the dbuf 1382 */ 1383 ASSERT(zfs_refcount_count(&db->db_holds) > 0); 1384 ASSERT(db->db_buf == NULL); 1385 ASSERT(db->db.db_data == NULL); 1386 if (buf == NULL) { 1387 /* i/o error */ 1388 ASSERT(zio == NULL || zio->io_error != 0); 1389 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1390 ASSERT3P(db->db_buf, ==, NULL); 1391 db->db_state = DB_UNCACHED; 1392 DTRACE_SET_STATE(db, "i/o error"); 1393 } else if (db->db_level == 0 && db->db_freed_in_flight) { 1394 /* freed in flight */ 1395 ASSERT(zio == NULL || zio->io_error == 0); 1396 arc_release(buf, db); 1397 memset(buf->b_data, 0, db->db.db_size); 1398 arc_buf_freeze(buf); 1399 db->db_freed_in_flight = FALSE; 1400 dbuf_set_data(db, buf); 1401 db->db_state = DB_CACHED; 1402 DTRACE_SET_STATE(db, "freed in flight"); 1403 } else { 1404 /* success */ 1405 ASSERT(zio == NULL || zio->io_error == 0); 1406 dbuf_set_data(db, buf); 1407 db->db_state = DB_CACHED; 1408 DTRACE_SET_STATE(db, "successful read"); 1409 } 1410 cv_broadcast(&db->db_changed); 1411 dbuf_rele_and_unlock(db, NULL, B_FALSE); 1412 } 1413 1414 /* 1415 * Shortcut for performing reads on bonus dbufs. Returns 1416 * an error if we fail to verify the dnode associated with 1417 * a decrypted block. Otherwise success. 1418 */ 1419 static int 1420 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn) 1421 { 1422 int bonuslen, max_bonuslen; 1423 1424 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen); 1425 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1426 ASSERT(MUTEX_HELD(&db->db_mtx)); 1427 ASSERT(DB_DNODE_HELD(db)); 1428 ASSERT3U(bonuslen, <=, db->db.db_size); 1429 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP); 1430 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS); 1431 if (bonuslen < max_bonuslen) 1432 memset(db->db.db_data, 0, max_bonuslen); 1433 if (bonuslen) 1434 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen); 1435 db->db_state = DB_CACHED; 1436 DTRACE_SET_STATE(db, "bonus buffer filled"); 1437 return (0); 1438 } 1439 1440 static void 1441 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp) 1442 { 1443 blkptr_t *bps = db->db.db_data; 1444 uint32_t indbs = 1ULL << dn->dn_indblkshift; 1445 int n_bps = indbs >> SPA_BLKPTRSHIFT; 1446 1447 for (int i = 0; i < n_bps; i++) { 1448 blkptr_t *bp = &bps[i]; 1449 1450 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs); 1451 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ? 1452 dn->dn_datablksz : BP_GET_LSIZE(dbbp)); 1453 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp)); 1454 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1); 1455 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0); 1456 } 1457 } 1458 1459 /* 1460 * Handle reads on dbufs that are holes, if necessary. This function 1461 * requires that the dbuf's mutex is held. Returns success (0) if action 1462 * was taken, ENOENT if no action was taken. 1463 */ 1464 static int 1465 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp) 1466 { 1467 ASSERT(MUTEX_HELD(&db->db_mtx)); 1468 1469 int is_hole = bp == NULL || BP_IS_HOLE(bp); 1470 /* 1471 * For level 0 blocks only, if the above check fails: 1472 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync() 1473 * processes the delete record and clears the bp while we are waiting 1474 * for the dn_mtx (resulting in a "no" from block_freed). 1475 */ 1476 if (!is_hole && db->db_level == 0) 1477 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp); 1478 1479 if (is_hole) { 1480 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1481 memset(db->db.db_data, 0, db->db.db_size); 1482 1483 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) && 1484 BP_GET_LOGICAL_BIRTH(bp) != 0) { 1485 dbuf_handle_indirect_hole(db, dn, bp); 1486 } 1487 db->db_state = DB_CACHED; 1488 DTRACE_SET_STATE(db, "hole read satisfied"); 1489 return (0); 1490 } 1491 return (ENOENT); 1492 } 1493 1494 /* 1495 * This function ensures that, when doing a decrypting read of a block, 1496 * we make sure we have decrypted the dnode associated with it. We must do 1497 * this so that we ensure we are fully authenticating the checksum-of-MACs 1498 * tree from the root of the objset down to this block. Indirect blocks are 1499 * always verified against their secure checksum-of-MACs assuming that the 1500 * dnode containing them is correct. Now that we are doing a decrypting read, 1501 * we can be sure that the key is loaded and verify that assumption. This is 1502 * especially important considering that we always read encrypted dnode 1503 * blocks as raw data (without verifying their MACs) to start, and 1504 * decrypt / authenticate them when we need to read an encrypted bonus buffer. 1505 */ 1506 static int 1507 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags) 1508 { 1509 objset_t *os = db->db_objset; 1510 dmu_buf_impl_t *dndb; 1511 arc_buf_t *dnbuf; 1512 zbookmark_phys_t zb; 1513 int err; 1514 1515 if ((flags & DB_RF_NO_DECRYPT) != 0 || 1516 !os->os_encrypted || os->os_raw_receive || 1517 (dndb = dn->dn_dbuf) == NULL) 1518 return (0); 1519 1520 dnbuf = dndb->db_buf; 1521 if (!arc_is_encrypted(dnbuf)) 1522 return (0); 1523 1524 mutex_enter(&dndb->db_mtx); 1525 1526 /* 1527 * Since dnode buffer is modified by sync process, there can be only 1528 * one copy of it. It means we can not modify (decrypt) it while it 1529 * is being written. I don't see how this may happen now, since 1530 * encrypted dnode writes by receive should be completed before any 1531 * plain-text reads due to txg wait, but better be safe than sorry. 1532 */ 1533 while (1) { 1534 if (!arc_is_encrypted(dnbuf)) { 1535 mutex_exit(&dndb->db_mtx); 1536 return (0); 1537 } 1538 dbuf_dirty_record_t *dr = dndb->db_data_pending; 1539 if (dr == NULL || dr->dt.dl.dr_data != dnbuf) 1540 break; 1541 cv_wait(&dndb->db_changed, &dndb->db_mtx); 1542 }; 1543 1544 SET_BOOKMARK(&zb, dmu_objset_id(os), 1545 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid); 1546 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE); 1547 1548 /* 1549 * An error code of EACCES tells us that the key is still not 1550 * available. This is ok if we are only reading authenticated 1551 * (and therefore non-encrypted) blocks. 1552 */ 1553 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID && 1554 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) || 1555 (db->db_blkid == DMU_BONUS_BLKID && 1556 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)))) 1557 err = 0; 1558 1559 mutex_exit(&dndb->db_mtx); 1560 1561 return (err); 1562 } 1563 1564 /* 1565 * Drops db_mtx and the parent lock specified by dblt and tag before 1566 * returning. 1567 */ 1568 static int 1569 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags, 1570 db_lock_type_t dblt, const void *tag) 1571 { 1572 zbookmark_phys_t zb; 1573 uint32_t aflags = ARC_FLAG_NOWAIT; 1574 int err, zio_flags; 1575 blkptr_t bp, *bpp = NULL; 1576 1577 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1578 ASSERT(MUTEX_HELD(&db->db_mtx)); 1579 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 1580 ASSERT(db->db_buf == NULL); 1581 ASSERT(db->db_parent == NULL || 1582 RW_LOCK_HELD(&db->db_parent->db_rwlock)); 1583 1584 if (db->db_blkid == DMU_BONUS_BLKID) { 1585 err = dbuf_read_bonus(db, dn); 1586 goto early_unlock; 1587 } 1588 1589 /* 1590 * If we have a pending block clone, we don't want to read the 1591 * underlying block, but the content of the block being cloned, 1592 * pointed by the dirty record, so we have the most recent data. 1593 * If there is no dirty record, then we hit a race in a sync 1594 * process when the dirty record is already removed, while the 1595 * dbuf is not yet destroyed. Such case is equivalent to uncached. 1596 */ 1597 if (db->db_state == DB_NOFILL) { 1598 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1599 if (dr != NULL) { 1600 if (!dr->dt.dl.dr_brtwrite) { 1601 err = EIO; 1602 goto early_unlock; 1603 } 1604 bp = dr->dt.dl.dr_overridden_by; 1605 bpp = &bp; 1606 } 1607 } 1608 1609 if (bpp == NULL && db->db_blkptr != NULL) { 1610 bp = *db->db_blkptr; 1611 bpp = &bp; 1612 } 1613 1614 err = dbuf_read_hole(db, dn, bpp); 1615 if (err == 0) 1616 goto early_unlock; 1617 1618 ASSERT(bpp != NULL); 1619 1620 /* 1621 * Any attempt to read a redacted block should result in an error. This 1622 * will never happen under normal conditions, but can be useful for 1623 * debugging purposes. 1624 */ 1625 if (BP_IS_REDACTED(bpp)) { 1626 ASSERT(dsl_dataset_feature_is_active( 1627 db->db_objset->os_dsl_dataset, 1628 SPA_FEATURE_REDACTED_DATASETS)); 1629 err = SET_ERROR(EIO); 1630 goto early_unlock; 1631 } 1632 1633 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1634 db->db.db_object, db->db_level, db->db_blkid); 1635 1636 /* 1637 * All bps of an encrypted os should have the encryption bit set. 1638 * If this is not true it indicates tampering and we report an error. 1639 */ 1640 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) { 1641 spa_log_error(db->db_objset->os_spa, &zb, 1642 BP_GET_LOGICAL_BIRTH(bpp)); 1643 err = SET_ERROR(EIO); 1644 goto early_unlock; 1645 } 1646 1647 db->db_state = DB_READ; 1648 DTRACE_SET_STATE(db, "read issued"); 1649 mutex_exit(&db->db_mtx); 1650 1651 if (!DBUF_IS_CACHEABLE(db)) 1652 aflags |= ARC_FLAG_UNCACHED; 1653 else if (dbuf_is_l2cacheable(db)) 1654 aflags |= ARC_FLAG_L2CACHE; 1655 1656 dbuf_add_ref(db, NULL); 1657 1658 zio_flags = (flags & DB_RF_CANFAIL) ? 1659 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED; 1660 1661 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr)) 1662 zio_flags |= ZIO_FLAG_RAW; 1663 /* 1664 * The zio layer will copy the provided blkptr later, but we have our 1665 * own copy so that we can release the parent's rwlock. We have to 1666 * do that so that if dbuf_read_done is called synchronously (on 1667 * an l1 cache hit) we don't acquire the db_mtx while holding the 1668 * parent's rwlock, which would be a lock ordering violation. 1669 */ 1670 dmu_buf_unlock_parent(db, dblt, tag); 1671 return (arc_read(zio, db->db_objset->os_spa, bpp, 1672 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags, 1673 &aflags, &zb)); 1674 1675 early_unlock: 1676 mutex_exit(&db->db_mtx); 1677 dmu_buf_unlock_parent(db, dblt, tag); 1678 return (err); 1679 } 1680 1681 /* 1682 * This is our just-in-time copy function. It makes a copy of buffers that 1683 * have been modified in a previous transaction group before we access them in 1684 * the current active group. 1685 * 1686 * This function is used in three places: when we are dirtying a buffer for the 1687 * first time in a txg, when we are freeing a range in a dnode that includes 1688 * this buffer, and when we are accessing a buffer which was received compressed 1689 * and later referenced in a WRITE_BYREF record. 1690 * 1691 * Note that when we are called from dbuf_free_range() we do not put a hold on 1692 * the buffer, we just traverse the active dbuf list for the dnode. 1693 */ 1694 static void 1695 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg) 1696 { 1697 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 1698 1699 ASSERT(MUTEX_HELD(&db->db_mtx)); 1700 ASSERT(db->db.db_data != NULL); 1701 ASSERT(db->db_level == 0); 1702 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT); 1703 1704 if (dr == NULL || 1705 (dr->dt.dl.dr_data != 1706 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf))) 1707 return; 1708 1709 /* 1710 * If the last dirty record for this dbuf has not yet synced 1711 * and its referencing the dbuf data, either: 1712 * reset the reference to point to a new copy, 1713 * or (if there a no active holders) 1714 * just null out the current db_data pointer. 1715 */ 1716 ASSERT3U(dr->dr_txg, >=, txg - 2); 1717 if (db->db_blkid == DMU_BONUS_BLKID) { 1718 dnode_t *dn = DB_DNODE(db); 1719 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 1720 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP); 1721 arc_space_consume(bonuslen, ARC_SPACE_BONUS); 1722 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen); 1723 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) { 1724 dnode_t *dn = DB_DNODE(db); 1725 int size = arc_buf_size(db->db_buf); 1726 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 1727 spa_t *spa = db->db_objset->os_spa; 1728 enum zio_compress compress_type = 1729 arc_get_compression(db->db_buf); 1730 uint8_t complevel = arc_get_complevel(db->db_buf); 1731 1732 if (arc_is_encrypted(db->db_buf)) { 1733 boolean_t byteorder; 1734 uint8_t salt[ZIO_DATA_SALT_LEN]; 1735 uint8_t iv[ZIO_DATA_IV_LEN]; 1736 uint8_t mac[ZIO_DATA_MAC_LEN]; 1737 1738 arc_get_raw_params(db->db_buf, &byteorder, salt, 1739 iv, mac); 1740 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db, 1741 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, 1742 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf), 1743 compress_type, complevel); 1744 } else if (compress_type != ZIO_COMPRESS_OFF) { 1745 ASSERT3U(type, ==, ARC_BUFC_DATA); 1746 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db, 1747 size, arc_buf_lsize(db->db_buf), compress_type, 1748 complevel); 1749 } else { 1750 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size); 1751 } 1752 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size); 1753 } else { 1754 db->db_buf = NULL; 1755 dbuf_clear_data(db); 1756 } 1757 } 1758 1759 int 1760 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags) 1761 { 1762 dnode_t *dn; 1763 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch; 1764 int err; 1765 1766 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1767 1768 DB_DNODE_ENTER(db); 1769 dn = DB_DNODE(db); 1770 1771 /* 1772 * Ensure that this block's dnode has been decrypted if the caller 1773 * has requested decrypted data. 1774 */ 1775 err = dbuf_read_verify_dnode_crypt(db, dn, flags); 1776 if (err != 0) 1777 goto done; 1778 1779 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 1780 (flags & DB_RF_NOPREFETCH) == 0; 1781 1782 mutex_enter(&db->db_mtx); 1783 if (flags & DB_RF_PARTIAL_FIRST) 1784 db->db_partial_read = B_TRUE; 1785 else if (!(flags & DB_RF_PARTIAL_MORE)) 1786 db->db_partial_read = B_FALSE; 1787 miss = (db->db_state != DB_CACHED); 1788 1789 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 1790 /* 1791 * Another reader came in while the dbuf was in flight between 1792 * UNCACHED and CACHED. Either a writer will finish filling 1793 * the buffer, sending the dbuf to CACHED, or the first reader's 1794 * request will reach the read_done callback and send the dbuf 1795 * to CACHED. Otherwise, a failure occurred and the dbuf will 1796 * be sent to UNCACHED. 1797 */ 1798 if (flags & DB_RF_NEVERWAIT) { 1799 mutex_exit(&db->db_mtx); 1800 DB_DNODE_EXIT(db); 1801 goto done; 1802 } 1803 do { 1804 ASSERT(db->db_state == DB_READ || 1805 (flags & DB_RF_HAVESTRUCT) == 0); 1806 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db, 1807 zio_t *, pio); 1808 cv_wait(&db->db_changed, &db->db_mtx); 1809 } while (db->db_state == DB_READ || db->db_state == DB_FILL); 1810 if (db->db_state == DB_UNCACHED) { 1811 err = SET_ERROR(EIO); 1812 mutex_exit(&db->db_mtx); 1813 DB_DNODE_EXIT(db); 1814 goto done; 1815 } 1816 } 1817 1818 if (db->db_state == DB_CACHED) { 1819 /* 1820 * If the arc buf is compressed or encrypted and the caller 1821 * requested uncompressed data, we need to untransform it 1822 * before returning. We also call arc_untransform() on any 1823 * unauthenticated blocks, which will verify their MAC if 1824 * the key is now available. 1825 */ 1826 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL && 1827 (arc_is_encrypted(db->db_buf) || 1828 arc_is_unauthenticated(db->db_buf) || 1829 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) { 1830 spa_t *spa = dn->dn_objset->os_spa; 1831 zbookmark_phys_t zb; 1832 1833 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 1834 db->db.db_object, db->db_level, db->db_blkid); 1835 dbuf_fix_old_data(db, spa_syncing_txg(spa)); 1836 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE); 1837 dbuf_set_data(db, db->db_buf); 1838 } 1839 mutex_exit(&db->db_mtx); 1840 } else { 1841 ASSERT(db->db_state == DB_UNCACHED || 1842 db->db_state == DB_NOFILL); 1843 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 1844 if (pio == NULL && (db->db_state == DB_NOFILL || 1845 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) { 1846 spa_t *spa = dn->dn_objset->os_spa; 1847 pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 1848 need_wait = B_TRUE; 1849 } 1850 err = dbuf_read_impl(db, dn, pio, flags, dblt, FTAG); 1851 /* dbuf_read_impl drops db_mtx and parent's rwlock. */ 1852 miss = (db->db_state != DB_CACHED); 1853 } 1854 1855 if (err == 0 && prefetch) { 1856 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss, 1857 flags & DB_RF_HAVESTRUCT); 1858 } 1859 DB_DNODE_EXIT(db); 1860 1861 /* 1862 * If we created a zio we must execute it to avoid leaking it, even if 1863 * it isn't attached to any work due to an error in dbuf_read_impl(). 1864 */ 1865 if (need_wait) { 1866 if (err == 0) 1867 err = zio_wait(pio); 1868 else 1869 (void) zio_wait(pio); 1870 pio = NULL; 1871 } 1872 1873 done: 1874 if (miss) 1875 DBUF_STAT_BUMP(hash_misses); 1876 else 1877 DBUF_STAT_BUMP(hash_hits); 1878 if (pio && err != 0) { 1879 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL, 1880 ZIO_FLAG_CANFAIL); 1881 zio->io_error = err; 1882 zio_nowait(zio); 1883 } 1884 1885 return (err); 1886 } 1887 1888 static void 1889 dbuf_noread(dmu_buf_impl_t *db) 1890 { 1891 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 1892 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1893 mutex_enter(&db->db_mtx); 1894 while (db->db_state == DB_READ || db->db_state == DB_FILL) 1895 cv_wait(&db->db_changed, &db->db_mtx); 1896 if (db->db_state == DB_UNCACHED) { 1897 ASSERT(db->db_buf == NULL); 1898 ASSERT(db->db.db_data == NULL); 1899 dbuf_set_data(db, dbuf_alloc_arcbuf(db)); 1900 db->db_state = DB_FILL; 1901 DTRACE_SET_STATE(db, "assigning filled buffer"); 1902 } else if (db->db_state == DB_NOFILL) { 1903 dbuf_clear_data(db); 1904 } else { 1905 ASSERT3U(db->db_state, ==, DB_CACHED); 1906 } 1907 mutex_exit(&db->db_mtx); 1908 } 1909 1910 void 1911 dbuf_unoverride(dbuf_dirty_record_t *dr) 1912 { 1913 dmu_buf_impl_t *db = dr->dr_dbuf; 1914 blkptr_t *bp = &dr->dt.dl.dr_overridden_by; 1915 uint64_t txg = dr->dr_txg; 1916 1917 ASSERT(MUTEX_HELD(&db->db_mtx)); 1918 /* 1919 * This assert is valid because dmu_sync() expects to be called by 1920 * a zilog's get_data while holding a range lock. This call only 1921 * comes from dbuf_dirty() callers who must also hold a range lock. 1922 */ 1923 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC); 1924 ASSERT(db->db_level == 0); 1925 1926 if (db->db_blkid == DMU_BONUS_BLKID || 1927 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN) 1928 return; 1929 1930 ASSERT(db->db_data_pending != dr); 1931 1932 /* free this block */ 1933 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite) 1934 zio_free(db->db_objset->os_spa, txg, bp); 1935 1936 if (dr->dt.dl.dr_brtwrite) { 1937 ASSERT0P(dr->dt.dl.dr_data); 1938 dr->dt.dl.dr_data = db->db_buf; 1939 } 1940 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1941 dr->dt.dl.dr_nopwrite = B_FALSE; 1942 dr->dt.dl.dr_brtwrite = B_FALSE; 1943 dr->dt.dl.dr_has_raw_params = B_FALSE; 1944 1945 /* 1946 * Release the already-written buffer, so we leave it in 1947 * a consistent dirty state. Note that all callers are 1948 * modifying the buffer, so they will immediately do 1949 * another (redundant) arc_release(). Therefore, leave 1950 * the buf thawed to save the effort of freezing & 1951 * immediately re-thawing it. 1952 */ 1953 if (dr->dt.dl.dr_data) 1954 arc_release(dr->dt.dl.dr_data, db); 1955 } 1956 1957 /* 1958 * Evict (if its unreferenced) or clear (if its referenced) any level-0 1959 * data blocks in the free range, so that any future readers will find 1960 * empty blocks. 1961 */ 1962 void 1963 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1964 dmu_tx_t *tx) 1965 { 1966 dmu_buf_impl_t *db_search; 1967 dmu_buf_impl_t *db, *db_next; 1968 uint64_t txg = tx->tx_txg; 1969 avl_index_t where; 1970 dbuf_dirty_record_t *dr; 1971 1972 if (end_blkid > dn->dn_maxblkid && 1973 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID)) 1974 end_blkid = dn->dn_maxblkid; 1975 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid, 1976 (u_longlong_t)end_blkid); 1977 1978 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP); 1979 db_search->db_level = 0; 1980 db_search->db_blkid = start_blkid; 1981 db_search->db_state = DB_SEARCH; 1982 1983 mutex_enter(&dn->dn_dbufs_mtx); 1984 db = avl_find(&dn->dn_dbufs, db_search, &where); 1985 ASSERT3P(db, ==, NULL); 1986 1987 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1988 1989 for (; db != NULL; db = db_next) { 1990 db_next = AVL_NEXT(&dn->dn_dbufs, db); 1991 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 1992 1993 if (db->db_level != 0 || db->db_blkid > end_blkid) { 1994 break; 1995 } 1996 ASSERT3U(db->db_blkid, >=, start_blkid); 1997 1998 /* found a level 0 buffer in the range */ 1999 mutex_enter(&db->db_mtx); 2000 if (dbuf_undirty(db, tx)) { 2001 /* mutex has been dropped and dbuf destroyed */ 2002 continue; 2003 } 2004 2005 if (db->db_state == DB_UNCACHED || 2006 db->db_state == DB_NOFILL || 2007 db->db_state == DB_EVICTING) { 2008 ASSERT(db->db.db_data == NULL); 2009 mutex_exit(&db->db_mtx); 2010 continue; 2011 } 2012 if (db->db_state == DB_READ || db->db_state == DB_FILL) { 2013 /* will be handled in dbuf_read_done or dbuf_rele */ 2014 db->db_freed_in_flight = TRUE; 2015 mutex_exit(&db->db_mtx); 2016 continue; 2017 } 2018 if (zfs_refcount_count(&db->db_holds) == 0) { 2019 ASSERT(db->db_buf); 2020 dbuf_destroy(db); 2021 continue; 2022 } 2023 /* The dbuf is referenced */ 2024 2025 dr = list_head(&db->db_dirty_records); 2026 if (dr != NULL) { 2027 if (dr->dr_txg == txg) { 2028 /* 2029 * This buffer is "in-use", re-adjust the file 2030 * size to reflect that this buffer may 2031 * contain new data when we sync. 2032 */ 2033 if (db->db_blkid != DMU_SPILL_BLKID && 2034 db->db_blkid > dn->dn_maxblkid) 2035 dn->dn_maxblkid = db->db_blkid; 2036 dbuf_unoverride(dr); 2037 } else { 2038 /* 2039 * This dbuf is not dirty in the open context. 2040 * Either uncache it (if its not referenced in 2041 * the open context) or reset its contents to 2042 * empty. 2043 */ 2044 dbuf_fix_old_data(db, txg); 2045 } 2046 } 2047 /* clear the contents if its cached */ 2048 if (db->db_state == DB_CACHED) { 2049 ASSERT(db->db.db_data != NULL); 2050 arc_release(db->db_buf, db); 2051 rw_enter(&db->db_rwlock, RW_WRITER); 2052 memset(db->db.db_data, 0, db->db.db_size); 2053 rw_exit(&db->db_rwlock); 2054 arc_buf_freeze(db->db_buf); 2055 } 2056 2057 mutex_exit(&db->db_mtx); 2058 } 2059 2060 mutex_exit(&dn->dn_dbufs_mtx); 2061 kmem_free(db_search, sizeof (dmu_buf_impl_t)); 2062 } 2063 2064 void 2065 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx) 2066 { 2067 arc_buf_t *buf, *old_buf; 2068 dbuf_dirty_record_t *dr; 2069 int osize = db->db.db_size; 2070 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 2071 dnode_t *dn; 2072 2073 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2074 2075 DB_DNODE_ENTER(db); 2076 dn = DB_DNODE(db); 2077 2078 /* 2079 * XXX we should be doing a dbuf_read, checking the return 2080 * value and returning that up to our callers 2081 */ 2082 dmu_buf_will_dirty(&db->db, tx); 2083 2084 /* create the data buffer for the new block */ 2085 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size); 2086 2087 /* copy old block data to the new block */ 2088 old_buf = db->db_buf; 2089 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size)); 2090 /* zero the remainder */ 2091 if (size > osize) 2092 memset((uint8_t *)buf->b_data + osize, 0, size - osize); 2093 2094 mutex_enter(&db->db_mtx); 2095 dbuf_set_data(db, buf); 2096 arc_buf_destroy(old_buf, db); 2097 db->db.db_size = size; 2098 2099 dr = list_head(&db->db_dirty_records); 2100 /* dirty record added by dmu_buf_will_dirty() */ 2101 VERIFY(dr != NULL); 2102 if (db->db_level == 0) 2103 dr->dt.dl.dr_data = buf; 2104 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2105 ASSERT3U(dr->dr_accounted, ==, osize); 2106 dr->dr_accounted = size; 2107 mutex_exit(&db->db_mtx); 2108 2109 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx); 2110 DB_DNODE_EXIT(db); 2111 } 2112 2113 void 2114 dbuf_release_bp(dmu_buf_impl_t *db) 2115 { 2116 objset_t *os __maybe_unused = db->db_objset; 2117 2118 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os))); 2119 ASSERT(arc_released(os->os_phys_buf) || 2120 list_link_active(&os->os_dsl_dataset->ds_synced_link)); 2121 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf)); 2122 2123 (void) arc_release(db->db_buf, db); 2124 } 2125 2126 /* 2127 * We already have a dirty record for this TXG, and we are being 2128 * dirtied again. 2129 */ 2130 static void 2131 dbuf_redirty(dbuf_dirty_record_t *dr) 2132 { 2133 dmu_buf_impl_t *db = dr->dr_dbuf; 2134 2135 ASSERT(MUTEX_HELD(&db->db_mtx)); 2136 2137 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) { 2138 /* 2139 * If this buffer has already been written out, 2140 * we now need to reset its state. 2141 */ 2142 dbuf_unoverride(dr); 2143 if (db->db.db_object != DMU_META_DNODE_OBJECT && 2144 db->db_state != DB_NOFILL) { 2145 /* Already released on initial dirty, so just thaw. */ 2146 ASSERT(arc_released(db->db_buf)); 2147 arc_buf_thaw(db->db_buf); 2148 } 2149 } 2150 } 2151 2152 dbuf_dirty_record_t * 2153 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx) 2154 { 2155 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2156 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid); 2157 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE); 2158 ASSERT(dn->dn_maxblkid >= blkid); 2159 2160 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP); 2161 list_link_init(&dr->dr_dirty_node); 2162 list_link_init(&dr->dr_dbuf_node); 2163 dr->dr_dnode = dn; 2164 dr->dr_txg = tx->tx_txg; 2165 dr->dt.dll.dr_blkid = blkid; 2166 dr->dr_accounted = dn->dn_datablksz; 2167 2168 /* 2169 * There should not be any dbuf for the block that we're dirtying. 2170 * Otherwise the buffer contents could be inconsistent between the 2171 * dbuf and the lightweight dirty record. 2172 */ 2173 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid, 2174 NULL)); 2175 2176 mutex_enter(&dn->dn_mtx); 2177 int txgoff = tx->tx_txg & TXG_MASK; 2178 if (dn->dn_free_ranges[txgoff] != NULL) { 2179 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1); 2180 } 2181 2182 if (dn->dn_nlevels == 1) { 2183 ASSERT3U(blkid, <, dn->dn_nblkptr); 2184 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2185 mutex_exit(&dn->dn_mtx); 2186 rw_exit(&dn->dn_struct_rwlock); 2187 dnode_setdirty(dn, tx); 2188 } else { 2189 mutex_exit(&dn->dn_mtx); 2190 2191 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2192 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn, 2193 1, blkid >> epbs, FTAG); 2194 rw_exit(&dn->dn_struct_rwlock); 2195 if (parent_db == NULL) { 2196 kmem_free(dr, sizeof (*dr)); 2197 return (NULL); 2198 } 2199 int err = dbuf_read(parent_db, NULL, 2200 (DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 2201 if (err != 0) { 2202 dbuf_rele(parent_db, FTAG); 2203 kmem_free(dr, sizeof (*dr)); 2204 return (NULL); 2205 } 2206 2207 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx); 2208 dbuf_rele(parent_db, FTAG); 2209 mutex_enter(&parent_dr->dt.di.dr_mtx); 2210 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg); 2211 list_insert_tail(&parent_dr->dt.di.dr_children, dr); 2212 mutex_exit(&parent_dr->dt.di.dr_mtx); 2213 dr->dr_parent = parent_dr; 2214 } 2215 2216 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx); 2217 2218 return (dr); 2219 } 2220 2221 dbuf_dirty_record_t * 2222 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2223 { 2224 dnode_t *dn; 2225 objset_t *os; 2226 dbuf_dirty_record_t *dr, *dr_next, *dr_head; 2227 int txgoff = tx->tx_txg & TXG_MASK; 2228 boolean_t drop_struct_rwlock = B_FALSE; 2229 2230 ASSERT(tx->tx_txg != 0); 2231 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2232 DMU_TX_DIRTY_BUF(tx, db); 2233 2234 DB_DNODE_ENTER(db); 2235 dn = DB_DNODE(db); 2236 /* 2237 * Shouldn't dirty a regular buffer in syncing context. Private 2238 * objects may be dirtied in syncing context, but only if they 2239 * were already pre-dirtied in open context. 2240 */ 2241 #ifdef ZFS_DEBUG 2242 if (dn->dn_objset->os_dsl_dataset != NULL) { 2243 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, 2244 RW_READER, FTAG); 2245 } 2246 ASSERT(!dmu_tx_is_syncing(tx) || 2247 BP_IS_HOLE(dn->dn_objset->os_rootbp) || 2248 DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2249 dn->dn_objset->os_dsl_dataset == NULL); 2250 if (dn->dn_objset->os_dsl_dataset != NULL) 2251 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG); 2252 #endif 2253 /* 2254 * We make this assert for private objects as well, but after we 2255 * check if we're already dirty. They are allowed to re-dirty 2256 * in syncing context. 2257 */ 2258 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 2259 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2260 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2261 2262 mutex_enter(&db->db_mtx); 2263 /* 2264 * XXX make this true for indirects too? The problem is that 2265 * transactions created with dmu_tx_create_assigned() from 2266 * syncing context don't bother holding ahead. 2267 */ 2268 ASSERT(db->db_level != 0 || 2269 db->db_state == DB_CACHED || db->db_state == DB_FILL || 2270 db->db_state == DB_NOFILL); 2271 2272 mutex_enter(&dn->dn_mtx); 2273 dnode_set_dirtyctx(dn, tx, db); 2274 if (tx->tx_txg > dn->dn_dirty_txg) 2275 dn->dn_dirty_txg = tx->tx_txg; 2276 mutex_exit(&dn->dn_mtx); 2277 2278 if (db->db_blkid == DMU_SPILL_BLKID) 2279 dn->dn_have_spill = B_TRUE; 2280 2281 /* 2282 * If this buffer is already dirty, we're done. 2283 */ 2284 dr_head = list_head(&db->db_dirty_records); 2285 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg || 2286 db->db.db_object == DMU_META_DNODE_OBJECT); 2287 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg); 2288 if (dr_next && dr_next->dr_txg == tx->tx_txg) { 2289 DB_DNODE_EXIT(db); 2290 2291 dbuf_redirty(dr_next); 2292 mutex_exit(&db->db_mtx); 2293 return (dr_next); 2294 } 2295 2296 /* 2297 * Only valid if not already dirty. 2298 */ 2299 ASSERT(dn->dn_object == 0 || 2300 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx == 2301 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN)); 2302 2303 ASSERT3U(dn->dn_nlevels, >, db->db_level); 2304 2305 /* 2306 * We should only be dirtying in syncing context if it's the 2307 * mos or we're initializing the os or it's a special object. 2308 * However, we are allowed to dirty in syncing context provided 2309 * we already dirtied it in open context. Hence we must make 2310 * this assertion only if we're not already dirty. 2311 */ 2312 os = dn->dn_objset; 2313 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa)); 2314 #ifdef ZFS_DEBUG 2315 if (dn->dn_objset->os_dsl_dataset != NULL) 2316 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG); 2317 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) || 2318 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp)); 2319 if (dn->dn_objset->os_dsl_dataset != NULL) 2320 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG); 2321 #endif 2322 ASSERT(db->db.db_size != 0); 2323 2324 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2325 2326 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2327 dmu_objset_willuse_space(os, db->db.db_size, tx); 2328 } 2329 2330 /* 2331 * If this buffer is dirty in an old transaction group we need 2332 * to make a copy of it so that the changes we make in this 2333 * transaction group won't leak out when we sync the older txg. 2334 */ 2335 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP); 2336 list_link_init(&dr->dr_dirty_node); 2337 list_link_init(&dr->dr_dbuf_node); 2338 dr->dr_dnode = dn; 2339 if (db->db_level == 0) { 2340 void *data_old = db->db_buf; 2341 2342 if (db->db_state != DB_NOFILL) { 2343 if (db->db_blkid == DMU_BONUS_BLKID) { 2344 dbuf_fix_old_data(db, tx->tx_txg); 2345 data_old = db->db.db_data; 2346 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) { 2347 /* 2348 * Release the data buffer from the cache so 2349 * that we can modify it without impacting 2350 * possible other users of this cached data 2351 * block. Note that indirect blocks and 2352 * private objects are not released until the 2353 * syncing state (since they are only modified 2354 * then). 2355 */ 2356 arc_release(db->db_buf, db); 2357 dbuf_fix_old_data(db, tx->tx_txg); 2358 data_old = db->db_buf; 2359 } 2360 ASSERT(data_old != NULL); 2361 } 2362 dr->dt.dl.dr_data = data_old; 2363 } else { 2364 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL); 2365 list_create(&dr->dt.di.dr_children, 2366 sizeof (dbuf_dirty_record_t), 2367 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 2368 } 2369 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) { 2370 dr->dr_accounted = db->db.db_size; 2371 } 2372 dr->dr_dbuf = db; 2373 dr->dr_txg = tx->tx_txg; 2374 list_insert_before(&db->db_dirty_records, dr_next, dr); 2375 2376 /* 2377 * We could have been freed_in_flight between the dbuf_noread 2378 * and dbuf_dirty. We win, as though the dbuf_noread() had 2379 * happened after the free. 2380 */ 2381 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 2382 db->db_blkid != DMU_SPILL_BLKID) { 2383 mutex_enter(&dn->dn_mtx); 2384 if (dn->dn_free_ranges[txgoff] != NULL) { 2385 range_tree_clear(dn->dn_free_ranges[txgoff], 2386 db->db_blkid, 1); 2387 } 2388 mutex_exit(&dn->dn_mtx); 2389 db->db_freed_in_flight = FALSE; 2390 } 2391 2392 /* 2393 * This buffer is now part of this txg 2394 */ 2395 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg); 2396 db->db_dirtycnt += 1; 2397 ASSERT3U(db->db_dirtycnt, <=, 3); 2398 2399 mutex_exit(&db->db_mtx); 2400 2401 if (db->db_blkid == DMU_BONUS_BLKID || 2402 db->db_blkid == DMU_SPILL_BLKID) { 2403 mutex_enter(&dn->dn_mtx); 2404 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2405 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2406 mutex_exit(&dn->dn_mtx); 2407 dnode_setdirty(dn, tx); 2408 DB_DNODE_EXIT(db); 2409 return (dr); 2410 } 2411 2412 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 2413 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2414 drop_struct_rwlock = B_TRUE; 2415 } 2416 2417 /* 2418 * If we are overwriting a dedup BP, then unless it is snapshotted, 2419 * when we get to syncing context we will need to decrement its 2420 * refcount in the DDT. Prefetch the relevant DDT block so that 2421 * syncing context won't have to wait for the i/o. 2422 */ 2423 if (db->db_blkptr != NULL) { 2424 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG); 2425 ddt_prefetch(os->os_spa, db->db_blkptr); 2426 dmu_buf_unlock_parent(db, dblt, FTAG); 2427 } 2428 2429 /* 2430 * We need to hold the dn_struct_rwlock to make this assertion, 2431 * because it protects dn_phys / dn_next_nlevels from changing. 2432 */ 2433 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) || 2434 dn->dn_phys->dn_nlevels > db->db_level || 2435 dn->dn_next_nlevels[txgoff] > db->db_level || 2436 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level || 2437 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level); 2438 2439 2440 if (db->db_level == 0) { 2441 ASSERT(!db->db_objset->os_raw_receive || 2442 dn->dn_maxblkid >= db->db_blkid); 2443 dnode_new_blkid(dn, db->db_blkid, tx, 2444 drop_struct_rwlock, B_FALSE); 2445 ASSERT(dn->dn_maxblkid >= db->db_blkid); 2446 } 2447 2448 if (db->db_level+1 < dn->dn_nlevels) { 2449 dmu_buf_impl_t *parent = db->db_parent; 2450 dbuf_dirty_record_t *di; 2451 int parent_held = FALSE; 2452 2453 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) { 2454 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2455 parent = dbuf_hold_level(dn, db->db_level + 1, 2456 db->db_blkid >> epbs, FTAG); 2457 ASSERT(parent != NULL); 2458 parent_held = TRUE; 2459 } 2460 if (drop_struct_rwlock) 2461 rw_exit(&dn->dn_struct_rwlock); 2462 ASSERT3U(db->db_level + 1, ==, parent->db_level); 2463 di = dbuf_dirty(parent, tx); 2464 if (parent_held) 2465 dbuf_rele(parent, FTAG); 2466 2467 mutex_enter(&db->db_mtx); 2468 /* 2469 * Since we've dropped the mutex, it's possible that 2470 * dbuf_undirty() might have changed this out from under us. 2471 */ 2472 if (list_head(&db->db_dirty_records) == dr || 2473 dn->dn_object == DMU_META_DNODE_OBJECT) { 2474 mutex_enter(&di->dt.di.dr_mtx); 2475 ASSERT3U(di->dr_txg, ==, tx->tx_txg); 2476 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2477 list_insert_tail(&di->dt.di.dr_children, dr); 2478 mutex_exit(&di->dt.di.dr_mtx); 2479 dr->dr_parent = di; 2480 } 2481 mutex_exit(&db->db_mtx); 2482 } else { 2483 ASSERT(db->db_level + 1 == dn->dn_nlevels); 2484 ASSERT(db->db_blkid < dn->dn_nblkptr); 2485 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf); 2486 mutex_enter(&dn->dn_mtx); 2487 ASSERT(!list_link_active(&dr->dr_dirty_node)); 2488 list_insert_tail(&dn->dn_dirty_records[txgoff], dr); 2489 mutex_exit(&dn->dn_mtx); 2490 if (drop_struct_rwlock) 2491 rw_exit(&dn->dn_struct_rwlock); 2492 } 2493 2494 dnode_setdirty(dn, tx); 2495 DB_DNODE_EXIT(db); 2496 return (dr); 2497 } 2498 2499 static void 2500 dbuf_undirty_bonus(dbuf_dirty_record_t *dr) 2501 { 2502 dmu_buf_impl_t *db = dr->dr_dbuf; 2503 2504 if (dr->dt.dl.dr_data != db->db.db_data) { 2505 struct dnode *dn = dr->dr_dnode; 2506 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 2507 2508 kmem_free(dr->dt.dl.dr_data, max_bonuslen); 2509 arc_space_return(max_bonuslen, ARC_SPACE_BONUS); 2510 } 2511 db->db_data_pending = NULL; 2512 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 2513 list_remove(&db->db_dirty_records, dr); 2514 if (dr->dr_dbuf->db_level != 0) { 2515 mutex_destroy(&dr->dt.di.dr_mtx); 2516 list_destroy(&dr->dt.di.dr_children); 2517 } 2518 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2519 ASSERT3U(db->db_dirtycnt, >, 0); 2520 db->db_dirtycnt -= 1; 2521 } 2522 2523 /* 2524 * Undirty a buffer in the transaction group referenced by the given 2525 * transaction. Return whether this evicted the dbuf. 2526 */ 2527 boolean_t 2528 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx) 2529 { 2530 uint64_t txg = tx->tx_txg; 2531 boolean_t brtwrite; 2532 2533 ASSERT(txg != 0); 2534 2535 /* 2536 * Due to our use of dn_nlevels below, this can only be called 2537 * in open context, unless we are operating on the MOS. 2538 * From syncing context, dn_nlevels may be different from the 2539 * dn_nlevels used when dbuf was dirtied. 2540 */ 2541 ASSERT(db->db_objset == 2542 dmu_objset_pool(db->db_objset)->dp_meta_objset || 2543 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset))); 2544 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2545 ASSERT0(db->db_level); 2546 ASSERT(MUTEX_HELD(&db->db_mtx)); 2547 2548 /* 2549 * If this buffer is not dirty, we're done. 2550 */ 2551 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg); 2552 if (dr == NULL) 2553 return (B_FALSE); 2554 ASSERT(dr->dr_dbuf == db); 2555 2556 brtwrite = dr->dt.dl.dr_brtwrite; 2557 if (brtwrite) { 2558 /* 2559 * We are freeing a block that we cloned in the same 2560 * transaction group. 2561 */ 2562 brt_pending_remove(dmu_objset_spa(db->db_objset), 2563 &dr->dt.dl.dr_overridden_by, tx); 2564 } 2565 2566 dnode_t *dn = dr->dr_dnode; 2567 2568 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size); 2569 2570 ASSERT(db->db.db_size != 0); 2571 2572 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset), 2573 dr->dr_accounted, txg); 2574 2575 list_remove(&db->db_dirty_records, dr); 2576 2577 /* 2578 * Note that there are three places in dbuf_dirty() 2579 * where this dirty record may be put on a list. 2580 * Make sure to do a list_remove corresponding to 2581 * every one of those list_insert calls. 2582 */ 2583 if (dr->dr_parent) { 2584 mutex_enter(&dr->dr_parent->dt.di.dr_mtx); 2585 list_remove(&dr->dr_parent->dt.di.dr_children, dr); 2586 mutex_exit(&dr->dr_parent->dt.di.dr_mtx); 2587 } else if (db->db_blkid == DMU_SPILL_BLKID || 2588 db->db_level + 1 == dn->dn_nlevels) { 2589 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf); 2590 mutex_enter(&dn->dn_mtx); 2591 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr); 2592 mutex_exit(&dn->dn_mtx); 2593 } 2594 2595 if (db->db_state != DB_NOFILL && !brtwrite) { 2596 dbuf_unoverride(dr); 2597 2598 ASSERT(db->db_buf != NULL); 2599 ASSERT(dr->dt.dl.dr_data != NULL); 2600 if (dr->dt.dl.dr_data != db->db_buf) 2601 arc_buf_destroy(dr->dt.dl.dr_data, db); 2602 } 2603 2604 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 2605 2606 ASSERT(db->db_dirtycnt > 0); 2607 db->db_dirtycnt -= 1; 2608 2609 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) { 2610 ASSERT(db->db_state == DB_NOFILL || brtwrite || 2611 arc_released(db->db_buf)); 2612 dbuf_destroy(db); 2613 return (B_TRUE); 2614 } 2615 2616 return (B_FALSE); 2617 } 2618 2619 static void 2620 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx) 2621 { 2622 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2623 boolean_t undirty = B_FALSE; 2624 2625 ASSERT(tx->tx_txg != 0); 2626 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2627 2628 /* 2629 * Quick check for dirtiness to improve performance for some workloads 2630 * (e.g. file deletion with indirect blocks cached). 2631 */ 2632 mutex_enter(&db->db_mtx); 2633 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) { 2634 /* 2635 * It's possible that the dbuf is already dirty but not cached, 2636 * because there are some calls to dbuf_dirty() that don't 2637 * go through dmu_buf_will_dirty(). 2638 */ 2639 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2640 if (dr != NULL) { 2641 if (db->db_level == 0 && 2642 dr->dt.dl.dr_brtwrite) { 2643 /* 2644 * Block cloning: If we are dirtying a cloned 2645 * level 0 block, we cannot simply redirty it, 2646 * because this dr has no associated data. 2647 * We will go through a full undirtying below, 2648 * before dirtying it again. 2649 */ 2650 undirty = B_TRUE; 2651 } else { 2652 /* This dbuf is already dirty and cached. */ 2653 dbuf_redirty(dr); 2654 mutex_exit(&db->db_mtx); 2655 return; 2656 } 2657 } 2658 } 2659 mutex_exit(&db->db_mtx); 2660 2661 DB_DNODE_ENTER(db); 2662 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock)) 2663 flags |= DB_RF_HAVESTRUCT; 2664 DB_DNODE_EXIT(db); 2665 2666 /* 2667 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we 2668 * want to make sure dbuf_read() will read the pending cloned block and 2669 * not the uderlying block that is being replaced. dbuf_undirty() will 2670 * do dbuf_unoverride(), so we will end up with cloned block content, 2671 * without overridden BP. 2672 */ 2673 (void) dbuf_read(db, NULL, flags); 2674 if (undirty) { 2675 mutex_enter(&db->db_mtx); 2676 VERIFY(!dbuf_undirty(db, tx)); 2677 mutex_exit(&db->db_mtx); 2678 } 2679 (void) dbuf_dirty(db, tx); 2680 } 2681 2682 void 2683 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2684 { 2685 dmu_buf_will_dirty_impl(db_fake, 2686 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx); 2687 } 2688 2689 boolean_t 2690 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx) 2691 { 2692 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2693 dbuf_dirty_record_t *dr; 2694 2695 mutex_enter(&db->db_mtx); 2696 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2697 mutex_exit(&db->db_mtx); 2698 return (dr != NULL); 2699 } 2700 2701 void 2702 dmu_buf_will_clone(dmu_buf_t *db_fake, dmu_tx_t *tx) 2703 { 2704 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2705 2706 /* 2707 * Block cloning: We are going to clone into this block, so undirty 2708 * modifications done to this block so far in this txg. This includes 2709 * writes and clones into this block. 2710 */ 2711 mutex_enter(&db->db_mtx); 2712 DBUF_VERIFY(db); 2713 VERIFY(!dbuf_undirty(db, tx)); 2714 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg)); 2715 if (db->db_buf != NULL) { 2716 arc_buf_destroy(db->db_buf, db); 2717 db->db_buf = NULL; 2718 dbuf_clear_data(db); 2719 } 2720 2721 db->db_state = DB_NOFILL; 2722 DTRACE_SET_STATE(db, "allocating NOFILL buffer for clone"); 2723 2724 DBUF_VERIFY(db); 2725 mutex_exit(&db->db_mtx); 2726 2727 dbuf_noread(db); 2728 (void) dbuf_dirty(db, tx); 2729 } 2730 2731 void 2732 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx) 2733 { 2734 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2735 2736 mutex_enter(&db->db_mtx); 2737 db->db_state = DB_NOFILL; 2738 DTRACE_SET_STATE(db, "allocating NOFILL buffer"); 2739 mutex_exit(&db->db_mtx); 2740 2741 dbuf_noread(db); 2742 (void) dbuf_dirty(db, tx); 2743 } 2744 2745 void 2746 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail) 2747 { 2748 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2749 2750 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2751 ASSERT(tx->tx_txg != 0); 2752 ASSERT(db->db_level == 0); 2753 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2754 2755 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT || 2756 dmu_tx_private_ok(tx)); 2757 2758 mutex_enter(&db->db_mtx); 2759 if (db->db_state == DB_NOFILL) { 2760 /* 2761 * Block cloning: We will be completely overwriting a block 2762 * cloned in this transaction group, so let's undirty the 2763 * pending clone and mark the block as uncached. This will be 2764 * as if the clone was never done. But if the fill can fail 2765 * we should have a way to return back to the cloned data. 2766 */ 2767 if (canfail && dbuf_find_dirty_eq(db, tx->tx_txg) != NULL) { 2768 mutex_exit(&db->db_mtx); 2769 dmu_buf_will_dirty(db_fake, tx); 2770 return; 2771 } 2772 VERIFY(!dbuf_undirty(db, tx)); 2773 db->db_state = DB_UNCACHED; 2774 } 2775 mutex_exit(&db->db_mtx); 2776 2777 dbuf_noread(db); 2778 (void) dbuf_dirty(db, tx); 2779 } 2780 2781 /* 2782 * This function is effectively the same as dmu_buf_will_dirty(), but 2783 * indicates the caller expects raw encrypted data in the db, and provides 2784 * the crypt params (byteorder, salt, iv, mac) which should be stored in the 2785 * blkptr_t when this dbuf is written. This is only used for blocks of 2786 * dnodes, during raw receive. 2787 */ 2788 void 2789 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder, 2790 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx) 2791 { 2792 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 2793 dbuf_dirty_record_t *dr; 2794 2795 /* 2796 * dr_has_raw_params is only processed for blocks of dnodes 2797 * (see dbuf_sync_dnode_leaf_crypt()). 2798 */ 2799 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 2800 ASSERT3U(db->db_level, ==, 0); 2801 ASSERT(db->db_objset->os_raw_receive); 2802 2803 dmu_buf_will_dirty_impl(db_fake, 2804 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx); 2805 2806 dr = dbuf_find_dirty_eq(db, tx->tx_txg); 2807 2808 ASSERT3P(dr, !=, NULL); 2809 2810 dr->dt.dl.dr_has_raw_params = B_TRUE; 2811 dr->dt.dl.dr_byteorder = byteorder; 2812 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN); 2813 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN); 2814 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN); 2815 } 2816 2817 static void 2818 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx) 2819 { 2820 struct dirty_leaf *dl; 2821 dbuf_dirty_record_t *dr; 2822 2823 dr = list_head(&db->db_dirty_records); 2824 ASSERT3P(dr, !=, NULL); 2825 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2826 dl = &dr->dt.dl; 2827 dl->dr_overridden_by = *bp; 2828 dl->dr_override_state = DR_OVERRIDDEN; 2829 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2830 } 2831 2832 boolean_t 2833 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed) 2834 { 2835 (void) tx; 2836 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2837 mutex_enter(&db->db_mtx); 2838 DBUF_VERIFY(db); 2839 2840 if (db->db_state == DB_FILL) { 2841 if (db->db_level == 0 && db->db_freed_in_flight) { 2842 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2843 /* we were freed while filling */ 2844 /* XXX dbuf_undirty? */ 2845 memset(db->db.db_data, 0, db->db.db_size); 2846 db->db_freed_in_flight = FALSE; 2847 db->db_state = DB_CACHED; 2848 DTRACE_SET_STATE(db, 2849 "fill done handling freed in flight"); 2850 failed = B_FALSE; 2851 } else if (failed) { 2852 VERIFY(!dbuf_undirty(db, tx)); 2853 db->db_buf = NULL; 2854 dbuf_clear_data(db); 2855 DTRACE_SET_STATE(db, "fill failed"); 2856 } else { 2857 db->db_state = DB_CACHED; 2858 DTRACE_SET_STATE(db, "fill done"); 2859 } 2860 cv_broadcast(&db->db_changed); 2861 } else { 2862 db->db_state = DB_CACHED; 2863 failed = B_FALSE; 2864 } 2865 mutex_exit(&db->db_mtx); 2866 return (failed); 2867 } 2868 2869 void 2870 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data, 2871 bp_embedded_type_t etype, enum zio_compress comp, 2872 int uncompressed_size, int compressed_size, int byteorder, 2873 dmu_tx_t *tx) 2874 { 2875 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2876 struct dirty_leaf *dl; 2877 dmu_object_type_t type; 2878 dbuf_dirty_record_t *dr; 2879 2880 if (etype == BP_EMBEDDED_TYPE_DATA) { 2881 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset), 2882 SPA_FEATURE_EMBEDDED_DATA)); 2883 } 2884 2885 DB_DNODE_ENTER(db); 2886 type = DB_DNODE(db)->dn_type; 2887 DB_DNODE_EXIT(db); 2888 2889 ASSERT0(db->db_level); 2890 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2891 2892 dmu_buf_will_not_fill(dbuf, tx); 2893 2894 dr = list_head(&db->db_dirty_records); 2895 ASSERT3P(dr, !=, NULL); 2896 ASSERT3U(dr->dr_txg, ==, tx->tx_txg); 2897 dl = &dr->dt.dl; 2898 encode_embedded_bp_compressed(&dl->dr_overridden_by, 2899 data, comp, uncompressed_size, compressed_size); 2900 BPE_SET_ETYPE(&dl->dr_overridden_by, etype); 2901 BP_SET_TYPE(&dl->dr_overridden_by, type); 2902 BP_SET_LEVEL(&dl->dr_overridden_by, 0); 2903 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder); 2904 2905 dl->dr_override_state = DR_OVERRIDDEN; 2906 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg); 2907 } 2908 2909 void 2910 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx) 2911 { 2912 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf; 2913 dmu_object_type_t type; 2914 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset, 2915 SPA_FEATURE_REDACTED_DATASETS)); 2916 2917 DB_DNODE_ENTER(db); 2918 type = DB_DNODE(db)->dn_type; 2919 DB_DNODE_EXIT(db); 2920 2921 ASSERT0(db->db_level); 2922 dmu_buf_will_not_fill(dbuf, tx); 2923 2924 blkptr_t bp = { { { {0} } } }; 2925 BP_SET_TYPE(&bp, type); 2926 BP_SET_LEVEL(&bp, 0); 2927 BP_SET_BIRTH(&bp, tx->tx_txg, 0); 2928 BP_SET_REDACTED(&bp); 2929 BPE_SET_LSIZE(&bp, dbuf->db_size); 2930 2931 dbuf_override_impl(db, &bp, tx); 2932 } 2933 2934 /* 2935 * Directly assign a provided arc buf to a given dbuf if it's not referenced 2936 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf. 2937 */ 2938 void 2939 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx) 2940 { 2941 ASSERT(!zfs_refcount_is_zero(&db->db_holds)); 2942 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 2943 ASSERT(db->db_level == 0); 2944 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf)); 2945 ASSERT(buf != NULL); 2946 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size); 2947 ASSERT(tx->tx_txg != 0); 2948 2949 arc_return_buf(buf, db); 2950 ASSERT(arc_released(buf)); 2951 2952 mutex_enter(&db->db_mtx); 2953 2954 while (db->db_state == DB_READ || db->db_state == DB_FILL) 2955 cv_wait(&db->db_changed, &db->db_mtx); 2956 2957 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED || 2958 db->db_state == DB_NOFILL); 2959 2960 if (db->db_state == DB_CACHED && 2961 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) { 2962 /* 2963 * In practice, we will never have a case where we have an 2964 * encrypted arc buffer while additional holds exist on the 2965 * dbuf. We don't handle this here so we simply assert that 2966 * fact instead. 2967 */ 2968 ASSERT(!arc_is_encrypted(buf)); 2969 mutex_exit(&db->db_mtx); 2970 (void) dbuf_dirty(db, tx); 2971 memcpy(db->db.db_data, buf->b_data, db->db.db_size); 2972 arc_buf_destroy(buf, db); 2973 return; 2974 } 2975 2976 if (db->db_state == DB_CACHED) { 2977 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records); 2978 2979 ASSERT(db->db_buf != NULL); 2980 if (dr != NULL && dr->dr_txg == tx->tx_txg) { 2981 ASSERT(dr->dt.dl.dr_data == db->db_buf); 2982 2983 if (!arc_released(db->db_buf)) { 2984 ASSERT(dr->dt.dl.dr_override_state == 2985 DR_OVERRIDDEN); 2986 arc_release(db->db_buf, db); 2987 } 2988 dr->dt.dl.dr_data = buf; 2989 arc_buf_destroy(db->db_buf, db); 2990 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) { 2991 arc_release(db->db_buf, db); 2992 arc_buf_destroy(db->db_buf, db); 2993 } 2994 db->db_buf = NULL; 2995 } else if (db->db_state == DB_NOFILL) { 2996 /* 2997 * We will be completely replacing the cloned block. In case 2998 * it was cloned in this transaction group, let's undirty the 2999 * pending clone and mark the block as uncached. This will be 3000 * as if the clone was never done. 3001 */ 3002 VERIFY(!dbuf_undirty(db, tx)); 3003 db->db_state = DB_UNCACHED; 3004 } 3005 ASSERT(db->db_buf == NULL); 3006 dbuf_set_data(db, buf); 3007 db->db_state = DB_FILL; 3008 DTRACE_SET_STATE(db, "filling assigned arcbuf"); 3009 mutex_exit(&db->db_mtx); 3010 (void) dbuf_dirty(db, tx); 3011 dmu_buf_fill_done(&db->db, tx, B_FALSE); 3012 } 3013 3014 void 3015 dbuf_destroy(dmu_buf_impl_t *db) 3016 { 3017 dnode_t *dn; 3018 dmu_buf_impl_t *parent = db->db_parent; 3019 dmu_buf_impl_t *dndb; 3020 3021 ASSERT(MUTEX_HELD(&db->db_mtx)); 3022 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3023 3024 if (db->db_buf != NULL) { 3025 arc_buf_destroy(db->db_buf, db); 3026 db->db_buf = NULL; 3027 } 3028 3029 if (db->db_blkid == DMU_BONUS_BLKID) { 3030 int slots = DB_DNODE(db)->dn_num_slots; 3031 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots); 3032 if (db->db.db_data != NULL) { 3033 kmem_free(db->db.db_data, bonuslen); 3034 arc_space_return(bonuslen, ARC_SPACE_BONUS); 3035 db->db_state = DB_UNCACHED; 3036 DTRACE_SET_STATE(db, "buffer cleared"); 3037 } 3038 } 3039 3040 dbuf_clear_data(db); 3041 3042 if (multilist_link_active(&db->db_cache_link)) { 3043 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3044 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3045 3046 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3047 3048 ASSERT0(dmu_buf_user_size(&db->db)); 3049 (void) zfs_refcount_remove_many( 3050 &dbuf_caches[db->db_caching_status].size, 3051 db->db.db_size, db); 3052 3053 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3054 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3055 } else { 3056 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3057 DBUF_STAT_BUMPDOWN(cache_count); 3058 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], 3059 db->db.db_size); 3060 } 3061 db->db_caching_status = DB_NO_CACHE; 3062 } 3063 3064 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL); 3065 ASSERT(db->db_data_pending == NULL); 3066 ASSERT(list_is_empty(&db->db_dirty_records)); 3067 3068 db->db_state = DB_EVICTING; 3069 DTRACE_SET_STATE(db, "buffer eviction started"); 3070 db->db_blkptr = NULL; 3071 3072 /* 3073 * Now that db_state is DB_EVICTING, nobody else can find this via 3074 * the hash table. We can now drop db_mtx, which allows us to 3075 * acquire the dn_dbufs_mtx. 3076 */ 3077 mutex_exit(&db->db_mtx); 3078 3079 DB_DNODE_ENTER(db); 3080 dn = DB_DNODE(db); 3081 dndb = dn->dn_dbuf; 3082 if (db->db_blkid != DMU_BONUS_BLKID) { 3083 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx); 3084 if (needlock) 3085 mutex_enter_nested(&dn->dn_dbufs_mtx, 3086 NESTED_SINGLE); 3087 avl_remove(&dn->dn_dbufs, db); 3088 membar_producer(); 3089 DB_DNODE_EXIT(db); 3090 if (needlock) 3091 mutex_exit(&dn->dn_dbufs_mtx); 3092 /* 3093 * Decrementing the dbuf count means that the hold corresponding 3094 * to the removed dbuf is no longer discounted in dnode_move(), 3095 * so the dnode cannot be moved until after we release the hold. 3096 * The membar_producer() ensures visibility of the decremented 3097 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually 3098 * release any lock. 3099 */ 3100 mutex_enter(&dn->dn_mtx); 3101 dnode_rele_and_unlock(dn, db, B_TRUE); 3102 db->db_dnode_handle = NULL; 3103 3104 dbuf_hash_remove(db); 3105 } else { 3106 DB_DNODE_EXIT(db); 3107 } 3108 3109 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3110 3111 db->db_parent = NULL; 3112 3113 ASSERT(db->db_buf == NULL); 3114 ASSERT(db->db.db_data == NULL); 3115 ASSERT(db->db_hash_next == NULL); 3116 ASSERT(db->db_blkptr == NULL); 3117 ASSERT(db->db_data_pending == NULL); 3118 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 3119 ASSERT(!multilist_link_active(&db->db_cache_link)); 3120 3121 /* 3122 * If this dbuf is referenced from an indirect dbuf, 3123 * decrement the ref count on the indirect dbuf. 3124 */ 3125 if (parent && parent != dndb) { 3126 mutex_enter(&parent->db_mtx); 3127 dbuf_rele_and_unlock(parent, db, B_TRUE); 3128 } 3129 3130 kmem_cache_free(dbuf_kmem_cache, db); 3131 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3132 } 3133 3134 /* 3135 * Note: While bpp will always be updated if the function returns success, 3136 * parentp will not be updated if the dnode does not have dn_dbuf filled in; 3137 * this happens when the dnode is the meta-dnode, or {user|group|project}used 3138 * object. 3139 */ 3140 __attribute__((always_inline)) 3141 static inline int 3142 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse, 3143 dmu_buf_impl_t **parentp, blkptr_t **bpp) 3144 { 3145 *parentp = NULL; 3146 *bpp = NULL; 3147 3148 ASSERT(blkid != DMU_BONUS_BLKID); 3149 3150 if (blkid == DMU_SPILL_BLKID) { 3151 mutex_enter(&dn->dn_mtx); 3152 if (dn->dn_have_spill && 3153 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 3154 *bpp = DN_SPILL_BLKPTR(dn->dn_phys); 3155 else 3156 *bpp = NULL; 3157 dbuf_add_ref(dn->dn_dbuf, NULL); 3158 *parentp = dn->dn_dbuf; 3159 mutex_exit(&dn->dn_mtx); 3160 return (0); 3161 } 3162 3163 int nlevels = 3164 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels; 3165 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 3166 3167 ASSERT3U(level * epbs, <, 64); 3168 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3169 /* 3170 * This assertion shouldn't trip as long as the max indirect block size 3171 * is less than 1M. The reason for this is that up to that point, 3172 * the number of levels required to address an entire object with blocks 3173 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In 3174 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55 3175 * (i.e. we can address the entire object), objects will all use at most 3176 * N-1 levels and the assertion won't overflow. However, once epbs is 3177 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be 3178 * enough to address an entire object, so objects will have 5 levels, 3179 * but then this assertion will overflow. 3180 * 3181 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we 3182 * need to redo this logic to handle overflows. 3183 */ 3184 ASSERT(level >= nlevels || 3185 ((nlevels - level - 1) * epbs) + 3186 highbit64(dn->dn_phys->dn_nblkptr) <= 64); 3187 if (level >= nlevels || 3188 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr << 3189 ((nlevels - level - 1) * epbs)) || 3190 (fail_sparse && 3191 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) { 3192 /* the buffer has no parent yet */ 3193 return (SET_ERROR(ENOENT)); 3194 } else if (level < nlevels-1) { 3195 /* this block is referenced from an indirect block */ 3196 int err; 3197 3198 err = dbuf_hold_impl(dn, level + 1, 3199 blkid >> epbs, fail_sparse, FALSE, NULL, parentp); 3200 3201 if (err) 3202 return (err); 3203 err = dbuf_read(*parentp, NULL, 3204 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL)); 3205 if (err) { 3206 dbuf_rele(*parentp, NULL); 3207 *parentp = NULL; 3208 return (err); 3209 } 3210 rw_enter(&(*parentp)->db_rwlock, RW_READER); 3211 *bpp = ((blkptr_t *)(*parentp)->db.db_data) + 3212 (blkid & ((1ULL << epbs) - 1)); 3213 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs))) 3214 ASSERT(BP_IS_HOLE(*bpp)); 3215 rw_exit(&(*parentp)->db_rwlock); 3216 return (0); 3217 } else { 3218 /* the block is referenced from the dnode */ 3219 ASSERT3U(level, ==, nlevels-1); 3220 ASSERT(dn->dn_phys->dn_nblkptr == 0 || 3221 blkid < dn->dn_phys->dn_nblkptr); 3222 if (dn->dn_dbuf) { 3223 dbuf_add_ref(dn->dn_dbuf, NULL); 3224 *parentp = dn->dn_dbuf; 3225 } 3226 *bpp = &dn->dn_phys->dn_blkptr[blkid]; 3227 return (0); 3228 } 3229 } 3230 3231 static dmu_buf_impl_t * 3232 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid, 3233 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash) 3234 { 3235 objset_t *os = dn->dn_objset; 3236 dmu_buf_impl_t *db, *odb; 3237 3238 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3239 ASSERT(dn->dn_type != DMU_OT_NONE); 3240 3241 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP); 3242 3243 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t), 3244 offsetof(dbuf_dirty_record_t, dr_dbuf_node)); 3245 3246 db->db_objset = os; 3247 db->db.db_object = dn->dn_object; 3248 db->db_level = level; 3249 db->db_blkid = blkid; 3250 db->db_dirtycnt = 0; 3251 db->db_dnode_handle = dn->dn_handle; 3252 db->db_parent = parent; 3253 db->db_blkptr = blkptr; 3254 db->db_hash = hash; 3255 3256 db->db_user = NULL; 3257 db->db_user_immediate_evict = FALSE; 3258 db->db_freed_in_flight = FALSE; 3259 db->db_pending_evict = FALSE; 3260 3261 if (blkid == DMU_BONUS_BLKID) { 3262 ASSERT3P(parent, ==, dn->dn_dbuf); 3263 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 3264 (dn->dn_nblkptr-1) * sizeof (blkptr_t); 3265 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen); 3266 db->db.db_offset = DMU_BONUS_BLKID; 3267 db->db_state = DB_UNCACHED; 3268 DTRACE_SET_STATE(db, "bonus buffer created"); 3269 db->db_caching_status = DB_NO_CACHE; 3270 /* the bonus dbuf is not placed in the hash table */ 3271 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3272 return (db); 3273 } else if (blkid == DMU_SPILL_BLKID) { 3274 db->db.db_size = (blkptr != NULL) ? 3275 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE; 3276 db->db.db_offset = 0; 3277 } else { 3278 int blocksize = 3279 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz; 3280 db->db.db_size = blocksize; 3281 db->db.db_offset = db->db_blkid * blocksize; 3282 } 3283 3284 /* 3285 * Hold the dn_dbufs_mtx while we get the new dbuf 3286 * in the hash table *and* added to the dbufs list. 3287 * This prevents a possible deadlock with someone 3288 * trying to look up this dbuf before it's added to the 3289 * dn_dbufs list. 3290 */ 3291 mutex_enter(&dn->dn_dbufs_mtx); 3292 db->db_state = DB_EVICTING; /* not worth logging this state change */ 3293 if ((odb = dbuf_hash_insert(db)) != NULL) { 3294 /* someone else inserted it first */ 3295 mutex_exit(&dn->dn_dbufs_mtx); 3296 kmem_cache_free(dbuf_kmem_cache, db); 3297 DBUF_STAT_BUMP(hash_insert_race); 3298 return (odb); 3299 } 3300 avl_add(&dn->dn_dbufs, db); 3301 3302 db->db_state = DB_UNCACHED; 3303 DTRACE_SET_STATE(db, "regular buffer created"); 3304 db->db_caching_status = DB_NO_CACHE; 3305 mutex_exit(&dn->dn_dbufs_mtx); 3306 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF); 3307 3308 if (parent && parent != dn->dn_dbuf) 3309 dbuf_add_ref(parent, db); 3310 3311 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT || 3312 zfs_refcount_count(&dn->dn_holds) > 0); 3313 (void) zfs_refcount_add(&dn->dn_holds, db); 3314 3315 dprintf_dbuf(db, "db=%p\n", db); 3316 3317 return (db); 3318 } 3319 3320 /* 3321 * This function returns a block pointer and information about the object, 3322 * given a dnode and a block. This is a publicly accessible version of 3323 * dbuf_findbp that only returns some information, rather than the 3324 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock 3325 * should be locked as (at least) a reader. 3326 */ 3327 int 3328 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid, 3329 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift) 3330 { 3331 dmu_buf_impl_t *dbp = NULL; 3332 blkptr_t *bp2; 3333 int err = 0; 3334 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3335 3336 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2); 3337 if (err == 0) { 3338 ASSERT3P(bp2, !=, NULL); 3339 *bp = *bp2; 3340 if (dbp != NULL) 3341 dbuf_rele(dbp, NULL); 3342 if (datablkszsec != NULL) 3343 *datablkszsec = dn->dn_phys->dn_datablkszsec; 3344 if (indblkshift != NULL) 3345 *indblkshift = dn->dn_phys->dn_indblkshift; 3346 } 3347 3348 return (err); 3349 } 3350 3351 typedef struct dbuf_prefetch_arg { 3352 spa_t *dpa_spa; /* The spa to issue the prefetch in. */ 3353 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */ 3354 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */ 3355 int dpa_curlevel; /* The current level that we're reading */ 3356 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */ 3357 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */ 3358 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */ 3359 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */ 3360 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */ 3361 void *dpa_arg; /* prefetch completion arg */ 3362 } dbuf_prefetch_arg_t; 3363 3364 static void 3365 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done) 3366 { 3367 if (dpa->dpa_cb != NULL) { 3368 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level, 3369 dpa->dpa_zb.zb_blkid, io_done); 3370 } 3371 kmem_free(dpa, sizeof (*dpa)); 3372 } 3373 3374 static void 3375 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb, 3376 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3377 { 3378 (void) zio, (void) zb, (void) iobp; 3379 dbuf_prefetch_arg_t *dpa = private; 3380 3381 if (abuf != NULL) 3382 arc_buf_destroy(abuf, private); 3383 3384 dbuf_prefetch_fini(dpa, B_TRUE); 3385 } 3386 3387 /* 3388 * Actually issue the prefetch read for the block given. 3389 */ 3390 static void 3391 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp) 3392 { 3393 ASSERT(!BP_IS_REDACTED(bp) || 3394 dsl_dataset_feature_is_active( 3395 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3396 SPA_FEATURE_REDACTED_DATASETS)); 3397 3398 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 3399 return (dbuf_prefetch_fini(dpa, B_FALSE)); 3400 3401 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 3402 arc_flags_t aflags = 3403 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH | 3404 ARC_FLAG_NO_BUF; 3405 3406 /* dnodes are always read as raw and then converted later */ 3407 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) && 3408 dpa->dpa_curlevel == 0) 3409 zio_flags |= ZIO_FLAG_RAW; 3410 3411 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3412 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level); 3413 ASSERT(dpa->dpa_zio != NULL); 3414 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, 3415 dbuf_issue_final_prefetch_done, dpa, 3416 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb); 3417 } 3418 3419 /* 3420 * Called when an indirect block above our prefetch target is read in. This 3421 * will either read in the next indirect block down the tree or issue the actual 3422 * prefetch if the next block down is our target. 3423 */ 3424 static void 3425 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb, 3426 const blkptr_t *iobp, arc_buf_t *abuf, void *private) 3427 { 3428 (void) zb, (void) iobp; 3429 dbuf_prefetch_arg_t *dpa = private; 3430 3431 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel); 3432 ASSERT3S(dpa->dpa_curlevel, >, 0); 3433 3434 if (abuf == NULL) { 3435 ASSERT(zio == NULL || zio->io_error != 0); 3436 dbuf_prefetch_fini(dpa, B_TRUE); 3437 return; 3438 } 3439 ASSERT(zio == NULL || zio->io_error == 0); 3440 3441 /* 3442 * The dpa_dnode is only valid if we are called with a NULL 3443 * zio. This indicates that the arc_read() returned without 3444 * first calling zio_read() to issue a physical read. Once 3445 * a physical read is made the dpa_dnode must be invalidated 3446 * as the locks guarding it may have been dropped. If the 3447 * dpa_dnode is still valid, then we want to add it to the dbuf 3448 * cache. To do so, we must hold the dbuf associated with the block 3449 * we just prefetched, read its contents so that we associate it 3450 * with an arc_buf_t, and then release it. 3451 */ 3452 if (zio != NULL) { 3453 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel); 3454 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) { 3455 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size); 3456 } else { 3457 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size); 3458 } 3459 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa); 3460 3461 dpa->dpa_dnode = NULL; 3462 } else if (dpa->dpa_dnode != NULL) { 3463 uint64_t curblkid = dpa->dpa_zb.zb_blkid >> 3464 (dpa->dpa_epbs * (dpa->dpa_curlevel - 3465 dpa->dpa_zb.zb_level)); 3466 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode, 3467 dpa->dpa_curlevel, curblkid, FTAG); 3468 if (db == NULL) { 3469 arc_buf_destroy(abuf, private); 3470 dbuf_prefetch_fini(dpa, B_TRUE); 3471 return; 3472 } 3473 (void) dbuf_read(db, NULL, 3474 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT); 3475 dbuf_rele(db, FTAG); 3476 } 3477 3478 dpa->dpa_curlevel--; 3479 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >> 3480 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level)); 3481 blkptr_t *bp = ((blkptr_t *)abuf->b_data) + 3482 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs); 3483 3484 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode && 3485 dsl_dataset_feature_is_active( 3486 dpa->dpa_dnode->dn_objset->os_dsl_dataset, 3487 SPA_FEATURE_REDACTED_DATASETS))); 3488 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) { 3489 arc_buf_destroy(abuf, private); 3490 dbuf_prefetch_fini(dpa, B_TRUE); 3491 return; 3492 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) { 3493 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid); 3494 dbuf_issue_final_prefetch(dpa, bp); 3495 } else { 3496 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3497 zbookmark_phys_t zb; 3498 3499 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3500 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE) 3501 iter_aflags |= ARC_FLAG_L2CACHE; 3502 3503 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp)); 3504 3505 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset, 3506 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid); 3507 3508 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3509 bp, dbuf_prefetch_indirect_done, dpa, 3510 ZIO_PRIORITY_SYNC_READ, 3511 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3512 &iter_aflags, &zb); 3513 } 3514 3515 arc_buf_destroy(abuf, private); 3516 } 3517 3518 /* 3519 * Issue prefetch reads for the given block on the given level. If the indirect 3520 * blocks above that block are not in memory, we will read them in 3521 * asynchronously. As a result, this call never blocks waiting for a read to 3522 * complete. Note that the prefetch might fail if the dataset is encrypted and 3523 * the encryption key is unmapped before the IO completes. 3524 */ 3525 int 3526 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid, 3527 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb, 3528 void *arg) 3529 { 3530 blkptr_t bp; 3531 int epbs, nlevels, curlevel; 3532 uint64_t curblkid; 3533 3534 ASSERT(blkid != DMU_BONUS_BLKID); 3535 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3536 3537 if (blkid > dn->dn_maxblkid) 3538 goto no_issue; 3539 3540 if (level == 0 && dnode_block_freed(dn, blkid)) 3541 goto no_issue; 3542 3543 /* 3544 * This dnode hasn't been written to disk yet, so there's nothing to 3545 * prefetch. 3546 */ 3547 nlevels = dn->dn_phys->dn_nlevels; 3548 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0) 3549 goto no_issue; 3550 3551 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 3552 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level)) 3553 goto no_issue; 3554 3555 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object, 3556 level, blkid, NULL); 3557 if (db != NULL) { 3558 mutex_exit(&db->db_mtx); 3559 /* 3560 * This dbuf already exists. It is either CACHED, or 3561 * (we assume) about to be read or filled. 3562 */ 3563 goto no_issue; 3564 } 3565 3566 /* 3567 * Find the closest ancestor (indirect block) of the target block 3568 * that is present in the cache. In this indirect block, we will 3569 * find the bp that is at curlevel, curblkid. 3570 */ 3571 curlevel = level; 3572 curblkid = blkid; 3573 while (curlevel < nlevels - 1) { 3574 int parent_level = curlevel + 1; 3575 uint64_t parent_blkid = curblkid >> epbs; 3576 dmu_buf_impl_t *db; 3577 3578 if (dbuf_hold_impl(dn, parent_level, parent_blkid, 3579 FALSE, TRUE, FTAG, &db) == 0) { 3580 blkptr_t *bpp = db->db_buf->b_data; 3581 bp = bpp[P2PHASE(curblkid, 1 << epbs)]; 3582 dbuf_rele(db, FTAG); 3583 break; 3584 } 3585 3586 curlevel = parent_level; 3587 curblkid = parent_blkid; 3588 } 3589 3590 if (curlevel == nlevels - 1) { 3591 /* No cached indirect blocks found. */ 3592 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr); 3593 bp = dn->dn_phys->dn_blkptr[curblkid]; 3594 } 3595 ASSERT(!BP_IS_REDACTED(&bp) || 3596 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset, 3597 SPA_FEATURE_REDACTED_DATASETS)); 3598 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp)) 3599 goto no_issue; 3600 3601 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp)); 3602 3603 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL, 3604 ZIO_FLAG_CANFAIL); 3605 3606 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP); 3607 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 3608 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3609 dn->dn_object, level, blkid); 3610 dpa->dpa_curlevel = curlevel; 3611 dpa->dpa_prio = prio; 3612 dpa->dpa_aflags = aflags; 3613 dpa->dpa_spa = dn->dn_objset->os_spa; 3614 dpa->dpa_dnode = dn; 3615 dpa->dpa_epbs = epbs; 3616 dpa->dpa_zio = pio; 3617 dpa->dpa_cb = cb; 3618 dpa->dpa_arg = arg; 3619 3620 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level)) 3621 dpa->dpa_aflags |= ARC_FLAG_UNCACHED; 3622 else if (dnode_level_is_l2cacheable(&bp, dn, level)) 3623 dpa->dpa_aflags |= ARC_FLAG_L2CACHE; 3624 3625 /* 3626 * If we have the indirect just above us, no need to do the asynchronous 3627 * prefetch chain; we'll just run the last step ourselves. If we're at 3628 * a higher level, though, we want to issue the prefetches for all the 3629 * indirect blocks asynchronously, so we can go on with whatever we were 3630 * doing. 3631 */ 3632 if (curlevel == level) { 3633 ASSERT3U(curblkid, ==, blkid); 3634 dbuf_issue_final_prefetch(dpa, &bp); 3635 } else { 3636 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT; 3637 zbookmark_phys_t zb; 3638 3639 /* flag if L2ARC eligible, l2arc_noprefetch then decides */ 3640 if (dnode_level_is_l2cacheable(&bp, dn, level)) 3641 iter_aflags |= ARC_FLAG_L2CACHE; 3642 3643 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET, 3644 dn->dn_object, curlevel, curblkid); 3645 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, 3646 &bp, dbuf_prefetch_indirect_done, dpa, 3647 ZIO_PRIORITY_SYNC_READ, 3648 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 3649 &iter_aflags, &zb); 3650 } 3651 /* 3652 * We use pio here instead of dpa_zio since it's possible that 3653 * dpa may have already been freed. 3654 */ 3655 zio_nowait(pio); 3656 return (1); 3657 no_issue: 3658 if (cb != NULL) 3659 cb(arg, level, blkid, B_FALSE); 3660 return (0); 3661 } 3662 3663 int 3664 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio, 3665 arc_flags_t aflags) 3666 { 3667 3668 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL)); 3669 } 3670 3671 /* 3672 * Helper function for dbuf_hold_impl() to copy a buffer. Handles 3673 * the case of encrypted, compressed and uncompressed buffers by 3674 * allocating the new buffer, respectively, with arc_alloc_raw_buf(), 3675 * arc_alloc_compressed_buf() or arc_alloc_buf().* 3676 * 3677 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl(). 3678 */ 3679 noinline static void 3680 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db) 3681 { 3682 dbuf_dirty_record_t *dr = db->db_data_pending; 3683 arc_buf_t *data = dr->dt.dl.dr_data; 3684 enum zio_compress compress_type = arc_get_compression(data); 3685 uint8_t complevel = arc_get_complevel(data); 3686 3687 if (arc_is_encrypted(data)) { 3688 boolean_t byteorder; 3689 uint8_t salt[ZIO_DATA_SALT_LEN]; 3690 uint8_t iv[ZIO_DATA_IV_LEN]; 3691 uint8_t mac[ZIO_DATA_MAC_LEN]; 3692 3693 arc_get_raw_params(data, &byteorder, salt, iv, mac); 3694 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db, 3695 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac, 3696 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data), 3697 compress_type, complevel)); 3698 } else if (compress_type != ZIO_COMPRESS_OFF) { 3699 dbuf_set_data(db, arc_alloc_compressed_buf( 3700 dn->dn_objset->os_spa, db, arc_buf_size(data), 3701 arc_buf_lsize(data), compress_type, complevel)); 3702 } else { 3703 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db, 3704 DBUF_GET_BUFC_TYPE(db), db->db.db_size)); 3705 } 3706 3707 rw_enter(&db->db_rwlock, RW_WRITER); 3708 memcpy(db->db.db_data, data->b_data, arc_buf_size(data)); 3709 rw_exit(&db->db_rwlock); 3710 } 3711 3712 /* 3713 * Returns with db_holds incremented, and db_mtx not held. 3714 * Note: dn_struct_rwlock must be held. 3715 */ 3716 int 3717 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid, 3718 boolean_t fail_sparse, boolean_t fail_uncached, 3719 const void *tag, dmu_buf_impl_t **dbp) 3720 { 3721 dmu_buf_impl_t *db, *parent = NULL; 3722 uint64_t hv; 3723 3724 /* If the pool has been created, verify the tx_sync_lock is not held */ 3725 spa_t *spa = dn->dn_objset->os_spa; 3726 dsl_pool_t *dp = spa->spa_dsl_pool; 3727 if (dp != NULL) { 3728 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock)); 3729 } 3730 3731 ASSERT(blkid != DMU_BONUS_BLKID); 3732 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 3733 ASSERT3U(dn->dn_nlevels, >, level); 3734 3735 *dbp = NULL; 3736 3737 /* dbuf_find() returns with db_mtx held */ 3738 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv); 3739 3740 if (db == NULL) { 3741 blkptr_t *bp = NULL; 3742 int err; 3743 3744 if (fail_uncached) 3745 return (SET_ERROR(ENOENT)); 3746 3747 ASSERT3P(parent, ==, NULL); 3748 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp); 3749 if (fail_sparse) { 3750 if (err == 0 && bp && BP_IS_HOLE(bp)) 3751 err = SET_ERROR(ENOENT); 3752 if (err) { 3753 if (parent) 3754 dbuf_rele(parent, NULL); 3755 return (err); 3756 } 3757 } 3758 if (err && err != ENOENT) 3759 return (err); 3760 db = dbuf_create(dn, level, blkid, parent, bp, hv); 3761 } 3762 3763 if (fail_uncached && db->db_state != DB_CACHED) { 3764 mutex_exit(&db->db_mtx); 3765 return (SET_ERROR(ENOENT)); 3766 } 3767 3768 if (db->db_buf != NULL) { 3769 arc_buf_access(db->db_buf); 3770 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data); 3771 } 3772 3773 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf)); 3774 3775 /* 3776 * If this buffer is currently syncing out, and we are 3777 * still referencing it from db_data, we need to make a copy 3778 * of it in case we decide we want to dirty it again in this txg. 3779 */ 3780 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID && 3781 dn->dn_object != DMU_META_DNODE_OBJECT && 3782 db->db_state == DB_CACHED && db->db_data_pending) { 3783 dbuf_dirty_record_t *dr = db->db_data_pending; 3784 if (dr->dt.dl.dr_data == db->db_buf) { 3785 ASSERT3P(db->db_buf, !=, NULL); 3786 dbuf_hold_copy(dn, db); 3787 } 3788 } 3789 3790 if (multilist_link_active(&db->db_cache_link)) { 3791 ASSERT(zfs_refcount_is_zero(&db->db_holds)); 3792 ASSERT(db->db_caching_status == DB_DBUF_CACHE || 3793 db->db_caching_status == DB_DBUF_METADATA_CACHE); 3794 3795 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db); 3796 3797 uint64_t size = db->db.db_size + dmu_buf_user_size(&db->db); 3798 (void) zfs_refcount_remove_many( 3799 &dbuf_caches[db->db_caching_status].size, size, db); 3800 3801 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) { 3802 DBUF_STAT_BUMPDOWN(metadata_cache_count); 3803 } else { 3804 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]); 3805 DBUF_STAT_BUMPDOWN(cache_count); 3806 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size); 3807 } 3808 db->db_caching_status = DB_NO_CACHE; 3809 } 3810 (void) zfs_refcount_add(&db->db_holds, tag); 3811 DBUF_VERIFY(db); 3812 mutex_exit(&db->db_mtx); 3813 3814 /* NOTE: we can't rele the parent until after we drop the db_mtx */ 3815 if (parent) 3816 dbuf_rele(parent, NULL); 3817 3818 ASSERT3P(DB_DNODE(db), ==, dn); 3819 ASSERT3U(db->db_blkid, ==, blkid); 3820 ASSERT3U(db->db_level, ==, level); 3821 *dbp = db; 3822 3823 return (0); 3824 } 3825 3826 dmu_buf_impl_t * 3827 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag) 3828 { 3829 return (dbuf_hold_level(dn, 0, blkid, tag)); 3830 } 3831 3832 dmu_buf_impl_t * 3833 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag) 3834 { 3835 dmu_buf_impl_t *db; 3836 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db); 3837 return (err ? NULL : db); 3838 } 3839 3840 void 3841 dbuf_create_bonus(dnode_t *dn) 3842 { 3843 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 3844 3845 ASSERT(dn->dn_bonus == NULL); 3846 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL, 3847 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID)); 3848 } 3849 3850 int 3851 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx) 3852 { 3853 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3854 3855 if (db->db_blkid != DMU_SPILL_BLKID) 3856 return (SET_ERROR(ENOTSUP)); 3857 if (blksz == 0) 3858 blksz = SPA_MINBLOCKSIZE; 3859 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset))); 3860 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE); 3861 3862 dbuf_new_size(db, blksz, tx); 3863 3864 return (0); 3865 } 3866 3867 void 3868 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx) 3869 { 3870 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx); 3871 } 3872 3873 #pragma weak dmu_buf_add_ref = dbuf_add_ref 3874 void 3875 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag) 3876 { 3877 int64_t holds = zfs_refcount_add(&db->db_holds, tag); 3878 VERIFY3S(holds, >, 1); 3879 } 3880 3881 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref 3882 boolean_t 3883 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid, 3884 const void *tag) 3885 { 3886 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 3887 dmu_buf_impl_t *found_db; 3888 boolean_t result = B_FALSE; 3889 3890 if (blkid == DMU_BONUS_BLKID) 3891 found_db = dbuf_find_bonus(os, obj); 3892 else 3893 found_db = dbuf_find(os, obj, 0, blkid, NULL); 3894 3895 if (found_db != NULL) { 3896 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) { 3897 (void) zfs_refcount_add(&db->db_holds, tag); 3898 result = B_TRUE; 3899 } 3900 mutex_exit(&found_db->db_mtx); 3901 } 3902 return (result); 3903 } 3904 3905 /* 3906 * If you call dbuf_rele() you had better not be referencing the dnode handle 3907 * unless you have some other direct or indirect hold on the dnode. (An indirect 3908 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.) 3909 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the 3910 * dnode's parent dbuf evicting its dnode handles. 3911 */ 3912 void 3913 dbuf_rele(dmu_buf_impl_t *db, const void *tag) 3914 { 3915 mutex_enter(&db->db_mtx); 3916 dbuf_rele_and_unlock(db, tag, B_FALSE); 3917 } 3918 3919 void 3920 dmu_buf_rele(dmu_buf_t *db, const void *tag) 3921 { 3922 dbuf_rele((dmu_buf_impl_t *)db, tag); 3923 } 3924 3925 /* 3926 * dbuf_rele() for an already-locked dbuf. This is necessary to allow 3927 * db_dirtycnt and db_holds to be updated atomically. The 'evicting' 3928 * argument should be set if we are already in the dbuf-evicting code 3929 * path, in which case we don't want to recursively evict. This allows us to 3930 * avoid deeply nested stacks that would have a call flow similar to this: 3931 * 3932 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify() 3933 * ^ | 3934 * | | 3935 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+ 3936 * 3937 */ 3938 void 3939 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting) 3940 { 3941 int64_t holds; 3942 uint64_t size; 3943 3944 ASSERT(MUTEX_HELD(&db->db_mtx)); 3945 DBUF_VERIFY(db); 3946 3947 /* 3948 * Remove the reference to the dbuf before removing its hold on the 3949 * dnode so we can guarantee in dnode_move() that a referenced bonus 3950 * buffer has a corresponding dnode hold. 3951 */ 3952 holds = zfs_refcount_remove(&db->db_holds, tag); 3953 ASSERT(holds >= 0); 3954 3955 /* 3956 * We can't freeze indirects if there is a possibility that they 3957 * may be modified in the current syncing context. 3958 */ 3959 if (db->db_buf != NULL && 3960 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) { 3961 arc_buf_freeze(db->db_buf); 3962 } 3963 3964 if (holds == db->db_dirtycnt && 3965 db->db_level == 0 && db->db_user_immediate_evict) 3966 dbuf_evict_user(db); 3967 3968 if (holds == 0) { 3969 if (db->db_blkid == DMU_BONUS_BLKID) { 3970 dnode_t *dn; 3971 boolean_t evict_dbuf = db->db_pending_evict; 3972 3973 /* 3974 * If the dnode moves here, we cannot cross this 3975 * barrier until the move completes. 3976 */ 3977 DB_DNODE_ENTER(db); 3978 3979 dn = DB_DNODE(db); 3980 atomic_dec_32(&dn->dn_dbufs_count); 3981 3982 /* 3983 * Decrementing the dbuf count means that the bonus 3984 * buffer's dnode hold is no longer discounted in 3985 * dnode_move(). The dnode cannot move until after 3986 * the dnode_rele() below. 3987 */ 3988 DB_DNODE_EXIT(db); 3989 3990 /* 3991 * Do not reference db after its lock is dropped. 3992 * Another thread may evict it. 3993 */ 3994 mutex_exit(&db->db_mtx); 3995 3996 if (evict_dbuf) 3997 dnode_evict_bonus(dn); 3998 3999 dnode_rele(dn, db); 4000 } else if (db->db_buf == NULL) { 4001 /* 4002 * This is a special case: we never associated this 4003 * dbuf with any data allocated from the ARC. 4004 */ 4005 ASSERT(db->db_state == DB_UNCACHED || 4006 db->db_state == DB_NOFILL); 4007 dbuf_destroy(db); 4008 } else if (arc_released(db->db_buf)) { 4009 /* 4010 * This dbuf has anonymous data associated with it. 4011 */ 4012 dbuf_destroy(db); 4013 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) || 4014 db->db_pending_evict) { 4015 dbuf_destroy(db); 4016 } else if (!multilist_link_active(&db->db_cache_link)) { 4017 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4018 4019 dbuf_cached_state_t dcs = 4020 dbuf_include_in_metadata_cache(db) ? 4021 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE; 4022 db->db_caching_status = dcs; 4023 4024 multilist_insert(&dbuf_caches[dcs].cache, db); 4025 uint64_t db_size = db->db.db_size + 4026 dmu_buf_user_size(&db->db); 4027 size = zfs_refcount_add_many( 4028 &dbuf_caches[dcs].size, db_size, db); 4029 uint8_t db_level = db->db_level; 4030 mutex_exit(&db->db_mtx); 4031 4032 if (dcs == DB_DBUF_METADATA_CACHE) { 4033 DBUF_STAT_BUMP(metadata_cache_count); 4034 DBUF_STAT_MAX(metadata_cache_size_bytes_max, 4035 size); 4036 } else { 4037 DBUF_STAT_BUMP(cache_count); 4038 DBUF_STAT_MAX(cache_size_bytes_max, size); 4039 DBUF_STAT_BUMP(cache_levels[db_level]); 4040 DBUF_STAT_INCR(cache_levels_bytes[db_level], 4041 db_size); 4042 } 4043 4044 if (dcs == DB_DBUF_CACHE && !evicting) 4045 dbuf_evict_notify(size); 4046 } 4047 } else { 4048 mutex_exit(&db->db_mtx); 4049 } 4050 4051 } 4052 4053 #pragma weak dmu_buf_refcount = dbuf_refcount 4054 uint64_t 4055 dbuf_refcount(dmu_buf_impl_t *db) 4056 { 4057 return (zfs_refcount_count(&db->db_holds)); 4058 } 4059 4060 uint64_t 4061 dmu_buf_user_refcount(dmu_buf_t *db_fake) 4062 { 4063 uint64_t holds; 4064 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4065 4066 mutex_enter(&db->db_mtx); 4067 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt); 4068 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt; 4069 mutex_exit(&db->db_mtx); 4070 4071 return (holds); 4072 } 4073 4074 void * 4075 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user, 4076 dmu_buf_user_t *new_user) 4077 { 4078 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4079 4080 mutex_enter(&db->db_mtx); 4081 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4082 if (db->db_user == old_user) 4083 db->db_user = new_user; 4084 else 4085 old_user = db->db_user; 4086 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4087 mutex_exit(&db->db_mtx); 4088 4089 return (old_user); 4090 } 4091 4092 void * 4093 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4094 { 4095 return (dmu_buf_replace_user(db_fake, NULL, user)); 4096 } 4097 4098 void * 4099 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4100 { 4101 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4102 4103 db->db_user_immediate_evict = TRUE; 4104 return (dmu_buf_set_user(db_fake, user)); 4105 } 4106 4107 void * 4108 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user) 4109 { 4110 return (dmu_buf_replace_user(db_fake, user, NULL)); 4111 } 4112 4113 void * 4114 dmu_buf_get_user(dmu_buf_t *db_fake) 4115 { 4116 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4117 4118 dbuf_verify_user(db, DBVU_NOT_EVICTING); 4119 return (db->db_user); 4120 } 4121 4122 uint64_t 4123 dmu_buf_user_size(dmu_buf_t *db_fake) 4124 { 4125 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4126 if (db->db_user == NULL) 4127 return (0); 4128 return (atomic_load_64(&db->db_user->dbu_size)); 4129 } 4130 4131 void 4132 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd) 4133 { 4134 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4135 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4136 ASSERT3P(db->db_user, !=, NULL); 4137 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd); 4138 atomic_add_64(&db->db_user->dbu_size, nadd); 4139 } 4140 4141 void 4142 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub) 4143 { 4144 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 4145 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE); 4146 ASSERT3P(db->db_user, !=, NULL); 4147 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub); 4148 atomic_sub_64(&db->db_user->dbu_size, nsub); 4149 } 4150 4151 void 4152 dmu_buf_user_evict_wait(void) 4153 { 4154 taskq_wait(dbu_evict_taskq); 4155 } 4156 4157 blkptr_t * 4158 dmu_buf_get_blkptr(dmu_buf_t *db) 4159 { 4160 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4161 return (dbi->db_blkptr); 4162 } 4163 4164 objset_t * 4165 dmu_buf_get_objset(dmu_buf_t *db) 4166 { 4167 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 4168 return (dbi->db_objset); 4169 } 4170 4171 static void 4172 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db) 4173 { 4174 /* ASSERT(dmu_tx_is_syncing(tx) */ 4175 ASSERT(MUTEX_HELD(&db->db_mtx)); 4176 4177 if (db->db_blkptr != NULL) 4178 return; 4179 4180 if (db->db_blkid == DMU_SPILL_BLKID) { 4181 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys); 4182 BP_ZERO(db->db_blkptr); 4183 return; 4184 } 4185 if (db->db_level == dn->dn_phys->dn_nlevels-1) { 4186 /* 4187 * This buffer was allocated at a time when there was 4188 * no available blkptrs from the dnode, or it was 4189 * inappropriate to hook it in (i.e., nlevels mismatch). 4190 */ 4191 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr); 4192 ASSERT(db->db_parent == NULL); 4193 db->db_parent = dn->dn_dbuf; 4194 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid]; 4195 DBUF_VERIFY(db); 4196 } else { 4197 dmu_buf_impl_t *parent = db->db_parent; 4198 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4199 4200 ASSERT(dn->dn_phys->dn_nlevels > 1); 4201 if (parent == NULL) { 4202 mutex_exit(&db->db_mtx); 4203 rw_enter(&dn->dn_struct_rwlock, RW_READER); 4204 parent = dbuf_hold_level(dn, db->db_level + 1, 4205 db->db_blkid >> epbs, db); 4206 rw_exit(&dn->dn_struct_rwlock); 4207 mutex_enter(&db->db_mtx); 4208 db->db_parent = parent; 4209 } 4210 db->db_blkptr = (blkptr_t *)parent->db.db_data + 4211 (db->db_blkid & ((1ULL << epbs) - 1)); 4212 DBUF_VERIFY(db); 4213 } 4214 } 4215 4216 static void 4217 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4218 { 4219 dmu_buf_impl_t *db = dr->dr_dbuf; 4220 void *data = dr->dt.dl.dr_data; 4221 4222 ASSERT0(db->db_level); 4223 ASSERT(MUTEX_HELD(&db->db_mtx)); 4224 ASSERT(db->db_blkid == DMU_BONUS_BLKID); 4225 ASSERT(data != NULL); 4226 4227 dnode_t *dn = dr->dr_dnode; 4228 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=, 4229 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1)); 4230 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys)); 4231 4232 dbuf_sync_leaf_verify_bonus_dnode(dr); 4233 4234 dbuf_undirty_bonus(dr); 4235 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4236 } 4237 4238 /* 4239 * When syncing out a blocks of dnodes, adjust the block to deal with 4240 * encryption. Normally, we make sure the block is decrypted before writing 4241 * it. If we have crypt params, then we are writing a raw (encrypted) block, 4242 * from a raw receive. In this case, set the ARC buf's crypt params so 4243 * that the BP will be filled with the correct byteorder, salt, iv, and mac. 4244 */ 4245 static void 4246 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr) 4247 { 4248 int err; 4249 dmu_buf_impl_t *db = dr->dr_dbuf; 4250 4251 ASSERT(MUTEX_HELD(&db->db_mtx)); 4252 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT); 4253 ASSERT3U(db->db_level, ==, 0); 4254 4255 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) { 4256 zbookmark_phys_t zb; 4257 4258 /* 4259 * Unfortunately, there is currently no mechanism for 4260 * syncing context to handle decryption errors. An error 4261 * here is only possible if an attacker maliciously 4262 * changed a dnode block and updated the associated 4263 * checksums going up the block tree. 4264 */ 4265 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset), 4266 db->db.db_object, db->db_level, db->db_blkid); 4267 err = arc_untransform(db->db_buf, db->db_objset->os_spa, 4268 &zb, B_TRUE); 4269 if (err) 4270 panic("Invalid dnode block MAC"); 4271 } else if (dr->dt.dl.dr_has_raw_params) { 4272 (void) arc_release(dr->dt.dl.dr_data, db); 4273 arc_convert_to_raw(dr->dt.dl.dr_data, 4274 dmu_objset_id(db->db_objset), 4275 dr->dt.dl.dr_byteorder, DMU_OT_DNODE, 4276 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac); 4277 } 4278 } 4279 4280 /* 4281 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it 4282 * is critical the we not allow the compiler to inline this function in to 4283 * dbuf_sync_list() thereby drastically bloating the stack usage. 4284 */ 4285 noinline static void 4286 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4287 { 4288 dmu_buf_impl_t *db = dr->dr_dbuf; 4289 dnode_t *dn = dr->dr_dnode; 4290 4291 ASSERT(dmu_tx_is_syncing(tx)); 4292 4293 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4294 4295 mutex_enter(&db->db_mtx); 4296 4297 ASSERT(db->db_level > 0); 4298 DBUF_VERIFY(db); 4299 4300 /* Read the block if it hasn't been read yet. */ 4301 if (db->db_buf == NULL) { 4302 mutex_exit(&db->db_mtx); 4303 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 4304 mutex_enter(&db->db_mtx); 4305 } 4306 ASSERT3U(db->db_state, ==, DB_CACHED); 4307 ASSERT(db->db_buf != NULL); 4308 4309 /* Indirect block size must match what the dnode thinks it is. */ 4310 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4311 dbuf_check_blkptr(dn, db); 4312 4313 /* Provide the pending dirty record to child dbufs */ 4314 db->db_data_pending = dr; 4315 4316 mutex_exit(&db->db_mtx); 4317 4318 dbuf_write(dr, db->db_buf, tx); 4319 4320 zio_t *zio = dr->dr_zio; 4321 mutex_enter(&dr->dt.di.dr_mtx); 4322 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx); 4323 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4324 mutex_exit(&dr->dt.di.dr_mtx); 4325 zio_nowait(zio); 4326 } 4327 4328 /* 4329 * Verify that the size of the data in our bonus buffer does not exceed 4330 * its recorded size. 4331 * 4332 * The purpose of this verification is to catch any cases in development 4333 * where the size of a phys structure (i.e space_map_phys_t) grows and, 4334 * due to incorrect feature management, older pools expect to read more 4335 * data even though they didn't actually write it to begin with. 4336 * 4337 * For a example, this would catch an error in the feature logic where we 4338 * open an older pool and we expect to write the space map histogram of 4339 * a space map with size SPACE_MAP_SIZE_V0. 4340 */ 4341 static void 4342 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr) 4343 { 4344 #ifdef ZFS_DEBUG 4345 dnode_t *dn = dr->dr_dnode; 4346 4347 /* 4348 * Encrypted bonus buffers can have data past their bonuslen. 4349 * Skip the verification of these blocks. 4350 */ 4351 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype)) 4352 return; 4353 4354 uint16_t bonuslen = dn->dn_phys->dn_bonuslen; 4355 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 4356 ASSERT3U(bonuslen, <=, maxbonuslen); 4357 4358 arc_buf_t *datap = dr->dt.dl.dr_data; 4359 char *datap_end = ((char *)datap) + bonuslen; 4360 char *datap_max = ((char *)datap) + maxbonuslen; 4361 4362 /* ensure that everything is zero after our data */ 4363 for (; datap_end < datap_max; datap_end++) 4364 ASSERT(*datap_end == 0); 4365 #endif 4366 } 4367 4368 static blkptr_t * 4369 dbuf_lightweight_bp(dbuf_dirty_record_t *dr) 4370 { 4371 /* This must be a lightweight dirty record. */ 4372 ASSERT3P(dr->dr_dbuf, ==, NULL); 4373 dnode_t *dn = dr->dr_dnode; 4374 4375 if (dn->dn_phys->dn_nlevels == 1) { 4376 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr); 4377 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]); 4378 } else { 4379 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf; 4380 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 4381 VERIFY3U(parent_db->db_level, ==, 1); 4382 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn); 4383 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid); 4384 blkptr_t *bp = parent_db->db.db_data; 4385 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]); 4386 } 4387 } 4388 4389 static void 4390 dbuf_lightweight_ready(zio_t *zio) 4391 { 4392 dbuf_dirty_record_t *dr = zio->io_private; 4393 blkptr_t *bp = zio->io_bp; 4394 4395 if (zio->io_error != 0) 4396 return; 4397 4398 dnode_t *dn = dr->dr_dnode; 4399 4400 blkptr_t *bp_orig = dbuf_lightweight_bp(dr); 4401 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4402 int64_t delta = bp_get_dsize_sync(spa, bp) - 4403 bp_get_dsize_sync(spa, bp_orig); 4404 dnode_diduse_space(dn, delta); 4405 4406 uint64_t blkid = dr->dt.dll.dr_blkid; 4407 mutex_enter(&dn->dn_mtx); 4408 if (blkid > dn->dn_phys->dn_maxblkid) { 4409 ASSERT0(dn->dn_objset->os_raw_receive); 4410 dn->dn_phys->dn_maxblkid = blkid; 4411 } 4412 mutex_exit(&dn->dn_mtx); 4413 4414 if (!BP_IS_EMBEDDED(bp)) { 4415 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1; 4416 BP_SET_FILL(bp, fill); 4417 } 4418 4419 dmu_buf_impl_t *parent_db; 4420 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1); 4421 if (dr->dr_parent == NULL) { 4422 parent_db = dn->dn_dbuf; 4423 } else { 4424 parent_db = dr->dr_parent->dr_dbuf; 4425 } 4426 rw_enter(&parent_db->db_rwlock, RW_WRITER); 4427 *bp_orig = *bp; 4428 rw_exit(&parent_db->db_rwlock); 4429 } 4430 4431 static void 4432 dbuf_lightweight_done(zio_t *zio) 4433 { 4434 dbuf_dirty_record_t *dr = zio->io_private; 4435 4436 VERIFY0(zio->io_error); 4437 4438 objset_t *os = dr->dr_dnode->dn_objset; 4439 dmu_tx_t *tx = os->os_synctx; 4440 4441 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4442 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig)); 4443 } else { 4444 dsl_dataset_t *ds = os->os_dsl_dataset; 4445 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE); 4446 dsl_dataset_block_born(ds, zio->io_bp, tx); 4447 } 4448 4449 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4450 zio->io_txg); 4451 4452 abd_free(dr->dt.dll.dr_abd); 4453 kmem_free(dr, sizeof (*dr)); 4454 } 4455 4456 noinline static void 4457 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4458 { 4459 dnode_t *dn = dr->dr_dnode; 4460 zio_t *pio; 4461 if (dn->dn_phys->dn_nlevels == 1) { 4462 pio = dn->dn_zio; 4463 } else { 4464 pio = dr->dr_parent->dr_zio; 4465 } 4466 4467 zbookmark_phys_t zb = { 4468 .zb_objset = dmu_objset_id(dn->dn_objset), 4469 .zb_object = dn->dn_object, 4470 .zb_level = 0, 4471 .zb_blkid = dr->dt.dll.dr_blkid, 4472 }; 4473 4474 /* 4475 * See comment in dbuf_write(). This is so that zio->io_bp_orig 4476 * will have the old BP in dbuf_lightweight_done(). 4477 */ 4478 dr->dr_bp_copy = *dbuf_lightweight_bp(dr); 4479 4480 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset), 4481 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd, 4482 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd), 4483 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL, 4484 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE, 4485 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb); 4486 4487 zio_nowait(dr->dr_zio); 4488 } 4489 4490 /* 4491 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is 4492 * critical the we not allow the compiler to inline this function in to 4493 * dbuf_sync_list() thereby drastically bloating the stack usage. 4494 */ 4495 noinline static void 4496 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx) 4497 { 4498 arc_buf_t **datap = &dr->dt.dl.dr_data; 4499 dmu_buf_impl_t *db = dr->dr_dbuf; 4500 dnode_t *dn = dr->dr_dnode; 4501 objset_t *os; 4502 uint64_t txg = tx->tx_txg; 4503 4504 ASSERT(dmu_tx_is_syncing(tx)); 4505 4506 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr); 4507 4508 mutex_enter(&db->db_mtx); 4509 /* 4510 * To be synced, we must be dirtied. But we 4511 * might have been freed after the dirty. 4512 */ 4513 if (db->db_state == DB_UNCACHED) { 4514 /* This buffer has been freed since it was dirtied */ 4515 ASSERT(db->db.db_data == NULL); 4516 } else if (db->db_state == DB_FILL) { 4517 /* This buffer was freed and is now being re-filled */ 4518 ASSERT(db->db.db_data != dr->dt.dl.dr_data); 4519 } else if (db->db_state == DB_READ) { 4520 /* 4521 * This buffer has a clone we need to write, and an in-flight 4522 * read on the BP we're about to clone. Its safe to issue the 4523 * write here because the read has already been issued and the 4524 * contents won't change. 4525 */ 4526 ASSERT(dr->dt.dl.dr_brtwrite && 4527 dr->dt.dl.dr_override_state == DR_OVERRIDDEN); 4528 } else { 4529 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL); 4530 } 4531 DBUF_VERIFY(db); 4532 4533 if (db->db_blkid == DMU_SPILL_BLKID) { 4534 mutex_enter(&dn->dn_mtx); 4535 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) { 4536 /* 4537 * In the previous transaction group, the bonus buffer 4538 * was entirely used to store the attributes for the 4539 * dnode which overrode the dn_spill field. However, 4540 * when adding more attributes to the file a spill 4541 * block was required to hold the extra attributes. 4542 * 4543 * Make sure to clear the garbage left in the dn_spill 4544 * field from the previous attributes in the bonus 4545 * buffer. Otherwise, after writing out the spill 4546 * block to the new allocated dva, it will free 4547 * the old block pointed to by the invalid dn_spill. 4548 */ 4549 db->db_blkptr = NULL; 4550 } 4551 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR; 4552 mutex_exit(&dn->dn_mtx); 4553 } 4554 4555 /* 4556 * If this is a bonus buffer, simply copy the bonus data into the 4557 * dnode. It will be written out when the dnode is synced (and it 4558 * will be synced, since it must have been dirty for dbuf_sync to 4559 * be called). 4560 */ 4561 if (db->db_blkid == DMU_BONUS_BLKID) { 4562 ASSERT(dr->dr_dbuf == db); 4563 dbuf_sync_bonus(dr, tx); 4564 return; 4565 } 4566 4567 os = dn->dn_objset; 4568 4569 /* 4570 * This function may have dropped the db_mtx lock allowing a dmu_sync 4571 * operation to sneak in. As a result, we need to ensure that we 4572 * don't check the dr_override_state until we have returned from 4573 * dbuf_check_blkptr. 4574 */ 4575 dbuf_check_blkptr(dn, db); 4576 4577 /* 4578 * If this buffer is in the middle of an immediate write, 4579 * wait for the synchronous IO to complete. 4580 */ 4581 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) { 4582 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 4583 cv_wait(&db->db_changed, &db->db_mtx); 4584 } 4585 4586 /* 4587 * If this is a dnode block, ensure it is appropriately encrypted 4588 * or decrypted, depending on what we are writing to it this txg. 4589 */ 4590 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT) 4591 dbuf_prepare_encrypted_dnode_leaf(dr); 4592 4593 if (*datap != NULL && *datap == db->db_buf && 4594 dn->dn_object != DMU_META_DNODE_OBJECT && 4595 zfs_refcount_count(&db->db_holds) > 1 && 4596 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) { 4597 /* 4598 * If this buffer is currently "in use" (i.e., there 4599 * are active holds and db_data still references it), 4600 * then make a copy before we start the write so that 4601 * any modifications from the open txg will not leak 4602 * into this write. 4603 * 4604 * NOTE: this copy does not need to be made for 4605 * objects only modified in the syncing context (e.g. 4606 * DNONE_DNODE blocks). 4607 */ 4608 int psize = arc_buf_size(*datap); 4609 int lsize = arc_buf_lsize(*datap); 4610 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db); 4611 enum zio_compress compress_type = arc_get_compression(*datap); 4612 uint8_t complevel = arc_get_complevel(*datap); 4613 4614 if (arc_is_encrypted(*datap)) { 4615 boolean_t byteorder; 4616 uint8_t salt[ZIO_DATA_SALT_LEN]; 4617 uint8_t iv[ZIO_DATA_IV_LEN]; 4618 uint8_t mac[ZIO_DATA_MAC_LEN]; 4619 4620 arc_get_raw_params(*datap, &byteorder, salt, iv, mac); 4621 *datap = arc_alloc_raw_buf(os->os_spa, db, 4622 dmu_objset_id(os), byteorder, salt, iv, mac, 4623 dn->dn_type, psize, lsize, compress_type, 4624 complevel); 4625 } else if (compress_type != ZIO_COMPRESS_OFF) { 4626 ASSERT3U(type, ==, ARC_BUFC_DATA); 4627 *datap = arc_alloc_compressed_buf(os->os_spa, db, 4628 psize, lsize, compress_type, complevel); 4629 } else { 4630 *datap = arc_alloc_buf(os->os_spa, db, type, psize); 4631 } 4632 memcpy((*datap)->b_data, db->db.db_data, psize); 4633 } 4634 db->db_data_pending = dr; 4635 4636 mutex_exit(&db->db_mtx); 4637 4638 dbuf_write(dr, *datap, tx); 4639 4640 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4641 if (dn->dn_object == DMU_META_DNODE_OBJECT) { 4642 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr); 4643 } else { 4644 zio_nowait(dr->dr_zio); 4645 } 4646 } 4647 4648 /* 4649 * Syncs out a range of dirty records for indirect or leaf dbufs. May be 4650 * called recursively from dbuf_sync_indirect(). 4651 */ 4652 void 4653 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx) 4654 { 4655 dbuf_dirty_record_t *dr; 4656 4657 while ((dr = list_head(list))) { 4658 if (dr->dr_zio != NULL) { 4659 /* 4660 * If we find an already initialized zio then we 4661 * are processing the meta-dnode, and we have finished. 4662 * The dbufs for all dnodes are put back on the list 4663 * during processing, so that we can zio_wait() 4664 * these IOs after initiating all child IOs. 4665 */ 4666 ASSERT3U(dr->dr_dbuf->db.db_object, ==, 4667 DMU_META_DNODE_OBJECT); 4668 break; 4669 } 4670 list_remove(list, dr); 4671 if (dr->dr_dbuf == NULL) { 4672 dbuf_sync_lightweight(dr, tx); 4673 } else { 4674 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 4675 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 4676 VERIFY3U(dr->dr_dbuf->db_level, ==, level); 4677 } 4678 if (dr->dr_dbuf->db_level > 0) 4679 dbuf_sync_indirect(dr, tx); 4680 else 4681 dbuf_sync_leaf(dr, tx); 4682 } 4683 } 4684 } 4685 4686 static void 4687 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4688 { 4689 (void) buf; 4690 dmu_buf_impl_t *db = vdb; 4691 dnode_t *dn; 4692 blkptr_t *bp = zio->io_bp; 4693 blkptr_t *bp_orig = &zio->io_bp_orig; 4694 spa_t *spa = zio->io_spa; 4695 int64_t delta; 4696 uint64_t fill = 0; 4697 int i; 4698 4699 ASSERT3P(db->db_blkptr, !=, NULL); 4700 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp); 4701 4702 DB_DNODE_ENTER(db); 4703 dn = DB_DNODE(db); 4704 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig); 4705 dnode_diduse_space(dn, delta - zio->io_prev_space_delta); 4706 zio->io_prev_space_delta = delta; 4707 4708 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 4709 ASSERT((db->db_blkid != DMU_SPILL_BLKID && 4710 BP_GET_TYPE(bp) == dn->dn_type) || 4711 (db->db_blkid == DMU_SPILL_BLKID && 4712 BP_GET_TYPE(bp) == dn->dn_bonustype) || 4713 BP_IS_EMBEDDED(bp)); 4714 ASSERT(BP_GET_LEVEL(bp) == db->db_level); 4715 } 4716 4717 mutex_enter(&db->db_mtx); 4718 4719 #ifdef ZFS_DEBUG 4720 if (db->db_blkid == DMU_SPILL_BLKID) { 4721 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4722 ASSERT(!(BP_IS_HOLE(bp)) && 4723 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4724 } 4725 #endif 4726 4727 if (db->db_level == 0) { 4728 mutex_enter(&dn->dn_mtx); 4729 if (db->db_blkid > dn->dn_phys->dn_maxblkid && 4730 db->db_blkid != DMU_SPILL_BLKID) { 4731 ASSERT0(db->db_objset->os_raw_receive); 4732 dn->dn_phys->dn_maxblkid = db->db_blkid; 4733 } 4734 mutex_exit(&dn->dn_mtx); 4735 4736 if (dn->dn_type == DMU_OT_DNODE) { 4737 i = 0; 4738 while (i < db->db.db_size) { 4739 dnode_phys_t *dnp = 4740 (void *)(((char *)db->db.db_data) + i); 4741 4742 i += DNODE_MIN_SIZE; 4743 if (dnp->dn_type != DMU_OT_NONE) { 4744 fill++; 4745 for (int j = 0; j < dnp->dn_nblkptr; 4746 j++) { 4747 (void) zfs_blkptr_verify(spa, 4748 &dnp->dn_blkptr[j], 4749 BLK_CONFIG_SKIP, 4750 BLK_VERIFY_HALT); 4751 } 4752 if (dnp->dn_flags & 4753 DNODE_FLAG_SPILL_BLKPTR) { 4754 (void) zfs_blkptr_verify(spa, 4755 DN_SPILL_BLKPTR(dnp), 4756 BLK_CONFIG_SKIP, 4757 BLK_VERIFY_HALT); 4758 } 4759 i += dnp->dn_extra_slots * 4760 DNODE_MIN_SIZE; 4761 } 4762 } 4763 } else { 4764 if (BP_IS_HOLE(bp)) { 4765 fill = 0; 4766 } else { 4767 fill = 1; 4768 } 4769 } 4770 } else { 4771 blkptr_t *ibp = db->db.db_data; 4772 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift); 4773 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) { 4774 if (BP_IS_HOLE(ibp)) 4775 continue; 4776 (void) zfs_blkptr_verify(spa, ibp, 4777 BLK_CONFIG_SKIP, BLK_VERIFY_HALT); 4778 fill += BP_GET_FILL(ibp); 4779 } 4780 } 4781 DB_DNODE_EXIT(db); 4782 4783 if (!BP_IS_EMBEDDED(bp)) 4784 BP_SET_FILL(bp, fill); 4785 4786 mutex_exit(&db->db_mtx); 4787 4788 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG); 4789 *db->db_blkptr = *bp; 4790 dmu_buf_unlock_parent(db, dblt, FTAG); 4791 } 4792 4793 /* 4794 * This function gets called just prior to running through the compression 4795 * stage of the zio pipeline. If we're an indirect block comprised of only 4796 * holes, then we want this indirect to be compressed away to a hole. In 4797 * order to do that we must zero out any information about the holes that 4798 * this indirect points to prior to before we try to compress it. 4799 */ 4800 static void 4801 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb) 4802 { 4803 (void) zio, (void) buf; 4804 dmu_buf_impl_t *db = vdb; 4805 dnode_t *dn; 4806 blkptr_t *bp; 4807 unsigned int epbs, i; 4808 4809 ASSERT3U(db->db_level, >, 0); 4810 DB_DNODE_ENTER(db); 4811 dn = DB_DNODE(db); 4812 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 4813 ASSERT3U(epbs, <, 31); 4814 4815 /* Determine if all our children are holes */ 4816 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) { 4817 if (!BP_IS_HOLE(bp)) 4818 break; 4819 } 4820 4821 /* 4822 * If all the children are holes, then zero them all out so that 4823 * we may get compressed away. 4824 */ 4825 if (i == 1ULL << epbs) { 4826 /* 4827 * We only found holes. Grab the rwlock to prevent 4828 * anybody from reading the blocks we're about to 4829 * zero out. 4830 */ 4831 rw_enter(&db->db_rwlock, RW_WRITER); 4832 memset(db->db.db_data, 0, db->db.db_size); 4833 rw_exit(&db->db_rwlock); 4834 } 4835 DB_DNODE_EXIT(db); 4836 } 4837 4838 static void 4839 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb) 4840 { 4841 (void) buf; 4842 dmu_buf_impl_t *db = vdb; 4843 blkptr_t *bp_orig = &zio->io_bp_orig; 4844 blkptr_t *bp = db->db_blkptr; 4845 objset_t *os = db->db_objset; 4846 dmu_tx_t *tx = os->os_synctx; 4847 4848 ASSERT0(zio->io_error); 4849 ASSERT(db->db_blkptr == bp); 4850 4851 /* 4852 * For nopwrites and rewrites we ensure that the bp matches our 4853 * original and bypass all the accounting. 4854 */ 4855 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) { 4856 ASSERT(BP_EQUAL(bp, bp_orig)); 4857 } else { 4858 dsl_dataset_t *ds = os->os_dsl_dataset; 4859 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE); 4860 dsl_dataset_block_born(ds, bp, tx); 4861 } 4862 4863 mutex_enter(&db->db_mtx); 4864 4865 DBUF_VERIFY(db); 4866 4867 dbuf_dirty_record_t *dr = db->db_data_pending; 4868 dnode_t *dn = dr->dr_dnode; 4869 ASSERT(!list_link_active(&dr->dr_dirty_node)); 4870 ASSERT(dr->dr_dbuf == db); 4871 ASSERT(list_next(&db->db_dirty_records, dr) == NULL); 4872 list_remove(&db->db_dirty_records, dr); 4873 4874 #ifdef ZFS_DEBUG 4875 if (db->db_blkid == DMU_SPILL_BLKID) { 4876 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR); 4877 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) && 4878 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys)); 4879 } 4880 #endif 4881 4882 if (db->db_level == 0) { 4883 ASSERT(db->db_blkid != DMU_BONUS_BLKID); 4884 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 4885 if (dr->dt.dl.dr_data != NULL && 4886 dr->dt.dl.dr_data != db->db_buf) { 4887 arc_buf_destroy(dr->dt.dl.dr_data, db); 4888 } 4889 } else { 4890 ASSERT(list_head(&dr->dt.di.dr_children) == NULL); 4891 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 4892 if (!BP_IS_HOLE(db->db_blkptr)) { 4893 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift - 4894 SPA_BLKPTRSHIFT; 4895 ASSERT3U(db->db_blkid, <=, 4896 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs)); 4897 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, 4898 db->db.db_size); 4899 } 4900 mutex_destroy(&dr->dt.di.dr_mtx); 4901 list_destroy(&dr->dt.di.dr_children); 4902 } 4903 4904 cv_broadcast(&db->db_changed); 4905 ASSERT(db->db_dirtycnt > 0); 4906 db->db_dirtycnt -= 1; 4907 db->db_data_pending = NULL; 4908 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE); 4909 4910 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted, 4911 zio->io_txg); 4912 4913 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 4914 } 4915 4916 static void 4917 dbuf_write_nofill_ready(zio_t *zio) 4918 { 4919 dbuf_write_ready(zio, NULL, zio->io_private); 4920 } 4921 4922 static void 4923 dbuf_write_nofill_done(zio_t *zio) 4924 { 4925 dbuf_write_done(zio, NULL, zio->io_private); 4926 } 4927 4928 static void 4929 dbuf_write_override_ready(zio_t *zio) 4930 { 4931 dbuf_dirty_record_t *dr = zio->io_private; 4932 dmu_buf_impl_t *db = dr->dr_dbuf; 4933 4934 dbuf_write_ready(zio, NULL, db); 4935 } 4936 4937 static void 4938 dbuf_write_override_done(zio_t *zio) 4939 { 4940 dbuf_dirty_record_t *dr = zio->io_private; 4941 dmu_buf_impl_t *db = dr->dr_dbuf; 4942 blkptr_t *obp = &dr->dt.dl.dr_overridden_by; 4943 4944 mutex_enter(&db->db_mtx); 4945 if (!BP_EQUAL(zio->io_bp, obp)) { 4946 if (!BP_IS_HOLE(obp)) 4947 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp); 4948 arc_release(dr->dt.dl.dr_data, db); 4949 } 4950 mutex_exit(&db->db_mtx); 4951 4952 dbuf_write_done(zio, NULL, db); 4953 4954 if (zio->io_abd != NULL) 4955 abd_free(zio->io_abd); 4956 } 4957 4958 typedef struct dbuf_remap_impl_callback_arg { 4959 objset_t *drica_os; 4960 uint64_t drica_blk_birth; 4961 dmu_tx_t *drica_tx; 4962 } dbuf_remap_impl_callback_arg_t; 4963 4964 static void 4965 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size, 4966 void *arg) 4967 { 4968 dbuf_remap_impl_callback_arg_t *drica = arg; 4969 objset_t *os = drica->drica_os; 4970 spa_t *spa = dmu_objset_spa(os); 4971 dmu_tx_t *tx = drica->drica_tx; 4972 4973 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4974 4975 if (os == spa_meta_objset(spa)) { 4976 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx); 4977 } else { 4978 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset, 4979 size, drica->drica_blk_birth, tx); 4980 } 4981 } 4982 4983 static void 4984 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx) 4985 { 4986 blkptr_t bp_copy = *bp; 4987 spa_t *spa = dmu_objset_spa(dn->dn_objset); 4988 dbuf_remap_impl_callback_arg_t drica; 4989 4990 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 4991 4992 drica.drica_os = dn->dn_objset; 4993 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp); 4994 drica.drica_tx = tx; 4995 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback, 4996 &drica)) { 4997 /* 4998 * If the blkptr being remapped is tracked by a livelist, 4999 * then we need to make sure the livelist reflects the update. 5000 * First, cancel out the old blkptr by appending a 'FREE' 5001 * entry. Next, add an 'ALLOC' to track the new version. This 5002 * way we avoid trying to free an inaccurate blkptr at delete. 5003 * Note that embedded blkptrs are not tracked in livelists. 5004 */ 5005 if (dn->dn_objset != spa_meta_objset(spa)) { 5006 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset); 5007 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 5008 BP_GET_LOGICAL_BIRTH(bp) > 5009 ds->ds_dir->dd_origin_txg) { 5010 ASSERT(!BP_IS_EMBEDDED(bp)); 5011 ASSERT(dsl_dir_is_clone(ds->ds_dir)); 5012 ASSERT(spa_feature_is_enabled(spa, 5013 SPA_FEATURE_LIVELIST)); 5014 bplist_append(&ds->ds_dir->dd_pending_frees, 5015 bp); 5016 bplist_append(&ds->ds_dir->dd_pending_allocs, 5017 &bp_copy); 5018 } 5019 } 5020 5021 /* 5022 * The db_rwlock prevents dbuf_read_impl() from 5023 * dereferencing the BP while we are changing it. To 5024 * avoid lock contention, only grab it when we are actually 5025 * changing the BP. 5026 */ 5027 if (rw != NULL) 5028 rw_enter(rw, RW_WRITER); 5029 *bp = bp_copy; 5030 if (rw != NULL) 5031 rw_exit(rw); 5032 } 5033 } 5034 5035 /* 5036 * Remap any existing BP's to concrete vdevs, if possible. 5037 */ 5038 static void 5039 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx) 5040 { 5041 spa_t *spa = dmu_objset_spa(db->db_objset); 5042 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa))); 5043 5044 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)) 5045 return; 5046 5047 if (db->db_level > 0) { 5048 blkptr_t *bp = db->db.db_data; 5049 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) { 5050 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx); 5051 } 5052 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) { 5053 dnode_phys_t *dnp = db->db.db_data; 5054 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==, 5055 DMU_OT_DNODE); 5056 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT; 5057 i += dnp[i].dn_extra_slots + 1) { 5058 for (int j = 0; j < dnp[i].dn_nblkptr; j++) { 5059 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL : 5060 &dn->dn_dbuf->db_rwlock); 5061 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock, 5062 tx); 5063 } 5064 } 5065 } 5066 } 5067 5068 5069 /* 5070 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk. 5071 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio). 5072 */ 5073 static void 5074 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx) 5075 { 5076 dmu_buf_impl_t *db = dr->dr_dbuf; 5077 dnode_t *dn = dr->dr_dnode; 5078 objset_t *os; 5079 dmu_buf_impl_t *parent = db->db_parent; 5080 uint64_t txg = tx->tx_txg; 5081 zbookmark_phys_t zb; 5082 zio_prop_t zp; 5083 zio_t *pio; /* parent I/O */ 5084 int wp_flag = 0; 5085 5086 ASSERT(dmu_tx_is_syncing(tx)); 5087 5088 os = dn->dn_objset; 5089 5090 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) { 5091 /* 5092 * Private object buffers are released here rather than in 5093 * dbuf_dirty() since they are only modified in the syncing 5094 * context and we don't want the overhead of making multiple 5095 * copies of the data. 5096 */ 5097 if (BP_IS_HOLE(db->db_blkptr)) 5098 arc_buf_thaw(data); 5099 else 5100 dbuf_release_bp(db); 5101 dbuf_remap(dn, db, tx); 5102 } 5103 5104 if (parent != dn->dn_dbuf) { 5105 /* Our parent is an indirect block. */ 5106 /* We have a dirty parent that has been scheduled for write. */ 5107 ASSERT(parent && parent->db_data_pending); 5108 /* Our parent's buffer is one level closer to the dnode. */ 5109 ASSERT(db->db_level == parent->db_level-1); 5110 /* 5111 * We're about to modify our parent's db_data by modifying 5112 * our block pointer, so the parent must be released. 5113 */ 5114 ASSERT(arc_released(parent->db_buf)); 5115 pio = parent->db_data_pending->dr_zio; 5116 } else { 5117 /* Our parent is the dnode itself. */ 5118 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 && 5119 db->db_blkid != DMU_SPILL_BLKID) || 5120 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0)); 5121 if (db->db_blkid != DMU_SPILL_BLKID) 5122 ASSERT3P(db->db_blkptr, ==, 5123 &dn->dn_phys->dn_blkptr[db->db_blkid]); 5124 pio = dn->dn_zio; 5125 } 5126 5127 ASSERT(db->db_level == 0 || data == db->db_buf); 5128 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg); 5129 ASSERT(pio); 5130 5131 SET_BOOKMARK(&zb, os->os_dsl_dataset ? 5132 os->os_dsl_dataset->ds_object : DMU_META_OBJSET, 5133 db->db.db_object, db->db_level, db->db_blkid); 5134 5135 if (db->db_blkid == DMU_SPILL_BLKID) 5136 wp_flag = WP_SPILL; 5137 wp_flag |= (data == NULL) ? WP_NOFILL : 0; 5138 5139 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp); 5140 5141 /* 5142 * We copy the blkptr now (rather than when we instantiate the dirty 5143 * record), because its value can change between open context and 5144 * syncing context. We do not need to hold dn_struct_rwlock to read 5145 * db_blkptr because we are in syncing context. 5146 */ 5147 dr->dr_bp_copy = *db->db_blkptr; 5148 5149 if (db->db_level == 0 && 5150 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 5151 /* 5152 * The BP for this block has been provided by open context 5153 * (by dmu_sync() or dmu_buf_write_embedded()). 5154 */ 5155 abd_t *contents = (data != NULL) ? 5156 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL; 5157 5158 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy, 5159 contents, db->db.db_size, db->db.db_size, &zp, 5160 dbuf_write_override_ready, NULL, 5161 dbuf_write_override_done, 5162 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5163 mutex_enter(&db->db_mtx); 5164 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 5165 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by, 5166 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite, 5167 dr->dt.dl.dr_brtwrite); 5168 mutex_exit(&db->db_mtx); 5169 } else if (data == NULL) { 5170 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF || 5171 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY); 5172 dr->dr_zio = zio_write(pio, os->os_spa, txg, 5173 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp, 5174 dbuf_write_nofill_ready, NULL, 5175 dbuf_write_nofill_done, db, 5176 ZIO_PRIORITY_ASYNC_WRITE, 5177 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb); 5178 } else { 5179 ASSERT(arc_released(data)); 5180 5181 /* 5182 * For indirect blocks, we want to setup the children 5183 * ready callback so that we can properly handle an indirect 5184 * block that only contains holes. 5185 */ 5186 arc_write_done_func_t *children_ready_cb = NULL; 5187 if (db->db_level != 0) 5188 children_ready_cb = dbuf_write_children_ready; 5189 5190 dr->dr_zio = arc_write(pio, os->os_spa, txg, 5191 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db), 5192 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready, 5193 children_ready_cb, dbuf_write_done, db, 5194 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb); 5195 } 5196 } 5197 5198 EXPORT_SYMBOL(dbuf_find); 5199 EXPORT_SYMBOL(dbuf_is_metadata); 5200 EXPORT_SYMBOL(dbuf_destroy); 5201 EXPORT_SYMBOL(dbuf_loan_arcbuf); 5202 EXPORT_SYMBOL(dbuf_whichblock); 5203 EXPORT_SYMBOL(dbuf_read); 5204 EXPORT_SYMBOL(dbuf_unoverride); 5205 EXPORT_SYMBOL(dbuf_free_range); 5206 EXPORT_SYMBOL(dbuf_new_size); 5207 EXPORT_SYMBOL(dbuf_release_bp); 5208 EXPORT_SYMBOL(dbuf_dirty); 5209 EXPORT_SYMBOL(dmu_buf_set_crypt_params); 5210 EXPORT_SYMBOL(dmu_buf_will_dirty); 5211 EXPORT_SYMBOL(dmu_buf_is_dirty); 5212 EXPORT_SYMBOL(dmu_buf_will_clone); 5213 EXPORT_SYMBOL(dmu_buf_will_not_fill); 5214 EXPORT_SYMBOL(dmu_buf_will_fill); 5215 EXPORT_SYMBOL(dmu_buf_fill_done); 5216 EXPORT_SYMBOL(dmu_buf_rele); 5217 EXPORT_SYMBOL(dbuf_assign_arcbuf); 5218 EXPORT_SYMBOL(dbuf_prefetch); 5219 EXPORT_SYMBOL(dbuf_hold_impl); 5220 EXPORT_SYMBOL(dbuf_hold); 5221 EXPORT_SYMBOL(dbuf_hold_level); 5222 EXPORT_SYMBOL(dbuf_create_bonus); 5223 EXPORT_SYMBOL(dbuf_spill_set_blksz); 5224 EXPORT_SYMBOL(dbuf_rm_spill); 5225 EXPORT_SYMBOL(dbuf_add_ref); 5226 EXPORT_SYMBOL(dbuf_rele); 5227 EXPORT_SYMBOL(dbuf_rele_and_unlock); 5228 EXPORT_SYMBOL(dbuf_refcount); 5229 EXPORT_SYMBOL(dbuf_sync_list); 5230 EXPORT_SYMBOL(dmu_buf_set_user); 5231 EXPORT_SYMBOL(dmu_buf_set_user_ie); 5232 EXPORT_SYMBOL(dmu_buf_get_user); 5233 EXPORT_SYMBOL(dmu_buf_get_blkptr); 5234 5235 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW, 5236 "Maximum size in bytes of the dbuf cache."); 5237 5238 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW, 5239 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction."); 5240 5241 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW, 5242 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops."); 5243 5244 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW, 5245 "Maximum size in bytes of dbuf metadata cache."); 5246 5247 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW, 5248 "Set size of dbuf cache to log2 fraction of arc size."); 5249 5250 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW, 5251 "Set size of dbuf metadata cache to log2 fraction of arc size."); 5252 5253 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD, 5254 "Set size of dbuf cache mutex array as log2 shift."); 5255